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Abstract 

Algal blooms are frequently observed in eutrophic lakes and have become a widespread concern 

in many countries in the world. Algal blooms are never absent and appear many times every year 

in shallow and eutrophic Lake Taihu, China. The drinking water crisis that happened in 2007 has 

been a wake-up call for government, researchers and civilians. For more than a decade, many 

measures were taken to alleviate this problem. However, the result is not satisfactory, until now. 

It urgently needs to understand the algal dynamics in shallow and eutrophic Lake Taihu in different 

seasons and the driving factors for the algal bloom. Developing better policies and solutions must 

be based on these pieces of knowledge and background. 

Traditional methods for water quality measurement always generate delayed data, which can not 

resolve real-time situations. Moreover, most studies ignore the vertical difference in water quality, 

especially when studying shallow water bodies. This study applied a stationary online high-

frequency multi-sensor system (BIOLIFT) to measure the water quality changes across the whole 

water column. A real-time weather station was connected to the BIOLIFT to record meteorological 

data at the same time. Moreover, a boat dragged online multi-sensor system (BIOFISH) was used 

to measure the water quality’s spatial distribution. Water and sediment samples were also taken at 

the same time to understand the nutrients and trace metals status and dynamics in Lake Taihu. A 

simulation model and conceptual model was created based on this knowledge, which aims to 

contribute to an early warning system for water management and drinking water plants in the near 

future. Moreover, online measurement data were compared with data from the deeper and less 

eutrophic Lake Westensee, Germany.  

From the results, eutrophication and lake shallowness create better conditions for algal growth and 

also aggravate the remobilization of metals. Oxygen depletion was observed, caused by algal 

decomposition and sunlight reduction in the water by algal scums. It will kill aquatic animals and 

reduce biodiversity. Algal dynamic, meteorological changes, and water quality (e.g., nutrients, 

water temperature, etc.) variation have seasonal differences. Even in shallow Lake Taihu, 

stratification was observed in summer and sometimes in autumn, which indicates the necessity of 

vertical depth-profile monitoring. The vertical distribution of algae varied between species and is 
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influenced by the wind-induced mixing and resuspension. Specifically, resuspension is one of the 

nutrient sources and it can help the benthic algae get better living conditions as well as bring the 

surface blue-green algae scums back to deeper layers. Blue-green algae prefer to accumulate on 

the water surface in summer and autumn to get better light conditions, especially in the afternoon. 

Light is important for algal growth, however, fluorescence quenching and/or photoinhibition 

caused by the strong sunlight will increase algae fluorescence signals at night due to the recovery 

of light damage. In general, shallow lakes have better light availability, however, easier to be 

reduced by wind-induced resuspension. Except for the resuspension, blue-green algae scums will 

also influence the light conditions in the water. 

In general, blue-green algal blooms prefer to happen under warm, sunny, calm, and high pH 

conditions. There is a high probability that it will happen after a strong wind. Blue-green algae can 

also tolerate low-light conditions by their capability to move to the water surface by buoyancy 

changes. Therefore, preventive work can be done beforehand. 

From the result, models were developed based on high-frequency multi-sensor and weather data 

to simulate chlorophyll-a fluorescence changing rate of green algae and diatoms and phycocyanin 

fluorescence of blue-green algae on the water surface layer. Taking into account weather forecast 

data, these models furthermore have the potential to predict chlorophyll-a and phycocyanin 

fluorescence over short-term periods (2-3 days). This can be used in the drinking water plant for 

further decision-making of water treatment procedures and the amount of water pumped in 

different intake areas. 

This dissertation provides new methods to measure and analyse water quality in shallow and 

eutrophic lakes. Besides Lake Taihu, the system can also be applied in other surface waters (e.g., 

Lake Westensee). The pieces of knowledge and models about the water and algal dynamics can 

also be transferred to other lakes in the world as well. 
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Zusammenfassung 

Algenblüten kommen häufig in eutrophen Seen vor und sind in vielen Ländern der Welt zu einem 

großen Problem geworden. Ein Beispiel hierfür ist der flache und eutrophe Taihu-See in China. 

Im Taihu-See treten Algenblüten oft mehrmals im Jahr auf und führen zu wachsenden 

Herausforderungen bei der Trinkwasserversorgung. Besonders die Trinkwasserkrise im Jahr 2007 

war ein Weckruf für die Regierung, Zivilbevölkerung und Forscher, weshalb über die letzten Jahre 

verschiedenste Maßnahmen ergriffen wurden, um diesem Problem entgegenzuwirken. Die 

Ergebnisse dieser Maßnahmen sind jedoch bis heute nicht zufriedenstellend. Es ist daher dringend 

erforderlich, die Algendynamik im Taihu-See in den verschiedenen Jahreszeiten zu verstehen 

sowie die treibenden Faktoren der Algenblüten zu identifizieren, um auf Basis dieses Wissens 

angepasste Strategien und Lösungen zu entwickeln. 

Herkömmliche traditionelle Methoden zur Messung der Wasserqualität liefern in der Regel 

verzögerte Messdaten, die meist nie die Echtzeit-Situation eines Gewässers widerspiegeln. Zudem 

ignorieren die meisten Messverfahren vertikale Unterschiede der Wasserqualität, die insbesondere 

bei flachen und geschichteten Wasserkörpern einen großen Einfluss haben können. In dieser Studie 

wurde daher ein stationäres Online-Hochfrequenz-Multisensorsystem (BIOLIFT) eingesetzt, um 

die Veränderungen der Wasserqualität über die gesamte Wassersäule zu analysieren. Gleichzeitig 

wurde eine an den BIOLIFT angeschlossene Wetterstation genutzt, um meteorologische Echtzeit-

Daten zu erfassen. Zur Messung der räumlichen Verteilung der Wasserqualität kam zudem ein 

Online-Multisensorsystem (BIOFISH) zum Einsatz, welches von einem Boot aus betrieben wurde. 

Parallel zu diesen Aktivitäten wurden Wasser- und Sedimentproben entnommen, um den Zustand 

und die Dynamik der im Taihu-See auftretenden Nährstoffe und Spurenmetalle zu charakterisieren. 

Auf Basis dieser Erkenntnisse wurde anschließend ein Simulationsmodell sowie ein 

konzeptionelles Modell erstellt, das in naher Zukunft dazu beitragen soll, ein Frühwarnsystem für 

das Wassermanagement am Taihu-See und den Betrieb von Trinkwasseranlagen zu entwickeln. 

Darüber hinaus wurden die ermittelten Online-Messdaten mit entsprechenden Daten des tieferen 

und weniger stark eutrophierten Westensees in Deutschland verglichen. 

Aus den Ergebnissen dieser Arbeit geht hervor, dass die Eutrophierung in Kombination mit 

geringen Wassertiefen vorteilhafte Bedingungen für das Algenwachstum schafft und auch die 
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Remobilisierung von Metallen verstärkt. Es wurde ein Sauerstoffmangel beobachtet, der durch die 

Zersetzung von Algen und die Reduzierung des ins Wasser einfallenden Sonnenlichts durch 

Algenschäume verursacht wurde. Dieser Sauerstoffmangel führt zum Tod von Wassertieren und 

zur Verringerung der Artenvielfalt. Die Algendynamik, die Klima- und Witterungsbedingungen 

sowie die Wasserqualität (z.B. Nährstoffgehalte, Wassertemperatur, etc.) weisen außerdem starke 

jahreszeitliche Unterschiede auf. Selbst im flachen Taihu-See wurde im Sommer und zeitweilig 

im Herbst eine Stratifizierung beobachtet, was auf die Notwendigkeit eines vertikalen 

Tiefenprofil-Monitorings der Wasserqualität hinweist. Die vertikale Verteilung der Algen variiert 

in Abhängigkeit der Algenarten und wird durch windinduzierte Vermischungs- und 

Resuspensions-Ereignisse beeinflusst. Resuspensionsprozesse stellen eine der zentralen 

Nährstoffquellen dar und können insbesondere den benthischen Algen zu besseren 

Lebensbedingungen verhelfen sowie nahe der Wasseroberfläche auftretende Balualgenkolonien in 

tiefere Wasserschichten zurückbringen. Blaualgen sammeln sich im Sommer und Herbst, vor 

allem am Nachmittag, bevorzugt an der Wasseroberfläche an. Sonnenlicht ist wichtig für das 

Algenwachstum, jedoch führen Fluoreszenzlöschung- und/oder Photoinhibitionseffekte durch das 

starke Sonnenlicht zu einem Anstieg der Algenfluoreszenz in der Nacht, aufgrund der Erholung 

von Lichtschäden. Im Allgemeinen weisen flache Seen wie der Taihu eine bessere 

Lichtverfügbarkeit auf, allerdings kann diese auch leichter durch windbedingte 

Resuspensionsprozesse reduziert werden. Neben der Resuspension beeinflussen auch 

Blaualgenschäume die Lichtverhältnisse im Wasser. 

Grundsätzlich treten Blaualgenblüten vorzugsweise an warmen, sonnigen und ruhigen Tagen auf, 

wenn das Wasser außerdem einen hohen pH-Wert aufweist. Es besteht zudem eine höhere 

Wahrscheinlichkeit, dass Blaualgenblüten nach einem starken Windereignis auftreten. Blaualgen 

tolerieren auch Schwachlichtbedingungen, indem sie sich durch Auftriebsänderungen an die 

Wasseroberfläche bewegen. Daher kann präventive Arbeit im Vorfeld geleistet wurden. 

Mit den Ergebnissen dieser Studie wurde ein Modell entwickelt, mit dem auf Basis von 

hochfrequenten Multisensor- sowie Wetterdaten die Chlorophyll-a-Fluoreszenz-

Veränderungsraten von Grün- und Kieselalgen sowie die Phycocyanin-Fluoreszenz von Blaualgen 

an der Wasseroberfläche simuliert werden können und sich darüber hinaus über einen kurzfristigen 

Zeitraum (2-3 Tage) vorhersagen lassen. Dies kann in Trinkwasseranlagen zur weiteren 
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Entscheidungsfindung über notwendige Wasseraufbereitungsverfahren und die Menge des in 

verschiedene Einzugsgebiete gepumpten Rohwassers genutzt werden. 

Diese Dissertation zeigt neue Methoden zur Messung und Analyse der Wasserqualität in flachen 

und eutrophen Seen. Neben dem Taihu-See kann dieses System auch in anderen 

Oberflächengewässern (z.B. den Westensee) angewendet werden. Die Erkenntnisse und Modelle 

über die Wasser- und Algendynamik lassen sich zudem auf andere Seen in der Welt übertragen. 
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1 Context of this dissertation 

Lake Taihu, located in Yangtze Delta, China, is a key drinking water source for the local human 

population (estimated to be ~10 million), with tourism, fisheries, and shipping being additionally 

important economic functions (Qin et al., 2010). However, it is also a well-known algae-plagued 

large and shallow lake due to serious eutrophication, which caused hampered water supply in 

surrounding areas (Zhang et al., 2008). In shallow water, light condition is better and the 

temperature is higher at the bottom, which creates better conditions for the algal growth and bloom 

(Janssen et al., 2014). Moreover, water levels and conditions can be subject to strong fluctuations 

resulting from climatic variability in shallow lakes (Scheffer and Van Nes, 2007). Detailed 

introduction of these issues follows in section 1.1. In this context, this dissertation aims to 

understand the algal dynamics in shallow eutrophic Lake Taihu and explore the possibility of 

modeling the algal dynamics based on high-frequency multi-sensor data. The specific research 

objectives are in section 1.2. 

This dissertation is based on the cumulation of three first-author scientific publications (Section 

2.1) and three other parts: water quality vertical distribution (section 2.2.1), nutrient dynamic 

(section 2.2.2), and comparison of Lake Westensee and Lake Taihu (Section 2.2.3). The research 

papers are all based on fieldwork, physical analyses, biogeochemical analyses, statistic and 

mathematical modelling, and experiences that were all performed and gained within the frame of 

“Sino-German research (SIGN) project” funded by the ‘Federal Ministry of Education and 

Research of Germany’ (BMBF) as well as the ‘Ministry of Science and Technology of China’ 

(MOST). The project is introduced in section 1.3. The specific characters of the study area (Lake 

Taihu) are illustrated in section 1.4 to better understand the purposes of this study. All the sampling 

and analytical instruments and methods used in this study are summarized in section 1.5. 

In the cumulated publications of this dissertation, I revolved around the shallow and eutrophic 

characteristics of Taihu Lake discussing the vertical distribution and dynamics of algae (section 

2.1.1), the influence of shallowness and eutrophication to the metal dynamics (section 2.1.2), and 

algal simulation models in shallow and eutrophic lakes (Section 2.1.3). Section 2.2.1 is about water 

quality vertical distribution in different seasons. In section 2.2.2, the nutrients status and dynamics 

in Lake Taihu across different seasons are analyzed. Furthermore, geographic location, local 
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climate, land use and water quality of the eutrophic Lake Taihu (China) and Lake Westernsee 

(Germany) were compared (section 2.2.3). Combining complementary information of algal and 

chemical spatial-vertical dynamics is a prerequisite to understanding the full complexity of 

biogeochemical processes in shallow eutrophic lakes, to develop efficient water management and 

prevention measures and to create an algal forecast model for the drinking water plant. 

1.1 Introduction 

1.1.1 Eutrophication in the world and Lake Taihu region   

Environmental risk due to water pollution is an ongoing everyday problem in many lakes, coastal 

areas and rivers of the World. Eutrophication, during the last decades, has emerged as one of the 

leading causes of water quality impairment due to human activities (Vinçon-Leite and Casenave, 

2019). It is an ecological state of aquatic ecosystems when the water environment becomes 

enriched with nutrients (Ansari et al., 2010; Boyd, 2015; Smith et al., 1998). The nutrient status of 

the water body is usually classified into three classes: oligotrophic, mesotrophic, eutrophic 

(Carlson, 1977) (Table 1). Lakes with extreme trophic indices may also be considered 

"hypertrophic". 

Table 1 TN and TP in different trophic status of water bodies. Reprinted by permission from Table 1 in Bhagowati and 
Ahamad (2019) . © Elsevier (2018). 

Trophic status Total P (µg/L) Total N (µg/L) 

Oligotrophic 5-10 250-600 

Mesotrophic 10-30 500-1100 

Eutrophic 30-100 1000-2000 

Hypertrophic >100 >2000 

In the Lake Taihu region, wastewater discharge, agriculture and other anthropogenic activities 

generally override natural processes and substantially increase N and P concentrations 

(Wurtsbaugh et al., 2019). Excess phosphorus inputs to lakes mainly come from agriculture, and 

industrial discharges, sewage, urban areas, and construction sites (Bennett et al., 2001). Particulate 

P is the dominant fraction of total P loss by runoff, as the P is widely considered to be firmly fixed 

onto the soil particles (Zhang et al., 2003). Similar to P, applied fertilizers are also the primary 

source of N inputs and runoff is the major pathway to transport into aquatic systems (Lian et al., 
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2018; Zhao et al., 2012). In addition, domestic sewage, livestock, and poultry farm sewage 

incorporates more ammonium-N (NH4-N) and get into the water body during rainfall events (H. 

Xu et al., 2008). In the Lake Taihu region, production and/or processing of textiles, paper, 

petroleum, chemicals, medicines, and fibers are the six major polluting industries, with around 

1.04 million factories in Jiangsu province, where Lake Taihu is located (Dai, 2014). The soil in 

Jiangsu province is intensively cropped, with over 4 million hectares of irrigated area and ca. 3 

million tons of applied chemical fertilizers in 2017 (National Bureau of Statistics of China, 2018), 

and primarily under a rice-wheat rotation (Wang et al., 2015).  

Wang et al. (2018) assessed the trophic state of global inland waters in 2012 (Fig.1). Of the 2058 

water bodies considered, eutrophic water bodies accounted for 63.1% of the total number and 30.5% 

of the total surface area, mesotrophic water bodies accounted for 26.2% of the total number and 

39.4% of the total surface area, and oligotrophic water bodies accounted for 10.7% of the total 

number but 30.1% of the total surface area. Eutrophication is no longer a local issue. Instead, it 

turned out to be a global problem. 

 

Figure 1 Trophic state classification of global inland waters in the austral and boreal summers of 2012 assessed using 
the FUI-based method. Reprinted by permission from Fig.13 in Wang et al. (2018) . © Elsevier & Remote Sensing of 
Environment. 

Eutrophication stimulates an array of symptomatic changes, including increased phytoplankton 

and resulting in high turbidity, less light penetration and anoxic conditions, which leads to fish 

kills (Schindler et al., 2008; Wang and Wang, 2009). Eutrophication may lead to fisheries and 
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water quality deterioration, drinking water crisis and other undesirable changes that interfere with 

water use (Bhagowati and Ahamad, 2019; Prepas and Charette, 2003) and threaten human and 

animal health. In some areas, these environmental crises have become an urgent societal issue. Qin 

et al. (2010) reviewed the Wuxi drinking water crisis in 2007 at the northern shore of Taihu Lake 

due to bloom-forming cyanobacterial genus Microcystis contamination, which affected more than 

1 million citizens. Another example is the toxic algal bloom in Lake Erie in 2014, which forced 

0.4 million people to drink bottled water for three days (Smith et al., 2015).  

Besides, environmental factors might also stimulate eutrophication, including long water residence 

times, high temperatures and a sufficient amount of irradiation (light). From Izmailova and 

Rumyantsev’s study (2016), anthropogenic eutrophication processes have presently affected not 

only small-sized and middle-sized lakes, but also most of the large shallow lakes (surface areas 

exceeding 1000 km2) in the world due to their specific physiographic conditions. Since sediments 

are frequently disturbed by wind-induced resuspension in shallow lakes, leading to massive 

nutrients release and increased eutrophication. Moreover, the large lakes contain the most 

important freshwater reserves on the planet. It is very important to have a clear idea of their 

ecological conditions, and the changes that have taken place in them during the past decades.  

Ho et al. (2020) retrieved research hotspots of 147,811 publications about lakes and reservoirs 

from the database of the Science Citation Index Expanded from 1955 to 2019. Lake Taihu is the 

most studied lake in China and eutrophication is one of the most concerned subjects in drinking 

water and policy development research in the world (Fig.2). 
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Figure 2 Most concerned keywords in publications related to lakes (1955 - 2019) a) Chinese lakes; b) worldwide 
drinking water c) worldwide policy development. Adapted by permission from Fig. 3, 8, 10 in Ho and Goethals (2020). 
© Springer Nature & Scientometrics. 

1.1.2 Algal monitoring and modelling  

Blue-green algae that feed on nutrients grow into unsightly scums on the water surface, decreasing 

recreational value and clogging water-intake pipes. Decaying mats of dead algae can produce foul 

tastes and odors in the water; their decay by bacteria consumes dissolved oxygen from the water, 

sometimes causing fish kills. Algae, as primary producers, produce food via photosynthesis for 

themselves and most other aquatic animals. So far, 158,241 algal species are included in the online 

taxonomic database AlgaeBase (http://www.algaebase.org). Lee (2008) classified algae into two 

groups Prokaryota and Eukaryota, which were further divided into divisions. Prokaryota has just 

one division, Cyanophyta (blue-green algae), whereas Eukaryota is further divided on the basis of 

the nature of chloroplast membrane (including green algae, diatoms).  

Algae need suitable temperatures, enough sunlight and nutrients to grow. When conditions turn 

favorable for algal growth, such as an excess of nutrients (eutrophication), rapid algal growth 

occurs and algal blooms develop (Klemas, 2012). Algal blooms of blue-green algae, which might 

produce toxins, are considered to be Harmful Algal Blooms (HABs) (Benayache et al., 2019; 

Glibert et al., 2006; National Rivers Authority, 1990). Monitoring algae presence for water 

supplies is an important aspect to reduce the risk of algal blooms forming. Qualitative and 

quantitative analyses of the microorganisms are the key steps, including microscopic analysis, 
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online measurement by phycocyanin probe, molecular techniques, high-throughput sequencing, 

etc. The most common methods used include manual cell counting as well as photosynthetic 

pigment concentration analysis (mainly chlorophyll-a, phycocyanin and phycoerythrin) (Ahn et 

al., 2007; Sahoo and Seckbach, 2015). The advantages and limitations of each method are listed 

in Table 2.  

Table 2 Comparison of different algal monitoring methods (Ogashawara, 2019; Principles, 2017) 

Methods Advantages Limitations 

Microscopy 
low cost 

easy operation 

prone to misidentification 

time-consuming 

Spectrometer (chlorophyll-a) 
low cost 

easy operation 

time-consuming 

limited sensitivity 

HPLC (chlorophyll-a) accurate time-consuming 

Molecular Techniques (Polymerase 

Chain Reaction (PCR) and Real-Time 

Quantitative PCR (qPCR)) 

highly sensitive 

little contamination produce misleading 

results, 

only identify known pathogen/gene 

Fluorescence in-situ probes 

(chlorophyll-a, phycocyannin) 

online, rapid, sterilizable, stable, 

selective, fast, accurate 

interfered by cell physiology, light 

condition, water quality 

Satellite (spectral reflectance) 

cost-effective 

cover large spatial area 

benefits for surface scums 

limited by transmittance 

challenge for proper calibration 

Many planktonic cyanobacterial species are positively buoyant and therefore have a tendency to 

accumulate at the water surface, with aggregations often reinforced by light winds and flow-

mediated processes (Hunter et al., 2008). This can make sampling and monitoring of cyanobacteria 

and cyanotoxins problematic. Cell concentrations can vary rapidly with changing meteorological 

conditions, which lead to shifts in water temperature and mixing and transport processes. 

Traditional sampling practices (e.g., grab samples taken at a regular monitoring site) provide only 

a snapshot of cyanobacteria present at that one point in time and may miss areas or times of highest 

risk. Online measurement of water quality and meteorological data at the same time is very 

important. Field data loggers equipped with phycocyanin-specific sensors have been developed to 

monitor cyanobacterial populations and can provide early warning signals, for example, in 

drinking water supplies (Izydorczyk et al., 2005). 

Therefore, in this Ph.D. work, I used in-situ fluorescence probes to measure the total chlorophyll-

a (diatoms and green algae) and phycocyanin (blue-green algae). Moreover, an ex-situ 
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fluorescence instrument was used to detect chlorophyll-a of five different algal species (diatoms, 

green algae, blue-green algae, planktothrix and cryptophyta). Moreover, chlorophyll-a extraction 

was performed in the laboratory and measured by UV-vis Spectrometer.  

Algal models can tease apart the dynamics underlying observations, simulate and predict bloom 

events, and are increasingly used as management tools. Integrating data from traditional and 

emerging techniques into deterministic models has the potential to improve knowledge of algal 

processes rapidly and ultimately enable more accurate risk assessment and mitigation strategies. 

These models are classified into different categories, including conceptual, empirical-statistical, 

process, diagnostic, predictive simulation, and management (Glibert et al., 2006). While 

observational technologies have advanced rapidly in recent years, there has been considerably less 

effort devoted to advancing or developing new models. 

Conceptual models are the first step in all subsequent models, particularly useful in synthesizing 

observations into a coherent description of the system. Since the publication of Margalef’s 

(Margalef et al., 1979) mandala phytoplankton conceptual model, there have been massive 

advances in the understanding of phytoplankton arise under different environmental conditions. 

Glibert (Glibert, 2016) has updated Margalef’s conceptual model to 12 dimensions, including 

oxidation state of nitrogen, inorganic nitrogen and phosphorus, high light, motility, ambient 

turbulence, size and etc. Boyle (O’Boyle et al., 2015) created a conceptual model for shallow Irish 

estuaries based on the monitoring data, which showed different nutrient limitations (N, P or Si) in 

different seasons and gave suggestions of nutrient reduction strategy. Conceptual models thus 

serve as a simplified structure for synthesizing information about a complex system. This structure 

can then be used to motivate further research, as well as the basis for formulating mathematical 

models of the system. I combined the monitoring data and pieces of knowledge from the literature 

review to build a conceptual model for algal dynamics and species changes, which is presented in 

the synoptic discussion. 

Empirical-Statistical models are built up through statistical analyses of observations. They may 

not include any cause-effect dynamics, but rather describe the system through statistical 

correlations. Such models are most often used as predictive or management tools. This is due to 

their relative tractability compared to the more numerically intensive dynamic models. Empirical-

statistical models are only interpretable within the limits of the data used to create them; this 

presents a strong constraint to prediction in the face of changing conditions such as those driven 
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by anthropogenic climate change. Many different statistic methods have been used in algal models, 

including multiple linear regressions (Çamdevýren et al., 2005; Lamon, 1995), machine learning 

approaches (Kown et al., 2018), neural networks (Guzel, 2019; Nazeer et al., 2017; Tian et al., 

2017), M5P model-tree (Yi et al., 2019), and support vector machines (Wang et al., 2017). 

Empirical-statistical models are powerful tools when sufficient data are available. Though they are 

static in the sense that they do not include dynamic relationships among variables, with sufficient 

data (which usually means many bloom/non-bloom cycles), they can reveal relationships among 

environmental and ecological forcing and HAB responses. 

Algal models face challenges for emergency prediction because algal growth and location 

alternated very fast, especially as ecosystems are challenged by climatic shifts, severe weather, 

and anthropogenic influences. Therefore, a high-frequency online monitoring system was applied 

to observe as much information as possible for algal dynamic processes (section 2.1.1, 2.2.1, 2.2.3). 

Moreover, online monitoring data were used to create an algal simulation model (section 2.1.3). 

1.1.3 Metal pollution   

Trace metals originate primarily from urban runoff and industrial discharge, such as from electrical 

machinery, pharmaceutical industry, chemical production, automobile exhausts, and waste 

incineration (Cai et al., 2015b; Cheung et al., 2003). Once metals have entered the lakes, they are 

easily deposited on the sediment surfaces through adsorption and coagulation and react as a source 

of secondary pollution (Liu et al., 2017).  

However, the dynamics of trace metals are not independent. The algal dynamics will influence 

metal dynamics. In eutrophic lakes, heavy metal remobilization is often closely related to nutrient 

remobilization as both regularly adsorb to similar mineral fractions in the sediments (Bolan et al., 

2003; Chen et al., 2017; Zan et al., 2011). Phosphate likely adsorbs on Ca-, Fe-, Mn-, Mg- and Al- 

complexes in sediments, which are relatively insoluble and mostly transported in particulate forms 

(Selig, 2003; Weihrauch and Opp, 2018; Xu et al., 2017). Moreover, algal blooms may decrease 

the concentrations of dissolved metals in the water due to uptake by algae (Chen et al., 2008; Sunda, 

2012). 

Besides, the lake characters will affect not only the dynamics of algae but also metals. Most of the 

suspended matter is due to resuspended surface sediments and algal biomass in the shallow 
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eutrophic Lake Taihu, which is characterized by high resuspension rates and high biological 

activity (Wang et al., 2001; Yang et al., 2019; Zhu et al., 2015).  

Therefore, it can be supposed that the improvement of eutrophication and alleviating of blue-green 

algal blooms will also help mitigate the metal pollution problem.  

1.2 Research objectives 

Fishing, recreation, drinking water supplies, the protection of aquaculture regions, as well as 

measuring progress towards water quality targets, are just some of the reasons that improvements 

in monitoring and prediction of algae have become necessary in freshwaters worldwide. The goal 

of this Ph.D. work is to show, how the state of the art tools and technologies for detecting algal 

dynamics, their associated environmental conditions, can help to understand the impacts of 

eutrophication on shallow eutrophic lakes. Afterwards, incorporating those new high-frequency 

data to understand the water quality dynamics better and creating new types of algal forecast 

models. This leads to the following objectives: 

1) Implementing and adapting high-frequency multi-sensor systems in shallow eutrophic 

Lake Taihu to understand the seasonal water dynamics and algal kinetics at different 

water depths, combing with meteorological data. Traditional laboratory-based monitoring 

methods cannot reflect the real-time water quality and algal changes (section 1.1.2). Its 

limitation is substantial for fast-growing algae and rapidly changing environments. Therefore, 

building an online monitoring system to offer high-frequency real-time data is the first step for 

further water quality and dynamic analysis and modelling (section 2.1.1). A deep 

understanding of the algal vertical distribution, seasonal dynamics and its correlation with 

physicochemical meteorological parameters are fundamental for the further one-location algal 

model (section 2.1.1, 2.1.3, 2.2.1). To extract as much useful information as possible from a 

large amount of sensor data is the challenge and goal. Chlorophyll-a concentrations measured 

by different devices and methods were compared to verify the data accuracy for making 

confident estimates of algal dynamics, as well as calibrating and validating algal simulation 

models (section 2.1.3). Nutrients’ changes will influence algal concentrations on a long time 

scale. To get an overview of the algal dynamics and its future trends, I discussed the relations 

between nutrients and algae in different seasons (section 2.2.2). Trace metal pollution is a 
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problem that cannot be ignored. However, very few studies were done for it in eutrophic Lake 

Taihu and there is a lack of criteria of suspended particles and sediment in Chinese surface 

water standard. Trace metal pollution status in shallow eutrophic Lake Taihu as well as how 

the shallowness and algal dynamics affect the metal dynamics were explored in this study. 

Those pieces of knowledge offer new ideas for metal and algal pollution prevention, 

management, and treatment (section 2.1.2). 

2) Creating an algal simulation model based on high-frequency multi-sensor data and 

discussing the possibility of predicting the algal bloom. The rapid growth of algae and 

Cyanobacteria blooms are a big concern for the drinking water plants. The ultimate goal is to 

implement a multi-sensor system in the intake area of drinking water plants and combining in-

situ sensor data and weather forecast data to estimate algal changing rate or maximum 

concentrations within 2-3 days. The predictive result can help decision makers in drinking 

water plants to decide the amount of water to pump in different intake areas and alternate the 

water treatment procedures and time if necessary. A preliminary study is needed to address the 

possibilities (section 2.1.3). 

3) Comparing the geology location and physicochemical parameters of eutrophic Lake 

Taihu and Lake Westensee. To explore the universality of applying the high-frequency multi-

sensor system, the same instruments were applied in a lake in northern Germany. It is a lake 

deeper than Lake Taihu and is faced with fewer eutrophication problems (section 2.2.3). 
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1.3 The “SIGN” project 

The Sino-German research project SIGN (phase I and II) runs from 2015 to 2021, aimed to 

contribute towards improving water quality in the Taihu region. The SIGN-Project is a joint 

research and development project formed by a Sino-German scientific consortium and bilaterally 

funded by BMBF and MOST. All together, more than 15 partners from German and Chinese 

industrial, university and research institutes take part in the project and are focusing on different 

parts like urban catchment area, monitoring, lake processes, water treatment, water distribution, 

dissemination, market implementation and action priorities. 

Within SIGN, the sub-project DYNAQUA (phase I, BMBF grant-no. 02WCL1336B) was 

designed and supervised by Prof. Dr. Stefan Norra at the KIT Institute of Applied Geoscience 

(AGW). Moreover, sub-project AMORIS (phase II) was designed by Dr. Andreas Holbach and 

supervised by Prof. Dr. Stefan Norra at KIT-AGW. The main development objective of the two 

projects is to build a profiling buoy, which will carry in situ and online multi-sensor equipment for 

stationary and long-term water quality and meteorological measurements to create an algal early 

warning system (DYNAQUA) and assessing ecological risks of sediment resuspension events 

(AMORIS). The initial ideas of the projects were created by Prof. Dr. Stefan Norra and Dr. 

Andreas Holbach from the KIT-AGW, and Prof. Binghui Zheng from the Chinese Research 

Academy of Environmental Sciences (CRAES) in Beijing, China. 

Personally, I was involved in the project from June 2016 until December 2020. My responsibilities 

mainly focused on the operation of the in situ multi-sensor systems (BIOLIFT) and primarily 

included the following tasks: 1) Applying and improving the BIOLIFT system to be adapted to 

field conditions in Lake Taihu, China; 2) preparing and conducting fieldwork in Lake Taihu in 

different seasons; 3) laboratory works for water and sediment samples collected in Lake Taihu; 4) 

analyzing water quality spatial-temporal dynamics with different statistical and geostatistical 

methods; 5) creating algal early warning model by using BIOLIFT data.  
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1.4 Study area — Northern Lake Taihu, China 

1.4.1 Location and morphological characteristics 

Lake Taihu is one of the five major freshwater lakes in the Yangtze River Basin and the third 

largest freshwater lake in China. It is located at the southern of the Yangtze River Delta and 

belongs to the lower reaches of the Yangtze valley (Fig.3).   

 

Figure 3 Lake Taihu area within China and the specific study areas of northern Lake Taihu 

The lake is situated on the border of the two provinces Jiangsu and Zhejiang in East China between 

30°55'40''N and 31°32'58''E and 119° 52′32'' E and 120°36′10'' N. Lake Taihu is 68.5 km long in 

the north-south direction and on average 34 km wide from east to west. Its total water area is 2, 

338.1 km2 (Qin et al., 2007b). Low hill and massif region (ground above 12 m), situated at the 

west of the basin. The eastern parts are lowland plains. From natural and anthropogenic causes, 
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Lake Taihu has five bays: Eastern Taihu Bay, Xukou Bay, Gonghu Bay, Meiliang Bay, and 

Zhushan Bay from east to west (number one to five in Fig.3). 

As a typical shallow lake, the mean water level of Lake Taihu is 3.0 m above sea level (a.s.l.). The 

maximum depth and mean depth are 2.6 m and 1.9 m, respectively. The topography of the lake 

bottom is flat, with a mean declivity of 0°0'19.66. The mean elevation of the lake bottom is 1.1 m 

above sea level (a.s.l.) (Qin, 2008). 

1.4.2 Hydrology and Climate 

The total length of rivers in the Taihu basin is about 12,000 km (Qin et al., 2007b). Evidence of its 

prior topographic character, rivers tend to flow from west to east. West of the basin is the riverhead 

or upstream zone of most rivers feeding Lake Taihu. The lake has a complex watercourse with 

around 200 rivers enter into the lake. The annual mean runoff into the lake is around 4.1 billion m³ 

(Xu et al., 2009). Most of the runoff (33%) occurs in summer (from June to August); the least 

(11%) occurs in winter (December–February). Runoff volume varies greatly from year to year 

(Qin, 2008). The discharges of most rivers in the Taihu basin are very small. The maximum mean 

discharge of the tributary is 26.8 m3/s. In general, the water retention time of Lake Taihu is about 

300 days (Mao et al., 2008). Lake Taihu has approximately the same amount of inflow and outflow 

in flooding years as in normal years. In recent decades, the Lake Taihu water regime has changed 

as sluice gates have been built to control the outflowing watercourses. Presently, Lake Taihu has 

the characteristics of a reservoir as the water balance can be brought under human control (Qin, 

2008). 

Taihu Lake region is dominated by a subtropical monsoon climate. In summer, between June and 

September, the main precipitation appears during the rainy season (Zhao, 2013). The historical 

floods are caused by strong summer precipitation and the variation of the lake water level has a 

close relationship with changes in the monsoon precipitation (Li et al., 2013). The annual mean 

precipitation and evaporation are 1000 – 1400 mm and 941 mm, respectively. The annual mean 

air temperature is varying from 14.9 to 16.2 °C. The water temperature ranges from 0 to 38 °C, 

with the minimum temperature happening in January and the maximum in August (Li et al., 2008).  
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Moreover, the monsoon climate is responsible for dominant southeast winds in summer, and west 

and northwest winds in winter (Qin, 2008). The waves in Lake Taihu are caused by surface wind 

disturbance, and their characteristics mainly depend on wind speed, wind fetch, and water depth 

(Qin, 2008). 

1.4.3 Pollution and Eutrophication 

Lake Taihu plays multifunction roles, including navigation, tourist interest, water resource of 

drinking, aquaculture, agriculture and industry (Yang and Liu, 2010). The Lake Taihu region is 

located in one of China’s most important economic areas; the GDP of Jiangsu province has 

consistently ranked among the top three in China in the past 60 years. To achieve this, urbanization, 

developed industries, and agriculture made significant contributions. However, economic success 

led to vast resource depletion and environmental pollution. Lake Taihu has been suffering from 

problems such as industrial and agricultural pollution, flooding, eutrophication, aquaculture, 

overfishing (Wang et al., 2009). The discharge of the wastewater from these industries introduced 

heavy metals into Lake Taihu. 

Nutrient contamination and eutrophication are considered to be the main water quality problem in 

Taihu Lake, as they frequently cause algal blooms, which threaten the drinking water supply. The 

soil in Jiangsu province is primarily under a rice-wheat rotation (Wang et al., 2015). Rice is planted 

in mid-June and harvested in late October, while wheat is grown from early November to late May 

(Yu et al., 2018). Applied fertilizers are also the primary source of N and P inputs and runoff is 

the major pathway of transport into aquatic systems (Bennett et al., 2001; Lian et al., 2018; Zhao 

et al., 2012). Excess P inputs to lakes are also coming from industrial discharges, sewage, urban 

areas, and construction sites. Particulate P was the dominant fraction of total P loss by runoff, as 

the P is widely considered to be firmly fixed onto the soil particles (Zhang et al., 2003). For N, 

domestic sewage, livestock, and poultry farm sewage can incorporate ammonium-N (NH4-N) and 

get into the water body during rainfall events (H. Xu et al., 2008). 

The governments (national and regional) have implemented a series of economic, technological, 

and industrial policies during the past decades, such as establishing a pollution levy system, stricter 

emission standards, supporting environmental-friendly industries and so on, to control and 

improve the water quality of Lake Taihu (Environmental Protection Department of Jiangsu 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
1 Context of this dissertation 

29 
 

Province, 2016; Köster, 2019). With the strengthening of supervision, the amount of fertilizer 

applied slightly decreased in these three years (National Bureau of Statistics of China, 2018).  

Nitrogen exports from Wuxi city decreased in recent decades, due to the agricultural production 

structure changes and farm management improvements (Lian et al., 2018). The total P input from 

Jiangsu province had slightly decreased in 2017 (1.8×103 ton) compared to 2016 (2×103 ton). 

However, the expected reduction of algal blooms in Lake Taihu did not occur, yet. Contrarily, the 

intensity and frequency of algal blooms increased in 2017 compared to that of 2016. The largest 

algal bloom area reached up to 1403 km2 in May 2017, which was the maximum observed since 

2009 (Qin et al., 2019). However, the pollution and eutrophication status in Lake Taihu has not 

been greatly improved. The changes in CODMn, TP, and TN over 30 years from 1988 to 2018 were 

shown in Fig.4. In 2007, CODMn, TP, and TN dramatically increased compared with that of 1988. 

In recent years, CODMn and TN decreased and TP fluctuates around 0.078 mg/L. The pollution 

and eutrophication of the lake will cause serious economic and social harm.  

 

Figure 4 CODMn, TP and TN changes from 1988 to 2018 in Lake Taihu. Adapted by permission from Qin (2008). © 
Springer Nature & Springer eBook. Adapted from The health status report of Taihu Lake (2019) in 
http://www.tba.gov.cn/slbthlyglj/sj/sj.html. 

The trophic status index over the last 11 years was larger than 60 and belonged to middle eutrophic 

status (Fig.5). Pollution control is necessary but cannot instantly solve the problem. Besides the 
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external P input, sediments can also act as an internal P source, releasing P-species by diffusion 

under anoxia and calm conditions (typical for summer) and by sediment resuspension under windy 

conditions (Selig, 2003). 

 
Figure 5 Trophic status index changes in recent years. Adapted from The health status report of Taihu Lake (2019) in 
http://www.tba.gov.cn/slbthlyglj/sj/sj.html 

1.4.4 Characteristic of Northern Lake Taihu 

The study was conducted in northern Lake Taihu, which contains three major bays. These are Zhushan Bay, 

Meiliang Bay, and Gonghu Bay (Fig.6). Northern Lake Taihu, and especially its northern bays, are the most 

polluted area with nutrients, Microcystin, antibiotics, pharmaceuticals, and heavy metals (Li et al., 2011; 

Tao et al., 2012; Wilhelm et al., 2011; Xu et al., 2014). The distribution of nutrients in 2018 is shown in 

Fig.6 (Zhang et al., 2019). The northern Lake Taihu is highly polluted because the main pollutant loads are 

input from external sources with the Taihu tributaries in the north and cause poor water quality (Qin et al., 

2007b).  
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Figure 6 Changes of TN and TP distribution in recent years (2007, 2012, 2017, 2018). Adapted from The health status 
report of Taihu Lake (2019) in http://www.tba.gov.cn/slbthlyglj/sj/sj.html 

The algal blooms in summer preferred to accumulate in northern bays (Fig.7), due to the dominated 

southeast wind (Qin, 2008). Regardless of the season, there is a weak counter-clockwise current 

in northern Meiliang Bay, which may explain why this area is favourable for concentrating algal 

blooms (Hu et al., 2011; Qin et al., 2007b). 
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Figure 7 Algal bloom distribution in 2018 (the darker the colour, the greater the density). Adapted from The health 
status report of Taihu Lake (2019) in http://www.tba.gov.cn/slbthlyglj/sj/sj.html 

Zhao et al. (2013) examined data on land use, pollution and the effects on the environment in the 

northwest Taihu basin, which is considered the most polluted area in the Taihu basin (Fig.8). 

 

Figure 8 Spatial distribution of (left) agriculture and (right) industry pollution. Reprinted by permission from Zhao et 
al. (2013).© Springer Nature & Chinese Geographical Science. 
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1.5 Synoptic summary of field works and experiment methods 

1.5.1 Stationary depth-profile multi-sensor system (BIOLIFT) for in situ water 

and meteorological parameter measurements 

The BIOLIFT was the main monitoring and sampling device of this work, which can automatically 

measure the vertical water quality every 10 min. I installed it at a jetty, which reaches 250 m away 

from the shoreline in outer Meiliang Bay, where the Taihu Laboratory for Lake Ecosystem 

Research (TLLER) is located. The placement offered infrastructure and made it feasible to easily 

maintain the system, charge batteries and store required parts and tools. Each depth-profile of the 

BIOLIFT runs about 2 min with high-frequency data acquisition (getting 3 – 5 dataset per second 

and moving 2 – 3 cm per dataset, ca. 37000 data per day). The physicochemical sensors 

implemented in the BIOLIFT are pressure (water depth, [m]), water temperature [°C], pH-value, 

chlorophyll-a fluorescence [μg/L], photosynthetically active radiation in the water in different 

depth (PAR, [μmol/(m2*s)]), Oxygen saturation (Oxy-sat, [%]), turbidity (Turb, [FTU = Formazan 

Turbidity Unit]), colored dissolved organic matter (CDOM, [μg/L]). A phycocyanin fluorescence 

sensor [μg/L] has been added to the BIOLIFT multi-sensor system since 2018, which can represent 

the blue-green algae.  

A weather station (Vaisala Weather Transmitter WXT520) was installed at around 5 m above the 

water surface and connected with the BIOLIFT. The measured parameters included wind direction 

[°], wind speed [m/s], rainfall [mm], air temperature [°C], and relative humidity [%], which were 

recorded in the same frequency as physicochemical parameters (10 min). 

Moreover, a water pump was integrated into the BIOLIFT and next to the sensors (Fig.9). Water 

samples can be taken at any depth controlled manually by a control box. One aim of SIGN-

DYNAQUA is to install and adapted the BIOLIFT system as a floating buoy. I have contributed 

to floating buoy and carrying frame optimization and instrument malfunctions minimization.  
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Figure 9 Structure of BIOLIFT-buoy system (left) and its application in Lake Taihu (right) 

1.5.2 Spatial-temporal multi-sensor system (BIOFISH) for in situ water quality 

measurements at certain depth 

A multi-sensor system (BIOFISH) equipped with similar state of the art sensors as the BIOLIFT 

was used to measure water quality spatially in northern Lake Taihu. The BIOFISH can be dragged 

behind a boat and is carrying a GPS system. Different from Holbach’s Ph.D. work (Holbach, 2015), 

the typical spatial-temporal multi-sensor system with wings can not be used in shallow Lake Taihu. 

Because there is no safe distance (depth) for the instrument to move up and down. Therefore, Dr. 

Andreas Holbach and Prof. Dr. Stefan Norra (KIT, Germany) modified the BIOFISH by using a 

floating body on the top of the instrument (Fig.10). Then it can contentiously measure the spatial 

water quality at around about 1 m depth in Lake Taihu.   

On 29th November and 2nd December 2015, BIOFISH was used to map the water quality at the 

junction of Meiliang Bay and Gonghu Bay on two days conducted by Dr. Andreas Holbach and 

Prof. Dr. Stefan Norra. After that, BIOFISH was only applied in the water body during sampling 

for collecting physicochemical data according to water samples.   
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Figure 10 BIOFISH measuring spatial water quality at certain depth by using float body 

1.5.3 Performed fieldwork and chemical analytics 

In total, I attended nine field trips for sampling and monitoring in Lake Taihu (Fig. 11) from June 

2016.  

 

Figure 11 Timeline of fieldworks conducted within the SIGN project. Note: the campaigns conducted by other 
colleagues were with dark background (2014 April, 2015 May & November, 2019 August) 
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The BIOLIFT was implemented and first applied in Lake Taihu in September 2016 (Fig.12). After 

four months of troubleshooting, the BIOLIFT ran well in February 2017 and then the operational 

BIOLIFT was tried to be installed on a floating buoy one year later (2017 September). The 

following scientific journal publications are based on data from: 2014 April, 2015 May, 2015 

November/December, 2016 June/July, 2016 September, 2017 February, 2017 September, 2018 

March/April, 2018 August/September, 2018 November. Data from 2019 March and 2019 August 

was also used in my Ph.D. work. In the field, I contributed to instrument setup and maintenance, 

as well as sample taking and preparation. For all field trips from February 2017, I was responsible 

for the organizational and infrastructural arrangements within China and the prearrangements of 

sampling schedules.  

 

Figure 12 The developments of BIOLIFT-buoy system 

1.5.4 Sample collection and chemical analytics 

Water samples were collected either by a pump connected to BIOLIFT winch at TLLER station at 

different water depths (surface (~0.2 m), intermediate (half of the depth), and bottom (depend on 

the depth)) or by organic glass water sampler to collect near-surface (0.2 m) water samples in 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
1 Context of this dissertation 

37 
 

northern Lake Taihu. All in all, 566 water samples were taken in northern Lake Taihu from 2014 

April to 2019 August. Sediment cores were taken by an Uwitec Corer (Uwitec, Mondsee, Austria) 

and surface sediments were collected by A Van Veen Grab Sampler (KC Denmark A/S, Silkeborg, 

Denmark). In total, I got 164 sediment samples in northern Lake Taihu.  

The study contents, the applied techniques and instruments for analysing samples are introduced 

in Table 3: 

Table 3 The instruments and technologies used for sample analysis 

Parameters Method Instruments 

TN 
NH4-N 

Merck Quick Test: 
2,6-dimethylphenol (DMP) Tetrasodium (1 - hydroxyethylidene) 

bisphosphona Method 

NOVA 60 A Spectroquant 
(Merck Chemicals, Darmstadt, 

Germany) 

Anion ERS500 suppressor,  AS14-2 anion column 
Na2CO3/NaHCO3 eluent (flow rate: 1.2 mL/min) 

Ion Chromatography (IC; ICS-
1000, Thermo Fischer 

Scientific, Waltham, USA) 

Cation Atomizer conikal with peltier cooled spray chamber 
Collision gas (Helium/H2) 

Inductively Coupled Plasma 
Mass Spectrometry 

(ICP-MS; X-Series 2, Thermo 
Fischer Scientific, Waltham, 

USA) 

Filter digestion Complete acid digestion 
(superpure 65 % HNO3, 40 % HF, 65 % HClO4) 

Teflon beakers, heating plate 
Ceran 500, fume hood 

Chlorophyll-a 
fluorescence 
concentration 

Fluorescence with seven excitation illuminants (LEDs) and two 
detection photomultipliers (resolution: 0.01 µg/L) 

PhycoLA 
(bbe moldaenke, 

Schwentinental, Germany) 

Total 
Chlorophyll-a 
concentration 

Hot-ethanol extraction 
(90% ethanol) 

UV-Visible 
Spectrophotometer (UV-1100; 

Mapada Instruments, 
Shanghai, China ) 

Main compounds 
(sediment)* 

Tube: Rh X-ray 
Maximal energy: 50 keV 

Wavelength Dispersive X-ray 
Fluorescence (WDX; S4 

Explorer, Bruker, Billerica, 
USA) 

Trace elements  
(sediment)** 

Ge-semiconductor detector 
Tube: W/Sc X-ray tube with a 

Maximal energy: 80 keV 

Energy Dispersive X-ray 
Fluorescence (EDX; Epsiolon 

5, Malvern Panalytical, 
Malvern, UK) 

Mineral content 
(sediment) 

Tube: Cu, 
Voltage: 40 kV 

Electric current: 40 mA, p 
Power: 1600 W 

X-Ray Powder Diffraction  
(XRD; D8 Discover, Bruker, 

Billerica, USA) 

*SiO2, Al2O3, Fe2O3, K2O, Na2O, CaO, MgO, TiO2, P2O5, MnO and Co 
**Cr, Zn, Ni, Cu, Pb, As, Sr, Cd, Ag, S, V, Rb, Nb, Sn, U, Mo, Sb, Ga, Y, Ba, Zr, La, Ce, Th 
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I conducted Merck quick tests (TN and NH4-N) every day after sampling in the lab of Jiangnan 

University, China. At the KIT-AGW, I got help in the labs for filter digestions from the technician 

Mrs. Chantalle Kotschenreuther. Further, I performed IC analyses for dissolved anions assisted by 

the technician Mrs. Claudia Mößner, and I assisted Mrs. Claudia Mößner with the analyses of 

major, minor, and trace element contents using ICP-MS. For the sediment samples, I prepared the 

sediment samples with the help of technician Mr. Kristian Nikoloski. Moreover, I assisted Mrs. 

Beate Oetzel with measuring minerals and elements in the sediments by XRD, WDX, and EDX. 

1.5.5 Statistical methods 

I performed all the scientific data evaluation and interpretation of BIOLIFT and water/sediment 

chemistry datasets. The relevant statistic methods and performed software are shown in Table 4: 

Table 4 The software and statistic methods used in the study 

Method Applied for Software 

Shapiro-Wilk test 
Normal distribution test 

(elements/parameters) OriginPro 

(Origin Professional 2016; OriginLab, 

Northampton, USA) 
Hierarchical cluster; 

Pearson’s/Spearman's 

correlation 

Grouping elements; 

Correlation/regression 

Stepwise linear 

regression 
Algal simulation models SPSS (IBM SPSS Statistics 24.0) 

Evaluating high 

frequency BIOLIFT data 

Transferring data to a matrix (0.1 m 

* 3 hours) by calculating the average  

MATLAB R2018a  

(MathWorks, Stuttgart, Germany) 

Water quality spatial 

distribution 
Kriging interpolation 

ArcGIS 10.5.1  

(Esri, California, USA) 

The Ward method of hierarchical cluster analysis starts by placing its own cluster for each object 

and grouping different objects to a cluster, where the smallest difference is given (Ward, 1963). 

The minimal increase in the sum of squared errors and absolute correlation distance was used. 

Stepwise linear regression, used in algal simulation models (section 2.1.3), is a procedure for 

automatically selecting independent variables. During the process, variables added to the model 

were based solely on the t-statistics of their estimated coefficients and maximizing the squared 

multiple correlations coefficient (R2) of the model. The p-value (p; 0.05) for each independent 
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variable tests the null hypothesis to remove multicollinearity source variables. AICc (Akaike 

information criterion for the model with small sample size) was also used to estimate the relative 

amount of information lost by models, which provides a means for model selection (Cavanaugh, 

1997). 
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2 Results 

2.1 Published results and discussion 

2.1.1 Highly time-resolved analysis of seasonal water dynamics and algal 

kinetics based on in-situ multi-sensor-system monitoring data in Lake Taihu, 

China  

Authors: Jingwei Yang, Andreas 

Holbach, Andre Wilhelms, Yanwen 

Qin, Binghui Zheng, Hua Zou, 

Boqiang Qin, Guangwei Zhu, Stefan 

Norra 

Journal: Science of the Total 

Environment, 2019, 660, 329-339, DOI: 

10.1016/j.scitotenv.2019.01.044  

Authorship statement: This peer-

reviewed scientific journal article was 

written by me, based on the data 

obtained from four monitoring and 

sampling fieldtrips,  June/July 2016, 

February/March 2017, September 2017, 

March/April 2018. I participated all the 

fieldtrips and responsible for the 

fieldtrip preparation and coordinate 

work with Chinese colleagues from 

February/March 2017 campaign. Further, I performed the corresponding analytics in the 

laboratories at KIT-AGW with the help of technicians Claudia Mößner for ICP-MS and IC from 

February/March 2017 campaign. Andre Wilhelms conducted the dissolved water quality analysis 

with technicians Claudia Mößner for the samples in June/July 2016 as the content of his master's 
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thesis. All scientific data evaluation in this article were performed by me. Yanwen Qin and Binghui 

Zheng were the responsible scientists and primary project partner from the Chinese Research 

Academy of Environmental Sciences (CRAES). Hua Zou from Jiangnan University and Boqiang 

Qin and Guangwei Zhu from Nanjing Institute of Geography and Limnology (NIGLAS) made the 

necessary arrangements for the fieldwork in Wuxi, China. Andre Wilhelms and/or Andreas 

Holbach installed BIOLIFT instrument and taken water samples with me in the field together. 

Stefan Norra designed and supervised the respective project and raised funds from the BMBF. All 

co-authors critically reviewed the manuscript and agreed to its publication. 

Abstract: Predicting algal blooms is challenging due to rapid growth rates under suitable 

conditions and the complex physical, chemical, and biological processes involved. Physico-

chemical parameters, monitored in this study by a high- resolution in-situ multi-sensor system and 

derived from lab-based water sample analyses, show the seasonal variation and have different 

degrees of vertical gradients across the water column. Through analyzing the changes and relations 

between multi-factors, we reveal pictures of water quality dynamics and algal kinetics. Nitrate has 

regular seasonal changes different to the seasonal patterns of total dissolved Phosphorus. Positive 

correlations are found between Chlorophyll a fluorescence and temperature, wind-induced 

resuspension and mixing promote the augment of Cyanobacteria fluorescence (Phycocyanin) 

signal. While the resuspension can also result in the increase of turbidity and affect the light 

environment for hydrophytes, the algal scums are the main reason for the high turbidity on the 

surface, which lower the illumination radiation in the water body. Those parameters are the 

primary dominants responsible for the change of algae from our monitoring data, which could be 

used as indicators for the dynamic changes of algae in the future. 

© The full article is reprinted with kind permission from Elsevier B.V. (2019) and Science of the 

Total Environment in Appendix B.1.  
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2.1.2 Identifying spatio-temporal dynamics of trace metals in shallow 

eutrophic lakes on the basis of a case study in Lake Taihu, China  

Authors: Jingwei Yang, Andreas 

Holbach, Andre Wilhelms, Julia 

Krieg, Yanwen Qin, Binghui Zheng, 

Hua Zou, Boqiang Qin, Guangwei 

Zhu, Tingfeng Wu, Stefan Norra 

Journal: Environmental Pollution, 

2020, 264, 114802, DOI: 

10.1016/j.envpol.2020.114802 

Authorship statement: This peer-

reviewed scientific journal article 

was written by me and is based on 

seven fieldtrips, including April 2014, 

May 2015, November/December 

2015, June/July 2016, 

February/March 2017, September 

2017, March/April 2018. In April 

2014 and May 2015, the water and 

sediment samples were taken by 

Andreas Holbach and Stefan Norra. In November/December 2015, the sampling and BIOFISH 

were carried out by Andreas Holbach, Stefan Norra and Julia Krieg. I participated the fieldtrips 

from June/July 2016 and responsible for the fieldtrip preparation and coordinate work with 

Chinese colleagues from February/March 2017 campaign. The water chemical analysis (IC & ICP), 

filter digestion, and sediment element and mineral analysis (WDX & EDX & XRD & SEM) in 

campaign April 2014, May 2015, November/December 2015 were conducted by Julia Krieg with 

the help of technicians Claudia Mößner and Beate Oetzel as part of her master thesis’s work. Andre 

Wilhelms conducted the dissolved water quality analysis with technician Claudia Mößner for the 

samples in June/July 2016 as the content of his master's thesis. Further, I performed the 
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corresponding analytics (ICP-MS, IC, WDX, EDX, XRD, filter digestion) in the laboratories at 

KIT-AGW with the help of technicians from February/March 2017. All scientific data evaluation 

in this article were performed by me. Yanwen Qin and Binghui Zheng were the responsible 

scientists and primary project partner from the Chinese Research Academy of Environmental 

Sciences (CRAES). Hua Zou from Jiangnan University and Boqiang Qin and Guangwei Zhu from 

Nanjing Institute of Geography and Limnology (NIGLAS) made the necessary arrangements for 

the fieldwork in Wuxi, China. Tingfeng Wu from NIGLAS organized boat for us for dragging 

BIOFISH around Meiliang Bay and Gonghu Bay junction. Andre Wilhelms and/or Andreas 

Holbach installed BIOLIFT instrument and taken water samples with me in the field together. 

Stefan Norra designed and supervised the respective project and raised funds from the BMBF. All 

co-authors critically reviewed the manuscript and agreed to its publication. 

Abstract: In shallow eutrophic lakes, metal remobilization is closely related to the resuspension 

and eutrophication. An improved understanding of metal dynamics by biogeochemical processes 

is essential for effective management strategies. We measured concentrations of nine metals (Cr, 

Cu, Zn, Ni, Pb, Fe, Al, Mg, and Mn) in water and sediments during seven periods from 2014 to 

2018 in northern Lake Taihu, to investigate the metal pollution status, spatial distributions, mineral 

constituents, and their interactions with P. Moreover, an automatic weather station and online 

multi-sensor systems were used to measure meteorological and physicochemical parameters. 

Combining these measurements, we analyzed the controlling factors of metal dynamics. Shallow 

and eutrophic northern Lake Taihu presents more serious metal pollution in sediments than the 

average of lakes in Jiangsu Province. We found chronic and acute toxicity levels of dissolved Pb 

and Zn (respectively), compared with US-EPA “National Recommended Water Quality Criteria”. 

Suspended particles and sediment have been polluted in different degrees from uncontaminated to 

extremely contaminated according to German pollution grade by LAWA (Bund/Länder-

Arbeitsgemeinschaft Wasser). Polluted particles might pose a risk due to high resuspension rate 

and intense algal activity in shallow eutrophic lakes. Suspended particles have similar mineral 

constituents to sediments and increased with increasing wind velocity. Al, Fe, Mg, and Mn in the 

sediment were rarely affected by anthropogenic pollution according to the geoaccumulation index. 

Among them, Mn dynamics is very likely associated with algae. Micronutrient uptake by algal 

will affect the migration of metals and intensifies their remobilization. Intensive pollutions of most 

particulate metals were in the industrialized and down-wind area, where algae form mats and 
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decompose. Moreover, algal decomposition induced low-oxygen might stimulate the release of 

metals from sediment. Improving the eutrophication status, dredging sediment, and salvaging 

cyanobacteria biomass are possible ways to remove or reduce metal contaminations. 

© The full article is reprinted with kind permission from Elsevier Ltd. (2019) and Environmental 

Pollution in Appendix B.2.  
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2.1.3 Simulating chlorophyll-a fluorescence changing rate and 

phycocyanin fluorescence at one location by using a multi-sensor 

system in Lake Taihu, China 

Authors: Jingwei Yang, Andreas 

Holbach, Michael J. Stewardson, 

Andre Wilhelms, Yanwen Qin, 

Binghui Zheng, Hua Zou, Boqiang 

Qin, Guangwei Zhu, Christian 

Moldaenk, Stefan Norra 

Journal: Chemosphere, 2021, 264, 

128482, DOI: 

10.1016/j.chemosphere.2020.128482 

Authorship statement: This peer-

reviewed scientific journal article was 

written by me and is based on five 

fieldtrips, including June/July 2016, 

February/March 2017, March/April 

2018, August/September 2018, and 

November 2018. I participated all the 

fieldtrips and responsible for the 

fieldtrip preparation and coordinate 

work with Chinese colleagues from February/March 2017 campaign. Moreover, I conducted quick 

test (NH4-N and TN) and chlorophyll-a extraction experiments in the lab of Jiangnan University 

after fieldtrips of March/April 2018, August/September 2018, and November 2018. Further, I 

performed the corresponding analytics in the laboratories at KIT-AGW with the help of technicians 

Claudia Mößner for ICP-MS and IC from February/March 2017 campaign. Andre Wilhelms 

conducted the dissolved water quality analysis with technicians Claudia Mößner for the samples 

in June/July 2016 as the content of his master's thesis. All scientific data evaluation in this article 

were performed by me. Yanwen Qin and Binghui Zheng were the responsible scientists and 
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primary project partner from the Chinese Research Academy of Environmental Sciences (CRAES). 

Hua Zou from Jiangnan University and Boqiang Qin and Guangwei Zhu from Nanjing Institute of 

Geography and Limnology (NIGLAS) made the necessary arrangements for the fieldwork in Wuxi, 

China. Michael J. Stewardson provided good suggestions for the construction of the simulation 

model. Andre Wilhelms and/or Andreas Holbach installed BIOLIFT instrument and taken water 

samples with me in the field together. Christian Moldaenk offering the PhycoLA algal classes 

devices and gave technical support in the field. Stefan Norra designed and supervised the 

respective project and raised funds from the BMBF. All co-authors critically reviewed the 

manuscript and agreed to its publication. 

Abstract: Algal pollution in water sources has posed a serious problem. Estimating algal 

concentration in advance saves time for drinking water plants to take measures and helps us to 

understand causal chains of algal dynamics. This paper explores the possibility of building a short-

term algal early warning model with online monitoring systems. In this study, we collected high-

frequency data for water quality and weather conditions in shallow and eutrophic Lake Taihu by 

an in situ multi-sensor system (BIOLIFT) combined with a weather station. Extracted chlorophyll-

a from water samples and chlorophyll-a fluorescence differentiated according to different algal 

classes verified that chlorophyll-a fluorescence continuously measured by BIOLIFT only represent 

chlorophyll-a of green algae and diatoms. Stepwise linear regression was used to simulate the 

chlorophyll-a fluorescence changing rate of green algae and diatoms together (ΔChla-f%) and 

phycocyanin fluorescence concentration (blue-green algae) on the water surface layer (CyanoS). 

The results show that nutrients (total N, NO3-N, NH4-N, total P) were not necessary parameters 

for short-term algal models. Chla-f % is greatly influenced by the seasons, so seasonal partition of 

data before modeling is highly recommended. CyanoSmax and ΔChla-f% were simulated by only 

using multi-sensor and meteorological data (R2 =0.73; 0.75). All the independent variables (wave, 

water temperature, relative humidity, depth, cloud cover) used in the model were measured online 

and predictable. Wave height was the most important independent variable in the shallow lake. 

This paper offers a new approach to simulate and predict the algal dynamics, which also can be 

applied in other surface water. 

© The full article is reprinted with kind permission from Elsevier Ltd. (2020) in Appendix B.3.  
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2.2 Further results and discussions 

2.2.1 Water quality vertical distribution at different times and seasons 

Thermal stratification is a stable state in lakes that circumscribes the vertical transport of oxygen 

and other dissolved gases, limiting the supply of nutrients for aquatic organisms. Shallow lakes 

show significant differences in diurnal variations compared to deep lakes. In shallow lakes, the 

heat storage is not large enough to maintain thermal stratification for more than 24 h, which leads 

to rapid diurnal changes in thermal structure (Yang et al., 2018). Moreover, the rapid internal 

response to wind also causes the vertical variation in shallow lakes (Kimura et al., 2016).  

To get a deep understanding of the vertical distribution variation in the shallow lakes, a stationary 

depth profile (BIOLIFT) was applied for getting high-frequency online data. In this study, three 

campaigns in different seasons in 2018 were taken into account (1. March/April, 2. 

August/September, and 3. November). 

In this section, water temperature (WTemp, oC), air temperature (ATemp, oC), chlorophyll-a (Chla-

f, µg/L), phycocyanin (µg/L), photosynthetically active radiation at different water depths (IRR, 

µmol/(m2*s)), wind speed (m/s), and wind direction (o) measured by BIOLIFT were considered 

and analyzed. Chla-f of blue-green algae, diatoms and green algae were measured by PhycoLA and 

used to discuss the algal classes changes. 

Result and discussion 

WTemp distributions show dramatic differences in different seasons. In general, in campaign 2018 

March/April, WTemp distributions showed little changes at different depths (Fig. 13a). On 4th 

April 2018 in campaign 2018 March/April, ATemp was lower than WTemp, which lead to the 

colder and more dense WTemp on the water surface layer than the deeper water. As can be seen 

from the graph, WTemp decreased from 9 am to 9 pm. The lake "turns" when the colder surface 

water sinks to the lake bottom. In summer (2018 August), the water body presents stronger thermal 

stratification with warmer water on the water surface. On 28th August 2018 at 9 pm (without 

sunlight), WTemp values were similar at different depths and were lower than that in the afternoon. 

In November 2018, slight stratification was found and normally happened at noon (12 pm). Similar 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
2 Results 

48 
 

to 28th August in campaign 2018 August, ATemp was generally higher than WTemp and the 

highest WTemp was in the afternoon on day five in campaign 2018 November.  

 

Figure 13 Depth-profile of water temperature and air temperature changes in three days in different campaigns in 2018 

Chla-f of green algae and diatoms had quite different vertical distributions in different algal species 

and seasons. From Fig. 14, Chla-f (green algae and diatoms) do not show dramatic changes within 

one day at different times. However, Chla-f was slightly higher in the middle layer in 2018 

March/April and the upper layer in 2018 November. Algal species-specific depth distribution 

patterns of green algae and diatoms are related to the cell or colony density, which varies largely 

in different algal species (Miklasz and Denny, 2010, 2010; Peperzak et al., 2003).  
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Figure 14 Vertical distributions of a) - c) Chla-f, d) - f) Phycocyanin, g) - i) photosynthetically active radiation at different 
water depths (IRR), as well as j) - l) wind direction and speed in three days in three different campaigns in 2018 

Algal species compositions are different in the three campaigns. As can be seen from Fig.15, green 

algae was the dominant algal class in most days of campaign 2018 March/April (Chla-f : 46%-95%) 

compared to diatoms (0-54%) and blue-green algae (0-12%). The ratio of green algae was also 

high in 2018 November (27%-72%), but blue-green algae (17%-59%) was much more than 

diatoms (3-21%). The high concentration of Chla-f and phycocyanin at the water bottom is related 

to the wind-induced resuspension (Fig.14j, wind speed > 6 m/s) (Qin et al., 2004a), which lead to 

thermocline movements of benthic algae (Cyr, 2016). On day 4th April in 2018 March/April, the 

continuous high wind speed (Fig.14j) mixed the water body to a certain degree. Algal vertical 

movements are influenced by wind speed, hydrodynamic and algal sinking rate or buoyancy. 

Especially for green algae and diatoms, because they have no means of locomotion, they sink 
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(Miklasz and Denny, 2010). Moreover, specific algal species composition structures vary in 

different seasons. For example, even though two species belong to diatoms, they have different 

sizes, densities and sinking rates.  

 

Figure 15 Percentage of Chla-f of blue-green algae, diatoms and green algae measured by PhycoLA in three campaigns 
in 2018. 

Different from campaign 2018 August and 2018 November, phycocyanin concentrations were 

evenly distributed at different water depths in 2018 March/April, which is related to the cold 

weather and low irradiation. IRR on day 4th April of campaign 2018 March/April (maxima: 104 

µmol/(m2*s)) was much lower than that day 28th August of 2018 August (maxima: 1502 

µmol/(m2*s)) and 20th November of 2018 November (maxima: 600 µmol/(m2*s)). Phycocyanin 

concentrations were much higher in the upper layer in 2018 August and November, especially in 

the afternoon under stronger irradiation. Blue-green algal buoyancy can be altered in response to 

better living conditions by its gas vesicle (Brookes and Ganf, 2001). 
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In some cases, the Chla-f of green algae and diatoms, as well as phycocyanin, were higher at night 

when there is so sunlight (Fig 14 a, b, d). On 4th April in campaign 2018 March/April, the high 

concentration of Chla-f and phycocyanin at night was related to the strong wind with high 

concentration at the water bottom (mentioned above). On 28th August in campaign 2018 

August/September, the high measured concentration of Chla-f at night was associated with the high 

irradiations during the daytime. Under strong irradiation, photoinhibition or fluorescence 

quenching can happen (Demmig-Adams et al., 2014; Marra, 1992). Photoinhibition will lead to 

light-induced irreversible damage to PSII, the system recovered over the following night hours 

(Collos et al., 1989; Marra, 1992). On 28th August, the Chla-f remained instead of decreased from 

9 am to 3 pm. Therefore, the high measured Chla-f at night is more likely related to fluorescence 

quenching. 

Conclusion 

In general, in shallow Lake Taihu, WTemp stratification can happen in summer under warmer 

ATemp and weak stratification can also occur in autumn, when ATemp is much higher than 

WTemp. WTemp and it changes, as well as wind characteristics, are very important factors for the 

vertical distribution of algae in shallow lakes. Blue-green algae can move and stay on the water 

surface layer by its gas vesicles under suitable conditions. Wind-induced resuspension can move 

settled algae from sediments to the lake surface and increase the algal biomass in the lake water. 

Algal class distribution varies largely across different seasons. Different algal species show 

different vertical distribution patterns in the lake. Moreover, the photoinhibition during daytime 

can lead to an increase of measured algal biomass at night. 

 

2.2.2 Nutrients spatial distribution and temporal dynamics 

Nutrients are essential for plant growth, but the overabundance of nutrients in the water can have 

harmful health and environmental effects (eutrophication). Algal growth is usually limited by the 

available supply of either phosphate or nitrate (Munn et al., 2010). In the short-term, nutrients do 

not significantly influence the algal biomass (chlorophyll-a) in Lake Taihu because the nutrients 

are always sufficient for algal growth. Therefore, none of the nutrients were included in the 

simulation model (Yang et al., 2021). Moreover, algae need enough nutrients for fast growth and 
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will also consume nutrients during the growth process. Therefore, there is no clear correlation 

between nutrients and algal biomass from the result in the short-term. However, in the long-term 

and at large spatial scales, the correlation is proven in previous studies (Wurtsbaugh et al., 2019).  

In this section, nutrients, chlorophyll-a, and phycocyanin concentrations measured at the TLLER 

station of Lake Taihu in different seasons were involved in discussing their correlations. Moreover, 

water samples in the inflow rivers and river mouths of Wuli Bay were taken in two days to compare 

the algae species differences in different inflow rivers as well as the changes of algal species and 

nutrients within two days. 

Campaigns included in the nutrients analysis are 2014 April, 2015 May, 2015 

November/December, 2016 June/July, 2017 February/March, 2017 September, 2018 March/April, 

2018 August/September, 2018 November, and 2019 March. Sample collection, preparation, and 

measurement procedures of anion concentration (NO3-), dissolved/particulate element 

concentration (dissolved and particulate P), NH4-N and TN at the TLLER station were the same 

as those described in my publications (Yang et al., 2021, 2020). The campaign information and 

measured parameters at the TLLER station were shown in Table 5. 

Table 5 Campaign information and measured parameters at TLLER station 

Campaigns Start End Dissolved Particulate NH4-N/TN 

June/July 2016 27.06.2016 15.07.2016 Ö Ö - 

February/March 2017 24.02.2017 06.03.2017 Ö Ö - 

September 2017 15.09.2017 23.09.2017 Ö Ö - 

March/April 2018 19.03.2018 16.04.2018 Ö Ö Ö 

August/September 2018 16.08.2018 09.09.2018 Ö - Ö 

November 2018 16.11.2018 30.11.2018 Ö - Ö 

March 2019 21.03.2019 31.03.2019 Ö - Ö 

Water samples were also taken in Wuli Bay and from two of its inflow rivers, which are River 

Ludianqiaobang (LD) and River Xinhuzhuangtianbin (XH), in two days. Only surface water 

samples were taken by a plastic bucket on 30th March 2019. On 1st April 2019, a sediment core 

sampler was applied to collect overlying water above the sediment.  
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Result and discussion 

Nutrients and algae at the TLLER station. In Fig.16a, TN was much higher in 2018 November 

than in 2018 March/April, 2018 August/September and 2019 March, with a mean of 5.2 mg/L and 

a maximum of 20.0 mg/L, which is not the case of NO3-N and NH4-N. Li et al. (2013) also found 

high TN in the litoral areas of Meliang Bay in November. This is likely related to the exogenous 

pollution of N from agriculture in November. 

 

Figure 16 Seasonal changes of a) TN, b) NO3-N and EC25, c) NH4-N and wind speed 

As can be seen from Fig. 17, TN had two times increase in campaign 2018 November, which is 

day seven and day 14. On day 7, over 4 m/s wind speed was observed, at the same time, the 

turbidity increased from the lake bottom. Moreover, TN in the water bottom was higher than in 

the water surface. Therefore, the increase of TN on day seven was related to the wind-induced 

resuspension, which rolled up the settled algae and biomass. Unlike day seven, higher TN was 

found on the water surface instead of water bottom on day 14, in which period algae accumulated 

on the water surface. Nitrogen in algal cells is very likely the major form of TN on day 14.  
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Figure 17 Time series of chlorophyll-a fluorescence, phycocyanin fluorescence (blue-green algae), CDOM, turbidity, 
PARwater/PARair, wind speed, wind direction and TN in 2018 November 

EC25 measured by BIOLIFT can represent dissolved ionic components (Reluy et al., 2004). In 

general, EC25 had maxima in spring and minima in summer (Fig. 16b), which related to rainfall 

dilution in June/July (East Asian summer monsoon) (Yang et al., 2020). The seasonal change of 

NO3-N was inconsistent with major ions at the TLLER station (Fig. 16b). The NO3-N was the 

highest in February and March (winter-spring period) and the lowest in August. The highest 

concentration of NO3-N was measured in wheat-season, especially in months of second top 

dressing in February/March (Zhao et al., 2011). In the Lake Taihu region, rice is planted in mid-

June and harvested in late October, while wheat is grown from early November to late May (Yu 

et al., 2018). Even though more rain and flooding appeared during rice-season (June-October) 

related to the summer monsoon, the runoff was higher in wheat-season (November-May). Because 

the ridges of rice fields can help to prevent water overflow (Yu et al., 2018) and fields act as flood 
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retention basins. The low concentration of NO3-N in 2018 August is very likely due to the algal 

uptake. NO3-N, the same as EC25, was diluted by the strong rainfall in 2016 June, influenced by 

the monsoon season.  

The wind speed (Fig.16c) is based on the hourly wind speed data measured in different months. 

The fastest wind speed was in 2018 March/April, with an average of 4.2 m/s and a maximum of 

12.1 m/s. During this period, NH4-N concentration varied largely and the highest NH4-N was 0.6 

mg/L. The peak of mean NH4-N was in 2018 August/September (0.2 mg/L), during which time 

increased biological activity is to be expected due to warm weather. Moreover, under anaerobic 

conditions (Fig.18a), nitrification of ammonia to nitrate is limited and ammonia accumulates. 

 

Figure 18 Seasonal changes of a) dissolved P, Oxygen-sat., wind speed, b) particulate P and wind speed, c) total P at 
TLLER station 

During the monitoring time, the seasonal variation tendency of dissolved P was different from 

EC25. Dissolved P was low (9.9 µg/L) in 2018 March/April and extremely high (43.2 µg/L) in 

2017 September. Oxygen-sat. was the highest in 2018 November, the average value was 153%. 

Oxygen-sat. in 2019 March, 2018 August/September, 2017 September and most of 2018 
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March/April were below 100% (Fig.18a). Dissolved P was high in both 2018 August/September 

and 2017 September, during which times the Oxy-sat. were low and at the mean time wind speed 

was slow. The dissolved P desorption from the sediment prefer to happen under calm (less wind) 

and oxygen-poor condition (Kowalczewska-Madura et al., 2017). In 2016 June/July, the dissolved 

and particulate P fraction was high (Fig.20a and 20b), which was very likely coming from soil 

runoff due to the heavy rainfall. Moreover, the high concentration and variance of particulate P in 

2016 June/July was also related to algal dynamics. Some of the dissolved P might be taken up by 

algae and stored as particulate P (Wetzel, 2001). Same with NH4-N, the highest particulate P (7 

g/kg) was measured in 2018 March/April under the highest wind speed. The strong turbulence 

induced by strong wind can easily resuspend the fine particles from surface sediments into the 

water column (Qin et al., 2004b), which can happen in 2018 March/April with high wind speed 

(Fig.18b). Total P, mainly composed of particulate P, had the highest mean value of 109.5 µg/L in 

2016 June/July and the highest value in 2018 March/April (525.5 µg/L). 

In the surface sediments, the concentrations of P in Zhushan Bay were approximately two times 

higher than that in Meiliang Bay and Gonghu Bay. The higher concentrations were close to the 

river mouth (Fig. 19a). A consistent result can be seen from the dissolved P (Fig. 19b), which had 

higher concentrations near the river mouth in Zhushan Bay during all campaigns. Dissolved P in 

Zhushan Bay were all over 56 µg/L and the highest values reached 161 µg/L. These might be due 

to the pollution of P from the river around Zhushan Bay and its direct influence on the water 

column and sediment concentrations. Dissolved P is probably coming from external inputs or 

released from surface sediment. Furthermore, the dominated southeast wind in summer makes the 

down-wind location of Zhushan Bay to be a favourable area for serious cyanobacteria 

accumulation. After algae death, the bio-accumulated P will be returned to the local sediments. 

The sediments, as a nutrient sink and source, are essential for the re-introduction of mobile 

phosphate species into the water column, especially in shallow lakes like Lake Taihu.  
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Figure 19 Spatial distribution of a) P in the surface sediment; b) dissolved P in the surface water samples in northern 
Lake Taihu 

In Meiliang Bay, the dissolved P close to river mouths were higher. The highest value was 136 

µg/L measured in 2016 June/July. In this period, dissolved P had more than 100 times difference 

in different regions. The highest concentration of P occurred at the junction of Meiliang Bay and 

Gonghu Bay, measured in 2015 November/December where there are fish farms nearby. 

Even though from the perspective of laboratory research, increased nutrients can stimulate the 

increase of algae (Heisler et al., 2008), I did not observe clear correlations between algae 

(chlorophyll-a and phycocyanin) and nutrients (dissolved P, NO3-N, NH4-N, TN, and TP) on a 

daily basis. This is because the nutrient changes in the natural water body are influenced by many 

factors, including external pollution, algal uptake, and resuspension. A time-series graph of 

nutrients (dissolved P, NO3-N, NH4-N, TN) and total chlorophyll-a fluorescence measured by 
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PhycoLA (Chla-f_PhycoLA; bbe moldaenke, Schwentinental, Germany) is shown in Fig.20 and 

Fig.21.  

 

Figure 20 Time series of Chla-f_PhycoLA, TN and NH4-N changes in a) 2018 November; b) 2019 March 

From the result, the peak of nutrients and Chla-f_PhycoLA are not consistent. In general, the 

changes of dissolved P, NH4-N, NO3-N and Chla-f_PhycoLA with time in 2018 November and 

2019 March shown relationship patterns like Fig.21d. On the one hand, Chla-f increased with the 

increase of dissolved P, NO3-N and NH4-N. On the other hand, the growth of algae will decrease 

the nutrients concentration, especially NO3-N, NH4-N and dissolved inorganic P, which can be 

taken up by algae directly (Ji, 2017). The changes of dissolved P, NO3-N and Chla-f_PhycoLA in 

2018 March/April did not fit well with the curves in Fig. 21d. The variation of dissolved P was 

very likely related to the strong wind by release from sediment. Moreover, the different changing 

trends of NO3-N are likely due to potential external pollution from fertilization in February/March. 
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Figure 21 a)-c) Time series of Chla-f_PhycoLA, dissolved P and NO3-N changes in 2018 March/April, 2018 November 
and 2019 March; d) summarized variation curve of Chla-f and nutrients 

Nutrients and algae in Wuli Bay and inflow river. Wuli Bay is a small lagoon located in the 

north part of Lake Taihu, which is connected to Meiliang Bay. Wuli Bay receives millions of tons 

of domestic and industrial sewage water each day via rivers from Wuxi city (Qin et al., 2007a). 

Wuli Bay is 6 km from east to west, 0.3 - 1.5 km from south to north and has approximately 6.4 

km2 of surface area. Wuli Bay has an annual water level of 3.07 m and its mean depth is 1.60 m, 

with water level fluctuation of 1.3 - 2.0 m (Ye et al., 2011). River Ludianqiaobang (LD) is located 

in northern Wuli Bay and River Xinhuzhuangtianbang (XH) is located in eastern Wuli Bay (Fig. 

22). These two rivers have long been polluted by industrial and domestic sewage water. Because 

the construction of the sewage pipe network in this area is not perfect and the rainwater and sewage 

diversion is not implemented, which leads to the direct discharge of domestic sewage into the river. 
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Figure 22  Location of River Ludianqiaobang (LD) and River Xinhuzhuangtianbang (XH) 

In general, the nutrient concentrations (NO3-N, NH4-N, TN and dissolved P) were higher in River 

XH than that in River LD (Fig.23). NO3-N in River XH was much higher than that in the lake 

(Wuli bay). Moreover, NO3-N concentration was much higher in the overlaying water than in the 

surface water on 1st April 2018. NH4-N concentration was much higher in Wuli Bay, River LD 

and River XH than at the TLLER station during the same measuring time. TN varies quite a lot 

from the lake to river and within two days. Dissolved P was also much higher in the River XH 

than that at the TLLER station. 
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Figure 23 Concentration of NO3-N, NH4-N, TN and dissolved P in different locations and two different days (30th March 
and 1st April) 

Total chlorophyll-a measured by PhycoLA (Chla-f_PhycoLA) on the water surface layer at the 

TLLER station on 29th and 31th March were 28.3 µg/L and 19.7 µg/L, respectively (Fig.24). The 

ratio of algae classes does not have dramatic changes within two days.  
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Figure 24 Ratio changes of algal classes within two days at the TLLER station 

Chla-f_PhycoLA was 28.3 µg/L and 19.7 µg/L in the river mouth of LD and XH river on 30th March 

(Fig.25). Chla-f_PhycoLA in River LD was generally higher than the river month and nearby lake. 

However, the Chla-f_PhycoLA was lower in River XH than the nearby river month and lake. From 

the result, even though the nutrient concentrations in River XH were much higher than River LD, 

the Chla-f_PhycoLA concentrations were higher in River LD. Moreover, the algal classes and Chla-

f_PhycoLA concentrations varied more largely in River XH than that in River LD. In terms of 

proportion, River XH contained more blue-green algae than River LD. It is supposed that blue-

green algae prefer to grow under high nutrient conditions at spatial scales. Nutrient concentration 

is an important factor for algal class changes instead of algal biomass. 
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Figure 25 Ratio changes of algal classes in different location along River LD and XH 

Conclusion 

Wind-induced resuspension can easily happen in shallow Lake Taihu, which can roll up sediment 

and settled algae to the water body and promote the release of nutrients from sediment. In summer, 

the particulate N taken up by algae is very likely the major component of TN. High NO3-N was 

observed in February/March, which is related to the fertilization in wheat season. High NH4-N was 

observed in August/September, which is because of the strong biological activity and anaerobic 

condition. Low Oxygen-sat. can limit nitrification and stimulate the release of dissolved matter. 

Higher P in the sediment was found in Zhushan Bay and at the junction of Meiliang Bay and 

Gonghu Bay. Zhushan Bay is located near an industrial area and down-wind location in summer, 
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where pollution and blue-green algae accumulated and settled in the sediment. The junction of 

Meiliang Bay and Gonghu Bay is polluted by fish farms nearby. The local government should pay 

more attention to the pollution, especially the industrial discharge and fish farm, in the Zhushan 

Bay area as well as the junction of Meiliang Bay and Gonghu Bay. No clear correlations were 

found between nutrients and Chla-f. Algal biomass is not necessarily higher in water with high 

nutrients. The increase in nutrients does not lead to the rapid growth of algae. However, the algal 

growth consumes nutrients and will lead to the decrease of nutrients, if no external or internal 

nutrients are input into the lake water. Blue-green algae concentration is higher in the high nutrients 

river. 
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2.2.3 Water quality comparison of Lake Westensee in Germany and Lake 

Taihu in China 

In this section, hypertrophic Lake Taihu, China and eutrophic Lake Westensee, Germany (Berger, 

2005) were compared in geographic location, local climate, land use and water quality. High-

frequency data of water quality and weather conditions in Lake Taihu and Lake Westensee were 

simultaneously measured by two equally configured BIOLIFT on 23-24th August 2019. The 

application of the BIOLIFT buoy system in Lake Westensee is based on the WAQUAVID project, 

which aims for “Development of an Advanced Depth Profiling Monitoring System for Water 

Quality, Algae-Vitality, and -Diversity”. This project is funded by the Federal Ministry of 

Education and Research of Germany (BMBF grant no. 02WQ1375A). 

Lake Westensee is the third largest lake in Schleswig-Holstein and lies between the cities of Kiel 

and Rendsburg. It covers an area of 720 hectares and is the center of the Westensee Nature Park. 

Lake Westensee has formed at the end of the last ice age, the Vistula Ice Age. Schleswig-Holstein's 

largest river, the Eider, flows through the Westensee. Lake Westensee is one of the carbonate-rich 

lowland lakes. From Werner and Dreßler’s study (2007), Lake Westensee inferred good ecological 

status, according to Schaumburg et al. (2006). 

The geographic location of Lake Westensee and Lake Taihu is shown in Fig.26. The latitude and 

longitude differences between the two lakes are round about 110o and 25o, respectively. The land 

use of the Lake Westensee area is dominated by agriculture and forestry of different intensity and 

dimensions, which has an increased but weak human impact (Sadovnik et al., 2014). The lake area 

is characterized by forest areas in the east, agricultural land in the south and west, also loosened 

settlement areas from Felde on the north-west bank (Biota, 2017). Several smaller water bodies 

such as rivers, streams and little lakes are connected to the lake. These lakes, ponds, streams and 

rivers are, to a certain extent, embedded in woodland patches, meadows, and pasture, often lined 

by riverine groves (Nissen et al., 2013). In comparison, the Lake Taihu area (section 1.4) is more 

urbanized and industrialized than the Lake Westensee area.  
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Figure 26 Geographic location of Lake Westensee and Lake Taihu 

Basic lake and local climate information of Lake Taihu and Lake Westensee are shown in Table 

6. The water area of Lake Taihu (2, 338.1 km2) is much larger than Lake Westensee (6.8 km2). 

Moreover, Lake Taihu (maximum water depth: 2.6 m) is much shallower than Lake Westensee 

(maximum water depth: 17.5 m) (Umweltbericht des Landes Schleswig-Holstein zum Westensee, 

2020). 

Table 6 Basic information and annual air temperature, wind speed, wind direction, rainfall in Lake Westensee and Lake 
Taihu 

 Water area (km2) Mean depth (m) Climate 
Air Temp 

(o) 
Wind speed (m/s) 

Wind direction 

(o) 

Rainfall 

(mm) 

Westensee* 6.8 6.1 Oceanic 8 4 - 5 
West 

Southwest 
750 

Taihu ** 2338.1 1.9 Monsoon 15 - 16 3 - 4 
Southwest 

Southeast 
1177 

*(LBP, 2015; LLUR, 2018) 

**(Qin et al., 2010) 

Lake Westensee area belongs to the oceanic climate. The monthly mean temperature in the 

warmest month is below 22 oC, which is much cooler than Lake Taihu. Annual average wind speed 
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is slightly higher in the Lake Westensee area than that in the Lake Taihu area. Moreover, different 

from the summer monsoon in the Lake Taihu area, the precipitation in the Lake Westensee area is 

more evenly dispersed throughout the year. 

Data from literature and the government’s water quality report were collected to compare TP, TN 

and chlorophyll-a of Lake Westensee and Taihu in 2017 (Table 7). From the Table, Lake Taihu 

was more polluted by nutrients than Lake Westensee. According to the trophic status (Table 1), 

Lake Westensee belongs to the eutrophic status and Lake Taihu was hypertrophic. Same with Lake 

Taihu, diffuse pollution loads from agriculture is recognized as the primary source of phosphorus 

in Lake Westensee (MELUND SH, 2020).  

Table 7 Comparison of annual TP, TN and chlorophyll-a concentraton in Lake Taihu and Lake Westensee in 2017 

 TP (mg/L) TN (mg/L) Chla (µg/L) 

Westensee (LLUR, 2018) 0.072 1.42 14.9 

Taihu (Qin et al., 2019) 0.136 2.37 40.5 

Result and discussion 

Two BIOLIFTs were installed in Lake Taihu and Lake Westensee, respectively, on the same day 

(23th - 24th August 2019). In general, the water temperature was higher in Lake Taihu (29 - 33 oC) 

than that of Lake Westensee (16 - 20 oC) in the one-day measurement (Fig.27). Moreover, the 

maxima PAR was higher in Lake Taihu (1739 µmol/(m2*s) ) than in Lake Westensee as well. The 

high temperature and PAR play a part in the higher phycocyanin concentration (blue-green algae) 

in Lake Taihu (8 - 17 µg/L) compared with that in Lake Westensee (1 - 9 µg/L). Chlorophyll-a 

fluorescence (Chla-f) of green algae and diatoms varied largely from 2 to 13 µg/L within 10 m 

depth and had clear delamination in Lake Westensee. However, Chla-f of green algae and diatoms 

only slightly differed in different layers (6 - 10 µg/L) in Lake Taihu. This is due to the shallowness 

of Lake Taihu, where the water is easy to be well mixed by the wind and turbulence. Even though 

the wind speed was much higher in the Lake Westensee area during the measuring time, the 

turbidity was much higher in the shallow Lake Taihu. pH and EC25 were on the same scale (7.6 - 

8.9; 422 - 465 µS/cm) in the two lakes. Moreover, CDOM in Lake Westensee was round about 

eight times higher than that in Lake Taihu. This is very likely related to the decomposition process 

corresponding to extremely low oxygen saturation on the bottom of Lake Westensee (lowest: 

12 %). The increasing density of the phytoplankton in the lake is due to the nutrients present in 
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excess. The result is low light penetration, which leads to the plant and bottom algae die and 

decomposition at the bottom of the water, depleting a lot of oxygen.  

 

Figure 27 Color map and time series of parameters measured by BIOLIFT in Lake Westensee and Lake Taihu  
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Conclusion 

In general, in the summertime, Chla-f of green algae and diatoms was at a similar level in the two 

lakes. However, more blue-green algae were observed in Lake Taihu, which is related to the 

warmer water temperature and higher PAR. Turbidity is much higher in the shallow Lake Taihu, 

even under lower wind speed than Lake Westensee. The delamination phenomenon is much 

stronger and EC25, Chla-f (diatoms & green algae), CDOM concentrations were higher in deeper 

Lake Westensee. The eutrophication induced by extremely low Oxy-sat. on the water bottom will 

be harmful to the aquatic life (especially in Lake Westensee), which needs to be solved urgently.  
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3 Synoptic discussion 

Traditional laboratory methods can only get delayed data, which can not reflect real-time and fast 

algal and water quality dynamics. Therefore, a high-frequency online multi-sensor system 

(BIOLIFT) was adapted and installed in shallow and eutrophic Lake Taihu (section 2.1.1). From 

the result, the BIOLIFT multi-sensor system is necessary to be used in Lake Taihu, which can 

virtually show the daily, seasonal, and vertical water quality dynamics (section 2.1.1, 2.2.1). 

Stepwise linear regression models were successfully created for chlorophyll-a fluorescence 

changing rate (DChla-f%) of green algae and diatoms as well as phycocyanin fluorescence on the 

water surface layer (CyanoS) by only using the BIOLIFT multi-sensor data (section 2.1.3). 

Nutrients are not involved in the short-term algal simulation models because, in eutrophic lakes, 

nutrients will not have a fast response to the algal growths (section 2.1.3, 2.2.2). However, the 

nutrients impact algal growth in the long-term and at large spatial scales (section 2.2.2). The 

improvement of eutrophication status can also alleviate the trace metal pollution in the lake 

because the algal dynamics will influence the trace metal dynamics by algal uptake (section 2.1.2). 

The lake shallowness also makes nutrients and trace metals easily returned to the water column 

from sediment by resuspension (section 2.1.1, 2.1.2). The multi-sensor system was also applied in 

Lake Westensee to compare its water quality and weather conditions with shallow eutrophic Lake 

Taihu (section 2.2.3). The driving factors for algal biomass dynamics and algal species changes, 

as well as the influence of algal dynamic, lake eutrophication and shallowness to the water quality 

and aquatic life were discussed in this chapter. 

3.1 Algal biomass dynamics 

From the result, lake water quality and algae show obvious seasonal dynamics, which are related 

to the climate (section 2.1.1, 2.1.2, 2.2.1, 2.2.2). From the literature, the possible factors that might 

influence the algal dynamic including temperature, wind, irradiation, nutrients (James et al., 2013; 

Qin et al., 2018; Schmidt and Kannenberg, 1998; Singh and Singh, 2015). A conceptual model 

was established based on the literature review and the monitoring data together (Fig. 28).  
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Figure 28 Conceptual model of algal biomass and species changes 

In general, water temperature, sunlight, nutrients, and wind have positive relations with algal 

growth. Light, temperature, and nutrients are the essential conditions for algal growth (Singh and 

Singh, 2015). Sunlight is the major driving force for photosynthesis. As a result, the geographic 

location, the seasonality, and the hour of the day, which affect incident sunlight, are all important 

factors to the eutrophication process in natural waters. The optimum PAR varies for different algal 

species (section 2.1.1). The relationship between absorbed light and algal photosynthetic rates is 

non-linear, excessive sunlight will cause photoinhibition or fluorescence quenching during the 

daytime (Grobbelaar, 2013), and measured biomass can increase at night due to recovery overnight 

(section 2.2.1) (Collos et al., 1989; Marra, 1992). Light levels and water turbidity in the water 
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determine the maximum depth at which algae can grow. Algal biomass and turbidity interact with 

each other. The increase of algal growth, especially the blue-green algae scums, increased the 

turbidity and reduced underwater light availability (section 2.1.1). Without algal scums, a better 

light condition in the water body is offered, which is good for the growth of non-buoyant algae 

(e.g., green algae and diatoms). In general, shallow lakes have better light availability (section 

2.1.1, 2.2.3). However, wind-induced resuspension and resulting turbidity can easily reduce light 

transmission in shallow water (section 2.1.1, 2.2.3).  

Chlorophyll-a changing rate (DChla-f%) is raised with increasing temperature up to a certain limit 

(Fig. 29a). The optimum temperature is widely variable for different algal species. Stratification 

can also happen in shallow lakes in summer under high air temperature (section 2.1.1, 2.2.1). In 

shallow lakes, water temperature and wind have strong influences on the vertical water quality 

distribution (section 2.2.1). Wind-induced resuspension can stimulate settled nutrients and trace 

metals (in the surface sediment) back to the water body (section 2.1.1, 2.1.2). Wind can promote 

the increase of algae by wind-induced mixing (section 2.1.3). For instance, it can increase Chla-f at 

the water bottom by bringing the benthic (diatoms and green algae) or dead algae to the upper 

layer to get better light conditions (section 2.1.1, 2.2.1) and push the water surface blue-green algae 

to the deep layer (section 2.1.1) (Qin et al., 2004b; Zhang et al., 2006).  

 

Figure 29 Variation curve of Chla-f changing rate and a) temperature, b) wind speed 

Nitrogen and phosphorus seasonal dynamics are affected by seasonal pollution (agriculture), wind 

patterns, and algal dynamics. Wind can lead to resuspension as a nutrient source. Nutrients do not 
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have direct short-term and small-scale correlations with algal dynamics in eutrophic lakes (Zhang 

et al., 2018), therefore, they were not included in the algal simulation models (section 2.1.3). 

Nutrients are the essential elements for the algal growth, in turn, they will be taken up by algae (Ji, 

2017). Therefore, from the result, Chla-f increased with the increase of nutrients (dissolved P, NO3-

N and NH4-N) in long-term scales (Fig.21d). Then, the growth of algae will decrease the 

concentration of nutrients (section 2.2.2). In general, once the nutrients are exceeded, the water 

temperature and wave is an indispensable factor for the growth of algal in freshwater (Sahoo and 

Seckbach, 2015) (section 2.1.3). The changes of those factors are responsible for the algal dynamic 

and become potential indicators for predicting algal blooms.  

3.2 Algal species changes 

In natural waters, some algal species bloom for a period of time and then give way to other species 

that are more compatible with changed conditions. Typically, the first algae to increase in early 

spring are frequently the diatoms (Fig. 30), followed by green algae, and then blue-green algae (Ji, 

2017).  

 

Figure 30 Typical seasonal variations of algal concentration. Reprinted from Fig.5.1.2 in Ji (2017). © John Wiley and 
Sons & Wiley Books. 

The algal species seasonal variation also follows this pattern in Lake Taihu. Blue-green algal 

biomass peak was found between June to September (section 2.1.1, 2.2.1) (M. Li et al., 2013; Q. 

Xu et al., 2008). It is examined that eukaryotic algal taxa (green algae and diatoms) will be actively 

growing when the water temperature is above 15°C. Blue-green algae can tolerate and grow under 

higher temperatures, from 0 °C to 26–35 °C (Paerl et al., 2014; Sahoo and Seckbach, 2015; 

Schmidt and Kannenberg, 1998). This is one of the reasons that blue-green algae dominate in 

summer. 
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In general, from the results, blue-green algae prefer calm and warm conditions and can tolerate 

high pH (section 2.1.1, 2.1.3, 2.2.3). Combined with observations, the blue-green algae blooms 

normally happen under calm and sunny days straight after days with strong windy, related to the 

well-mixed lake by strong winds (Fig.29b) (section 2.1.1). From Fig.31a, the relatively high 

concentration of Chla-f_PhycoLA of blue-green algae all happened under high pH.  

 

Figure 31 Correlation between a) pH and Chla-f of blue-green algae, b) PAR and ratio of Chla-f of blue-green algae 

Similarly, in other studies, the blue-green algae bloom usually coincides with either high pH and/or 

low CO2 concentrations, and the photosynthetic rate of green algal decreased with pH from 7 to 

10 (National Rivers Authority, 1990; van der Westhuizen and Eloff, 1983). The increase of algal 

biomass in late winter and spring will increase pH and Oxygen (section 2.1.1, 2.2.3). Therefore, 

in the long-term, the algae species change from diatoms/green algae dominated (spring) to blue-

green algae dominated (summer) in the end. Although this general pattern is often observed, it can 

also have variations (USEPA, 2000b). In Lake Taihu, due to the water and meteorological 

condition difference, the blue-green algae dominated time might shift every year. Climate changes 

will also influence the algae species changes due to increased air temperature and alternated 

rainfall patterns (section: 2.1.3). 

Blue-green algae are easier to survive under low-light conditions by floating at the water surface 

(Hajdu et al., 2007). As can be seen from Fig.31b, the days with over 40% of the Chla-f of blue-



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
3 Synoptic discussion  
 

75 
 

green algae were under the PAR from 400 to 600 mol/(m2*s) in 2018 March/April and 2018 

November. Similar phenomena were not observed for other algal species in the same period. 

From literature, light fluctuation affected the phytoplankton community structure and diversity 

(Singh and Singh, 2015). However, no accurate numbers have been reported yet. Because the algal 

growth is affected by many different factors and the optimum light intensity would be different 

under different water conditions (nutrients, temperature, etc.). Daily fluctuations of DChla-f% 

(green algae and diatoms) were observed in both winter and summer (Fig.32). DChla-f% decreased 

during the night and increased in the afternoon.  

 

Figure 32 Diurnal changes of DChla-f% and PAR in a) 2016 June/July; June 29th - July 1st, b) 2016 June/July; July 3th- 
5th, c) 2017 February/March; February 26th - 28th, d) summarized diurnal variation curve of DChla-f% and PAR. 

From the result, chlorophyll-a fluorescence changing rate (DChla-f%) of green algae and diatoms 

as well as phycocyanin fluorescence on the water surface layer (CyanoS) can be simulated and 

have the potential to be short-term predicted (2 - 3 days) by only using high-frequency multi-sensor 

data and weather forecast data (section: 2.1.3). In the simulation model (linear regression), waves 
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were the most important factor because the wind-induced mixing and resuspension easily happen 

in shallow Lake Taihu. The subdominant parameter is water temperature for DChla-f% and cloud 

cover for CyanoS. The knowledge and model can be used in other shallow and eutrophic lakes as 

well. 

3.3 Influence of algal dynamic, lake eutrophication and shallowness 

to the water quality and aquatic life 

As discussed above, eutrophication and lake shallowness create better conditions for algal growth 

(section 2.1.1, 2.1.3, 2.2). However, eutrophication, lake shallowness and algal dynamic will also 

influence the water quality and aquatic life (section: 2.1.1, 2.1.2). 

Firstly, algal photosynthesis increases the pH and Oxygen saturation in the lake. Moreover, 

decomposition process of algal biomass consumes oxygen and easily leads to anaerobic conditions 

at the bottom, which will kill aquatic animals and reduce biodiversity (Ji, 2017; Sahoo and 

Seckbach, 2015) (section 2.1.1, 2.2.3). In addition, surface algal blooms block sunlight from 

reaching other organisms (Benayache et al., 2019; Heisler et al., 2008) (section 2.1.1). 

Moreover, lake shallowness and eutrophication will aggravate the remobilization of trace metals. 

Wind-induced resuspension can easily lead to an increase of suspended metals in shallow lakes 

(section 2.1.2). In the eutrophic lakes, algal uptake has a great impact on the metal cycles and 

distributions (Duan et al., 2009). Sediment pollution in the down-wind location of blooms is found 

to be the worst (section 2.1.2). Moreover, the algal decomposition might lower Oxy-sat. and 

accelerate the release of metals from sediment (Atkinson et al., 2007; Zhu et al., 2013) (section 

2.1.2).  

In general, algal growth is harmful to the ecosystem by consuming the nutrients needed by other 

aquatic animals and plants, consuming the oxygen on the lake bottom, reducing the light 

availability, and accelerating the nutrients and trace metal vertical and spatial dynamics. The 

frequent resuspension caused by the lake shallowness increased turbidity as well as the 

concentration of nutrients and particulate trace metals. 
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4. Conclusions and outlook 

4.1 Conclusions 

Algal pollution has been plagued worldwide for decades. However, the algae are very dynamic 

under different conditions and can change very fast, making it difficult to monitor and predict. 

Therefore, in this study, an online weather station combined multi-sensor system was used to 

observe as much information as possible for the vertical water quality and meteorological changes 

accompanying the algal dynamics in a shallow and eutrophic lake (Lake Taihu, China). By 

integrating the real-time high-frequency data, leading factors for the algal growth as well as algal 

vertical and diurnal distribution patterns were found. In shallow and eutrophic lakes, wind-induced 

mixing/resuspension and water temperature are the most important factors for algal growth. 

Moreover, wind-induced resuspension is an internal pollution source of nutrients, as it stimulates 

the release of nutrients from sediment. Light is also an important factor for blue-green algae, which 

are able to buoyant to the water surface. Stratification can occur in Lake Taihu in summer and 

possibly in autumn. Algal growth shows diurnal changes and is mostly negative during night time, 

unless there is photoinhibition or fluorescence quenching during the daytime. In general, blue-

green algal bloom normally appears quickly on warm, calm, and sunny days, especially after days 

with strong wind. Blue-green algae can tolerate extreme conditions, and after these rapidly become 

the dominant species. Therefore, strong winds can be an early warning factor for blue-green algal 

blooms. 

Data-based algal simulation models and conceptual models were created to get a deep 

understanding of the algal dynamics and explore the potential of predicting short-term algal 

dynamics by only using multi-sensor data. Algal species seasonal changes and blue-green algae 

bloom mainly happened in late spring to summer because blue-green algae prefer warmer 

conditions than green algae and diatoms. Moreover, the rapid algal growth of green algae and 

diatoms in spring happens under sufficient nutrients, warmth, enough sunlight conditions, which 

increased pH and decreased CO2. These create suitable conditions for blue-green algae growth in 

summer. However, the warmer winter due to the climate changes leads to early blue-green algae 

bloom (late-spring) in recent years. Based on these results, preventive work can be done 

beforehand according to water and weather conditions. For example, arranging blue-green algae 
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salvage work beforehand and adjusting the water treatment procedure for drinking water plants. 

Meteorological parameters (wind-induced wave, water temperature, cloud cover) are the most 

important factors for short-term algal biomass changes. There is potential to predict algal growth 

2-3 days in advance by using a high-frequency multi-sensor system and weather forecast data.   

Moreover, in an aquatic system, the algal problem does not solely exist. Algal blooms reduce light 

availability and biomass decomposition leads to oxygen depletion, which is harmful to other 

aquatic animals. Moreover, the algal dynamics might also impact the dynamics of other 

compounds, for example, trace metals. In general, in shallow eutrophic lakes, the improvement of 

the eutrophic state can alleviate the metal pollution problem. Controlling excessive fertilization 

can reduce nutrient and also metal inputs due to fertilizer impurities. Blue-green algae salvaging 

and sediment dredging in down-wind areas might mitigate metal pollution by removing metals 

from aquatic systems. Warmer water temperature, higher irradiation and shallower water depths 

are the reason for the higher concentration of blue-green algae and turbidity in Lake Taihu 

compared with Lake Westensee.  

4.2 Outlook 

4.2.1 Early-warning system for drinking water plants 

Fig. 33 presents the ideal prediction platform for drinking water plants. The BIOLIFT multi-sensor 

system can offer high-frequency water and meteorological data in each intake area. BIOLIFT data 

has proven to have the potential to predict the chlorophyll-a changing rate of diatoms and green 

algae and surface-layer blue-green algae (section 2.1.3). The data can be transferred to the control 

center of drinking water plants for further decision-making, either with respect to controlling the 

amount of water pumped from each intake area, or adapted/additional water treatment procedures. 

After collecting long-term high-frequency data in different seasons, methods of machine learning 

can be used to create a short-term (2-3 days) algal prediction model based on in situ sensor data 

and weather forecast data. 

A boat dragged BIOFISH can be applied to measure the spatial water quality between BIOLIFTs 

to overview the water quality status and changes in the whole lake. A 3D hydrodynamic lake model 

can then be established for simulating the water quality in the entire lake. 
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Figure 33 Structure diagram of algal early warning system for drinking water plants 

4.2.2 Transferred the knowledge and technology to other aquatic systems  

Except for Lake Taihu, the BIOLIFT multi-sensor system has also been successfully applied in 

the deeper Lake Westensee (section 2.2.3). Similar sensor technologies and data processing 

methods can also be used in other aquatic systems for getting long-term high-frequency vertical 

profile data. 

From the study, even lakes as shallow as Lake Taihu (mean: 1.9 m) can have stratification in the 

summer time. Therefore, vertical water quality profiling and water sampling at different water 

depths are necessary for all the lakes, as it helps to understand water quality dynamics in detail. 

The knowledge about the water and algal dynamics (section 2.1.1, 2.1.2, 2.2.1, 2.2.2, 2.2.3) should 

also be suitable in other eutrophic lakes. The algal dynamic simulation and potential prediction 

model (section 2.1.3) can also be used in other lakes. However, selected parameters and equations 

of the models should be modified based on the different water quality and weather conditions.   



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

80 
 

References 

Ahn, C.Y., Joung, S.H., Yoon, S.K., Oh, H.M., 2007. Alternative alert system for cyanobacterial 

bloom, using phycocyanin as a level determinant. J. Microbiol. 45, 98–104. 

Ansari, A.A., Gill, S.S., Lanza, G.R., Rast, W., 2010. Eutrophication: Causes, Consequences and 

Control. Springer Science & Business Media, Dordrecht. https://doi.org/10.1007/978-90-

481-9625-8 

Atkinson, C.A., Jolley, D.F., Simpson, S.L., 2007. Effect of overlying water pH, dissolved oxygen, 

salinity and sediment disturbances on metal release and sequestration from metal 

contaminated marine sediments. Chemosphere 69, 1428–1437. 

https://doi.org/10.1016/j.chemosphere.2007.04.068 

Benayache, N.-Y., Nguyen-Quang, T., Hushchyna, K., McLellan, K., Afri-Mehennaoui, F.-Z., 

Bouaïcha, N., 2019. An Overview of Cyanobacteria Harmful Algal Bloom (CyanoHAB) 

Issues in Freshwater Ecosystems. Limnol. New Asp. Inl. Water Ecol. 

https://doi.org/10.5772/intechopen.84155 

Bennett, E.M., Carpenter, S.R., Caraco, N.F., 2001. Human impact on erodable phosphorus and 

eutrophication. Bioscience 51, 227–234. 

Berger, S.A., 2005. Environmental variable and plankton communities in the pelagic of lakes: 

enclosure experiment and comparative lake survey. Ludwig-Maximilians-Universität 

München. 

Bhagowati, B., Ahamad, K.U., 2019. A review on lake eutrophication dynamics and recent 

developments in lake modeling. Ecohydrol. Hydrobiol. 19, 155–166. 

https://doi.org/10.1016/j.ecohyd.2018.03.002 

Biota, 2017. Monitoring der Qualitätskomponente Makrophyten/Phytobenthos für WRRL und 

FFH-RL in schleswig-holsteinischen Seen 2017. 

Boyd, C.E., 2015. Water Quality. Springer, Auburn. 

Brookes, J.D., Ganf, G.G., 2001. Variations in the buoyancy response of microcystis aeruginosa 

to nitrogen, phosphorus and light. J. Plankton Res. 23, 1399–1411. 

https://doi.org/10.1093/plankt/23.12.1399 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

81 
 

Çamdevýren, H., Demýr, N., Kanik, A., Keskýn, S., 2005. Use of principal component scores in 

multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecol. Modell. 

181, 581–589. https://doi.org/10.1016/j.ecolmodel.2004.06.043 

Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22, 361–369. 

https://doi.org/10.4319/lo.1977.22.2.0361 

Cavanaugh, J.E., 1997. Unifying the derivations for the Akaike and corrected Akaike information 

criteria. Stat. Probab. Lett. 33, 201–208. https://doi.org/10.1016/s0167-7152(96)00128-9 

Collos, Y., Maestrini, S.Y., Robert, J.M., 1989. Nocturnal synthesis and diurnal degradation of 

phytoplankton biomass in surface waters. Mar. Biol. 101, 457–462. 

https://doi.org/10.1007/BF00541647 

Cyr, H., 2016. Wind-driven thermocline movements affect the colonisation and growth of 

Achnanthidium minutissimum, a ubiquitous benthic diatom in lakes. Freshw. Biol. 61, 1655–

1670. https://doi.org/10.1111/fwb.12806 

Dai, L., 2014. Exploring China’s approach to implementing ‘eco-compensation’ schemes: the 

Lake Tai watershed as case study considered through a legal lens. Water Int. 39, 755–773. 

https://doi.org/10.1080/02508060.2014.950860 

Demmig-Adams, B., Garab, G., Adams Iii, W., 2014. Non-Photochemical Quenching and Energy 

Dissipation in Plants, Algae and Cyanobacteria. Springer Netherlands, Dordrecht. 

https://doi.org/10.1007/978-94-017-9032-1_1 

Duan, H., Ma, R., Xu, X., Kong, F., Zhang, S., Kong, W., Hao, J., Shang, L., 2009. Two-Decade 

Reconstruction of Algal Blooms in China’s Lake Taihu. Environ. Sci. Technol. 43, 3522–

3528. https://doi.org/10.1021/es8031852 

Environmental Protection Department of Jiangsu Province, 2016. Outline of the construction plan 

of environmental protection credit system in Jiangsu province (2016-2020). 

Glibert, P.M., 2016. Margalef revisited: A new phytoplankton mandala incorporating twelve 

dimensions, including nutritional physiology. Harmful Algae 55, 25–30. 

https://doi.org/10.1016/j.hal.2016.01.008 

Glibert, P.M., Berdalet, E., Burford, M.A., Pitcher, G.C., Zhou, M., 2006. Global Ecology and 

Oceanography of Harmful Algal Blooms, Harmful Algal Blooms in Eutrophic Systems., in: 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

82 
 

Paris and Baltimore: Scientific Committee on Oceanic Research (SCOR) and 

Intergovernmental Oceanographic Commission (IOC), UNESCO. p. 74. 

Grobbelaar, J.U., 2013. Mass Production of Microalgae at Optimal Photosynthetic Rates, InTech. 

Rijeka. https://doi.org/10.5772/55193 

Guzel, H.O., 2019. Prediction of Freshwater Harmful Algal Blooms in Western Lake Erie Using 

Artificial Neural Network Modeling Techniques. North Dakota State University. 

Hajdu, S., Höglander, H., Larsson, U., 2007. Phytoplankton vertical distributions and composition 

in Baltic Sea cyanobacterial blooms. Harmful Algae 6, 189–205. 

https://doi.org/10.1016/j.hal.2006.07.006 

Heisler, J., P. Glibert, Burkholder, J., Anderson, D., Cochlan, W., Dennison, W., Gobler, C., 

Dortch, Q., Heil, C., Humphries, E., Lewitus, A., Magnien, R., H.Marshall, Sellner, K., 

Stockwell, D., Stoecker, D., Suddleson, M., 2008. Eutrophication and harmful algal blooms: 

A scientific consensus. Harmful Algae 8, 3–13. https://doi.org/10.1016/j.hal.2008.08.006 

Ho, L., Goethals, P., 2020. Research hotspots and current challenges of lakes and reservoirs: a 

bibliometric analysis. Scientometrics. https://doi.org/10.1007/s11192-020-03453-1 

Holbach, A., 2015. Water quality and pollutant dynamics in the Three Gorges Reservoir on the 

Yangtze River, China. Karlsruhe Institute of Technology. 

Hu, J., Liu, M., Zhou, W., Xu, C., Yang, X., Zhang, S., Wang, L., 2011. Correlations between 

water quality and land use pattern in Taihu Lake basin (Chinese). Chinese J. Ecol. 30, 1190–

1197. 

Hunter, P.D., Tyler, A.N., Willby, N.J., Gilvear, D.J., 2008. The spatial dynamics of vertical 

migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high 

spatial resolution time-series airborne remote sensing. Limnol. Oceanogr. 53, 2391–2406. 

https://doi.org/10.4319/lo.2008.53.6.2391 

Izmailova, A. V., Rumyantsev, V.A., 2016. Trophic status of the largest freshwater lakes in the 

world. Lakes Reserv. Res. Manag. 21, 20–30. https://doi.org/10.1111/lre.12123 

Izydorczyk, K., Tarczynska, M., Jurczak, T., Mrowczynski, J., Zalewski, M., 2005. Measurement 

of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir 

intake water. Environ. Toxicol. 20, 425–430. https://doi.org/10.1002/tox.20128 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

83 
 

James, S.C., Janardhanam, V., Hanson, D.T., 2013. Simulating pH effects in an algal-growth 

hydrodynamics model. J. Phycol. 49, 608–615. https://doi.org/10.1111/jpy.12071 

Janssen, A.B.G., Teurlincx, S., An, S., Janse, J.H., Paerl, H.W., Mooij, W.M., 2014. Alternative 

stable states in large shallow lakes? J. Great Lakes Res. 40, 813–826. 

https://doi.org/10.1016/j.jglr.2014.09.019 

Ji, Z., 2017. Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. John Wiley 

& Sons, Hoboken. 

Kimura, N., Wu, C.H., Hoopes, J.A., Tai, A., 2016. Diurnal dynamics in a small shallow lake 

under spatially nonuniform wind and weak stratification. J. Hydraul. Eng. 142, 1–21. 

https://doi.org/10.1061/(ASCE)HY.1943-7900.0001190 

Klemas, V., 2012. Remote sensing of algal blooms: An overview with case studies. J. Coast. Res. 

278, 34–43. https://doi.org/10.2112/jcoastres-d-11-00051.1 

Köster, S., 2019. Urban Water Management for Future Cities. Springer, Basel. 

Kowalczewska-Madura, K., Dondajewska, R., Gołdyn, R., Podsiadłowski, S., 2017. The influence 

of restoration measures on phosphorus internal loading from the sediments of a 

hypereutrophic lake. Environ. Sci. Pollut. Res. 24, 14417–14429. 

https://doi.org/10.1007/s11356-017-8997-2 

Kown, Y.S., Baek, S.H., Lim, Y.K., Pyo, J.C., Ligaray, M., Park, Y., Cho, K.H., 2018. Monitoring 

coastal chlorophyll-a concentrations in coastal areas using machine learning models. Water 

(Switzerland) 10, 1–17. https://doi.org/10.3390/w10081020 

Lamon, E.C., 1995. A regression model for the prediction of chlorophyll a in lake okeechobee, 

florida. Lake Reserv. Manag. 11, 283–290. https://doi.org/10.1080/07438149509354209 

LBP, 2015. Planfeststellungsverfahren Ersatzneubau der alten Levensauer Hochbrücke und 

Ausbau des Nord-Ostsee-Kanals NOK-Km 93,2 – 94,2. 

Lee, R.E., 2008. Phycology, 4th edn. ed. Cambridge University Press, London. 

Li, L., Li, Y., Biswas, D.K., Nian, Y., Jiang, G., 2008. Potential of constructed wetlands in treating 

the eutrophic water: Evidence from Taihu Lake of China. Bioresour. Technol. 99, 1656–1663. 

https://doi.org/10.1016/j.biortech.2007.04.001 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

84 
 

Li, M., Zhu, W., Gao, L., Huang, J., Li, N., 2013. Seasonal variations of morphospecies 

composition and colony size of microcystis in a shallow hypertrophic lake (Lake Taihu, 

China). Fresenius Environ. Bull. 22, 3474–3483. 

Li, Y., Acharya, K., Stone, M.C., Yu, Z., Young, M.H., Shafer, D.S., Zhu, J., Gray, K., Stone, A., 

Fan, L., Tang, C., Warwick, J., 2011. Spatiotemporal patterns in nutrient loads, nutrient 

concentrations, and algal biomass in Lake Taihu, China. Lake Reserv. Manag. 27, 298–309. 

https://doi.org/10.1080/07438141.2011.610560 

Li, Y., Guo, Y., Yu, G., 2013. An analysis of extreme flood events during the past 400years at 

Taihu Lake, China. J. Hydrol. 500, 217–225. https://doi.org/10.1016/j.jhydrol.2013.02.028 

Lian, H., Qiuliang, L., Xinyu, Z., Haw, Y., Hongyuan, W., Limei, Z., Hongbin, L., Huang, J.-C., 

Tianzhi, R., Jiaogen, Z., Weiwen, Q., 2018. Effects of anthropogenic activities on long-term 

changes of nitrogen budget in a plain river network region: A case study in the Taihu Basin. 

Sci. Total Environ. 645, 1212–1220. https://doi.org/10.1016/J.SCITOTENV.2018.06.354 

LLUR, 2018. Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2017. 

Mao, J., Chen, Q., Chen, Y., 2008. Three-dimensional eutrophication model and application to 

Taihu Lake, China. J. Environ. Sci. 20, 278–284. 

https://doi.org/https://doi.org/10.1016/S1001-0742(08)60044-3 

Margalef, R., Estrada, M., Blasco, D., 1979. Functional morphology of organisms involved in red 

tides, as adapted to decaying turbulence, in: Taylor DL, Seliger HH (Eds) Toxic 

Dinoflagellate Blooms. Elsevier, North Holland, pp. 89–94. 

Marra, J., 1992. Diurnal variability in chlorophyll fluorescence: observations and modeling. Ocean 

Opt. XI 1750, 233–244. https://doi.org/10.1117/12.140654 

MELUND SH, 2020. Westensee [WWW Document]. Schleswig-Holstein Minist. fur 

energiewende, landwirtschaft, umwelt, natur und Digit. 

Miklasz, K.A., Denny, M.W., 2010. Diatom sinking speeds: Improved predictions and insight from 

a modified Stoke’s law. Limnol. Oceanogr. 55, 2513–2525. 

https://doi.org/10.4319/lo.2010.55.6.2513 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

85 
 

Munn, M., Frey, J., Tesoriero, A., 2010. The influence of nutrients and physical habitat in 

regulating algal biomass in agricultural streams. Environ. Manage. 45, 603–615. 

https://doi.org/10.1007/s00267-010-9435-0 

National Bureau of Statistics of China, 2018. Annual Statistics of Jiangsu Province [WWW 

Document]. Natl. Bur. Stat. China. URL http://data.stats.gov.cn/easyquery.htm?cn=C01 

National Rivers Authority, 1990. Toxic Blue-green Algae. National Rivers Authority, England. 

Nazeer, M., Wong, M.S., Nichol, J.E., 2017. A new approach for the estimation of phytoplankton 

cell counts associated with algal blooms. Sci. Total Environ. 590–591, 125–138. 

https://doi.org/10.1016/j.scitotenv.2017.02.182 

Nissen, H., Krüger, F., Fichtner, A., Sommer, R.S., 2013. Local variability in the diet of 

daubenton’s bat (myotis daubentonii) in a lake landscape of Northern Germany. Folia Zool. 

62, 36–41. https://doi.org/10.25225/fozo.v62.i1.a5.2013 

O’Boyle, S., Wilkes, R., McDermott, G., Ní Longphuirt, S., Murray, C., 2015. Factors affecting 

the accumulation of phytoplankton biomass in Irish estuaries and nearshore coastal waters: A 

conceptual model. Estuar. Coast. Shelf Sci. 155, 75–88. 

https://doi.org/10.1016/j.ecss.2015.01.007 

Ogashawara, I., 2019. Advances and limitations of using satellites to monitor cyanobacterial 

harmful algal blooms. Acta Limnol. Bras. 31. https://doi.org/10.1590/s2179-975x0619 

Paerl, H.W., Xu, H., Hall, N.S., Zhu, G., Qin, B., Wu, Y., Rossignol, K.L., Dong, L., McCarthy, 

M.J., Joyner, A.R., 2014. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, 

China: Will nitrogen reductions cause replacement of non-N2 Fixing by N2 fixing taxa? PLoS 

One 9. https://doi.org/10.1371/journal.pone.0113123 

Peperzak, L., Colijn, F., Koeman, R., Gieskes, W.W.C., Joordens, J.C.A., 2003. Phytoplankton 

sinking rates in the rhine region of freshwater influence. J. Plankton Res. 25, 365–383. 

https://doi.org/10.1093/plankt/25.4.365 

Prepas, E.E., Charette, T., 2003. Worldwide eutrophication of water bodies: causes, concerns, 

controls. Treatise on Geochemistry 9–9, 311–331. https://doi.org/10.1016/B0-08-043751-

6/09169-6 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

86 
 

Principles, G., 2017. Advances in Monitoring and Modelling Algal Blooms in Freshwater 

Reservoirs, Springer. New York. https://doi.org/10.1007/978-94-024-0933-8 

Qin, B., 2008. Lake Taihu, China: Dynamics and Environmental Change. Springer Science & 

Business Media, Berlin. 

Qin, B., Hu, W., Gao, G., Luo, L., Zhang, J., 2004a. Dynamics of sediment resuspension and the 

conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chinese Sci. 

Bull. 49, 54–64. https://doi.org/10.1360/03wd0174 

Qin, B., Hu, W., Gao, G., Luo, L., Zhang, J., 2004b. Dynamics of sediment resuspension and the 

conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chinese Sci. 

Bull. 49, 54–64. https://doi.org/10.1007/BF02901743 

Qin, B., Liu, Z., Havens, K., 2007a. Eutrophication of shallow lakes with special reference to Lake 

Taihu, China. Springer Science & Business Media, Dordrecht. 

Qin, B., Paerl, H.W., Brookes, J.D., Liu, J., Jeppesen, E., Zhu, G., Zhang, Y., Xu, H., Shi, K., 

Deng, J., 2019. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 

10 years (2007–2017) efforts. Sci. Bull. 64, 354–356. 

https://doi.org/10.1016/j.scib.2019.02.008 

Qin, B., Xu, P., Wu, Q., Luo, L., Zhang, Y., 2007b. Environmental issues of Lake Taihu, China. 

Hydrobiologia 581, 2–14. https://doi.org/10.1007/978-1-4020-6158-5 

Qin, B., Yang, G., Ma, J., Wu, T., Li, W., Liu, L., Deng, J., Zhou, J., 2018. Spatiotemporal changes 

of cyanobacterial bloom in large shallow eutrophic lake Taihu, China. Front. Microbiol. 9, 1–

13. https://doi.org/10.3389/fmicb.2018.00451 

Qin, B., Zhu, G., Gao, G., Zhang, Y., Li, W., Paerl, H.W., Carmichael, W.W., 2010. A drinking 

water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. 

Environ. Manage. 45, 105–112. https://doi.org/10.1007/s00267-009-9393-6 

Reluy, F.V., Bécares, J.M. de P., Hernández, R.D.Z., Díaz, J.S., 2004. Development of an equation 

to relate electrical conductivity to soil and water salinity in a Mediterranean agricultural 

environment. Aust. J. Soil Res. 42, 381–388. https://doi.org/10.1071/SR03155 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

87 
 

Sadovnik, M., Robin, V., Nadeau, M.J., Bork, H.R., Nelle, O., 2014. Neolithic human impact on 

landscapes related to megalithic structures: Palaeoecological evidence from the Krähenberg, 

northern Germany. J. Archaeol. Sci. 51, 164–173. https://doi.org/10.1016/j.jas.2012.05.043 

Sahoo, D., Seckbach, J., 2015. The Algae World. Springer, London. https://doi.org/10.1007/978-

94-017-7321-8_8 

Schaumburg, J., Schranz, C., Stelzer, D., Hofmann, G., 2006. Handlungsanweisung für die 

ökologische Bewertung von Seen zur Umsetzung der EU-Wasserrahmenrichtlinie: 

Makrophyten und Phytobenthos. 

Scheffer, M., Van Nes, E.H., 2007. Shallow lakes theory revisited: Various alternative regimes 

driven by climate, nutrients, depth and lake size. Hydrobiologia 584, 455–466. 

https://doi.org/10.1007/s10750-007-0616-7 

Schindler, D.W., Hecky, R.E., Findlay, D.L., Stainton, M.P., Parker, B.R., Paterson, M.J., Beaty, 

K.G., Lyng, M., Kasian, S.E.M., 2008. Eutrophication of lakes cannot be controlled by 

reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. 

Sci. 105, 11254–11258. https://doi.org/https://doi.org/10.1073/pnas.0805108105 

Schmidt, J.C., Kannenberg, J.R., 1998. How to Identify and Control Water Weeds and Algae. 

Applied Biochemists, New York. 

Selig, U., 2003. Particle size-related phosphate binding and P-release at the sediment-water 

interface in a shallow German lake. Hydrobiologia 492, 107–118. 

Singh, S.P., Singh, P., 2015. Effect of temperature and light on the growth of algae species: A 

review. Renew. Sustain. Energy Rev. 50, 431–444. https://doi.org/10.1016/j.rser.2015.05.024 

Smith, D.R., King, K.W., Williams, M.R., 2015. What is causing the harmful algal blooms in Lake 

Erie? J. Soil Water Conserv. 70, 27A-29A. https://doi.org/10.2489/jswc.70.2.27A 

Smith, V.H., Tilman, G.D., Nekola, J.C., 1998. Eutrophication: Impacts of excess nutrient inputs 

on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196. 

https://doi.org/10.1016/S0269-7491(99)00091-3 

Tao, Y., Zhang, Y., Meng, W., Hu, X., 2012. Characterization of heavy metals in water and 

sediments in Taihu Lake, China. Environ. Monit. Assess. 184, 4367–4382. 

https://doi.org/10.1007/s10661-011-2270-9 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

88 
 

Tian, W., Liao, Z., Zhang, J., 2017. An optimization of artificial neural network model for 

predicting chlorophyll dynamics. Ecol. Modell. 364, 42–52. 

https://doi.org/10.1016/j.ecolmodel.2017.09.013 

Umweltbericht des Landes Schleswig-Holstein zum Westensee, 2020. Westensee [WWW 

Document]. URL 

http://www.umweltdaten.landsh.de/nuis/wafis/seen/seenanzeige.php?iseenr=0443&smodus

=long (accessed 5.22.20). 

van der Westhuizen, A.J., Eloff, J.N., 1983. Effect of Culture Age and pH of Culture Medium on 

the Growth and Toxicity of the Blue-green Alga Microcystis aeruginosa. Zeitschrift für 

Pflanzenphysiologie 110, 157–163. https://doi.org/10.1016/s0044-328x(83)80162-7 

Vinçon-Leite, B., Casenave, C., 2019. Modelling eutrophication in lake ecosystems: A review. Sci. 

Total Environ. 651, 2985–3001. https://doi.org/10.1016/j.scitotenv.2018.09.320 

Wang, H., Wang, H., 2009. Mitigation of lake eutrophication: Loosen nitrogen control and focus 

on phosphorus abatement. Prog. Nat. Sci. 19, 1445–1451. 

https://doi.org/10.1016/j.pnsc.2009.03.009 

Wang, J., Chen, X., Zhu, X. hua, Liu, J. ling, Chang, W.Y.B., 2001. Taihu Lake, lower Yangze 

drainage basin: Evolution, sedimentation rate the sea level. Geomorphology 41, 183–193. 

https://doi.org/10.1016/S0169-555X(01)00115-5 

Wang, L., Cai, Y., Fang, L., 2009. Pollution in Taihu Lake China: Causal chain and policy options 

analyses. Front. Earth Sci. China 3, 437–444. https://doi.org/10.1007/s11707-009-0043-3 

Wang, S., Li, J., Zhang, B., Spyrakos, E., Tyler, A.N., Shen, Q., Zhang, F., Kuster, T., Lehmann, 

M.K., Wu, Y., Peng, D., 2018. Trophic state assessment of global inland waters using a 

MODIS-derived Forel-Ule index. Remote Sens. Environ. 217, 444–460. 

https://doi.org/10.1016/j.rse.2018.08.026 

Wang, Y., Xie, Z., Lou, I., Ung, W., Mok, K., 2017. Algal bloom prediction by support vector 

machine and relevance vector machine with genetic algorithm optimization in freshwater 

reservoirs Yanjie. Eng. Comput. 34, 664–679. 

Wang, Yu, Zhao, X., Wang, L., Wang, Yujun, Li, W., Wang, S., Xing, G., 2015. The regime and 

P availability of omitting P fertilizer application for rice in rice/wheat rotation in the Taihu 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

89 
 

Lake region of southern China. J. Soils Sediments 15, 844–853. 

https://doi.org/10.1007/s11368-014-1047-5 

Ward, J.J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 

58, 236–244. https://doi.org/10.1198/016214503000000468 

Weihrauch, C., Opp, C., 2018. Ecologically relevant phosphorus pools in soils and their dynamics: 

The story so far. Geoderma 325, 183–194. https://doi.org/10.1016/j.geoderma.2018.02.047 

Werner, P., Dreßler, M., 2007. Assessment of the ecological status of eight lakes from northern 

Germany according to the Water Framework Directive (WFD) using benthic diatoms: 

problems and achievements of the newest German WFD guideline, in: 1st Central European 

Diatom Meeting. pp. 173–178. https://doi.org/10.3372/cediatom.136 

Wetzel, R.G., 2001. The Phosphorus Cycle, in: Limnology: Lake and River Ecosystems. Elsevier 

Science, Amsterdam, pp. 239–288. https://doi.org/10.1016/B978-0-08-057439-4.50017-4 

Wilhelm, S.W., Farnsley, S.E., LeCleir, G.R., Layton, A.C., Satchwell, M.F., DeBruyn, J.M., 

Boyer, G.L., Zhu, G., Paerl, H.W., 2011. The relationships between nutrients, cyanobacterial 

toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae 10, 207–215. 

https://doi.org/10.1016/j.hal.2010.10.001 

Wurtsbaugh, W.A., Paerl, H.W., Dodds, W.K., 2019. Nutrients, eutrophication and harmful algal 

blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 6, 1–27. 

https://doi.org/10.1002/wat2.1373 

Xu, H., Liu, Z., Jiao, J., Yang, L., 2008. Nitrogen pollution status of various types of passing-by 

water bodies in upper reaches of Taihu Lake (in Chinese). Chinese J. Ecol. 27, 43–49. 

Xu, H., Yang, L., Zhao, G., Jiao, J., Yin, S., Liu, Z., 2009. Anthropogenic impact on surface water 

quality in Taihu Lake region, China. Pedosphere 19, 765–778. https://doi.org/10.1016/S1002-

0160(09)60172-7 

Xu, J., Zhang, Y., Zhou, C., Guo, C., Wang, D., Du, P., Luo, Y., Wan, J., Meng, W., 2014. 

Distribution, sources and composition of antibiotics in sediment, overlying water and pore 

water from Taihu Lake, China. Sci. Total Environ. 497–498, 267–273. 

https://doi.org/10.1016/j.scitotenv.2014.07.114 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

90 
 

Xu, Q., Chen, W., Gao, G., 2008. Seasonal variations in microcystin concentrations in Lake Taihu, 

China. Environ. Monit. Assess. 145, 75–79. https://doi.org/10.1007/s10661-007-0016-5 

Xu, Y., Wu, Y., Han, J., Li, P., 2017. The current status of heavy metal in lake sediments from 

China: Pollution and ecological risk assessment. Ecol. Evol. 7, 5454–5466. 

https://doi.org/10.1002/ece3.3124 

Yang, J., Holbach, A., Stewardson, M.J., Wilhelms, A., Qin, Y., Zheng, B., Zou, H., Qin, B., Zhu, 

G., Moldaenke, C., Norra, S., 2021. Simulating chlorophyll-a fluorescence changing rate and 

phycocyanin fluorescence by using a multi-sensor system in Lake Taihu , China. 

Chemosphere 264, 128482. https://doi.org/10.1016/j.chemosphere.2020.128482 

Yang, J., Holbach, A., Wilhelms, A., Krieg, J., Qin, Y., Zheng, B., Zou, H., Qin, B., Zhu, G., Wu, 

T., Norra, S., 2020. Identifying spatio-temporal dynamics of trace metals in shallow eutrophic 

lakes on the basis of a case study in Lake Taihu, China. Environ. Pollut. 264, 114802. 

https://doi.org/10.1016/j.envpol.2020.114802 

Yang, J., Holbach, A., Wilhelms, A., Qin, Y., Zheng, B., Zou, H., Qin, B., Zhu, G., Norra, S., 2019. 

Highly time-resolved analysis of seasonal water dynamics and algal kinetics based on in-situ 

multi-sensor-system monitoring data in Lake Taihu, China. Sci. Total Environ. 660, 329–339. 

https://doi.org/10.1016/j.scitotenv.2019.01.044 

Yang, S.Q., Liu, P.W., 2010. Strategy of water pollution prevention in Taihu Lake and its effects 

analysis. J. Great Lakes Res. 36, 150–158. https://doi.org/10.1016/j.jglr.2009.12.010 

Yang, Y., Wang, Y., Zhang, Z., Wang, W., Ren, X., Gao, Y., Liu, S., Lee, X., 2018. Diurnal and 

Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water 

Lake. J. Meteorol. Res. 32, 219–232. https://doi.org/10.1007/s13351-018-7099-5 

Ye, C., Li, C.H., Yu, H.C., Song, X.F., Zou, G.Y., Liu, J., 2011. Study on ecological restoration 

in near-shore zone of a eutrophic lake, Wuli Bay, Taihu Lake. Ecol. Eng. 37, 1434–1437. 

https://doi.org/10.1016/j.ecoleng.2011.03.028 

Yi, H.S., Lee, B., Park, S., Kwak, K.C., An, K.G., 2019. Prediction of short-term algal bloom using 

the M5P model-tree and extreme learning machine. Environ. Eng. Res. 24, 404–411. 

https://doi.org/10.4491/EER.2018.245 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

91 
 

Yu, Y., Yang, L., Hou, P., Xue, L., Odindo, A.O., 2018. Nitrogen Management in the Rice-wheat 

System of China and South Asia, in: Sustainable Agriculture Reviews 32. Springer, Cham, 

Basel, pp. 135–167. https://doi.org/10.1007/978-94-007-5961-9 

Zhang, H., Shi, Y., Xu, Z., Ni, G., Li, J., 2019. The Health Status Report of Taihu Lake in 2018 

[WWW Document]. Taihu Basin Auth. Minist. Water Resour. URL 

http://www.tba.gov.cn//tba/content/TBA/lygb/thjkzkbg/0000000000013895.html (accessed 

9.11.17). 

Zhang, H.C., Cao, Z.H., Shen, Q.R., Wong, M.H., 2003. Effect of phosphate fertilizer application 

on phosphorus (P) losses from paddy soils in Taihu Lake Region: I. Effect of phosphate 

fertilizer rate on P losses from paddy soil. Chemosphere 50, 695–701. 

https://doi.org/10.1016/S0045-6535(02)00207-2 

Zhang, Limin, Xia, M., Zhang, Lei, Wang, C., Lu, J., 2008. Eutrophication status and control 

strategy of Taihu Lake. Front. Environ. Sci. Eng. China 2, 280–290. 

https://doi.org/10.1007/s11783-008-0062-4 

Zhang, M., Shi, X., Yang, Z., Yu, Y., Shi, L., Qin, B., 2018. Long-term dynamics and drivers of 

phytoplankton biomass in eutrophic Lake Taihu. Sci. Total Environ. 645, 876–886. 

https://doi.org/10.1016/J.SCITOTENV.2018.07.220 

Zhang, Y., Qin, B., Zhu, G., Gao, G., Luo, L., Chen, W., 2006. Effect of sediment resuspension 

on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze 

River: A case study in Longgan Lake and Taihu Lake. Sci. China, Ser. D Earth Sci. 49, 114–

125. https://doi.org/10.1007/s11430-006-8111-y 

Zhao, H., You, B., Duan, X., Becky, S., Jiang, X., 2013. Industrial and agricultural effects on water 

environment and its optimization in heavily polluted area in Taihu Lake Basin, China. 

Chinese Geogr. Sci. 23, 203–215. https://doi.org/10.1007/s11769-013-0593-x 

Zhao, X., 2013. Satellite data application for the assessment of water balance in the Taihu 

watershed, China. J. Appl. Remote Sens. 7, 073482. https://doi.org/10.1117/1.jrs.7.073482 

Zhao, X., Min, J., Wang, S., Shi, W., Xing, G., 2011. Further understanding of nitrous oxide 

emission from paddy fields under rice / wheat rotation in south China. J. Geophys. Res. 116, 

1–7. https://doi.org/10.1029/2010JG001528 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
References 
 

92 
 

Zhao, X., Zhou, Y., Min, J., Wang, S., Shi, W., Xing, G., 2012. Nitrogen runoff dominates water 

nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agric. Ecosyst. 

Environ. 156, 1–11. https://doi.org/10.1016/j.agee.2012.04.024 

Zhu, M., Zhu, G., Nurminen, L., Wu, T., Deng, J., Zhang, Y., Qin, B., Ventelä, A.M., 2015. The 

influence of macrophytes on sediment resuspension and the effect of associated nutrients in 

a shallow and Large Lake (Lake Taihu, China). PLoS One 10, 1–20. 

https://doi.org/10.1371/journal.pone.0127915 

Zhu, M., Zhu, G., Zhao, L., Yao, X., Zhang, Y., Gao, G., Qin, B., 2013. Influence of algal bloom 

degradation on nutrient release at the sediment-water interface in Lake Taihu, China. Environ. 

Sci. Pollut. Res. 20, 1803–1811. https://doi.org/10.1007/s11356-012-1084-9 



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
Appendix A 
 

93 
 

Appendix A-List of publications during my Ph.D. study as first 

author 

Jingwei Yang, Andreas Holbach, Andre Wilhelms, Yanwen Qin, Binghui Zheng, Hua Zou, 

Boqiang Qin, Guangwei Zhu, and Stefan Norra. "Highly time-resolved analysis of seasonal water 

dynamics and algal kinetics based on in-situ multi-sensor-system monitoring data in Lake Taihu, 

China." Science of The Total Environment 660 (2019): 329-339. 

Jingwei Yang, Andreas Holbach, Andre Wilhelms, Julia Krieg, Yanwen Qin, Binghui Zheng, Hua 

Zou, Boqiang Qin, Guangwei Zhu, and Stefan Norra. "Identifying spatio-temporal dynamics of 

trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China." 

Environmental Pollution (2020): 114802. 

Jingwei Yang, Andreas Holbach, Michael J. Stewardson, Andre Wilhelms, Yanwen Qin, Binghui 

Zheng, Hua Zou, Boqiang Qin, Guangwei Zhu, Christian Moldaenke, StefanNorra. "Simulating 

chlorophyll-a fluorescence changing rate and phycocyanin fluorescence by using a multi-sensor 

system in Lake Taihu, China." Chemosphere (2020): 128482.



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
Appendix B 
 

94 
 

Appendix B-Full articles of scientific publications as first author 

Appendix B.1 Highly time-resolved analysis of seasonal water dynamics 
and algal kinetics based on in-situ multi-sensor-system monitoring data in 
Lake Taihu, China 

 
 

  



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
Appendix B 
 

95 
 

Highly time-resolved analysis of seasonal water dynamics and algal
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H I G H L I G H T S

• Algae can rapidly proliferate and hori-
zontally/vertically migrate.

• High-resolution sensor system mea-
sured the water quality in the whole
water column.

• Every parameter get from sensor exhib-
ited seasonality and vertical gradients.

• Correlations were found between algae
dynamics and some environmental
factors.
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Predicting algal blooms is challenging due to rapid growth rates under suitable conditions and the complex phys-
ical, chemical, and biological processes involved. Physico-chemical parameters,monitored in this study by a high-
resolution in-situ multi-sensor system and derived from lab-based water sample analyses, show the seasonal
variation and have different degrees of vertical gradients across the water column. Through analyzing the
changes and relations betweenmulti-factors, we reveal pictures of water quality dynamics and algal kinetics. Ni-
trate has regular seasonal changes different to the seasonal patterns of total dissolved Phosphorus. Positive cor-
relations are found between Chlorophyll a fluorescence and temperature, wind-induced resuspension and
mixing promote the augment of Cyanobacteria fluorescence (Phycocyanin) signal. While the resuspension can
also result in the increase of turbidity and affect the light environment for hydrophytes, the algal scums are
the main reason for the high turbidity on the surface, which lower the illumination radiation in the water
body. Those parameters are the primary dominants responsible for the change of algae from our monitoring
data, which could be used as indicators for the dynamic changes of algae in the future.
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1. Introduction

Since the massive Cyanobacteria dominated algal bloom, which oc-
curred in early June 2007 and was a reason to shut down drinking
water plants, the water quality of Lake Taihu has aroused extraordinary
concerns from all stakeholders, including government, researchers, and
the public (Guo, 2007). Since some measures have been done for pollu-
tion control and treatment over the last decades, the water qualification
rate (based on China's environmental quality standards for surface
water) of Lake Taihu itself and its tributaries generally improved in recent
five years (Zhang et al., 2017). Nevertheless, it still has not met expecta-
tions, and the algal biomassmoderate increase despite the decrease of the
nutrient level. The influence of climate-related variables, like the temper-
ature, wind and light, cannot afford to neglect (Zhang et al., 2018). An
algal bloom started again in mid-March 2017, which is more than ten
days earlier than the year before. Moreover, in the first quarter of 2017,
the density of algae in Lake Taihu increased by 38.7% compared to the
same period of 2016 (Ma, 2017). This is attributed to warmer weather
conditions in spring 2017 (Deng et al., 2014) and elevated nutrient
input by massive monsoon rain events in 2016 (Zhang et al., 2017).

Some types of cyanobacteria, also called blue-green algae, can use
their cells to form oxygen-filled cavities, which help them to move verti-
cally through thewater column to access optimal levels of light and nutri-
ents (Fogg and Walsby, 1971). Dominant algal species can differ among
regions and seasons because of their different optimum growth condi-
tions relative to water quality, meteorological, hydrological and hydrody-
namic conditions (Ji, 2017). Consequently, the timing of an algae bloom
outbreak, as well as its intensity, duration and the dominating algae spe-
cies vary from year to year that makes it hard to predict or control.

When algae, and in particular cyanobacteria, accumulate at the
water surface, typical visible ‘algal scums’ appear (Paerl and Ustach,
1982). Remote sensing applications by usingmulti-spectral satellite im-
agery can be used to estimate accumulation of phytoplankton at the
water surface for a whole water body (Allee and Johnson, 1999), but
algae may also be present in the deeper water layers. New research is
needed to better understand why and when algae accumulate in large
numbers in specific depths. Either algae are very fast growing due to
suitable environmental conditions or they spatially migrate through
vertical buoyancy or horizontal shift.

In this challenging environmental context, the “Sino-German Net-
work” (SIGN) formed to investigate the water cycle of Lake Taihu
from the source to the tap (Schmidt et al., 2016). Therein, the sub-
project “Dynamics of Water Quality” (DYNAQUA) aims at developing
the new in situ and on-line monitoring platform “BIOLIFT” to record
depth- and time-resolved water quality profiles (nine physicochemical
parameters) directly combined with meteorological data and corre-
sponding frequent water samples. Such datasets provide highly time-
resolved insights into lake processes that are related to dynamic condi-
tions in the vertical structure of the water column of Lake Taihu.

This study evaluates data from four monitoring and sampling cam-
paigns at Lake Taihu, one from 26th June to 16th July 2016, referred to
as “2016-Summer”; one from 23rd February to 07th March 2017, re-
ferred to as “2017-Winter”; one from 13rd to 24th September 2017, re-
ferred to as “2017-Autumn”; one from 19th March to 16th April 2018,
referred to as “2018-Spring”.

2. Materials and methods

2.1. Study area

Lake Taihu is a shallow lake with the mean water level of 3.0 m
above sea level and located in the Yangtze River delta in southeastern
China. The Lake Taihu region belongs to the administrative divisions of
Jiangsu and Zhejiang. The study was conducted at the end of a jetty
with a length of about 250m (N 31.418903, E 120.213293), which is lo-
cated in outer Meiliang Bay of northern Lake Taihu and belongs to the

Taihu Laboratory for Lake Ecosystem Research (TLLER) of the Nanjing
Institute of Geography and Limnology (NIGLAS). In Lake Taihu region,
the yearly heavy rainfall period is related to the East-Asian summer
monsoon climate from June to July. The study area and operation loca-
tion are shown in Fig. 1.

2.2. Method for water quality monitoring

2.2.1. Physicochemical parameters measured by BIOLIFT
Physicochemical parameters of the lake water were continuously

measured by the newly developed multi-sensor-system ‘BIOLIFT’
(ADM Elektronik Germany; ENMINSA) during the profiling process at
the jetty of TLLER. These parameters include Electrical Conductivity at
25 °C (EC25) [μS/cm], Temperature (Temp) [°C], pH-value, Oxygen Satu-
ration (Oxy-sat) [%], Turbidity (Turb) [FTU= Formazin Turbidity Unit],
Colored Dissolved Organic Matter (CDOM) [ppbQS (Quinine Sulfate)],
Chlorophyll a Fluorescence (Chla-f) [μg/L], Cyanobacteria Fluorescence
(CyanoPC) [μg/L (Phycocyanin pigment)], Pressure [dBar] (for depth in-
formation [m]). Also, Photosynthetically Active Radiation ca. 2 m above
water (PAR) and in the water in different depths (PARwater) for getting
information about depths of light penetration into thewater body (sen-
sor details are in supporting information Table A.1).

CDOM fluorescence is an indicator of dissolved humic substances,
which are produced by the decay of organic matter, excretion from liv-
ing organisms, or introduced from exogenous sources of dissolved or-
ganic matter (Kalbitz and Geyer, 2001; Peuravuori et al., 2002;
Rochelle-Newall and Fisher, 2002a). The organic matter, respective
biomass, produced by photosynthesis does not have fluorescent re-
sponses (Rochelle-Newall and Fisher, 2002b). Chla-f is a sensitive and
rapid parameter to determine Chlorophyll a concentrations (Chla) and
dynamics inwater. The Chla-f, installed on the continuouswater column
profiling BIOLIFT, allows collecting high-frequency Chla data of the
spectral group of green, red and mixed (except for blue group, i.e.
Cyanobacteria) (Beutler, 2003). Since Chla-f cannot accurately deter-
mine the cyanobacteria and its dynamics, we add another sensor to de-
tect and quantify phycocyanin concentration, which is the marker
pigment of Cyanobacteria (Asai et al., 2001).

2.2.2. Weather station
In addition to the measurement of physicochemical water parame-

ters, a weather station (Vaisala Weather Transmitter WXT520) was
installed at around 5m above the water surface on the jetty and the ap-
plication integrated on BIOLIFT. The measured parameters included
wind direction [°], wind speed [m/s], precipitation [mm], and were re-
corded as average values for every 10 min interval (parameter details
are in supporting information Table A.2).

2.2.3. The monitoring process of BIOLIFT system
In “2016-Summer”, the BIOLIFTwas set to record continuously vertical

profiles from thewater surface to just above the lake bottom in 30 cmper
steps. At each depth, it remained for 10 min. From “2017-Winter”, the
monitoring setup was slightly adapted. Every 10 min, the sensor probe
was lowered in the water column (EC25 is the detector). And then it
remained at the water surface (ca. 0.1 m) for 10 s to allow stable sensor
readings. Subsequently, it slowlymoved down to just above the lake bot-
tom, stayed there for 15 s and then slowly moved up again to just above
the water surface. The improved system could get a larger range of data
for every parameter in short time for the whole water column, and the
higher frequency ofmonitoring data improves accuracywhen calculating
the average value across a depth-timematrix. Calibration of every sensor
in the BIOLIFT was conducted before field monitoring.

2.3. Method for water samples collection and treatment

Water sampleswere taken once every day at three depths (water bot-
tom, intermediate, surface) in “2016-Summer”, “2017-Autumn” and
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“2018-Spring”, and two depths in “2017-Winter”, during the continuous
profiling measurement periods.

All sampleswerefiltered through cellulose-acetatefilters (Sartorius)
with a porosity of 0.45 μm to separate suspended particulatematter and
the dissolved phase. Two dissolved water samples per depth were bot-
tled in 20mL polyethylene vials and stored in a fridge at about 4 °C. One
aliquot of thedissolvedwater sampleswere stabilizedwith 50 μL of con-
centrated (65%) double distilled nitric acid (HNO3) to prevent precipita-
tion of metals. This sample was used for Inductively Coupled Plasma
Mass Spectrometry (ICP-MS) analyses to detect major, minor, and
trace elements. The other aliquot was treated with 50 μL of 1 g/L pure
sodium azide solution (NaN3) to prevent biological activity in the sam-
ple. This sample was used for Ion Chromatography (IC) to detect the
major anions.

2.4. Data processing and analysis

2.4.1. Vertical-temporal statistical data evaluation
For the evaluation of the measured physicochemical parameters (i)

from BIOLIFT (except PAR above water), an algorithm was written in
the software MATLAB R2018a, which transfers the punctiform

measured values to a matrix (0.1 m ∗ 3 h) by calculating the average
in the coordinates depth and time. Then, the depth profile time series
could be plotted visually using the OriginPro software (Origin Profes-
sional 2016), in conjunction with the ten minute recorded meteorolog-
ical data from the integrated Vaisala monitoring station (supporting
information Figs. E.1–4).

2.4.2. Daily vertical gradients of parameters
All physicochemical parameters (i) are normalized by min-max nor-

malization technique before using them for vertical gradients calculation
and seasonal comparison, the data after normalization and at a depth of d
named inorm(d). The daily vertical gradients of every parameter (δi) were
calculated using Eq. (1) (Holbach et al., 2015) for every 0.5 m.

δi ¼ i norm dð Þ

i norm dþ0:5mð Þ
ð1Þ

2.4.3. Rainfall rate
Rainfall rate (Rainfallrate) here calculated by the rainfall hours

(Rainfallhours) divided measuring hours (Measuringhours) in each

Fig. 1. Outline of the Lake Taihu, its location within China, and our sampling location in outer Meiliang bay.
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campaign, it is important to describe the proportion of rainfall time in
each campaign since the total measuring time is different. The equation
is as follows.

Rainfallrate ¼
Rainfallhours

Measuringhours
ð2Þ

3. Results

3.1. Basic sampling information and meteorological data of four field trips
under different seasonal conditions

As can be seen from the table below, more rainfall events happened
(Rainfallrate, 20.3%) during our monitoring period “2016-Summer”, and
the rain accumulation in our measuring time (375 h) reached to
382.76 mm. The least Rainfallrate (0.1%) were recorded in “2017-Win-
ter”. Followed by scenarios of “2018-Spring” and “2017-Autumn”, the
Rainfallrate were 2.6% and 4.1%. We compared the wind characteristics
during the monitoring periods in the different seasons. Some data
gaps due to technical issues are present (Fig. 2). In “2017-Autumn”
there were mainly northerly, northeasterly, and easterly winds. The
other three periods were all dominated by easterly and southeasterly
winds. The wind speed in “2018-Spring” was faster than the others,
with an average wind speed of 4.2 m/s (ca. 0.8 m/s faster) and N4 m/s
wind speed appeared during 38.2% of monitoring time. Even though
in the three other scenarios the average wind speeds were similar, the
maximal wind speed was much higher in “2017-Winter” (13.1 m/s)
and “2018-Spring” (12.1 m/s).

3.2. Comparison of in-situ physicochemical parameters of four field trips

The water quality exhibited strong seasonality for each parameter.
Some data gaps exist across all campaigns. More specifically, pH-
values were not available for “2017-Winter” due to malfunction of the
pH-meter. Moreover, the absence of Chla-f in “2017-Autumn” and
CyanoPC in “2016-Summer” and “2017-Winter”were due to unavailable
sensors at these times.

As expected thewaterwaswarmer in “2016-Summer” (24.6–30.6 °C)
than that in “2017-Winter” (5.5–13.1 °C), “2017-Autumn” (22.9–27.8 °C)
and “2018-Spring” (10.8–24.0 °C) (Fig. 3). Oxy-sat ranged from 42 to
205% in “2016-Summer” (with an oversaturated mean value of 108%),
75 to 122% in “2017-Winter”, 52 to 182% in “2017-Autumn” and 49 to
243% in “2018-Spring”. The accuracy is uncertain when values exceed
the specified measuring range of 150% (supporting information
Table A.1). The pH in “2016-Summer” (7.4–9.4), “2017-Autumn”
(6.5–9.5), and “2018-Spring” (7.6–9.3) were all in the range of 6.5 to
9.5, which were slightly outside the Environmental quality standards for
surface water of China (GB3838–2002) (range from 6 to 9).

Chla-f available in three time-series showed very different ranges. It is
evident that the highest Chla-f signals (0.8–48.6 μg/L,mean: 15.6 μg/L) and
standard deviation (8.7 μg/L) have been observed in “2018-Spring”. In
general, more cyanobacteria (CyanoPC) were detected in “2018-Spring”
(4.4–166.2 μg/L) than that in “2017-Autumn” (5.0–35.3 μg/L).

EC25 represents the concentration of dissolved ionic components.
The minimum values were increasing gradually from “2016-Summer”

to “2018-Spring”. The mean values ranked from largest to smallest:
“2018-Spring” (578.4 μS/cm) N “2017-Winter” (447.8 μS/cm) N “2017-
Autumn” (440.8 μS/cm) N “2016-Summer” (394.4 μS/cm). The EC25

value in “2016-Summer” had thewidest range (supporting information
Table C.1). Total dissolved phosphorus (TDP) and NO3

−, as nutrients of
algal growth, show an opposite trend, we found the highest NO3

− con-
centration in “2017-Winter”, but the TDP was the lowest in this sce-
nario. A similar seasonal trend is presented in literature (Xu et al.,
2015, 2010) where NO3

− peaks were found to always appear in the
winter-spring period. The CDOM shows a reversed pattern compared
to EC25. Lowest concentrations were found in “2018-Spring” (1.9–14.8
μg/L)whereas highest concentrations and standard deviations appeared
in “2016-Summer” (18.4–32.2 μg/L).

For Turb, in “2016-Summer” and “2017-Autumn” the values were
relatively stable and ranged from 1.9 to 10.0 FTU and 7.5 to 48.6 FTU,
with a standard deviation of 1.6 and 2.6. However, in “2017-Winter”
and “2018-Spring” there have been more substantial variations in the
Turb, and values were ranging from 3.6 to 75.8 FTU and 1.4 to
50.0 FTU, with a higher standard deviation of 12.8 and 10.0, which
was mainly related to the stronger wind in these two scenarios.

4. Discussion

4.1. Water depth dynamics

The water depth at our monitoring location in “2016-Summer”
(2.3–3 m) was much deeper than that in “2017-Winter” (1.2–1.5 m),
“2017-Autumn” (1.6–1.9 m) and “2018-Spring” (1.6–1.9 m). An out-
standing monsoon rain event happened during the “2016-Summer”
campaign (Table 1), which was likely triggered by the pronounced “El
Nino” event (World Water Council, 2018) in this year. Even though
the Ministry of Water Resources managed to lower the water level by
controlling the watergates, the continuous heavy rainfall caused the
most massive flooding since 1999 on 08th July 2016 and the mean
water level in the whole lake reached to 4.87 m above sea level (a.s.l.)
(Zhang et al., 2017).

4.2. Stratification and the relationship between parameters in four seasons

Every parameter shows different degrees of vertical gradients across
thewater column, as can be seen from the daily vertical gradients graph
(Fig. 4). The observation of clear vertical structures in physicochemical
parameter profiles points out the necessity of vertically profiling to cap-
ture relevant dynamic processes in Lake Taihu.

4.2.1. Temp and Chla-f
The δi of Temp and Chla-f is higher in “2016-Summer”, due to the

deeper water level and slower wind speed compared to the other
three campaigns. The water depths in the other three campaigns were
low enough for the wind to mix the water from the top to bottom
(Spigel R, 1980).

Fig. 5a shows the daily average value of Temp and Chla-f across the
whole water depth, the days with incomplete data were excluded
from the calculation. A positive correlation is found between Temp
and Chla-f (Fig. 5a), the Pearson correlation coefficient (r) is 0.42 (P b

Table 1
Rainfall during four campaigns.

2016 Summer 2017 Winter 2017 Autumn 2018 Spring

Basic information Time period 26th June–16th July, 2016 23rd February–07th March, 2017 13th–24th September, 2017 19th March–16th April, 2018
Measuring hours (Mh) 375.0 181.7 142.8 450.0

Raina Rainfall hours (Rh) 76.0 0.2 5.9 11.7
Rainfall rate (R) 0.203 0.001 0.041 0.026
Total rainfall (mm) 382.8 0.8 3.6 33.4

a The Rainfall data measured by Vaisala weather station (some data were missing during measuring).
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0.05), which indicates a prominent effect of Temp on the increase of
Chla-f in most of the days.

4.2.2. Oxy-sat and pH
Oxy-sat and pH are the parameters that reflect the photosynthesis,

respiration and the decomposition. In the photosynthesis process, car-
bon dioxide is transformed into organic matter (C6H12O6) and oxygen
(Formula (3)). In turn, aquatic respiration consumes organic matter,
resulting in the production of carbon dioxide (Formula (4)). Photosyn-
thesis, respiration and decomposition all contribute to pH fluctuations
due to their influence on CO2 levels and trigger a shift in the carbonic
acid equilibrium.

6CO2 þ 6H2O→C6H12O6 þ 6O2 ð3Þ

C6H12O6 þ 6O2→6CO2 þ 6H2Oþ 38 ATP ð4Þ

The Pearson's r of daily pH andOxy-sat is 0.79 (P b 0.05) (Fig. 5b), in-
dicating that the changes of pH and Oxy-sat are dominated by the bio-
activity process (Kairesalo, 1980).

From Fig. 4d, it is concluded that usually the upper layer has a higher
value of Oxy-sat. Moreover, the Oxygen was frequently strongly de-
pleted near the bottom in “2016-Summer”, because the decomposition
rate of biomass during summer was higher. This corresponds with sim-
ilarly lower pH-values at the same times. In addition, since more illumi-
nation is available andmore active algae can exist in the upper layer, the

photosynthesis processwill be stronger in upperwater, which produces
more Oxygen and results in a high value of pH. Furthermore, the strong
thermal gradient in “2016-Summer” inhibited the verticalmixing, this is
why the oxygen depletion at the bottom and the oxygen oversaturation
at the surface appeared quite stable (supporting information Fig. E.1).

4.2.3. CDOM
In our observations, the CDOM is usually highest in themiddle layer

of the water column (Fig. 4h). The decay of biomass will be more effec-
tive under higher temperatures and cause the release of dissolved or-
ganic matter into the water, that is the reason for the high CDOM
value and range in “2016-Summer” (Ji, 2017). Algae tend to proliferate
under suitable condition, but every single alga cell is short-lived, and the
result is a high concentration of detritus, which starts to decay resulting
in a higher CDOMfluorescence signal.Moreover, someorganic pollution
in the water body from anthropogenic sources (industry, fishing farm-
ing, and agriculture) or wash out from soils into Lake Taihu by the rain
during monsoon season in summer also contribute to the CDOM
concentration.

4.2.4. Turb, wind and CyanoPC
The vertical gradient of Turb was higher near the bottom (Fig. 4e).

This is due to wind-induced resuspension that resuspends particles
from the sediment. For whole Lake Taihu, a critical wind speed of
N4 m/s was found to lead to extensive sediment resuspension, and
when it reaches N6.5 m/s massive sediment resuspension occurs (Qin
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et al., 2004). Wind speeds N4 m/s happened within all four campaigns,
and we observed visible resuspension events in all monitored time-
series (Fig. 6). For instance, an increase of Turb from bottom to top hap-
pened on day seven in “2016-Summer” and “2017-Winter”, day 18 to 20
and day 26 in “2018-Spring”. However, this simple relationship could
not always be verified, butwind direction also needs to be taken into ac-
count when only focussing on one small area (TLLER) in the Lake Taihu.
According to the specific location of our monitoring point, easterly,
northeasterly, and southeasterly winds cannot generate huge waves
and shear stress because of the small fetch area before the monitoring
location. For example, on day one in “2017-Autumn” and day 11 in
“2018-Spring” no resuspension could be observed despite sufficient
wind speeds N4 m/s.

The Turb on the surface (b0.5m) in “2017-Winter”was quite excep-
tional. It is reasonable that in diatom-dominated winter the Turb on the
upper layer was less than that on the deeper layer, because diatom can-
not move to the surface by themselves as cyanobacteria can. In “2017-
Autumn”, the changes of Turb under depth b 0.2mweremainly affected
by the Cyanobacteria (Pearson's r = 0.92, P b 0.05) in the same depth
(Fig. 7a), namely the accumulated algae. However, in “2018-Spring”,
CyanoPC was not the predominant factor for the change of Turb any-
more, because strong winds mixed the water column well. Also, strong
wind-induced resuspension had a conclusive rapid effect on Turb. As
can be seen from Fig. 7b, usually Turb increased with the increase of
wind speed across all four seasons (days with incomplete data were ex-
cluded). This is either because wind forces cause resuspension of sedi-
ment or wind mixes algal scums back into the water column and then
increase the detected Turb. The rate of Turb change is not exactly the
same in different seasons, because different types of particles have vary-
ing effects on Turb readings. It is very likely that particle composition
(incl. clay, silt, finely divided inorganic and organic matter, algae,

plankton and other microscopic organisms in the water column) was
very different among seasons. In general, however, a good relationship
betweenwind speed and Turb on a daily basiswas found in all four cam-
paigns (Pearson's r = 0.75, P b 0.05).

No straightforward relationship of wind speed and Chla-f can be seen
from Fig. 7c, this is because of the different algal species in different sea-
sons. The windmixing is important to the unfloatable algae (as diatom)
to move to the upper layer and benefit from better light conditions (in
“2017-Winter”). If the nutrients are sufficient for the algal growth, the
enrichment of nutrients from sediment will not make a significant
change to the algal concentration; on the contrary, the increase of
Turb related to the wind will decrease the amount of light penetration,
which apparently has a negative effect on algal growth. Interestingly, a
relationship exists between wind speed and CyanoPC (Fig. 7d), the rea-
son would be that the stronger wind speed can generate greater force
to the water body, which induces the blooms to accumulate on a
down-wind shoreline or bringmore surface accumulated cyanobacteria
to the water body. This is a benefit for the in-situ detection by the fluo-
rescence sensor and increases the sensor readings to the same extent.

4.2.5. PAR and PARwater

The PAR values above water were all below 2000 μmol/(s·m2). The
PARwater is not only related to the irradiation on that day but also to
the light attenuation in the water. For example, in “2017-Winter”,
even though the PAR values on days from one to five and seven to
ninewere similar, but the PARwater weremuch lower. This phenomenon
corresponded to the high Turb in the water on the days from seven to
nine. It was the same to that of “2018-Spring”, the low PARwater on
days 18–22were related to the high Turb in thewater caused by the re-
suspension. Suspended particles, algae (in particular scums), but also
light absorbing dissolved substances can absorb a large portion of the

Fig. 3. Seasonal distribution graph of ten physicochemical parametersmeasured bymulti-sensor-system (BIOLIFT) and derived fromwater samples. (a) Temperature [°C], (b) Chlorophyll
a fluorescence [μg/L], (c) Cyanobacteria fluorescence [μg/L], (d) NO3

− concentration [mg/L], (e) Oxygen saturation [%], (f) Turbidity [FTU], (g) Electrical conductivity at 25 °C [μS/cm],
(h) Total dissolved phosphorus [μg/L], (i) pH, (j) Colored dissolved organic matter (CDOM) [μg/L].
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light and reduce light availability in thedeeper layer. This leads to disad-
vantages for planktonic algae and benthic macrophytes underneath.

In “2017-Winter” and “2018-Spring”, during which time observable
fluorescence quenching effects were found (Fig. 6). Fluorescence
quenching (Demmig-Adams et al., 2014) is the depression of the fluo-
rescence signal in surface waters during daylight and especially at
noon. The Chla-f signals were much stronger at night than the daytime
on days from one to five in “2017-Winter” and days from seven to 14
in “2018-Spring”. The common conditions on these days were the

continues high PAR values (daily PAR peak over or close to 1500
μmol/m2·s) and low Turb (b10 FTU) which offered high PARwater and
the broader vertical illuminating area time. But from our data, pH and
Oxy-sat were still higher in the daytime than at night (supporting infor-
mation Figs. E.2, 4), which means the photosynthetic activity was not
notably affected by the continuous PARwater of under 2000 μmol/m2·s
in the water. The exciting light from Chla-f sensor dissipated to heat, be-
cause the ambient sunlight is too strong and the photosynthetic reac-
tion centers saturated.

Fig. 5. (a) The scatter plot of normalized daily Temperature and Chlorophyll a fluorescence value in three campaigns, (b) The scatter plot of normalizedOxygen-saturation and pH in three
campaigns.
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4.3. Water chemistry changes in four seasons

During spring inflow rivers carry a larger amount of nitrogen into
Lake Taihu, due to the increased application of fertilizers in spring
(main N source) (Xu et al., 2013; Ye et al., 2014). The fertilizer applica-
tions were still the main source of N input over the past three decades,
even though overall the application decreased (Zhang et al., 2018).
Moreover, the large numbers of hydrophyte deaths inwinter return nu-
trients to the water. After winter, the growth condition improves, the
algal growth rapidly consumes NO3

−. However, unlike the nitrogen,
phosphate is often strongly sorbed to sediment (Ji, 2017). As shown in
the graph (Fig. 3), the TDP exhibited a similar seasonal pattern to
Temp, which due to the microbial processes that release phosphorus
by mineralization of organic matter. Also, Temp has a significant effect
on the adsorption/desorption equilibrium, the elevated Temp in sum-
mer can enhance TDP release from the sediments (Jin et al., 2008; Xu
et al., 2013).

The dynamics of anion concentrations (mainly SO4
2− and Cl−) con-

tribute a lot to the significant changes of EC25 during all four campaigns.
Pearson's r of EC25 and SO4

2−was 0.99 andwas 0.96 for EC25 and Cl− (P b
0.05, the solid line in Fig. 8), with 176 reference water samples. Ca2+

and Na+ are the principal dissolved cations in four campaign times,
followed by Mg2+. It was shown in Fig. 8b, that the change of EC25 is
closely related to Na+ (Pearson's r = 0.99, P b 0.05), Mg2+ (Pearson's
r=0.96, P b 0.05) and to Ca2+ (Pearson's r=0.89, P b 0.05). The highest
concentration of SO4

2−, Cl−, Ca2+, Na+ and Mg2+ were found in “2018-

Spring” corresponding with the highest EC25. The seasonal variation of
EC25 is mainly related to the annual rainfall pattern.

In “2016-Summer”, the rapid and basically synchronous drop (dot-
ted line as trendline) of EC25 with SO4

2− and EC25 with Cl− happened
from day five with the onset of long-last heavy rainfall, it was the
same situation for principal dissolved cations. We can draw the conclu-
sion that the decrease of EC25 is largely related to the rain dilution due to
the special rainfall event in this scenario.

4.4. The Chla-f and CyanoPC changes in different scenarios

The least Chla-f was detected by BIOLIFT in “2016-Summer” among
three campaigns, even though according to our personal visual observa-
tions in the field, the formation of cyanobacteria scums happened in the
last few days during ourmonitoring time in “2016-Summer”. One prob-
able reason is that the growth of algaewas influenced by the heavy rain
and flood event in the first seven days (Kristiansen, 1996). Moreover,
the sustained rainfall mentioned above strongly diluted the lake and
lowered the concentration of Chla. The algal species vary from season
to season is another important reason for the low Chla-f in “2016-Sum-
mer”. As mentioned in Section 2.2.1, in principle, the Chla-f cannot well
represent the Chla of Cyanobacteria. From the literature, in winter in
Meiliang Bay, Cyclotella meneghiniana (diatom) is the dominated spe-
cies (Ying et al., 2015). While summer blooms in Lake Taihu are domi-
nated by the buoyant Microcystis spp. (cyanobacteria), which is not as
sensitive as diatom and green algae to the used Chla-f sensor and can

Fig. 7. The scatter plots of the normalized daily value of (a) Turbidity and Cyanobacteria fluorescence, (b) Wind speed and Turbidity, (c) Wind speed and Chlorophyll a fluorescence,
(d) Wind speed and Cyanobacteria fluorescence.
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causemuch lower sensor readings. For this reason, we applied the phy-
cocyanin fluorescence sensor to complement the analyses of
cyanobacterial presence and dynamics. Besides Temperature and pH,
nutrients (TDP and NO3

−) have an important impact on the structures
of phytoplankton communities in different seasons (Li et al., 2018).
The notable seasonal diversity of those parameters (Fig. 3) contribute
to the algal species changes and the Chla-f signal difference.

The highest Chla-f signals and standard deviations were found in
“2018-Spring”, during which time much stronger winds occurred. The
wind-induced mixing can also lead to an increase of Chla-f by homoge-
neously mixing algae scums from the water surface into the whole
water column and bring unbuoyant algae from bottom to surface to
reach better living condition. The increase of N during the winter-spring
transitional period and P supplement on exogenous and endogenous to
water bodies will help to support and promote the growth of algae.
From day 16, the PARwater were very less and only arrived on the upper
0.5 m layer due to the low PAR and the high Turb. The immediate result
was a decrease in monitored Chla-f. The highest concentrations of Chla-f
in this scenario are on days from six to 16 correspond to the days when
PARwater are the highest. Under low PARwater, the Cyanobacteria can
migrate to the water surface to fight more illumination for themselves
and will face less competition due to the growth limit of unfloatable
algae, which is one of the reasons for the increase of CyanoPC in the last
12 days.

The CyanoPC varied greatly, which was attributed to gliding motility
of cyanobacteria. As can be seen fromFig. 4b, usually higher Chla-f values
were present in the middle layer (0.5–1 m) instead of in the surface
layer (b0.5 m). This was different from CyanoPC (Fig. 4c), which showed
muchhigher readings in the upperwater column. This also indicates the
different sensitivities of the Chla-f sensor to different algal species (espe-
cially the cyanobacteria) and that different algal species can dominate in
different water layers.

5. Conclusions

In summary, the high-resolution vertical-temporal data from BIOLIFT
and the accompanying meteorological data can be used to describe dy-
namics in water quality depth-profiles of Lake Taihu visually, the reason
for algal bloom and have the possibility to apply in other water bodies.
In this study, we focused on the environmental variables in one location
to compare thewater quality changes among the four seasons and the de-
terminants of seasonal algal varieties by Chla-f and CyanoPC signals.

The physicochemical parameters show obvious seasonal dynamics.
The continuous heavy rainfall in the monsoon season contributed to
the 1.5 times deeper water column in “2016-Summer” compared to

the other three campaigns. The seasonal variation of EC25 is mainly re-
lated to the annual rainfall pattern. The rain cannot only act as a diluent
but also wash pollutants into the lake, which is likely one of the contri-
butions to the outstandingly high CDOM concentrations in “2016-Sum-
mer”. Furthermore, suitable conditions for biomass decay in the
summertime can return large amounts of dissolved organic substances
into the water column. The strong seasonal variation of NO3

− is mainly
because of external pollution, decomposition and nitrification processes
after the death of phytoplankton and hydrophytes in the winter-spring
period, and the high inorganic nitrogen consumption rate in algal
growth season. On the contrary, the release of phosphorus from sedi-
ment contributes the high concentration of TDP in summer.

The highest daily thermal vertical gradients (δTemp) and δChla-f were
observed in “2016-Summer” on the common role of deeper water
depth and slower wind speed.Wind-induced resuspension will happen
under strong wind speed (N4 m/s) but in an effective direction (avoid
shore hinder), which rise the Turb from the bottom to top. Except for
the resuspension, the algae scums will also reduce the water transmit-
tance and increase the Turb on the surface. Continuously high PAR
values and low Turb in the water are the main causes of fluorescence
quenching. However, thephotosynthetic processwasnot conspicuously
inhibited during all our monitoring time.

Vertical and temporal algal kinetics occurred in all the scenarios. In
general, once the nutrients exceeded, the Temp is an indispensable factor
to the increase of algal biomass and controls the phytoplankton commu-
nities in fresh water. Wind can lead to resuspension as a nutrient source,
and thewind-inducedmixing can help the unfloatable algae to get better
living conditions and bring the surface cyanobacteria back to the water
column. Light is the necessity for algal growth and photosynthesis. The
Cyanobacteria are easier to survive under low PARwater condition byfloat-
ing to the water surface. Without the algal scums, the better light condi-
tion in the water body is offered, which is good for the growth of
unfloatable algae. Combine with our observation, the cyanobacteria
bloom normally happened under calm and sunny days straight after the
strongwindy days (bring nutrients). The changes of those factors respon-
sible for the variability the Chla-f and CyanoPC and become potential indi-
cators for the prediction of Chla-f and cyanobacterial blooms. The ethanol
extraction method will be used to determine the Chla concentration and
calibrate the Chla-f in the future.

Acknowledgments

This work was supported by the Federal Ministry of Education and
Research of Germany (BMBF, grant.-no.: 02WCL1336B). The first author
was supported by the China Scholarship Council.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.01.044.
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A. Sensors information and their specifications (P.2) 

Table A.1. Sensors installed on the BIOLIFT and their specifications 

Parameters Producer Principle Measuring 
range 

Accuracy Resolution Respons
e time 

Pressure  ADM 
Elektronik  

Piezo-resistive  0 - 200 dbar  ±0.1 dBar  0.005 dbar  0.04 s  

Oxygen ADM 
Elektronik  

Potentiometric  
(Clark 
electrode)  

0 - 150 % sat  ±2 % sat  0.02 % sat.  3 s (63 %)  

Temperature  ADM 
Elektronik  

Pt 100  -2 - 38 °C  ±0.01 °C  0.001 °C  0.12 s  

Electrical 
conductivity  

ADM 
Elektronik  

7-pole-cell  0 - 6 mS/cm  ±2 ȝS/cm  0.1 ȝS/cm  0.05 s  

pH  AMT 
GmbH  

Potentiometric  
(Ag /AgCl)  

0 - 14 pH  0.02 pH  0.02 pH  1 s (63 %)  

Chlorophyll a Turner 
designs  

Fluorescence  
exc. 465 nm / fl. 
696 nm  

0.03 - 500 
ȝg/L  

 0.01 ȝg/L  1 s  

CDOM  Turner 
designs  

Fluorescence  
exc. 325 nm / fl. 
470 nm  

0.15 - 1250 
ppbQS  

± 5 %  0.01 ppbQS  1 s  

Turbidity  Seapoint 
sensors, 
Inc.  

Mie 
backscattering  

0 - 750 FTU  ± 2 %  < 0.001 %  0.1 s  

PAR (400-700 
nm)  

LI-COR®  Photon flux 
density  

0 - 10 
ȝmol/(s�m2)  

± 5 %  0.01 
ȝmol/(s�m2)  

10 ȝs  

Cyanobacteria 
(Freshwater, 
Phycocyanin) 

Turner 
designs 

Fluorescence  
exc. 590 nm / fl. 
t 645 nm 

0 - 4500 ppb  0.1 ȝg/L 1 s 

 

Table A.2. Parameters specifications of weather station (Vaisala Weather Transmitter WXT520) 

Instrument Measuring range Accuracy Output 
Resolution 

Response 
time 

Wind speed 0 - 60 m/s  ±3 % at 10 m/s  0.1 m/s  0.25 s  
Wind direction 0 - 360°  ±3.0° 1° 0.25 s  
Rain amount - (collecting area 60 

cm2) 
better than 5 %, weather 
dependent 

0.01 mm  -  

Rain intensity  0 - 200 mm/h  - (broader range with 
reduced accuracy) 

-  - 
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B. Instrument detection limit (P.3) 

Table B.1. Instrument detection limit (IDL) (3*sigma) of inductively coupled plasma mass 
spectrometry (Dionex, ICS-1000) 

 

Table B.2. Instrumental detection limits (IDL) (2.82*sigma) of ion chromatography (X-Series 2, 
Thermo Fischer) 

Ions Fluoride Chloride Bromide Nitrate Phosphate Sulfate 
  mg/L mg/L mg/L mg/L mg/L mg/L 

IDL  0.02 0.06 0.14 0.07 0.09 0.05 
 

Elements Units IDL Elements Units IDL Elements Units IDL 
Li µg/L 0.019 Cr µg/L 0.008 Mo µg/L 0.004 
B µg/L 0.322 Mn µg/L 0.029 Cd µg/L 0.000 

Na mg/L 0.005 Fe µg/L 0.253 Sb µg/L 0.016 
Mg mg/L 0.000 Co µg/L 0.001 Cs µg/L 0.003 
Al mg/L   0.251 Ni µg/L 0.005 Ba µg/L 0.013 
P µg/L 2.87 Cu µg/L 0.052 Tl µg/L 0.003 
K mg/L 0.005 Zn µg/L 0.213 Pb µg/L 0.004 

Ca mg/L 0.008 As µg/L 0.005 U µg/L 0.000 
Ti µg/L 0.054 Rb µg/L 0.039    
V µg/L 0.003 Sr µg/L 0.005    
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C. BIOLIFT statistic summary (P.4-5) 

Table C.1. BIOLIFT statistic summary in four scenarios 

  
Max Min Mean Median 

Standard 

deviation 

Temp 

[°C] 

2016 Summer 30.6 24.6 27.1 27.0 1.5 

2017 Winter 13.1 5.5 9.8 10.0 1.7 

2017 Autumn 27.8  22.9 24.8 24.7 1.1 

 2018 Spring 24.0  10.8 17.1 17.3 2.3 

Chla-f 

[μg/L] 

2016 Summer 14.2 2.6 7.6 7.3 2.2 

2017 Winter 22.2 1.0 10.0 9.5 2.8 

 2018 Spring 48.6  0.8 16.1 13.9 8.5 

CyanoPC 

[μg/L] 

2017 Autumn 35.3  5.0 8.1 6.5 4.1 

2018 Spring 49.5 4.4 9.2 7.1 6.0 

EC25 

[µS/cm] 

2016 Summer 443.6 311.1 394.4 387.4 26.3 

2017 Winter 486.1  416.4  447.8  444.2  11.0 

2017 Autumn 445.2  434.1 440.8 441.0 1.8 

2018 Spring 602.8  545.2 578.4 578.7 11.9 

Oxy-sat. 

[%] 

2016 Summer 206 % 

(> 150 % 

ultimate 

value) 

42 % 108 % 103 % 33.8 

2017 Winter 122 %  75 %  101 %  102 %  7.8 

2017 Autumn 182 % 

(>150 % 

ultimate 

value) 

52 % 82 % 80 % 21.4 

2018 Spring 243 % 

(> 150 % 

49 % 88 % 76 % 33.2 
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Max Min Mean Median 

Standard 

deviation 

ultimate 

value)  

pH 2016 Summer 9.4 7.4 8.5 8.4 0.5 

2017 Autumn 9.5  6.5 7.9 7.9 0.4 

2018 Spring 9.3  7.6 8.2  8.1 0.3 

CDOM 

[μg/L] 

2016 Summer 32.2 18.4 26.6 27.1 3.2 

2017 Winter 17.0 5.2 13.3 14.1 2.8 

2017 Autumn 16.2  10.9 13.6 13.8 1.2 

2018 Spring 14.8 1.9 9.2 9.3 2.2 

Turb 

[FTU] 

2016 Summer 10.0 1.9 4.5 4.3 1.6 

2017 Winter 75.8 3.6 12.9 8.3 12.8 

2017 Autumn 48.6  7.5 12.7 12.0 2.6 

2018 Spring 50.0  1.4 11.0 6.6 10.0 

PARwater 

[μmol/(s·m2

)] 

2016 Summer 2196.0 0 36.7 0.5 128.0 

2017 Winter 1017.2 0 71.2 0.5 145.7 

2018 Spring 1943.8  0 104.5 9.9 221.2 
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D. Matlab code for matrix calculation (P.6) 

% Delete outliners 
Parameter (diff(Depth)==0)=NaN; 
Parameter (Parameter<=0)=NaN; 
 
% Calculate marix (0.1 m * 3 hours) 
t_q=(0 : 3/24 : Total days); 
d_q=(0 : 0.1 : Max depth); 
Q_Parameter (Max depth*10, Total days *24/3) = zeros; 
for t_loop=1 : days *24/3 
    for d_loop=1 : depth*10 
        Q_ Parameter (d_loop, t_loop)=mean(Parameter (Parameter > = 0 & Time > (t_loop.*3/24 - 2/24) & Time 
< = (t_loop.*3/24 + 2/24) & Depth > (d_loop.*0.1 - 0.075) & Depth < = (d_loop.*0.1 + 0.075))); 
    end 
end 
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E. Vertical-temporal data graph (P.7-10) 

Fig.E.1. Vertical-temporal data measured by multi-sensor system (BIOLIFT) in 2016-Summer 
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Fig.E.2. Vertical-temporal data measured by the multi-sensor system (BIOLIFT) in 2017-Winter 
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Fig.E.3. Vertical-temporal data measured by the multi-sensor system (BIOLIFT) in 2017-Autumn 
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Fig.E.4. Vertical-temporal data measured by the multi-sensor system (BIOLIFT) in 2018-Spring 
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Appendix B.2 Identifying spatio-temporal dynamics of trace metals in 
shallow eutrophic lakes on the basis of a case study in Lake Taihu, 
China 
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a b s t r a c t

In shallow eutrophic lakes, metal remobilization is closely related to the resuspension and eutrophica-
tion. An improved understanding of metal dynamics by biogeochemical processes is essential for
effective management strategies. We measured concentrations of nine metals (Cr, Cu, Zn, Ni, Pb, Fe, Al,
Mg, and Mn) in water and sediments during seven periods from 2014 to 2018 in northern Lake Taihu, to
investigate the metal pollution status, spatial distributions, mineral constituents, and their interactions
with P. Moreover, an automatic weather station and online multi-sensor systems were used to measure
meteorological and physicochemical parameters. Combining these measurements, we analyzed the
controlling factors of metal dynamics. Shallow and eutrophic northern Lake Taihu presents more serious
metal pollution in sediments than the average of lakes in Jiangsu Province. We found chronic and acute
toxicity levels of dissolved Pb and Zn (respectively), compared with US-EPA “National Recommended
Water Quality Criteria”. Suspended particles and sediment have been polluted in different degrees from
uncontaminated to extremely contaminated according to German pollution grade by LAWA (Bund/
L€ander-Arbeitsgemeinschaft Wasser). Polluted particles might pose a risk due to high resuspension rate
and intense algal activity in shallow eutrophic lakes. Suspended particles have similar mineral constit-
uents to sediments and increased with increasing wind velocity. Al, Fe, Mg, and Mn in the sediment were
rarely affected by anthropogenic pollution according to the geoaccumulation index. Among them, Mn
dynamics is very likely associated with algae. Micronutrient uptake by algal will affect the migration of
metals and intensifies their remobilization. Intensive pollution of most particulate metals were in the
industrialized and down-wind area, where algae form mats and decompose. Moreover, algal decom-
position induced low-oxygen might stimulate the release of metals from sediment. Improving the
eutrophication status, dredging sediment, and salvaging cyanobacteria biomass are possible ways to
remove or reduce metal contaminations.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Lakes are a sink for many trace metals. Naturally, metals con-
tained in soil materials can be translocated into lake ecosystems by
erosion and surface runoff (Garrett, 2000; Siegel, 2002). Erosion is a

large problem and might increase under climate change (more
intensive precipitation events). Moreover, there is growing concern
that the natural cycling rates of many metals are being altered by
human activities. Pollutants from urban, industrial, and agricultural
sources are released into the environment and entering the lake,
which exacerbates the problem (Cai et al., 2015a).

Some metals are essential for biological systems, acting as both
structural and catalytic components of proteins and enzymes, but
theymay be toxic when critical concentrations are exceeded. These
include Zn, Cu, Fe, Mn, Mg, and Ni (Chen et al., 2018; Magnitskiy,
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2011). Other metals, such as Pb and Cr, are harmful contaminants
even in trace amounts (Zheng et al., 2013). Benthic biota and other
organisms ingest metal particles by accumulating them in their
tissues (Yin et al., 2011). This allows metals to enter food chains,
which might ultimately affect humans through fish/shellfish con-
sumption and drinking water (Tao et al., 2012).

We examined Lake Taihu in a case study of a shallow lake that
has experienced accelerated nutrient and trace metal pollution
accompanying rapid urban and agricultural expansion in its
watershed. Accelerated nutrient loading and resultant algal bloom
issues have caused great concern among researchers and the
public, with numerous studies having addressed sources and im-
pacts of excessive nutrient loading (Paerl et al., 2011; Qin et al.,
2004a; Xu et al., 2008). The risks associated with metal pollution
in eutrophic lakes are equally important but have rarely been
addressed so far. Trace metals in organisms (e.g., fish, zoobenthos,
microalgae) have been proved to pose a threat to human health in
the Lake Taihu area (Fu et al., 2013; Hao et al., 2013; Kong et al.,
2016; Yuan et al., 2015; Zeng et al., 2012). Therefore, it is neces-
sary to investigate the ecological risks of trace metal pollution in
lakewater and sediments. Due to the lack of suspended particle and
lake sediment criteria in current Chinese surface water standards,
few studies have evaluated the particulate metal pollution risks of
Lake Taihu.

In the Taihu basin, trace metals originate primarily from urban
runoff and industrial discharge, such as from electrical machinery,
pharmaceutical industry, chemical production, automobile ex-
hausts, and waste incineration (Cai et al., 2015b; Cheung et al.,
2003). Once metals have entered the lakes, they are easily depos-
ited on the sediment surfaces through adsorption and coagulation
and react as a source of secondary pollution (Liu et al., 2017).

Most of the suspended matter is due to resuspended surface
sediments and algal biomass in the shallow eutrophic Lake Taihu,
which is characterized by high resuspension rates and high bio-
logical activity (Wang et al., 2001; Yang et al., 2019; Zhu et al., 2015).
In eutrophic lakes, heavy metal remobilization is often closely
related to nutrient remobilization as both regularly adsorb to
similar mineral fractions in the sediments (Bolan et al., 2003; Chen
et al., 2017; Zan et al., 2011). Moreover, algal blooms may decrease
the concentrations of dissolved metals in the water due to uptake
by algae (Chen et al., 2008; Sunda, 2012).

A thorough understanding of metal pollution status and spatio-
temporal dynamics is the prerequisite of effective water manage-
ment and pollution prevention. This study assessed the metal
pollution in water and sediments in Lake Taihu based on interna-
tional standards. We investigated the concentrations of dissolved
and particulate Fe, Mn, Mg, Al, Cu, Cr, Zn, Ni, and Pb in water
samples, and the amount of these metals in sediment samples.
Further, we examined metal spatial distributions and temporal
dynamics in different seasons and studied the interaction between
P and metals. Spatial-temporal water quality conditions were
determined by using online multi-sensor arrays. The objectives of
the current study are 1) the metal pollution status in water and
sediments as well as their potential ecological risks; 2) the influ-
ence of lake shallowness on particulate metal dynamics; 3) the
influence of lake eutrophication on metal spatial distributions and
temporal dynamics.

2. Materials and methods

2.1. Study area

Northern Lake Taihu is the most polluted area due to discharge
from industries mainly located in the Northwest (close to Zhushan
Bay) (Li et al., 2011). Our study was conducted in northern Lake

Taihu, including Zhushan Bay, Meiliang Bay, and Gonghu Bay
(Fig. 1). These bays have an average depth of 1.9 m. Due to the lake
shallowness and frequent wind speeds, sediment resuspension
rates in Lake Taihu are higher than many other lakes worldwide (Qi
et al., 2019). The relatively long water residence times of about 300
days promote the accumulation of pollutants in the lake (Zhang
et al., 2008).

Lake Taihu is facing severe eutrophication problems. From 2007
to 2017, the mean annual chlorophyll-a in the lake increased from
18 to 40 mg L!1, total N remained to exceed 2mg L!1, and total P was
over 75 mg L!1 (Qin et al., 2019). Dominant southeasterly winds
transport surface cyanobacterial blooms into the northern bays,
aggravating water quality problems (Qin, 2008). Metals, which
uptake by cyanobacteria, might also be carried to northern bays and
settled in the local sediments.

2.2. Field methodology

The sampling area was divided into four sub-regions, including
Zhushan Bay, Meiliang Bay, Gonghu Bay, and open lake (Fig. 1). We
sampled the lake water and/or sediments during seven individual
sampling campaigns from 2014 to 2018. Details can be found in
Table 1.

2.2.1. Water and sediment sample collection
In order to assess the spatial patterns of metals in northern Lake

Taihu, we collected near-surface (0.2 m) water samples at 62
different locations by traditional organic glass water sampler.

To investigate the metal temporal dynamics, we collected water
samples once per day from campaign four to seven at one location
that 250 m away from the shoreline in outer Meiliang Bay (Fig. 1a).
Specifically, the location is near the Taihu Laboratory for Lake
Ecosystem Research (TLLER), which can offer electricity to the
depth-profile multiple-sensor-system (BIOLIFT) for sampling.
Sampling was done by a pump that connected to BIOLIFT at three
different depths, surface (~0.2 m), intermediate (half of the depth),
and bottom (depend on the depth).We collected 189water samples
at TLLER in total and calculated the mean value of three depths for
subsequent analysis.

To assess the role of sediments as a source or sink for metal
pollution in the lake, we applied two types of devices for collecting
sediment samples (Fig. 1b). AVan Veen Grab Sampler (KC Denmark
A/S, Silkeborg, Denmark) was used to obtain surface sediment
samples at 20 locations throughout the northern lake. Moreover, a
Uwitec Corer (Uwitec, Mondsee, Austria) was applied for taking 19
sediment cores. Limited by the sampling tubes, the maximal depth
of the cores is 50 cm.

2.2.2. Continuous online measurement of lake physicochemical
parameters and meteorological data

In the meantime of pumping water samples, BIOLIFT measured
physicochemical parameters in the water at TLLER station during
campaign four to seven (Yang et al., 2019). The measured param-
eters used in this study were temperature (Temp) ["C], pH-value,
oxygen saturation (Oxy-sat) [%], and electrical conductivity (EC)
[mS cm!1]. EC was calculated and reported as at 25 "C (EC25), which
is a proxy for dissolved ionic components (Reluy et al., 2004). The
pH sensor broke in February 2017, so no data were available after
that date.

To investigate the spatial differences in water quality, we
applied a towed underwater multi-sensor system (BIOFISH)
(Holbach et al., 2013), which was dragged behind a boat at 1 m
depth at the junction of Meiliang Bay and Gonghu Bay on two days
(29th November and December 2, 2015). The measured parameters
were colored dissolved organic matter (CDOM) [mg L!1], turbidity

J. Yang et al. / Environmental Pollution 264 (2020) 1148022
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Fig. 1. a) Water samples locations and campaigns, campaign seven was only conducted at TLLER station; b) Sediment sampling sites (sediment core/grab) in different campaigns
(map source: National Geographic Basemap).

Table 1
Sampling campaign details.

Campaign Start Date End Date No. of Water Samples No. of Sediment Samples Location

1 2014-04-06 2014-04-08 17 e TLLER, ML, GH
2 2015-05-09 2015-05-10 17 5 ML, GH
3 2015-11-03 2015-12-03 44 11 ML, GH, ZS
4 2016-06-27 2016-07-15 73 39 TLLER, ML, GH, ZS
5 2017-02-23 2017-03-06 38 40 TLLER, ML, GH, ZS
6 2017-09-14 2017-09-23 44 25 TLLER, ML, GH, ZS
7 2018-03-19 2018-04-16 80 1 TLLER

*Taihu Laboratory for Lake Ecosystem Research station (TLLER), Meiliang Bay (ML), Gonghu Bay (GH), Zhushan Bay (ZS).
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(Turb) [FTU], and EC [mS cm!1].
Meteorological data, including wind speed (m s!1), wind di-

rection (o), and rainfall (mm), were recorded at an automatic
weather station at TLLER every hour from campaign four to seven.
Monthly average rainfall and wind speed were calculated for sub-
sequent seasonal dynamics analysis.

2.3. Sample preparation

2.3.1. Water samples
Water samples were pretreated, according to Yang et al. (2019).

Cellulose-acetate filters with a pore size of 0.45 mm were used to
separate particles. For analyzing the dissolved Fe, Mn, Mg, Al, Cu, Cr,
Zn, Ni, and Pb, filtered water samples were measured with ion
chromatography (IC; ICS-1000, Thermo Fischer Scientific, Waltham,
USA) and inductively coupled plasma mass spectrometry (ICP-MS;
X-Series 2, Thermo Fischer Scientific, Waltham, USA).

To analyze the particulate Fe, Mn, Mg, Al, Cu, Cr, Zn, Ni, Pb and P,
the filters were completely digested in 65% HNO3, 40% HF, and 65%
HClO4 (all super-pure grades) sequentially in Teflon beakers (Bock,
1974; Hu and Qi, 2013). The samples were constricted through the
heating plate at 175e200 "C in a fume hood. The digested samples
were transferred into polypropylene bottles with 1% HNO3 in 10 mL
and stored at 4 "C until further analysis. Blank filters and certified
standard soil and sediment material (GXR-2 and SL-1 (Govindaraju,
1994)) were also incorporated in digestion processes for quality
control purposes.

2.3.2. Sediment samples
The sediment cores were sliced into smaller layers directly after

sampling. The first two layers were 2 cm and 3 cm, and the rest
were 5 cm thick. One layer of sediment cores or one surface sedi-
ment sample collected by the Van Veen Grab Sampler is considered
as one sample. A total of 121 samples were collected at 19 sampling
points. Each layer was homogenized by stirring before freeze-
drying (FreeZone 2.5, Labconco, Kansas, USA). Sediments were
then sieved (<2 mm) and milled in a vibratory disc mill (Schei-
benschwingmühle TS, SIEBTECHNIK, Mülheim an der Ruhr, Ger-
many). Finally, sediment samples were analyzed by Wavelength
Dispersive X-ray Fluorescence (WDX; S4 Explorer, Bruker, Billerica,
USA) for Fe, Mn, Mg, Al, and P as well as Energy Dispersive X-ray
Fluorescence (EDX; Epsiolon 5, Malvern Panalytical, Malvern, UK)
for Cr, Cu, Zn, Ni, and Pb. To explore the relationship between
suspended particulate matter (SPM) and surface sediment, we
measured their mineral composition in campaign three (11 sedi-
ment samples and 12 loaded filters). They were investigated with
scanning electron microscopy (SEM-EDX; Quanta 650, Thermo
Fischer Scientific, Waltham, USA) and X-ray diffraction (XRD; D8
Discover, Bruker, Billerica, USA).

2.4. Data processing and analysis

Shapiro-Wilk test (significance level 0.05) was first applied to
test the assumption of normality for metal concentrations (Shapiro
and Wilk, 1965). All the sample locations and water quality distri-
bution were mapped with ArcGIS (10.5.1). Temporal diversity and
cluster analysis graphs, as well as statistical analysis, were created
and performed by OriginPro software (Origin Professional, 2016;
OriginLab, Northampton, USA). Linear regressions were done be-
tween metals in SPM and sediment. Spearman’s correlation coef-
ficient was calculated to analyze the correlation between elements
in two-tailed testing.

2.4.1. Partition coefficients (K)
Partition coefficients of element M (KM) provide information on

the ratio changes between particulate and dissolved M (Comber
et al., 1995; Feng et al., 2017),

KM ¼CMðSPMÞ=CMðdissÞ (1)

where CM(SPM) is the concentration of the element M in the SPM (mg
g!1), and CM(diss) is the concentration in the dissolved phase (mg
L!1). KM integrates the effects of adsorption/desorption processes,
external pollution, and sedimentation/resuspension of particles
(Barreto et al., 2011; Pertsemli and Voutsa, 2007).

2.4.2. Geoaccumulation index (Igeo)
Geoaccumulation index (Igeo) developed by Müller (1986) was

classified into seven groups and used to evaluate the anthropogenic
influence levels of metal concentrations (Formula (2)).

Igeo ¼ log2 ðCM=1:5&BMÞ (2)

where CM is the measured concentration of metal M in the sedi-
ment, BM is the geochemical background of metal M reported by
Zhu et al. and Zhao et al. (2014).

2.4.3. Hierarchical cluster analysis
Cluster analysis was made to group the suspended Fe, Mn, Mg,

and Al as well as sedimentary Fe, Mn, Mg, Al, Cr, Cu, Zn, Ni, Pb, and P
according to their similarities. In a cluster analysis, the elements
will be grouped according to the aim of having small differences
between the object in a group and having significant differences
between the groups. The Ward method of hierarchical cluster
analysis (or minimum-variance method) (Ward, 1963) with mini-
mal increase of the sum of squared errors and absolute correlation
distance were used. The hierarchical methods start by placing its
own cluster for each object and grouping different objects to a
cluster, where the smallest difference is given.

3. Results

3.1. Metal pollution status

3.1.1. Water and sediment pollution with dissolved and particulate
metals

To assess the metal pollution status in water and sediments and
its potential ecological risks, the minimum (Min), maximum (Max),
median (Med), skewness (Skew) and kurtosis (Kurt) of the analyzed
samples from all the campaigns were calculated (Table 2). Shapir-
oeWilk’s normality test revealed non-normal distributions of all
metal concentrations in water and sediments.

The medians of dissolved metals decrease in order:
Al > Fe >Mg > Zn > Ni > Cu >Mn > Cr > Pb. Datawere compared to
threshold values by EPA U.S, 2016. All the medians of dissolved
metals were below the threshold values (Table 2). However, two
samples from Meiliang Bay had a concentration of dissolved Pb
above the threshold of 2.5 mg L!1 (3.2 mg L!1 and 7.7 mg L!1).
Moreover, the maximum of dissolved Zn (164.4 mg L!1) was above
the threshold of 120 mg L!1. The respective sample was taken near
TLLER.

The medians of particulate metals decrease in order:
Al > Fe >Mg >Mn > Zn > Cr > Ni > Cu > Pb. We assessed the metal
pollution levels in SPM and sediments according to German
pollution grades by LAWA (LAWA, 1998a). Because natural back-
ground concentrations of the Taihu basin are in the range of
German background values, the evaluation method of LAWA can be
applied for Lake Taihu (LAWA, 1998b). The LAWA-classification is
divided into groups I to IV, from unpolluted to extremely polluted
(Table 2). The pollution levels for the medians of metals in SPM
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were ordered as Zn z Ni z Cr (II-III) > Cu (II) > Pb (I-II). The
maximum value of Pb was classified as strongly polluted (III). The
largest amounts of Ni, Cr, and Cu were in the range of strongly to
extremely polluted (groups III-IV), they were either located in
Zhushan Bay or at TLLER station. Ten samples showed heavy
pollution with Zn (IV), which were collected at TLLER station.

Median concentrations of Cu, Cr, Ni, Pb, Zn, Mg, Mn, and Al in the
sediments were above the reported background values (Table 2)
(Tao et al., 1983; Zhao et al., 2014; Zhu et al., 2005). Geo-
accumulation index (Igeo) for Al, Mg, Cr, Mn, Fe, Ni, Cu, Zn, and Pb
were calculated by reported background values. They were at un-
contaminated to moderately contaminated levels. Among them, Al,
Fe, Mg, and Mn were less affected by human activity (Igeo < 2). The
pollution levels by LAWA for the medians of metals in the sediment
were ordered as Cr (II-III) > Ni (II) > Zn z Cu z Pb (I-II). The
maxima values of Cr, Ni, Zn, and Cu were found in Zhushan Bay. The
Pb maxima (group II) occurred at the junction of Meiliang Bay and
Gonghu Bay.

3.1.2. Comparison with other lakes
Metal concentrations in the sediments, partition coefficient (K)

of metals, and Igeo values were compared to that of the other lakes
reported in the literature (Table 3). Cr, Ni, Cu, Zn, and Pb in the
sediments of Lake Taihuwere slightly higher than the average value
of lakes in China (Xu et al., 2017). In general, Igeo of Cr, Ni, Cu, and Zn

in Lake Taihu was higher than the mean value of lakes in the same
province (Jiangsu) (Xu et al., 2017), but they were still at the same
level. Lake Taihu contained a higher level of Pb pollution (uncon-
taminated to moderately contaminated) than that in Jiangsu
Province. K of Cr, Ni, Cu, Zn, Pb, Mn and Fe in Lake Taihu were much
higher than that in Lake Doirani and mean value of Loch Coire nan
Arr, Loch Doilet, and Loch Urr (Gormley-Gallagher et al., 2015;
Pertsemli and Voutsa, 2007). These lakes have deeper depth, bigger
surface area, and lower nutrients levels.

3.2. The influence of lake shallowness on the particulate metal
dynamics

To exclude regional differences, we only considered the data
collected at TLLER station in the analysis of metal dynamics. Wind-
induced resuspension from sediment is a vital source of SPM in
shallow lakes. We compared the monthly average wind speed and
monthlymean SPM over sixmonths (Fig. 2a). The increase of SPM is
in accordance with the increase in wind speed. According to XRD
and SEM-EDX results, SPMmainly contains theminerals muscovite,
chlorite, kaolinite, and quartz, which are also abundant in the
sediments.

According to Igeo result, Al, Fe, Mg, and Mnwere less affected by
anthropogenic pollution. We did cluster analysis for particulate Al,
Fe, Mg, andMn (Fig. 2b). Among them, Al, Fe, andMgwere grouped

Table 2
Statistical parameters and criterion/background values of metals in water, suspended particles and bottom sediments of Lake Taihu.

Metals Min Max Med Skew Kurt Criterion & Background value

Water (mg L!1) n ¼ 313 CMC CCC

Al 3.3 603.7 71.7 2.5 12.1 e e

Mg 5.4 11.8 8.1 0.0 !1.1 e e

Cr 0.1 1.4 0.4 2.1 6.2 16 11
Mn 0.2 163.3 1.7 10.2 121.3 e e

Fe 1.3 652.8 49.3 4.9 43.8 e 1000
Ni 0.6 26.7 2.6 920.2 6.5 470 52
Cu 1.2 5.4 2.3 738.1 1.7 13 9
Zn 0.9 164.4 5.3 2719.1 6.0 120 120
Pb 0.0 7.8 0.1 57.3 12.4 65 2.5

Suspended particles (SPM; mg kg¡1) n ¼ 271 LAWA
I (UC) IeII II (MC) IIeIII III (SC) IIIeIV IV (EC)

Al 6107.0 406057.6 98108.6 1.6 6.9 e e e e e e e

Mg 1169.9 41815.6 10704.7 1.8 7.4 e e e e e e e

Cr 4.7 531.4 129.5 2.0 5.8 #80 #90 #100 #200 #400 #800 >800
Mn 115.6 4408.7 1425.8 1.1 2.6 e e e e e e e

Fe 3053.7 207510.1 45453.9 1.9 8.1 e e e e e e e

Ni 17.0 342.8 88.0 14.3 223.3 #30 #40 #50 #100 #200 #400 >400
Cu 6.2 289.6 57.4 16.2 265.4 #20 #40 #60 #120 #240 #480 >480
Zn 20.6 1813.8 337.1 5.6 48.0 #100 #150 #200 #400 #800 #1600 >1600
Pb 0.2 240.5 45.0 2.6 9.6 #25 #50 #100 #200 #400 #800 >800

Sediment (mg kg¡1) n ¼ 121 Igeo (L g¡1) Background 1a

/Baseline (Igeo)
Background
2bMed Max

Al 29493.5 47832.4 36412.9 0.5 !0.7 !2.2 (UC) !1.8 (UC) 108,600c e

Mg 4269.1 10099.9 6391.6 0.8 0.4 !0.4(UC) 0.3(UC/MC) 5600 e

Cr 9.7 498.0 105.3 2.2 4.0 !0.2(UC) 2.1(MC/SC) 79.3 71.8
Mn 387.3 2091.5 712.7 1.4 1.9 !0.1(UC) 1.4(MC) 511 e

Fe 14517.2 33421.2 21249.8 0.4 !0.3 !1.4(UC) !0.7(UC) 36,700 e

Ni 30.2 153.2 49.7 2.0 3.6 !0.2(UC) 2.1(MC/SC) 19.5 19.8
Cu 26.2 236.6 39.3 2.0 3.1 0.5 (UC/MC) 2.9(MC/SC) 18.9 15.4
Zn 49.8 558.3 105.6 1.8 2.2 0.3 (UC/MC) 2.7(MC/SC) 59 65.1
Pb 22.9 151.7 36.7 0.5 !0.2 0.6 (UC/MC) 2.6(MC/SC) 15.7 15.7

CMC: criterion maximum concentration by US EPA e a measure of acute toxicity.
CCC: criterion continuous concentration by US EPA e a measure of chronic toxicity.
LAWA: Bund/L€ander-Arbeitsgemeinschaft Wasser-a german criterion.
UC uncontaminated, MC moderately contaminated, SC strongly contaminated, EC extremely contaminated.

a (Tao et al., 1983).
b (Zhu et al., 2005).
c (Zhao et al., 2014).
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together and had strong linear relationships (Table in Fig. 2b,
R2 S 0.97).

3.3. The influence of lake eutrophication on the metal temporal
dynamics

Metals uptake by floating cyanobacteria will be treated as SPM
due to loaded on the filters with cyanobacteria together during
sampling. Moreover, metal dynamics might be influenced by algae
uptake, especially in cyanobacteria dominated summer (Duan et al.,
2009). Algae uptake process and accumulation affinities are
different depending on the type of metal and algal species (Jahan
et al., 2004). This might be one reason for the weak correlation
between particulate Fe and Mn in Fig. 2b. A strong linear rela-
tionship between Fe and Mn was found in spring and autumn
(February, March, April, September) (R2 ¼ 0.79), but not in summer
(June and July) (R2 ¼ 0.49) (Table in Fig. 2b).

P is an essential micronutrient in algal growth and dynamic.
Different from N, particulate P is the dominant fraction and likely
adsorbs on Fe-, Mn-, Mg- and Al- complexes in sediments (Selig,
2003; Weihrauch and Opp, 2018; Xu et al., 2015). Therefore, P dy-
namics are very likely associated with these metals. Partition co-
efficients (K) were calculated for the particulate and dissolved

matter of P, Mg, Al, Mn, and Fe at TLLER station. In Table 4, Kp had a
better correlation with KMn than KMg, KAl, and KFe by Spearman’s
correlation (non-normal distribution).

Eutrophication might result in changes in pH and oxygen and
have effects on metal dynamics (Ansari et al., 2010). The average
Oxy-sat in June, April, and September were below 100% (Fig. 3a).
Both average pH and Oxy-sat values were high in March (8.3 and
112%) and July (8.5 and 117%). Influenced by the East Asian summer
monsoon, rainfall was the highest from June to September, with its
maximum (359.2 mm) in June 2016 (Fig. 3b). Temp was also the
highest during this time, with an average of 25.7 "C. The temporal
pattern of dissolved Mn was similar to EC25. Both show low values
in June and July. The concentrations of dissolved Ni and Cu also
decreased in June (Fig. 3d). Contrarily, the dissolved Pb, Cr, Fe, and
Al were elevated at the same time.

3.4. The influence of lake eutrophication on metal spatial
distributions

The regional discrepancy of cyanobacterial bloom and the
location of pollution sources might influence the metal spatial
distribution in the sediments. The cluster analysis was made for Pb,
Fe, Mn, Cr, Cu, Zn, Ni, P, Al, and Mg in the surface sediment. The ten
elements were divided into four groups (Fig. 4a). We found the
spatial distributions of those elements were similar in surface
sediments (Fig. 4bef), with high values in Zhushan Bay.

Pb, Fe, and Mn were grouped into cluster 1. The highest con-
centration of Pb (151.7 mg kg#1), Fe (143,239.5 mg kg#1), and Mn
(8738.0 mg kg#1) were found at the junction of Meiliang Bay and

Table 3
Comparison of metals in sediments, Igeo and K in Lake Taihu with other lakes.

Name Depth (m) Area (km2) Type Cr Ni Cu Zn Pb Mg Mn Fe

Sediment (mean; mg kg#1)

Taihu 1.9 2250 HT 141.2 57.2 62.2 157.5 37.2 6666.5 823.9 21159.3
Chinaa e e e 77 40.5 39.1 112.6 34.1
Igeo (mean; L g#1)
Taihu 1.9 2250 HT #0.04 #0.04 0.81 0.49 0.63 #0.36 0.003 #1.4
Jiangsu Prov. b e e e #0.8 #0.25 0.16 0.24 #0.5
K (mean; min-max)
Taihu 1.9 2250 HT 375.3 58.2 322.3 120.7 514.7 1.3 1087.8 1351.0
Doiranic 5e8.5 28 EHT 0.01e0.79 0.02e0.63 0.01e0.63 0.04e0.13 0.03e0.79 2.51e100.00 2.51e31.62
Three Lakes in Scotlandd Max.11; 16; 13.2 0.13; 0.52; 0.47 OMT 2.2 1.2 3.2 e 270 e 31 e

HT: Hypertrophic; EHT: Eutro-hypertrophic; OMT: Oligio-mesotropic
a Mean value of 110 lakes in China (Xu et al., 2017).
b Mean value of lakes in Jiangsu Province (Xu et al., 2017).
c Lake in Greece (Pertsemli and Voutsa, 2007).
d Loch Coire nan Arr, Loch Doilet, and Loch Urr in Scotland (Gormley-Gallagher et al., 2015).

Fig. 2. a) Wind direction, wind speed and suspended particles (SPM) (The wind direction and frequency over 20% are marked as arrows, which point in the direction the wind is
blowing towards.); b) Cluster analysis and linear relationship (R2) of particulate Al, Mg, Mn, and Fe.

Table 4
Spearman’s correlation coefficient between KP and KMg, KAl, KMn, KFe.

KMg KAl KMn KFe

Kp 0.04 #0.02 0.31 0.00
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Gonghu Bay in November 2015, where Ni (105.9 mg kg!1) was also
high at the same time. Cr, Cu, and Zn were grouped into cluster 2.
They had excellent linear relationships, with R2 between each
heavymetals were all above or equal to 0.95 (Table in Fig. 4a). P and
Ni had closer relevance than other metals and merged into cluster
3. Moreover, Al and Mg were grouped into cluster 4.

To know the water quality differences in the small area at the

junction of Meiliang Bay and Gonghu Bay, water quality distribu-
tion maps measured by BIOFISH were presented in an area of less
than 10 " 10 km2 (Fig. 5). There were differences in the EC25
readings from 420 to 490 mS cm!1, CDOM from 20 to 38 mg L!1, and
Turb from 1 to 10 FTU. In general, in the two days, the distribution
pattern of EC25, CDOM, and Turb did not show pronounced differ-
ences. The spatial patterns indicate external pollution inflow into

Fig. 3. a) Monthly average rainfall and temperature; b) Monthly average pH and oxygen saturation (the gray line represents 100% oxygen saturation); Temporal changes of c)
dissolved Al, Mn, Fe, Zn, and electrical conductivity at 25 #C, d) dissolved Ni, Cu, Pb, and Cr.

Fig. 4. a) Cluster analysis of Pb, Fe, Mn, Cr, Cu, Zn, Ni, P, Al and Mg and linear regression (R2) of Cu, Cr, and Cu; Spatial distribution of b) Fe, c) Cr, d) Ni, e) Mn, and f) Mg in the surface
sediment.
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the lake in this region during measurement, with high EC25, CDOM,
and low Turb.

4. Discussion

4.1. Assessment of metal pollution risk

According to the water quality criteria by EPA U.S (2016)
(Table 2), most of the dissolved metals are harmless for aquatic
life in their current concentrations. With rare exceptions, two
samples with dissolved Pb that exceeded CCC could cause chronic
toxicity. One is located at a wetland outflow towards the Meiliang
Bay (L1-02). Thewetland linked to urban runoff has a connection to
the lake, where the Pb pollution could originate. The other sample
is located at the transition between Meiliang Bay and Gonghu Bay
(L2-04) in May 2015, where the highest Pb in the sediment was
observed in November 2015 (S3-01, S3-07) (Fig. 4). Combining
BIOFISH data (Fig. 5), theremight be Pb pollution input into the lake
in this region, which is then adsorbed onto surface sediment or
sedimented. Pb was the least contaminating heavy metal in the
sediment and SPM, according to LAWA. However, Pb in the sedi-
ment was still more polluted than the majority of lakes in Jiangsu
Province and China (Table 3).

Dissolved Zn at L4-05 (TLLER) is considered acutely toxic. Zn
contributes most to heavy metal pollution in SPM, which showed
heavy pollution (grade IV) in ten samples from TLLER station.
Heavily contaminated Zn was most likely coming from the waste-
water of industrial plants.

The metal amounts in the sediment were higher than the re-
ported background value and the average of lakes in Jiangsu
Province and China (Tables 2 and 3), which indicates a strong in-
fluence of human activities in Lake Taihu. In general, the pollution
levels of the evaluated heavy metals in the sediment covered the
whole range from low (I-II) to heavy pollution (IV), according to

LAWA. The pollution status of SPM was more severe than that of
surface sediment. This is likely because heavymetals tend to adsorb
onto fine particles, which are easier to be resuspended (Qin et al.,
2004b). Heavy metals can furthermore be accumulated in organic
matter or inorganic colloidal matter, which are also enriched in
SPM (Zhu et al., 2005). Strongly enriched particulate heavy metals
can be a potential risk for aquatic life (Zhu et al., 2005).

4.2. Lake shallowness accelerated metal remobilization

Lake shallowness is another reason for the accumulation of
metals in SPM. Partition coefficient (K) of metals in shallow Lake
Taihu was much higher than that of other reported deeper lakes
(Lake Doirani, Loch Coire nan Arr, Loch Doilet, and Loch Urr)
(Table 3). Due to the shallowness, wind-induced resuspension from
sediment easily happens in Lake Taihu (Qi et al., 2019; Wang et al.,
2001). The seasonal changes of SPM based on the water volume are
highly related to wind speed, with a peak in April 2018 (Fig. 2a). At
the same time, the maximum of particulate Cu, Cr, and Ni were
measured, which might originate from sediment resuspension
under strong wind.

Mineral compositions in SPM and sediment were similar, mainly
muscovite, chlorite, kaolinite, and quartz. Because SPM is a basic
material forms the bottom sediments (Kravchishina and Dara,
2014). Moreover, in shallow lakes, surface sediment is an essen-
tial source of SPM by resuspension. Al, Fe, Mg, and Mn were rarely
affected by human activity, according to Igeo. Particulate Fe, Al, and
Mg had strong correlations in all campaigns (R2 S 0.97), which
indicates their possible incorporation in chlorite.

4.3. Lake eutrophication might affect metal dynamics

Eutrophication causes changes in the physical and chemical
quality of water and sediments, which affects the whole

Fig. 5. Geostatistical modeling of the BIOFISH measured on November 29, 2015 and December 02, 2015. Parameters including electrical conductivity at 25 !C, colored dissolved
organic matter, and turbidity.
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ecohydrology of lakes (Dubey and Dutta, 2019). Most of the dis-
solved elements decreased in June 2016 (Fig. 3c and d), which were
likely related to the dilution of heavy rainfall produced by the
summer monsoon. However, dissolved Pb, Cr, Fe, and Al were
elevated in June 2016, which might be related to low Oxy-sat.
Anaerobic conditions in June 2016, likely caused by algal death
and consequent decomposition at the sediment surface, might have
stimulated the mobilization of metals from sediments (Atkinson
et al., 2007; Morford and Emerson, 1999; Zhu et al., 2013).

During the same time, particulate Fe and Mn had a week cor-
relation (Fig. 2b). The ratio of Fe/Mn varied in different seasons
depending on the redox condition, are controlled by the processes
of photosynthesis and decomposition (Naeher et al., 2013; Shen
et al., 2007). Mn usually needs a slightly higher redox potential
than Fe and can more easily be adsorbed on the surface of fine
granules than Fe (Boyd, 2015; Song et al., 2009).

Moreover, algal activities might have amore significant effect on
Mn dynamics than that of Fe. Kp had a better correlation with KMn
than KMg, KAl, and KFe (Table 4), which might refer to the Mn-bound
P. P and Mn might be subject to similar biochemical processes.
Under the algal growth stage, P and Mn uptake by algae as micro-
nutrients (Kong and Gao, 2005). Previous studies showed that
phytoplankton has a great impact on the manganese cycle in
freshwater, by transforming manganese from the soluble Mn(II)
state to intracellularly bound Mn and particulate Mn(III/IV) oxides
(Knauer et al., 1999).

4.4. Lake eutrophication might change metal spatial distributions

Eutrophication of lakes is caused by over-enrichment with nu-
trients. Excess phosphorus inputs into lakes are mainly coming
from agriculture (Bennett et al., 2001), whereas Ni can be incor-
porated in hydrated phosphates and are typical trace elements in
phosphorites and phosphate fertilizers (Safa et al., 2013; Singh
et al., 2017). This might explain the combined Ni and P in cluster
3 (Fig. 4a). In addition, wemeasured high concentrations of P, Ni, Fe,
and Mn in the surface sediment at the junction of Meiliang Bay and
Gonghu Bay in November 2015 (Fig. 4b, d, e). The BIOFISH data
assessed at the same time and place (Fig. 5), indicate an inflow into
the lake with high EC25, CDOM, and low Turb. The potential
pollution source is probably coming from phosphate fertilization
contaminated by P and Ni (Safa et al., 2013; Singh et al., 2017).
Moreover, P and Ni have an affinity to be bound on Fe and Mn
oxides/hydroxides and might, therefore, have similar distribution
patterns (Kabata-Pendias, 2010).

In the surface sediments, the concentrations of all evaluated
metals were high in the sediments of Zhushan Bay (Fig. 4bef).
Among them, Cr, Cu, and Zn in cluster 2 showed strong linear
correlations (R2 S 0.95) between any two of them in the sediments
(Fig. 4a). Moreover, we observed a declining trend from the river
mouths (connected to Zhushan Bay) to the open lake. This indicates
possible severe pollution coming from inflowing rivers. Rivers in
the northwest of Lake Taihu are closed to industrial parks, the
metals most likely discharged from industrial wastewater (Bian
et al., 2016; Yu et al., 2012).

According to Igeo, Mg, Al, Mn, and Fe were not affected much by
human activity (Table 2). Therefore, sediment deposition difference
might be a more important reason for the high metal concentra-
tions in Zhushan Bay. According to a previous study (Luo et al.,
2004), most of the sediments are deposited in the western shore
area and the northern bays. Sediment regional depositions differ-
ence is likely related to the current circulation pattern induced by
the prevailing wind forcing in Taihu (Luo et al., 2004). Furthermore,
bioaccumulation of metals, particularly by bacteria and algae, can
also affect their distributions. The dominating southeast wind in

summermakes the down-wind location of Zhushan Bay a favorable
area for serious cyanobacteria accumulation (Wu et al., 2015; Zhang
et al., 2017). The algae can act as a pollution transporter. By depo-
sition of dead algae biomass, accumulated metals and P will be
returned to the local sediments in Zhushan Bay (Monteiro et al.,
2012; Webb et al., 2020).

5. Conclusions

Through a systematic assessment using criteria of USA-EPA and
LAWA, Igeo, partition coefficient (K), cluster analysis, and online
multi-sensor systems for meteorological and physicochemical pa-
rameters, this study analyzed dissolved, suspended, and sedimen-
tary Pb, Fe, Mn, Cr, Cu, Zn, Ni, Al, and Mg during seven periods from
2014 to 2018. During the measurement period, most of the dis-
solved trace metals posed no risk to aquatic life in Lake Taihu. Only
Pb and Zn might cause chronic and acute toxicity, respectively.
However, we consider particulate metals in SPM and bottom
sediment risks in shallow eutrophic lakes.

Lake shallowness and eutrophication will aggravate the remo-
bilization of metals. The sediments, as a pollution sink and source,
are essential for the re-introduction of pollutants into the water
column, especially in shallow lakes like Taihu. Wind-induced
resuspension can easily lead to an increase of suspended metals
in shallow lakes. In the eutrophic lakes, algal uptake has a great
impact on the metal cycles and distributions. Sediment pollution in
the down-wind location from blooms is worse. Moreover, algal
decomposition might lower Oxy-sat. and accelerate the release of
metals from sediment.

In general, in shallow eutrophic lakes, the improvement of the
eutrophic state can alleviate the metal pollution problem. Con-
trolling excessive fertilization can reduce nutrient and also metal
inputs due to fertilizer impurities. Cyanobacteria salvaging and
sediment dredging in down-wind areas might mitigate metal
pollution by removing metals from aquatic systems. A future long-
term study with intra- and extracellular metal extraction experi-
ments should be conducted to help us understand the interaction
mechanism between metals and different algal species.
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Identif\ing spatio-temporal d\namics of trace metals in shallow eutrophic lakes on the

basis of a case stud\ in Lake Taihu, China
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GXangZei ZhXe, Tingfeng WXe, SWefan NoUUaa,

DIQVWLWXWH RI ASSOLHG GHRVFLHQFHV, :RUNLQJ GURXS EQYLURQPHQWDO MLQHUDORJ\ DQG EQYLURQPHQWDO S\VWHP AQDO\VLV (ENMINSA)

KDUOVUXKH IQVWLWXWH RI THFKQRORJ\, KDLVHUVWUD�H 12, 76131 KDUOVUXKH, GHUPDQ\
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FCKLQHVH RHVHDUFK AFDGHP\ RI EQYLURQPHQWDO SFLHQFHV, DD\DQJIDQJ 8, AQZDL BHL\XDQ, BHLMLQJ 100012, P.R. CKLQD
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Content

1. Threshold values for LAWA. (P.3)

2. Certified Reference Materials (CRM) (P.4)

3. Instrument Detection Limit (IDL)(P.5)

4. Procedures of filter digestion (P.6)

5. Reference values and standard concentration (P.7)

6. Minerals measured b\ XRD (P.10)

7. SEM-image and EDX-spectrum of minerals in sediment (P.12)

8. EDX-strata of minerals from sampling point L3-13 (SPM) (P.15)

9. Spatial distribution of Cr, Zn, Cu, P and Pb in the surface sediment(P.17)
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1. Threshold values for LAWA. (P.3)

Table 1-1: Threshold values for sediments/SPM as well as the natural background in German\ for the

classification b\ LAWA. (unite: mg kg -1)

Element Aquatic ecos\stem,
Soil, SPM,
Sediments
mg kg-1

Natural
background

ranges (German\)
mg kg-1

Natural
background
(Lake Taihu)

mg kg-1

Pb 100 12.5 - 50 15.7
CU 100 40 - 160 79.3
CX 60 10 - 40 18.9
Ni 50 15 - 60 19.5
Zn 200 50 - 200 59
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4

2. Certified Reference Materials (CRM) (P.4)

Table 2-1 OYeUYieZ of XVed CeUWified RefeUence MaWeUialV (CRM).

CRM Description Applied Test

GXR-2 Soil of Whe CiW\ PaUk in UWah

SoXUce: USGS-AEG, USA

EDX

SL-1 Lake SedimenW- fUom 15 m depWh in SaUdiV ReVeUYoiU

Panola CoXnWU\, MiVViVVippi

SoXUce: IAEA

EDX

PCC-1 PeUidoWiWe

SoXUce: USGS, USA

WDX

MRG-1 GabbUo

SoXUce: CCRMP, Canada

WDX

MAG-1 MaUine MXd- fUom WilkinVon BaVin of Whe GXlf of

Maine, 125 km eaVW of BoVWon, MaVVachXVeWWV

SoXUce: USGS, USA

WDX

RW (Battle-

02)

RiYeU WaWeU, RiYeU SaVkaWcheZan in 2002 IC

TMDW-A TUace ElemenWV in DUinking WaWeU

SoXUce: High PXUiW\ SWandaUd (HPS)

ICP
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3. InVWrXmenW DeWecWion LimiW (P.5)

Table 3-1. IQVWUXPeQW DeWecWLRQ LLPLW (3*SLgPa) Rf IQdXcWLYeO\ CRXSOed POaVPa MaVV

SSecWURPeWU\ (DLRQe[, ICS-1000)

ElemenWV UniWV IDL ElemenWV UniWV IDL

Mg Pg L-1 0.000 Cr �g L-1 0.008

Al Pg L-1 0.251 Mn �g L-1 0.029

P �g L-1 2.87 Fe �g L-1 0.253

Ca Pg L-1 0.008 Ni �g L-1 0.005

Pb �g L-1 0.004 CX �g L-1 0.052

Zn �g L-1 0.213

Table 3-2. IQVWUXPeQWaO DeWecWLRQ LLPLWV IDL Rf EQeUg\ DLVSeUVLYe X-Ua\ FOXRUeVceQce (EDX)

(ESVLRORQ 5, MaOYeUQ PaQaO\WLcaO). (XQLW: Pg Ng-1)

ElemenW D.L. ElemenW D.L.

Cr 3.50 Pb 3.80

Ni 3.22 Zn 2.52

CX 2.47
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4. Procedures of filter digestion (P.6)

Table 4-1 InVWUXcWion of acid digeVWion of filWeUV ZiWh HNO3, HClO4 and HF.

SWep ImplemenWaWion RepeWiWion Acid

1 InVeUW Vample in Teflon beakeU

Add 2 mL HNO3o ConVWUicW
1 u HNO3 65 %SXpUapXU�

2 InVeUW 0.25 mL HClO4 + 1.5 mL HFo
ConVWUicW

AfWeU WhiUd WimeV conVWUicW Wo almoVW dU\

3 u
HClO4 65 %SXpUapXU�

HF 40 % SXpUapXU�

3 Add 2 mL HNO3 o ConVWUicW 1 u HNO3 65 %SXpUapXU�

4 Add 0.5 mL HNO3 o ConVWUicW 2 u HNO3 65 %SXpUapXU�

5 Add 2 mL HNO3 (1%)o ConVWUicW foU 10
min

1 u HNO3 1 %SXpUapXU�

6 TUanVfeU Wo YolXmeWUic flaVk and add
HNO3 Wo make 10 mL

HNO3 1 %SXpUapXU�
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7

5. Reference values and standard concentration (P.7)

Table 5-1. RefeUence YalXeV and VWandaUd concenWUaWion of IndXcWiYel\ CoXpled PlaVma MaVV SpecWUomeWU\ foU diVVolYed phaVe.

HPS 26Mg 27Al 31P 52Cr 55Mn 56Fe 60Ni 63Cu 66Zn 208Pb

mg L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1

Mean (n=25) 1.55 26.49 4.03 8.25 18.95 12.02 4.03 15.50 4.00

SWandaUd DeYiaWion 0.05 0.55 0.07 0.12 0.34 0.28 0.09 0.32 0.07

RefeUence ValXe 1.60 25.00 4.00 8.00 18.00 12.00 4.00 15.00 4.00

RecoYeU\ (%) 97.1 106.0 100.7 103.1 105.3 100.1 100.9 103.3 100.0

CRM-RW 26Mg 27Al 31P 52Cr 55Mn 56Fe 60Ni 63Cu 66Zn 208Pb

mg L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1

Mean (n=13) 21.18 4.77 35.08 0.12 0.51 4.28 3.14 3.27 6.58 0.19

SWandaUd DeYiaWion 0.67 1.47 8.29 0.05 0.28 0.41 0.39 0.58 2.40 0.11

RefeUence ValXe 21.7

RecoYeU\ (%) 97.6

�

Table 5-2. RefeUence YalXeV SL-1 and GXR-2 of ICP-MS foU SPM

SL-1 26Mg 27Al 31P 52Cr 55Mn 56Fe 60Ni 63Cu 66Zn 208Pb

mg L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1

Mean (n=10) 6.02 101.17 1224.00 113.55 3567.01 65.85 51.05 33.39 244.61 39.59

Standard Deviation 0.122 2.467 56.193 2.502 74.658 1.494 1.396 1.323 38.839 1.954

Reference Value 29.00 89 831 104.0 3460.0 67.4 44.9 30.0 223.0 37.7

Recover\ (%) 21 114 147 109 103 98 114 111 110 105

GXR-2 26Mg 27Al 31P 52Cr 55Mn 56Fe 60Ni 63Cu 66Zn 208Pb

mg L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1

Mean (n=4) 8.00 68.26 747.75 36.60 1097.40 19.33 20.23 88.99 638.63 737.12

SWandaUd DeYiaWion 0.449 4.020 65.975 2.045 56.965 0.528 1.063 4.455 46.621 9.678

RefeUence ValXe 8.5 185.7 600 36.0 1010 18.6 21.0 76.0 530 690

RecoYeU\ (%) 94 37 125 102 109 104 96 117 120 107

Table 5-3. Acid BlankV and FilWeU BlankV of ICP-MS foU SPM

SB 26Mg 27Al 31P 52Cr 55Mn 56Fe 60Ni 63Cu 66Zn 208Pb
mg L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1

Mean (n=14) 0.02 0.11 10.22 2.95 1.77 0.12 0.34 0.81 29.40 0.77
Standard Deviation 0.029 0.170 3.489 0.810 0.643 0.270 0.203 0.702 23.700 0.647

FB 26Mg 27Al 31P 52Cr 55Mn 56Fe 60Ni 63Cu 66Zn 208Pb
mg L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1 �g L-1

Mean (n=14) 0.06 0.58 11.76 3.24 1.90 0.07 1.05 1.04 24.22 1.92
Standard Deviation 0.083 1.290 3.317 1.092 0.548 0.094 1.460 1.034 16.689 3.130
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Table 5-4. Reference values of MAG-1, MRG-1 and PCC-1 of WDX (unit: %)

PCC-1 MgO Al2O3 P2O5 MnO Fe2O3

Reference Value 43.43 0.68 0.00 0.12 8.25
Mean (n=10) 43.69 0.68 0.01 0.28 8.30

Standard Deviation 0.321 0.049 0.002 0.256 0.117

Recover\ (%) 100.60 100.61 361.11 230.56 100.63
MRG-1 MgO Al2O3 P2O5 MnO Fe2O3

Reference Value 13.55 8.47 0.08 0.17 17.94
Mean (n=9) 13.43 8.38 0.07 0.19 17.94

Standard Deviation 0.110 0.137 0.003 0.051 0.182

Recover\ (%) 99.10 98.96 90.28 112.61 100.03
MAG MgO Al2O3 P2O5 MnO Fe2O3

Reference Value 3.00 16.37 0.16 0.10 6.80
Mean (n=9) 3.10 16.52 0.17 0.11 7.21

Standard Deviation 0.041 0.246 0.005 0.021 0.234

Recover\ (%) 103.48 100.93 106.94 112.78 106.05

Table 5-5. Reference values of GXR-2 and SL-1 of EDX (unit: mg kg-1)

GXR-2 Cr Ni Cu Pb Zn
Reference Value 36.00 21.00 76.00 690.00 530.00
Mean (n=9) 33.85 15.44 74.84 690.95 549.10

Standard Deviation 2.741 1.787 1.044 4.053 6.325
Recover\ (%) 94.04 73.54 98.48 100.14 103.60

SL-1 Cr Ni Cu Pb Zn
Reference Value 104.00 44.90 30.00 37.70 223.00
Mean (n=9) 130.22 49.56 33.55 37.93 202.57

Standard Deviation 6.163 2.036 1.792 2.162 9.267
Recover\ (%) 125.22 110.38 111.84 100.62 90.84
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10

6. Minerals measured b\ XRD (P.10)

6.1 Surface sediment

S3-01 S3-02 S3-03 S3-04 S3-05 S3-06 S3-07 S3-08 S3-09 S3-10 S3-11
QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW]
MXVcoYiWe MXVcoYiWe MXVcoYiWe MXVcoYiWe MXVcoYiWe MXVcoYiWe MXVcoYiWe MXVcoYiWe MXVcoYiWe MXVcoYiWe MXVcoYiWe
AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

AlbiWe
(PlagioclaVe
)

GoeWhiWe GoeWhiWe GoeWhiWe GoeWhiWe GoeWhiWe GoeWhiWe GoehWiWe GoeWhiWe GoeWhiWe GoeWhiWe GoeWhiWe
ChloUiWe ChloUiWe ChloUiWe ChloUiWe ChloUiWe ChloUiWe ChloUiWe ChloUiWe ChloUiWe ChloUiWe

KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoloniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe
IlliWe IlliWe

DolomiWe DolomiWe DolomiWe DolomiWe DolomiWe DolomiWe DolomiWe DolomiWe DolomiWe DolomiWe DolomiWe
RXWile RXWile RXWile RXWile RXWile RXWile RXWile RXWile RXWile RXWile RXWile

HoUnblende AnoUWhiWe ZiUcon ZiUcon ZiUcon ZiUcon ZiUcon ZiUcon CalciWe

AnoUWhiWe

Sanidine
(KalifeldVpa
W) Sanidine

OUWhoclaVe
(KalifeldVpa
W) AnoUWhiWe HoUnblende

HoUnblende Amphibole CalciWe

11

6.2 SPM

FilWeU L3-09c L3-10c L3-11c L3-12c L3-13c L3-14c L3-15c L3-16c L3-17c L3-18c L3-19c L3-20c
MineUal
V

MXVcoYiW
e

MXVcoYiW
e

MXVcoYiW
e

MXVcoYiW
e

MXVcoYiW
e

MXVcoYiW
e MXVcoYiWe

MXVcoYiW
e

MXVcoYiW
e

MXVcoYiW
e

MXVcoYiW
e

MXVcoYiW
e

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWine

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWin
e

ChloUiWe-
VeUpenWin
e

KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe KaoliniWe
QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW] QXaUW]

* S3-01 and L3-09c ZeUe Waken aW Vame Wime and locaWion, Whe Vame Wo S3-02 and L3-10c, S3-03 and L3-11c, S3-04 and L3-12, S3-05 and L3-13,
S3-06 and L3-14, S3-07 and L3-15, S3-08 and L3-16, S3-09 and L3-17, S3-10 and L3-18, S3-11 and L3-19, S3-12 and L3-20.
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12

7. SEM-image and EDX-spectrum of minerals in sediment (P.12)

7.1 Mineral summar\

Sampling Site
S3-01
(Sediment)

L3-10c
(filter)

S3-06
(Sediment)

Minerals illiWe MXVcoYiWe ilmeniWe
]iUcon QXaUW] Fe-O[ide
feldVpaU DolomiWe MagneViochUomiWe
Mn-O[ide UXWile [enoWime
Fe-O[ide Fe/Mn O[ide ]iUcon
TXaUW] ]iUcon TXaUW]

feldVpaU (oUWhoclaVe) amphibole (Ti-hoUnblende)
mona]iWe fl\ aVh
illiWe mona]iWe
monWmoUilloniWe allaniWe
apaWiWe
chloUiWe

7.2 S3-01

Iron-O[ide

Muscovite
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13

Zircon

MU-O_Pde cVa[PUg

7.3 S3-06

Magnetite
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14

Mona]ite

Amphibole (titano hornblende) of L3-18. Cleavage planes of 120�

Quart]
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17

9. Spatial distribution of Cr, Zn, Cu, P and Pb in the surface sediment (P. 17)
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Appendix B.3 Simulating chlorophyll-a fluorescence changing rate and 
phycocyanin fluorescence by using a multi-sensor system in Lake Taihu, 
China 
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short-term algal simulation in
eutrophic lakes.
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a b s t r a c t

Algal pollution in water sources has posed a serious problem. Estimating algal concentration in advance
saves time for drinking water plants to take measures and helps us to understand causal chains of algal
dynamics. This paper explores the possibility of building a short-term algal early warning model with
online monitoring systems. In this study, we collected high-frequency data for water quality and weather
conditions in shallow and eutrophic Lake Taihu by an in situ multi-sensor system (BIOLIFT) combined
with a weather station. Extracted chlorophyll-a from water samples and chlorophyll-a fluorescence
differentiated according to different algal classeses verified that chlorophyll-a fluorescence continuously
measured by BIOLIFT only represent chlorophyll-a of green algae and diatoms. Stepwise linear regression
was used to simulate the chlorophyll-a fluorescence changing rate of green algae and diatoms together
(DChla-f%) and phycocyanin fluorescence concentration (blue-green algae) on the water surface layer
(CyanoS). The results show that nutrients (total N, NO3eN, NH4eN, total P) were not necessary pa-
rameters for short-term algal models. DChla-f % is greatly influenced by the seasons, so seasonal partition
of data before modeling is highly recommended. CyanoSmax and DChla-f% were simulated by only using
multi-sensor and meteorological data (R2 ¼ 0.73; 0.75). All the independent variables (wave, water
temperature, relative humidity, depth, cloud cover) used in the model were measured online and pre-
dictable. Wave height is the most important independent variable in the shallow lake. This paper offers a
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new approach to simulate and predict the algal dynamics, which also can be applied in other surface
water.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Lake eutrophication is a persistent challenge in Lake Taihu.
Despite considerable research and management efforts in the lake,
the average chlorophyll-a concentration (Chla) increased between
2009 and 2017 (Zhu et al., 2020). In May 2017, a blue-green algal
bloom extended over 1580 km2 of the lake, the largest bloom so far
recorded for the lake (Qin et al., 2019). Continued blue-green algal
blooms in Lake Taihu are attributed to ineffective nutrient reduc-
tion strategies and also to climate change (Qin et al., 2019; Yang
et al., 2016). In particular, warmer air temperature, increased pre-
cipitation, wind patterns alternation, and water acidification pro-
duced by climate changes are expected to cause changes in vertical
mixing, and phytoplankton community structure and composition
(Paerl and Huisman, 2009; Wells et al., 2015).

In 2007, blue-green algal blooms produced odor and taste
compounds, which led to over one week of undrinkable tap water
and influenced more than one million residents in Wuxi supplied
from Lake Taihu (Zheng et al., 2016). Algal bloom leads to the high
organic content in malodorous or unpalatable raw water, as well as
the formation of disinfection by-products, and clogging of filter
beds during drinking water treatment processes. Drinking water
plants often have onlinewatermonitoring systems at the rawwater
extraction point to assist in water treatment optimization. How-
ever, this monitoring concept is insufficient to notify the algal
biomass and species changes in time where phytoplankton grows
rapidly under suitable conditions. Algae doubling time depends on
algal species and environmental conditions. Doubling time of
Microcystis, which is the dominant cyanobacteria in Lake Taihu,
ranges from 1.5 to 5.2 days, with a mean value of 2.8 days (Wilson
et al., 2006). Hence, it is strongly recommended to identify an
emerging algal bloom in the earliest stages of growth to avoid
shortage of drinking water. Thus, in the future, drinking water
plants require estimates of algal bloom development in advance
(2e3 days) to adapt drinking water processing timely enough,
involving degree and period of the usage of water intake wells and
pumps, and treatment processes. Forecasting algal blooms based on
online monitoring data can be a valuable measure for securing the
drinking water supply at Lake Taihu (Qin et al., 2015), and other
eutrophic drinking water source lakes.

Many studies produced algal forecast models worldwide (Huang
et al., 2012; Ogashawara et al., 2013). However, traditional algal
models often require large numbers of input data, and are only
applicable when there is sufficient data (Rajaee and Boroumand,
2015). Moreover, recent studies have found that wind pattern
changes and extreme weather increase the algal bloom formation
in shallow Lake Taihu (Wu et al., 2015; Yang et al., 2016). Traditional
long-term prediction models do not provide sufficient temporal
resolution to respond to the rapid environmental changes. In this
case, high-frequency data of weather and water quality is necessary
for understanding short-term responses of phytoplankton biomass
and issuing early warnings of harmful algal blooms in aquatic
ecosystems (Huang et al., 2014).

Nutrient sensors are not equipped in the high-frequency online
multi-sensor system. Because no sensor-based technology has, so
far, been validated to replace the standard laboratory technique for
determining nutrient contents with fast reaction time (less than

2 min) and high accuracy (Bodini et al., 2015; Hsu et al., 2016).
Moreover, in the short-term, the climatic parameters (extreme
conditions) are more critical than nutrients (Singh and Singh,
2015).

Accordingly, this study examines an alternative approach that
considers extreme conditions and uses fewer independent vari-
ables, although in a highly time resolution. We used an online and
in situ multi-sensor systems to collect continuous high-frequency
meteorological and water quality data. Subsequently, the recor-
ded online multi-sensor data were used for stepwise linear
regression to evaluate the possibility of simulating and predicting
the Chla changing rate of green algae and diatoms together (DChla-
f%) and phycocyanin concentrations (blue-green algae) on the wa-
ter surface layer (CyanoSmax). Compared to traditional methods,
sensor technology saves efforts and avoids significant time delays
(Zulkifli et al., 2018). Accompanying lab analyses of nutrients (total
P, dissolved P, NO3eN, NH4eN, total N) were done to discuss the
necessity of involving nutrients in the short-term algal simulation
model.

2. Materials and methods

2.1. Study area

Lake Taihu, a large and shallow lake, experienced eutrophication
problems for more than a decade. Wind-induced resuspension
easily changes water chemistry and vertical algal distribution in
this shallow lake (average water depth: 1.9 m) (Yang et al., 2019).
Moreover, vertical stratification frequently forms in the warm
summer, when blue-green algae dominate the phytoplankton
community.

As a preliminary study, single-point water quality measure-
ments were carried out at Taihu Laboratory for Lake Ecosystem
Research (TLLER) (Fig. 1a), which is located at outer Meiliang bay
and belongs to the Nanjing Institute of Geography and Limnology
(NIGLAS). Due to this monitoring location, only 250 m west from
the shore, easterly winds rarely generate waves (Fig. 1b).

2.2. In situ physicochemical parameter monitoring

The continuous physicochemical water quality measurements
were recorded by the multi-sensor-system ‘BIOLIFT’ (ADM Elek-
tronik, Sauerlach, Germany) for the entire water column. The BIO-
LIFT measures depth profiles of water depth (Depth, [m]), water
temperature (WTemp, [!C]), pH-value (pH), chlorophyll-a fluores-
cence (Chla-f, [mg L"1]), phycocyanin fluorescence (Cyano, indicative
of blue-green algae, [mg L"1]), oxygen saturation (Oxy-sat, [%]),
turbidity (Turb, [FTU ¼ Formazan Turbidity Unit]), and colored
dissolved organic matter (CDOM, [mg L"1]). Furthermore, photo-
synthetically active radiation sensors (PAR, [mmol (m2 $ s)"1]) were
installed at the BIOLIFT and on the buoy system at ca. 2 m above the
water surface, which determined the PAR above water.

Hourly meteorological data were directly recorded by a multi-
weather sensor (WXT520, Vaisala, Vantaa, Finland) near to the
BIOLIFT, operation point including air temperature (ATemp) [!C],
wind direction ( v!) [!], wind speed (v) [m s"1], rainfall (Ra) [mm],
and relative humidity (RH) [%]. Cloud cover (Cloudcover, [%]) was

J. Yang, A. Holbach, M.J. Stewardson et al. Chemosphere 264 (2021) 128482
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obtained from the China meteorological administration. On day N,
the daily cloud cover is the average of Cloudcover from 8 p.m. on
day N-1 till 8 p.m. on day N.

Data were collected from five campaigns, including 2016eJune/
July, 2017eFebruary/March, 2018eMarch/April, 2018eAugust/
September, and 2018eNovember. The interval time between each
depth-profile was 10 min, and the measuring frequency is 3e5
datasets per second and every 2e3 cm per dataset. One depth-
profile (downwards and upwards) takes around 2 min in the
shallow Lake Taihu. In this setup, the system generates around
37,000 data points per day. In total, wemonitored 98 days across all
five campaigns. However, we only used data from 67 days, where
all 24 h were covered, for the simulation model of the Chla-f
changing rate. Only since 2018eMarch/April, the BIOLIFT was
equipped with a phycocyanin fluorescence sensor. Thus, 47 days of
data were used for the blue-green algae simulation model (Cyano).

2.3. Water sample collection and treatment

Water samples were collected once per day in the morning at
three different depths, including the surface layer (0.2 m), the
bottom layer, and the intermediate layer (half of the water depth).
We calculated daily mean values across the water column for each
parameter.

The water samples were filtered through 0.45 mm Cellulose
Acetate membrane filters (Sartorius, Goettingen, Germany). Ion
chromatography ((IC; ICS-1000, Thermo Fischer Scientific, Wal-
tham, USA) and inductively coupled plasma mass spectrometry
((ICP-MS; X-Series 2, Thermo Fischer Scientific, Waltham, USA) was
used to measure the NO3eN and dissolved P (Yang et al., 2019). The
particles on the filters were fully digested and followed by ICP-MS
measurement for the total P in the particulate phase (Yang et al.,
2020). Moreover, total N and NH4eN were measured by quick
test without filtration in 2018 (Merck Group, Darmstadt, Germany;
Product Number. 1006130001 and 1147390001).

Chlorophyll-a was extracted from the water samples (Chla-e)
using the hot-ethanol extraction method with 90% ethanol (95%

ethanol diluted by distilled water) at 80e85 !C and measured by
UVeVisible Spectrophotometer (UV-1100; Mapada Instruments,
Shanghai, China) for all samples from the three campaigns in 2018
(Bartram and Chorus, 1999; Chen et al., 2006; Lorenzen Carl, 1967).
Three parallel experiments (Chla-e) were done for each water
sample in three campaigns in 2018. Daily average value of Chla-e
was calculated and then used to verify the accuracy of Chla-f.

Chla-f signal measured by Chla sensor equipped on BIOLIFT
(Turner, Cyclops-7, blue excitation) is only excited by blue light. An
ex situ device, PhycoLA (resolution: 0.01 mg L"1; bbe moldaenke,
Schwentinental, Germany), equipped with seven excitation illu-
minants (LEDs) and two detection photomultipliers, measured the
same water samples as was done for the Chla-e. PhycoLA differen-
tiates five algal classes by their specific excitation-fluorescence
spectrum, including green algae, diatoms, blue-green algae, cryp-
tophyta, and planktonthrix (Moldaenke et al., 2019). A stirrer is
kept running during the measurement to keep the solution uni-
form, which is important for the measurement of blue-green algae
due to their buoyancy.

2.4. Data processing

As it can be seen from the Fig.S.3, the Chla-f can have rapid
changes in relatively short time intervals. Therefore, we chose 3-h
time intervals to calculate average values across the entire water
column for Chla-f and all other physicochemical parameters
measured by the BIOLIFT before analysis and simulation. All the
data graphs were plotted and Shapiro-Wilk test (significance level
0.05) was applied to test the assumption of normality (Shapiro and
Wilk, 1965) using the software OriginPro (Origin Professional, 2016;
OriginLab, Northampton, USA). We calculated the interquartile
range (IQR) and used 1.5 # IQR to find outliers for high-frequency
BIOLIFT data. Moreover, for data that follows a normal distribu-
tion, we used Z-scores (3 standard deviations of the mean) to get
rid of outliers over a window length of 1000 data (ca. 3 profiles) by
the function of “movmean” in software MATLAB (R2018a; Math-
Works, Natick, USA).

Fig. 1. Map of the a) Lake Taihu and b) monitoring point (TLLER, Taihu Laboratory for Lake Ecosystem Research) in northern lake Taihu and the site adapted classification of wind
directions (vprojection).
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2.4.1. Chlorophyll-a 3-h changing rate (DChla-f%) and water
temperature changes (DWTemp)

Chla-f of every 3-h was calculated based on BIOLIFT data. DChla-
f% was used to represent the changing rate of Chla-f per 3-h. The
calculation was started from 0 o’clock following formula (1):

DChla!f ðtnþ3Þ½%& ¼
!
Chla!f ðtnþ3Þ ! Chla!f ðtnÞ

".
Chla!f ðtnÞ ( 100

(1)

Analogously, the changes of WTemp for every 3-h (DWTemp)
was calculated as follows:

DWTemptnþ3 ¼ WTemptnþ3 !WTemptn (2)

The daily mean of DChla-f%, WTemp and DWTemp were used in
the further stepwise regression.

2.4.2. Wave calculation and wind projection
The BIOLIFT sensor module will stay on the lake bottom for 20 s

during each depth-profile. The water depth changes in these 20 s in
each profile is recorded by the pressure sensor and the depth dif-
ference is defined as wave height (Waveh). The equation is as
follows:

Waveh ¼ Depthmax ! Depthmin (3)

The water depth strongly affects wave shapes. The wave heights
will be smaller and wave periods will be shorter if the generation
takes place in shallow water rather than in deep water. Basically,
the water depth andWaveh have logarithmic relationships (Pascolo
et al., 2018). For a shallow lake, the speed of waves is influenced by
gravitational attraction and water depth (Garrison, 2012). The
Waveh is adjusted by water depth and defined as Waved (Formula
(4)).

Waved ¼Waveh (0:1 = logðDepthÞ (4)

According to the geographical location of the monitoring point
(TLLER), for instance, wind from the east hardly generates waves
(Fig.1b). We introduced vprojection tomodify wind speed (v) bywind
direction ( v!) according to projection method (Fig. 1b). The specific
calculation angle and equation is adjusted according to the moni-
toring location, and the method can be applied at other monitoring
locations or lakes.

2.4.3. Stepwise linear regression
Stepwise linear regression was carried out for the simulation

using the software of SPSS (SPSS Statistics 24.0; IBM, New York,
USA). Stepwise regression is a procedure for automatically selecting
independent variables, by successively adding variables based
solely on the t-statistics of their estimated coefficients and maxi-
mizing the squared multiple correlations coefficient (R2) of the
dependent variable with the set of selected independent variables.
The p-value (p; 0.05) for each independent variable tests the null
hypothesis. The independent variables would not be included in
the simulation if the null hypothesis proved that there is no cor-
relation between the independent and dependent variables.

Homoscedasticity was used to checked whether residuals of
regressions are equally distributed in SPSS. AICc (Akaike informa-
tion criterion for the model with small sample size) was used to
estimate the relative amount of information lost by models, which
provides a means for model selection (Cavanaugh, 1997). RMSE
(root mean square error) was also calculated between observed and
simulated dependent variables.

3. Results

3.1. Chlorophyll-a measurement and algal classes

As can be seen from Fig. 2a, the total Chla-fmeasured by PhycoLA
(Chla-f_PhycoLA) shows a very strong correlationwith chlorophyll-a
concentration measured by extraction procedure (Chla-e) in three
different depths during two measured campaigns (2018eMarch/
April & 2018eNovember), R2 was 0.88 (p < 0.05). Chla-f_PhycoLA
and Chla-e were measured in the same water samples.

However, the correlations between Chla-e and chlorophyll-a
fluorescence measured by BIOLIFT (Chla-f_BIOLIFT) at the corre-
sponding water sampling time were seasonally different
(Fig. 2bed). This is because, in principle, the Turner Cyclops 7
sensor on the BIOIFT only measures fluorescence after excitation
with blue light, and so does not well represent blue-green algae.
However, the composition of algal classes varies between different
seasons, which led to the discrepancy between Chla-e and Chla-
f_BIOIFT relationships.

The variation ranges of Chla-e were similar to Chla-f_BIOLIFT in
2018eMarch/April (Fig. 2b). In this period from day seven to 27
(Fig. 2e), the fraction of Chla-f of blue-green algae is less than 15% of
the total Chla-f_PhycoLA. In blue-green algae dominated summer
(2018eAugust/September), Chla-e was much higher than the Chla-
f_BIOLIFT, especially after day 16 (Fig. 2c). Similarly, in
2018eNovember (Fig. 2d), the ratio of Chla-e and Chla-f _BIOLIFT
changed after day eight. During this period, algal classes vary
greatly and the Chla-f of blue-green algae ranged from 15% to 63% of
the total Chla-f_PhycoLA (Fig. 2f). The occurrence of different algal
classes can change very fast. For example, in campaign
2018eMarch/April (Fig. 2e), the fractions of blue-green algae had a
rapid decrease on day 14 and increased again on day 17, and di-
atoms dropped on day 19.

From the result, in the campaign 2018eMarch/April and
2018eNovember (Fig. 2g and h), the changes of Chla-f_BIOLIFT
(DChla-f_BIOLIFT) showed better correlations with the changes of
diatoms and green algae together (DChla-f_Green algae þ Diatoms)
instead of withDChla-f of PhycoLA. Therefore, DChla-f_BIOIFT is used
to represent the Chla-f changes of diatoms and green algae.

3.2. Stepwise linear regression of Chla-f_BIOLIFT and Cyano

Daily mean rates of change (3-h averages) in Chla-f_BIOLIFT
(DChla-f%) is the dependent variable, which represents the changes
of green algae and diatoms together. WTempmean, DWTempmean,
PARmax, Ramean (rain amount), RHmean (relative humidity), Cloud-
covermean, Wavedmax were set as independent variables in the
stepwise linear regression simulation. WTempmean, DWTempmean,
andWavedmax were selected to be the independent variables for the
final regression model (p < 0.05). R2 was 0.37 and RMSE was 2.7. As
can be seen from Fig. 3a, the simulated DChla-f% fits better to the
observed DChla-f% in spring and autumn than summer. The result is
consistent with the fact that the DChla-f% calculated by BIOLIFT
mainly represents the changes in green algae and diatoms, which
are dominant in spring and autumn. Therefore, DChla-f% simulation
model should be differentiated between the seasons.

According to the fit quality of the previous analysis (Fig. 3a), we
separated the five campaigns into two classes. Class-S included
2016eJune/July and 2018eAugust/September represent for sum-
mer, normally dominated by blue-green algae. The rest of the
campaigns (2017eFebruary/March, 2018eMarch/April, and
2018eNovember) were classified as Class-SF and represent spring
and fall. Stepwise linear regression was applied individually for
these two classes. Seven independent variables with daily mean/
max values were considered in the stepwise linear regressions of

J. Yang, A. Holbach, M.J. Stewardson et al. Chemosphere 264 (2021) 128482

4



Algal dynamics in Lake Taihu, an example for shallow eutrophic lakes - from monitoring to modelling 
Appendix B 
 

148 
 

DChla-f% as well. The selection process for variables in the two
classes is shown in Table 1. Finally, we chose model No.2 in Class-S
and model No.3 in Class-SF, R2 were 0.75 and 0.74 respectively .

Model No.3 in Class-S with R2of 0.78 was not chosen in the final
model because the p of RHmean in Class-S was 0.07 (over 0.05).
Moreover, AICc value was the same in model No. 2 and No. 3, in this
case, the model with fewer parameters (model No.2) was chosen.
The regressions’ residuals follow a normal distribution according to
the Shapiro-Wilk test and are equally distributed (Fig.S.3, S.4). Both
of DWTempmean and Wavedmax were selected independent vari-
ables in two different classes. However, RHmean was only used in
Class-SF.

After putting the simulation result of the two classes together,
the time-series of both observed and simulated DChla-f% are pre-
sented in Fig. 3b. The overall R2 was 0.75, and the RMSE was 1.7.

Blue-green algae scum is one of the main issues for the algal
problem. It appears and varies very fast and causes oxygen deple-
tion, which is harmful to aquatic animals (Sahoo and Seckbach,
2015). Therefore, we focus on the daily maximum of Cyano on
the surface layer (0e0.3 m) (CyanoSmax) instead of its changing rate
in the whole water column. WTempmax and DWTempmax on the
surface layer were calculated and named as WTempSmax and
DWTempSmax. Stepwise linear regressions were carried out by
setting WTempSmax, DWTempSmax, PARmax, Ramean, Depthmean,
RHmean, and Wavedmax, Cloudcovermean as alternative independent
variables. Cloudcovermean, Depthmean and Wavedmax were left after
stepwise regression. The stepwise regression procedurewas shown
in Table S.3. Residuals of regression are homoscedastic and follow a

Fig. 2. a) Correlation between chlorophyll-a fluorescence concentrations (mg L!1) measured by PhycoLA (Chla-f_PhycoLA) and chlorophyll-a concentrations (mg L!1) measured by
extraction experiments (Chla-e) in 2018eMarch/April (spring) and 2018eNovember (autumn); Correlation between chlorophyll-a fluorescence concentrations (mg L!1) measured by
BIOLIFT (Chla-f_BIOLIFT) and Chla-e by extraction in different seasons b) 2018eMarch/April (spring); c) 2018eAugust/September (summer); d) 2018eNovember (autumn); Daily
chlorophyll-a ratio changes of different algal species in campaign e) 2018eMarch/April (spring); f) 2018eNovember (autumn); Correlation between g) the changes of Chla-f_BIOLIFT
and Chla-f_PhycoLA of green algae and diatoms; h) the changes of Chla-f_BIOLIFT and total Chla-f_PhycoLA in campaign 2018eMarch/April and 2018eNovember.

Fig. 3. Time series of observed and simulated chlorophyll-a fluorescent changing rate
(DChla-f%) a) without classification; b) after classification.
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normal distribution. The selected model (No.3) has the lowest AICc
value (3.6), and R2 between observed and simulated Cyano was
0.73, RMSE was 3.4. The observed and simulated CyanoSmax of 47
days were plotted in Fig. 4.

3.3. Correlation between independent variables and simulation
objects (DChla-f% & CyanoSmax)

The correlation between simulation objects (DChla-f% & Cya-
noSmax) and chosen independent variables are shown in Fig. 5.
Wavedmax was the most important factor for both DChla-f% and
CyanoSmax model. R2 between Wavedmax and Class-S of DChla-f%,
Class-SF of DChla-f% and CyanoSmax were 0.43, 0.44 and 0.59. DChla-
f% and CyanoSmax increased with the raise of Wavedmax.

DWTempmean was more important for DChla-f% model in sum-
mer (Class-S) than in spring/autumn (Class-SF), R2 were 0.39 and
0.26. RHmean had a slight linear correlation with DChla-f% in spring/
autumn (R2 ¼ 0.15) and DChla-f% decreased with the increase of
RHmean. Almost no correlation (R2 ¼ 0.002) was found between

Table 1
Summary of DChla-f % simulation model of Class-S and Class-SF (p < 0.05).

No. Variables R2 Coefficients AICc No. Variables R2 Coefficients AICc

Class-S: 2016 June/July & 2018 August/September (n ¼ 32) Class-SF: 2017 February/March 2018 March/April 2018 November (n ¼ 35)

1 (Constant) 0.43 - 6.7 3.2 1 (Constant) 0.45 - 3.5 2.6
Wavedmax 134.0 Wavedmax 7.4

2 (Constant) 0.75 - 6.4 2.5 2 (Constant) 0.67 - 3.6 2.1
Wavedmax 123.0 Wavedmax 7.1
DWTempmean 50.5 DWTempmean 9.9

3 (Constant) 0.78 - 11.5 2.5 3 (Constant) 0.74 0.3 1.9
Wavedmax 133.0 Wavedmax 6.9
DWTempmean 50.8 DWTempmean 9.1
RHmean 0.06 RHmean - 0.05

Dependent Variable: DChla-f %.

Fig. 4. Time series of observed and simulated maximum of phycocyanin concentra-
tions on the water surface layer (0e0.3 m) (CyanoSmax).

Fig. 5. Correlation between a) Wavedmax and DChla-f%; b) DWTemp and DChla-f% c) RHmean and DChla-f%; d) Wavedmax and CyanoSmax; e) Depthmean and CyanoSmax; f) Cloudco-
vermean and CyanoSmax.
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RHmean and DChla-f% in summer (Class-S), therefore it is not used in
the model as independent variable (p > 0.05). CyanoSmax was lower
under deeper water. R2 was 0.43 between Depthmean and Cya-
noSmax. Weak linear correlation was found between Cloudco-
vermean and CyanoSmax (R2 ¼ 0.18). High CyanoSmax appeared under
low cloud cover (high irradiation).

3.4. Algal community succession and potential to predict DChla-f%
and CyanoSmax by meteorological parameters

To know when algal classes’ change from green algae/diatoms
dominated to blue-green algae dominated is essential for water
management and drinking water plants. In Fig. 6a, blue-green algae
dominated Class-S (summer) had higher WTemp than Class-SF.
Moreover, in general more blue-green algae were observed dur-
ing periods of high pH.

Every 3-h ATemp had a strong correlation with that of WTemp
in five campaigns, R2 was 0.87 (Fig. 6c). DWTempmean also had a
positive trend with DATempmean (Fig. 6d).

No correlation between Waveh and Wind speed (v) was found
within three-hourly mean observations (Fig. 6e). The wind direc-
tion ( v!) correctedwind speed (vprojection) were calculated as shown
in Fig. 1b. The dailymaximum of vprojection andWaveh had a positive
correlation, and R2 was 0.33 (Fig. 6f).

4. Discussion

4.1. DChla-f% simulation model

Instead of focusing on simulating the absolute values of Chla-f,
we decided to model changing rates of Chla-f (DChla-f) across the
whole water column and to identify the possible factors that lead to
rapid changes of DChla-f. This is because stronger correlations were

found between measured parameters and DChla-f than with Chla-f.
After seasonal differentiation of the model, the DChla-f % simulation
model improved significantly (R2 from 0.37 to 0.75). DChla-f%
simulation in summer had a dramatic improvement by classifica-
tion. Classification is related to seasonal differences in algal species
composition (Fig. 2e and f), because DChla-f% for most parts rep-
resents for the changes of green algae and diatoms, which domi-
nated in spring/autumn. A more detailed seasonal differentiation
can be gained after collecting more representative long-term
monitoring data.

Waved, DWTemp and RH were the three parameters used in the
DChla-f% simulation model. Waved reflects wind-induced mixing
and resuspension, which leads to an increase in DChla-f%. Strong
enough wind can fully mix the water body in shallow Lake Taihu
(Cao et al., 2006) and leads to extensive sediment resuspension,
which disperses algae across the whole water column (Qin et al.,
2004). Green algae and diatoms do not regulate their buoyancy.
However, waves help them to circulate between the bottom and
surface water, where they find better growth conditions, for
example, warmer WTemp and stronger irradiation. Moreover,
mixing induces higher bottom water temperatures, which also
benefits algae (Pettersson et al., 2003). In short, mixing creates
better conditions for the growth and activity of green algae and
diatoms. WTemp is a vital factor for green algae and diatoms in all
seasons, especially in summer. The increase of water temperature
leads to the enhancement of metabolism of organisms and pro-
motes the reproduction of algae to a certain limit (Feng et al., 2015).

Waved and DWTemp were more important than RH in the
DChla-f% simulation model. RH was only used in Class-SF and with
weak relationship between RH and DChla-f%. It is generally believed
that RH has little direct connection to algal growth, but many fac-
tors related to RH (temperature, rainfall and irradiation) might
influence the algae (Sherwood et al., 2010; Vicente-Serrano et al.,
2018). For example, rainfall, which is not beneficial for algal

Fig. 6. a) Daily WTemp in Class-S and Class-SF; a) Daily pH in Class-S and Class-SF; Correlations between c) mean values of every 3-h water temperature (WTemp3h) and air
temperature (ATemp3h); d) daily mean values of water temperature and air temperature 3-h changes (DWTempmean & DATempmean); e) mean values of every 3-h wave height
(Waveh) and wind speed (v); f) daily maximum value of every 3-h Waveh and vprojection.
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growth (Allott, 1986), might lead to an increase of RH. High RH is
also related to strong water evaporation, due to the increase in
irradiation. The relationship between irradiation and algae is not
linear. The optimum irradiation depends on the corresponding
temperature and algal species (Chen et al., 2017; Latała et al., 2009).
Few studies have been carried out on the principle behind the
relationship between RH and algae. Even though RH was chosen by
the stepwise linear regression, the changes of DChla-f % might not
be directly affected by RH. More data across different seasons
should be collected to confirm respective relationships.

4.2. CyanoSmax simulation model

The majority of the maximum of surface Cyano (CyanoSmax,
0e0.3 m) can be estimated by Waved, Cloudcover, and Depth
(R2 ¼ 0.73). The blue-green algae have a strong ability to move
towards the water surface to get better living conditions. This is a
particular problem for drinking water production plants. An in-
crease of CyanoSmax can either represent blue-green algae move-
ment to the water surface and subsequent accumulation, or growth
of blue-green algae, or a combination of both.

Similar to the DChla-f% model, Waved formed the most impor-
tant independent variable in the CyanoSmax model. Stronger waves
appear to be related to increased surface blue-green algae in the
shallow lake (Fig. 5d). This could be related to corresponding
mixing and resuspension. Moreover, blue-green algae accumulated
at thewater surface cannot bewell measured by the BIOLIFT sensor.
Wind mixing could distribute the blue-green algae better across
the upper 0.3 m and make them measurable for the sensor. The
days with deeper water resulted in lower CyanoSmax. Because it
takes more time for the algae to float to the water surface layer in
deeper water (Oliver et al., 2016), moreover, the volume concen-
tration of CyanoSmax, which is at depth from 0 to 0.3 m, should be
related to water depth. The irradiation promotes the growth of
blue-green algae and might also affect its vertical distribution
(Fig. 5f). Moreover, gas vesicles enable blue-green algae to adjust
their vertical position for suitable irradiation in the water column
(Ding et al., 2013). WTemp is not so important to CyanoSmax in
studied campaigns (2018March/April, 2018 August/September, and
2019 November). During these periods, the mean and maximum of
WTemp were 21.7 "C and 30.3 "C. More data with different WTemp
of different seasons will be deeper insight into influence of WTemp
to blue-green algae on the water surface layer.

4.3. Eliminated independent variables and predictability of selected
independents

Even though from previous studies, Oxy-sat, pH, Turb, and
CDOM have quite good correlations with Chla (Huang et al., 2010;
Wang et al., 2017), the algal activity can inversely affect these pa-
rameters. Therefore, they are not suitable to be considered as in-
dependent variables that cause changes in algae abundance.
However, pH and WTemp are important factors for algal commu-
nity succession. Blue-green algae bloom usually develop during
summer when WTemp and pH are higher (Fig. 6a and b). Nutrients
are not used in either of the models, since only weak correlations
were found between nutrients (total P, dissolved P, total N, NH4-N,
NO3-N) and CyanoSmax/DChla-f% (Fig.S.6). For modeling long-term
phytoplankton dynamics, nutrients still remain the primary pre-
dictors (Cai et al., 2012; Shi et al., 2017). However, nutrients in Lake
Taihu are constantly at levels sufficient for intense algal growth,
especially in the northern part of the lake (Qin et al., 2015). Hence
nutrient dynamics do not show significant effects on algae growth
in the short-term (Ye et al., 2011). They only would do if they
become strict limiting factors, which currently is not the case in

Lake Taihu (Yang et al., 2019). Moreover, there is (Lorenzen Carl,
1967) still a lack of quick response and high-accuracy on-line
sensors for nutrients (Havlik et al., 2013; Huang et al., 2010).
Therefore, nutrients were not considered in this simulation model
with respect to model simplification and feasibility.

The independent variables used in the two simulation models
are DWTempmean, RHmean, Depthmean, Cloudcovermean, and Wave-
dmax. The increase in air temperaturewill be directly reflected in the
lake water temperature (Fig. 6c and d). Previous studies showed
that WTemp could be estimated from ATemp (Erickson and Stefan,
2000; Wood and Wood, 2005). In addition, wind dynamics
controlled wave dynamics (Bengtsson and Hellstr€om, 1992; Chao
et al., 2008), and thus wave dynamics can be deduced from
respective wind data (Goda, 2003; Jin and Ji, 2001). After correction
by wind direction according to the specific location, the maximum
wind speed had a positive correlationwith the maximum of Waveh
with R2 equal to 0.33 (Fig. 6f). The projection angle can be regulated
and then be applied in other locations by projecting wind speed
into two directions considering the effect of the wind direction in
this location. In summer, during strong stratification, higher wind
speed is required to induce the same level of mixing compared to
non-stratified conditions in other seasons. Therefore, in Fig. 5a, the
slope between DChla-f% and Wavedmax was higher in summer
(Class-S) than in spring/autumn (Class-SF). The parameters v!, v,
Cloudcover and RH can be acquired from BIOLIFT and weather
forecast data. Water depth was collected by the multi-sensor sys-
tem BIOLIFT in real-time and is unlikely to show remarkable
changes in a short time, except for heavy rainfall events.

5. Conclusions

In summary, it is feasible by only using the multi-sensor and
meteorological data to explain most of the variance of CyanoSmax
and DChla-f%. Among them, classification of the DChla-f% model by
seasons was required to considerably improve the simulation
quality. Moreover, the independent variables used in the models
can be acquired from theweather forecast data or can be estimated.
However, the certainty of the prediction will then depend on the
weather forecast accuracy. It is therefore possible to use BIOLIFT or
similar instruments to generate forecasts for next day’s algal status,
which may provided additional information for water
management.

For example, the online monitoring data and the corresponding
prediction results will be available for the drinking water plant
before the occurrence of algal blooms. They can consider respective
data for implementing short-term reaction schemes of their water
treatment process. The World Health Organization (WHO) has
established guidance levels for recreational water, which is a
reference for the drinking water plants. Specifically, the thresholds
for low health alert are 500 blue-green algae cells mL#1 (z4 mg L#1

phycocyanin), most of our data were within this level. Where blue-
green algae are not present at bloom levels, but environmental
conditions are sufficiently favorable for rapid algal growth. The
drinking water plants and local governments should prepare for
potential medium alert within several weeks. The thresholds for a
moderate health alert are 2000 bluegreen algae cells mL#1

(z30 mg L#1 phycocyanin) or 1 mg L#1 Chla. Where drinking water
plants should prepare for additional sampling, assessment of
toxicity, additional water treatment (e.g., activated carbon), and
have to think about using alternative drinking water supply. Next
stage, thresholds for high health alert are 100,000 bluegreen algae
cells/ml (z90 mg L#1 phycocyanin) or 50 mg L#1 Chla. Where the
operators and health authorities should decide to issue a health
warning or notice in relation to the suitability of the water for
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consumption, drinking water plants must seek an alternative water
supply (Bartram and Chorus, 1999; Brient et al., 2008). Predicted
Chla-f can be calculated by the current Chla-f concentration
measured by BIOLIFT and the predicted DChla-f%. Significantly, what
we predicted for blue-green algae is the maximum value of
phycocyanin on the water surface layer, which is higher than the
mean value in the whole water column, but it will be treated as an
alert value. Specific measures need to be regulated according to
actual conditions in water plant operations. This can be applied not
only in Lake Taihu but also potentially in other aquatic systems in
the world.

Nutrients cannot be well measured by online and in situ sensor
systems and are hardly necessary to be used in short time algal
models for Lake Taihu. Wave characteristic was the most important
factor for the DChla-f% and CyanoSmax simulation models, because
the wind-induced mixing and resuspension easily happen in
shallow Lake Taihu. More representative monitoring data across
seasons, also including extreme conditions as can now occur due to
climate change, should be collected to optimize the classification
and simulation. This knowledge can be used in other shallow and
eutrophic lakes as well.

Based on this study, real-time weather forecast data combined
with in situmulti-sensor datawill be used to create an algal forecast
model in a follow-up study. Moreover, an in situ algal class sensor
will be equipped within the muti-sensor system in the near future.
So, total Chla-f and Chla-f of different algal classes (green algae, blue-
green algae, diatoms) can be measured and most probably also
estimated. Furthermore, the wind-induced waves might also lead
to the physical movement of algae. To take this into account, wewill
install more BIOLIFTs in combinationwith a velocimeter in different
locations. In the near future, potential current direction and algal
physical movement will also be considered in the model.
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CVU[LU[
1. CHTWHPNU HUK ZHTWSL PUMVYTH[PVU (7.3)

2. BI6LIF; PUZ[Y\TLU[ (7.4)

3. CVTWHYPUN JLSS KLUZP[` HUK COSa-M PU KPMMLYLU[ HSNHS JSHZZLZ (7.5)

4. COSa-M PU JHTWHPNU 2018-NV]LTILY MYVT KH` 2 [V KH` 6 (7.5)

5. ɣCOSa-M% Z[LW^PZL SPULHY YLNYLZZPVU ILMVYL JSHZZPMPJH[PVU (7.6)

6. C`HUV:TH_ Z[LW^PZL SPULHY YLNYLZZPVU (7.8)

7. ;OL JVYYLSH[PVUZ IL[^LLU U\[YPLU[Z HUK C`HUV:TH_ / ɣCOSa-M% (7.9)
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1. CHTWHPNU HUK ZHTWSL PUMVYTH[PVU (7.3)

;HISL :.1. CHTWHPNU HUK ZHTWSL PUMVYTH[PVU.

CHTWHPNU :[HY[ DH[L

(@@-MM-
DD)

EUK DH[L

(@@-MM-
DD)

MLHZ\YPUN
DH`Z

DH`Z
MVY
TVKLS

CHTWHPNU UHTL

1 2016-06-27 2016-07-15 20 11 2016-J\ne/J\l`

2 2017-02-23 2017-03-06 12 9 2017-Febr\ar`/March

3 2018-03-24 2018-04-15 23 12 2018-March/April

4 2018-08-15 2018-09-09 26 21 2018-A\g\Z[/Sep[ember

5 2018-11-15 2018-12-01 17 14 2018-No]ember
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2. BI6LIF; PUZ[Y\TLU[ (7.4)

FPN. :.1. :[Y\J[\YL VM BI6LIF;-I\V` Z`Z[LT (LLM[) ; BI6LIF;-I\V` Z`Z[LT PU [OL MPLSK (MPKKSL);

BI6LIF; (9PNO[)
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3. CVTWHYPUN JLSS KLUZP[` HUK COSa-M PU KPMMLYLU[ HSNHS JSHZZLZ (7.5)

FPN. :.2. CVYYLSH[PVU IL[^LLU SVNNLK JLSS KLUZP[` HUK SVNNLK COSa-M VM IS\LNYLLU HSNHL HZ ^LSS
HZ KPH[VTZ & NYLLU HSNHL.

4. COSa-M PU JHTWHPNU 2018-NV]LTILY MYVT KH` 2 [V KH` 6 (7.5)

FPN. :.3. COSa-M PU JHTWHPNU 2018-NV]LTILY MYVT KH` 2 [V KH` 6.
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5. ǻChlH-M% step^ise linear regression before classification (P.6)

Table. S.2. S\mmar` of ǻChlH-M% sim\lation model before classification.

Fig.S.4 Homoscedasticit` graph for ɣChlH-M% sim\lation model in Class-S

VaULabOeV R2 CReIILcLeQWV P

1
(CRQVWaQW)

0.1�
-0.4

ǻWTePSPeaQ 14.1 0.00

2

(CRQVWaQW)

0.23

-1.0

ǻWTePSPeaQ 13.4 0.00

WaYedPa[ 2.� 0.05

3

(CRQVWaQW)

0.3�

-�.4

ǻWTePSPeaQ 14.� 0.00

WaYedPa[ �.� 0.00

WTePSPeaQ 0.2 0.00
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FPN.:.5 HVTVZJLKHZ[PJP[` NYHWO MVY ɣCOSa-M% ZPT\SH[PVU TVKLS PU CSHZZ-:F
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6. C`anoSma_ step^ise linear regression (P.8)

Table. S.3. The model s\mmar` of C`anoSma_ linear regression sim\lation (W<0.05)

NR. 9DULDEOHV R2 CRHIILFLHQWV AICF

1
(ConVWanW)

0.59
12.6

3.9
WaYedma[ 17.7

2

(ConVWanW)

0.66

15.1

3.8WaYedma[ 16.3

CloXdcoYer -0.06

3

(ConVWanW)

0.73

37.2

3.6
WaYedma[ 10.1

CloXdcoYer -0.0�
DepWh -10.6

Fig.S.6 Homoscedasticit` graph for C`anoSma_ sim\lation model
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7. ;OL JVYYLSH[PVUZ IL[^LLU U\[YPLU[Z HUK C`HUV:TH_ / ɣCOSa-M% (7.9)

FPN. :.7. ;OL JVYYLSH[PVU IL[^LLU KPZZVS]LK 7 (;D7) HUK ɣCOSa-M%.

FPN. :.8. ;OL JVYYLSH[PVU IL[^LLU [V[HS N (;N) HUK ɣCOSa-M%.
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FPN. :.9. ;OL JVYYLSH[PVU IL[^LLU NH4+-N HUK ɣCOSa-M%.

FPN. :.10. ;OL JVYYLSH[PVU IL[^LLU N63
- HUK ɣCOSa-M%.
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FPN. :.11. ;OL JVYYLSH[PVU IL[^LLU N63
- HUK C`HUV:TH_.

FPN. :.12. ;OL JVYYLSH[PVU IL[^LLU KPZZVS]LK 7 (;D7) HUK C`HUV:TH_.
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FPN. :.13. ;OL JVYYLSH[PVU IL[^LLU NH4
+-N HUK C`HUV:TH_.

FPN. :.14. ;OL JVYYLSH[PVU IL[^LLU [V[HS N (;N) HUK C`HUV:TH_.


