
Automated Design of
Approximate Accelerators

Jorge Castro-Godínez

Automated Design of Approximate Accelerators

by
Jorge Castro-Godínez

This work has been supported financially by the Instituto Tecnológico de Costa Rica
through the “Costa Rican Higher Education Improvement Project” (Proyecto Costa
Rica BIRF 8794-CR), and the DAAD-STIBET-Abschlussstipendium.

Cover designed by the author. The base image corresponds to the cameraman, a
standard test image in image processing (http://www.imageprocessingplace.com/
root_files_V3/image_databases.htm).

This document is licensed under the Creative Commons
Attribution-Share Alike 4.0 International License (CC BY-SA 4.0):

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Automated Design of Approximate Accelerators

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

M.Sc.

Jorge Castro-Godínez
aus San Isidro de El General,

Costa Rica

Tag der mündlichen Prüfung: 19.11.2020

Erster Gutachter: Prof. Dr.-Ing. Jörg Henkel
Karlsruher Institut für Technologie

Zweiter Gutachter: Prof. Dr. rer. nat. Wolfgang Karl
Karlsruher Institut für Technologie

Dritter Gutachter: Prof. Dr.-Ing. Muhammad Shafique
New York University Abu Dhabi

Jorge Castro-Godínez
Steinstr. 18
77815, Bühl

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selb-
stständig verfasst habe, dass ich die verwendeten Quellen, Internet-Quellen und
Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit —
einschließlich Tabellen, Karten und Abbildungen — die anderen Werken oder dem
Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Jorge Castro-Godínez

To Silvia, Fabiana, Ignacio, and Lucía

People think that computer science is the art of geniuses but the actual
reality is the opposite, just many people doing things that build on

eachother, like a wall of mini stones.

Donald Knuth

Contents

Acknowledgements . xvii

List of Publications . xix

Abstract . xxiii

Zusammenfassung .xxvii

1 Introduction . 1
1.1 Approximate Computing . 1
1.2 Dissertation Contribution . 3

2 Background and Related Work . 7
2.1 Approximate Arithmetic Circuits . 7
2.2 Approximation Error . 10

2.2.1 Representation . 10
2.2.2 Metrics . 11
2.2.3 Accuracy and Quality . 12

2.3 Approximate Accelerators . 14

3 Generating Approximate Arithmetic Circuits 17
3.1 A Tool for Generating Approximate Arithmetic Circuits 18

3.1.1 Description . 19
3.1.2 Evaluation . 20

xiii

Contents

3.2 A Framework for Approximate Logic Synthesis 26
3.2.1 Description . 28
3.2.2 Evaluation . 31

3.3 Summary . 35

4 Modeling Error Propagation . 37
4.1 Motivation . 38
4.2 Error Estimation for Approximate Desings 39
4.3 Models for Error Propagation . 40
4.4 Estimation of Error Propagation . 43
4.5 CEDA Tool . 45
4.6 Evaluation . 47
4.7 Summary . 50

5 Designing Approximate Accelerators . 51
5.1 Motivation . 52
5.2 Generation of Approximate Accelerators 53
5.3 Models for Resource Estimation . 54

5.3.1 Evaluation . 57
5.4 Design-Space Exploration with Analytical Models 59

5.4.1 Evaluation . 61
5.5 Approximate High-Level Synthesis . 66

5.5.1 Evaluation . 67
5.6 Summary . 69

6 Balancing Error Correction . 71
6.1 Motivation . 72
6.2 Accuracy Control . 75

6.2.1 Correction at the Accelerator Level 75
6.2.2 Correction at the Approximate Circuit Level 76

6.3 Early Error Correction . 77
6.4 ECAx Methodology . 82
6.5 Evaluation . 86
6.6 Summary . 93

7 Conclusion . 95
7.1 Dissertation Summary . 95
7.2 Future Work . 97

Bibliography . 99

List of Figures . 113

xiv

Contents

List of Tables . 117

xv

I’ve never been a good estimator of how long
things are going to take.

Donald Knuth

Acknowledgements

First of all, I express my sincere thanks to Prof. Dr.-Ing. Jörg Henkel for letting me,
an unknown guy from Costa Rica with very little research experience, to carry out
my doctoral studies at the Chair for Embedded Systems (CES), Karlsruhe Institute
of Technology (KIT). Prof. Henkel provided me the freedom to explore and propose
my own ideas, and he set the bar very high to help me discover my potential as a
researcher. For this, I will ever be deeply thankful.

I deeply thank Prof. Dr.-Ing. Muhammad Shafique for his constant motivation,
questions, discussions, and feedback that helped me to shape my ideas and write
my papers in such a way that they were accepted. I express my gratitude to
Prof. Dr. rer. nat. Wolfgang Karl for accepting the invitation to be one of my
reviewers.

I thank Prof. Dr.-Ing. Rüdiger Dillmann and Prof. Dr.-Ing. Gregor Snelting for
accepting the invitation to be examiners for my oral defense; and Prof. Dr. Mehdi
B. Tahoori and Prof. Dr.-Ing. Michael Beigl for being part of the defense as members
of the doctoral committee.

I would like to thank my colleagues at CES, both present and past, for their friend-
ship, support, and counsels; they were always really appreciated. I particularly
thank my colleagues with whom I have the chance to share the office (in alpha-
betical order): Tanfer Alan, Dr.-Ing. Santiago Pagani, and Dr.-Ing. Farzad Samie.
The interesting discussions, funny anecdotes, and experiences shared have made
my time at CES more pleasant. I also thank Dr.-Ing Lars Bauer for being always
reachable to answer questions and for the funny moments.

xvii

Contents

A special thank goes to all the students that worked with me during this time,
in many cases coming from Costa Rica for short research stays. I am particularly
indebted to my student co-authors for the wonderful work done and the friendship
developed (in alphabetical order): Humberto Barrantes-García, Sven Esser, Deykel
Hernández-Araya, Luis G. León-Vega, and Julián Mateus-Vargas.

The possibility of doing this doctorate was originated by the Instituto Tecnológico
de Costa Rica, through the “Costa Rican Higher Education Improvement Project”
(Proyecto Costa Rica BIRF 8794-CR). I am profoundly thankful for the given op-
portunity and the trust placed in me. In general, I am thankful for the public
education system in Costa Rica. Education is one of the greatest social mobil-
ity vectors, which has allowed me, the son of a widow and domestic worker, to
get to this point. I thank the scholarship committee for help and support with
paperwork and questions. In the last year, I received the support of the DAAD-
STIBET-Abschlussstipendium, for which a deeply thank the support of Oliver Kaas
from the International Scholars & Welcome Office (IScO) at KIT.

My deepest gratitude goes to my family, especially to my kids, that have had
an always busy dad for the last years, and to my wife, for her constant support,
love, and care. She has been always there to celebrate our achievements and to
help me stand during my difficult times. To my extended family, thanks for their
never-ending good wishes.

Karlsruhe, 19.11.2020 Jorge Castro-Godínez

xviii

The first draft is just you telling yourself the story.

Terry Pratchett

List of Publications

The following publications provided a major contribution to this dissertation:

[Cas+20c] J. Castro-Godínez, J. Mateus-Vargas, M. Shafique, and J. Henkel.
“AxHLS: Design Space Exploration and High-Level Synthesis of Ap-
proximate Accelerators using Approximate Functional Units and An-
alytical Models”. In: 2020 IEEE/ACM 39th International Conference on
Computer-Aided Design (ICCAD). 2020. doi: 10.1145/3400302.3415732

[Cas+21] J. Castro-Godínez, H. Barrantes-García, M. Shafique, and J. Henkel.
“AxLS: A Framework for Approximate Logic Synthesis based on
Netlist Transformations”. In: IEEE Transactions on Circuits and Sys-
tems II: Express Briefs (2021)

[Her+20] D. Hernández-Araya, J. Castro-Godínez, M. Shafique, and J. Henkel.
“AUGER: A Tool for Generating Approximate Arithmetic Circuits”.
In: 2020 IEEE 11th Latin American Symposium on Circuits & Systems
(LASCAS). 2020, pp. 1–4. doi: 10.1109/LASCAS45839.2020.9069045

[CSH19] J. Castro-Godínez, M. Shafique, and J. Henkel. “ECAx: Balancing Error
Correction Costs in Approximate Accelerators”. In: ACM Trans. Embed.
Comput. Syst. 18.5s (2019). doi: 10.1145/3358179

[Cas+18] J. Castro-Godínez, S. Esser, M. Shafique, S. Pagani, and J. Henkel.
“Compiler-Driven Error Analysis for Designing Approximate Acceler-
ators”. In: 2018 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE). 2018, pp. 1027–1032. doi: 10.23919/DATE.2018.8342163

xix

https://doi.org/10.1145/3400302.3415732
https://doi.org/10.1109/LASCAS45839.2020.9069045
https://doi.org/10.1145/3358179
https://doi.org/10.23919/DATE.2018.8342163

Contents

The following publications provided a minor contribution to this dissertation:

[CSH20b] J. Castro-Godínez, M. Shafique, and J. Henkel. “Towards Quality-
Driven Approximate Software Generation for Accurate Hardware:
Work-in-Progress”. In: 2020 International Conference on Compilers, Ar-
chitecture, and Synthesis for Embedded Systems (CASES). 2020, pp. 12–14.
doi: 10.1109/CASES51649.2020.9243814

[Cas+20b] J. Castro-Godínez, D. Hernández-Araya, M. Shafique, and J. Henkel.
“Approximate Acceleration for CNN-based Applications on IoT Edge
Devices”. In: 2020 IEEE 11th Latin American Symposium on Circuits &
Systems (LASCAS). 2020, pp. 1–4. doi: 10.1109/LASCAS45839.2020.
9069040

Other co-authored publications:

[Kha+20] N. Khan, J. Castro-Godínez, S. Xue, J. Henkel, and J. Becker. “Auto-
matic Floorplanning and Standalone Generation of Bitstream-Level
IP Cores”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems (2020). doi: 10.1109/TVLSI.2020.3023548

[LCH20] L. G. León-Vega, J. Castro-Godínez, and J. Henkel. “Measuring Traffic
Dynamics at the Edge”. In: International Work Conference on Bioinspired
Intelligence (IWOBI) (2020)

[CCC14] L. Cabrera-Quirós, R. Campos-Gómez, and J. Castro-Godínez. “Critical
steps in camera pose estimation: an evaluation using LTI-LIB2 library”.
In: Revista Tecnología en Marcha (2014), pp. 60–69. doi: 10.18845/tm.
v0i0.1656

Workshops and Summer Schools:

[Cas+20a] J. Castro-Godínez, H. Barrantes-García, M. Shafique, and J. Henkel.
“AxLS: An Open-Source Framework for Netlist Transformation Ap-
proximate Logic Synthesis”. In: 3rd Workshop on Open-Source EDA
Technology (WOSET), co-located with ICCAD ’20. 2020

[CSH20a] J. Castro-Godínez, M. Shafique, and J. Henkel. “Towards Designing
and Implementing Approximate Accelerators”. In: 16th International
Summer School on Advanced Computer Architecture and Compilation for
High-performance Embedded Systems (ACACES). 2020

xx

https://doi.org/10.1109/CASES51649.2020.9243814
https://doi.org/10.1109/LASCAS45839.2020.9069040
https://doi.org/10.1109/LASCAS45839.2020.9069040
https://doi.org/10.1109/TVLSI.2020.3023548
https://doi.org/10.18845/tm.v0i0.1656
https://doi.org/10.18845/tm.v0i0.1656

Contents

[Cas19] J. Castro-Godínez. “Approximate Software for Accurate Hardware”.
In: NiPS Summer School, OPRECOMP Summer of Code Initiative. 2019

[CH18] J. Castro-Godínez and J. Henkel. “Error Propagation Estimation on Ap-
proximate Designs with Compiler-Driven Support”. In: 3rd. Workshop
on Approximate Computing (AxC ’18), co-located with the IEEE European
Test Symposium 2018. 2018

xxi

What is not started today is never finished
tomorrow.

Johann Wolfgang von Goethe

Abstract

In the last decade, the need for computing efficiency has motivated the coming
forth of new devices, architectures, and design techniques. Approximate Computing
has emerged as a modern energy-efficient design paradigm for applications that
present inherent tolerance to errors. By reducing the accuracy of the results in
current applications, such as image processing, computer vision, and machine
learning, to an acceptable amount, savings in the circuit area, delay, and power
consumption can be achieved.

With the emergence of the approximate computing paradigm, many approximate
functional units have been reported in the literature, particularly approximate
adders and multipliers. For a plethora of such approximate circuits, and considering
their usage as building blocks for the design of approximate accelerators for error-
tolerant applications, a challenge arises: selecting those approximate circuits for a
given application that minimize the required resources while satisfying a defined
accuracy.

This dissertation proposes automated methods for designing and implementing
approximate accelerators built with approximate arithmetic circuits. To achieve it,
this dissertation addresses the following challenges and provides the subsequent
novel contributions:

• Many approximate adders and multipliers have been reported in the liter-
ature, either by proposing approximate designs from accurate implemen-
tations, such as the ripple-carry adder, or by generating them through Ap-
proximate Logic Synthesis (ALS) methods. A representative set of these

xxiii

Contents

approximate components is required to build approximate accelerators. In
that sense, this dissertation presents two approaches to generate such ap-
proximate arithmetic circuits. First, AUGER is introduced, a tool capable
of generating Register-Transfer Level (RTL) descriptions for a broad set of
approximate adders and multipliers for different data bit-width and ac-
curacy configuration. A Design Space Exploration (DSE) of approximate
components can be performed with AUGER to find those Pareto-optimal
for a given bit-width, approximation range, and circuit metric. Then, AxLS
is presented, a framework for ALS that allows the implementation of state-
of-the-art methods, and the proposition of novel ones, to perform structural
netlist transformations and to generate approximate arithmetic circuits from
accurate ones. Moreover, both tools provide an error characterization, in the
form of error distribution, and circuit characteristics (area, delay, and power)
for each approximate circuit they generate. This information is essential for
the scope of this dissertation.

• Despite the tolerance to errors, approximate accelerators must be designed to
satisfy accuracy constraints. Hence, for the design of such accelerators using
approximate arithmetic circuits, it is imperative to assess how the errors intro-
duced by approximate circuits propagate through other computations, either
accurate or inaccurate, and finally accumulate at the output. This dissertation
proposes analytical models to describe the error propagation through ex-
act and approximate calculations. With them, an automated, compiler-based
methodology is proposed to estimate the error propagation on approximate
accelerators designs. This methodology is integrated into a tool, CEDA, to
perform fast, simulation-free accuracy estimations of approximate accelerator
models described using C code.

• In the design of approximate accelerators, repetitive gate-level simulations
and circuit synthesis consume a significant time to explore many, or even
all, possible combinations for a given set of approximate arithmetic circuits.
On the other hand, current trends for designing accelerators are based on
High-Level Synthesis (HLS) tools. This dissertation presents analytical models
for estimating the required computational resources when using approximate
adders and multipliers in approximate accelerators’ designs. Furthermore,
together with the proposed analytical models for accuracy estimation, these
models are integrated into a DSE methodology for error-tolerant applications,
DSEwam, to identify Pareto-optimal, or near Pareto-optimal, solutions for
approximate accelerators. DSEwam is integrated into an HLS tool to automat-
ically generate RTL descriptions of approximate accelerators from C language
descriptions, for a given error threshold and minimization goal.

xxiv

Contents

• The use of approximate accelerators must ensure that errors generated due
to approximations remain within a defined maximum value for a given
accuracy metric. However, the errors produced by approximate accelerators
depend on the input data, which can be different regarding the data used for
the design. This dissertation presents ECAx, an automated methodology to
explore and apply fine-grained, low-overhead error correction in approximate
accelerators, to reduce the cost of error correction at the software level, as
reported in the literature. This is performed by selectively correcting the
most significant errors produced by approximate components in terms of
their magnitude without losing approximations’ gains. The experimental
evaluation shows speedup improvements for the application in exchange for
a small area and power increment in the approximate accelerator design.

xxv

Was heute nicht geschieht, ist morgen nicht getan.

Johann Wolfgang von Goethe

Zusammenfassung

In den letzten zehn Jahren hat das Bedürfnis nach Recheneffizienz die Entwick-
lung neuer Geräte, Architekturen und Entwurfstechniken motiviert. Approximate
Computing hat sich als modernes, energieeffizientes Entwurfsparadigma für An-
wendungen herausgestellt, die eine inhärente Fehlertoleranz aufweisen. Wenn
die Genauigkeit der Ergebnisse in aktuellen Anwendungen wie Bildverarbeitung,
Computer Vision und maschinellem Lernen auf ein akzeptables Maß reduziert
wird, können Einsparungen im Schaltungsbereich, bei der Schaltkreisverzögerung
und beim Stromverbrauch erzielt werden.

Mit dem Aufkommen dieses Approximate Computing Paradigmas wurden in
der Literatur viele approximierte Funktionseinheiten angegeben, insbesondere ap-
proximierte Addierer und Multiplizierer. Für eine Vielzahl solcher approximierter
Schaltkreise und unter Berücksichtigung ihrer Verwendung als Bausteine für den
Entwurf von approximierten Beschleunigern für fehlertolerante Anwendungen,
ergibt sich eine Herausforderung: die Auswahl dieser approximierten Schaltkreise
für eine bestimmte Anwendung, die die erforderlichen Ressourcen minimieren
und gleichzeitig eine definierte Genauigkeit erfüllen.

Diese Dissertation schlägt automatisierte Methoden zum Entwerfen und Implemen-
tieren von approximierten Beschleunigern vor, die aus approximierten arithmetis-
chen Schaltungen aufgebaut sind. Um dies zu erreichen, befasst sich diese Disser-
tation mit folgenden Herausforderungen und liefert die nachfolgenden neuartigen
Beiträge:

xxvii

Contents

• In der Literatur wurden viele approximierte Addierer und Multiplizierer
vorgestellt, indem entweder approximierte Entwürfe aus genauen Implemen-
tierungen wie dem Ripple-Carry-Addierer vorgeschlagen oder durch Approx-
imate Logic Synthesis (ALS) Methoden generiert wurden. Ein repräsentativer
Satz dieser approximierten Komponenten ist erforderlich, um approximierte
Beschleuniger zu bauen. In diesem Sinne präsentiert diese Dissertation zwei
Ansätze, um solche approximierte arithmetische Schaltungen zu erstellen.
Zunächst wird AUGER vorgestellt, ein Tool, mit dem Register-Transfer Level
(RTL) Beschreibungen für einen breiten Satz von approximierten Addierern
und Multiplizierer für unterschiedliche Datenbitbreiten- und Genauigkeit-
skonfigurationen generiert werden können. Mit AUGER kann eine Design
Space Exploration (DSE) von approximierten Komponenten durchgeführt
werden, um diejenigen zu finden, die für eine gegebene Bitbreite, einen
gegebenen Approximationsbereich und eine gegebene Schaltungsmetrik
Pareto-optimal sind. Anschließend wird AxLS vorgestellt, ein Framework
für ALS, das die Implementierung modernster Methoden und den Vorschlag
neuartiger Methoden ermöglicht, um strukturelle Netzlistentransformationen
durchzuführen und approximierte arithmetische Schaltungen aus genauen
Schaltungen zu generieren. Darüber hinaus bieten beide Werkzeuge eine
Fehlercharakterisierung in Form einer Fehlerverteilung und Schaltungseigen-
schaften (Fläche, Schaltkreisverzögerung und Leistung) für jede von ihnen
erzeugte approximierte Schaltung. Diese Informationen sind für das Unter-
suchungsziel dieser Dissertation von wesentlicher Bedeutung.

• Trotz der Fehlertoleranz müssen approximierte Beschleuniger so ausgelegt
sein, dass sie Genauigkeitsvorgaben erfüllen. Für den Entwurf solcher Beschle-
uniger unter Verwendung von approximierten arithmetischen Schaltungen
ist es daher unerlässlich zu bewerten, wie sich die durch approximierte
Schaltungen verursachten Fehler durch andere Berechnungen ausbreiten,
entweder genau oder ungenau, und sich schließlich am Ausgang ansammeln.
Diese Dissertation schlägt analytische Modelle vor, um die Fehlerpropagation
durch genaue und approximierte Berechnungen zu beschreiben. Mit ihnen
wird eine automatisierte, compilerbasierte Methodik vorgeschlagen, um die
Fehlerpropagation auf approximierten Beschleunigerdesigns abzuschätzen.
Diese Methode ist in ein Tool, CEDA, integriert, um schnelle, simulations-
freie Genauigkeitsschätzungen von approximierten Beschleunigermodellen
durchzuführen, die unter Verwendung von C-Code beschrieben wurden.

• Beim Entwurf von approximierten Beschleunigern benötigen sich wieder-
holende Simulationen auf Gate-Level und die Schaltungssynthese viel Zeit,
um viele oder sogar alle möglichen Kombinationen für einen gegebenen Satz
von approximierten arithmetischen Schaltungen zu untersuchen. Anderer-

xxviii

Contents

seits basieren aktuelle Trends beim Entwerfen von Beschleunigern auf High-
Level Synthesis (HLS) Werkzeugen. In dieser Dissertation werden analytische
Modelle zur Schätzung der erforderlichen Rechenressourcen vorgestellt, wenn
approximierte Addierer und Multiplizierer in Konstruktionen von approx-
imierten Beschleunigern verwendet werden. Darüber hinaus werden diese
Modelle zusammen mit den vorgeschlagenen analytischen Modellen zur
Genauigkeitsschätzung in eine DSE-Methodik für fehlertolerante Anwendun-
gen, DSEwam, integriert, um Pareto-optimale oder nahezu Pareto-optimale
Lösungen für approximierte Beschleuniger zu identifizieren. DSEwam ist in
ein HLS-Tool integriert, um automatisch RTL-Beschreibungen von approx-
imierten Beschleunigern aus C-Sprachbeschreibungen für eine bestimmte
Fehlerschwelle und ein bestimmtes Minimierungsziel zu generieren.

• Die Verwendung von approximierten Beschleunigern muss sicherstellen, dass
Fehler, die aufgrund von approximierten Berechnungen erzeugt werden, in-
nerhalb eines definierten Maximalwerts für eine gegebene Genauigkeitsmetrik
bleiben. Die Fehler, die durch approximierte Beschleuniger erzeugt werden,
hängen jedoch von den Eingabedaten ab, die hinsichtlich der für das De-
sign verwendeten Daten unterschiedlich sein können. In dieser Dissertation
wird ECAx vorgestellt, eine automatisierte Methode zur Untersuchung und
Anwendung feinkörniger Fehlerkorrekturen mit geringem Overhead in ap-
proximierten Beschleunigern, um die Kosten für die Fehlerkorrektur auf
Softwareebene (wie es in der Literatur gemacht wird) zu senken. Dies er-
folgt durch selektive Korrektur der signifikantesten Fehler (in Bezug auf
ihre Größenordnung), die von approximierten Komponenten erzeugt wer-
den, ohne die Vorteile der Approximationen zu verlieren. Die experimentelle
Auswertung zeigt Beschleunigungsverbesserungen für die Anwendung im
Austausch für einen leicht gestiegenen Flächen- und Leistungsverbrauch im
approximierten Beschleunigerdesign.

xxix

It is better to be vaguely right than exactly wrong.

Carveth Read

1
Introduction

The discontinuation of Dennard scaling and the fading of Moore’s law have moti-
vated the coming forth of new devices, architectures, and design techniques for
computing [TW17]. Nowadays, power and energy efficiency have become signifi-
cant design concerns for modern computing systems. On the other hand, current
applications and workloads, such as image processing, computer vision, graphics,
machine learning, data mining, and financial and physical simulations, are part
of a set of applications classified as Recognition, Mining, and Synthesis [Che+08],
which have been reported as error-tolerant. This means that even in the presence
of deliberately introduced errors, these applications produce acceptable results as
a golden result does not exists, the application deals with noisy input data, or even
it presents iterative refinement [Ven+15].

1.1 Approximate Computing

In recent years, Approximate Computing has emerged as a novel energy- and latency-
efficient design paradigm relevant to applications with inherent resilience to errors
[HO13; XMK16]. By accepting good enough results caused by imprecise calculations,
for instance, in image and video processing where the human perception plays a
major role, the computational quality (accuracy of results) is traded-off to reduce the
required computational effort (execution time, area, power, or energy). As depicted
in Figure 1.1, this tolerance to inexactness has been exploited at different abstraction
layers [Sta+20]. For instance, non-critical computations are skipped at the software
level, architectural changes are introduced in arithmetic blocks at the architecture
level, or operation voltage is lowered at the circuit level [XMK16]. Many more

1

1 Introduction

Loop perforation, Approximate scheduling,
Memoization, Energy-aware compiler optimizations, etc.

Approximate cache, Load value approximation,
Approximate accelerators, Approximate-aware ISA, etc.

Approximate arithmetic circuits (aders, multipliers),
Precision scaling, Voltage scaling, etc.

Software

Architecture

Circuit This Dissertation

Figure 1.1: Approximate computing at different abstraction layers. Different approx-
imate computing techniques have been proposed and applied at different abstraction
layers (based on [LLS20]).

approximate computing techniques have been reported in the literature than those
in Figure 1.1. Still, these show the need to exploit this design paradigm to improve
computation efficiency at all layers where computation occurs.

Recent work has proposed to exploit inherent resilience to errors in applications
by using approximate accelerators [XMK16]. In general, hardware accelerators
have reported significant benefits for reducing energy consumption, and they have
been used to overcome the utilization wall challenge [Con+14]. In a nutshell, an
accelerator is used to offload a highly-frequent and compute-intensive section of an
application to dedicated hardware, while a host processor executes the rest of the
application. Accelerators can be in the form of a GPU, a DSP, or a specialized FPGA
design. From the approximate computing perspective, approximate accelerators
exploit error resilience as frequently-executed, but error-tolerant sections of an
application are performed by dedicated approximate hardware designs [Sha+16;
Esm+12].

One approach proposed is to implement these accelerators as neural networks
and take advantage of the approximate nature of the results produced by this
computational model [Esm+12; Mor+15]. Another approach proposes the usage of
approximate arithmetic circuits to replace exact calculations in hardware accelera-
tor designs [Maz+16; Sha+16]. Nevertheless, many approximate adders [Mah+10;
Gup+13; Sha+15] and multipliers [Mah+10; BMH14; HBR15; Zen+17] have been
reported in the literature. For an ongoing number of such approximate arithmetic
circuits, and considering their usage in building approximate designs, such as
approximate accelerators, a question arises: given a design for an error-tolerant ap-

2

1.2 Dissertation Contribution

plication and a set of approximate components, which approximate arithmetic circuits
should be used to minimize the computational effort, for instance, the required area, delay,
power, or energy, while satisfying a defined accuracy? Traditional approaches required
exhaustive synthesis and simulation of by-hand designed approximate accelerators,
which might be infeasible due to the large design space even considering a reduced
set of approximate arithmetic circuits. For instance, to satisfy accuracy constraints
in these accelerators, required to guarantee good enough results despite the on-
purpose errors, it is imperative to assess how the errors introduced by approximate
circuits propagate through other exact and approximate computations, and finally
accumulate at the output. This is, in particular, crucial to enable the high-level
synthesis of approximate accelerators.

Bridging the gap between many approximate arithmetic circuits and the automated
design and implementation of approximate accelerators is crucial to further enable
cross-layer approximate computing [Sha+16].

1.2 Dissertation Contribution

This dissertation proposes the automated design of approximate accelerators using
approximate arithmetic circuits. As depicted in Figure 1.1, this dissertation can be
placed between the circuit and architecture layers, but from the computer-aided
design perspective. The contributions of this dissertation, and their relationship,
are depicted in Figure 1.2.

Approximate Arithmetic Circuits

In the literature, many approximate adders and multipliers have been reported.
To automate the design of approximate accelerators, a representative set of these
approximate components is required. In Chapter 3, this dissertation presents two
approaches to generate such approximate arithmetic circuits. First, AUGER is
introduced, a tool capable of generating Register-Transfer Level (RTL) descriptions
for a broad set of approximate adders and multipliers for different data bit-width
and accuracy configuration. A Design Space Exploration (DSE) of approximate
components can be performed with AUGER to find those Pareto-optimal for a
given bit-width, approximation range, and circuit metric. Then, AxLS is presented,
a framework for Approximate Logic Synthesis that allows the implementation of
state-of-the-art methods, and the proposition of novel ones, to perform structural
netlist transformations and to generate approximate arithmetic circuits from ac-
curate ones. Moreover, both tools provide an error characterization, in the form

3

1 Introduction

Approximate
Arithmetic

Circuits

HLS
Approximate
Accelerators

Resource
Estimation

Accuracy
Estimation

Error
Correction

Ch.3

Ch.5

Ch.6

Ch.4 Ch.5

Figure 1.2: Contributions of this dissertation. The chapter number is indicated where
each contribution is presented in this dissertation.

of error distribution, and circuit characteristics (area, delay, and power) for each
approximate circuit they generate. This information is required to define analytical
models for accuracy and resource estimation presented within this dissertation, as
those models are based on the information of the approximate arithmetic circuits.

Accuracy Estimation

For the automated design of approximate accelerators built with approximate
arithmetic circuits, it is essential to count with models to estimate the accuracy
of approximate accelerator designs. Despite the tolerance to errors, approximate
accelerators must limit the output error to satisfy accuracy constraints. In Chap-
ter 4, this dissertation proposes analytical models to describe the error propagation
through exact and approximate computations, considering approximate additions
and multiplications as source of errors. These models are defined with the indi-
vidual error characteristics of approximate arithmetic circuits, as provided by the
contribution in Chapter 3. With these analytical models, an automated, compiler-
based methodology is proposed to estimate the error propagation of approximate
accelerators models described at the software level.

4

1.2 Dissertation Contribution

Resource Estimation

In the design of approximate accelerators, repetitive gate-level simulations and
circuit synthesis consume a significant time to explore many, or even all, possible
combinations for a given set of approximate arithmetic circuits. To speed up the
exploration of many approximate accelerator designs, this dissertation presents
resource estimation models in Chapter 5. As the accuracy models, these models
are derived using the information of approximate circuits, adders and multipliers,
provided by the contribution in Chapter 3.

High-Level Synthesis of Approximate Accelerators

With the generation of approximate arithmetic circuits and analytical models to
estimate accuracy and resources in approximate accelerator designs, in Chapter 5,
this dissertation presents a high-level synthesis approach to automatically gener-
ate RTL descriptions of approximate accelerators from C language descriptions.
This is performed for a given error threshold and minimization goal, and using
approximate adders and multipliers. To achieve it, a DSE methodology is proposed
that takes advantage of the analytical models for accuracy and resource presented
in this dissertation, to find Pareto-optimal, or near Pareto-optimal, solutions for
approximate accelerators.

Error Correction

The use of approximate accelerators must ensure that errors generated due to
approximations remain within a defined maximum value for a given accuracy
metric. In Chapter 6, this dissertation presents an automated methodology to
explore and apply fine-grained, low-overhead error correction in approximate
accelerators. These accelerators can be automatically generated, as proposed in
this dissertation or designed by hand. The main idea behind this error correction
methodology is to reduce the cost of error correction at the software level, as
currently reported in the literature. This is performed by selectively correcting
the most significant errors produced by approximate circuits, in terms of their
magnitude, without losing the gains of approximations. For this contribution,
the analytical models for accuracy estimation presented in Chapter 4 are crucial
to enable a fast exploration of error correction’s effect in the output accuracy of
approximate accelerator designs.

5

Man muss viel gelernt haben, um über das, was
man nicht weiß, fragen zu können.

Jean-Jacques Rousseau

2
Background and Related Work

This chapter presents common principles, notions, and definitions used throughout
this dissertation.

2.1 Approximate Arithmetic Circuits

As discussed in Chapter 1, with the coming forth of Approximate Computing (AxC)
as an energy- and accuracy-aware design paradigm, many approximate arithmetic
circuits have been proposed, mainly approximate adders [VBI08; Mah+10; KK12;
Sha+15] and multipliers [BMH14; HBR15]. A quick search in the Scopus database1

shows more than 1400 publications related to AxC in the last decade, and about 37%
of those works correspond to approximate adders or multipliers. The main idea
behind this approximate circuits is to perform the mathematical operations faster
or with less area, power, or energy than the accurate circuits while introducing
errors in the results.

In the literature, several methods have been proposed to generate approximate
circuits from accurate descriptions, for instance, by transforming gate-level repre-
sentations of the circuit [Ven+12; HMV16; Zer+16; SAP18; Cas+20a] or exploiting
delay in non-critical circuit paths [AH18]. However, the dominant trend has been
to propose approximate designs directly from accurate counterparts [Jia+17a].

1 The search was performed on September 22th, 2020.

7

2 Background and Related Work

Sobel G.3x3 G.5x5 Sharpen Laplace SAD FIR
0

25

50

75

100

O
pe

ra
ti

on
s

(%
)

add mul sub div abs

Figure 2.1: Operations profile for a set of error-tolerant applications. For most of these
applications, additions and multiplications are the dominant operations.

Other approximate arithmetic circuits have been proposed, for example, approxi-
mate dividers [HBR16]. However, this dissertation focuses on approximate adders
and multipliers to built approximate accelerators, as they are the most common
operations in a wide range of applications [VBI08]. For instance, consider the
following error-tolerant applications: Sobel filter, 3× 3 and 5× 5 Gaussian filter
(G.3× 3 and G.5× 5), Sharpen filter, Laplace filter, sum of absolute differ-
ences (SAD), and a 5-tap FIR filter. Figure 2.1 presents a profile of the required
mathematical operations for these applications. As it can be noticed, in most of
these applications, excluding SAD, 75% or more of the operations correspond to
additions and multiplications, and, for instance, none have division as a significant
operation.

As many approximate arithmetic circuits have been proposed, and are still being
proposed in the community, this chapter does not cover them extensively. Although
the main idea is to reduce the complexity of the arithmetic circuits, some of the key
concepts behind these approximate units are here mentioned. Extensive evaluations
of approximate arithmetic circuits have already been reported in the literature [JHL;
Jia+16; Jia+17b; Jia+19].

Approximate Adders: In the literature, two main approaches have been proposed
regarding approximate adders. The first considers the substitution of 1-bit full
adder (FA) for simplified versions [Mah+10; Gup+13; Yan+13; Dut+16; AKL16],
aiming to reduce the power consumption of the addition. This type is known
as low-power (LP) approximate adder. For instance, Figure 2.2 depicts an 8-bit
approximate adder built from a Ripple-Carry Adder (RCA). This adder, named
Lower-part-OR adder (LOA), replaces the 1-bit additions of least significant bits

8

2.1 Approximate Arithmetic Circuits

FA FA FA FA

a4b4a5b5a6b6a7b7

s0s1s2s3s4s5s6s7

a0b0a1b1a2b2a3b3

co ci

Figure 2.2: An 8-bit LOA approximate adder. This approximate adder, called Lower-
part-OR adder (LOA), approximates the addition by using an OR gate to add the LSB
[Mah+10].

sub-adder 1sub-adder 2sub-adder 3

S[3:0]

A[3:0]B[3:0]

S[5:4]

A[5:2]B[5:2]

S[8:6]

A[7:4]B[7:4]

Figure 2.3: An 8-bit GeAr approximate adder. An 8-bit approximate adder, Generic
Accuracy Configurable adder (GeAr), uses multiple overlapping sub-adders to perform
the addition [Sha+15].

(LSB) performed by a FA with a single OR gate. By doing so, for instance, the
required area is reduced as fewer logic gates are needed. Also, the circuit delay
is reduced, as the carry propagation chain is cut. For this LOA example, area and
power delay are reduced by about 35%, respectively, compared to an 8-bit RCA.2

The second type of approximate adder is known as high-performance (HP) approx-
imate adder. For this approximate adders, the addition is computed by breaking
the carry propagation chain of the exact addition and using multiple (sometimes
overlapping) sub-adders to generate the addition result, aiming to reduce the
latency of the computation. Figure 2.3 depicts an example of an HP approximate
adder. This adder, called Generic Accuracy Configurable adder (GeAr), performs
an N-bit addition using multiple sub-adders of smaller size. In this example, an
8-bit addition is done by three 4-bit adders. The most significant R-bits of the
sub-adders are considered as resultant bits, and they are used in the actual result.
The remaining P-bits, known as previous bits, are used to estimate the carry prop-
agation to the upper bits. As shown in Figure 2.3, only the sub-adder 1 contributes
with all its partial result to the final result, while sub-adder 2 and 3 provide 2 and
3 bits to the result. This 8-bit GeAr example reduces the delay in 40% with respect
to an 8-bit RCA.3

2 Considering a synthesis performed with Synopsys Design Compiler and the NanGate 15 nm technol-
ogy library.

3 Same synthesis tool and technology library as before.

9

2 Background and Related Work

Most of the reported HP approximate adders in the literature, such as ACA-I
[VBI08], ACA-II [KK12], ETAII [ZGY09], and GDA [Ye+13], can be implemented
as a configuration of GeAr [Sha+15]. This helps to reduce the representation of
various HP approximate adders to a single proposed design.

Approximate Multipliers: For approximate multipliers, the technique applied to
reduce their complexity depends on the topology of the accurate multiplier used
as a base. For instance, carry-in predictions can be made to reduce latency in a
Wallace Tree Multiplier [BMH14], dynamic and fast bit selection can be applied to
reduce the size of the multiplier [HBR15], or rounding of operands performed to
the nearest exponent of two [Zen+17]. Also, partial product perforations have been
applied to accurate multipliers [Zer+16], approximate multipliers have been built
from smaller approximate 2x2 multipliers [Reh+16], approximate 4-2 compressors
have been proposed to design approximate Dadda multipliers [Mom+15]. Even
the LOA LP approximate adder has been used to present approximate versions of
array-based multipliers [Mah+10].

2.2 Approximation Error

As part of the design of approximate accelerators, the error generated due to
approximate arithmetic circuits needs to be represented and measured. This is
particularly useful, as the use of approximations in error-tolerant applications is
limited to allow the application to produce results with the sufficient accuracy
required.

2.2.1 Representation

In this dissertation, a Probability Mass Function (PMF) is the main form used
to represent the error distribution of approximate circuits and accelerators. A
PMF denotes the probability P of a discrete random variable X to be equal to
a determined value x. This is expressed as pX(x) = P(X = x). For the case of
approximate circuits and accelerators, a PMF allows the representation of each
Error Distance, ED, and its probability of ocurrance, p. The ED is defined as:

ED = |Oac
i −Oax

i | (2.1)

10

2.2 Approximation Error

0 1 2 3 4
0

0.10

0.20

ED

p(
E

D
)

(a) LOA, ER = 0.581

0 16 32 64 128
ED

(b) GeAr, ER = 0.125

Figure 2.4: Error distribution for two 8-bit approximate adders. Errors in LP approxi-
mate adders appear with low ED but higher frequency in comparison to HP approximate
adders, where adders have a higher ED but with lower frequency. These two 8-bit approx-
imate adders correspond to LOA [Mah+10] and GeAr [Sha+15], previously described.

which is the arithmetic distance between the result generated by an accurate (Oac)
and an approximate (Oax) circuit (or accelerator) for identical input data (i) [LHL13].

Figure 2.4 presents two PMFs representing the error distribution of two approxi-
mate adders. As can be noticed, errors in LP approximate adders, like the LOA,
appear with low ED values and a higher probability of occurrence than the errors
for an HP approximate adder, like the GeAr, for which errors have a higher ED but
with lower probability. Interestingly, the errors for an HP approximate adder cor-
respond to power values of 2, or combinations of them, due to errors are produced
by carry-in mispredictions, as the original adder carry chain is broken.

The error distribution of any approximate arithmetic circuit can be estimated
through circuit simulations and using representative input data. However, for
some of these circuits, their error distribution can be generated through analytical
methods [Maz+17b; Maz+17a; Wu+19; Han+20], eliminating the need of time-
consuming simulations.

For the case of approximate accelerators, this dissertation proposes a methodology
to estimate their error distribution (Chapter 4). Using only the error distributions
of individual approximate arithmetic circuits used in an approximate accelerator
design, analytical rules are presented to model the interaction of errors generated
with other accurate and approximate computations and obtain an output error
distribution.

2.2.2 Metrics

An error metric measures how much the results an approximate circuit or acceler-
ator deviates from the accurate ones. Different error metrics have been reported

11

2 Background and Related Work

and used in the AxC literature [LHL13; Mra+17; Vas19], which can be derived
from the error distribution represented as a PMF. While each of them presents
challenges and advantages, three error metrics are widely used for the scope of
this dissertation.

The first is Error Rate (ER), which denotes the total probability of error for an
approximate circuit or accelerator. As depicted in Figure 2.4, the values in the
x-axis, the ED, represent the error values produced by each approximate adder. The
probability of having no errors, i.e., pX(0), is 1− ER. For both PMFs in Figure 2.4,
the probability of no having errors is depicted out of the axis. Also, in Figure 2.4,
for the LP approximate adder case, it can be observed that it presents a higher ER,
0.581, compared to the HP approximate adder, 0.125.

A second error metric is Worst-Case Error (WCE). WCE represents the maximum
error generated by an approximate circuit or accelerator, despite its probability of
occurrence, and it is defined as:

WCE = max
∀i
|Oac

i −Oax
i | (2.2)

From the PMFs in Figure 2.4, WCE = 4 and WCE = 128 for the LP and HP approx-
imate adders, respectively. A third error metric used widely in this dissertation is
Mean-Error Distance (MED). MED is the weighted average of all ED [LHL13]:

MED =
n

∑
i=0

EDi · p(EDi) (2.3)

which can be calculated from the information in the PMF. For the approximate
adders in Figure 2.4, the LP and HP approximate adders have 1.37 and 7.50 for this
MED metric, respectively.

2.2.3 Accuracy and Quality

Accuracy and quality are two important terms that have been used indistinctly
equal in AxC contributions reported in the literature. For this dissertation, the
accuracy of an approximate circuit or accelerator is measured with error metrics, as
the accuracy is considered not application-dependent. On the other hand, quality
is an application-dependent evaluation of an approximate accelerator’s results,
and for it, specific quality metrics are required. In this dissertation, the automated
design of approximate accelerators is performed for given accuracy constraints.

12

2.2 Approximation Error

Still, quality evaluations take place to assess the degradation of the results at the
application level.

In this dissertation, three quality metrics are used. Mean Squared Error (MSE) is
one of them. MSE is a way to assess the fidelity of a signal, and it is defined as
[WB09]:

MSE(ac, ax) =
1
N

N

∑
i=0

(Oac
i −Oax

i)2 (2.4)

where ac and ax are sets containing all accurate and approximate results, re-
spectively, for the same input data set. With MSE, a degree of similarity or er-
ror/distortion between two signals can be assessed.

In the context of image processing, the Peak-Signal-to-Noise Ratio (PSNR) is widely
used, which is a converted version of the MSE. PSNR is defined as [WB09]:

PSNR = 10 log10
L2

MSE
(2.5)

where L is the dynamic range of the value a pixel can take, in the context of image
processing. For the case of a grayscale image and using 8-bits for representation,
that means L = 255.

Also related to image processing, in this dissertation, the Structural Similarity
(SSIM) index is used as an image fidelity metric [Wan+04]. The SSIM aims to
represent better the way the human visual system evaluates the quality in an
image, and it is defined as:

SSIM = l(ac, ax) · c(ac, ac) · s(ac, ax)

=

(
2µacµax + C1

µ2
ac + µ2

ax + C1

)
·
(

2σacσax + C2

σ2
ac + σ2

ax + C2

)
·
(

σac,ax + C3

σac + σax + C3

)
(2.6)

where l(ac, ax) is the similarity of local patch luminances (brightness values),
c(ac, ac) is the similarity of local path contrast, and s(ac, ax) is the similarity of
local patch structures [WB09]. These local similarities are expressed in terms of
statistics that are computed to obtain a local SSIM evaluation.

One challenge faced by AxC is that the errors produced by an approximate accel-
erator not only depend on the approximations applied but also in the data that is
processed [Mah+16]. For instance, an approximate accelerator designed to meet a

13

2 Background and Related Work

Approximate
Accelerator

Single Accuracy

Data1

Data2

Data3

Quality1

Quality2

Quality3

Figure 2.5: Quality as a function of input data. In approximate computing, the quality
depends on the data processed and the quality metric used.

Table 2.1: Quality results for a single accuracy Sobel approximate accelerator and
different data set. Even though the quality evaluated with PSNR metric is similar for
these four test images, the quality estimated with SSIM produce different results.

Data set MED PSNR (dB) SSIM

sails 14.23 22.92 0.86

plate 15.05 22.46 0.65

cameraman 16.92 21.53 0.61

lena 16.30 22.00 0.59

specific, single accuracy can produce results with different quality of results for
different data processed, as motivated in Figure 2.5.

Consider a Sobel filter designed to meet a MED = 15 as an accuracy constraint.
Four different test images are used as test data with this accelerator. As shown in
Table 2.1, just for one of the test images, sails, the accuracy threshold is met. On the
other hand, for all test images, the quality is similar when evaluated with the PSNR
metric, approximately 22 dB. However, when the SSIM index is used for assessing
the quality of the results, very different results are obtained, ranging from 0.86
to 0.59 for the sails and lena test images, respectively. These results confirm that
accuracy and quality in AxC are two related but different aspects.

2.3 Approximate Accelerators

By definition, hardware acceleration is the use of specialized hardware to perform
tasks more efficiently compared to a general processor [Con+14]. In that sense, an
accelerator is used to offload a highly-frequent and compute-intensive section of
an application to dedicated hardware, while the rest of the application is executed

14

2.3 Approximate Accelerators

Interconnection

Host
Processor

Approximate
Accelerator

Memory

Figure 2.6: Simplified diagram of a system architecture. This diagram considers that a
host processor connects to one (or more) approximate accelerator.

by a host processor, aiming to reduce the execution time of the application and
increasing the throughput, and in many cases, reducing the energy consumption.
Accelerators can be in the form of a GPU, a DSP, or a specialized design on an
FPGA.

From the point of view of AxC, approximate accelerators exploit error resilience
as frequently-executed, but error-tolerant sections of an application are executed
by dedicated approximate hardware designs [Sha+16; Esm+12]. By doing so, ad-
ditional benefits can be achieved, such as application speedup improvement or
energy reduction. Figure 2.6 shows a simplified diagram of a system architecture
depicting a host processor and an approximate accelerator interconnected through
a standard on-chip interface alongside a memory system. In this sense, the approx-
imate accelerator is designed to execute error-resilient parts of the host processor’s
applications. Such an approximate accelerator is built to achieve a defined accuracy
during design time. Although just one approximate accelerator is shown, many
could be designed and deployed in a system. It is even foreseen the development of
multi-accelerator platforms, where a diverse set of accelerators with different accu-
racy is available to a group of processors, providing high flexibility and adaptivity
and allowing applications to meet their accuracy and quality constraints while
minimizing the required resources [Sha+16].

Existing work has proposed the design of approximate accelerators using neu-
ral networks [Esm+12] or approximate functional units, particularly approximate
adders and multipliers [Sha+16; Maz+16]. This dissertation focuses on the auto-
mated design of approximate accelerators using approximate arithmetic circuits.

As many approximate adders have been proposed considering an RCA as a base, a
skeptical observation could point to better use parallel-prefix adders that present
smaller delays compared to RCA, if the goal is to reduce the delay of an accelerator

15

2 Background and Related Work

BKA KSA LFA RCA
0

0.1

0.2

(a) Delay for 16-bit adders (ns)

KSA-based App
0

0.2

0.4

(b) Delay of 3× 3 vector multiplications (ns)

Figure 2.7: Comparison of parallel-prefix and approximate adders. Delay compari-
son of parallel-prefix adders and RCA-based approximate adders, individually and in
approximate accelerator designs.

by using approximations. As can shown in Figure 2.7, parallel-prefix adders such
as Brent-Kung Adder (BKA) and Kogge-Stone Adder (KSA) present delays 38%
and 63% smaller than an RCA, respectively. Just for the case of Ladner-Fischer
Adder (LFA), the RCA presents a delay smaller, about 10%.4

However, combinations of state-of-the-art LP and HP approximate adders can
produce smaller delays than using these parallel-prefix adders when building
approximate accelerators. As depicted in Figure 2.7, using LP and HP approximate
adders, such as LOA and GeAr, a delay nearly 15% smaller is obtained by an ap-
proximate version (App) of a 3× 3 vector multiplication compared to an accelerator
built using KSA (KSA-based). On the other hand, the approximate version for this
evaluation consumes about 35% less power.

4 Evaluation performed using 106 uniform distributed input test vectors and Synopsys Design Compiler
with the TSMC 65nm technology library.

16

3 ∗ 3 = 7

Result of a 2x2-bit approximate multiplier to
keep the result to 3 bits [KGE11].

3
Generating Approximate Arithmetic Circuits

The goal of this dissertation is the automated design of approximate accelerators,
particularly using approximate arithmetic circuits as building blocks. To achieve it,
first, it is necessary to have these approximate arithmetic circuits to then proceed
with the design of accelerators.

This chapter presents two contributions for the generation of approximate arith-
metic circuits. First, AUGER, a tool to generate and characterize approximate arith-
metic circuits reported in the literature, is presented. This tool provides register-
transfer level (RTL) implementations and functional models, at the software level,
of approximate adders and multipliers. This is performed for different proposed
designs of approximate adders and multipliers, and different approximation levels.
It also provides a characterization of the circuits generated in terms of area, delay,
and power, for a given technology library.

Second, AxLS, a framework for approximate logic synthesis (ALS) techniques based
on netlist transformations, is presented. AxLS is a novel, open-source framework
with which existing ALS methodologies can be implemented, and new techniques
can be proposed. With AxLS, automated methods can be developed to automatically

The content of this chapter is based on the work originally published in [Her+20]:
D. Hernández-Araya, J. Castro-Godínez, M. Shafique, and J. Henkel: “AUGER: A Tool for Generating
Approximate Arithmetic Circuits”. In: 2020 IEEE 11th Latin American Symposium on Circuits & Systems
(LASCAS),
and [Cas+20a]:
J. Castro-Godínez, H. Barrantes-García, M. Shafique, and J. Henkel: “AxLS: An Open-Source Frame-
work for Netlist Transformation Approximate Logic Synthesis”, In: 3rd Workshop on Open-Source EDA
Technology (WOSET), 2020.

17

3 Generating Approximate Arithmetic Circuits

generate approximate versions of accurate arithmetic circuits described at RTL.
Additionally, AxLS performs a characterization of the circuit resources and error
distribution of the circuits generated.

Both contributions have been made open-source, allowing their utilization by the
research community and their extension to newer approximate arithmetic circuits
and newer ALS techniques based on netlist transformations.

3.1 A Tool for Generating Approximate Arithmetic
Circuits

As discussed in Section 2.1, an increasing number of approximate arithmetic circuits
has been reported in the literature, mainly approximate adders and multipliers.
Selecting those that properly fit an application, reducing resources, and achieving
a specific accuracy constraint is cumbersome. Comparisons of state-of-the-art
approximate adders and multipliers have been reported [JHL; Jia+16; Jia+17b], but
if such approximate circuits are expected to be used in approximate designs, they
must be first implemented. Additionally, the characterization of such approximate
arithmetic circuits, in terms of the resources required and error generated, can
speed up the design space exploration of approximate accelerators. This is because
the impact in savings and accuracy degradation can be faster estimated than
performing iterative circuit synthesis and simulations [Cas+18; Cas+20c], as it is
presented in Chapters 4 and 5 of this dissertation.

This section presents AUGER, an Approximate Units GenERator. AUGER1 is a
tool to generate approximate adders and multipliers that have been proposed
and reported in academia. AUGER generates the register-transfer level (RTL)
descriptions of the circuits. It provides a software model for the arithmetic circuit
generated, which can be used to assess its impact on the application accuracy or
quality of results at the software level. AUGER uses industrial circuit simulation
and synthesis tools to provide a characterization of the components generated in
terms of area, power, delay, and error distribution. This information is useful for
comparison among other similar approximate circuits, as presented in this section.

1 AUGER is an open-source contribution and it is available at https://git.scc.kit.edu/CES/AUGER.

18

https://git.scc.kit.edu/CES/AUGER

3.1 A Tool for Generating Approximate Arithmetic Circuits

3.1.1 Description

Figure 3.1 depicts AUGER and its interaction with commercial tools to synthesize
and simulate circuits to characterize each circuit generated. AUGER receives the
design for one of the supported approximate arithmetic circuits to be generated
(see 1 in Figure 3.1). This implies the type of component, defined by its name,
and parameters, such as bit-width and approximation level, according to the ap-
proximate circuit design. For instance, for approximate adders, this can include the
number of approximate less significant bits (LSB) or bit-width of the sub-adders.
Due to approximate arithmetic circuits can be built with different configurations,
they can present different accuracy results and savings.

Using the design characteristics, AUGER employs a set of predefined templates
(see 2) to generate: the corresponding RTL description in Verilog HDL (.v), a
software model of the component in C language (.c), a set of 106 random uniformly
distributed input vectors (.txt), generated accordingly to the input bit-width, and
a set of scripts to perform synthesis and simulations (.tcl) for the generated ap-
proximate circuit (see 3). A simple formal verification of the design is performed
using the results of the RTL simulation (see 4) and the internal execution of the
generated software model. This allows guaranteeing that the design generated
corresponds to the given parameters, but also, the software model can be used to
carry out accelerator design explorations using high-level models.

For the scope of AUGER, ModelSim is used for circuit simulations, both at pre-
synthesis and post-synthesis level. The results of the verification are used to form
an error distribution of the approximate arithmetic circuit generated, esentially for
those approximate circuits that no analytical model has been proposed to obtain
their error distribution [Maz+17b; Maz+17a; Wu+19]. Figure 3.2 shows two proba-
bility mass function (PMF) to represent the error distribution (see Section 2.2) for
two different 8-bit approximate adders generated by AUGER. As described in Sec-
tion 2.2, from this distribution, different error metrics, for instance, error rate (ER),
mean error distance (MED), and worst-case error (WCE), can be obtained, which are
useful to assess and compared the accuracy of the generated approximate circuit.
This error distribution can be later used for error propagation estimation when
using the generated approximate circuit in the design of approximate accelerators
[Cas+18].

The approximate arithmetic circuit design is then synthesized for minimum delay
using Synopsys Design Compiler and for a given technology library (see 5). Area
and delay characteristics, as well as preliminary power estimations, are obtained
from the synthesis reports. A post-synthesis characterization is performed with

19

3 Generating Approximate Arithmetic Circuits

AUGER

.v .cpp.tcl

.v.tcl .txt .c

ModelSim

Design Compiler

PrimeTime

.vcd

.saif

Design Error

.db Area

Delay

Power

.sdf netlist

ModelSim.v

.vcd .saif

Power

Script
Template

Component
Library

Functional
Models

Simulation

Synthesis

Post-Synthesis

1

2

3

4

5

6

Figure 3.1: Main components in the AUGER tool. The AUGER tool generates an RTL
for the bit-width and approximate configuration provided. AUGER relies on standard
commercial tools for circuit simulation and synthesis to provide a characterization of
the approximate arithmetic circuits.

Synopsys PrimeTime and a gate-level netlist simulation to obtain better power
consumption estimations for the approximate circuit (see 6).

3.1.2 Evaluation

In this section, three scenarios of analysis for different approximate arithmetic
circuits generated with AUGER are presented, particularly for approximate adders
and multipliers, as they are the primary operations present in error-tolerant appli-

20

3.1 A Tool for Generating Approximate Arithmetic Circuits

0 1 2 3 4
0

0.10

0.20

ED

p(
E

D
)

(a) LP, ER = 0.58

0 16 32 64 128
ED

(b) HP, ER = 0.13

Figure 3.2: Error distribution for two 8-bit approximate adders generated with
AUGER. The error characterization is obtained with AUGER, either with simulations or
analytical methods.

cations, as discussed in Section 2.1. Results have been generated using the TSMC
65 nm technology library.

LP approximate adder

A first comparison scenario can be performed for low-power (LP) approximate
adders. In such adders, exact 1-bit full adders are replaced for inexact counterparts,
and they are used to calculate the LSB of the addition. AUGER can be used to
compare new proposed adders against existing ones. For this, consider that an
approximate full adder has been proposed, such that s and cout bits are calculated
as:

s = (a⊕ b) ∨ cin and cout = a ∧ b

Seven 10-bit low-power approximate adders from the state-of-the-art, including one
using the proposed approximate full adder, are compared. These adders include the
Lower-part-OR Adder (LOA) [Mah+10], two variants of the Approximate Mirror
Adder (AMA) [Gup+13], one from the Approximate XOR/XNOR-based Adders
(AXA) [Yan+13], the Carry-Free Adder (CFA) [Dut+16], and one variant of the
Inexact Adder by Cell Replacement (InXA) [AKL16]. For each adder, the 5 LSB bits
have been approximated. Figure 3.3 presents normalized values, with respect to an
accurate 10-bit ripple-carry adder (RCA), for the delay, area, power, and power-
delay-product (PDP). The lower these normalized values are, the more savings are
achieved. The error rate (ER) is here used to assess the accuracy of the approximate
adder. In this case, a lower ER means a smaller probability of the adder to generate
erroneous results.

21

3 Generating Approximate Arithmetic Circuits

Proposed AMA3 AMA5 AXA2 CFA InXA1 LOA
0

0.2

0.4

0.6

0.8

1.0

Delay Area Power PDP ER

Figure 3.3: Comparison of LP approximate adders. The proposed replacement for a
1-bit full addition is compared against other reported LP approximate adders. Each one
corresponds to a 10-bit approximate adder with the 5 LSBs approximated.

As can be noticed from Figure 3.3, the proposed approximate adder presents good
savings in terms of PDP and, in comparison to its peers, slightly surpassed by the
AMA3 and InAX1. However, the proposed approximate adder has the smallest ER
compared to all approximate adders presented, being more accurate in this sense.

Besides this comparison of potential new LP approximate adder designs, with
AUGER, it is possible to perform exhaustive explorations to find those Pareto-
optimal configurations from a set of reported approximate adders. In Figures 3.4
and 3.5, different configurations have been explored for 17 different LP approximate
adders reported in the literature. The exploration has been made for 16 and 32 bit-
width and considering up to half of the output bits to be approximate. This means
137 and 273 different approximate adders explored for each case. Figures 3.4 and
3.5 show a set of dominant configurations for each circuit metric and considering
MED as error metric. Consider the particular case of area exploration for 16-
bit LP adders in Figure 3.4. As depicted in the graph, different configurations
of the AMA5 [Gup+13] LP approximate adder are Pareto optimal for moderate
large MED tolerable. This also confirms what is presented in Figure 3.3, where
the AMA5 configuration is the one with a lower area concerning the other LP
approximate adders compared. Similar to for area, for the other metrics, the Pareto-
optimal configurations can be extracted and selected, if desired, for the design of
approximate accelerators.

HP approximate adders

High-performance (HP) approximate adders correspond to those in which the
addition is performed by a set of sub-adders, as described in Section 2.1. In many

22

3.1 A Tool for Generating Approximate Arithmetic Circuits

80

100

120

140

AMA5(8)AMA5(7)
AMA5(6)

AMA5(5)
AMA5(4)

A
re

a
[µ

m
2]

Approx. Adders
Pareto optimal

60

80

P
ow

er
[µ

W
]

0.4

0.6

0.8

1

D
el

ay
[n

s]

0 20 40 60 80 100 120
20

40

60

80

MED

P
D

P
[m

W
·n

s]

Figure 3.4: Exploration for 16-bit LP approximate adders. With characterization per-
formed by AUGER, it is possible to find those Pareto-optimal LP approximate adders
and their aproximate configuration, in this case for 16-bit adders and MED as error
metric.

23

3 Generating Approximate Arithmetic Circuits

150

200

250

300
A

re
a

[µ
m

2]

Approx. Adders
Pareto optimal

100

150

P
ow

er
[µ

W
]

1

1.5

2

D
el

ay
[n

s]

0.1 1 10 100 1000 10000 100000

100

200

300

MED

P
D

P
[m

W
·n

s]

Figure 3.5: Exploration for 32-bit LP approximate adders. With characterization per-
formed by AUGER, it is possible to find those Pareto-optimal LP approximate adders
and their aproximate configuration, in this case for 32-bit adders and MED as error
metric.

24

3.1 A Tool for Generating Approximate Arithmetic Circuits

10 100 1000
0

0.5

1

1.5

(1,2)

(1,3)

(1,4)(1,5)

(1,6)(1,7)
(1,8)

(2,2)
(2,4)

(2,6)

(2,8)

(3,1)

(3,4)
(3,7)

(4,4)
(4,8)

(5,1)

(5,6)
(6,4)

(7,2)

MED

P
D

P

Figure 3.6: Exploration of 8-bit GeAr approximate adders. Comparison of all possible
and valid 8-bit combinations for GeAr approximate adders. A set of these configurations
are Pareto-optimal solutions with respect to the rest.

cases, for a given bit-width, several possible configurations of overlapping sub-
adders can be generated. For instance, for a 16-bit GeAr adder [Sha+15], there
are 22 different valid configurations. In fact, the GeAr adder can assume other
HP approximate adders in its configuration, such as ACA II [KK12] and GDA
[Ye+13]. When using GeAr, and for an N-bit addition, the most significant R-bits
of the sub-adders are considered as resultant bits, and they are integrated as part
of the final result, while the remaining P-bits, defined as previous bits, are used to
estimate the carry propagation to upper bits.

Figure 3.6 presents a comparison in terms of PDP and MED for 20 of the valid
16-bit GeAr adder configurations. The GeAr configurations are denoted as (R,P)
in Figure 3.6. As it can be noticed, and considering PDP as an energy estimation,
there is a set of optimal configurations placed along the Pareto front. For instance,
the (6,4) configuration present smaller PDP with respect to (2,8) and (3,7), for
similar MED values. Although the delay is significantly reduced for some non-
optimal designs, power consumption exceeds due to the additional hardware used
in the several sub-adders required. This means that that GeAr designs consume
more energy (normalized PDP > 1) compared to a 16-bit RCA. From this type
of comparison that can be performed with characterized approximate arithmetic
circuits generated by AUGER, it is possible to select better those that minimize the
required resources while meeting a defined accuracy threshold.

25

3 Generating Approximate Arithmetic Circuits

DRUM4 DRUM6 DRUM8 DRUM10 DRUM12 RoBa
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Delay Area Power

Figure 3.7: Comparison of two types of approximate multipliers. Comparison of two
different 16-bit approximate multiplier approaches.

Approximate multipliers

To compare approximate multipliers generated with AUGER, consider two very
distinct designs from the state-of-the-art, particularly one that presents different
levels of approximations per input bit-width [HBR15], and another that presents
a single configuration per input bit-width [Zen+17]. Figure 3.7 presents char-
acterization values for some of these approximate multipliers normalized with
respect to an exact array multiplier. Although the RoBa multiplier presents a single
configuration for each bit-width, it is capable of obtaining good total power con-
sumption improvement, about 70%. DRUM configurations can achieve even better
power improvement, such as DRUM4, but introducing a MED about two orders of
magnitude higher with respect to the RoBa.

It is also noticeable that DRUM configurations can overpass an accurate multiplier
power consumption while still reducing its delay, but keeping the errors smaller
than for other DRUM variants. If the delay is the design constraint, this could
be the right candidate as delay improvement is obtained while not introducing
significant errors.

3.2 A Framework for Approximate Logic Synthesis

Many efforts have been made to design approximate arithmetic circuits from
their accurate implementations to reduce their size, delay, and power consumption
[XMK16]. For instance, one effort focuses on reducing the circuit’s supply voltage
to lower the power required, allowing timing errors [Mia+12], and relaxing the
synthesis of specific non-critical delay paths [AH18]. Other significant effort aims

26

3.2 A Framework for Approximate Logic Synthesis

10 15 93 127
0

0.2
0.4
0.6
0.8

1

WCE

Delay Area Power

Figure 3.8: Characterization of four 8-bit approximate adders generated from an exact
adder. Normalized values for delay, area, and power are depicted for different accuracy
threshold. The adders were generated using the circuit carving technique [SAP18].

to perform functional approximations in which the functionality of an application,
at register-transfer level (RTL) circuit or gate-level netlist, is simplified to trade-off
accuracy for performance.

Regarding this second effort, different Approximate Logic Synthesis (ALS) methods
have been proposed to generate approximate circuits from accurate implemen-
tations automatically. In the literature, three main approaches to exploit func-
tional simplification have been reported [Sca+20]: structural netlist transformation
[Sch+17; SAP18], Boolean rewriting [WQ16; HTR18], and approximate high-level
synthesis [LJG17; Cas+20c].

For netlist transformations, various techniques have been reported, mostly based
on the node pruning of a Direct Acyclic Graph (DAG) representations of the circuit
netlist. For instance, nodes are pruned iteratively according to the significance they
present to the final output and the toggle activity they have [Sch+17]. Another
technique performs exhaustive exploration of all possible subsets of nodes that
can be removed without surpassing a given error threshold [SAP18]. Figure 3.8
depicts the circuit properties for 8-bit approximate adders generated for a given
worst-case error (WCE) (see Equation (2.2)) under this technique. As depicted, the
goal is to reduce the resulting circuit’s complexity, reflected in a reduction in its
circuit metrics, while having a target accuracy for a specific error metric as a design
constraint.

For the case of Boolean rewriting techniques, open-source contributions have
been made [HTR18; MHR19]. However, to explore and implement current ALS
techniques based on netlist transformation, develop methods for error modeling to
avoid exhaustive simulations, and propose new netlist transformation approaches,
an open-source framework that enables it is still missing.

27

3 Generating Approximate Arithmetic Circuits

This section presents AxLS2, a novel, open-source framework for ALS techniques
based on structural netlist transformations. With AxLS, existing ALS methodologies
can be implemented and new ones proposed. This section describes this novel
framework and provides an experimental evaluation for arithmetic circuits.

3.2.1 Description

AxLS is a framework for ALS techniques based on the concept of structural netlist
transformations. Figure 3.9 depicts the main components of this framework. As
shown, AxLS takes as an input the Verilog RTL description of the circuit to be
approximated. A netlist is generated for a specific standard cell technology library
using a synthesis tool. From the same technology library, particularly from the
Verilog simulation models, a description of the basic gates is extracted into an XML
file. Then, using this cell description, a representation of the netlist is generated
with a custom netlist to XML function (v2xml). XML files are easy to retrieve,
manipulate, and save; for that reason, it was chosen for the netlist’s internal rep-
resentation. Figure 3.10 presents a code snippet of a toy netlist representation
with XML, using the NanGate 15nm technology library. Figure 3.11 shows a DAG
representation for this netlist example, generated from the XML representation.
Each node corresponds to a gate in the netlist, while primary inputs and outputs
are indicated.

As depicted, a post-synthesis simulation can be performed to obtain gate-level
switching activity values (saif file). This information can be included in the XML
netlist representation as part of each node’s properties, and it can be further used
to guide the netlist transformation criteria [Lin+11]. Other characteristics, such as
significance or weight, and fan-out can be calculated from the netlist and added to
each node [Bro+15].

With an XML representation of the netlist, approximation criteria can be applied
to transform the netlist. As previously mentioned, gates can be pruned one by
one considering their switching activity and impact on the output error [Sch+17].
Genetic algorithms can also be used to mutate the netlist into approximate versions
by interchanging gates with wire connections [MVS19], or output pruning can be
applied by removing all logic gates that affect a specific circuit output bit. AxLS
provides the capability to implement such types of techniques to modify and
transform the netlist.

2 AxLS is an open-source contribution and it is available at https://github.com/ECASLab/AxLS.

28

https://github.com/ECASLab/AxLS

3.2 A Framework for Approximate Logic Synthesis

Cell
Extractionlib

Technology
Library

.xml

Cell
Description

Synthesis.v

RTL

.v

Netlist
v2xml .xml

Netlist

Approximation
Criteria

Threshold

.xml

Netlist
Transformed

Simulation saif

xml2v.v

Approximate
Netlist

Simulation

Synthesis Circuit
Metrics

Figure 3.9: Overview of the AxLS framework. An XML representation of the synthe-
sized netlist is created to manipulate it according to approximation criteria that can
be defined within AxLS. AxLS uses external tools for synthesis and simulation of the
accurate and approximate versions of the netlist.

Regardless of the netlist transformation technique followed, an accuracy threshold
is required for a defined error metric. This accuracy target is used to assess if the
approximations applied creates an approximate netlist that still produces acceptable
results. According to the approximation criteria implemented within AxLS, a
Verilog file with the approximate netlist can be generated from the transformed
XML description, using a custom XML to netlist function (xml2v). This Verilog
file generation is performed every time the accuracy of an approximate version is
evaluated. The generated netlist is always based on the gates available in the cell
library used for the synthesis.

Although recent techniques have been proposed to reduce the simulation de-
pendency [Sca+19; Ech+20], by default, AxLS relies on gate-level simulations for
accuracy assessment. The approximate netlist can be simulated to produce their

29

3 Generating Approximate Arithmetic Circuits

<?xml version="1.0" encoding="UTF-8"?>
<root>

<node name="INV_X2" var="u19">
<input name="A1" wire="n14" />
<output name="ZN" wire="n16" />

</node>
<node name="OAI21_X1" var="u23">

<input name="A1" wire="n14" />
<input name="A2" wire="n20" />
<output name="ZN" wire="n21" />

</node>
<node name="NAND2_X2" var="u33">

<input name="A1" wire="n16" />
<input name="A2" wire="n14" />
<output name="ZN" wire="S[1]" />

</node>
[...]
<circuitinputs>

<input var="in[0]"/>
<input var="in[1]"/>

</circuitinputs>
<circuitoutputs>

<output var="S[0]"/>
<output var="S[1]"/>

</circuitoutputs>
</root>

Figure 3.10: Example of XML code for netlist description. Primary inputs and outputs,
gates and their connections are easily represented with XML code.

4 Automatic Hardware Generation Tool 23

• input/output. Those tags are used to represent a connection between a logic gate

and an internal circuit wire. It contains the following attributes.

– name: Name of the input/output of the circuit. Obtained from the Technology

Library used to synthesize the circuit.

– wire: Name of the cable to which the wire is connected in a given input/output.

– delete** : If true, the logic needed exclusively to produce this wire signal could

be deprecated.

Using this format, the circuit is represented as a list of nodes in XML, each node

represents a logic gate with their inter-connections to other gates. An example of

the XML file is shown in Figure 4.2.

<?[PO�YHUVLRQ="1.0"�HQFRGLQJ="UTF-8"?>
<rooW>
���<node�QDPH="INV_X2"�YDU="X19">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q16"�/>
���</node>
���<node�QDPH="OAI21_X1"�YDU="X23">
������<inpXW�QDPH="A1"�ZLUH="Q14"�/>
������<inpXW�QDPH="A2"�ZLUH="Q20"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="Q21"�/>
���</node>
���<node�QDPH="NAND2_X2"�YDU="X33">
������<inpXW�QDPH="A1"�ZLUH="Q16"�/>
������<inpXW�QDPH="A2"�ZLUH="Q14"�/>
������<oXWpXW�QDPH="ZN"�ZLUH="S[1]"�/>
���</node>
���[�...�]
���<circXiWinpXWV>
������<inpXW�YDU="LQ[0]"/>
������<inpXW�YDU="LQ[1]"/>
���</circXiWinpXWV>
���<circXiWoXWpXWV>
������<oXWpXW�YDU="S[0]"/>
������<oXWpXW�YDU="S[1]"/>
���</circXiWoXWpXWV>
</rooW>

Q16

X19

Q21

X23

Q24

X24

X32

Q14 Q14

Q14

LQ>1@

Q20 Q20

LQ>0@

S>0@

X33

S>1@

Figure 4.2: Sample of the circuit represented as an XML file.

Some of the benefits of this representation is that these files could be saved and

loaded quickly. The Python Element Tree library allows searches inside the structure

as if it were a database using XPath syntax. XPath syntax could search XML tags

filtering them by their attribute values or navigate through the circuit. For example,

with the following line:

root.findall("./node/input[@wire=’n54’]/..")

The algorithm gets every node which has an input connected to wire n54. Once

the circuit is represented in XML, two techniques were implemented to reduce the

Figure 3.11: DAG representation of an XML netlist example. AxLS provides custom
functionality to perform graphical representations of the netlists during the transforma-
tion process.

30

3.2 A Framework for Approximate Logic Synthesis

innacurate outputs. AxLS provides functionality to compare the approximate re-
sults against accurate ones to generate a PMF for the error representation, from
which error metrics can be calculated, as described in Section 2.2. Although not
depicted in Figure 3.9, the corresponding testbench is required for any simulation,
which generates an output file with the approximate results. For this, representative
test vectors are also required according to the input bit-width of the circuit to be
approximated.

Once an approximate netlist is generated with satisfactory accuracy, according to
the defined approximation criteria, the synthesis tool can be used to obtain circuit
metrics such as area, delay, and power consumption.

3.2.2 Evaluation

The current state of AxLS has been implemented using Python language, and the
internal representation of the netlist using XML files, as previously mentioned. As
depicted in Figure 3.9, AxLS relies on external tools for synthesis and simulation.
Currently AxLS uses the Yosys tool [Wol] for circuit synthesis and circuit area esti-
mation, and Icarus Verilog [Wil] for netlist simulation. The results here presented
were obtained using the NanGate 15nm technology library. For the simulations
performed, 500K test vectors from a random uniform distribution were used for
each input data of the circuit. Other distributions, such as normal, Weibull, or
exponential, can also be integrated into AxLS.

An evaluation of AxLS for arithmetic circuits, particularly standard adders, is
presented. As approximate criteria, here called as InOuts, the following netlist
transformation steps have been followed:

• Considering a primary input constant, all affected nodes (gates) are explored.
A node is considered constant if all its inputs are constant, and then all
dependencies of such node are explored. Each of the considered nodes is
pruned, one by one, and the accuracy is checked at each step. If the output
error goes beyond the given threshold, the last pruning step is reversed, and
other nodes are further explored.

• After exploring from the perspective of the inputs, nodes are explored con-
sidering a primary output constant. All nodes affecting such output are
considered, and a one by one pruning is also performed with accuracy evalu-
ations after every step. Similar to before, if the output error goes beyond the
given threshold, the last pruning step is reversed, and other nodes affecting
the output are explored.

31

3 Generating Approximate Arithmetic Circuits

cin

36

35

in1_0

_31__32_ _33_in1_1

17 _37_ _38_in1_2

_20__21_ _22_ in1_3

25 _27__28_

in2_0

in2_1

in2_2

in2_3

out_0out_1

out_2 out_3 out_4

18

07

19

24

_08__26_

08

29

14

30

14

09

23

10

12

_11__11_

13 _15__16_

34

_00__00_

_03__04_ _04_

01 _02_

05 _06_

Figure 3.12: Accurate netlist. DAG representation of the accurate netlist of a 4-bit ripple-
carry adder synthesized with the NanGate 15 nm technology library.

• For those nodes and outputs removed, a 0 value is assigned. For instance,
nodes depending on others pruned will receive a 0 logic value as input
instead of the expected result previously provided by the missing node.

• For this evaluation’s scope, these steps are repeated for the half LSB of the
inputs and outputs. For instance, for a 16-bit adder, this is applied first for
the first LSB at the inputs and then for the 8 LSB of the output.

Consider a 4-bit RCA for an example with AxLS. Figure 3.12 depicts the netlist for
the accurate implementation. The approximate netlist, shown in Figure 3.13, has
been generated following the steps described and for a WCE = 8 as an accuracy
threshold. As can be noticed from the error distribution in Figure 3.14, the higher
error produced has an ED=6 with a very low probability (about 2%), which meets
the accuracy constraint given. From this error distribution, internally generated by
AxLS, other error metrics [MVS19] can be included and calculated in AxLS. Besides
WCE, AxLS can generate approximate circuits using the MED as accuracy metric.

32

3.2 A Framework for Approximate Logic Synthesis

cin

35

36

in1_0

31 _32__33_ in1_1

17 _37_ _38_ in1_2

_20__21_ _22_ in1_3

25 _27__28_

in2_0

in2_1

in2_2

in2_3

out_0 out_1

out_2 out_3 out_4

18

07

26

09

23

10

24

12

34

00 _00_ _01__02_

03

19

05 _06_

08

08

29

14

30

14

11 _11_

13 _15__16_

04 _04_

Figure 3.13: Approximate netlist for WCE = 8. DAG representation of an approximate
4-bit ripple-carry adder, generated with AxLS for a WCE = 8 constraint, from the netlist
depicted in Fig. 3.12. Nodes marked (in red) are selected to be pruned.

0 1 2 3 4 5 6
0

0.10

0.20

0.30

ED

p(
E

D
)

Figure 3.14: Error distribution for the approximate netlist. The higher error generated
has a ED = 6, which meets the WCE constraint used to guide the netlist transformation.

Figure 3.13 shows that the resulting approximate netlist depends solely on two of
the most significant bits of the inputs. Just two of the output bits are calculated,
while the others (not depicted in the diagram) are defined as 0. For nodes that
had a dependency on pruned gates, for instance, _036_, the remaining wires
00 and _01_ will drive a 0 logic value, as described for these exemplary netlist

33

3 Generating Approximate Arithmetic Circuits

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1.0

MED

N
or

m
al

iz
ed

A
re

a

16-bit BKA

PP-based InOuts

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1.0

WCE

N
or

m
al

iz
ed

A
re

a

16-bit BKA

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1.0

MED

N
or

m
al

iz
ed

A
re

a

16-bit KSA

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1.0

WCE

N
or

m
al

iz
ed

A
re

a
16-bit KSA

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1.0

MED

N
or

m
al

iz
ed

A
re

a

16-bit LFA

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1.0

WCE

N
or

m
al

iz
ed

A
re

a

16-bit LFA

Figure 3.15: Evaluation using AxLS for three 16-bit adders. Both described approx-
imate criteria, InOuts and PP-based, were used to generate approximate netlist for
different accuracy thresholds.

34

3.3 Summary

transformation steps. Also, from Figure 3.13, it is possible to observe the remaining
dependency on the carry-in, cin, for calculating the output bits out_3 and out_4,
as most of the gates that produce these primary outputs are preserved in order to
achieve the desired accuracy.

To compare results with those generated with InOuts, an implementation based
on the probabilistic pruning technique (PP-based) [Lin+11] has been implemented
within AxLS. The goal of this technique is to prioritize the pruning of those nodes
that change little. For instance, it begins by pruning nodes that produce 100%
of the time a result equal to 1 or 0, for all the test input data, which means it is
not toggling. Once a node is removed, other nodes depending on that pruned
node’s output receive a constant input value, which corresponds to the value the
pruned node was driving most of the time. Whenever a node is pruned, the circuit’s
accuracy is evaluated and compared against the given accuracy threshold. Then,
PP-based continues with those nodes with a higher percentage until the accuracy
is reduced but satisfying the given threshold.

Figure 3.15 presents results for the evaluation for three different 16-bit parallel-
prefix adders: Brent-Kung adder (BKA), Kogge-Stone adder (KSA), and Ladner-
Fischer adder (LFA). Approximate netlists have been generated for different accu-
racy thresholds and WCE and MED error metrics, using both described approxi-
mation criteria, InOuts and PP-based. As the circuit’s metrics are obtained with
the Yosys tool, just the circuit area values are reported.

In general, Figure 3.15 illustrates how the circuit’s area is reduced as higher errors
are tolerate. With the steps in InOuts, it is possible to obtain more area savings then
the results from PP-based, achieving up to 18% more area savings with the InOuts

technique. However, it is interesting to notice that for some accuracy targets, the
same area savings are obtained, for instance, for MED and WCE metrics from
value 70. This is because no further netlist modifications can be applied without
degrading the accuracy beyond the defined threshold.

3.3 Summary

In this chapter, two approaches have been presented for the generation of approx-
imate arithmetic circuits. The first, AUGER, is a tool capable of generating RTL
descriptions and characterizations of approximate adders and multipliers reported
in the literature. The second, AxLS, is a framework that allows the implementation
of ALS techniques based on netlist transformations to generate approximate netlist
descriptions from accurate RTL implementations. The evaluation performed shows
both approaches’ capability to provide approximate arithmetic circuits that can be

35

3 Generating Approximate Arithmetic Circuits

used for the automated design of approximate accelerators. As both contributions
have been made open-source, this allows their usage by the scientific commu-
nity and their extension to newer approximate arithmetic circuits and newer ALS
techniques based on netlist transformations.

36

All models are wrong, but some are useful.

George E. P. Box

4
Modeling Error Propagation

Error estimation is a cornerstone of Approximate Computing (AxC) [Sca+20]. This is
essential for the automated design of approximate accelerators built with approxi-
mate arithmetic circuits. Despite the tolerance to errors, approximate accelerators
must limit the output error to satisfy quality constraints, whether defined by the
application, the developer, or even the end-user. The use of approximate arithmetic
circuits in accelerators imposes the challenge of understanding how the error in-
troduced by each approximate circuit behaves and propagates through other exact
and approximate computations, and finally, how it accumulates at the output.

This chapter presents a novel compiler-driven methodology for estimating the error
propagation to the output of an approximate accelerator. Using as a base a set
of analytical rules to model the error propagation for individual calculations, a
model is defined to estimate the propagation of error distributions represented as
a probability mass function (PMF). These rules consider the propagation of errors
through other approximate and accurate arithmetic computations. Since the design
of accelerators is carried out in conjunction with the source code of the application,
this methodology proposes to use the source code of the function to be accelerated
as an input. A custom-defined pragma directive is defined to annotate the code and
indicate which accurate operations are replaced by approximate ones. A modified
compiler is proposed to handle these annotations and append metadata to the

The content of this chapter is based on the work originally published in [Cas+18]:
J. Castro-Godínez, S. Esser, M. Shafique, S. Pagani, and J. Henkel: “Compiler-Driven Error Analysis
for Designing Approximate Accelerators”. In: 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 2018, pp. 1027–1032.

37

4 Modeling Error Propagation

+ +

+

a b c d

out

s1 s2

s3

(a) Tree of additions

s1 s1 ∧ s2 s1 ∧ s2 ∧ s3

20
30
40
50 ER (%) MED

(b) ER and MED for different adders replaced by
approximated ones

Figure 4.1: Motivation example. In this example, up to three additions can be replaced
by approximate ones. The ER and MED increase with the number of approximate adders.

intermediate representation of the code. This information is later used to statically
analyze the code, using error propagation models previously determined, to obtain
an error distribution of the output.

The contribution of this chapter has been integrated into a tool called CEDA.1

This tool uses pragma-based annotated C/C++ source code as input. With these
annotations, exact calculations are replaced by approximate to perform a static
analysis of the error propagation and estimate the output error distribution.

4.1 Motivation

Consider three additions arranged as a tree of additions, as presented in Figure
4.1a. Each adder (s1, s2, s3) can be replaced by an approximate adder that shows
an Error Rate (ER) of 0.19 and a Mean Error Distance (MED) of 40.0. Figure 4.1b
depicts the increment of ER and MED as the number of additions replaced by
approximated changes. When the approximate adder replaces just s1, the error
metrics at out correspond to the ones produced by only one adder (ER = 0.19,
MED = 40.0). In this case, the other exact additions do not have an impact on the
error metrics.

When all adders are replaced, the ER and MED at out are 0.46 and 48.5, respec-
tively. Estimating these values make possible the selection of adequate approximate
circuits to comply with a defined error tolerance. For instance, if the additions
presented have an accuracy limit of 45.0 for the MED metric, replacing s1 and
s2 for the mentioned approximate adder can satisfy this constraint. These two

1 CEDA is an open-source contribution and it is available at https://git.scc.kit.edu/CES/CEDA.

38

https://git.scc.kit.edu/CES/CEDA

4.2 Error Estimation for Approximate Desings

approximate additions produce a MED of 44.1, as depicted in Figure 4.1b. These
error estimations are required to guide the design space exploration of approxi-
mate accelerators, and thus select the approximate circuits that meet the accuracy
threshold of a design while, for instance, reducing delay or power consumption.

4.2 Error Estimation for Approximate Desings

Existing work has proposed different approaches to estimate the output error at the
approximate component and accelerator level. Statistical and analytic models have
been presented to characterize the error produced by approximate circuits such as
adders [Maz+17b; AHS17] and multipliers [Maz+17a]. Given that this dissertation’s
focus is on approximate accelerators, these models [Maz+17b; AHS17; Maz+17a]
can serve as an input.

For approximate accelerators, some current works employ exhaustive simula-
tions or Monte Carlo simulations [Li+15], while others define an input data set
[KCS16] or use interval and affine arithmetic [HLR11; HLR12]. Capturing error
statistics through simulations produces accurate characterizations, but they are
time-consuming, particularly when considering diverse configurations for an arith-
metic circuit. For the other cases, the characterization precision is limited because
the error metrics are sensitive to the input distribution. Other works use analyti-
cal formulations [Cha+13; Lee+16] but limiting the applicability to a small set of
approximate circuits. Once the error characterization for an arithmetic circuit is
achieved, the output error in a hardware block, involving exact and approximate
calculations, is determined by defining error propagation rules [HLR11; HLR12;
Li+15], or by performing regression analysis [Cha+13] or curve fitting [KCS16] to
establish prediction equations. For the latter approaches, if the design or the circuits
used changes, it is necessary to obtain new prediction equations by performing the
proposed methods again.

Most of these works require detailed simulations to estimate final error propagation.
This is a limitation to explore a vast design space when multiple configurations of
approximate arithmetic circuits are considered, for instance, while performing high-
level synthesis of approximate accelerators. This chapter proposed an analytical
methodology for estimating the error propagation, not requiring simulations, and
using only the error distributions of the approximate arithmetics used.

39

4 Modeling Error Propagation

+ +

Op

a b c d

z

x y

Figure 4.2: Set up for error propagation modeling. Results x and y, produced by ap-
proximate adders, are used as inputs to other accurate and approximate computations
to model the error at the output z.

4.3 Models for Error Propagation

Error propagation estimation requires models representing the interaction between
errors produced by approximate arithmetic circuits and other accurate and ap-
proximate computations. Through exhaustive experimentation [Tic98], and using
results produced by approximate adders, a set of propagation rules or patterns can
be established.

Consider the diagram in Figure 4.2. The inputs a, b, c, and d are error-free values
added by two approximate adders, whose error distribution is known. The error in
x and y depends on whether the addition produces an error or not, and depending
on the input values and the adder configuration. Here, Op is replaced by accurate
operations: addition, subtraction, multiplication, shift left, shift right, or division.
Also, an approximate addition and multiplication are considered for Op.

By analyzing the results of the individual computations for every replacement of
Op, a set of analytical rules has been derived to estimate the error propagation. For
addition, the output error (ez) is defined as:

ez = ex + ey + e+ (4.1)

which is the addition of the input error of both addends, ex and ey). If an approxi-
mate addition replaces Op the output error considers the error introduced by the
approximate adder itself, e+, along with the error of the addends.

For the subtraction, the output error is the difference between the error of both
operands:

ez = ex − ey (4.2)

40

4.3 Models for Error Propagation

As in a regular subtraction, the order of the operands affects the output error, and
this can lead to errors that can be reduced and even eliminated.

The multiplication presents an especial condition, as the output error has an
intrinsic dependency on the input values of the multiplication:

ez = x · ey + y · ex + ex · ey + e× (4.3)

where e× is the error introduced by the approximate multiplier. In case of an
accurate multiplication, e× = 0. This means that even the error propagated through
an accurate multiplication does not just depend on the input error, as for the
addition, but also on the values to be multiplied.2 However, for many error-tolerant
applications, such as in a FIR filter or a neural network, the multiplication is
performed between a variable, which can have an error associated, and a constant
value, which reduces the expresion in Equation (4.3) to:

ez = y · ex + e× (4.4)

considering y as the constant value, which is known, and y as the variable with error.
The previous expression even considers the general case of using an approximate
multiplier.

For shift left and shift right, the error propagates through the computation exper-
imenting an increment or decrement of its magnitude, respectively. For the case
in Figure 4.2, y represents the number of bits that x needs to be shifted. Thus, the
input error of x is multiplied or divided by 2 to the power of y, if a shift left or
right is required, respectively.

ez = ex · 2y (4.5)

ez = ex/2y (4.6)

For the case of division by a constant value (which is common in error-tolerant
applications, such as image processing kernels), the output experiences an effect

2 The propagation rules obtained for addition and multiplication confirm previous presented equations
in [Li+15].

41

4 Modeling Error Propagation

similar to the shift right, so that it is decremented. Considering y as the constant
value:

ez = ex/y (4.7)

The models previously presented have been determined for single error values.
However, they can be applied to error distributions represented by a PMF. Con-
sidering the PMFs of the errors produced by approximate adders as distributions
of independent discrete and random variables, the addition of two PMFs is the
convolution of their probability distributions. If pZ(z) = P(Z = z) is the error
distribution after an accurate addition (as for Op in Figure 4.2), and Z = X + Y,
then,

pZ(z) = ∑
y

pX(z− y)pY(y) (4.8)

where pX(x) and pY(y) are the PMFs for x and y. This formulation also applies to
subtraction. However, before performing the convolution, it is required to invert the
ED values for the subtrahend PMF. For the product of two PMFs, this is calculated
as the joint probability of pX(x) and pY(y), Z = XY, for two independent discrete
random variables. Then,

pZ(z) = pX,Y(x, y) = ∑
x∈X,y∈Y

P(X = x, Y = y)

= ∑
x∈X,y∈Y

P(X = x)P(Y = y) (4.9)

considering all pairs of values (x, y) that X and Y take. For shift left and right,
the ED of the input error distribution is scaled by a factor of 2y, as previously
described. So,

pZ(z) = 2y · pX(x) (4.10)

pZ(z) =
pX(x)

2y (4.11)

represent the error propagation after shift left and shift right, respectively. In these
shift operations, the ER for each ED does not change. When the multiplication is

42

4.4 Estimation of Error Propagation

0 16 32
0

0.05

0.10

64 128 192

p Z
(z
)

Addition (estimation)

0 16 32 64 128 192

Addition (simulation)

-128 -64 -32 0 16 32 64
0

0.05

0.10

p Z
(z
)

Subtraction (estimation)

-128 -64 -32 0 16 32 64

Subtraction (simulation)

Figure 4.3: Example of error propagation for addition and subtraction. Error propaga-
tion estimation after an accurate addition and a subtraction. The error distribution of
two HP approxiamte adders was used as input error distributions x and y.

between a constant value and one with errors, the effect in the error propagated is
similar as for shift left:

pZ(z) = y · pX(x) (4.12)

and for the division, similar to the shift right:

pZ(z) =
pX(x)

y
(4.13)

Figure 4.3 depicts the PMFs for the error propagated after an accurate addition
and subtraction, considering that the errors distributions of x and y have been
generated by HP approximate adders. In this case, the results obtained by applying
the propagation models for error estimation, produce identical results as for Monte
Carlo simulations.

4.4 Estimation of Error Propagation

Using the previous rules, by exploring where the errors are introduced and how
they propagate, it is possible to estimate the error propagation at the output of

43

4 Modeling Error Propagation

b 1

�

d 1

�

e 2

�

f 1

�

h 1

�

+

a

s1
+

c

s2
+

s3
+

g

s4

+
s5

+
s6

+
s7

+
s8

i

�

4

out

Figure 4.4: DFG representation of a 3× 3 Gaussian kernel. Approximate adders po-
tentially replace the additions in the kernel.

an approximate accelerator design. Representing the accelerator as a Data Flow
Graph (DFG), an algorithm based on Depth-First Search (DFS) [SW11] is proposed
to explore all the nodes in the DFG starting from the output to the inputs. All the
nodes on which the output has a data dependency must be visited.

Consider the DFG for a 3 × 3 Gaussian kernel, as depicted in Figure 4.4. The
output error distribution is calculated starting from the shift right operation at the
output. From it, the error distribution of its predecessors is requested, in this case,
the adder s8. This adder, in turn, needs the error propagated by the adder s7, and
so on, until the inputs are reached. For instance, considering that just adders s1
and s2 are replaced by approximate adders, once those nodes are reached, the error
they generate is determined according to its configuration, with analytical models
for HP approximate adders, or previous characterization for the LP approximate
adder. Because the inputs are considered as error-free, the error propagated after s1
is the error generated by itself. The same occurs for s2. Both inputs to adder s5 now
present errors, and the error propagated after s5 is computed for the case of an
accurate addition of two input error distributions, as introduced in Equation (4.8).
This error distribution is propagated through s7 and s8 with no change because no
other errors are generated in other computations, and the final error distribution
propagated is only affected by the shift right at the end. This estimation process is
generalized in Algorithm 1.

44

4.5 CEDA Tool

ALGORITHM 1: DFS-based Error Propagation Estimation.
Input: DFG;
Output: PMF;

1 computeError(node);
2 foreach parent ∈ node.parent do
3 if parent == instruction then
4 parent.Error ←− computeError(parent);
5 end
6 else
7 parent.Error ←− 0 ;
8 end
9 end

10 errorPropagation(node.Error, node.parent.Error);

4.5 CEDA Tool

The proposed methodology has been implemented into a tool called CEDA:
Compiler-driven Error Analysis for Designing Approximate Accelerators. Fig-
ure 4.5 shows its major components. An annotated C/C++ source code and an
error model file are required to perform an estimation of the error propagation.
The source code corresponds to the application where the introduction of errors
in a function or kernel is explored. A custom directive, #pragma approx, indicates
to a modified Clang compiler when an accurate addition or multiplication is re-
placed by an approximate one, as depicted in the code example of Figure 4.6. In
Figure 4.6, the gear wrp 8 1 4 of the pragma points the type of adder used for
the evaluation (in this case GeAr) with its configuration (bit width w, resultant r,
and propagation bits p; in this example 8, 1, and 4, respectively).

The modified Clang compiler handles this pragma and appends this information
as metadata in the Intermediate Representation (IR) of the code, as shown in
Figure 4.6. The error analysis stage (Fig. 4.5) takes the code as IR and creates a DFG
representation. The metadata allows identifying which operations, represented
as DFG nodes, are then approximated. The error model input corresponds to the
definition of the error representation (i.e., as PMF) and the set of error propagation
models previously presented. The error analysis follows the proposed methodology
to estimate the error propagated to the output as a PMF. This information can then
be related to specific error metrics such as MED, as described in Section 2.2.2.

The error propagation analysis is performed statically, eliminating the need for
simulations and the associated computing time. However, the CEDA tool pro-
vides the possibility to obtain output error distributions through simulations. The

45

4 Modeling Error Propagation

Annotated C/C++

Clang (Modified)

Error
Model

Approximate
Library

.ll .bc

.bc

Error Analysis

Function
replacement

Simulation

Input
Data

Error Estimation Error Simulation

Figure 4.5: Main components of the CEDA tool. The .bc and .ll files contain the LLVM
intermediate representation (IR) of the annotated source code, the error model, and the
approximate library. Both error analysis and simulation are carried out using the IR.

void prog(int64_t* out, int64_t a, int64_t b, int64_t c) {
#pragma approx gear wrp 8 1 4
int64_t r = a + b;
int64_t m = r + c;
out[0] = r;
out[1] = m;

}

define void @prog(i64* nocapture %out, i64 %a, i64 %b,
i64 %c) #0 {
entry:

%add = add nsw i64 %a, %b, !approx !1
%add1 = add nsw i64 %add, %c
store i64 %add, i64* %out, align 8
%arrayidx2 = getelementptr inbounds i64, i64* %out, i64 1
store i64 %add1, i64* %arrayidx2, align 8
ret void

}

!1 = metadata !{metadata !"gear", i32 8, i32 1, i32 4}

Figure 4.6: Example annotated code and LLVM IR. In this example code, the custom
pragma annotation (above) can be noticed and its corresponding IR (below). Also, notice
the metadata added regarding the approximation at the bottom of the IR.

46

4.6 Evaluation

metadata in the IR is used to determine which additions to replace by a function
invocation and to provide the parameters required. This function mimics the ex-
ecution of an approximate adder. For this, a library of approximate adders and
multiplier is required as an input to this tool, as shown in Figure 4.5, which has
functional models that can produce the results of the approximate adders. Once
this replacement is performed, the IR codes for accurate and approximate versions
of the application are executed using the LLVM-JIT (just-in-time) [LA04] compiler
and a given input data set. The error statistics are determined by comparing the
results. Results obtained through simulations provide the possibility to compare
the accuracy of the results provided by the proposed methodology and validate
the propagation models.

4.6 Evaluation

Results obtained with the proposed methodology are compared against user-
defined input data sets and Monte Carlo simulations. Results for estimations and
simulations are generated with CEDA. Figure 4.7 presents the estimation and
simulation results for the aforementioned Gaussian kernel. In this example, the
adders s4 and s7 have been replaced by HP approximate adders. The estimation
performed shows almost identical error propagation on 106 input combinations
generated by a Monte Carlo simulation. The inputs generated used by the simu-
lation correspond to potential pixel values of an image. There is a difference in
the probability of the ED = 2, which is also reflected in the 0.02 difference in the
ER, because the values in the simulation do not cause the approximate adders to
produce the errors with the exact same probability as considered by the analytic
error modelling [Maz+17b], which is used by this methodology. These differences
are also noticeable when using a smaller input data set, as a test image for this
example, due to the distribution of the inputs provided by each image. Two test
images, peppers and cameraman, were used as inputs. For the case of peppers, the
results show the same ED values but with lower value in their probability. For the
cameraman, the ER is basically equal to the simulation results, but it is appreciable
the difference of the probability for ED = 8 and ED = 32.

The required time for the estimation does not overpass some tens of milliseconds,
compared to the seconds required for the simulation, which is particularly impor-
tant if this analysis is required for a diverse set of configurations of approximate
adders. The results using a smaller data set can reduce the required simulation
time, but they produce inaccurate results depending on the values provided by the
image(s) used.

47

4 Modeling Error Propagation

0 2 4 6 8 12 32 34 40
0

0.05

0.10

p Z
(z
)

Estimation, ER = 0.193

0 2 4 6 8 12 32 34 40

Simulation, ER = 0.178

0 2 4 6 8 12 32 34 40
0

0.05

0.10

p Z
(z
)

peppers, ER = 0.102

0 2 4 6 8 12 32 34 40

cameraman, ER = 0.176

Figure 4.7: Evaluation for a 3× 3 Gaussian filter. Error propagation estimation and
simulation for a 3×3 Gaussian kernel. Two adders have been replaced by HP approximate
adders. Results for a defined data set, such as peppers and cameraman test image are
presented.

0

5

10

15

M
E

D

Simulation

Estimation

1 2 3 4 5 6 7 8
0

10

20

30

Number of approximate adders

E
R

(%
)

Simulation

Estimation

Figure 4.8: MED and ER evaluation regarding number of approximate operations.
MED and ER for different error estimations and simulations of a 3×3 Gaussian kernel.
The number of approximate adders varies from 1 to 8.

The CEDA tool is able to accurately estimate for different number of arithmetic
circuits replaced. For example, Figure 4.8 shows the MED and ER for a Gaussian

kernel, considering that the adders replaced grows from 1 (just one adder) to 8
(all additions). The MED is calculated from the resulting propagated PMF. The

48

4.6 Evaluation

0 20 40 60
0

0.02
0.04
0.06
0.08
0.10

ED

p(
E

D
)

Sobel, Est., MED = 15.05

0 20 40 60
ED

Sobel, Sim., MED = 15.75

0 20 40
0

0.02
0.04
0.06
0.08
0.10

ED

p(
E

D
)

Sharpen, Est., MED = 12.55

0 20 40
ED

Sharpen, Sim., MED = 13.90

0 5 10 15
0

0.02
0.04
0.06
0.08
0.10

ED

p(
E

D
)

Laplace, Est., MED = 2.18

0 5 10 15
ED

Laplace, Sim., MED = 2.21

Figure 4.9: Evaluation for approximate accelerators designs. Error propagation estima-
tion and simulation for a 3×3 Gaussian kernel. Two adders have been replaced by HP
approximate adders. Results for a defined data set, such as peppers and cameraman test
image are presented.

estimations shows slight differences regarding simulation, because this simulation
is not exhaustive, and therefore does not consider all input combinations.

Further results are presented in Figure 4.9. Here, the output error distribution
dor different approximate accelerator designs have been estimated. Results for
simulations of the accelerator are also presented. As shown, the MED metric
calculated from the PMFs is very close between estimation and simulation, even
though they present differences.

49

4 Modeling Error Propagation

4.7 Summary

In this chapter, a compiler-based methodology to estimate the error propagation
on approximate accelerators designs have been presented. This methodology uses
analytical rules proposed to model the error propagation through accurate and
approximate arithmetic computations. These models are used in a DFS-based
algorithm to explore a DFG representation of approximate designs and estimate
the output error distribution. The proposed methodology has been integrated
into CEDA, a tool released as an open-source contribution. It performs the error
estimation from annotated C/C++ code, facilitating the exploration of different
approximate accelerator designs without requiring time-consuming simulations.
The results presented in the evaluation for various image processing kernels have
shown very accurate estimations with respect to image-based input data sets and
Monte Carlo simulations.

50

Each problem that I solved became a rule, which
served afterwards to solve other problems.

René Descartes

5
Designing Approximate Accelerators

With the rise of approximate computing as a design paradigm, many approxi-
mate functional units have been proposed, particularly approximate adders and
multipliers. These circuits reduce the accuracy of their results within a tolerable
margin to scale down the required computational effort and energy requirements.
However, for an increasing number of such approximate circuits reported in the
literature, the challenge is to select those that minimize the required resources for
a specific approximate accelerator description while satisfying a defined accuracy
constraint.

In this chapter, a novel automated framework for High-Level Synthesis (HLS) of
approximate accelerators using a given library of approximate arithmetic circuits
is presented. As repetitive circuit synthesis and gate-level simulations require a
significant amount of time, to enable this framework, a set of analytical models for
estimating the necessary computational resources when using approximate adders
and multipliers in approximate designs is introduced. These models complement
those presented in Chapter 4 for error propagation estimation in approximate
accelerators. A Design Space Exploration (DSE) methodology for error-tolerant
applications, in which analytical models are used to estimate resources needed,
and the accuracy of approximate accelerators is described. This DSE methodology

The content of this chapter is based on the work originally published in [Cas+20c]:
J. Castro-Godínez, J. Mateus-Vargas, M. Shafique, and J. Henkel: “AxHLS: Design Space Exploration
and High-Level Synthesis of Approximate Accelerators using Approximate Functional Units and
Analytical Models”. In: 2020 IEEE/ACM 39th International Conference on Computer-Aided Design (ICCAD),
2020.

51

5 Designing Approximate Accelerators

0 2 4 6 8 10 12 14 16 18

0.5
0.6
0.7
0.8
0.9
1.0

∼MED

∼PDP

MED

P
D

P

(a) Solutions for a small design-space exploration.

+ × + ×
+ +

−

a g d 2 ic 2f

Gx

(b) DFG for Gx .

Figure 5.1: Motivational example. Solutions for a small design-space exploration (5.1a)
of an approximate Gx kernel of the Sobel filter (5.1b). Using approximate additions, the
required energy can be reduced while increasing the errors.

allows finding Pareto-optimal solutions for approximate accelerator designs, mini-
mizing the required resources while meeting accuracy constraints. Furthermore,
this DSE methodology ins integrated into an HLS tool to automatically generate
accelerators from C language descriptions.

5.1 Motivation

Consider the 3× 3 Gx kernel of the Sobel filter, depicted as a Data Flow Graph
(DFG) in Figure 5.1b. The input variables in Figure 5.1b represent pixel values from
a 3× 3 section of an image. Consider that the four required additions are replaced
with approximate ones. For a small set of approximate adders, it is possible to
obtain different solutions that set a trade-off between the required computational
effort and the accuracy of results, as depicted in Figure 5.1a. In this example, the
computational effort required by an approximate design is represented by the
energy consumed. For this, the Power-Delay-Product (PDP) is used, a figure of
merit used for energy efficiency. In Figure 5.1a, PDP values are normalized with
respect to an accurate design. The accuracy of results is represented by the Mean
Error Distance (MED) (Section 2.2.2).

As shown in Figure 5.1a, by allowing a degradation in the accuracy (higher MED), it
is possible to reduce the required effort (smaller PDP). However, some combinations
of approximate adders might reduce the required energy similarly (∼PDP) while
presenting different accuracy. Alternatively, some approximate designs might have
similar accuracy (∼MED) but reducing the energy differently. As indicated in
Figure 5.1a, two solutions have a PDP≈0.65 for different MED, 3.47, and 7.06,
while the other two have a MED≈15 but with different PDP. Repetitive gate-level

52

5.2 Generation of Approximate Accelerators

simulations and circuit synthesis consume a significant time to explore many, or
even all, possible combinations for a set of approximate adders, as in this example.1

5.2 Generation of Approximate Accelerators

Models to estimate the consumed resources (either area, delay, power, or energy)
and the error introduced due to approximations can speed up selecting those
approximate functional units that will contribute to obtain Pareto-optimal solutions.
This is particularly essential to ease the design of approximate accelerators using
behavioral descriptions and HLS tools.

Previous work has proposed models to estimate how the errors generated by
approximate functional units accumulate and propagate to the outputs in ap-
proximate designs [Li+15; Cas+18; Sen+19]. Due to the deterministic nature of
the errors produced by reported approximate arithmetic circuits, as considered
in this work, their error distribution can be pre-characterized according to their
bit-width and configuration. These error distributions can then be used in the
DSE of approximate designs. However, analytical models to estimate the impact
of approximate functional units in the required area, delay, power, and energy of
approximate accelerator designs are also required. Existing work has relied solely
on the evaluation of approximate designs through circuit simulation and synthesis
[Nep+14; AMP18].

As previously mentioned, faster explorations of approximate accelerator designs
can be performed through analytical models to estimate accuracy and required
resources. For the first, state-of-the-art contributions have proposed methods to
estimate the error propagation using error distributions of the approximate func-
tional units used [Li+15; Lee+16], mainly using a Probability Mass Function (PMF)
to depict such error distributions [Cas+18; Sen+19]. This dissertation presents
in Chapter 4 a methodology for performing error estimations for approximate
accelerators, which is used in this chapter.

The PMFs and other error characteristics of approximate arithmetic circuits can be
achieved using methods reported in the literature [Maz+17b; AHS17; Maz+17a;
Wu+19] or through exhaustive simulations. Other work has proposed using artifi-
cial neural networks to estimate the accuracy degradation in approximate designs
[Zer+19]. However, this requires a significant data set and time to train the models.

1 For instance, 200 seconds are required to characterize 10 different approximate designs for this Gx
kernel example.

53

5 Designing Approximate Accelerators

On the other hand, models for estimating the savings due to approximations have
not been significantly exploited [LJG17]. In most cases, circuit synthesis is per-
formed to assess the impact of approximations [Nep+14; Zer+16; BIM16; AMP18;
LN19]. This chapter proposes analytical models to estimate circuit metrics when
using approximate adders and multipliers in approximate accelerator designs.

Besides contributions that propose approximate designs from accurate RTL descrip-
tions [Nep+14; Zer+16; AMP18], work has been reported regarding the generation
of approximate designs using HLS tools. The main idea behind standard HLS
is to automate the generation of digital hardware from a described behavior by
interpreting its algorithmic description. With the notion of approximate computing
added, the goal is to generate such digital hardware, but inaccurate, while meeting
a defined accuracy constraint.

Two main contributions have proposed additional stages to an existing HLS tool,
LegUp [Can+13], to generate approximate designs from high-level descriptions
[LJG17; LN19]. Other contributions have proposed approximate aware schedul-
ing, allocation, and binding, but outside an HLS tool [Li+15], and the use of a
software library to explore arbitrary precision in the computations before using
a set of predefined reduced-accuracy components with Vivado HLS [BIM16]. In
[LJG17], precision optimization is implemented as bit rounding; even operations
are eliminated. Additionally, voltage scaling is applied to take advantage of latency
reductions, but making the final design complex due to the different voltages
required. In [LN19], variable-to-constant substitutions are employed to prune
operations, reduce overall delay, and hence meet real-time constraints.

5.3 Models for Resource Estimation

As previously discussed, to accelerate the DSE of approximate accelerators designed
with approximate arithmetic circuits, it is required to have analytical models to
estimate the impact of such approximate components in the circuit metrics. In this
section, AxME, Approximation-based circuit Metrics Estimation, is presented. With
AxME, a set of analytical models enables the possibility to evaluate the impact
on area, power, and delay when using approximate adders and multipliers in
approximate designs. The estimations provided by AxME rely solely on individual
characteristics of the components conforming to the design. Thus, instead of
simulating and synthesizing each approximate variant during the DSE to determine
these circuit characteristics, it can be estimated from the area, dynamic and static
power, and delay values of the design’s components.

54

5.3 Models for Resource Estimation

Table 5.1: Sample of components in the approximate library. These correspond to some
of the 8-bit adders used for the formulation of AxME.

Adder Area S. Pow. D. Pow. Delay

[µm2] [µW] [µW] [ns]

RCA8b 11.01 0.50 20.91 71.99

LOA8b2 9.24 0.42 18.18 55.30

LOA8b4 7.08 0.33 13.23 38.61

GeAr8b22 12.39 0.56 26.38 43.12

GeAr8b13 17.30 0.77 29.87 43.12

GeAr8b24 13.47 0.61 27.92 59.81

A set of approximate arithmetic units was characterized to propose AxME. This
characterization was performed by the contribution described in Chapter 3. Ta-
ble 5.1 shows the characterization for some of the 8-bit adders used for the formula-
tion of AxME. The two most representative types of approximate adders, low-power
(LP) and high-performance (HP), were considered, particularly the widely adopted
open-source LOA [Mah+10] and GeAr [Sha+15] approximate adders, respectively.
For approximate multiplication, the Broken-Array Multiplier (BAM) [Mah+10] was
used. These components are considered for different bit-width and approximate
configurations. Ripple-Carry Adder (RCA) and Array Multiplier (AM) were used
as accurate counterparts.

For the analysis leading to AxME, a simple test application, here called tree, was
used. The DFG of the tree is depicted in Figure 6.6. The Oi, i ∈ {1, . . . , 7}, accurate
operations in the tree were replaced for approximate ones in certain positions.
Then, the corresponding circuit was synthesized to obtain the resulting power,
area, and delay, and to observe and categorize the effect of approximations. This
characterization was performed in two parts: first, the tree was studied using adders
only, and then, the tree was characterized by including both adders and multipliers.
Based on exhaustive experimentation [Tic98], observations, and analysis performed
on this tree application, a generic analytical model applicable to other applications
is proposed. For generalization, the three levels where operations are found are
defined as input, output, and middle. The middle level is composed of all P
components located between the input and output levels in a given application,
as indicated in Figure 6.6. Therefore, for an approximate design composed by N
functional units, where Oi are the operations of an application, as depicted in the
DFG (Figure 6.6), the following models are defined:

55

5 Designing Approximate Accelerators

O1 O2 O3 O4

O5 O6

O7

i1 i2 i3 i4 i6i5 i8i7

out

Input

Middle

Output

Figure 5.2: DFG of the tree test application. This tree test application was used in
experiments performed for the AxME formulation.

Area: The total cell area, AT , is approximately equal to the sum of individual cell
area of each operation, AOi , composing the design:

AT ≈
N

∑
i

AOi (5.1)

Power Similar to the total area, the total static power, SPT is approximately given
by the sum of the individual static power, SPOi , of each component:

SPT ≈
N

∑
i

SPOi (5.2)

For the case of the total dynamic power, DPT , a normalized estimation of the sum
of individual components dynamic power values, DPi, with respect to the dynamic
power of the accurate design, DPAcc, was used.

DPT ≈
∑N

i DPi

DPAcc
(5.3)

Delay: The delay estimation is given by the Oi operations located in the critical
path of the circuit, with P operations between input and output levels:

DT ≈
αOIn

βOIn

∗ DOIn +
P

∑
i

αOi

βOi

∗ DOi +
αOOut

βOOut

∗ DOOut (5.4)

56

5.3 Models for Resource Estimation

where αOi and βOi are factors associated with each approximate functional unit
and accurate counterpart, and they are obtained as part of the characterization of
such components. The α factor is defined by the position of the component in the
critical path, according to the levels previously defined. β defines the contribution
of the individual delay of the component to the total delay. With this delay model,
it can be noticed that the effect of an approximate arithmetic circuits in the total
delay depends on if it is located in the critical path of the circuit, and if so, on its
relative position in the critical path.

The synthesis used for deriving AxME models, both at individual components
and application level, preserves the design hierarchy and uses a medium map
effort. Under other synthesis constraints, such as flattening the design or applying
higher map effort, AxME models might not apply as here presented. However,
these configurations can be employed once the AxME models have been used to
evaluate approximate designs to obtain further optimizations.

5.3.1 Evaluation

To assess the efficiency of AxME, these models are evaluated with approximate
designs for error-tolerant applications. Figure 5.3 depicts estimations obtained
using AxME, alongside with values obtained through circuit synthesis and simula-
tions, for a set of different approximate designs of a 3× 3 Gaussian and a 3× 3
Sobel kernels. As it can be noticed, the area estimation produced by AxME reflects
significantly well the values obtained with the synthesis of the designs. Similar
occurs for static power estimations. It is important to notice, that for Sobel, there
is an offset between the synthesis and AxME estimation for the accurate design;
however, the estimation follows the curve shape and shows a high fidelity, meaning
that a design that minimizes over one metric using the proposed models can be
minimizing it when considering actual synthesis. For the case of dynamic power,
the synthesis values also have been normalized against the corresponding dynamic
power for the accurate design implementation. In this case, AxME estimations go
along with the synthesis values. AxME delay estimation is the one that differs more
regarding synthesis numbers; however, AxME captures the tendency of synthesis
values, as previously described.

Some approximate variants in Figure 5.3 require more area and power. This is due to
the utilization of HP approximate adders, which by design consume more resources.
However, for some of these variants, it can be observed that they present a smaller
delay. This goes alongside with an observation noted during the experimentation
leading to define AxME delay model. By replacing just accurate additions at the
input or middle level with LP approximate adders, no noticeable change in the

57

5 Designing Approximate Accelerators

0 10 20 30 40

100
120
140
160

A
re

a
[µ

m
2]

0 5 10 15 20
120
140
160
180
200

A
re

a
[µ

m
2]

Synthesis AxME Accurate-Synthesis Accurate-AxME

0 10 20 30 40
4

5

6

7

St
at

.P
ow

.[
µ

W
]

0 5 10 15 20

6

7

8

9

St
at

.P
ow

.[
µ

W
]

0 10 20 30 40
0.8

1
1.2
1.4
1.6

D
yn

.P
ow

.[
µ

W
/

µ
W

]

0 5 10 15 20
0.8

0.9

1

1.1

D
yn

.P
ow

.[
µ

W
/

µ
W

]

0 10 20 30 40

140

160

180

(a) Gaussian

D
el

ay
[n

s]

0 5 10 15 20

160
180
200
220
240

(b) Sobel

D
el

ay
[n

s]

Figure 5.3: Evaluation of analytical models for resource estimation. Evaluation of the
AxME analytical models for different approximate accelerator designs of Gaussian and
Sobel kernels.

total delay was observed. A reduction was noticed when replacing those at the
input level with LPs. On the other hand, HP approximate adders contribute to
reducing the total delay when used to replaced accurate additions at the output
level. In general, replacing additions, when available in the application design,

58

5.4 Design-Space Exploration with Analytical Models

Table 5.2: Accuracy evaluation of AxME models. Evaluation was performed using the
MSE metric.

Application Area Stat. Power Dyn. Power Delay

Laplace 0.00 0.00 0.01 8.51

Sobel 0.43 0.02 0.01 22.12

Gaussian 0.00 0.00 0.01 12.04

VecMult 3.64 0.01 0.11 9.40

at the input with LP approximate adders and the output with HP approximate
adders contribute more to reducing the delay.

The accuracy of the models in AxME was evaluated by calculating the Mean Square
Error (MSE) [WB09] for a set of applications and a diverse set of 50 approximate
variants per application. Table 5.2 summarizes the results obtained. As reported,
for the area, static and dynamic power, AxME estimations are close to the actual
number reported through circuit synthesis and simulation. However, as previously
discussed, more significant differences are observed for the delay calculation,
which is noticeable from Figure 5.3. This is, partly, due to the delay model does
not consider the delay of operations such as division, absolute value, or shift, that
might appear in the critical path of an application, as it happens in Gaussian and
Sobel. This consideration keeps the model general and applicable to potentially
any application, using only information about approximate adders and multipliers,
and their accurate counterparts.

5.4 Design-Space Exploration with Analytical Models

With analytical models to estimate the impact in resources as approximate adders
and multipliers are used in approximate accelerator designs, and considering
analytical models for the accuracy estimation from Chapter 4, in this section,
DSEwam is proposed, a Design-Space Exploration methodology with analytical
models. DSEwam aims to find Pareto-optimal, or near Pareto-optimal, solutions
for approximate accelerator designs. For a given description of an error-tolerant
application and an error threshold, these solutions maximize the savings achieved
due to approximations (i.e., minimizing circuit requirements) while not producing
errors above the given threshold. Figure 5.4 presents the main components in
DSEwam. The DSE is performed over a DFG representation of the data-path of

59

5 Designing Approximate Accelerators

Behavioral
Description

DFG Generation

DFG

Optimization
Solver Resource EstimationAccuracy Estimation

Approx. DFG

Threshold
Error

Approximate
Library

Figure 5.4: Proposed DSEwam methodology. From a behavioral description of an error-
tolerant application, a DSE is performed using analytical models.

a hardware accelerator. A high-level description of an error-tolerant application
is needed, from which a DFG representation is then generated. As depicted in
Figure 5.4, an optimization solver is required to explore the design space built
using a library of approximate functional units. This library contains the error and
circuit characteristics for a set of components previously selected.

The optimization solver assesses the solutions by evaluating their accuracy and
required resources. For these evaluations, the approximate functional units’ param-
eters are used, alongside the characteristics of their accurate counterparts. For the
accuracy evaluation, an error threshold is required. Accuracy and quality metrics
depend on the application itself [AKK15]; thus, the error threshold is defined as a
maximum tolerable value for a given accuracy metric, as reported in the literature
[LHL13]. The error models of the accuracy estimation generate the output error of
a potential solution, which makes it possible to evaluate if such error is below the
given threshold. For the metrics estimation, models are required to estimate the re-
sources needed by the solution. Then, for each potential solution, the optimization
solver can have an estimation regarding how much is the optimization target being
minimized, either area, delay, power, or energy. Once a Pareto-optimal solution is
found, according to the solver parameters, a resulting DFG is provided in which
the approximate operations are indicated.

60

5.4 Design-Space Exploration with Analytical Models

void sobelGx(int* out, int a, int c, int d, int f, int g, int i) {
int x1 = a + g;
int x2 = d * 2;
int x3 = x1 + x2;
int x4 = c + i;
int x5 = f * 2;
int x6 = x4 + x5;
int gx = x3 - x6;
*out = gx;

}

define void @SobelGx(i32* %out, i32 %a, i32 %c, i32 %d, i32 %f,
i32 %g, i32 %i) #0 {
entry:

%add = add nsw i32 %a, %g
%mul = shl nsw i32 %d, 1
%add1 = add nsw i32 %add, %mul
%add2 = add nsw i32 %c, %i
%mul3 = shl nsw i32 %f, 1
%add4 = add nsw i32 %add2, %mul3
%sub = sub nsw i32 %add1, %add4
store i32 %sub, i32* %out, align 4
ret void

}

Figure 5.5: Model for the Gx kernel. From the behavioral description of the kernel in C
code (above), a IR representation is produced (below). Then, a DFG representation of
the accelerator design is generated.

5.4.1 Evaluation

In the implementation of DSEwam, the behavioral description of an accurate circuit
is provided as a C code function. For the DFG generation, Clang 3.5 is used to
generate an optimized intermediate representation (IR), but keeping the structure
of the input code, as can be seen in Figure 5.5. The IR is then traversed to create a
DFG, as depicted in Figure 5.6. For resource estimation, the AxME models are used,
while for the accuracy estimation, the analytical models of Chapter 4 are used.
In this implementation, MED is used as accuracy metric, which can be calculated
from the resulting PMF generated by the error estimation. For this evaluation,
the approximate library was composed of approximate adders and multipliers
previously characterized, as well as accurate circuits, as described in Section 5.3.

An algorithm based on Tabu Search (TS), as presented in Algorithm 2, is used as
the optimization solver. However, other algorithms, for instance, based on genetic

61

5 Designing Approximate Accelerators

add mul add2 mul3

add1 add4

sub

a g d 1 ic 1f

Figure 5.6: Generation of DFG from a C code description The code corresponds to a
sorfware representation of the Gx kernel previously presented.

algorithms, can also be used as solvers, as the proposed framework is modular
and provides interfaces to integrate other optimization algorithms. In the TS-based
algorithm implementation, the starting solution considers all operations to be ac-
curate functional units. An optimization step performed by the TS-based algorithm
is defined as moving from one functional unit to another. Each iteration goes as
follows: as a starting point, it is checked if existing taboos have expired. If this is
the case, they are removed from the list. It is then iterated over all approximable
operation, and the possible steps are tested for each one. The aspiration criterion
for TS is used. This consideration defines that an operation is terminated after a
good enough step has been found, and a defined number of further steps has been
considered. To test an optimization step, it is first checked if the step is technically
possible and adheres to the taboos. Then, the operation is replaced by an approx-
imate one. At this point, error and fitness are calculated. The fitness function is
defined as:

f itness =wDelay ∗ (1− Delay) + wDynPower ∗ (1− DynPower)

+ wStatPower ∗ (1− StatPower) + wArea ∗ (1− Area)

where weights are assigned according to the optimization goal. For the case of
energy optimization, the PDP is minimized assigning values to the power and
delay weights. If the solution evaluated is better than the previous solutions in one
iteration, it is overwritten. If the best solution reachable in the iteration has been
found, the list of taboos is then updated with the new taboos. A Pareto-optimal
solution is found after the termination conditions for the algorithm are reached.

In this section, a Laplace and Sobel filter are evaluated with DSEwam, for which
area and energy (PDP) are minimized, respectively. Figure 5.7 shows the design

62

5.4 Design-Space Exploration with Analytical Models

ALGORITHM 2: TS-based algorithm used in DSEwam.
Input: TabuListsize;
Output: Sbest;

1 S0 ←− PopulateStartSolution();
2 approximations←− GetApproximationsList();
3 approximableInstructions←−

GetApproximableInstructions();
4 Sbest ←− S0; Scurrent ←− S0;
5 sinceLastBest ←− 0; iteration←− 0;
6 while sinceLastBest < MAXAFTERBEST AND iteration <

MAXITERATION do
7 visitedInstructs←− 0;
8 foreach instr ∈ approximableInstructions do
9 visitedInstructs ++;

10 visitedApproxs←− 0;
11 foreach approx ∈ approximations do
12 visitedApproxs ++;
13 if UpdateSolutionCheckTabu(Snew, instr, approx)

then
14 if HasBetterFitness(Snew, Scurrent) then
15 continue;
16 end
17 else
18 delete Snew;
19 end
20 if visitedApproxs == MAXVISIT then
21 break;
22 end
23 end
24 end
25 if visitedInstructs == MAXVISIT AND visitedInstructs >

MINVISIT then
26 break;
27 end
28 end
29 UpdateTabus();
30 Scurrent ←− Snew;
31 if HasBetterFitness(Scurrent, Sbest) then
32 Sbest ←− Scurrent;
33 sinceLastBest ←− 0;
34 end
35 sinceLastBest ++;
36 iteration ++;
37 end

63

5 Designing Approximate Accelerators

60

80

100 Laplace

A
re

a
[µ

m
2]

Solutions Pareto front DSEwam

0 10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

Sobel

MED

P
D

P
[m

W
·n

s]

Figure 5.7: Design space for Laplace and Sobel applications. DSEwam finds Pareto-
optimal solutions for a given set of approximate units.

space for both applications considering an approximate library composed of about
100 components: approximate adders [Mah+10; Sha+15] and multipliers [Mah+10],
and accurate counterparts. The bit-width of the inputs is provided to the DSEwam,
so the exploration considers the proper bit-width for each operation and picks
the approximate version accordingly. As it can be noticed, DSEwam is capable
of finding the Pareto-optimal solutions for different MED constraints. Consider
the case of the exploration for the Laplace filter. For instance, defining the error
threshold to MED = 10 and MED = 40, DSEwam finds solutions that minimize
area and keep the error within the given threshold, with resulting MED = 9.84 and
MED = 38.05, respectively. The corresponding approximate DFGs for these two
cases are depicted in Figure 5.8. As it can be noticed, for this Laplace designs,
different approximate additions are used for each case (nodes in gray), and their
name and configuration are given.

Solutions proposed by DSEwam were further evaluated. For example, the resulting
DFG for the Laplace filter and MED = 40, as presented in Figure 5.8b, was

64

5.4 Design-Space Exploration with Analytical Models

Table 5.3: Evaluation of solutions provided by DSEwam. For this case, the solution
provided as Pareto-optimal in fact was dominant with respect to other solutions closed.

Solution MED AxME [µm2] Synth. [µm2]

Accurate 0.00 102.58 101.15
Pareto-optimal 38.05 70.73 69.30

Variant 1 35.82 72.89 71.47
Variant 2 36.69 77.12 75.69
Variant 3 39.07 78.59 77.17
Variant 4 40.31 75.05 73.63

implemented. However, also other solutions close to the Pareto frontier and the
Pareto-optimal solution provided by DSEwam were implemented. Table 5.3 reports
the information regarding the MED value and the actual area estimated by AxME
and obtained through synthesis. Characterization of the approximate library was
performed with a NanGate 15nm technology library and using Synopsys Design
Compiler and PrimeTime. Once implemented by hand, the approximate designs
were evaluated with the same technology library and tools. As can be noticed,
the Pareto-optimal solution provided by DSEwam minimizes the required area in
comparison with other near solutions while keeping a MED below 40. This, in turn,
allows validating the proposed AxME models. Similar evaluations were performed
for different applications, error constraints, and optimization goals. OThe results
reported that about 90% of the cases, the solutions provided by DSEwam were
Pareto-optimal, and the remaining 10% of the cases were near Pareto-optimal.

rca_8_0

loa_9_4

loa_8_2 rca_8_0

loa_9_4

loa_8_4

loa_10_2

sub_11_0

shl

(a) MED = 10

loa_8_4

loa_9_4

loa_8_4 loa_8_6

loa_9_6

loa_8_4

loa_10_4

sub_11_0

shl

(b) MED = 40

Figure 5.8: Resulting DFGs for different accuracy targets. In the DFG is indicated
the corresponding accurate or approximate arithmetic circuit, with its correspondin
configuration.

65

5 Designing Approximate Accelerators

.c Compiler

Allocation

Optimization
Solver

Scheduling

Binding

RTL Generation

.v

AxMEAccuracy Estimation

Threshold
Error

IR

User
Constraints

Approximate
Library

Approximate
Circuits

.v

.json

Figure 5.9: Overview of the AxHLS approach. Original steps in LegUp were adapted
to include the proposed DSEwam and handle information about approximations.

5.5 Approximate High-Level Synthesis

This dissertation proposes AxHLS, an approximate HLS approach to automatically
generate approximate accelerator designs. For this, approximate arithmetic circuits
are used, and the academic version of the LegUp tool [Can+13] is extended to
include DSEwam, the proposed design-space exploration with analytical models.
Figure 5.9 depicts the main stages in LegUp, including the DSEwam methodology.
As can be seen, LegUp takes as input a C program or a specific function according
to the user constraints to generate a hardware description.

The initial steps of the LegUp tool are preserved. This corresponds to the compila-
tion of the C input source code and the corresponding allocation of resources of the
operations. However, to enable the AxHLS approach, it was necessary to adapt the
scheduling, binding, and RTL generation stages to support and handle additional
information regarding approximations selected by DSEwam as part of the proposed
solutions. During the allocation, the required hardware to implement the circuit
is determined. We consider that for each operation in the LLVM IR, a functional
unit is assigned. By doing so, resource sharing is avoided, which increases the
complexity of the error analysis, and the need for additional multiplexers.

66

5.5 Approximate High-Level Synthesis

At LLVM IR, each function to be approximated is expanded with two types of
metadata. Moreover, the instructions receive information about the time step of the
scheduling in which they are executed, performed during the scheduling stage. On
the other hand, they receive a unique ID. This is required to transfer information
regarding which operation has been replaced for an approximate one. Once the
allocation has been performed, the DSE is triggered. LegUp waits until DSEwam
provides a solution for the available approximate functional units and the given
error threshold to continue with the following stages. The LLVM module, which
contains the metadata of the approximation generated by DSEwam, is then read.
Based on the ID metadata created, the approximation metadata is transferred to
the corresponding instructions. The scheduling stage was adjusted to recognize
this metadata, as well as the binding and the RTL generation stage, so the required
approximate operations can be used and connected.

During the RTL generation, LegUp iterates over the instructions of the function to be
synthesized and creates the required functional units. In the case of an approximate
operation, the existing Verilog modules of the approximate arithmetic circuits must
be instantiated. This is depicted in Figure 5.9 as the Approximate Circuits, a
collection of the Verilog implementations for the approximate components used
in the DSE, and corresponds to those in the Approximate Library. Internally, the
function in charge of creating the functional units checks whether the instruction
under consideration should be approximated. If so, the name of the instance is first
created, and, based on the name, the path of the Verilog implementation of the
approximation used is added to the list of Verilog files to be imported. Then the
necessary wiring for the inputs and outputs is generated.

5.5.1 Evaluation

The proposed AxHLS is evaluated with error-tolerant applications used in image
processing, Sobel and Sharpen filter. Approximate accelerators for four different
error thresholds for each application were generated. The MED error metric was
used as the accuracy metric and generated approximate accelerators aim to reduce
the required energy. Table 5.4 summarizes the results obtained, reporting energy
reduction with the PDP metric. The AxHLS implementation, include the DSEwam
methodology in the LegUp HLS tool (version 4.0). The resulting accelerators were
evaluated using Synopsys Design Compiler and PrimeTime with a NanGate 15nm
technology library.

As reported in Table 5.4, with a threshold of MED = 5 for both applications, the
generated approximate accelerators reduce their required energy by nearly 30%.
As expected, a higher allowed error (a higher MED) causes more savings, achieving

67

5 Designing Approximate Accelerators

Table 5.4: Results for approximate accelerators generated. Approximate accelerators
for Sobel and Sharpen filters generated with the AxHLS approach.

MED PDP [µW·ns] PDP (Norm.) PSNR [dB] SSIM

Sobel

0 6420.57 1 ∞ 1
5 4461.26 0.69 29.86 0.84

11 3985.95 0.62 22.44 0.65
16 3912.11 0.61 19.52 0.58
23 3679.43 0.57 18.50 0.54

Sharpen

0 13202.22 1 ∞ 1
5 9212.01 0.70 36.00 0.98

15 8526.78 0.65 24.50 0.91
20 8120.10 0.62 21.61 0.84
30 7471.01 0.57 17.99 0.76

a 43% energy reduction for MED = 23 and MED = 30 for Sobel and Sharpen,
respectively. However, to have a better perspective of the effect of these accuracy
thresholds in the quality of the results, the approximate accelerators generated
were evaluated with testing images. Figures 5.10 and 5.11 present the resulting
images of applying the Sobel and Sharpen accelerators to the plate and peppers test
images. With values for PSNR and SSIM metrics, commonly used to assess the
quality in images, the results for these quality metrics are also reported in Table 5.4.
Even when the acceptable quality depends on the application and the processed
data, it is noticeable that higher MED thresholds introduced visual errors. This
occurs for the accelerators generated for a MED equal to 11 and 16 for Sobel filter,
and as depicted in Figure 5.10c and 5.10d; and for MED equal to 20 for Sharpen
filter, and depicted in Figure 5.11d.

Although applications evaluated in reported work differ from those here presented
[LJG17], the AxHLS approach achieves more savings than precision scaling. In
general, when applying precision scaling, the work in [LJG17] reports about 10%
energy reduction with PSNR values around 25dB. As reported in Table 5.4, for
PSNR of 29.86dB and 36.00dB, the AxHLS approach can generate an approximate
design with an energy reduction of 30%. In [LJG17], precision scaling is combined
with voltage scaling to achieve similar energy savings, but the quality of results
is reduced to around 20dB. These different voltages for different precisions in
components make the final implementation more complex, while in the proposed
approach, the approximate design synthesis considers a single voltage source. On

68

5.6 Summary

(a) Exact (b) MED = 5 (c) MED = 11 (d) MED = 16

Figure 5.10: Quality evaluation for Sobel approximate accelerators. Resulting images
for applying approximate Sobel filter designs to the plate test image.

(a) Exact (b) MED = 5 (c) MED = 15 (d) MED = 20

Figure 5.11: Quality evaluation for Sharpen approximate accelerators. Resulting im-
ages for applying approximate Sharpen filter designs to the peppers test image.

the other hand, due to the generality that proposes the DSEwam methodology,
approximate adders and multipliers with reduced precision can also be included
as part of the approximate library.

5.6 Summary

This chapter presented a set of analytical models, AxME, to estimate the circuit
metrics when using approximate arithmetic circuits, particularly approximate
adders and multiplier in approximate designs. Despite not being entirely accurate,
AxME allows the design space exploration of approximate accelerator designs and
obtaining Pareto-optimal, or near Pareto-optimal, solutions, as demonstrated with
the evaluation of the proposed DSEwam methodology. The DSEwam methodology
has been released as an open-source contribution, so the analytical models, opti-
mization solver, and approximate library can be used and further modified and
improved.2. Also, this methodology was integrated into an HLS tool to generate
approximate accelerators from behavioral level C code descriptions of error-tolerant

2 DSEwam is an open-source contribution and it is available at https://git.scc.kit.edu/CES/DSEwam

69

https://git.scc.kit.edu/CES/DSEwam

5 Designing Approximate Accelerators

applications. The results for the approximate accelerator generated show that even
with a small accuracy degradation on the accuracy (MED = 5), about 30% of energy
reduction can be achieved.

70

I know there’s a proverb which that says ’To err is
human,’ but a human error is nothing to what a
computer can do if it tries.

Agatha Christie

6
Balancing Error Correction

The use of approximate accelerators must ensure defined accuracy levels. Hence,
the errors generated due to approximations must remain within a defined bound,
required for the application to produce good-enough results. With this consideration,
and as presented in Chapter 5, approximate accelerators are designed to meet a
given accuracy for an error metric. However, as described in Section 2.2.3, the errors
produced by an approximate accelerator depend on the input data [Mah+16]. This
data may differ from the one used during the design, making the accelerator to
have unacceptable errors at run time. On the other hand, the defined tolerable error
threshold can be dynamically changed. In both cases, those undesired errors need
to be corrected to achieve the desired accuracy.

State-of-the-art approaches address this issue by re-computing, at the software
level, those accelerator invocations that produce unacceptable errors. For this,
lightweight, pre-trained predictors are used to estimate if an accelerator invocation
will produce an error beyond the defined accuracy threshold for a given set of
input data. Nevertheless, software re-computations reduce approximate computing
benefits, especially when input data variations are high at run time.

This chapter presents ECAx, a methodology to explore and apply fine-grained,
selective error correction in approximate accelerators to balance the costs associ-

The content of this chapter is based on the work originally published in [CSH19]:
J. Castro-Godínez, M. Shafique, and J. Henkel: “ECAx: Balancing Error Correction Costs in Approxi-
mate Accelerators”. In: ACM Transactions on Embedded Computing Systems (TECS), 18, 5s, Article 48
(October 2019), ESWEEK Special Issue; and presented during the 2019 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES ’19).

71

6 Balancing Error Correction

ated with accuracy control. This methodology reduces the required coarse-grained
correction, exact re-computations performed by the host processor, to meet a de-
fined accuracy constraint, finding a balance between software- and hardware-level
error correction, while not significantly reducing the benefits obtained due to the
approximations, such as the speedup achieved by an approximate accelerator with
respect to an accurate one. This methodology is particularly useful for approxi-
mate accelerators built with approximate functional units, the type of approximate
accelerators targeted in this dissertation, achieving up to 20% performance gain
compared to reported approaches in the literature.

6.1 Motivation

The following two examples motivate the need for a robust and general solution to
the challenge of correcting errors outside a defined limit when using approximate
accelerators built with approximate adders and multipliers.

Performing re-computations. Consider a Laplace filter for image processing as
an approximate accelerator. Figure 6.1a depicts its error distribution. By applying
this filter to a test image, such as cameraman, and considering no error correction
implemented (no EC), the resulting image has a PSNR of 15.4 dB (see Figure 6.1c),
in comparison to the image produced by the accurate version of the accelerator
(see Figure 6.1b). Although high ED values in the error distribution have a very
low probability (see Figure 6.1a), they cause noticeable noise (see Figure 6.1c in
comparison with Figure 6.1b).

An arbitrary error threshold is defined to ED = 90 as an accuracy constraint for
this approximate Laplace accelerator. To keep the errors at the output within this
threshold, it is required to detect all errors with ED ≥ 90 once they appear, and
correct them by exactly re-computing those accelerator invocations. This correction
is performed using the host processor (see Section 2.3), as proposed in previous
work [Khu+15; Mah+16; Wan+16]. By doing so, the quality of this test image is
improved to 22.3 dB (with EC, see Figure 6.1d). However, this implies an overhead
that limits the benefits of approximations. For this example, a 2.1× speedup is
achieved due to approximations, but this changes to 1.7× when this error correction
is applied.

Correcting errors at the component level. As described in Section 2.1, the errors
produced by LP and HP approximate adders are very different in magnitude and

72

6.1 Motivation

0 50 100 150 200 250
0

0.1

0.2

0.3

Threshold

90

ED (ED 6= 0)

p(
E

D
)

(a) Error distribution for an approximate Laplace filter.

(b) Accurate (c) No EC (15.4 dB) (d) With EC (22.3 dB)

Figure 6.1: Re-computations for accuracy improvement. This motivational example
shows the effect of error correction (EC) applied to an approximate Laplace filter as a
threshold of ED = 90 is set. For the cameraman image, there is a quality improvement
from 15.4 dB to 22.3 dB in the PSNR metric for such accuracy threshold.

frequency. Therefore, they have a different effect on the output accuracy and quality
of results. Consider that all additions in the previous Laplace filter are replaced
with LP approximate adders, in one case, and with HP approximate adders, in
another. As shown in Figure 6.2a and 6.2b, using HP approximate adders results
in a smaller overall ER for the accelerator compared with LP approximate adders
(0.14 vs. 0.52). However, the presence of high ED values significantly degrades the
accuracy and quality of the results, despite their low probability. For instance, for
the cameraman test image, the filter built with LP approximate adders produces
an image with a PSNR = 34.08 dB (see Figure 6.2c), while the one made with
HP approximate adders has a PSNR = 13.37 dB (see Figure 6.2d). From this, it
can be inferred that correcting the errors with a high ED value produced by HP
approximate adders in an approximate accelerator design, even with a low ER,
can have a more significant impact on the quality than correcting those caused by
LP approximate adders. This goes in-line with the notion of fail small, fail rare in
approximate computing [Chi+13].

However, correcting those errors represents a compromise. Figure 6.3a shows
the ED values for a particular 8-bit HP approximate adder, where each ED 6= 0

73

6 Balancing Error Correction

0 50 100 150 200 250

0

0.05

0.10

ED (ED 6= 0)

p(
E

D
)

(a) LP, ER = 0.52

0 50 100 150 200 250
ED (ED 6= 0)

(b) HP, ER = 0.14

(c) LP, PSNR = 34.0 dB (d) HP, PSNR = 13.7 dB

Figure 6.2: Errors produced by LP and HP approximate adders in a Laplace filter. The
type of approximate adders used in an approximate accelerator, in this case, a Laplace
filter, directly affects accuracy and quality. In this case, despite a lower ER, errors from
HP approximate adders have a more significant impact on the resulting image quality.

has a probability of occurrence below 5%. Without any error correction, this HP
approximate adder is 1.87× faster than his accurate counterpart based on RCA, as
depicted in Figure 6.3b. Consider the error detection and correction mechanism
proposed for HP approximate adders [Maz+16]. By detecting and correcting the
most significant error in this HP approximate adder, ED = 128, the speedup is

0 16 32 64 128
0

0.10

0.20

ED

p(
E

D
)

(a) HP, ER = 0.125

No EC 128 32 ∧ 64 ∧ 128

1

1.5

2
64 ∧ 128

Correction

Sp
ee

d
up

(b) Speedup reduction

Figure 6.3: Effect of error correction in speedup reduction of an approximate adder.
For this 8-bit HP approximate adder, the delay savings achieved by approximations are
reduced as errors are corrected.

74

6.2 Accuracy Control

reduced to 1.34×, as the critical path of the adder is increased to allow the detection
and correction of this error. When ED = 64 is also corrected, the speedup goes
down to 1.11×. As can be noticed from Figure 6.3, to preserve the benefits achieved
due to approximations in an HP approximate adder, as in this case, the speedup,
all errors could not be detected and corrected.

6.2 Accuracy Control

As depicted in Section 6.1, there are two main approaches to control the accuracy of
results when using approximate accelerators. A coarse-grained approach corrects
unacceptable errors at the accelerator level using software re-computations. A
fine-grained approach corrects errors produced by the approximate arithmetic
circuits used to build the approximate accelerator.

6.2.1 Correction at the Accelerator Level

At the accelerator level, two main techniques have been reported for monitoring
and controlling the accuracy of results of at run time. The first technique proposes
to periodically measure the error of an accelerator by comparing its output against
an exact software-based computation performed by the host processor. In case the
error is above a defined threshold, a process of re-calibration and adjustment is
performed to improve the quality in subsequent accelerator invocations [Sam+13;
BC10].

A second technique proposes to implement light-weight, pre-trained error pre-
dictors to forecast if the invocation of an approximate accelerator would produce
an unacceptable error for a particular input data set [Khu+15; Mah+16; Wan+16].
Figure 6.4 depicts the general outline of this technique. If the predictor estimates
an error above a defined threshold, a recovery signal indicates the host processor
to recover the last invocation by re-computing it accurately at the software level.

The benefits due to approximations decrease every time the host processor re-
computes an accelerator invocation to satisfy an accuracy constraint. For instance,
taking into account this technique for the motivation example previously described,
and considering an accuracy threshold of ED = 90, 18.22% of the accelerator
invocations would need to be re-computed to meet this constraint, which reduces
the gains in execution time, as described, and energy consumption improvement.

75

6 Balancing Error Correction

Host Core Approximate
AcceleratorPredictor

Data

Recovery

Figure 6.4: Outline of the prediction-based accuracy control. The predictor estimates
errors bigger than acceptable and triggers the recovery of the accelerator invocation with
an accurate re-computation at the software level (diagram based on [Mah+16]).

6.2.2 Correction at the Approximate Circuit Level

As discussed in Section 2.1, many approximate circuits, such as adders and multi-
pliers, have been reported in the literature. For the case of many HP approximate
adders’ designs, techniques have been proposed to detect and correct their errors. In
most cases, the error detection is based on checking the carry propagation (cp) and
the carry output (co) of the sub-adders used to perform the addition, as depicted
in Figure 6.5. For the error correction, the techniques depend on the approximate
circuit design. For instance, for GeAr [Sha+15] and ACA-II [KK12] approximate
adders, extra clock cycles are required to accomplish the correction; in the first by
changing the lower part of the inputs, while in the latter by using an incrementor.
For GeAr, a simple, yet effective method to correct the errors has been proposed
[Maz+16]. The method proposes to toggle the output bit’s values to compensate
for the error, starting from the sub-adder where the carry propagation is missed.
This is achieved using additional inverters and multiplexers into the approximate
adder design, in the Error Correction block, as shown in Figure 6.5. This correction
increases the adder’s critical delay path when an error is corrected but avoids extra
clock cycles.

The error correction technique described in [Maz+16] can be applied to other HP
approximate adders, such as ACA-I [VBI08], ETAII [ZGY09], and GDA [Ye+13],
as these HP approximate adders can be implemented as configurations of GeAr
[Sha+15]. As described in Section 2.1, and depicted in Figure 6.5, the GeAr approx-
imate adder performs an N-bit addition using multiple sub-adders of smaller size.
For the case of Figure 6.5, 3 4-bit adders. The most significant R-bits of the sub-
adders are considered as resultant bits and are used in the result. The remaining
P-bits, called previous bits, are used to estimate the carry propagation to the upper
bits. In this example, both R and P are 2.

Error detection and correction have been proposed for LP approximate adders
[Dut+16]. However, as discussed in Section 6.1, the errors produced by LP approxi-
mate adders do not significantly degrade the accuracy of results, and the resulting
quality, as the ones produced by HP approximate adders (see Figure 6.2).

76

6.3 Early Error Correction

Sub Adder 1Sub Adder 2Sub Adder 3

A[3:0]B[3:0]A[5:2]B[5:2]A[7:4]B[7:4]

co1cp2co2cp3

Error
Correction

ed3

ed2

MUX
ed2
ed3

Sax [8:6] Sax [3:0]

Sax [8:4]

Sax [8:4]Sac [8:4]

out[8:0]

Figure 6.5: Error detection and correction outline for HP approximate adders. The
detection is performed by monitoring carry propagation mispredictions. The correction
is achieved by flipping the output bits from the lowest misprediction point (based on
[Maz+16]).

Other reported work had proposed a self-healing approach, where approximate
modules are placed together in an accelerator data path aiming to cancel their errors
[MHS18; Gil+18]. These extra modules produce errors with an inverse magnitude
that helps to compensate for the errors generated and to reduce their propagation
to the output. Also, multispeculative adders to correct potential errors at the output
have been proposed, particularly when functional units are shared in a high-level
synthesis approach [Del+13]. The methodology presented in this chapter differs
from these approaches, as the goal is to add the smallest overhead possible to
the accelerator to improve its performance while correcting unacceptable errors,
balancing the correction performed at the software and hardware level. It also
considers approximate designs built using existing approximate functional units
from the state-of-the-art, which is the primary motivation of this dissertation.

6.3 Early Error Correction

This section explores the effect of error correction at approximate adder level
on the required re-computations and the effect on the overall accelerator delay.
For this purpose, consider a set of additions arranged as depicted in Figure 6.6,

77

6 Balancing Error Correction

+

a b

s1

+

c d

s2

+

e f

s3

+

g h

s4

+
s5

+
s6

+
s7

out

Figure 6.6: Early error correction test implementation. This tree of adders is used
to explore error correction’s effect at the adder level on accelerator’s delay and re-
computations needed. Adders are replaced with LP approximate adders at the input
while the rest are substituted by HP approximate adders (shaded).

0 32 128
0

0.05

0.10

0.15

ED

p(
E

D
)

(a) 9-bit HP, ER = 0.09

0 16 64 256 272
ED

(b) 10-bit HP, ER = 0.27

Figure 6.7: Error distributions for a 9-bit and a 10-bit HP approximate adders. Most
significant errors of these approximate adders are corrected in this early error correction
exploration example.

which is a typical structure found, for instance, in image processing kernels [XS17].
Consider that all adders have been replaced by approximate ones. An 8-bit LP
approximate adder replaces s1, s2, s3, and s4. The other adders are replaced by HP
approximate adder (shaded in the figure): s5 and s6 by a 9-bit, and s7 by a 10-bit
HP approximate adder. The bit-length is selected to optimize the design, in this
case, knowing that all inputs ({a, b, . . . , h}) are 8-bit long. The error distribution
for these HP approximate adders is presented in Figure 6.7, while the resulting
error distribution for this tree of adders is shown in Figure 6.8a. As described in
Chapter 5, a combination of LP and HP approximate adders as presented for this
tree of adders example provides a smaller delay than just using HP approximate
adders to replace all accurate ones.

78

6.3 Early Error Correction

The delay of any approximate accelerator is compared to an exact implementation
built with RCAa throughout this chapter. Most of the approximate adders pro-
posed in the literature have been derived from the RCA, and their characteristics,
regarding the accuracy and required resources, are compared with respect to this
exact adder [Maz+16].

For the case of this tree of adders (Figure 6.6), an arbitrary error threshold is set to
150, which means that all accelerator outputs (at out) with an associated ED ≥ 150
would need to be re-computed. In Figure 6.9, the results for three error correction
scenarios are presented. When no error correction is performed (No EC), and
considering the defined accuracy threshold, 12.15% of all accelerator invocations
would need to be re-computed. This means that the host processor would need to
re-compute about 12 out of each 100 executions performed by the accelerator to
correct those errors with ED ≥ 150. In comparison with the exact implementation,
this approximate version presents a speedup of 1.29×. Speedup S is calculated as
[HP12]:

S =
Lacc

Lapp
(6.1)

where Lacc and Lapp correspond to the delay estimation for accurate and approxi-
mate accelerators, respectively.

A first error correction scenario, 9b, corresponds to the correction of the most
significant error produced by the two 9-bit HP approximate adders, which is
ED = 128 (see Figure 6.7a). As shown in Figure 6.9, the re-computations required
are reduced, in this case by about 3%, from 12.15% to 9.34%, of the total accelerator
invocations. Simultaneously, the delay of the accelerator increases, and it is then
1.23× faster than the accurate version. A second error correction scenario, 10b,
considers the correction of the most significant error generated by the 10-bit HP
approximate adder, which is ED = 256. Even though ED = 272 is the biggest ED
value for this adder, as depicted in Figure 6.7b, it is generated when ED = 256
and ED = 16 are simultaneously produced; so correcting ED = 256 eliminates
ED = 272. In this case, the required re-computations are reduced by 10%, from
12.15% to 2.10%, but the accelerator is 1.15× faster regarding the accurate one.
Figure 6.8b and 6.8c show the remaining ED values in the error distribution once
the correction has been considered, which in both cases is less than originally
(Figure 6.8a), as expected.

A third error correction scenario considers applying the previous two error cor-
rections for the 9-bit and 10-bit HP approximate adders concurrently. As depicted
in Figure 6.9, no re-computation is required to satisfy the defined error threshold

79

6 Balancing Error Correction

0 50 100 150 200 250 300

0

0.1

0.2

Threshold

ED (ED 6= 0)

p(
E

D
)

(a) No EC

0 50 100 150 200 250 300

0

0.1

0.2

Threshold

ED (ED 6= 0)

p(
E

D
)

(b) Correction scenario 9b

0 50 100 150 200 250 300

0

0.1

0.2

Threshold

ED (ED 6= 0)

p(
E

D
)

(c) Correction scenario 10b

0 50 100 150 200 250 300

0

0.1

0.2

Threshold

ED (ED 6= 0)

p(
E

D
)

(d) Correction scenarios 9b ∧ 10b

Figure 6.8: Error distributions for different error correction scenarios. Each correction
scenario has a different impact on the remaining errors generated above the defined
accuracy threshold and on the accelerator’s delay.

80

6.3 Early Error Correction

No EC 9b 10b 9b ∧ 10b
0

5

10

15

(a) Re-computations (%)

No EC 9b 10b 9b ∧ 10b
1

1.1
1.2
1.3
1.4

(b) Accelerator Speedup

Figure 6.9: Reduction of re-computations and accelerator speedup due to selective
error correction. Each correction scenario has a different impact on reducing re-
computations needed and on the accelerator speedup when the errors are corrected at
the approximate adder level.

by applying this correction scenario. However, the delay increases more, and the
accelerator is then only 1.09× faster regarding the accurate version. Furthermore,
when inspecting the error distribution for this correction scenario (see Figure 6.8d),
the maximum ED is 76.

As noticed, different correction scenarios provide different trade-offs regarding the
reduction of re-computations required and the resulting delay of the accelerator,
and hence a change in the speedup achieved. It is necessary to count on a method
that allows the exploration of an approximate accelerator design to determine which error
correction scenarios, in this case at approximate adder level, would produce the most
significant benefit without losing the gains of approximations. For this, two critical
remarks need to be considered:

Correct more significant errors first: From the previous case, it can be observed
that by correcting the higher ED from the HP approximate adders, it is possible to achieve
a higher reduction of the required re-computations. Correcting ED = 256 from the 10-bit
HP approximate adder not only reduces that specific error at the adder level (and
also ED = 272, in this case). Correcting such error also reduces many more errors
generated by combining this high error with others generated and propagated
by different approximate functional units, such as the LP approximate adders.
This correction reduces them to appear at the approximate accelerator’s output, as
depicted in Figure 6.9, with the reduction of the required re-computations.

Correct all adders at the same level: If HP approximate adders at the same level are
equal, correcting the highest ED for all of them reduces more required re-computations
while experiencing the same delay overhead. Consider the HP approximate adders at
s5 and s6 for the tree of adders in Figure 6.6, which are the same and are located
at the same level, which means, at the same operations distance from the output.

81

6 Balancing Error Correction

Evaluation
Error

Estimation
Model
Update.c

Threshold,W

Synthesis
Design
Update.v

Delay

Adders Error
Distributions

Adders
with EC

SW

HW

1
2

3

4 5

6
7

8

9

Figure 6.10: Main components in ECAx methodology. A software model of the accel-
erator is used to explore the error correction at the adder level. The hardware imple-
mentation is modified accordingly to determine the effect of the error correction on the
delay.

Suppose that just the most significant error in s5 is corrected. In that case, the
worst-case delay of the accelerator will be the same if the correction is performed
in both HP approximate adders because the critical path will be provided by the
HP approximate adder where the correction occurs. As previously presented, if
ED = 128 is corrected in both s5 and s6, the required re-computations decrease
in 2.71%. If the correction takes place in just one of them, the re-computation
reduction achieves just a 1.6%.

6.4 ECAx Methodology

This section presents ECAx, a methodology for selective Error Correction in
Approximate accelerators, aiming to reduce the required exact re-computations
while meeting a defined accuracy of results. This methodology balances the costs
associated with error correction performed at the software and hardware level so
that savings obtained by approximations are not significantly reduced while accu-
racy constraints are satisfied. This goal is achieved as the most significant errors in
an approximate accelerator are corrected; this is, those with an ED higher than a
defined tolerable threshold and produced by HP approximate adders. Figure 6.10
presents a diagram with the main components of this methodology.

82

6.4 ECAx Methodology

void tree(int* out, int a, int b, int c, int d, int e, int f,
int g, int h) {

#pragma approx loa wr 8 4
int s1 = a + b;
#pragma approx loa wr 8 4
int s2 = c + d;
#pragma approx loa wr 8 4
int s3 = e + f;
#pragma approx loa wr 8 4
int s4 = g + h;
#pragma approx gear wrp 9 2 3
int s5 = s1 + s2;
#pragma approx gear wrp 9 2 3
int s6 = s3 + s4;
#pragma approx gear wrp 10 2 2
int s7 = s5 + s6;
out = s7;

}

Figure 6.11: Example of an annotated software model. This code corresponds to the
annotated software model for the tree of adders example, used in Section 6.3.

To explore the errors to be corrected at the adder level and determine the effect
at the accelerator level, a software model, swM, of the approximate accelerator
is required, and its hardware implementation at RTL, hwD. ECAx methodology
comprises two stages: the first at the hardware level and the second at the soft-
ware level. Each of these stages has a specific purpose. With the hardware one,
estimations of the impact of the selective error correction in the delay are obtained.
With the software one, the effect of error correction in the output error distribution
is explored, as well as the number of re-computations saved is analyzed. With
this, the error correction scenario is evaluated to determine if a proper balance
of correction cost per software and hardware is achieved. The software model is
annotated to indicate which exact additions are replaced for approximate ones, and
for which LP or HP approximate adder (see 1 in Figure 6.10). Figure 6.11 shows an
example of the annotated code for the previous tree of adders example, presented
in Section 6.3. The error distribution of the approximate accelerator is estimated
using the methodology presented in Chapter 4 4 . This estimation requires error
models for the approximate adders, including models for the HP approximate
adders, when errors are corrected 3 . The delay of the accelerator is characterized
using its hardware implementation 6 and a circuit synthesis tool 9 . A baseline
error distribution and delay estimation are required, with no correction applied, to
compare the cases further when corrections are performed.

The ECAx methodology proceeds as depicted in Algorithm 3. Each HP approximate
adder in swM is replaced by a model, HP∗, of the same HP approximate adder

83

6 Balancing Error Correction

ALGORITHM 3: Steps in ECAx methodology
Input: swM, hwD, th, W, Lexc;
Output: hwD∗;

1 recomp[]←− 0; speedup[]←− 0;
2 dist ←− 0; i←− 0;
3 foreach HP ∈ swM do
4 ModelUpdate(swM, HP∗);
5 dist ←− ComputeErrorDistribution(swM);
6 recomp[i]←− SavedRecomp(dist, th);
7 DesignUpdate(hwD, HP∗);
8 Lapp ←− Synthesis(hwD);
9 speedup[i]←− Lexc/Lapp;

10 i←− i + 1;
11 end
12 KP(i, W);

13 Function KP(i, W):
14 if speedup[i] > W then
15 res←− KP(i− 1, W);
16 end
17 else
18 s1←− KP(i− 1, W);
19 s2←− recomp[i] + KP(i− 1, W − speedup[i]);
20 res←− max(s1,s2);
21 end
22 return

with a correction for the most significant ED. If two HP approximate adders
present the same maximum ED, the methodology selects the level where more
HP approximate adders are present. At the software level, a data flow graph is
generated from swM, which allows finding which adders are at the same level 4 .
This update of the model comprises replacing the annotation (pragma) for one
that indicates a HP approximate adder with error correction considered 2 . Then,
a new error distribution is computed 4 . With this new error distribution and
considering a given error threshold th, the maximum tolerable ED, the number
of saved re-computations can be calculated and stored 5 . The notion of “saved
re-computations” refers to the re-computations that will not be performed by the
host processor, as the error correction at HP approximate adder level is reducing
errors with ED ≥ th. Similarly, the design of the accelerator, hwD, is updated
with the corresponding implementation of the HP approximate adder with error
correction 7 , and a new delay value, Lapp, is estimated using a synthesis tool 9 .
With this value, the speedup is calculated, following (6.1), and stored.

84

6.4 ECAx Methodology

It is necessary to notice that the design of the approximate accelerator, hwD, is
considered as given, including its approximations through approximate functional
units. This methodology performs an exploration of the selective error correction on
top of the existing design, without changing the exact and approximate functional
units defined. ECAx explores the cost balance achieved as per software error
correction is replaced by selective and fine-grained per hardware correction.

In most cases, not all errors can be corrected for a given threshold, as this might
significantly harm the speedup achieved by the approximate accelerator. Following
a 0-1 Knapsack approach, the evaluation phase 5 considers potential combina-
tions of individual correction scenarios to find the least reduction on the accelerator
speedup as re-computations are reduced. For this 1-0 Knapsack formulation, the
objective is to maximize:

n

∑
i=0

vixi

subject to:

n

∑
i=0

wixi ≤W

where xi ∈ 0, 1, vi corresponds to the accelerator re-computations saved due to an
i-th error correction scenario at HP approximate adder level, and wi corresponds
to the speedup reduction of the approximate accelerator due to such correction
(recomp[] and speedup[] in Algorithm 3). The maximum speed reduction for the
approximate accelerator, W, is defined as a proportion to its original speedup.
For instance, W = 50% means that no more than this percentage of reduction in
the speedup is desired. The result provided by Algorithm 3 allows to modify the
hardware design and to generate a final implementation, hwD∗, with the error
correction included.

In any case, the goal is to find the selective error correction that most reduces
the required re-computations while producing less impact on the delay possible,
and hence, balance the error correction costs. Each step in the exploration is
characterized in terms of error and delay. It then provides a complete scenario of
the possible design-correction solutions and their implications for the accelerator’s
delay. In an extreme case, all most significant errors will be corrected for all HP
approximate adders if the delay degradation is within the W parameter provided.
Moreover, this methodology also considers the impact of the delay degradation in
the overall speedup an application can achieve due to the approximate accelerator’s

85

6 Balancing Error Correction

use. In any case, the maximum application speedup possible is reached while the
accuracy is contained within a defined error threshold.

6.5 Evaluation

The ECAx methodology has been implemented in a fully automated manner,
so the error correction exploration is performed automatically, as described in
Section 6.4. The accelerator design and its software model need to be provided.
Additionally, the corresponding models for the error distribution analysis and the
HP approximate adders with selective error detection and correction implemented
are also required. An error threshold for which a balance in the cost of software
and hardware correction is desired and the maximum desired reduction in the
approximate accelerator’s speedup is also input information required by ECAx.

In the scope of this chapter, this methodology was tested with six error-tolerant
applications: Sobel, Gaussian, Finite Impulse Response (FIR), and Laplace filters,
Sum of Absolute Differences (SAD), and Discrete Cosine Transform (DCT), and
different approximate accelerator designs for these applications were evaluated,
using different configurations of open-source approximate adders, LOA [Mah+10]
as LP approximate adder, and GeAr [Sha+15] as HP approximate adder. Synop-
sys Design Compiler was used to obtain delay estimations of the approximate
accelerators using the TSMC 65 nm technology library.

The proposed methodology does not have limitations in using other technology
libraries, as the selective error correction is performed at the RTL level. Also, al-
though the applications tested in the scope of this chapter present, in general, a
similar data processing structure (a chain or tree of additions), other applications
where approximate adders are used can take advantage of the proposed methodol-
ogy. Other approximate arithmetic functional units with selective and fine-grained
error detection and correction can be integrated to this methodology, as long as the
error correction does not degrade the savings achieved due to the approximations.

Figure 6.12 presents an exploration of different correction scenarios for approximate
accelerator designs of each of the applications mentioned above. As it can be
noticed, as the percentage of required re-computations is reduced, as an effect
of the selective error correction, the speedup of the accelerator decreases. The re-
computations percentage corresponds to the percentage of the total accelerator invocations.
For these cases, W’s value for the Knapsack formulation was defined up to 100% of
the approximate accelerator’s original speedup, allowing an exhaustive evaluation
to be carried out.

86

6.5 Evaluation

0 5 10 15 20 25 30

1.0

1.1

1.2

1.3

1.4

Re-computations (%)

A
cc

el
er

at
or

Sp
ee

d
up

Sobel Gaussian FIR Laplace SAD DCT

Figure 6.12: Error correction and its effect on re-computations and speedup for error-
tolerant applications. As the number of required re-computations is reduced, due to
selective error correction at the adder level, the accelerator’s speedup decreases.

Consider the particular case of the SAD accelerator. If a smaller value of W is
defined, for instance, 15%, which means that up to 15% lost in the speedup is
desired due to the correction, 21% of the required computations would be reduced
with a change of the accelerator speedup from 1.45× to 1.31×.

From the information in Figure 6.12, two other cases are interesting to notice. For
the Laplace filter, the speedup could be reduced to 1.0×, which means that no
benefit in the delay reduction due to approximations is achieved. For that case,
even 4% of re-computations are still needed to satisfy the accuracy constraint. By
limiting the maximum speedup degradation allowed, the ECAx methodology can
reduce the re-computations required while containing the accelerator speedup’s
degradation. Another case to point out is the Gaussian filter, which presents two
potential correction scenarios that can be used to achieve 0% re-computations
needed. However, each of them presents a different accelerator speedup. One is
1.10×, while the other is 1.06×. In any case, the one with a higher speedup is
desired.

The approximate accelerators with selective error correction at HP approximate
adder level, alongside an error predictor for the accelerator, were integrated into
a Tiger MIPS processor (as available in the LegUp tool [Can+13]), in an archi-
tecture similar to the one presented in Figure 6.4. As an error predictor, a linear
model-based predictor with a table-based predictor, as proposed in [Wan+16], were
implemented. For each application, the predictor was trained for a given error

87

6 Balancing Error Correction

Sobel Gaussian FIR Laplace SAD DCT
1.2
1.4
1.6
1.8

2

A
pp

.S
pe

ed
up

Prediction [Wan+16] Prediction + ECAx

Figure 6.13: Application speedup improvement. An improvement in the speedup is
obtained due to selective error correction at the approximate adder level alongside a
prediction-based approach.

threshold using random input vectors from a uniform distribution, similar to the
accelerator’s input.

Modelsim simulations were used to estimate the required clock cycles for each im-
plementation. With these values, a comparison of the applications’ overall speedup
improvement due to the reduction of re-computations can be performed. Figure
6.13 summarizes the best results obtained for designs explored corresponding
to the applications tested. As depicted in Figure 6.13, in general, it is possible
to obtain a speedup improvement when adding selective error correction to the
HP approximate adders to state-of-the-art prediction-based methods for accuracy
control. For a Laplace filter design, an improvement of 21% was achieved. For that
particular case, applying error correction to the most significant ED of two HP
approximate adders at the same level, and for an error threshold of ED ≥ 60, the
required re-computations were reduced to less than 2%.

As already discussed, when applying the selective error correction, as proposed by
the ECAx methodology, this correction impacts the approximate accelerator’s delay.
Although the detection is always active and the correction occurs on-demand, just
when an error is detected, it is considered that both detection and correction take
place for estimating the delay of the resulting approximate accelerator. Thus, no
delay variance is considered in determining the application speedup improvement.

Figure 6.14 shows the area and power overhead required for each of the solutions
presented in Figure 6.13. As can be noticed, up to 5% area overhead is required for
applying selective error correction at the approximate adder level compared to the
original area of the approximate accelerator. Regarding the total power overhead, it
was found between 3% and 7%. The increment in the area produces an increment
in static power consumption, but also, as these sections perform the error detection
and correction, they consume dynamic power.

88

6.5 Evaluation

Sobel Gaussian FIR Laplace SAD DCT
0
2
4
6
8

10
O

ve
rh

ea
d

(%
)

Area Power

Figure 6.14: Area and power overhead. For the solutions presented in Fig. 6.13, up to
5% area overhead is required for applying selective error correction at the approximate
adder level. Power overhead ranges between 3% and 7%.

0 25 50 75 100 125 150 175 200

0

0.1

0.2

ED

p(
E

D
)

Figure 6.15: Error distribution for a Gaussian filter example. For this example, errors
appear with higher ER for ED values lower than 80. However, those with high ED value
do trigger re-computations even for a high accuracy degradation allowed.

A more detailed case for a Gaussian filter as an approximate accelerator is presented
here. Particularly, it is evaluated the effect of selective error correction for one
specific accelerator design while the defined error threshold changes. Figure 6.15
depicts the error distribution for this particular design. As shown, the errors are
more present in a range between ED = 1 and ED = 80, with some errors between
ED = 125 and ED = 175 but with a low ER. According to a defined error threshold,
even errors with a low probability of occurrence will trigger re-computations.

Figure 6.16 shows how the required re-computations change as the defined error
threshold is modified. As expected, a higher percentage of the accelerator invoca-
tions are required to be re-computed as the tolerable error is small. For instance,
for a threshold of ED = 20, about 30% of the accelerator invocations require cor-
rection. As the error threshold is increased, this is a higher ED tolerable, there is
a reduction in the re-computations needed. It is interesting to notice that for an
error threshold between ED = 80 and ED = 120, the required re-computations
stay constant, as there is no increment in the number of errors for those values, as
shown in Figure 6.15.

89

6 Balancing Error Correction

0

10

20

30

40

50

≈ 0%

R
e-

co
m

pu
ta

ti
on

s
(%

)
Prediction [Wan+16] Prediction + ECAx

0 20 40 60 80 100 120 140 160

1.5

2

2.5

3

≈ 20%

Threshold (ED)

A
pp

lic
at

io
n

Sp
ee

d
up

Figure 6.16: Effect of selective error correction for a Gaussian filter. As the error
threshold changes, a reduction in the required re-computations is experienced, even
eliminating the need of re-computations.

The required re-computations are reduced by applying this proposed methodology
with a predictor from the state-of-the-art to this Gaussian example. As shown in
Figure 6.16, for error thresholds between ED = 50 and ED = 120, the required
re-computations are reduced to basically 0%, compared to just using a prediction-
based approach, which it varies from 7% up to 17%. For each error threshold, a
retraining of the predictor was considered.

As the error threshold changes, so do the application’s speedup, as depicted in
Figure 6.16. For most of the cases, by applying the proposed methodology, an
improvement in the speedup of the application is achieved. For the range between
ED = 90 and ED = 120, an increment of about 10% is accomplished, while for the
rage between ED = 40 and ED = 60, up to 21% speedup improvement is obtained.

Two particular remarks for this Gaussian filter approximate accelerator are worthy
of highlighting. First, as this methodology was applied for an error threshold of

90

6.5 Evaluation

0 20 40 60 80 100 120 140 160
10
20
30
40
50

Threshold (ED)

P
SN

R
(d

B
)

(a) Quality evaluated as PSNR metric for different error threshold.

(b) ED = 20 (31.00 dB) (c) ED = 50 (25.83 dB) (d) ED = 80 (20.58 dB)

Figure 6.17: Resulting quality for a Gaussian filter example. Quality improves as
selective error correction, applied with the proposed methodology, is performed for
different error thresholds.

ED ≥ 130, no re-computations were saved. As ECAx explores these cases, it is
possible to achieve 0% of re-computations needed; however, this would reduce the
application’s speedup as the accelerator’s delay would be unnecessarily increased
for such a small of re-computations needed. As indicated in Figure 6.16 (faded
line), if error correction at the adder level is applied for such an error threshold, it
would potentially decrease the speedup up to 20%. The proposed methodology
can estimate such an impact, and it does not apply any selective error correction to
preserve the application speedup as high as possible.

Second, for ED ≤ 60 as an error threshold, additional error correction at HP
approximate adder level was required. Between ED = 70 and ED = 120, ECAx
found that applying one error correction to the most significant ED for a particular
HP approximate adder, it was possible to reduce the required re-computations to
nearly 0% and improve the application’s speedup. However, for an error threshold
between ED = 10 and ED = 60, the exploration performed found that an additional
correction was required for another HP approximate adder to reduce the re-
computations. This improved the application’s speedup, and even though by

91

6 Balancing Error Correction

0 20 40 60 80 100 120 140 160
10
20
30
40
50

Threshold (ED)

P
SN

R
(d

B
)

(a) Quality evaluated as PSNR metric for different error threshold.

(b) ED = 50 (27.22 dB) (c) ED = 100 (22.30 dB) (d) ED = 150 (18.01 dB)

Figure 6.18: Resulting quality for a Laplace filter example. As for the Gaussian filter
example, there is quality improvement for a Laplace filter as selective error correction is
applied for different error thresholds.

increasing the selective error correction, the delay of the accelerator was decreased,
the overall speedup of the application was raised.

Also, it is important to notice that for this particular design, an error threshold
of ED = 10 implies a significant reduction in the application speedup due to the
high number of re-computations required. Although our approach improves the
speedup, a redesign of the accelerator would benefit more of the approximations
by limiting the required accelerator re-computations from the design. This method-
ology does not consider modifying a given approximate accelerator design but
could potentially be extended to include it.

Figure 6.17a summarizes the effect of the ECAx methodology in the quality of the
images processed by this approximate Gaussian filter for different error thresholds.
As expected, the quality of the image improves as the error threshold is reduced. For
this approximate accelerator, and considering the cameraman test image, significant
quality improvement is observed for error thresholds of 40, 50, and 60, from PSNR
= 15.41 when no correction is applied to PSNR = 25 dB. This mainly occurs when
the required re-computations are near to 0%, and a maximum application speedup
is achieved, nearly 20%, compared to an only prediction-based approach (see

92

6.6 Summary

Figure 6.16). Figures 6.17b, 6.17c, and 6.17d depict different output quality for the
cameraman test image at different error thresholds explored with the presented
methodology. In Figure 6.18, quality results for the Laplace filter case, described in
Section 6.1, are presented. As can be observed, by an error threshold around 50,
the noise in the image is not noticeable.

6.6 Summary

This chapter has presented ECAx, a methodology to selectively explore and apply
error correction in approximate accelerators. ECAx has demonstrated, for the first
time, the benefits of selective, fine-grained, and low-overhead error correction when
using HP approximate adders in approximate accelerator designs. The method-
ology presented proposes that by using selective error correction at the approximate
functional unit level, it is possible to reduce the required exact re-computations performed
by the host processor to keep the approximate accelerator accuracy at the output to a de-
fined error threshold. This implies to find a balance between the cost of correcting
errors by software and hardware: reducing the required correction by software
while increasing the correction by hardware should not compromise the benefits
obtained due to approximations. Reducing these re-computations makes it possible
to improve the performance, as correction per software requires more time. The
evaluation performed shows that applying ECAx alongside a state-of-the-art error
predictor for approximate accelerators improves up to 20% the application speedup
compared to just using a predictor-based approach for accuracy control proposed
in previous work. Moreover, this methodology has shown its potential to provide
good trade-offs to improve the application speedup as the error threshold changes
for a specific approximate design.

93

Education is not something you can finish.

Isaac Asimov

7
Conclusion

This chapter concludes this dissertation with a summary of the work presented,
and it provides promising future work directions.

7.1 Dissertation Summary

With the coming forth of Approximate Computing as an energy-efficient design
paradigm, many contributions have been made at the circuit level, particularly
proposing several approximate designs for adders and multipliers. The diversity
of these components impose a challenge when using them to design approximate
accelerators to speed up the execution of error-tolerant applications. From this
scenario, this dissertation has addressed the challenge of automated design of
approximate accelerators built with approximate arithmetic circuits. To achieve
it, this dissertation has presented different methodologies to enhance the design
space exploration and the generation of register-transfer level implementations of
approximate accelerators.

First, this dissertation introduced two frameworks to generate approximate arith-
metic circuits (Chapter 3). One focuses on the generation of approximate adders
and multipliers from designs reported in the literature, for different bitwidth and
approximate configuration. The other focuses on netlist transformation techniques
for approximate logic synthesis. In both cases, the characterization performed
for the approximate circuits generated, regarding the error and circuit metrics
(area, delay, and power), is fundamental for the analytical models for accuracy and
resource estimations proposed within this work.

95

7 Conclusion

Then, a compiler-driven methodology for accuracy estimation was introduced
(Chapter 4). A set of analytical models was defined to enable fast error propaga-
tion estimations for approximate designs, reducing the dependency of exhaustive
simulations, and allowing to assess the accuracy degradation when using approx-
imate arithmetic circuits in accelerator designs. These models consider only the
error distribution of each approximate component used in the design to perform
the propagation estimations. The compiler-based methodology introduced allows
quick estimations by using software-level models of the accelerators and replacing
the accurate additions and multiplications by approximate ones through custom
pragma directives.

Later, a complete framework for the generation of approximate accelerators from
high-level descriptions was presented (Chapter 5). Analytical models for resource
estimations were introduced to complement those for accuracy estimations. These
additional models estimate the required area, delay, power, and energy of approxi-
mate accelerators’ designs without performing circuit synthesis. With these models,
a novel design space exploration methodology was proposed to find Pareto-optimal
solutions for a given error-tolerant application and set of approximate arithmetic
circuits. This exploration methodology was integrated into a high-level synthe-
sis tool to generate accelerators from C code implementations of error-tolerant
applications automatically.

Finally, a method for balance the cost associated with error correction for ap-
proximate accelerators was presented (Chapter 6). Reported accuracy control
mechanisms employ re-computations, performed by the host processor, to cor-
rect those results produced by an approximate accelerator with an error above
a defined accuracy threshold. This undermines the performance improvements
achieved due to the approximations used. This dissertation presented a method-
ology for fine-grained, selective error correction at the component level, applied
to high-performance approximate adders. Although this error correction reduces
the accelerator delay and slightly increases the area and power consumption, the
overall balance improves the speedup of error-tolerant applications as the number
of required re-computations is significantly reduced.

Most of the contributions presented in this dissertation have been made open-
source, allowing their use by the scientific community and further expansion and
improvement.

96

7.2 Future Work

7.2 Future Work

In the following, this dissertation shares three critical ideas for further research
directions motivated, in part, by the contributions of this work.

Bridging the gap between accuracy and quality. As presented in Section 2.2.3,
there is a mismatch between accuracy and quality in approximate computing,
starting from how these terms are understood. Even what really quality is must be
reconsidered for approximate computing [SBC15]. While most of the contributions
reported in the literature focus on designing accelerators, for instance, for a given
accuracy threshold, the quality of results is a by-product issue. In this sense, it is
necessary to develop top-down methodologies to bridge quality requirements into
specific accuracy constraints for a given application and input data set.

From the accuracy perspective, current works have proposed top-down approaches.
For instance, the accuracy degradation is distributed or translated to a component-
level accuracy [VMS19; ASP20]. This improves the selection, or generation, of
approximate components for a specific application, that at the end, will sum up to
satisfy the final required accuracy constraint. On the other hand, the on-demand
utilization of different instances of approximate implementations with fixed accu-
racy has been proposed [AGH20]. So, for a particular application, and according
to a workload and accuracy requirement, one approximate instance is selected to
meet the expected accuracy, while the other instances are switch off to save power.

However, to bring it the design of approximate accelerators to an applications’
quality-driven level, proving statistical guarantees for quality at the output, it is
required to close the bridge between current accuracy-driven design methodologies
for approximate accelerators and application quality constraints.

Cross-layer accuracy and quality estimations. Since half a decade ago, the notion
of cross-layer approximate computing has been hanging around in the scientific
community [Sha+16; Pan+16]. Even though many efforts have been made to count
on disciplined approximate computing techniques at individual abstraction layers
of the computing stack, there are still many challenges to effectively have cross-layer
design methodologies.

One essential aspect towards true cross-layer approximate computing is the ability
to perform precise accuracy and quality estimations across the layers. This means
to be able to quantify the effect of approximations taking placed at different layers,
and their final accumulative effect in the application’s accuracy and quality. For
instance, it is required to understand how approximations performed at the circuit

97

7 Conclusion

level, by approximate additions and multiplications in an approximate accelerator,
have an impact on the applications’ accuracy, when simultaneously approximations
are applied at software level [CSH20b] and in combination with approximations
applied at memory level [San+15]. Although approximations have been applied
at different abstraction layers trying to exploit optimizations visible at each level
[XS17], this has been done to design approximate circuit implementations with no
cross-layer error estimation considered.

Quality-driven design for end-to-end error-tolerant applications. One particular
area where little has been contributed is the development of methodologies to
design end-to-end approximate implementations of error-tolerant applications.
Most of the existing work has focused on individual sub-parts of a computing
system, such as the memory or the computing subsystem; this last one, for instance,
using approximate accelerators. However, more has to be investigated in this
direction to fully take advantage of approximate computing as an energy-efficient
design paradigm.

Currently, three contributions have shown promising results for end-to-end approx-
imate implementations. In [RR18], a smart camera system example is presented
where approximations are applied to sensing, memory, processing, and communi-
cation subsystem, exploiting approximations at each stage synergistically. More
recently, in a similar direction, the case for approximate inference at the edge has
been depicted [GRR20]. In [Has+18], the example of an iris-scanning system is pre-
sented. In this case, a combination of approximate techniques at the software and
hardware level is applied to the focus assessment, iris segmentation, normalization,
and encoding stages to significantly reduce the required runtime and energy while
meeting the accuracy requirement of the iris encoding as defined by industry
standards.

98

Bibliography

[AKK15] I. Akturk, K. Khatamifard, and U. R. Karpuzcu. “On Quantification of
Accuracy Loss in Approximate Computing”. In: 2015 (cit. on p. 60).

[AGH20] T. Alan, A. Gerstlauer, and J. Henkel. “Runtime Accuracy-Configurable
Approximate Hardware Synthesis Using Logic Gating and Relax-
ation”. In: 2020 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE). 2020, pp. 1578–1581. doi: 10.23919/DATE48585.2020.
9116272 (cit. on p. 97).

[AH18] T. Alan and J. Henkel. “SlackHammer: Logic Synthesis for Graceful
Errors Under Frequency Scaling”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37.11 (2018), pp. 2802–
2811. doi: 10.1109/TCAD.2018.2858364 (cit. on pp. 7, 26).

[AKL16] H. A. F. Almurib, T. N. Kumar, and F. Lombardi. “Inexact Designs
for Approximate Low Power Addition by Cell Replacement”. In: 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE).
2016, pp. 660–665. doi: 10.3850/9783981537079_0042 (cit. on pp. 8,
21).

[ASP20] G. Ansaloni, I. Scarabottolo, and L. Pozzi. “Judiciously Spreading Ap-
proximation Among Arithmetic Components with Top-Down Inexact
Hardware Design”. In: Applied Reconfigurable Computing. Architectures,
Tools, and Applications. Ed. by F. Rincón, J. Barba, H. K. H. So, P. Diniz,
and J. Caba. Cham: Springer International Publishing, 2020, pp. 14–29.
doi: 10.1007/978-3-030-44534-8_2 (cit. on p. 97).

99

https://doi.org/10.23919/DATE48585.2020.9116272
https://doi.org/10.23919/DATE48585.2020.9116272
https://doi.org/10.1109/TCAD.2018.2858364
https://doi.org/10.3850/9783981537079_0042
https://doi.org/10.1007/978-3-030-44534-8_2

Bibliography

[AMP18] M. Awais, H. G. Mohammadi, and M. Platzner. “An MCTS-based
Framework for Synthesis of Approximate Circuits”. In: International
Conference on Very Large Scale Integration (VLSI-SoC). 2018, pp. 219–224.
doi: 10.1109/VLSI-SoC.2018.8645026 (cit. on pp. 53, 54).

[AHS17] M. K. Ayub, O. Hasan, and M. Shafique. “Statistical Error Analysis
for Low Power Approximate Adders”. In: 54th Design Automation
Conference (DAC). 2017, pp. 1–6. doi: 10.1145/3061639.3062319 (cit.
on pp. 39, 53).

[BC10] W. Baek and T. M. Chilimbi. “Green: A Framework for Support-
ing Energy-conscious Programming Using Controlled Approxima-
tion”. In: Proceedings of the 31st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’10. Toronto, Ontario,
Canada: ACM, 2010, pp. 198–209. doi: 10.1145/1806596.1806620
(cit. on p. 75).

[BIM16] M. Barbareschi, F. Iannucci, and A. Mazzeo. “An Extendible De-
sign Exploration Tool for Supporting Approximate Computing Tech-
niques”. In: 2016 International Conference on Design and Technology of
Integrated Systems in Nanoscale Era (DTIS). 2016, pp. 1–6. doi: 10.1109/
DTIS.2016.7483888 (cit. on p. 54).

[BMH14] K. Bhardwaj, P. S. Mane, and J. Henkel. “Power- and Area-Efficient
Approximate Wallace Tree Multiplier for Error-Resilient Systems”.
In: 15th International Symposium on Quality Electronic Design (ISQED).
2014, pp. 263–269. doi: 10.1109/ISQED.2014.6783335 (cit. on pp. 2,
7, 10).

[Bro+15] J. Broc, P.-E. Gaillardon, L. Amarú, J. J. Murillo, K. Palem, and G. De
Micheli. “A Fast Pruning Technique for Low-Power Inexact Circuit
Design”. In: 2015 IEEE 6th Latin American Symposium on Circuits &
Systems (LASCAS). 2015, pp. 1–4. doi: 10.1109/LASCAS.2015.7250448
(cit. on p. 28).

[CCC14] L. Cabrera-Quirós, R. Campos-Gómez, and J. Castro-Godínez. “Crit-
ical steps in camera pose estimation: an evaluation using LTI-LIB2
library”. In: Revista Tecnología en Marcha (2014), pp. 60–69. doi: 10.
18845/tm.v0i0.1656 (cit. on p. xx).

[Can+13] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson. “LegUp: An Open-source High-level
Synthesis Tool for FPGA-based Processor/Accelerator Systems”. In:
ACM Trans. Embed. Comput. Syst. 13.2 (2013), 24:1–24:27. doi: 10.1145/
2514740 (cit. on pp. 54, 66, 87).

100

https://doi.org/10.1109/VLSI-SoC.2018.8645026
https://doi.org/10.1145/3061639.3062319
https://doi.org/10.1145/1806596.1806620
https://doi.org/10.1109/DTIS.2016.7483888
https://doi.org/10.1109/DTIS.2016.7483888
https://doi.org/10.1109/ISQED.2014.6783335
https://doi.org/10.1109/LASCAS.2015.7250448
https://doi.org/10.18845/tm.v0i0.1656
https://doi.org/10.18845/tm.v0i0.1656
https://doi.org/10.1145/2514740
https://doi.org/10.1145/2514740

Bibliography

[Cas19] J. Castro-Godínez. “Approximate Software for Accurate Hardware”.
In: NiPS Summer School, OPRECOMP Summer of Code Initiative. 2019
(cit. on p. xxi).

[Cas+20a] J. Castro-Godínez, H. Barrantes-García, M. Shafique, and J. Henkel.
“AxLS: An Open-Source Framework for Netlist Transformation Ap-
proximate Logic Synthesis”. In: 3rd Workshop on Open-Source EDA
Technology (WOSET), co-located with ICCAD ’20. 2020 (cit. on pp. xx, 7,
17).

[Cas+21] J. Castro-Godínez, H. Barrantes-García, M. Shafique, and J. Henkel.
“AxLS: A Framework for Approximate Logic Synthesis based on
Netlist Transformations”. In: IEEE Transactions on Circuits and Systems
II: Express Briefs (2021) (cit. on p. xix).

[Cas+18] J. Castro-Godínez, S. Esser, M. Shafique, S. Pagani, and J. Henkel.
“Compiler-Driven Error Analysis for Designing Approximate Acceler-
ators”. In: 2018 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE). 2018, pp. 1027–1032. doi: 10.23919/DATE.2018.8342163
(cit. on pp. xix, 18, 19, 37, 53).

[CH18] J. Castro-Godínez and J. Henkel. “Error Propagation Estimation on
Approximate Designs with Compiler-Driven Support”. In: 3rd. Work-
shop on Approximate Computing (AxC ’18), co-located with the IEEE Euro-
pean Test Symposium 2018. 2018 (cit. on p. xxi).

[Cas+20b] J. Castro-Godínez, D. Hernández-Araya, M. Shafique, and J. Henkel.
“Approximate Acceleration for CNN-based Applications on IoT Edge
Devices”. In: 2020 IEEE 11th Latin American Symposium on Circuits &
Systems (LASCAS). 2020, pp. 1–4. doi: 10.1109/LASCAS45839.2020.
9069040 (cit. on p. xx).

[Cas+20c] J. Castro-Godínez, J. Mateus-Vargas, M. Shafique, and J. Henkel.
“AxHLS: Design Space Exploration and High-Level Synthesis of
Approximate Accelerators using Approximate Functional Units and
Analytical Models”. In: 2020 IEEE/ACM 39th International Conference
on Computer-Aided Design (ICCAD). 2020. doi: 10.1145/3400302.
3415732 (cit. on pp. xix, 18, 27, 51).

[CSH19] J. Castro-Godínez, M. Shafique, and J. Henkel. “ECAx: Balancing Error
Correction Costs in Approximate Accelerators”. In: ACM Trans. Embed.
Comput. Syst. 18.5s (2019). doi: 10.1145/3358179 (cit. on pp. xix, 71).

[CSH20a] J. Castro-Godínez, M. Shafique, and J. Henkel. “Towards Designing
and Implementing Approximate Accelerators”. In: 16th International
Summer School on Advanced Computer Architecture and Compilation for
High-performance Embedded Systems (ACACES). 2020 (cit. on p. xx).

101

https://doi.org/10.23919/DATE.2018.8342163
https://doi.org/10.1109/LASCAS45839.2020.9069040
https://doi.org/10.1109/LASCAS45839.2020.9069040
https://doi.org/10.1145/3400302.3415732
https://doi.org/10.1145/3400302.3415732
https://doi.org/10.1145/3358179

Bibliography

[CSH20b] J. Castro-Godínez, M. Shafique, and J. Henkel. “Towards Quality-
Driven Approximate Software Generation for Accurate Hardware:
Work-in-Progress”. In: 2020 International Conference on Compilers, Ar-
chitecture, and Synthesis for Embedded Systems (CASES). 2020, pp. 12–14.
doi: 10.1109/CASES51649.2020.9243814 (cit. on pp. xx, 98).

[Cha+13] W.-T. J. Chan, A. B. Kahng, S. Kang, R. Kumar, and J. Sartori. “Statis-
tical Analysis and Modeling for Error Composition in Approximate
Computation Circuits”. In: the 31st International Conference on Computer
Design (ICCD). 2013 (cit. on p. 39).

[Che+08] Y.-K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S. Kumar,
V. W. Lee, A. D. Nhuyen, and M. Smelyanskiy. “Convergence of
Recognition, Mining, and Synthesis Workloads and Its Implications”.
In: Proceedings of the IEEE 96.5 (2008), pp. 790–807. doi: 10.1109/
JPROC.2008.917729 (cit. on p. 1).

[Chi+13] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. “Analysis
and characterization of inherent application resilience for approximate
computing”. In: 2013 50th ACM/EDAC/IEEE Design Automation Con-
ference (DAC). 2013, pp. 1–9. doi: 10.1145/2463209.2488873 (cit. on
p. 73).

[Con+14] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Rein-
man. “Accelerator-rich architectures: Opportunities and progresses”.
In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).
2014, pp. 1–6. doi: 10.1145/2593069.2596667 (cit. on pp. 2, 14).

[Del+13] A. A. Del Barrio, R. Hermida, S. O. Memik, J. M. Mendias, and M. C.
Molina. “Multispeculative additive trees in High-Level Synthesis”. In:
2013 Design, Automation Test in Europe Conference Exhibition (DATE).
2013, pp. 188–193. doi: 10.7873/DATE.2013.052 (cit. on p. 77).

[Dut+16] S. Dutt, H. Patel, S. Nandi, and G. Trivedi. “Exploring Approximate
Computing for Yield Improvement via Re-design of Adders for Error-
Resilient Applications”. In: 2016 29th International Conference on VLSI
Design and 2016 15th International Conference on Embedded Systems (VL-
SID). 2016, pp. 134–139. doi: 10.1109/VLSID.2016.101 (cit. on pp. 8,
21, 76).

[Ech+20] J. Echavarria, S. Wildermann, O. Keszöcze, and J. Teich. “Probabilistic
Error Propagation through Approximated Boolean Networks”. In:
57th Design Automation Conference (DAC). 2020 (cit. on p. 29).

102

https://doi.org/10.1109/CASES51649.2020.9243814
https://doi.org/10.1109/JPROC.2008.917729
https://doi.org/10.1109/JPROC.2008.917729
https://doi.org/10.1145/2463209.2488873
https://doi.org/10.1145/2593069.2596667
https://doi.org/10.7873/DATE.2013.052
https://doi.org/10.1109/VLSID.2016.101

Bibliography

[Esm+12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. “Neural Ac-
celeration for General-Purpose Approximate Programs”. In: 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture. 2012,
pp. 449–460. doi: 10.1109/MICRO.2012.48 (cit. on pp. 2, 15).

[GRR20] S. K. Ghosh, A. Raha, and V. Raghunathan. “Approximate Inference
Systems (AxIS): End-to-End Approximations for Energy-Efficient In-
ference at the Edge”. In: Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED). ISLPED
’20. Boston, Massachusetts, 2020, pp. 7–12. doi: 10.1145/3370748.
3406575 (cit. on p. 98).

[Gil+18] G. A. Gillani, M. A. Hanif, M. Krone, S. H. Gerez, M. Shafique, and
A. B. J. Kokkeler. “SquASH: Approximate Square-Accumulate With
Self-Healing”. In: IEEE Access 6 (2018), pp. 49112–49128. doi: 10.
1109/ACCESS.2018.2868036 (cit. on p. 77).

[Gup+13] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. “Low-Power
Digital Signal Processing Using Approximate Adders”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 32.1
(2013), pp. 124–137. doi: 10.1109/TCAD.2012.2217962 (cit. on pp. 2,
8, 21, 22).

[HO13] J. Han and M. Orshansky. “Approximate Computing: An Emerging
Paradigm for Energy-Efficient Design”. In: 18th IEEE European Test
Symposium (ETS). 2013, pp. 1–6. doi: 10.1109/ETS.2013.6569370
(cit. on p. 1).

[Han+20] M. A. Hanif, R. Hafiz, O. Hasan, and M. Shafique. “PEMACx: A
Probabilistic Error Analysis Methodology for Adders with Cascaded
Approximate Units”. In: 57th Design Automation Conference (DAC).
2020 (cit. on p. 11).

[HBR15] S. Hashemi, R. I. Bahar, and S. Reda. “DRUM: A Dynamic Range
Unbiased Multiplier for Approximate Applications”. In: 2015 Interna-
tional Conference on Computer-Aided Design (ICCAD). 2015, pp. 418–425.
doi: 10.1109/ICCAD.2015.7372600 (cit. on pp. 2, 7, 10, 26).

[HBR16] S. Hashemi, R. I. Bahar, and S. Reda. “A Low-Power Dynamic Divider
for Approximate Applications”. In: 53nd Design Automation Conference
(DAC). 2016, pp. 1–6. doi: 10.1145/2897937.2897965 (cit. on p. 8).

[Has+18] S. Hashemi, H. Tann, F. Buttafuoco, and S. Reda. “Approximate Com-
puting for Biometric Security Systems: A Case Study on Iris Scan-
ning”. In: 2018 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE). 2018, pp. 319–324 (cit. on p. 98).

103

https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1145/3370748.3406575
https://doi.org/10.1145/3370748.3406575
https://doi.org/10.1109/ACCESS.2018.2868036
https://doi.org/10.1109/ACCESS.2018.2868036
https://doi.org/10.1109/TCAD.2012.2217962
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1109/ICCAD.2015.7372600
https://doi.org/10.1145/2897937.2897965

Bibliography

[HTR18] S. Hashemi, H. Tann, and S. Reda. “BLASYS: Approximate Logic
Synthesis Using Boolean Matrix Factorization”. In: 55th Annual Design
Automation Conference (DAC). 2018, 55:1–55:6. doi: 10.1145/3195970.
3196001 (cit. on p. 27).

[HP12] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantita-
tive Approach. 5th ed. Morgan Kaufmann, 2012 (cit. on p. 79).

[Her+20] D. Hernández-Araya, J. Castro-Godínez, M. Shafique, and J. Henkel.
“AUGER: A Tool for Generating Approximate Arithmetic Circuits”.
In: 2020 IEEE 11th Latin American Symposium on Circuits & Systems
(LASCAS). 2020, pp. 1–4. doi: 10.1109/LASCAS45839.2020.9069045
(cit. on pp. xix, 17).

[HMV16] R. Hrbacek, V. Mrazek, and Z. Vasicek. “Automatic Design of Ap-
proximate Circuits by Means of Multi-Objective Evolutionary Al-
gorithms”. In: 2016 International Conference on Design and Technol-
ogy of Integrated Systems in Nanoscale Era (DTIS). 2016, pp. 1–6. doi:
10.1109/DTIS.2016.7483885 (cit. on p. 7).

[HLR11] J. Huang, J. Lach, and G. Robins. “Analytic Error Modeling for Im-
precise Arithmetic Circuits”. In: Silicon Errors in Logic - System Effects.
2011 (cit. on p. 39).

[HLR12] J. Huang, J. Lach, and G. Robins. “A Methodology for Energy-quality
Tradeoff Using Imprecise Hardware”. In: the 49th Design Automation
Conference (DAC). 2012 (cit. on p. 39).

[JHL] H. Jiang, J. Han, and F. Lombardi. “A Comparative Review and Eval-
uation of Approximate Adders”. In: Proceedings of the 25th Edition on
Great Lakes Symposium on VLSI. GLSVLSI ’15. Pittsburgh, Pennsylva-
nia, USA, pp. 343–348. doi: 10.1145/2742060.2743760 (cit. on pp. 8,
18).

[Jia+17a] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han. “A Review, Clas-
sification, and Comparative Evaluation of Approximate Arithmetic
Circuits”. In: J. Emerg. Technol. Comput. Syst. 13.4 (2017), 60:1–60:34.
doi: 10.1145/3094124 (cit. on p. 7).

[Jia+17b] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han. “A Review, Clas-
sification, and Comparative Evaluation of Approximate Arithmetic
Circuits”. In: J. Emerg. Technol. Comput. Syst. 13.4 (2017). doi: 10.1145/
3094124 (cit. on pp. 8, 18).

[Jia+16] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han. “A Com-
parative Evaluation of Approximate Multipliers”. In: 2016 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH). 2016,
pp. 191–196. doi: 10.1145/2950067.2950068 (cit. on pp. 8, 18).

104

https://doi.org/10.1145/3195970.3196001
https://doi.org/10.1145/3195970.3196001
https://doi.org/10.1109/LASCAS45839.2020.9069045
https://doi.org/10.1109/DTIS.2016.7483885
https://doi.org/10.1145/2742060.2743760
https://doi.org/10.1145/3094124
https://doi.org/10.1145/3094124
https://doi.org/10.1145/3094124
https://doi.org/10.1145/2950067.2950068

Bibliography

[Jia+19] H. Jiang, L. Liu, F. Lombardi, and J. Han. “Approximate Arithmetic
Circuits: Design and Evaluation”. In: Approximate Circuits: Method-
ologies and CAD. Ed. by S. Reda and M. Shafique. Cham: Springer
International Publishing, 2019, pp. 67–98. doi: 10.1007/978-3-319-
99322-5_4 (cit. on p. 8).

[KK12] A. B. Kahng and S. Kang. “Accuracy-Configurable Adder for Ap-
proximate Arithmetic Designs”. In: Proceedings of the 49th Annual
Design Automation Conference (DAC). 2012, pp. 820–825. doi: 10.1145/
2228360.2228509 (cit. on pp. 7, 10, 25, 76).

[KCS16] A. Kapare, H. Cherupalli, and J. Sartori. “Automated Error Prediction
for Approximate Sequential Circuits”. In: the 35th Intl. Conference on
Computer-Aided Design (ICCAD). 2016 (cit. on p. 39).

[Kha+20] N. Khan, J. Castro-Godínez, S. Xue, J. Henkel, and J. Becker. “Auto-
matic Floorplanning and Standalone Generation of Bitstream-Level
IP Cores”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems (2020). doi: 10.1109/TVLSI.2020.3023548 (cit. on p. xx).

[Khu+15] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. “Rumba: An
online quality management system for approximate computing”. In:
2015 ACM/IEEE 42nd Annual International Symposium on Computer Ar-
chitecture (ISCA). 2015, pp. 554–566. doi: 10.1145/2749469.2750371
(cit. on pp. 72, 75).

[KGE11] P. Kulkarni, P. Gupta, and M. Ercegovac. “Trading Accuracy for Power
with an Underdesigned Multiplier Architecture”. In: 2011 24th Inter-
national Conference on VLSI Design. 2011, pp. 346–351. doi: 10.1109/
VLSID.2011.51 (cit. on p. 17).

[LA04] C. Lattner and V. Adve. “LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation”. In: CGO. 2004 (cit. on
p. 47).

[LJG17] S. Lee, L. K. John, and A. Gerstlauer. “High-Level Synthesis of Approx-
imate Hardware under Joint Precision and Voltage Scaling”. In: 2017
Design, Automation & Test in Europe Conference & Exhibition (DATE).
2017, pp. 187–192. doi: 10.23919/DATE.2017.7926980 (cit. on pp. 27,
54, 68).

[Lee+16] S. Lee, D. Lee, K. Han, E. Shriver, E. John, and A. Gerstlauer. “Statisti-
cal Quality Modeling of Approximate Hardware”. In: 17th International
Symposium on Quality Electronic Design (ISQED). 2016, pp. 163–168.
doi: 10.1109/ISQED.2016.7479194 (cit. on pp. 39, 53).

105

https://doi.org/10.1007/978-3-319-99322-5_4
https://doi.org/10.1007/978-3-319-99322-5_4
https://doi.org/10.1145/2228360.2228509
https://doi.org/10.1145/2228360.2228509
https://doi.org/10.1109/TVLSI.2020.3023548
https://doi.org/10.1145/2749469.2750371
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.23919/DATE.2017.7926980
https://doi.org/10.1109/ISQED.2016.7479194

Bibliography

[LN19] M. T. Leipnitz and G. L. Nazar. “High-Level Synthesis of Approximate
Designs under Real-Time Constraints”. In: ACM Trans. Embed. Comput.
Syst. 18.5s (2019). doi: 10.1145/3358182 (cit. on p. 54).

[LCH20] L. G. León-Vega, J. Castro-Godínez, and J. Henkel. “Measuring Traffic
Dynamics at the Edge”. In: International Work Conference on Bioinspired
Intelligence (IWOBI) (2020) (cit. on p. xx).

[Li+15] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu. “Joint Precision Optimiza-
tion and High Level Synthesis for Approximate Computing”. In: 52nd
Design Automation Conference (DAC). 2015, pp. 1–6. doi: 10.1145/
2744769.2744863 (cit. on pp. 39, 41, 53, 54).

[LHL13] J. Liang, J. Han, and F. Lombardi. “New Metrics for the Reliability
of Approximate and Probabilistic Adders”. In: IEEE Transactions on
Computers 62.9 (2013), pp. 1760–1771. doi: 10.1109/TC.2012.146
(cit. on pp. 11, 12, 60).

[Lin+11] A. Lingamneni, C. Enz, J.-L. Nagel, K. Palem, and C. Piguet. “Energy
Parsimonious Circuit Design through Probabilistic Pruning”. In: 2011
Design, Automation & Test in Europe Conference & Exhibition (DATE).
2011, pp. 1–6. doi: 10.1109/DATE.2011.5763130 (cit. on pp. 28, 35).

[LLS20] W. Liu, F. Lombardi, and M. Shulte. “A Retrospective and Prospective
View of Approximate Computing [Point of View]”. In: Proceedings of
the IEEE 108.3 (2020), pp. 394–399. doi: 10.1109/JPROC.2020.2975695
(cit. on p. 2).

[MHR19] J. Ma, S. Hashemi, and S. Reda. “Approximate Logic Synthesis Using
BLASYS”. In: Workshop on Open-Source EDA Technology (WOSET). 5.
2019 (cit. on p. 27).

[Mah+16] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh.
“Towards Statistical Guarantees in Controlling Quality Tradeoffs for
Approximate Acceleration”. In: 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA). 2016, pp. 66–77. doi:
10.1109/ISCA.2016.16 (cit. on pp. 13, 71, 72, 75, 76).

[Mah+10] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. “Bio-
Inspired Imprecise Computational Blocks for Efficient VLSI Imple-
mentation of Soft-Computing Applications”. In: IEEE Transactions on
Circuits and Systems I: Regular Papers 57.4 (2010), pp. 850–862. doi:
10.1109/TCSI.2009.2027626 (cit. on pp. 2, 7–11, 21, 55, 64, 86).

[Maz+17a] S. Mazahir, O. Hasan, R. Hafiz, and M. Shafique. “Probabilistic Error
Analysis of Approximate Recursive Multipliers”. In: IEEE Transactions
on Computers 66.11 (2017), pp. 1982–1990. doi: 10.1109/TC.2017.
2709542 (cit. on pp. 11, 19, 39, 53).

106

https://doi.org/10.1145/3358182
https://doi.org/10.1145/2744769.2744863
https://doi.org/10.1145/2744769.2744863
https://doi.org/10.1109/TC.2012.146
https://doi.org/10.1109/DATE.2011.5763130
https://doi.org/10.1109/JPROC.2020.2975695
https://doi.org/10.1109/ISCA.2016.16
https://doi.org/10.1109/TCSI.2009.2027626
https://doi.org/10.1109/TC.2017.2709542
https://doi.org/10.1109/TC.2017.2709542

Bibliography

[Maz+16] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel. “An Area-
Efficient Consolidated Configurable Error Correction for Approximate
Hardware Accelerators”. In: 53nd Design Automation Conference (DAC).
2016, pp. 1–6. doi: 10.1145/2897937.2897981 (cit. on pp. 2, 15, 74,
76, 77, 79).

[Maz+17b] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel. “Proba-
bilistic Error Modeling for Approximate Adders”. In: IEEE Transactions
on Computers 66.3 (2017), pp. 515–530. doi: 10.1109/TC.2016.2605382
(cit. on pp. 11, 19, 39, 47, 53).

[MHS18] S. Mazahir, O. Hasan, and M. Shafique. “Adaptive Approximate Com-
puting in Arithmetic Datapaths”. In: IEEE Design Test 35.4 (2018),
pp. 65–74. doi: 10.1109/MDAT.2017.2772874 (cit. on p. 77).

[Mia+12] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. “Modeling and
Synthesis of Quality-Energy Optimal Approximate Adders”. In: 2012
IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
2012, pp. 728–735. doi: 10.1145/2429384.2429542 (cit. on p. 26).

[Mom+15] A. Momeni, J. Han, P. Montuschi, and F. Lombardi. “Design and
Analysis of Approximate Compressors for Multiplication”. In: IEEE
Transactions on Computers 64.4 (2015), pp. 984–994. doi: 10.1109/TC.
2014.2308214 (cit. on p. 10).

[Mor+15] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin. “SNNAP: Approximate computing on programmable
SoCs via neural acceleration”. In: the 21st International Symposium on
High Performance Computer Architecture (HPCA). 2015 (cit. on p. 2).

[Mra+17] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina. “EvoApprox8b: Li-
brary of Approximate Adders and Multipliers for Circuit Design and
Benchmarking of Approximation Methods”. In: Design, Automation &
Test in Europe Conference & Exhibition (DATE). 2017, pp. 258–261. doi:
10.23919/DATE.2017.7926993 (cit. on p. 12).

[MVS19] Z. Mrazek, Z. Vasicek, and L. Sekanina. “EvoApproxLib: Extended
Library of Approximate Arithmetic Circuits”. In: Workshop on Open-
Source EDA Technology (WOSET). 10. 2019 (cit. on pp. 28, 32).

[Nep+14] K. Nepal, Y. Li, R. I. Bahar, and S. Reda. “ABACUS: A Technique
for Automated Behavioral Synthesis of Approximate Computing Cir-
cuits”. In: 2014 Design, Automation & Test in Europe Conference & Ex-
hibition (DATE). 2014, pp. 1–6. doi: 10.7873/DATE.2014.374 (cit. on
pp. 53, 54).

107

https://doi.org/10.1145/2897937.2897981
https://doi.org/10.1109/TC.2016.2605382
https://doi.org/10.1109/MDAT.2017.2772874
https://doi.org/10.1145/2429384.2429542
https://doi.org/10.1109/TC.2014.2308214
https://doi.org/10.1109/TC.2014.2308214
https://doi.org/10.23919/DATE.2017.7926993
https://doi.org/10.7873/DATE.2014.374

Bibliography

[Pan+16] P. Panda, A. Sengupta, S. S. Sarwar, G. Srinivasan, S. Venkataramani,
A. Raghunathan, and K. Roy. “Invited - Cross-Layer Approxima-
tions for Neuromorphic Computing: From Devices to Circuits and
Systems”. In: 53rd Annual Design Automation Conference (DAC). DAC
’16. Austin, Texas: Association for Computing Machinery, 2016. doi:
10.1145/2897937.2905009 (cit. on p. 97).

[RR18] A. Raha and V. Raghunathan. “Approximating Beyond the Processor:
Exploring Full-System Energy-Accuracy Tradeoffs in a Smart Camera
System”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 26.12 (2018), pp. 2884–2897. doi: 10 . 1109 / TVLSI . 2018 .
2864269 (cit. on p. 98).

[Reh+16] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel.
“Architectural-Space Exploration of Approximate Multipliers”. In:
Proceedings of the 35th International Conference on Computer-Aided Design
(ICCAD). 2016. doi: 10.1145/2966986.2967005 (cit. on p. 10).

[Sam+13] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke. “SAGE:
Self-tuning Approximation for Graphics Engines”. In: Proceedings of
the 46th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-46. Davis, California: ACM, 2013, pp. 13–24. doi: 10.1145/
2540708.2540711 (cit. on p. 75).

[SBC15] A. Sampson, J. Bornholt, and L. Ceze. “Hardware-Software Co-Design:
Not Just a Cliché”. In: 1st Summit on Advances in Programming Lan-
guages (SNAPL 2015). Ed. by T. Ball, R. Bodik, S. Krishnamurthi, B. S.
Lerner, and G. Morrisett. Vol. 32. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2015, pp. 262–273. doi: 10.4230/LIPIcs.
SNAPL.2015.262 (cit. on p. 97).

[San+15] J. San Miguel, J. Albericio, A. Moshovos, and N. E. Jerger. “Dop-
pelgänger: A Cache for Approximate Computing”. In: 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 2015,
pp. 50–61. doi: 10.1145/2830772.2830790 (cit. on p. 98).

[Sca+19] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, and L. Pozzi. “Par-
tition and Propagate: An Error Derivation Algorithm for the Design of
Approximate Circuits”. In: 56th Design Automation Conference (DAC).
Las Vegas, NV, USA, 2019, 40:1–40:6. doi: 10.1145/3316781.3317878
(cit. on p. 29).

108

https://doi.org/10.1145/2897937.2905009
https://doi.org/10.1109/TVLSI.2018.2864269
https://doi.org/10.1109/TVLSI.2018.2864269
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1145/2540708.2540711
https://doi.org/10.1145/2540708.2540711
https://doi.org/10.4230/LIPIcs.SNAPL.2015.262
https://doi.org/10.4230/LIPIcs.SNAPL.2015.262
https://doi.org/10.1145/2830772.2830790
https://doi.org/10.1145/3316781.3317878

Bibliography

[Sca+20] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, L. Pozzi, and S.
Reda. “Approximate Logic Synthesis: A Survey”. In: Proceedings of
the IEEE (2020), pp. 1–19. doi: 10.1109/JPROC.2020.3014430 (cit. on
pp. 27, 37).

[SAP18] I. Scarabottolo, G. Ansaloni, and L. Pozzi. “Circuit Carving: A Method-
ology for the Design of Approximate Hardware”. In: 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 2018,
pp. 545–550. doi: 10.23919/DATE.2018.8342067 (cit. on pp. 7, 27).

[Sch+17] J. Schlachter, V. Camus, K. V. Palem, and C. Enz. “Design and Ap-
plications of Approximate Circuits by Gate-Level Pruning”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25.5 (2017),
pp. 1694–1702. doi: 10.1109/TVLSI.2017.2657799 (cit. on pp. 27, 28).

[SW11] R. Sedgewick and K. Wayne. Algorithms. Addison-Wesley, 2011 (cit. on
p. 44).

[Sen+19] D. Sengupta, F. S. Snigdha, J. Hu, and S. S. Sapatnekar. “An Analytical
Approach for Error PMF Characterization in Approximate Circuits”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 38.1 (2019), pp. 70–83. doi: 10.1109/TCAD.2018.2803626
(cit. on p. 53).

[Sha+15] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. “A Low Latency
Generic Accuracy Configurable Adder”. In: 52nd Design Automation
Conference (DAC). 2015, pp. 1–6. doi: 10.1145/2744769.2744778 (cit.
on pp. 2, 7, 9–11, 25, 55, 64, 76, 86).

[Sha+16] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel.
“Invited - Cross-Layer Approximate Computing: From Logic to Ar-
chitectures”. In: 53nd Design Automation Conference (DAC). 2016. doi:
10.1145/2897937.2906199 (cit. on pp. 2, 3, 15, 97).

[Sta+20] P. Stanley-Marbell, A. Alaghi, M. Carbin, E. Darulova, L. Dolecek, A.
Gerstlauer, G. Gillani, D. Jevdjic, T. Moreau, M. Cacciotti, A. Daglis,
N. D. E. Jerger, B. Falsafi, S. Misailovic, A. Sampson, and D. Zufferey.
“Exploiting Errors for Efficiency: A Survey from Circuits to Algo-
rithms”. In: ACM Comput. Surv. 53.3 (2020). doi: 10.1145/3394898
(cit. on p. 1).

[TW17] T. N. Theis and H.-S. P. Wong. “The End of Moore’s Law: A New
Beginning for Information Technology”. In: Computing in Science En-
gineering 19.2 (2017), pp. 41–50. doi: 10.1109/MCSE.2017.29 (cit. on
p. 1).

109

https://doi.org/10.1109/JPROC.2020.3014430
https://doi.org/10.23919/DATE.2018.8342067
https://doi.org/10.1109/TVLSI.2017.2657799
https://doi.org/10.1109/TCAD.2018.2803626
https://doi.org/10.1145/2744769.2744778
https://doi.org/10.1145/2897937.2906199
https://doi.org/10.1145/3394898
https://doi.org/10.1109/MCSE.2017.29

Bibliography

[Tic98] W. F. Tichy. “Should Computer Scientists Experiment More?” In:
Computer 31.5 (1998), pp. 32–40. doi: 10.1109/2.675631 (cit. on
pp. 40, 55).

[Vas19] Z. Vasicek. “Formal Methods for Exact Analysis of Approximate Cir-
cuits”. In: IEEE Access 7 (2019), pp. 177309–177331. doi: 10.1109/
ACCESS.2019.2958605 (cit. on p. 12).

[VMS19] Z. Vasicek, Z. Mrazek, and L. Sekanina. “Automated Circuit Ap-
proximation Method Driven by Data Distribution”. In: 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 2019,
pp. 96–101. doi: 10.23919/DATE.2019.8714977 (cit. on p. 97).

[Ven+15] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan.
“Approximate Computing and the Quest for Computing Efficiency”.
In: 52nd Design Automation Conference (DAC). 2015, pp. 1–6. doi: 10.
1145/2744769.2751163 (cit. on p. 1).

[Ven+12] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan. “SALSA: Systematic Logic Synthesis of Approximate Cir-
cuits”. In: Design Automation Conference (DAC). 2012, pp. 796–801. doi:
10.1145/2228360.2228504 (cit. on p. 7).

[VBI08] A. K. Verma, P. Brisk, and P. Ienne. “Variable Latency Speculative
Addition: A New Paradigm for Arithmetic Circuit Design”. In: 2008
Design, Automation & Test in Europe Conference & Exhibition (DATE).
2008, pp. 1250–1255. doi: 10.1109/DATE.2008.4484850 (cit. on pp. 7,
8, 10, 76).

[Wan+16] T. Wang, Q. Zhang, N. S. Kim, and Q. Xu. “On Effective and Efficient
Quality Management for Approximate Computing”. In: Proceedings of
the 2016 International Symposium on Low Power Electronics and Design.
ISLPED ’16. San Francisco Airport, CA, USA: ACM, 2016, pp. 156–161.
doi: 10.1145/2934583.2934608 (cit. on pp. 72, 75, 87, 88, 90).

[WB09] Z. Wang and A. C. Bovik. “Mean Squared Error: Love It or Leave It?
A new look at signal fidelity measures”. In: IEEE Signal Processing
Magazine 26.1 (2009), pp. 98–117. doi: 10.1109/MSP.2008.930649
(cit. on pp. 13, 59).

[Wan+04] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image
Quality Assessment: From Error Visibility to Structural Similarity”.
In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600–612. doi:
10.1109/TIP.2003.819861 (cit. on p. 13).

[Wil] S. Williams. Icarus Verilog. http://iverilog.icarus.com/ (cit. on
p. 31).

110

https://doi.org/10.1109/2.675631
https://doi.org/10.1109/ACCESS.2019.2958605
https://doi.org/10.1109/ACCESS.2019.2958605
https://doi.org/10.23919/DATE.2019.8714977
https://doi.org/10.1145/2744769.2751163
https://doi.org/10.1145/2744769.2751163
https://doi.org/10.1145/2228360.2228504
https://doi.org/10.1109/DATE.2008.4484850
https://doi.org/10.1145/2934583.2934608
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/TIP.2003.819861
http://iverilog.icarus.com/

Bibliography

[Wol] C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/
(cit. on p. 31).

[Wu+19] Y. Wu, Y. Li, X. Ge, Y. Gao, and W. Qian. “An Efficient Method for
Calculating the Error Statistics of Block-Based Approximate Adders”.
In: IEEE Transactions on Computers 68.1 (2019), pp. 21–38. doi: 10.
1109/TC.2018.2859960 (cit. on pp. 11, 19, 53).

[WQ16] Y. Wu and W. Qian. “An Efficient Method for Multi-Level Approxi-
mate Logic Synthesis under Error Rate Constraint”. In: 53nd Design
Automation Conference (DAC). 2016, pp. 1–6. doi: 10.1145/2897937.
2897982 (cit. on p. 27).

[XMK16] Q. Xu, T. Mytkowicz, and N. S. Kim. “Approximate Computing: A
Survey”. In: IEEE Design Test 33.1 (2016), pp. 8–22. doi: 10.1109/
MDAT.2015.2505723 (cit. on pp. 1, 2, 26).

[XS17] S. Xu and B. C. Schafer. “Exposing Approximate Computing Opti-
mizations at Different Levels: From Behavioral to Gate-Level”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25.11
(2017), pp. 3077–3088. doi: 10.1109/TVLSI.2017.2735299 (cit. on
pp. 78, 98).

[Yan+13] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi. “Approximate
XOR/XNOR-based Adders for Inexact Computing”. In: 13th IEEE
International Conference on Nanotechnology (IEEE-NANO 2013). 2013,
pp. 690–693. doi: 10.1109/NANO.2013.6720793 (cit. on pp. 8, 21).

[Ye+13] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. “On reconfiguration-
oriented approximate adder design and its application”. In: 2013
IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
2013, pp. 48–54. doi: 10.1109/ICCAD.2013.6691096 (cit. on pp. 10,
25, 76).

[Zen+17] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pe-
dram. “RoBA Multiplier: A Rounding-Based Approximate Multiplier
for High-Speed yet Energy-Efficient Digital Signal Processing”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25.2
(2017), pp. 393–401. doi: 10.1109/TVLSI.2016.2587696 (cit. on pp. 2,
10, 26).

[Zer+16] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi.
“Design-Efficient Approximate Multiplication Circuits Through Par-
tial Product Perforation”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 24.10 (2016), pp. 3105–3117. doi: 10.1109/
TVLSI.2016.2535398 (cit. on pp. 7, 10, 54).

111

http://www.clifford.at/yosys/
https://doi.org/10.1109/TC.2018.2859960
https://doi.org/10.1109/TC.2018.2859960
https://doi.org/10.1145/2897937.2897982
https://doi.org/10.1145/2897937.2897982
https://doi.org/10.1109/MDAT.2015.2505723
https://doi.org/10.1109/MDAT.2015.2505723
https://doi.org/10.1109/TVLSI.2017.2735299
https://doi.org/10.1109/NANO.2013.6720793
https://doi.org/10.1109/ICCAD.2013.6691096
https://doi.org/10.1109/TVLSI.2016.2587696
https://doi.org/10.1109/TVLSI.2016.2535398
https://doi.org/10.1109/TVLSI.2016.2535398

Bibliography

[Zer+19] G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi. “Multi-Level Ap-
proximate Accelerator Synthesis Under Voltage Island Constraints”.
In: IEEE Transactions on Circuits and Systems II: Express Briefs 66.4 (2019),
pp. 607–611. doi: 10.1109/TCSII.2018.2869025 (cit. on p. 53).

[ZGY09] N. Zhu, W. L. Goh, and K. S. Yeo. “An Enhanced Low-Power High-
Speed Adder For Error-Tolerant Application”. In: Proceedings of the
2009 12th International Symposium on Integrated Circuits. 2009, pp. 69–72
(cit. on pp. 10, 76).

112

https://doi.org/10.1109/TCSII.2018.2869025

List of Figures

1.1 Approximate computing at different abstraction layers 2
1.2 Contributions of this dissertation . 4

2.1 Operations profile for a set of error-tolerant applications 8
2.2 An 8-bit LOA approximate adder . 9
2.3 An 8-bit GeAr approximate adder . 9
2.4 Error distribution for two 8-bit approximate adders 11
2.5 Quality as a function of input data . 14
2.6 Simplified diagram of a system architecture 15
2.7 Comparison of parallel-prefix and approximate adders 16

3.1 Main components in the AUGER tool 20
3.2 Error distribution for two 8-bit approximate adders generated with

AUGER . 21
3.3 Comparison of LP approximate adders 22
3.4 Exploration for 16-bit LP approximate adders 23
3.5 Exploration for 32-bit LP approximate adders 24
3.6 Exploration of 8-bit GeAr approximate adders 25
3.7 Comparison of two types of approximate multipliers 26
3.8 Characterization of four 8-bit approximate adders generated from

an exact adder . 27
3.9 Overview of the AxLS framework . 29
3.10 Example of XML code for netlist description 30
3.11 DAG representation of an XML netlist example 30

113

List of Figures

3.12 Accurate netlist . 32
3.13 Approximate netlist for WCE = 8 . 33
3.14 Error distribution for the approximate netlist 33
3.15 Evaluation using AxLS for three 16-bit adders 34

4.1 Motivation example . 38
4.2 Set up for error propagation modeling 40
4.3 Example of error propagation for addition and subtraction 43
4.4 DFG representation of a 3× 3 Gaussian kernel 44
4.5 Main components of the CEDA tool 46
4.6 Example annotated code and LLVM IR 46
4.7 Evaluation for a 3× 3 Gaussian filter 48
4.8 MED and ER evaluation regarding number of approximate operations 48
4.9 Evaluation for approximate accelerators designs 49

5.1 Motivational example . 52
5.2 DFG of the tree test application . 56
5.3 Evaluation of analytical models for resource estimation 58
5.4 Proposed DSEwam methodology . 60
5.5 Model for the Gx kernel . 61
5.6 Generation of DFG from a C code description 62
5.7 Design space for Laplace and Sobel applications 64
5.8 Resulting DFGs for different accuracy targets 65
5.9 Overview of the AxHLS approach . 66
5.10 Quality evaluation for Sobel approximate accelerators 69
5.11 Quality evaluation for Sharpen approximate accelerators 69

6.1 Re-computations for accuracy improvement 73
6.2 Errors produced by LP or HP approximate adders in a Laplace filter 74
6.3 Effect of error correction in speedup reduction of an approximate

adder . 74
6.4 Outline of the prediction-based accuracy control 76
6.5 Error detection and correction outline for HP approximate adders . 77
6.6 Early error correction test implementation 78
6.7 Error distributions for a 9-bit and a 10-bit HP approximate adders . 78
6.8 Error distributions for different error correction scenarios 80
6.9 Reduction of re-computations and accelerator speedup due to selec-

tive error correction . 81
6.10 Main components in ECAx methodology 82
6.11 Example of an annotated software model 83

114

List of Figures

6.12 Error correction and its effect on re-computations and speedup for
error-tolerant applications . 87

6.13 Application speedup improvement . 88
6.14 Area and power overhead . 89
6.15 Error distribution for a Gaussian filter example 89
6.16 Effect of selective error correction for a Gaussian filter 90
6.17 Resulting quality for a Gaussian filter example 91
6.18 Resulting quality for a Laplace filter example 92

115

List of Tables

2.1 Quality results for a single accuracy Sobel approximate accelerator
and different data set . 14

5.1 Sample of components in the approximate library 55
5.2 Accuracy evaluation of AxME models 59
5.3 Evaluation of solutions provided by DSEwam 65
5.4 Results for approximate accelerators generated 68

117

Jorge Castro-Godínez

Automated Design of
Approximate Accelerators

With the emergence of the approximate computing paradigm,
many approximate functional units have been reported in the
literature, particularly approximate adders and multipliers. For a
plethora of such approximate circuits, and considering their
usage as building blocks for the design of approximate
accelerators for error-tolerant applications, a challenge arises:
selecting those approximate circuits for a given application that
minimize the required resources while satisfying a defined
accuracy.

This work proposes automated methods for designing and
implementing approximate accelerators built with approximate
arithmetic circuits.

	Contents
	Acknowledgements
	List of Publications
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Approximate Computing
	1.2 Dissertation Contribution

	2 Background and Related Work
	2.1 Approximate Arithmetic Circuits
	2.2 Approximation Error
	2.2.1 Representation
	2.2.2 Metrics
	2.2.3 Accuracy and Quality

	2.3 Approximate Accelerators

	3 Generating Approximate Arithmetic Circuits
	3.1 A Tool for Generating Approximate Arithmetic Circuits
	3.1.1 Description
	3.1.2 Evaluation

	3.2 A Framework for Approximate Logic Synthesis
	3.2.1 Description
	3.2.2 Evaluation

	3.3 Summary

	4 Modeling Error Propagation
	4.1 Motivation
	4.2 Error Estimation for Approximate Desings
	4.3 Models for Error Propagation
	4.4 Estimation of Error Propagation
	4.5 CEDA Tool
	4.6 Evaluation
	4.7 Summary

	5 Designing Approximate Accelerators
	5.1 Motivation
	5.2 Generation of Approximate Accelerators
	5.3 Models for Resource Estimation
	5.3.1 Evaluation

	5.4 Design-Space Exploration with Analytical Models
	5.4.1 Evaluation

	5.5 Approximate High-Level Synthesis
	5.5.1 Evaluation

	5.6 Summary

	6 Balancing Error Correction
	6.1 Motivation
	6.2 Accuracy Control
	6.2.1 Correction at the Accelerator Level
	6.2.2 Correction at the Approximate Circuit Level

	6.3 Early Error Correction
	6.4 ECAx Methodology
	6.5 Evaluation
	6.6 Summary

	7 Conclusion
	7.1 Dissertation Summary
	7.2 Future Work

	Bibliography
	List of Figures
	List of Tables

