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Abstract

This thesis is concerned with biharmonic wave maps, i.e. a bi-harmonic version of the wave
maps equation, which is a Hamiltonian equation for a higher order energy functional and arises
variationally from an elastic action functional for a manifold valued map.

In the first part we present local and global results from energy estimates for biharmonic wave
maps into compact, embedded target manifolds. This includes local wellposedness in high
regularity and global regularity in subcritical dimension n = 1,2. The results rely on the
use of careful a priori energy estimates, compactness arguments in weak topologies and sharp
Sobolev embeddings combined with energy conservation in the proof of global regularity.

In part two, we extend these results to global regularity in dimension n > 3 for biharmonic
wave maps into spheres and initial data of small size in a scale invariant Besov norm. This
follows from a small data global wellposedness and persistence of regularity result for more
general systems of biharmonic wave equations with non-generic nonlinearity. In contrast to
part one, the arguments in part two of the thesis rely on the analysis of bilinear frequency
interactions based on Fourier restriction methods and Strichartz estimates.

The results in both parts of the thesis fundamentally depend on the non-generic form of the
nonlinearity that is introduced by our biharmonic model problem.
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Introduction

A well known nonlinear wave equation is the (2 + 1) wave maps equation,
—0%u+ Au = (|0wul* — |Vul*)u, (1)

which is obtained by the Lagrangian formalism for the action

W) = o / (0ul? — |Vul?) dz. 1)

for (smooth) maps u : (—7,T) x R* — S* € R*into the round sphere. Since this is a covariant
version of the free wave equation

Ou = —0?u+ Au=0, ie. D*Oqu =0,

where D is the covariant derivative along u, the equation (1) can be understood as generalizing
free wave propagation to the evolution of a hypersurface in the sphere S .

In this thesis, we introduce a bi-harmonic version of the classical wave maps equation (1)
(for general targets N and dimensions n € N), by considering the following elastic action

functional .
— 5 [ (0wl = 15uP) dis.o)

where the potential energy can be considered a (linearized) bending energy. Hence, in the
Euler Lagrange equation, Llu will be replaced by the biharmonic wave operator

®(u)

Lu = 0}u + Au,

where A? = A(A-) = 9;;07 is the (iterated) bi-Laplacien. In the case of the sphere N = S¥,
a critical map u : (=T, T) x R" — S of ® satisfies

O*u + A%*u = — |0u*u — A(|Vul*)u (2)
— (V- (Au, Vu))u — (VAu, Vu)u.
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The operator L finds applications in the description of e.g. elastic beams (n = 1) or thin, stiff
elastic plates (n = 2) and hence introduces a rather rigid evolution. In particular, (2) can be
understood as generalizing the free propagation of L into the sphere.

In the following sections of the thesis, we introduce the biharmonic wave maps equation for
general targets and aim to prove local wellposedness with high initial regularity (Chapter 1)
and global regularity with small data in a scaling critical Besov space (Chapter 2). This is an
attempt to structurally extend the work on the wave maps equation (1) to equations of the type

(2).

The wave maps equation

Let N C R” be a smooth Riemannian (sub-)manifold with induced metric and 7' € (0, cc].
Then, taking smooth, compact variations us : (0,7) x R"™ — N of the action functional

1 T
S(u) = 5/ / Ot — [Vu(t)Pdz dt,
0 n
a smooth critcial map u : (0,7) x R™ — N satisfies the constraint
Ou L T,N 3)
on (0,7) x R", i.e. u satisfies the equation
Ou = A(u)(0%u, Oqu), 4)

where [ = 9°0, = —0? + A is the d’Alembert operator, 9°ud,u = dyudu — Vu - Vu and
A denotes the second fundamental form of N. Calculating (4) from (3), we use the smooth
family of orthogonal tangent projector

P,:R* - T,N, pe N,

such that (3) reads Ou = (I — P,)(0u) by which (4) follows since u maps into N, whence
Du € T, N and A(u)(-,-) = —dP,(-,-) (on the tangent bundle).

The wave equation (4) is the extrinsic formulation of the general wave maps equation. In
the physics literature, (4) is known as nonlinear sigma model (for homogeneous N) and was
introduced in high energy physics [16] by Gell-Mann and Lévy in 1960. Since the (3 + 1)
wave maps equation has scaling supercritical energy (see below), the singularity formation of
(4) is considered to be a relevant toy model, for instance in general relativity.

Concerning the regularity theory, over the past decades until now, (4) served as a model equa-
tion for geometric field equations due to the subtle theory of its Cauchy problem involving e.g.
the gauge invariance and the null structure of the nonlinearity. Especially, the energy critical
(24 1) wave maps equation admits an intriguing threshold behaviour and allows for rich classes
of singular solutions. We refer to the surveys [56] and [32]. Further, [15] and [53] contain an
overview over many advances in the local and global theory of the past decades, concerning
which we also give a few more details below.



Introduction

The biharmonic wave maps equation

As mentioned in the beginning, we take the elastic action functional

1

T
(u) = /0 [ 10m@) — |Au() dr ar

where A = 0;0° denotes the Laplace operator. Under smooth, compact variations us :
(0,T) x R® — N, we obtain that a critical map u satisfies

8éu + A%u L T,N, 5

pointwise on (0,7") x R". The derivation of (5) will be given rigorously below, including its
expansion into a semi-linear biharmonic wave equation of the form

O*u + A’u = dP,(us, u;) + dP,(Au, Au) + 4dP,(Vu, V Au) (6)
+ 2dP,(V?u, V*u) + N (u, Vu, Vu),

where dP, (-, -) is the differential of the tangent projector P, : R* — T,N, p € N as explained
above. In fact, from the expansion of (5), the derivatives in the nonlinearity A/ appear in
tri-linear and quadri-linear forms (more precisely d>P, and d*P,,).

The equation (6) is Hamiltonian with energy

et = 3 [ 10 + 1) de. te (0.7, ™)

and thus £(u) is (formally) conserved along a solution u. In contrast to (3) and (4), much less
is known about (5) and (6). In fact, this thesis will present the first local wellposedness and
global regularity results for (6). We now proceed by a brief overview of the wave maps theory,
wich serves as a motivation for the attempt of extending the wave maps theory to the higher
order equation (6).

Motivation

In the field of nonlinear partial differential equations, the class of geometric field equations,
such as e.g. the Yang-Mills equation, Einstein’s field equations, Dirac’s equation or Maxwell’s
equation (and couplings thereof) are of great interest, both in the physics and mathematics
literature. Besides describing fundamental laws of nature, the mathematical interest in such
equations is dedicated to the connection of the Cauchy problem to e.g. renormalization (via
gauge invariance) or the underlying geometry/topology of the background manifolds (e.g. via
the theory of solitary solutions).
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A particular, simpler model problem that shares this features with the above class of equations
and attracted substantial interest in the past decades, is the wave maps equation

Ou = m* A(u)(Oau, Ogu), (8)

formaps u : (M™', m) — N C R" onan (n+1) dimensional Lorentzian manifold (M™', m),
i.e. the signature of the metric tensor is sig(m) = (—,+,...,+), into an embedded target
manifold N C RY. Here

V—|m|Ou = 9,(m*?\/—|m|dsu)

denotes the Laplace-Beltrami operator with |m| = det(mq, s)a.5. Especially, in this introduc-
tory text, we assume that we can choose a global chart for the domain manifold (M™!, m). As
mentioned before, (8) is the Euler-Lagrange equation of the action

1 . .
Stu) =3 /M ym 0DV, dV, = /~[mlda, ©)

where dV/, is the volume form. The above condition (3), resp. its expansion (8), corresponds
to the extrinsic point of view, i.e. N — R” is embedded.

However, since (9) does not depend on the embedding for /V, we can choose for instance Nash’s
isometric embedding, for which

1w (Voo X)T = Do X,

with D, denoting the covariant derivative (wrt. z,) in the pull-back bundle ©*T'N, X a section
of T'N along v and V,_, the directional derivative in the ambient euclidean space. Then, in
particular, equation (8) reads as

Do (m®P\/—|m|dgu) = 0, (10)

and can hence be seen as a free wave equation in N. This corresponds to the intrinsic viewpoint
of the wave maps equation. In particular, if u is localized, i.e. the image of v is contained in
the domain of a coordinate chart, this is fomulated via local coordinates u = «’/0; as

0w/ = m® T (u) B Dl (11)

where I is the Christoffel symbol of the Levi-Civita connection on N. The formulations (8)
and (11) of this wave equation indicate that, unlike in the case of a flat target /V, the presence
of curvature affects the asymptotic behaviour of solutions and might even lead to singularities.

Indeed, the wave maps equation admits a rich theory of global regularity results (e.g. for
small initial data) and singular solutions (in the equivariance reduction). We restrict to the
Minkowski domain (M"*! m), for which (8) is Hamiltonian with energy

Blu(t) = 5 [ 10a(®) + [Vu(o) de

10
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Remark: In fact the stress-energy tensor
1
TP (u) = (O4u, 0°u) — émw(mu, oyu), a,f=0,...d,

is divergence free

0aT%(u) =0, B=0,...d,

which corresponds to the conservation of energy for 5 = 0.

A specific invariance of (8), resp. (11) is introduced by an isometry on N, which leads to a
conservation law (Noether’s law). A related property (even if the target /V is not symmetric)
is obtained by renormalization from the coordinate invariance of the wave maps equation. We
now give a heuristic argument for (11).

Gauge invariance: Let P : M"™' — SO(L) and u solve (11), then (formally)
Opu = m* (PT(w)0quP ™" 4 (0, P) P~ POsu,

where Opu = POu + (dP, du),, = div(PDu). It is verified that I"(u)0,u corresponds to the
connection form in the pull-back bundle v*T'N, respresented by a coordinate frame along wu.
Especially, (PT'(u)0,uP ™! + (9,P)P~!) corresponds to this representaion in the coordinates
of ¥, = PJ,u and (11) is underdetermined up to the gauge orbit of Du. For instance, this
has been exploited in the intrinsic formulation (10), in the case where no localization to (11) is
possible (e.g. with rough data).

The gauge invariance introduces the freedom of fixing a good gauge transform, for example a
Coulomb gauge satisfying > ;_, 0, Ay = 0, and is essential in Hélein’s moving frame method
developed for harmonic maps in [17] (see [18]). It thus recovers (e.g. in the Coulomb
gauge) a similar Hodge structure as available in the presence of symmetry (for N). We refer
to [15, chapter 1.2.5 - 1.2.8] for details.

The wave maps equation has hyperbolic scaling u, (¢, z) = u(t/\, z/)\), A > 0 and hence we
have the scaling laws

E(ux(t)) = A" E(u(t/N)),

s (@)l gemy = A2 [lu(t/N)]

Hs(R™)

Especially, the dimension n = 2 is scaling critical (for the energy £) and heuristically (11) is
expected to be locally wellposed in H* x H* for s > 5 and globally regular for small initial
datain H? x Hz"! (including the energy space in dimension n = 2).

The null condition

11
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One particularly relevant property of (11) is the null condition, i.e. we consider
Ou = T'(u)wQ(Du*, Du'), Q(u,v) := ¢"Puqvs,

where Du = (9yu),. Then Q(u,v) = q¢*Pu,vg is said to be a null form, if () degenerates
whenever v L ,, v,

Va&LeR™ » (6,6)n=0 = Q& &) =0. (12)

For such equations, Klainerman, proved the existence of (3 + 1) global smooth solutions
starting from smooth L°°-small initial data in [28] (in fact the null condition in [28] applies to
quasilinear wave equations). This follows by the use of energy methods (for invariant vector
fields) and the Klainerman Sobolev inequality (see e.g. Sogge’s book [48]), where the null
condition is relevant for stronger decay in the vector field approach. This improves (3 + 1)
almost global existence for equations of type (11), which was proven in [23] and [37] for weaker
classes of wave equations.

Remark: It is shown that any null form decomposes into the linear combination of the RHS
of (11) and

Qop(u,v) = uqvg — upv,, «,f=0,...,n.
Another way of representing the null form of (11), is via the following commutator identity

Qu) = Fkl(u)(D(ukul) — WOt — ulDuk), O = 0%0,. (13)

Further, as explained in [53, chapter 6] via planar wave solutions, interacting spatial frequencies
are cancelled by the null form (13) if they are parallel and enhanced if they are perpendicular.

The local wellposedness of (11) in H*(R") x H*~!(R") for s > % was proved by Klainerman-
Machedon in [29] (n = 3) and Klainerman-Selberg in [31] (n > 2). The results depend
crucially on the null condition in (11) via multilinear estimates in the Wave-Sobolev, or X*?,
spaces. Especially, an example of Lindblad in [38] shows that the sharp regularity index s, > 0
for local existence satisfies so > 7 if the null condition is absent and the dependence on Du of
the nonlinearity is generic. A proof of the local wellposedness is outlined in [15], estimating
(13) and following the approach presented by D’Ancona-Georgiev [11].

The division problem

Small data global regularity in the scaling critical Besov space
B%’l(R") X B%vl_l(w),

was first proven by Tataru in [54] (n > 4). The solution is based on estimating (13) in the
F, OF spaces, by a global bound for CJu € L!L? correcting the X*° approach (which is
necessary in the threshold case of b = 1/2). The low dimensional case (n = 2, 3) was similarly
solved by Tataru in [55] via smoothing estimates in null-frame coordinates and is more involved
than the high dimensional case. Recently, the division problem has also been solved in a U?
based space by Candy-Herr in [8] (n > 2) using (recent) advances in bilinear Fourier restriction
theory.

12
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The space H? x H !

In [51] (n > 5), Tao found a microlocal renormalization procedure which, in a crucial step
toward regularity in the scaling critical space H?3 x Hz !, recovers well-behaved pertubations
of Noether’s law in the sphere N = SE. Subsequently, in [30] (n > 5), this was generalized to
target manifolds of bounded geometry by Klainerman-Rodnianski, following Hélein’s moving
frame technique and Tao’s renormalization idea (this was suggested by Tao in [51]).

The gauge invariance was e.g. exploited in the work of Shatah-Struwe [46] (n > 4, alternative
proof of [30]) and Nahmod-Stefanov-Uhlenbeck in [42] (n > 4, N homogeneous), by Héleins
moving frame approach (resp. a direct Hodge structure in [42]). The latter works are on the
physical side and depend on Strichartz estimates that control the (intrinsic) system a priori,
whereas the work in [51] and [30] is based on the control of frequency envelopes in a bootstrap
argument. In both cases the proof deals with limits of smooth approximations, which is due to
ill-posedness, see e.g. [25] and [11] for the results on the data-to-solution map.

For the particularly challanging case of small data in the energy space H' x L2, global regular-
ity was proved by Tao for N = S? in [52], by Krieger for N = H? in [33] and Tataru for general
targets in [57]. As seen above, the (2 4+ 1) wave maps equation has a scale invariant energy
and one can identify a more precise threshold for global regularity. This was confirmed to be
the energy gap (of harmonic maps) by Sterbenz-Tataru in [50] (along a Sacks-Uhlenbeck type
theorem) and Krieger-Schlag for the hyperbolic target in [34] by concentration-compactness
methods (in this case the threshold for global regularity is infinite).

The literature is vast and this brief overview is not complete. There are many aspects (respec-
tively details) that are left out and for which we refer to [53], [45], [15].

Biharmonic wave maps

As mentioned above, we aim to model the free, rigid movement in an ambient curved space. As
a simplified model in linear elasticity theory, the bending energy of a thin, stiff elastic surface
(i.e. deflections are only marginal) is well approximated by the bi-harmonic energy

E(u) = %/|Au|2 da. (14)

The classical book of Courant and Hilbert [9] gives a general variational description the
evolution of elastic membranes and thin plates. For instance, in case of small deformations
|Vu| ~ ¢, the Lagrangian of the potential energy of elastic membranes is simplified from the
area density of the graph to the Dirichlet energy (on domains)

1 1
Alu) =1+ |Vul2=1+ §]Vu|2 +o(|Vul?) ~ 1+ §]Vu|2.

13
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For the evolution of a two-dimensional plate, we apply a similar reasoning. However, the
movement is rather rigid and the Lagrangian for the bending energy of a thin plate is proportional

to 1
2
H(u) = 5(/‘61 + /fg) ,
where k1, ko are the principle curvature functions of the graph of w. Similar as above in the

case of small deformations, we approximate the sum x; + Ko
( du ) Au dudju 9.9
NVIFVUE) T+ [VuE (14 |[Vul?)?

= Au + Vu - O(|Vul?).

Hence, if Au € L?, we observe that H (u) ~ $|Au|? justifies the potential energy (14) in this
situation.

We now calculate the first variation d® of the (extrinsic) elastic action

1 [T
O(u) = 3 /T/" |Ou|? — |Aul? dx dt (15)

for maps u : (=T, T) x R™ — (N, h), where (N, h) < R” is isometrically embedded.
We denote by IT : R — N the nearest point projector map, i.e. such that

(p) — p| = inf |q — p|, dist(p,N) <1,
qeEN
and give a reference for the existence of this map in Chapter 1. Then we take

& M(u+e¥) = dll, (V) =VT € T,N, U e C®((-T,T) x R",R").
9 e=0

Hence setting P, := dIl, : RY — T, N (the orthogonal projector) and integrating by parts

d

0= e(u-+ew) = - /_ ) / (Pu(@Ru(t) + A%u(t)), W)da dr,

which gives
O*u+A*u L T,N on (-T,T) x R", (16)

respectively
Otu+ A*u= (I — P,)(0}u+ A*u) on (=T,T) x R".

In order to derive (6), we calculate using Du = (Vu, dyu) € T, N

(I — Pu)(afu)]l = dPi(@tu, Oyu) = 0, P (u)@tumatuk

Pk™m

(I — P,)(Au)])" = dP.(0yu, 0'u) = 0,, P, (u)0u™d"u",

Pe" m

14
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where k,[,m =1,...,Land? = 1,...,n. Further, we obtain
(I — P,)(A%) = A(dP,(9u, 0"u)) + 0;(dP, (0 u, Au)) + dP,(d;u, & Au).
We then calculate, writing d*P, = 0, - - - 9, P, : R* — R” for the k-th order derivatives,
A(dP,(0;u, 0"u)) = 2dP(u)(0;Au, 0'u) + 2dP(u)(9;0"u, 0;0'u) (17)
+ 2d* P(u)(0yu, 0'05u, u) + 2d* P(u)(Au, d;u, 0'u)
+ 2d® P(u)(0yu, 0'u, Oju, & u),
0;(dP,(u, Au)) = d*P(u)(Au, Oju, #u) + dP(u)(Au, Au) (18)
+ dP(u)(05u, &’ Au).
Hence by (17) and (18), we write (5) into
Otu + A*u = dP,(0yu, Oyu) + dP,(Au, Au) + 4dP,(Vu, VAu) (19)
+ 2dP,(V*u, V*u) + N (u, Vu, V>u),
where N (u) is defined by
N(u) = 2d*P,(Vu, Vu, Au) + 4d* P,(Vu, Vu, V*u) + d* P,(Vu, Vu, Vu, Vu).

Here, we sum the derivatives as explicitly given by (17) and (18). The evaluation of
dP,, d*P,, d®P, is rather intuitive in the coordinates of u. However, we will state the
formulation in standard coordinates of R” in Chapter 1.

A major difference of (15) compared to the action (9) is that ® depends on the embedding of
N < R® such that (19) is not an intrinsic Hamiltonian flow. However, there is an intrinsic
version of (15), namely

T
B(u) =2 / Dul® — |(Aw)"? de dt, 20)

2 —T JR"

T
=®(u) + 1/ |A(u)(Vu, Vu)|? dr dt.

where (Au)” = D79;u is the (spatial) tension field of the map u(—7,7T) x R" — N. Clearly
® does not require an embedding for (N, h). The draw back of considering the intrinsic action
®, is that an energy bound will only account for regularity of D?d;u (which is a nonlinear
expression) instead of the differential Du. Without further constraints, it is not clear how to
make sense of the energy topology or use the conservation of energy properly. In the following,
we restrict to the extrinsic version (19). The results of Chapter 1 apply to the Euler Lagrange
equation of (20) with data in the extrinsically defined Sobolev spaces.

Using that 9,u € T,,N, we obtain formal conservation of the elastic energy (7)

S = [ (PuGFu+ 50,0 do =0,

15
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by (5). Further, (19) admits parabolic scaling uy(t, ) = u(t/\* x/\), X > 0. Hence
E(ux(t)) = A"1E(u(t/N%)),
s ()]l gemy = A2 [|u(t/3?)]

In particular, the scaling critical dimension is n = 4 and heuristically we expect the following

Hs(R™) "

(i) Dimension n < 3: The biharmonic wave maps equation (19) has a global smooth
solution starting from smooth (compactly supported) data.

(i) The biharmonic wave maps equation (19) is locally wellposed in H*(R") x H*?(R")
for s > 7.

(iii) The biharmonic wave maps equation (19) is globally regular with small data in H? x
H>72

We give partial answers for this expectations, i.e. prove (slightly) weaker results such as the
solution of the division problem in chapter 2.

However, we stress that (19) is genuinely different from the wave maps equation (8), resp (11).
Especially, the formal decomposition

Lu = 0%u + A%u = (10, + A)(—i0, + A)u,

shows that the place of the half-wave propagator eFitV =4 i taken by the Schrodinger groups
eT*A for L. As a consequence, solutions to (19) are not expected to propagate with finite speed
and admit neither Lorentzian, nor a Galilean invariance, which imposes general restrictions in
the analysis for L.

In [20] the authors prove the existence of a global weak solution of (19) into the round sphere
N = S’ by a Ginzburg -Landau approximation, which allows passing to a solution in the limit
by Noether’s conservation law. In [19], the authors prove local wellposedness from energy
methods, which is part of this thesis and presented in Chapter 1. At the end of Chapter 1, we
present an argument for the global existence of such solutions in dimension n = 1,2, which
was published as a preprint in [44].

Further related models

For the past decades, many evolution equations with important applications to physics and ge-
ometry have been found to propagate by higher-order terms (compared to 2nd order differential
operator).

We close this introduction by giving two examples that involve the operator Lu = 97 + A?u.
The first is related to effective thin plate equations, such as Kirchhoff or Von Karman equations,
that usually take the form

Otu + A(h(Au)) — YA u = F(u, us, Vu, Vu, Vu).

16
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Hence L is relevant when internal deformations (h = id) and rotational forces (y = 0) are
neglected. This has been considered explicitly in [14] on a domain with dissipative boundary
conditions.

The second example is concerned with the following Klein-Gordon type equation

OPu + A%u 4 mu + |ulPtu = 0. (21)

For instance, if m > 0 and 1 + % <p< Z—J_rj, global existence and scattering of solutions of

(21) has been proved by Pausader in [43], as conjectured by Levandosky and Strauss in [36]

Main results and outline of the thesis

In the first Chapter 1, we prove local wellposedness of the biharmonic wave maps equation

corresponding to the condition
O*u + A*u L T,N,

derived from compact euclidean submanifolds N C R”. Here we restrict to high regularity,
i.e. we chose initial data in H*(R") x H* *(R") fork € Z, k > | %] +2. The result relies on a
compactness argument and energy estimates, thus we first prove wellposedness of a regularized
(dissipative) equation

O2uf + A*uf — eAdwu® L Tye N, € € (0,1]

from a standard energy argument in Section 1.3.1. We then observe an improved a apriori
estimate (independent of the viscosity parmeter €) in Section 1.3.2 by exploiting the geometric
form of the nonlinearity in (19). Especially, this gives the possibilty to obtain a weak™* limit on
a uniform local existence interval for the solutions, which is proven in Section 1.3.2. Further
in Section 1.3.3, we prove the uniqueness of the limit and recover a energy estimate for the
difference of two solutions, which becomes useful for proving continuous dependence on the
initial data. This is carried out in Section 1.3.4.

In the last Section 1.4 of Chapter 1, we prove global energy bounds in the energy subcritical
dimensions n = 1, 2, which exclude finite time blow up of the local solutions from the previous
sections.

In the second Chapter 2, we construct the analogue of Tataru’s F, LJF' solution of the division
problem (from [54]) for wave maps adapted to a generalized Cauchy problem of type (6) into
the sphere N = S”. In particular, we prove the existence of global solutions of a biharmonic
wave equation with a non-generic nonlinearity and small initial data in the scaling critical space
B2 (R") x B2',(R™) for any dimension n > 3 in Section 2.4. We first prove corresponding
Strichartz estimates in Section 2.3. This includes lateral estimates that recover a local smoothing
effect known for the Schrodinger equation, which is outlined in the Appendix 2.A. A proof
of dyadic bilinear estimates is stated in Section 2.4.2, which also applies to conclude that
the solution persists initial regularity in the space H*(R") x H* 2(R"). We finally give the
proof of the main results in Section 2.4.4 and deduce a small data global regularity result for
biharmonic wave maps in Section 2.5.
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CHAPTER 1

Local and global results from energy
estimates

The following Chapter (except for Section 1.4) is based on a local wellposedness result obtained
in joint work with S. Herr, T. Lamm and R. Schnaubelt and has been published in [19]. The
author of this thesis hereby ensures that he has contributed a significant part to this publication.
Section 1.4 has been prepublished in [44].

We briefly outline the structure of this chapter. In Section 1.3.1, we use a vanishing viscosity
approximation and solve the corresponding Cauchy problem for the damped problem

Ofu+ A*u—eAdwu L T,N, € (0,1].

In order to obtain a limiting solution for (1.1.1) as € \, 0, we prove a priori energy estimates
which are uniform in ¢ in Section 1.3.2. As a by-product we obtain the blow-up criterion in
Theorem 1.1.2. The existence part in Theorem 1.1.1 is also shown at the end of Section 1.3.2,
and in Section 1.3.3 we prove that the solutions are unique. Finally we establish the continuity
of the flow map in Section 1.3.4.

1.1 Introduction

As calculated in the introduction, smooth critical maps of

o) = 5 [ (0O = |8u(O)R)d(z. 1
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1.1. Introduction Chapter 1

satisfy
O?u+ A*u L T, N, (1.1.1)
which by the smooth family of orthogonal projectior
P,:R* = T,N, pé€N,
onto the tangent space 7;, N can thus be written as
O+ A’u = (I — P,)(0%u + A%u).
Exploiting that u takes values in /V, we have

OXu + A%u = dP,(us, ug) + dP,(Au, Au) + 4dP,(Vu, VAu) (1.1.2)
+ 2dP,(V?u, V*u) + 2d*P,(Vu, Vu, Au) + 4d* P,(Vu, Vu, V*u)
+ d*P,(Vu, Vu, Vu, Vu)
= N(u),

where the tensors d’ P are explicitly described in the Appendix 1.A.4. The goal of this chapter
is the proof of local wellposedness for the Cauchy problem corresponding to (1.1.1) in Sobolev
spaces with high regularity (for an energy estimate) and a proof that local smooth solutions
extend globally in time in dimension n = 1, 2. From now on, let NV be a compact Riemannian
manifold, isometrically embedded into R”.

A local well-posedness result as in Theorem 1.1.1 is standard for second-order wave equations
with derivative nonlinearities such as wave maps. It can be found for example in the book of
Shatah-Struwe [45] and the book of Sogge [48].

In contrast to this case, our nonlinearity N'(u) depends on V3u, which cannot directly be
controlled by the energy of (1.1.2) that bounds H*(R"™) x L?(R™) (on compact time intervals).
Heuristically, V3u € H~! if u is in the energy space, so that it is unclear if the equation can be
tested by velocity O,u for an a priori estimate.

In our proof we have to exploit the geometric form of A/ (u) repeatedly in order to recover an
indirect energy argument (via compactness of approximate solutions). To be specific, the core
property will be

N(u) L T,N, Du= (Vu,du) e T,N,

in case w is a solution of (1.1.2) maps to V.

Concerning the continuous dependence of the solution on the initial data, as the nonlinearity
N (u) depends on third spatial derivatives, no Lipschitz estimate in the norm H* x H*~2 is
expected from the energy method (as we observe e.g. from the a priori estimates in Section
1.3.3).

Summing up, the energy method for (1.1.2) is more involved than for comparable geometric
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1.1. Introduction Chapter 1

wave equations, due to the dependence N'(u) = N (u, V3u) and we overcome the difficulties
of the energy approach in the following sections.

We briefly note that our result applies to the intrinsic version of a biharmonic wave map defined
by (20) and remark that, compared with the right hand side of (1.1.2), the Euler-Lagrange
equation for the intrinsic biharmonic wave maps problem (20) differs by

P,(dP,(Vu,Vu) - d*P,(Vu,Vu,-)) + P,(div(dP,(Vu, Vu) - dP,(Vu,-))).  (1.1.3)

Since hence the Euler-Lagrange equation differs only by lower order terms (see (1.1.3) in
Section 1.2 below), we can prove the existence of local unique intrinsic biharmonic wave maps
with initial data as in Theorem 1.1.1. However, we do not have a result for initial data with
(only) covariant derivatives in L.

1.1.1 The main results

We prove the existence of a unique local solution in Sobolev spaces H* x H*~2 with sufficiently
high initial regularity & > | %] + 2 in order to employ energy estimates. First we have the
following

Theorem 1.1.1 ([19], Local existence & uniqueness). Let ug, 1y : R" — RE satisfy ug(x) € N
and uy(x) € Tyo)N for a.e. x € R" as well as

(Vug,uy) € H1(R™) x H*2(R™)
for some k € N with k > |5 ] + 2. Then there exists a maximal existence time
Ty = T, ur) > T = T([[Vuol g1, lur | gr-2) > 0
and a unique solution u : R" x[0,T,,) — N of (1.1.1) with u(0) = wug, Oyu(0) = uy, and
u—ug € C([0, T, H*(R™)) N CH([0, T, H*2(R™)).
The wellposedness then holds in the sense of the following Theorem

Theorem 1.1.2 ( [19], Continuous flow map & Blow up criterion).
For the solution u : R" x[0,T,,) — N in Theorem 1.1.1, there further holds the following.

(a) ForTy € (0,T,,) there exists a (sufficiently small) radius Ry > 0 such that for all initial
data (vy, v1) as above that satisfy

||<UQ,U1) - (U()’vl)”Hk(R")ka*?(R") < RQ,

the unique solution v : R" x[0,T,,,(vo,v1)) — N exists on R" x [0, Ty]. Further, for such
initial data the map (vg,v1) — (v(t), Opv(t)) is continuous in H*(R"™) x H*=2(R") for
t €10, Tp).
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1.2. Preliminaries and Notation Chapter 1

(b) If T, < oo, then
T7n
/ IVa(s)Z + fu(s) |25 ds = oo. (1.1.4)
0

In particular, for smooth initial data ug,wy : R* — R* with ug(v) € N and uy(z) € Tyy(x)yN
for x € R" having compact supp(Vug) C R" and supp(uy) C R", there exist T,,, > 0 and a
smooth solution v : R" x[0,T,,) = N of (1.1.1).

We remark that both uo and u(¢) do not necessarily belong to L?(R") and it is only the difference
of these two functions which is contained in this space. We further mention that the lower
bound k > | 2| + 2 ensures the existence of L> bounds for d,u € H* 2(R") from Sobolev’s
embedding. This is necessary in order to establish our energy estimates in the following
sections.

In the last Section 1.4 of this chapter, we establish the following global result purely by the a
priori control via (conserved) energy.

Theorem 1.1.3 ( [44], Global solutions). Let n = 1,2 and k > n + 2. Further let uy, u; :
R" — R* satisfy ug(z) € N and uy(z) € Typa Nforx € R" with

(Vug,uy) € H*1(R"™) x HF"2(R™).

Then the unique local solutions u : R" x[0,T,,) — N of Theorem 1.1.1 exist globally in time,
i.e. T,, = oo. Especially (1.1.2) has global smooth solutions starting from smooth, compactly
supported initial data in dimension n = 1, 2.

1.2 Preliminaries and Notation

In this section and in the following we will write C' for a generic constant only depending on
N, n and k, and often also < ... instead of < C'(---).
The projectors P, are derivatives of the metric distance (with respect to V) in R% ie.,

p=1I(p) + %Vp(distz(p, N)), P,=d,l(p), dist(p,N) < . (1.2.1)
Moreover, since IT maps to the nearest point on N there holds I1> = II and hence
dIl, = dIl(p) = d(I1%(p)) = dll,,,dIL,,
by which the projector maps P, : RE — Tty N are well-defined. Using cut-off functions we
extend the identity (1.2.1), and thus also the equation P, = d,I1(p), to all of R”. Moreover, all

derivatives of P, are bounded on R". In this way one can investigate (1.1.2) without restricting
the coefficients a priori. Further, for [ € Ny we denote by d' P, the derivative of order [ of the
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1.2. Preliminaries and Notation Chapter 1

map P,, which is a (I + 1)-linear form on R”. For the coefficients in the standard coordinates

in RY we write 3 3
= o —(P)E ().
..... F apll aplj ( ’p)lo( )

We derive the exact coordinate expansion of (1.1.2) in the standard coordinates of R% in the
Appendix 1.A.4. How to sum the derivatives in (1.1.2) is explained in the introduction above.

In the following, we briefly recall well known results on, e.g. Sobolev embeddings and
interpolation inequlities.

Lemma 1.2.1 (Gagliardo-Nirenberg-Sobolev, Morrey). (i) Let s € R,1 < p < 00, s —2 <0,
then W*P(R") — LY(R"), q € [p,px], px =

" In fact we have
n—sp

[ll o gry S MV o ny (1.2.2)
(ii)Let s c R, 1 <p< oo, s— % > 0. Then

[s—2],s—B—|s—2

WeP(R™) — C PR,

(iii) Let s,s e Rand 1 < p < q < 00, n € N such that s — 25—3. Then we have

WP (R™) — WEI(R™).

Remark 1.2.2. (i) Herein (i) we use |V[*u = F~1(|¢]*a(€)) and (1.2.2) is due to Sobolev
and Gagliardo-Nirenberg. The full embedding is then due to the interpolation, see also
the inequality below .

(ii) If we replace W*P? in part (7), (i¢) by W;>”, then the embeddings

loc?

(R"), Wil(R™) = oy "7 (R

loc loc

WP(R") < L}

loc loc

are compact for ¢ € [p, px).

The following is the well-known Gagliardo-Nirenberg interpolation, for which we refer to any
classical book on Sobolev spaces and e.g. to [6] concerning optimality.

Lemma 1.2.3 (Gagliardo-Nirenberg). (i) Let j,m € N with j < m, o € (0,1) and 1 <
p,q,r < 00 such that

1 ' 1 m l—a
_:l+(———)a—|— ,iSOé-
r.-mn p n q m
Then
1D, S ID™ gy
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1.2. Preliminaries and Notation Chapter 1

The next Lemma states the sharp improvement of the Sobolev inequality due to Brezis-Galluet
(n =2, k= 1) in [5] and Brezis-Wainger in [7]. In our case, this estimate will be necessary
in order to obtain global energy control for biharmonic wave maps in the energy subcritical
dimension n € {1, 2} in Section 1.4.

Lemma 1.2.4 (Brezis-Gallouet, Brezis-Wainger). Let | € N, 1 < ¢ < oo, u € W"(R™) with
u#0,1—% > 0. Then there holds for k € Nwith 1 <k < min{l,n + 1}

(n—k) (71|
lull o <l (14 1og 5 (14 Alwea gy (123)
ull e g

Let N C R* be a Riemmanian submanifold of euclidean space (]RL , Ocuc) With induced metric
tensor. We say that IV is of class C* for k € N if N is parametrized by an atlas of C* chart
maps. The following is a well known fact, see e.g. [47]

Lemma 1.2.5 (Nearest point map). Let N C R” be a compact C*, k > 2 (resp C*) submanifold
of dimension d < L. Then there exists 6 = 6(N) > 0 and a C*~* (rep. C*) map

I1:Vs(N) := {z € R | dist(z, N) < §} — RY,
such that for all x € Vs(N) there holds
I(z) € N, (I —I)(z) € Ty N, |z —1I(z)| = dist(z, N).

Further we have l(z + 2) = x forx € N and z € TN N V;s;N and

P,:=dll, : R* - R*, x€V;N
is a C*=2 (rep. C*) map to Ty N.
Remark 1.2.6. It is easy to verify, see [47], that

d*1l,, =dP, € T}(N) ® TN @ R*

is the second fundamental form denoted by A(x) of the embedded manifold N c R*. In
particular
dP,(X,Y) LT,N, X,Y €T,N, z € N.

Definition 1.2.7 (Star-Notation). We use the shorthand V*1u x V*24, for (linear combinations
of) products of partial derivatives of the components u' of u for{ = 1, ..., L. Here the partial
derivatives are of order k; € N and k, € N, respectively.

With this notation we can rewrite equation (1.1.2) as

O*u + A’u = dP,(ug, up) + dP,(V?u * V) 4+ dP,(V?ux Vu)
+ d*P,(Vu* Vu* V*u) + d° P,(Vux Vu x Vu x V).

This notation is also useful in light of the classical Leibniz formula, which implies the following
identity.
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1.2. Preliminaries and Notation Chapter 1

Lemma 1.2.8. For m € N and [ € Ny we have

=> Y APV sk V), (1.2.4)

]:1 Zi:1 mk:m—j

In order to include the case m = 0 in the Lemma, we will use Z;n:min (1,m} for the sum in
(1.2.4) or similar formulas.

The calculation of derivatives V™ (AN (u)) and V™(N (u) — N (v)) for sufficiently regular
u,v : R" x[0,T] — R* and m € Ny has been included in Appendix 1.A.1, employing the
*-convention. The results from Appendix 1.A.1 will be used frequently throughout the chapter.

In the following sections, we also need a version of the following (Moser-type) estimate, see
e.g. [58, Chapter 13].

Lemma 1.2.9. Let I,k € Nand oy, ..., a; € Ny satisfy S.._, |a;| = k. There exists C' > 0
such that for all fi, ..., fi € Co(R™) N H*(R™) we have

lagl ol
D freee - DU i e < CH ”fZ”LOO ¥ HszHk - (1.2.5)
In particular,
ol
D" fr--- D fillys < C Y TT I illee Clfllm + -+ L fill o) - (1.2.6)
=1 ij

Now we state the standard energy estimate for the Cauchy problem

Pu+ A*u=F
1.2.7)

u(0) = ug, w(0) = uy

Lemma 1.2.10. Let F' € L'([0,T), H™ %), Vug € H™ ', uy € H™ 2, m € N,m > 2.
Then the solution u of (1.2.7) satisfies

T

sup(90(0) s + 100 ) SOVTFTN [ NP s (128)

+ Vol g1 + [l ][ gron-2)-
Further for 0 <ty <t < T we have
m m— 2 m— 2 m—2
IV u()|z. + ||V Gl _2/ / \Y V™ 2u(s) deds  (1.2.9)
m m—2 2
V™ ulte) |72 + [V 2ue(to) [
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Remark 1.2.11. Especially, if

s — V™ 2(F(s)) - V" uy(s) do

R™

is continuous on [0, T), then the map
ts [V ()20 + ||V 2007, e (0,T)
is differentiable. A similaridentity as (1.2.9) holds for the Cauchy problem of the approximation
0P+ A*u —cAdu = F, €€ (0,1),
which will have relevance below.

Proof. The identity (1.2.9) and hence the estimate (1.2.8) follow in the case of smooth data by
differentiating (1.2.7) of order V™2 and testing the resulting equation by V"~ 2u,. For general
data as required in the Lemma we regularize

F° — F in L'([0,T), H™ %), Vu) — Vuy in H™ ' uf = u; in H™ 2

Then we apply as usual (1.2.8) to F¥ — F%' Vu) — Vu) , u —uS and obtain the convergence
of the solution «’. Hence (1.2.8) and (1.2.9) hold for F, ug, u;. [

1.3 Local wellposedness in high regularity

In this section, we present a proof of Theorem 1.1.1 and Theorem 1.1.2 by a vanishing viscosity
approach in a structurally damped approximation. However, the result hinges in a crucial way
on a the exploitation of the geometric nonlinearity in order to obtain a uniform existence time
in the viscosity parameter and uniqueness of the weak limit. Further, energy estimates that
make use of the geometric structre lead to a proof of continuous dependence on the inital map
with the Bona-Smith argument. The following four sections are the content of [19] and have
largely been taken from this publication.

1.3.1 The parabolic approximation

Since N (u) = N (u,us, Vu, V?u, V3u), energy estimates for the operator 97 + A? are not
sufficient to show the existence of a solution of (1.1.2). Instead, we use the damped plate
operator

9% + A% — cAD,
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with ¢ € (0, 1] fixed, as a regularization. More precisely, we prove the existence of a solution
u® : R" x[0,7.] — N of the Cauchy problem

{8fu5(x,t) + A%uf (2, t) — eAdus(2,t) L Tyewny N,  (2,t) € R™ %[0, T1], A3.1)

u(x,0) = up(z), ui(0,2) = uy(x), r € R",
where ug, u; : R” — R” satisfy ug(z) € N and uy(z) € Ty N forae. z € R" as well as
(Vug,uy) € H*H(R™) x H**(R")

for some k£ € N with & > [£] + 2. In the following we mostly drop the super-/subscript £ and
write (u,T') instead of (u®, T.). We note that the condition in (1.3.1) reads as

Otu+ A*u — eAdwu = N (u) — e(I — P,)(Adu). (1.3.2)
Using u(t,xz) € N, we can expand
e(I — P,)(A0w) = ed* P, (uy, Vu, Vu) + £2d P, (Vuy, Vu) + ed Py (ug, Au).  (1.3.3)
We thus study the regularized problem
Otu + A’u — eAdyu = N (u) — ed® P, (us, Vu, Vu) — e2d P, (Vuyg, Vu) (1.3.4)
— edP,(ut, Au) =: Nz (u).
We next solve (1.3.4) without the geometric constraint, recalling that only u(t) —uy € L*(R").

Lemma 1.3.1. Let ¢ € (0, 1) and take ug, uy : R” — R with ug(z) € N and uy(z) € Tyyy N
for a.e. v € R" such that

(Vug,uy) € H1(R™) x H*2(R™)

for some k € Nwith k > [ 5] + 2. Then (1.3.4) has a unique local solution v : R" x[0,T.] —
RE satisfying u(0) = o, u;(0) = uy, and

u—uy € CO([0,T], H*(R™)) n CY([0, T.], H*2(R™)) N H'(0, T.; H*"Y(R™)).  (1.3.5)
In addition,
Vu e L*(0,T.; H*(R™)) (1.3.6)
and there exists a constant C' < oo such that for 0 <t < T,

t t
[V 20l + 9500l 42 [ I o)l dsre [ [95 a)f;,
(1.3.7)

t
sc(// VRN () - 2 dds + [ Faol s + e ).
0 n
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Before we prove Lemma 1.3.1, we reduce the problem to functions in L? by setting v(z,t) =
u(z,t) — uo(x). We thus rewrite (1.3.4) as

OU + AU — (fo)) U = <0> , (1.3.8)

Uy

where U = (U

Ut

) and f.(U) is defined through

f(U) i = N(v+ug) — ed®Pyyoy (v, V(v + 1g), V(v + up)) (1.3.9)
— €2d P40y (YU, V(U + 1g)) — €dPyyg (v, Av + ug)) — A2ug.

Further the operator A;, : H*(R™) x H*2(R™) D D(A) — H*(R") x H*2(R") is given by

Ak = (AOQ _::IA) , 'D(_A) — Hk+2(Rn) > Hk(Rn) (1310)

Since the operators .4; extend each other we drop the subscript k. It is well known that —.A
generates an analytic C%-semigroup {S.(¢)};>0, see e.g. [10, Prop. 2.3] for the case k = 2.
Using also standard parabolic theory, see e.g. [35, Prop. 0.1] and [40, Prop. 1.13], we obtain a
first linear existence result with some extra regularity.

Lemma 1.3.2. Let r € Ny, u; € H ™Y (R"), and g € C°([0,T], H"(R™)). Then there exists a
unique solution U of the linear equation

oU + AU = (g) U(0) = (0) (1.3.11)

Uy
satisfying
UeL*0,T; H™ x H(R™) N C°0,T; H x H™™(R™) N H'(0,T; H* x H"(R™)).

We remark that the solution of (1.3.11) is given by

U(t) = S.(t) (51) + /0 St —s) (g(os)) ds. (13.12)

We quantify the above result by the following higher-order energy estimates.

Lemma 1.3.3. Let r € Ny, g € C°([0, T], H"(R™)), uy € H™'(R™), and uy : R® — RY with
Vug € H™3(R™). Then v from Lemma 1.3.2 satisfies

T T
oy + WoOlrss & [ T dste [ 1900+ w)Oyrss ds
0 0
(1.3.13)

<C1+T) G /OT |g(s) + A%uq|

2
Hr ds + Hul”fqr+l + HVUOHiFJr?)
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Jor0 <t <T, and

T
Il + 19 2 [ 1920t 1314
0

t
§C<—// vr(g(s)+A2u0).vrAvtdg:dH\|u1|\gr+1+||vU0||§IT+2>,
0 n

Proof. Writing U = (v, v;) in Lemma 1.3.2, the function v = v + u fulfills
02u + A?u — eAdwu = g + Ay (1.3.15)
in L2(0,T; H"(R")). We first differentiate (1.3.15) of order V! with [ € {0,...,r}. Testing
with —V'Au, € Lﬁx and integrating by parts in x, we derive
d 2 d 2 2
IV u@®] . + o [V FPu(t) ||} + e || VPPu(t)]) L. (1.3.16)

C
< IV + %) [+ 5 9207

which makes sense for a.e. t. (Here and below we use the duality (H', H~') in intermediate
steps.) We then absorb the last term by the left-hand side and integrate the inequality in ¢.

To control the second summand with ¢ in (1.3.13), we test the differentiated version of (1.3.15)
by eV!A%u. Here we proceed similarly as before, where we integrate the term

T
5/ Vot - VI A*udr ds
o Jrr

by parts in ¢ and x before aborbing it.
It remains to estimate the L?-norm of v(t) and the H?-norm of v(¢). These inequalities follow
by testing the equation with u; and using the fact that

||U_U0||L;>°L2 ST“utHLgOL?- H
Before we give a prove of Lemma 1.3.1, we state the following estimates for the nonlinearity.
Lemma 1.34. Letu, v : [0, 7] x R* = R, k > |2] + 2 be such that
(Vu, ), (Vo,0w) € L>=([0,T), H** x H*?),
and also u — ug,v — ug € L>®([0,T], L2) for some ug € R" — RY. Thenfor0 < s <t <T
IV N (u(t) = N (v(s)))l| e (1.3.17)
S+ ||Vu||]z§°Hk*1 + ||utHIZ§°Hk72 + ||VUHIE;>OH1€*1 + ||Ut||IZ;;°Hk72)
(lu(®) = o)l g + lJwe(t) = i)l a2,
IV 3N (u®))llzz S (1 + [V ullfge s + el g pee) (1.3.18)
(IVu@)ll g + @] g2)-
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Here we note u(t) — v(s) = u(t) — ug + ug — v(s) € L2. Further, we note that the estimates
above hold for N, where the constants then depend on € € (0,1). By interpolation with a
similar (simpler) estimate for ||\ (1) — N (v)| 2, ||V (u)||z2, we obtain the full #*~2 norm on
the LHS.

Proof. The prove follows by means of the calculations in the Appendix, to be more precise
Lemma 1.A.1 and Corollary 1.A.4 combined with a careful application of the Moser estimate
in Lemma 1.2.9. We give the relevant details below in Section 1.3.2 in the proof of the a priori
estimate and in Section 1.3.3 for the energy bound, respectively the uniqueness. The arguments
used there are the very same and in fact require more thought for the a priori estimate in Section
1.3.2. [

Proof of Lemma 1.3.1. We aim at constructing a solution U € C°([0,T], H* x H*~2), but due
to A%uy € H** we have f.(U) € C°([0,T], H*=*), which is insufficient for an application of
Lemmas 1.3.2 and 1.3.3 in a fixed point argument for v.

> Step 1: We thus approximate u by u € C®(R", R*) for § > 0 such that supp(Vu)) C R"
is compact with

u) — ug ae. and Vu) — Vugy in H*(R") as § — 0T. (1.3.19)

Defining f. 5 as above with u{ instead of ug, we obtain f. 5(U) € C°([0,T], H*=3(R™)). For
the data (u, u;) we now prove the existence of a fixed point for the operator v — S(v) defined

through
<8i‘>£1(}1)))> = S5.(t) (31) + /0 t S.(t — s) ( fe,?(v)) ds, (1.3.20)

which acts on the space

Br(T) = {v e C°([0,T], H*) n C*([0,T], H*?) | v(0) = 0, v,(0) = uy,

0llg = loell o gri—s + [10l] oo 2 + [V (0 + w0) || o s < R

for parameters R > 0 and 7" € (0, 1) fixed below and the metric given by

o1 = vallgry = lvr = vall poe g + [[Osv1 — Opva|| pe g2, 01,02 € Br(T).
Lete € (0,1) be fixed. We will show that the map

S : Br(T) = Br(T)

is strictly contractive with respect to ||-|| 57 if we choose R = Rs and T' = Tj with

R = 30|98 s + s ) = 3RE,

2

1 /3 -1 € €

T(;:imln . - 7 . (1.3.21)
/3 C?(1+ 3RE;)? C2(1+ 6RE ;)
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for a constant C' depending only on N, n, and k. To show this statement, we have to prove the
estimates

e,
IS@lls < TH+ Il ol + V0] s + enllps . (1322)
] e, ] )
I8(0) =S @)l < T30+ ol + 191 o~ 2l (13.23)

forv, v € Br(T). To employ the inequality (1.3.13) for » = k — 3, we need to bound the norms
5|12 ) ~ K
[N (u(t) +ug)|[ s and [INE(v(t) + 1) — Ne(0(t) + 1) || e

by C(1 + ||v]|3) |v]|% and C(1 + ||v||5 + [|5]|2) v — 13||123(T), respectively. This is provided
by Lemma 1.3.4 and this way we obtain in the fixed point v° = S(v?) satisyfying

5|2 5|2 & 5 2
[ A T A {0
Ts )
+ 5/ |V (0 + ug)|| ;e ds S Rj. (1.3.24)
0
In particular, v° € L2(0, Ty; H**1) N HY(0, Ts; HE1).

> Step 2: We next define Ry, R and T > 0 in the same way as Ry 5, Rs and T} using ug instead
of u3 and the Ry instead of R. Thus,

Ros — Ry, Rs— R, Ts—T asd— 0"

For sufficiently small 6 > 0 we have T5 > %T =: T and |Rys — Ro| < Ry. Hence v’ :
R"™ x[0,T] — R* is well defined and 9| By < CR for a constant C' > 0. Observe that for

sufficiently small 6,6’ > 0, the differences v° — v* + and 9,v° — 9,0 solve (1.3.11) with the
nonlinearity

N0 +ug) = No(0” 4 uf) + A% (ug — ug) € C°([0,T], H?).

Similar to the proof of the Lipschitz estimate (1.3.23), Lemma 1.3.3 then yields the bound

2 Ts 2 Ts
+5/ ‘ ds —|—5/
B(T) 0 HkF=1 0

<T sl

! ! ! / 2
v° — 0’ v0(s) —v? (s) V(v5—vé)+V(ug—u5)HHk ds

2
~ 1) &
+Cun Hvuo — Vil ] .

N .

B(T)
Hence, if T = T'(¢) is sufficiently small, as 6 — 0 the functions 19 tend to a function

ve C%([0,T], H*) n ([0, T), H**) n H'(0,T; H*)
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with V(v +wug) € L?(0,T; H*), where the limits exist in these spaces. In particular, (v, v;) is a
solution of (1.3.8) and u = v+uy solves (1.3.4). Moreover, by (1.3.13) the function uw = v5+ug
satisfies inequality (1.3.7), and therefore this estimate also holds for u since u$ — u; strongly
in C°([0, 7], H*2) and M. (u®) — N.(u) strongly in L2(0, T; H*~2) because of Corollary
1.A.4 and Lemma 1.2.9.

> Step 3: For the uniqueness of v, we note that, for a second solution v, the functions w =
v — v and w; = vy — ¥; solve (1.3.11) with the nonlinearity N (v + ug) — N.(0 + ug) €
C°([0,T], H*=3). Lemma 1.3.3 then yields the estimate

T

12 <112

o = 0llgry < Cg(lJFR%) [0 =0l - (1.3.25)
(Note that u, from the Lemma is different, namely uy = 0.) Hence, if 7' is sufficiently small,
we obtain v = v and thus u = v 4 g is unique. [
Next, we show that u(t) € N forallt € (0,7 if up € N and u; € T, N.

Proposition 1.3.5. Let ¢ € (0,1) and take ug,u; : R" — RY with ug(z) € N and ui(x) €
Tuo@ N fora.e. v € R" satisfying

(Vug, uy) € H 1 (R™) x HF2(R™)

for some k € N with k > | 5] + 2. Then there exists a maximal existence time T, € (0, o0]

and a unique solution v € R" x[0,T. ,,,) — N of (1.3.1) with u(0) = ug, Oyu(0) = uy,
u—ug € CO[0, 1), H) N CH[0, T2 ), H*%) N HL ([0, T2 ), HH(R™))

and Vu € L2 ([0, T..,), H*(R™)) which satisfies (1.3.7) for t € [0, T..,).

Proof. Fix ¢ € (0,1). Letu : R" x[0,7] — R be the solution of (1.3.1) constructed in
Lemma 1.3.1. We first show that u(z,t) € N for x € R" and ¢t > 0 small enough. Since

CO([0, ), H¥) = COR™ x[0, TY)
and uy € N a.e. on R", there exists a time 7' € (0, T such that for ¢ € [0, T] the distance

[dist(u(t), N)lzoe < sup [u(z,t) — uo(2)| S [Jult) — uoll g

r€R™

is so small that u = II(u) is well-defined. We then let w = @ — u and we note that w(0) =
J,w(0) = 0. Calculating

OFu = dl1,0}u + d*T1L, (uy, uy),
Aty = dl,Auy + d*TL, (Au, uy) + 2d°TL,(Vuy, V) + d° Tl (Vu, Vu, ),
A = dIT,A%u + d*T1,(Au, Au) + 4d*11, (Vu, VA) 4 2d*11, (Vu, V)
+ 2d°T1, (Vu, Vu, Au) + 4d°T1L, (Vu, Vu, V)
+ d*L,(Vu, Vu, Vu, Vu),
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we conclude that

(02 + A? — eAd)w = dII, ((af FAZ 5A8t)u> N () — N (u)
— dI1,(N.(u)) € TN,

Next, we note that since 4 = I1(u) € N, we have N (a) L T; N and from Im(dIl,) C Ty N,
it follows dI1,(N:(@)) = 0. Hence

(8152 + A% — eAO )w = dHu(/\/'E(u) — /\/;(a))
Now there also holds

IVl goos + el ge—e S (14 [ Vallipts + lludllnse) (1.3.26)
IVl g + el ge-2),
AT (N (1) = Ne(@) ] gms S (1 + [Vl o) [N () = Ne@)]] s (1.3.27)

We thus employ the energy bound (1.3.13) in Lemma 1.3.3 (with 4y = u; = 0 in the Lemma)
and it therefore suffices to estimate | NV (u) — Nz(@)]| ;7x—s, Which is provided by Lemma 1.3.4.
Especially, we obtain

(@)1 + e (@)l 70-2 < CT(lw ()7 + Nwe(®) [ pz) .t € (0,77,
where C' = C(N, k, &, [Vl poo o, 77,10-1y » [|@ell oo 0, 7),pr7-2)) > 0. In particular, if T > 0is

small enough, there holds w = 0, i.e. u = II(u) € N on [0, T].
In order to see that any Te [0, T') has this property, we apply a bootstrap argument. Let

J:={te€|0,T)|u,, mapsto N}

Then obviously 0 € J by assumption and .J is closed since u is continuous and N is compact.
The fact that .J is indeed open follows by the above argument starting at tq € J, i.e. u(ty) € N,
for which we replace T as above by t — t; > 0 small enough. The maximal existence time
1. > 0, is then defined through the fixed point argument in Lemma 1.3.1. O]

1.3.2 The a priori estimate and taking a limit

In the previous section ¢ € (0, 1) was fixed. The constants in the upper bound in estimates
such as (1.3.24), however, are of order O (¢71).

We now have to prove € independent estimates, which leads to a lower bound of the (maximal)
existence times 7T ,,, as € \, 0 and the possibility to take a limit by compactness arguments. We
then prove the existence of a solution stated in Theorem (1.1.1) and the blow up condition from
Theorem 1.1.2. This section is taken from [19] with modifications at the end of the section.
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The a priori estimate

We now prove an a priori estimate for the solution «° : R" x[0, 7. ,,,) — N of the equation
Ot + A*uf — eAdw L T,-N  on R" x[0,TL,,) (1.3.28)

given by Proposition 1.3.5 with ¢ € (0,1) and initial data ug,u; : R”™ — R* such that
up(x) € N and uy(x) € Tyyy(2) N for a.e. x € R" as well as

(Vug, uy) € H1(R™) x HF2(R™)

for some k € N with k > [§] + 2. As before we write u instead of u°, and we fix a number
T <1 ,,. Moreover, (1.3.7) says that

t
K P T Py Y B 13:29)
0

¢
< / / \Vie IN(u) —e(I — P,)(Auy)] - V2w, dx ds + HV’“_QUIHE + ||Vku0||i2
o Jrn

fort € [0, T]. We recall that the summand with ¢ on the right-hand side is well defined because
of (1.3.3).

In the following, we often make use of the relations A (u) L T, N and u; € T,,N which hold
since u(x,t) € N for a.e. (z,t) € R" x[0,T]. In particular, N'(u) = (I — P,)N(u). Using
this fact, we first write

VI N )V 2 = Y V(I = P« V™ (N (w) V2, (1.3.30)

mi+mo=k—2
m1>0

+ VE2(N (u))(I — P,)V* 2y,
— Z V™ (I = P,) V™ (N (u)) V" 2u,

mi+mo=k—2
m1>0

— Y VW (w)x V(I = PV,

li+lo=k—2
11>0

=1 1+ I 2
where the second equality follows from the Leibniz formula

0=V*"?[I-Pyul= > VI —=P)*V?u+(-P)V" . (1331)

1 +lo=k—2
11>0

34



1.3. Local wellposedness in high regularity Chapter 1

In (1.3.29) we thus split
[N ) — 1 = R () 9

= /]R" VF2(N(u)) - VF 2, do — 5/ VA2 (I — P)(Aw)) - V¥ 2w, da

:/ I d:v+/ I d:v—e/ VA2 (I = P)(Aw)) - V¥ 2u, dz,  (1.3.32)

We start by estimating

/ Ldr< Y IV = P) VRN (@) [V ).
mi+mo=k—2
m1>0

Lemma 1.2.8 yields the identity

v™(I - P,) Z > &P, (VR ok VR, (1.3.33)

I=L S ki=mi—j
which implies the pointwise inequality
mi B 5
VI =PI Y VR VR, (1.3.34)
I=E S k=

On the other hand, Lemma 1.A.1 allows us to bound | V™2 (N (u))| pointwise (up to a constant)
by terms of the form

VL] (VL] [ VR ][V + V920 [V 2] 4+ (VRS VR L] (1.3.35)

’Vﬁn+1u| . ‘Vﬁeru kal+lu“vk2+1u"Vker?uH, (1336)
’vfn1+1ul . |Vﬁ”+1u’ le'c1+1u|‘vkz+lu‘|Vl€3+1u||Vk4+1u|]7 (1.3.37)
wherei =1,...,moandm; +---+m;+ky+--- = my—iareasin Lemma 1.A.1. Moreover,

in the case ¢ = 0 (where no derivatives fall on the coefficients) the terms are of the form

|V || V2| + VR 2| VR 20| 4 | VR 3| VRt ),
VR | [VF | [ VR 2y,
|V’“1+1u||V"’2+1u||V’“3+1u||vk4+1u|,
where k; € Ny and ky + k3 + - - - = mo. Note that my < k — 3 since m; > 0. In the following

we use the notation (1.4.10) - (1.4.12) for all five cases, setting ¢ = 0 for the latter three.
Combining the above considerations with Lemma 1.2.9, we can now estimate the norm

V™ (I = POV (N (u))ll 2,
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where we distinguish five cases according to the terms in the brackets in (1.4.10) - (1.4.12).
Case 1: V¥, x VF2u,
We use Lemma 1.2.9 with

fi=Vu, ..., [;=Vu, fj11=Vu, ..., fi1i=Vu, firin=w, firie =,
and derivatives of order

i+ Ak 4 Ak Ak =myi A my—i—j=k—2—(i+ ).
Employing also Young’s inequality, it follows

|79 [ [ 9 [V ][

L2
k—3 2 k—2
S (@ IVullz) uelze + @+ 1Vullz) el o) IVl gramies + el e—2-ics)
k—1 k—1
S (A IVl 4 fluellpe ) Vel o + fluell go-2)-

The other cases will be treated similarly. Note that here and in the following the L°° norms and
especially ||u|| ;- are bounded by our choice of k.

Case 2: VF+2y x Vk2t2y
Here it is exploited that m; > 0 in I; due to the cancellation from (1.3.31). This time Lemma
1.2.9 is applied with f; = --- = f; ;12 = Vu and derivatives of order

ki 4tk it ke 2=mi A me+2—i—j=k—(i+j)<k—1

since j > 0 by (1.3.33). We estimate

195 ] Wt [ [ [ [ 2|
L
+7+1 k—1
S IVul 2 [Vl geis S (04 [Vullz=) [ Vall s -
‘7j
Case 3: VF 3y« Vk2tly
As in the previous case, C'(1 + ||Vu k;l V| ;-1 dominates
L H
H\V'h“zd o |V L [Ty ]VmiﬂuHV’“*gquh“M‘ L
L
Case 4: VF+lyx VFetly « Vkst2y
We apply Lemma 1.2.9 to the functions f; = - -+ = f; ;13 = Vu with derivatives of order

kit kg itk bkt ks l=myAmy+1—i—j=k—1-(i+j),
leading to the bound

195 ] [V L [ b[9[ L |24 |

L2
i+j+2 k
SNVl EZ 2 IVl gees-ies S O+ [Vallfe) [Vl o
‘7j
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Case 5: VFHly « Vhztly  Vhstly « Vhatly
We now use Lemma 1.2.9 with f; =--- = f;,;;4 = Vu and derivatives of order

ki kit k kot kst ki =myFmg—i—j=k—2—(i+]).
Hence, we have
H |vl~cl+1u’ . |v§j+1u||vfn1+1u| . |Vmi+1u||Vk1+1u||Vk2+1u\|Vk3+1u||vk4+1

i k
S ZIIV L IVl iy S (L4 V050 [Vl g -

Summing up the five cases, we infer

Il S QA+ IVullpe + lluall ) NV ull s+ leaellce)- (1.3.38)

Next, in /5 from (1.3.32) we integrate by parts in order to conclude

/[Qda:— > /v“’ )x [V — PV, dx

l1+1la=k—2
11>0

+ 0| VW) [V = PV de

l1+lo=k—2
11>0

=: [% + [22.
These terms are estimated by

LIS > VW @) [V = POV (1.3.39)

li+lo=k—2
11>0

BIS > IV )] [V = P)VE |, (1.3.40)
1 +lo=k—2
11>0

We control || V*73(N (u))||,, by terms of the form (1.4.10) - (1.4.12) in the L? norm, obtaining

as above

Iz

V2N @) 2 S @+ 1Vull e+ el IVl g + e ge-2)-

Equation (1.3.33) and Lemma 1.2.9 further imply

I1+1

IV = POVRw o >0 DY IV ] [V VR,
J=1yI 1mz_11+1 j
S @+ 1Vl + el s =) Vel e =+ el o)
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where my +---+m; + 1o = k — 1 — 1 < k — 2. Similarly, we have

51
QIR SIS SR (AR A
I=LST =l —j

k—2 k—2
S (L IVl o+ el o) 1Vl s+ e ge-2)

by Lemma 1.2.9 withm; +---+m; + o +1 =k —1—1i < k — 2, since [; > 0. The above
three inequalities yield

12l 0 S (L4 IVl + el 25D IVl G+ el Fce)- (1.3.41)

~

Finally, for the regularization term, we observe

—5/ VE2 (I — P,)(Au) |V 2, do = 5/ V(I — P)(Au) |V, da

n

< C ||V = P) @)l + 5 [V ][
In view of (1.3.3), to bound ||V*=3[(I — P,)(Auy)] Hiz it suffices to estimate
[V | - [V | [[ VR g | [V ) 4 [ | [V 20 ||i2 : (1.3.42)
A R A IAVAR A vichas il Avasans] H; : (1.3.43)

Wherem1++ml+k1+k2+1 = k—2—2andm1++ml+k1+k2+k3 = k—3—2,
respectively. As before, Lemma 1.2.9 implies the inequalities

" T 2
[V ] - [V | [[ VR [[ V2 ]+ [V, | [ V5220l ], (1.3.44)
2(k—2 2(k—2
S+ IVl 2 4 el 22 (el 3 + |Vl 3peez s
m m; 2
[V ] - [V | [V, [V | [V ||, (1.3.45)

2(k—1 2(k—1 2 2
S+ Va2 4 a2 (el ez + [Vl 3ee).

Putting together (1.3.38), (1.3.41), (1.3.44) and (1.3.45), we arrive at the inequality

/ V2N (u) — e(I — P))(Aw)) - V¥, dx
€ 12
S U+ IVullz + 2 UV ullzer + llulzee) + 5 195 |-
Subtracting the last term on both sides of (1.3.29), for ¢ € [0, T we conclude
t
_ 2 2 € _ 2
[V 20l + 9500l + 5 [ 19 o) ds

t
_ 2 2
S [ [+ I+ Tl APl s+ i) s+ 942 5, + 74
(1.3.46)
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It remains to bound the lower order terms. Testing (1.3.28) by u; € T, N, we infer

t
e (D172 + 1 Au(t) |72 + 6/ IV (s)|[72 ds = uallze + [ Auol7e - (1.3.47)
0

Since also
d

— |Vu|2dx§/ |ut|2dx+/ |Au|? d,

it follows
t
IVu(t)|72 < [[Vuol72 +/ |Au(s)|72 + lue(s)]l72 ds (1.3.48)
0

2 2
< IVuollzz + t(lurllzz + | Auol72)

for t € [0, T)]. The other derivatives are treated via interpolation, more precisely

! 2 < b1 2561:21) 2(13;1271) _ B

HvutHL2 ~ ||V utHL2 ||vut||L2 ) l= 2a"'7k 27
I 2 PR 21 2(k—2-1)

IV %[, S (| V5 2|57 el ", I=1,...,k =3,
L2 L 2= 2(k=1)

|Viul . S| VR 572 Al 572, 1=3,... k-1

Estimate (1.3.46) and the above inequalities lead to the core estimate
2 2 e [ 2
e () ss + IV s + 5 [ IV s ds (1.3.49)
0

t
2k 2k 2 2
S [ [ IVl B Vs + ueles)] ds
0
+ (1 +T)(uallpes + | Vuollgs), €0, 7).
for solutions of (1.3.1) and 7' < T ,,,. Using Gronwall’s lemma we also obtain

sup ([|us ()5 + [ Vu(®) |5 (1.3.50)

te[0,7)
T
< C(L+T) (w2 + [IVuollfe-1) exp (/ (14 I Vull 7o + flul75) ds> :
0

At least for small times we want to remove the dependence on w on the right-hand side of
(1.3.49) and thus we introduce the quantity

a(t) = [|Vu(®)|2a + [Au(®)|22 + | VEult)|| 2 + lue(®) 72 + || 75 2ue()] 7

for t € [0,7.,,). We observe that «(t) is equivalent to the square of the Sobolev norms
appearing in (1.3.49). Since the solutions to (1.3.1) are (locally) unique, our reasoning is also
valid for any initial time ¢, € (0, 7,,). The estimates (1.3.46), (1.3.47) and (1.3.48) thus imply

at) —a(ty) < C/ (1+ a(s)")a(s) ds.

to
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By the above arguments, the function « is differentiable a.e. so that

d
dt
forae. 0 <ty <t < 1.,,. We now proceed similarly to [27], where regularization by

the (intrinsic) biharmonic energy has been applied in order to obtain the existence of local
Schrédinger maps.

—E() <O+ EB)ME() (1.3.51)

Lemma 1.3.6. Let ¢ € (0,1) and take data ug,u; : R" — R* with ug(x) € N and u,(z) €
Tuy(@)N for a.e. x € R" satisfying

(Vug,ur) € H* Y (R™) x H* *(R") for some k € Nwith k > 2] + 2.

Let T.,, > 0 be the maximal existence time of the solution v* : R" x[0,1.,,) — N of
(1.3.1) with u*(0) = ug and 0wu°(0) = wuy from Proposition 1.3.5. Then there is a time
To = To(||Vuo|| gr—1, ||ur || gre-2) > O such that T ,,, > Ty for all ¢ € (0, 1).

Proof. Lete € (0,1) and ¢t € [0, 7 ,,). We write v = u°. From (1.3.51) we infer

d & oM
-1 = < 1.3.52
dt Og<(1+8k)i> (1+€’“)€_C’ (1.3.52)
With g = «(0) it follows
E(t)" o &b &
— 7 <e 1+4Ctk
e =" (e = = T+ ey
E(t) < (1 +4Ctk)EY + ACtkELEF
for0 <t < SCk, and hence

E()F < 2(1 +4Ctk)EY < 3&Y
for0 <t < g Ok min{1, sk} =: Tp. Since o and the Sobolev norms are equivalent, we infer

ot (8 s+ 9 (8) s < ol + 1| Vit 2ms) (1.3.53)

for t € [0, min{7%,,, To}) and some constant ¢y = co(k,n) > 0.

We now assume by contradiction that 7 ,, < Tj for some (fixed) ¢ € (0,1). We apply the
contraction argument in the proof of Lemma 1.3.1 for the initial time ¢, € [0,7.,,) and data
(u(to), u(to)) in the fixed-point space B,.(T") with radius

k
= 3r(t0)* == 3( [Vulto) s + lalto) s )

Since ty < Tp, estimate (1.3.53) yields the uniform bound

r(to) < V2co(|lwr |3z + | Vuo|[5u-1)"? =2 Go.
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1.3. Local wellposedness in high regularity Chapter 1

As a result, the time

1 . V3 -1 € €
T := —min - - ——, = -
4 V3 C2(1+3ck)2 C2(1 + 6¢f)?

is less or equal than the time T for B,.(T") in (1.3.21). Therefore, the solution can be uniquely
extended to [0, to + 7 in the regularity class of Proposition 1.3.5. For tq > 1., — T this fact
contradicts the maximality of 77 ,,,, showing the result. [

Proof of local existence

We now combine the existence result from Proposition 1.3.5 with Lemma 1.3.6. Thus, there
exists a solution u® : R" x[0,7y] — N of (1.3.1) for each ¢ € (0,1), where 7, > 0 only
depends on ||Vug || x-1 and |[uq || 2. From (1.3.53) and the inequality

[u® = woll ez < To [l poo 2 »

we extract a limit u : R" x[0, Ty] — R" as ¢ — 07 of the solutions Uf, 4., 1 the sense
10

* * — * — .
Vi BV, uf —ug = u—up, and V272 S V22, in L0, Ty L?),

where 1 < [; < kand 0 < [, < k. (Here and below we do not indicate that we pass to
subsequences.) In particular,

u—uy € L0, To; HY) N (0, Ty; H*2)

and (Vu, O,u) is weakly continuous in H*~! x H*=2, We further note that (1.3.53) holds for
u by weak® lower semicontinuity of the norm. We first assume &£ > 4 (which is no restriction
if n > 2). Estimating the nonlinearity similarly to Section 1.3.2, we also deduce from (1.3.3)
and (1.3.53) that 9?u® € C°([0, T, H**) is uniformly bounded as ¢ — 0*. Compactness
and Sobolev’s embedding further yield

ViuF — V3u in C°([0,Tp), Li,.(R™)),

o — Ou, vt —u, Vut — Vu, Vi — Vu, (1.3.54)
where the latter holds locally uniformly on R"x|[0,7,]. More precisely for o € (0,1) and
v® = u® — g, our a priori estimates and [39, Prop. 1.1.4] imply uniform bounds (in €) in the

spaces

VS e COHF 2 Wt € CHF 1722 VR e COHF 2 9pf € COH 22 (1.3.55)
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1.3. Local wellposedness in high regularity Chapter 1

As a result, u takes values in N. Moreover, since (1.3.49) and (1.3.53) give

T
/0 VeV (5)|| e ds (1.3.56)

S (To(1+ [lun |52 + Vol ge—s) + 1) (e [[Fpe- + | Vo | Fr)

and k > 3, we infer that eAdyu® — 0 in L7 ,. Combining this fact with (1.3.54) and recalling
(1.3.4), we conclude

N-(uf) = N(uv) in L}

loc

(R™ x[0, Tp]).

In the case n = 1 and k£ = 3 we obtain the convergence N_(u®) — N (u) in the sense of the
duality (H', H~') because we still have

Vut — Vu, V& — Vi, 0u® — du

locally uniformly, as well as V3u® — V3u and Vo,u® — V,uin C°([0, Ty], H;,!) ase — 0*.

loc

Summing up, we have constructed a local solution u : [0, Ty] Xx R"™ — N of (1.1.2) with u(0) =
uo and 9;u(0) = u, such that (Vu, d,u) is bounded and weakly continuous in H*~! x H*~2,

In Lemma 1.3.10 it will be shown that such a solution is locally unique. We recall from the
proof of Proposition 1.3.6 that the solution u : R" x[0,7) — N for some 7" > 0 can be
extended if lim sup, ;- (|[|Vu(t)|| zr-1 + ||t (2)]| yr—2) < 0o. There thus exists a maximal time
of existence 1), € (Tp, 00| of u with

timsup(|Va(t)]| s + llae(Dlls) =00 if Ty < o0,

t—Tm

Arguing as in Section 1.3.2, we establish the energy equality

t
[V |7, + V2| = 2/ / V2N (w) - V20, da ds (1.3.57)
0 JR™
1940 2 + (1942

for t € [0,7,,). (The integral is well-defined in view of the cancellation of one derivative
in (1.3.30).) However, in contrast to the approximations u°, the solution u has only £ weak
spatial derivatives (and O,u has k — 2). For this reason, when deriving (1.3.57) we have to re-
place one spatial derivative by a difference quotient. The details are outlined in Appendix 1.A.3.

We conclude that the highest derivatives V*~2u;, V*u : [0,T,) — L? are continuous, em-
ploying their weak continuity and that the right-hand side of (1.3.57) is continuous in ¢. For
the continuity of lower order derivatives, we can employ the same argument using the identity
(1.2.9) (for lower order derivatives). This follows from the standard energy argument in Lemma
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1.3. Local wellposedness in high regularity Chapter 1

1.2.10 since N'(u) € L H™ for 0 < m < k — 3 as Lemma 1.3.4 (by the estimate for the full
H*=3 norm) shows. In particular

u—uy € C°([0,T0,), H*) n C*([0,T,,), H*2)

as asserted.

Finally, following the proof of the a priori estimate in Section 1.3.2 we can derive the blow-up
criterion (1.1.4), cf. Appendix 1.A.3.

In order to show the full statement of Theorem 1.1.1 and Theorem 1.1.2, it thus remains to
establish the uniqueness statement and the continuous dependence on the initial data, which is
done in the next Sections 1.3.3 and 1.3.4.

Remark 1.3.7. In addition, we apply Lemma 1.3.4 (for the difference with u(t) and v(s) =
u(s)) in order to see that N'(u) € CyH™ for 0 < m < k — 3. Especially, by the Remark below
Lemma 1.2.10, we have that the maps

2

t = [IVa@)men + [lu(t)]

Hm > Ogmgk_g,

are differentiable with the corresponding identity (1.2.9). A similar statement using (1.2.9)
and Lemma 1.3.4 is given for the difference of two solutions, wich will be used in Section
1.3.3. Also, the calculation in the Appendix 1.A.3 shows (combined with Lemma 1.3.4) that
the above map is differentiable with m = k — 2. A similar statement is proven for the difference
of solutions at regularity m = k£ — 2 if one of the solutions has higher regularity. This will be
used in Section 1.3.4 and we advise the reader to follow the details in this section.

1.3.3 Energy bounds and uniqueness

In the last Section 1.3.2 (respectively from the Appendix (1.3.57)), we have seen that the
solution u : [0,7,) x R" — N with regularity

(Vu, ) € C([0,T], H* x H*?)
for some T" € (0, 7,,) satisfies

fgg(\lw(t)llqufl [l () lzp-2) < Crlll Vol e + [l [7n-2), (1.3.58)

where Cy = C(T, N, k, [[Vul| oo o 7yxmry » [l oo go,777)) > 0-

For the uniqueness of the limit in Section 1.3.2 and in order to prove that solutions depend
continuously on the inital data, we need additional energy bounds for the difference w = v —v
of two solutions. These are obtained similarly as in Section 1.3.2. The section is slightly
modiefied compared to [19].
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1.3. Local wellposedness in high regularity Chapter 1

Lemma 1.3.8 (Energy bounds). Let T' > 0, k > |4 | + 2 and u, v be two solutions of (1.1.2)
with
(Vu, dw), (Vv,0w) € C([0,T), H** x H"?)

and u(0) = ug, v(0) = vy, u(0) = uy and v;(0) = vy such that ug — vy € L*. Then there holds
il;)(Hu(t) — 0(8) e + llue(t) — v (8) [ 6-5) (1.3.59)
< Co((Jug — vollggams + [Jus — v1ll37s—s),

where Cy = C(T, N, k) > 0 further depends on the norm of Vu, Vv in L°°(0,T; H*™') and
ug, vy in L=(0,T; H*2),

Remark 1.3.9. The estimates in Lemma 1.3.8 depend as above on the cancellation introduced
by the identities

N(u) = (I = PN (), N(v)= (= F)N(v)).

However, this effect is weaker for the Lipschitz estimate (1.3.59) and can not be extended to
the level of the initial regularity of u, v.

Proof of Lemma 1.3.8. We derive (1.3.59) from a Gronwall argument based on the equality

d1
55/ V™, 2+ [V 20 do = / VN () = N(@©) - V7w de,  (13.60)
R"™ "

forw=u—v,me{0,...,k—3}and ¢t € [0, 7], which is a consequence of (1.1.2) and the
remarks in the proof of local existence to why this identity holds. Setting

E(t) = l[w(®) s + @)l

we want to prove

d
() < O+ IVull o + ullfs + V0l + JulFh)€) 36D

for t € [0,7] and thus first consider (1.3.60) for m = k — 3. Since u and v map into N, we
have N'(u) = (I — P,)(N(u)) and analogously for v. It follows

Nw)—=N@)=(I-P)N(u)—(I—P,)N(v)
= (P = PN (u) + (I = P)(N(u) = N(v)),

and hence

VE3 (N (u) = N(v)) - VEPw, = VF3(P, — PON (u)] - VF 2w,
+ VA3 (I = PN (u) — N(v))] - V3.
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In this way, we can avoid that all derivatives fall on V3w. We next write
V3P, = PN ()] - V3w, = (P, — P,)V" [N ()] - V2w,
+ ) V(P = P * V2N ()] - VP = I + L.

l1+lo=k—3
11>0

Observe that
/R Lde S ol [V N @) o [ V5P| -

We then control HV”“ SN (u H ;2 using Lemma 1.2.9 as above for the a priori estimate (1.3.49).
Further, Lemma 1.A.2 implies that fR” 15 dz is bounded by terms of the form

[wll oo [V ] - [V [VEN (@) o [V s (1.3.62)
94 (Il [T VN . (1363
where my,...,m; and hy, ..., h;_; are as in Lemma 1.A.2. In (1.3.62) we then estimate as

above in the a priori estimate. For (1.3.63), it suffices to control terms of the form
[V | [V By [V R[OOI ] [V ] [V ||V - ] (13.64)

where [|V*u||V*1,|-- -] is given as in the nonlinearity N (u) and the orders m ..., m;,
my, ..., m;, and ky, ko . .. are as used before. To apply Lemma 1.2.9, as above we choose

fl = w, f2 = Vhl, ...,fj = th—hfj—l-l = VU7--~,fz‘+j = Vu
and fiyj+1, fitji2,-.., according to the respective terms in N'(u). We can thus estimate
(1.3.64) in L? by

my mi

1- —
ol g Ml 220 (L IVl s+ el e + V0 s+ [loell7-2)

my

1— "1
+ [lwll o Nl 55, (14 IVl + el e + I V0ll3er + (ol )

S ol ges (U4 IV ull s + Nl e + IV0) 5o + ol e-s),
noting that/[; > 0,7 > land i + j < k — 2. We continue by computing
VST = PN () = N ()] - VP,
= VW (@) =N (@) = P)Vw Y V(I = P)* VEW (1) =N (v)) - VP,

l1+1lo=k-3
11>0

= VW () =N @)V (P=Pu] — Y V(N (1) =N (v))-VI[(I = P,)]*V"w,

l1+lo=k—3
11>0

+ Y VI = P)xVEWN(u) = N() - V2w, = i+ T+ J;.

l1+la=k—3
11>0
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1.3. Local wellposedness in high regularity Chapter 1

where the second equality is a consequence of
(I —Plwy=UI—-Plu=I[I-P)—(I—P)u=(P,—P)u

We use integration by parts to treat [ J; dz and [ J dz. Here we assume that k > 4. (If k = 3
the estimate becomes easier and we only employ integration by parts for dP, (V3w x Vu) in
the difference N'(u) — N (v).) It follows

/ CJide = - / ) VAN () = N(v)] - VF2[(P, — P,)u] da,
/n Jodr = Z / VEAIN (v) = N(0)] - [V (T = P,) « V2w,

l1+la=k-3
11 >0

+ V(I = P,) « V2w, da.

We first bound
[ e 190 - K0 [958 Rl

Corollary 1.A.3, Lemma 1.A.2 and Lemma 1.2.9 yield

VN (@) = N )] 12 S (lwllgpees + e gpes)
(L Vs + el Fie + V0l s+ ol Fiee),
V52 1(Ps = Po)ud|| o S Il gaes (U4 1Vl s + el e + 190 s + ol gies)-

The integrals of .J, and .J5 are treated similary. Summing up, we obtain

d
7 \Vk wi + |V P de S E@)L + IVl + lludllzpe + IV ollzrs + odllz-s).

We can similarly derive the estimate (integrating d P, (V3w x Vu) by parts)
/ jwil® + [Awl de S E@) (L + [ Vaullzor + udlls + [ VolFee + loelis).

Interpolation on the left-hand side then yields

515() EO)(L + V) [z + () |72 + V0@ pr + 0Ol 7-2),

for ¢ € [0, T]. By Gronwall we thus obtain the claimed estimate (1.3.59). O

A direct consequence of (1.3.59) in Lemma 1.3.8 is the following uniqueness statement.
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1.3. Local wellposedness in high regularity Chapter 1

Lemma 1.3.10 (Uniqueness). Let u,v : R" x[0,7] — N be two solutions of (1.1.1) with
initial data uy : R™ — N and uq : R™ — R such that u, € Ty, N on R" and

(Vug, uy) € H 1 (R™) x H*2(R™)
for some k € Nwith k > [ 5] + 2. Also let
u— g, v —ug € L=(0,T; H*(R™)) N W1>(0, T; H*2(R™)).
Then vy,

o1 — Yo,

1.3.4 Continuity of the flow map

We now prove that the solutions of the Cauchy problem for (1.1.1) depend continuously on the
initial data. As mentioned before in section 1.3.3 the difference u — v of two solutions u and v
satisfies the Lipschitz estimate with the loss of one order of derivatives compared the a priori
bounds such as (1.3.49) (or (1.3.58) for the solution of (1.1.2)).

To deal with this problem, we apply the Bona—Smith argument, which is outlined e.g. in [59]
(for the Burgers equation) and in [12] (for the KdV equation). The following section is taken
from [19] with minor changes.

Let 7}, be the maximal existence time of the solution u with initial data (ug, u1) from Theorem
1.1.1. Fix Ty € (0,T,,). Take data (vg, v1) as in the theorem satisfying

||(U,O,U1) - (UO;UI)HHkak*? S R (1365)

for some R > 0. (We note that we have to assume 1y — vy € L? in order to establish the a
priori estimate for the difference of the solutions as in the Section 1.3.3.) We use regularized
data (u), u$) and (v3, v9) in the sense of Lemma 1.A.6 from Appendix 1.A.2, where § € (0, 6*]
for some &* > 0 depending on N. The corresponding solutions are denoted by 1’ and v°. They
satisfy the regularity assertions of part a) of Theorem 1.1.1 for all k > |7 | + 2. It is crucial
that the a priori estimates for u’ and v° are uniform in §. We split u — v into

u—v:u—u5+u‘s—v5+v‘s—v

and bound each of the differences in H* x H*~2,

In order to estimate v’ — u and v® — v, we use the geometric structure (as before in Section
1.3.3). It allows us to fix a (small) parameter 6 > 0 for which the differences are small in
H* x H*=2, This can be done uniformly for (vy,v;) in a certain ball around (ug,u;). For
fixed &, one can then estimate u® — v® employing their extra regularity, but paying the price of
a large constant (arising from the small parameter /). We can control this constant, however,
by choosing a small radius £ > 0 in (1.3.65).

We start with some preparations concerning the cancellations caused by the geometric con-
straints. As in Section 1.3.3, we have

N(u®) = N(u) = (Py = Py )N (@) + (I = PYWN (v°) = N(u)),
(I —P)(u —u)y = (P — P)ul. (1.3.66)

47



1.3. Local wellposedness in high regularity Chapter 1

We then calculate (again similar to Section 1.3.3)
/ V2N (W) — N () - V2 (0 — u), da (1.3.67)
_ / (P, — Pu)VE2IN ()] - VE2(uf — ), do

+ /Rn V(P = P VEN (') - VE2 (U’ — )y da

1 +1lo=k—2
11>0

- /R UL~ P« VN () — N (w)] - T2 ), d

1 +1lo=k—2
11>0

+ [ VAN (@) = N(uw)] - (I = P)V* (0 — u), d.

R™

Using integration by parts and (1.3.66), the last term is rewritten as
/ VE2IN (W) = N ()] - (I — P)VF2(u’ — u)y dx (1.3.68)

. / THIN() ~ N )] VT~ B x V(0 — u)) d

l1+lo=k—2
11>0

- Z /R VESBIN (W) — N (w)] - V(P — P,)] * V2 dx

l1+lo=k—1
11>0

- VEBIN (1) — N ()] - (P — P)V* 'l du,

Rn

which is well defined by the higher regularity of u°. Technically this has to be established by
difference quotients as in Appendix 1.A.3, however we omit the details here. The advantage of
estimating u’ — w is that the bad terms (with respect to the regularity of u)

V2N ()], and ||V ]|, (1.3.69)

will be bounded by the regularized initial data from Lemma 1.A.6. Their norm will grow as
d — 07 in a controlled way. Moreover, when estimating (1.3.67) and (1.3.68), these bad terms
only appear in the products

o~ o [N ) e 920 — ]
4 = e [N ) — M) 2 [95

Here the decay of ||u‘5 — u|| [ @S0 = 0" will compensate the growth in (1.3.69). We now
carry out the details in several steps.

48



1.3. Local wellposedness in high regularity Chapter 1

> Step 1. Since Ty < T,,, we have the bound
sup ([[Vu(t) || gpu-r + lJua(t) | pu—s) =2 C < 0.
t€[0,Tp]
Lemma 1.A.6 allows us to fix a parameter 0] € (0, *] depending on (ug, u;) such that

| (Vug, < 30/2 (1.3.70)

P
forall § € (0,4,]. Weletd € (0,8,] and also R < C'/2 in (1.3.65). Hence

1(Vvo, vl -1z < N1(Vatg, wi) | grev g2 + R < 3C/2, (1.3.71)

(V03 0D)| iy e < (VU ud) || ocs o oe + B < 2C. (1.3.72)

We define a time T, > 0 as in Lemma 1.3.6, replacing o(0) there by a multiple of C. We then
combine the uniform a priori bound (1.3.53) for the approximate solution to the e—problem for v
on [0, Tp] with (1.3.71). Likewise one treats u° and v° using (1.3.70) and (1.3.72), respectively.

Following the existence proof in Section 1.3.2, we then see that the solutions «

ufo . and vi) o exist on [0, T o). Proceeding as in Section 1.3.2, we further obtain a constant
»To »To

C = C’(N, k:,To) > 0 such that

19l + luel2ns < CUIVaol s+l ), (1.3.73)
||VU||§{1@71 + ||’Ut||?;[k72 S C(||V’Uo||l2qk71 + ||U1||§_Ik72)7 (1374)

[0,Tp]’ U[Ov”fo] !

on [0, To]. Analogously, u® and v° satisfy the estimates (1.3.73) respectively (1.3.74) with the
same constant C' > ( independent of 6 € (0, 6*]. Further from Lemma 1.3.8 in the previous
section combined with (1.3.73), (1.3.74), we have

[ — |5 + [lwe — vell Fes < Clwo — vollgpumr + [l — v1]|5pu-s)- (1.3.75)

on [0, Ty], where C = C(N, k,Ty,C) > 0. Analogously, v — u’, v — v® and u® — v° fufill
(1.3.75) with the same constant C' > 0. For the regularized data we can replace here k by k + 1,
deriving

[ [l < O+ () (1376)
[ T e

which follows by (1.3.58) mentioned in the previous section and the fact that || V|| ; o , ||t]] 1
are bounded by the norm of H*~!, respectively H*~2.

> Step 2. Estimating (1.3.67) and (1.3.68) as in Section 1.3.3, we derive

d

g Ul = e e =) < € = [V )] 952 = )

+ Olu = o[ L[|V N () =N @) ] o[V 2]

o Ol =+ e = [ -2)
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for some C' = C(N,C, C') > 0. The nonlinearities are treated as in Sections 1.3.2 and 1.3.3.
Using also (1.3.73), (1.3.75) and (1.3.76), we then conclude

d
o
< Ol = || s U [V | g e ] e el gz + [ e)

+C ||u - u‘;”kal (1 + |Vl gror + |V || s + ||we|| gros + ||l || gr—s) HufHkal

5112 5112
[u = [ + [ue = g [ iz )

o O =+ e = [ -2)
< OfJuo = woll s + [l = ] s (@ + [ V| + ]| i)

O = [+ e = )
on [0, Tp]. Gronwall’s inequality and Lemma 1.A.6 thus yield

sup ([lu— [+ [Jun = [ )
te[0,To)

VA

as  — 07. In view of our a priori bounds, we can estimate v — v° in the same way. Here we
have to split the initial values, obtaining

(o = o8l s + s = 0l e ) + O o = w8l + s — w2 = o)

sup (flo =00 + floe = 0[5 )

te[0,Tp)]
CT,
< 75()(””0 = 08| s + [lor = 0| es) + Cllvo = w3 + or = v )
C’Tg s 5 5112 SN2
< _(S(HHO - U’OHHk—l + Hul - ulHHk—B) + C(Huo - UOHHk + Hul - ulH;.;k—z)
CT,
+ —O(HUO — Vol g1 + [lur — 1| s + Hug - UgHkal + HU? - ”isHkas)

2 2
+ C(Juo — voll 3 + lJur — w1l 3eme + [Ju — w3 ||y + [|ud — 0| pes)-

Lemma 1.A.6 now implies that

sup ([Jo = o*|[ype + [foe = o7 [je )
te[0,To]

CT,

CT,
+ —R+ CR2
Vo
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On the regularized level, we use the coarse estimate
O .
sup ( flu® = |3 + [luf = o} 152 ) < —=To(|[od — | e + [Jof = ]| o2
te[0,To) \/(_S

+ g =2

_'_C Hug_vé ; 1HH’€*2

ol 120
C 0

\/5

Since u — v = u — u® + u® — v® 4+ v® — v, it follows

— R+ CR%.

CT,
sup (||U - Uquk + [lus — Ut||quf2) < —O HUO - USHHH + Hu1 - U‘fHHH)
te[o,'fh] \/S
2 2
+ C[Juo = wg | e + [ = et s
C’To
\/5
Now take 7 € (O,ULQ] and r; € (0,n]. We first fix § = 6; = d1(r1) € (0,67] and then choose
Ry = Ry(81) € (0,C/2] such that for all R € (0, R;] we have

—— R+ CR% (1.3.77)

sup ([lu —vl|he + llue — velljpe ) <71 <. (1.3.78)
t€[0,To]

In the above reasoning we now replace (ug, u1) with corresponding solution u by data (g, @)
with solution 4 that satisfy the same assumptions as (vg, v;1). The function @ thus fulfills the
same a priori estimates as v and also (1.3.78). Moreover, we assume that

| (g, 1) — (vo, 1) || rescri—2 < R (1.3.79)

for some radius R > 0. We can then repeat the above arguments replacing u by . The resulting
regularization parameter 51 depends on 1, and thus also the upper bound R1 R1 (01) for the
radii in (1.3.79). For given 0 < 7y < 1), we infer

sup ([|& — o3 + ||a — vl e ) <71 <) (1.3.80)
te[0,To)
provided that 0 < R < R; in (1.3.79).

> Step 3. In the case T, > Ty the proof is complete. Otherwise we repeat the same argument
starting from

(), ui?) = (u(To),u (Ty))  and (v, 01") = ((Tp), v (Tp))-
Observe that (1.3.78) yields

H(Wé1 , ﬁ”)‘ < 30/2.

Hk—1x [Jk—2

<o+ vl )

Hk—1x k-2

51



1.4. Global regularity in low dimension Chapter 1

For a sufficiently small &, € (0,6*] and all 6 € (0, 93], we derive

<20
Hk—1x k-2

Hek—1x k-2

as in (1.3.70) and (1.3.72). Based on these bounds we can repeat the arguments of Steps 1 and
2 on the interval [Ty, min{27p, Tp}] =: J;. However we have to replace the bound (1.3.65)
involving R by (1.3.78) which yields

(s, ulD) = W8 0 et <1

Let 5 € (0,7]. Lemma 1.A.6 allows us to fix a parameter § = J = d2(72) € (0, d5] such that
CTy
e

(™ = (Y2 s+l = ()] gs )
1 1 1 1
+ O ([fus” — @Y e+ us? = (W) gr2) < /4.

As in (1.3.77) we then obtain

CT,
sup ([|u — vl 5 + lue — vellop-s ) < ro/d+ 19 /4 + — O <ry <y
teJy \/5_2

if we choose 1, and hence R, small enough. R R
Again we can argue in the same way for u instead of u, replacing r;, §; and R by 7;, d; and R.
For given 0 < 75 < 1), we thus obtain

sup ([ — vl + @ — villfns ) < Fo/d + Fofd+ =21 + CF} <7y <)

teJy \/g

if 7 and R are small enough.
> Step 4.
The previous step can be repeated m times until mTy > Ty. We set Ry = R(C/2) (with

n = C/2) and use the resulting radius R= }?(ﬁ) for the continuity at %, concluding the proof
of the continuous dependence in Theorem 1.1.2.

1.4 Global regularity for subcritical biharmonic wave maps in
low dimension

This section is taken (with modifications) from [44], which appeared as a prepublication.

We start the section by considering the case where NN is parallelizable, for which we can work
with normal vectors.
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Since for solutions « of (1.1.1), resp. the Cauchy problem for (1.1.2), the term 0?u + A%u is a
section over the normal bundle of u*(7T'N'), we let codim(/N) = L — [ forl € N, [ < L and first
assume the normalbundle 7+ N of N C R is parallelizable. This means there exists a frame
of (smooth) orthogonal vectorfields {v1(p), ..., vz _(p)} C RY, p € N with v;(p) L T,N for
every p € N.

In this case, for any local solution u, we have an explicit representation for the nonlinearity in

terms of v;(u).
L1

Ofu + A*u =: Z G (w)vi(u) = G*(u)v;(u), (1.4.1)
i=1
where G;(u) = (0?u + A%u, v;(u)). We thus calculate
(OFu, vi(w)) = —(u, dvi(u)ue),
(A2u, vi(u)) = —3(VAu, dv;(u)Vu) — (Vu, dv;(u)VAu)
— (Vu, &v;(u)(Vu)® + 2d°v;(u)(Vu, V) + d*vi(u)(Vu, Au))
— 2(V?u, d*v;(u) (Vu)? + dvy(V*u)) — (Au, d®vi(u)(Vu)? + dv;(Au)),
where we denote by d*v; the kth order differential of v; on N and write (Vu)?, (Vu)? for
products of first order derivatives of u with eiter two or three factors, respectively. The precise

product, e.g. 0, u - 0% u or Oy,u - 0% u - O, u will become clear in the terms of the expansion.
The result in Theorem 1.1.3 is known for N = S“~! and n < 2 thanks to [13].

1.4.1 The casen =2

We apply A = 9;0° on both sides of (1.4.1). Then, testing the differentiated equation by Auw,
we infer

Qidt (|A“t|2+|A2“|2)dﬂf=/ A(G (u)vi(u)) Augd. (1.4.2)
R™ n

Since G'(u) contains derivatives of order three, we can not proceed by the Holder inequality.
Instead, we follow [13], where the authors showed that the highest order derivative cancel in
the case N = S~!) v(u) = u. Since

A(G (u)v;(w) Auy = A(GH(w))v;(u) Ay 4+ 2V (G () - V (vs(uw)) Ay + G (u) Av; (u) Auy,
and

0 = Ay (w)uy) = 2dv;(u)(Vu) - Vg + v;(w) Ay + d*vi(u) (V) uy + dys(u) (Aw)uy,
it follows

A(G (u)v;(u) Auy = — AG (u) (2d1/i(u)(Vu) -V + d*vi(u)(Vu)u, + dui(u)(Au)ut)
+ 2V G () - dv;(u)(Vu) Auy
+ G (u) (Pvi(w)(Vu)® + dvi(u) Au) Au,.
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Hence we observe, by integration by parts for the first summand,

/n A(G (u)v;(u)) Auy dor = VG (u) - [3d2v;(u)(Vu)?Vu, + 3dv;(u)(Au) Vuy]de

+ » VG () - [4dv;(u)(Vu) Auy + dvi(u)(Vu)>uy)de
+ /n VG (u) - [3d*v;(u)(Au, Vu)u; + dvy(u)(VAu)u)dw
+ /n G (u)(dPv;(w)(Vu)?us + dv;(u) (Au)) Auy dz.

Instead of deducing bounds for this terms that depend on the normal frame {v4,...v;_;}, we
turn to the general case and use the normal projector I — P, : R* — (T,,N)* along the map
u: R" x[0,7) — N in order to represent the nonlinearity in (1.4.1) as

O*u + A%u = (I — P)(0%u + A%u). (1.4.3)
Here, we proceed similarly, ie. we use
A((I — P)(02u + A%u))Auy = A((I — P,)*(0fu + A?u))Auy, (1.4.4)
and hence

A((I = P)*(0%u 4+ A%u))Auy =A[(I — P))((I — P,)(0%u + A%u))Auy
+2V(I — P,) - V((I — P,)(0? + A?u)) A,
+ (A[(I = P)(9}u+ A*u)]) (I — P,)Au.

In order to treat the last summand, we expand
0=A((I = P)w) = (I — P,)Au; — d*P,((Vu)*,u;) — dP,(Au,u) — 2dP,(Vu, Vuy).
Hence, as before, integration by parts yields
/n A((I — P)(0}u + A%u)) Ay
_ /R CEP(Vu)?, (T~ P)(0fu+ A%u)) Auy di
- /n dP,(Au, (I — P,)(0?u + A*u))Au, d
-2 /n dP,(Vu, V(I — P,)(0*u + A*u)])Au, dx

- / VI(I = P)(87u + A%u)] - V[dP,(Au, uy) + 2dPy(Vu, Vuy) + d* Py((Vu)?, uy)] d.
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We first note the pointwise bounds

(I — P)(0%u+ A%uw)| < Jug® + [V2u)? + |V2u||[Vul? + |[VPu||[Vu| + |[Vul* (1.4.5)

IVI(I — P)(0fu + A%0)]| S [Vaug|[ue] + |[Vul|ue]* + |A2ul||Vul (1.4.6)
+ | V3u|(|V2u| + [Vul?) + |Vu||Vul? + [Vul?|V2u| + [Vu]’,

where the constants only depend on the supremum norm
2 3 4
14Pllcy = 4P lleym) + [ Plle, i) + 1 Pllc, o + 14 Plleyen) -
We now estimate, using (1.4.5) and (1.4.6),
| PL(Vu)?, (I = P)(@%u + A%)) Ayl

2 2
S 1A g2 [Vl e [HUtHLw el 2 + | V20| oo 1 Aull e + [Vl | Aul] e

+ VAUl 2 [ Vull o + 1 Vul|s [ Vull7 ]

|dP,(Au, (I — Pu)(afu + AZu))AutHD

2
S [[Aw] 2 [[Aul] o {HutHLOO luell 2 + [[ V20| oo (AUl 2 + [Vl | Al 2

+ IV AU 2 [ Vull o + [ VullZs ||V“||ioo}

= [[Aurll 2 | Aull oo [Nl oo uell 2 + [ V0] o AUl ]
+ h(t)? [[ Al 2 | Aul| o [l AU] g2 + [V 7]
+h(t) [[Au 2 |Au] oo [V AU 2

where we set h(t) := ||Vu(t)| .. We note further that the equality is up to the constant from
the estimate. We hence proceed by estimating

|dP.(Vu, V(I — P,) (00 + A%u)]) A 11
S Aw 2 |Vl g [Hutnm IVl 2+ 11V ull 2 el Fee + [|A%]] o | V] e
+ VAUl (V2| oo + 1Vl ) + 1Vl oo 1A g | V20 o + Al [Vl
+ 19l 9l |

The latter upper bound equals the sum of

2 3
R(t) || Al o [ el oo (V0] 2 IVl o el oo+ 1V D] 2 || V2] oAl 2 [Vl ]
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and
R2() | Al o [|A%0]] o + [Vl oo VAUl 2 + 1 Aull e (| V0] o+ IVl 2 [Vl Ge ]
We calculate

V[dP,(Au,u;) + 2dP,(Vu, Vuy) + d*P,((Vu)?, uy)]

= d*P,(Vu, Au,u;) + dP,(VAu, uy) + dP,(Au, V) + 2d*P,((Vu)?, V)

+ 2dP,(V*u, V) + 2dP,(Vu, V) + d* P,((Vu)?, uy)
+ 2d* P, (Vu, V2u, u;) + d* P, ((Vu)?, V),

and hence
| V[dP,(Au, u;) + 2dP,(Vu, Vuy) + d*P,((Vu)?, u)] - V[(I — P,)(02u 4+ A%u)]|
S (NAull 2 [Vull oo el oo + 1V D] 2 el oo + (AUl oo + 1Vl 7o) [Vl 2
1Al o 1Vl o+ [Vl [l o) [ el e (1906l o+ (190l o e
1A% o [Vl o + IV A 2 (V20 o + [ Vull7) + 1Vl Al 2 [ V2] -
+ 1 Aull 2 [Vl + [ Vaull 2 [Vl ]

We now collect all terms which are at least quadratic, linear or constant in (%), i.e. the latter
bound equals
J1(u) + h(t)Jo(u) + h(t)Js(u) + h*(t) Ja(uw),

where
Ji(w) = (IVAull g2 llull oo + 1| Aull oo [Vl p2) [ utel] oo (V0] 2+ V0] 2 [t
+ IV Aul 2 [V + 1Al [Vl ],
Ja(w) = (17 Aull o el oo + 180 190l 2) [ [[ A% o+ [Vt o 117 Al
+ 1 Aull e [Vl o+ IVl 2 [Vl 7 ],
J3(w) = (1 Aul o ell oo+ 190l g2 190l o+ 180l g2 A 170l el g2) [t o 1]
1Vl o el 2+ 1V Al o [[ V0] e+ 1Al V0] .
Ta(w) = (1 8ull g el e+ V0] g2 [Vl e+ 1Al + 1Vl el ) [ [ A%
+ IVl oo VAUl + Al 2 [Vl oo + [Vl 2 [V 70 ]
We note that the energy is conserved, ie. for ¢t € [0,7T)

2B (u(t)) = [ Au(t) |72 + 10u()llz2 = [ Auolze + lullze = 2E(ug, w), (1L4.7)
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and further, this implies the bounds

s[up) IVu®)|| ;2 S V1+T(V/E(uo, u1) + || V| ;2), and (1.4.8)
te[0,T
s[up) [u(t) — uoll 2 S TV E(uo, ur). (1.4.9)
tef0,T

We recall the following cases of Gagliardo-Nirenberg’s interpolation for n = 2
1 1 1 1
1Al e + 1V Al < A% 2 Al el e S 1Al Ea el (1.4.10)
1 2 1 5
IVull oo S [[A%]|7, IVullfe s IVull e S [|A%][g, [[Vul[f2, and (14.11)

3 1
V]| o S A 7o [l - (1.4.12)

Setting

Eu(t)) = [[Au(t)ll 2 + [[A*u(t)]] ., t € 10,T),
by (1.4.10), (1.4.11) and the estimates above, there exists a constant C'(T") = C'(N, ug, uy)(1+
T)* for some v > 0, such that C(N, ug, u;) only depends on the norm HdPHcg’ the optimal

Sobolev constant in Gagliardo-Nirenberg’s interpolation and E(ug,u1), ||Vul|;- and such
that the following holds.

d

agz(u(t)) < C(T)(1+ h(t) + R*(1))(E(t) + E2(t)) (1.4.13)
< O(T)(1+R*()(1 4+ E2(t)), t € [0,T).

Using the idea from [13], we now apply the sharp Sobolev inequality of Brezis-Gallouet-

Wainger from [5], [7] in order to bound (we assume « is not a constant)

h(t) < C|Vu®)|,p (1 + log? (1 + %)) , te0,T). (1.4.14)
IVu(t) ||z
Thus, using (1.4.10), (1.4.8) and (1.4.7),
R (t) < C(T) (1+1log (1+ (1)), te€[0,T), (1.4.15)
and hence
%(e + E(u(t))) < O(T)log (e + (1)) (e + (1)), t € [0,T). (1.4.16)

This suffices for a Gronwall-type inequality for log(e+E(t)) and hence by (1.4.7) and (1.4.10),
(1.4.11) and (1.4.12), we have

lim sup (w2 + [|[Vuls) < oo,
t—T

as long as 7' < oo. Especially, we use that the above norm bounds ||Vul|;w , |1 ;. on
compact (time) intervals. By the blow up condition (1.1.4) of Theorem 1.1.2, the solution
hence extends to a global solution with u — ug € C(R, H*) N CY(R, H*72).
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1.4.2 Thecasen =1

Here, by Gagliardo-Nirenberg’s estimate, we infer the bound
Vel S (V2] 2 19l (14.17)
Hence, the a priori bound is derived similarly for (Vu(t),u(t)) € H*(R) x H'(R). We note
%/RWWF + |VAu* dr = — /R dP,(Vu, (I — P,)(0?u + A*u)) - Vu,
— /R (I — P,)(0*u + A%u) - (d*P,((Vu)?, ;) + dPy(V*u,u;) + dP,(Vu, Vu,))dz.
Thus we estimate, as before
|dP,(Vu, (I — P)(02u + A%u)) V| 11

SNVl e 1Vl e | Nl oo el o + (| V22| ([ V2] 1

+ | Vull; | V2| . + [ V2] o [Vl e + [Vl 7 |Vl } and

I(d*Pu((Vu)?, ue) + dPu(Vu, ue) + dPy(Vu, V) )[(1 = Pu)(0Fu + A%u)]|| 1o

S (el g2 1Vl Zoe + (V20| 2 el oo + IVl o (V0] o) | Nttt oo el
IV 92+ 1900 92+ (920 9l + 9l 9 |

Hence from the interpolation estimates (1.4.17),

1 3 1 1
V20l oo S IVl V%0l fe s el e S 1Vl 2 el e (1.4.18)
and (1.4.7), (1.4.8), there holds (for C(T") > 0 as before)

CUTEWD) <OM+EM), t0.7) (1.4.19)

which suffices to use a Gronwall argument in order to conclude the proof.
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Appendix

1.A Auxiliary calculations and approximation of the initial
data

In this section, we provide basic calculations in Section 1.A.1 and 1.A.3 that are used throught
the chapter, as well as a standard approximation result for the initial data in Section 1.A.2,
which is applied for the Bona-Smith argument in Section 1.3.4.

1.A.1 Derivatives of the nonlinearity

In this section we assume u, v : R™ x[0, 7] — R* are smooth maps. The calculations hold if
and v are sufficiently regular to apply the Leibniz formula (e.g. with weak derivatives in L?).
Lemma 1.2.8 and the Leibniz formula imply the following substitution rule.

Lemma 1.A.1. Let | € N. Then we have
VIN (W) = Jy+ Jo + Js,
where the terms Jy, Jo, and J3 are of the form (with k;, m; € Ny)

Ji=Y TPV sk KV ) [V VR, 4 VIR VR Ry VR vk Ly
()

with (%) : 0 < m <, Z?Zlki =1l—m, j=min{l,m},...,m, Ei:lmk =m — j;
Joy = Z ATT2P, (V™M iy 5 ok VML) [WFI Ty % W2y 5 VRS T2y
(%)
with (¥) : 0 <m <1, 30 ki =1—m, j=min{l,m},...,m, S1_, mp=m— j;
Js =Y TPV ke V) VR VR Ly e VR Ly Ry
()
with () : 0<m <1, Yoi_ ki =1—m, j=min{l,m},...,m, SI_ mp=m—j.
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The following lemmata are used to prove the existence of a fixed point in Section 1.3.1 and the
uniqueness result in Section 1.3.3.

Lemma 1.A.2. Letm € N, k € Ny, and w = u — v. For m > 2 we have

V™ (d"P, — d*P, Z o (TP = TPV L VT ) (LA

j=1 mi+--+my=m—j

+Y D AR (v, ey, V)

J=2 mi+-+mi=m—j

+Y D TRV, vy, Uty V)

J=2 mi+--+mi=m—j

P3O R T gy

J=2 mi+-+mi=m—j
and form =1
V(d*P, — d*P,) = (d*P, — d*P,)(Vu) + d"P,(Vw). (1.A.2)

Proof. The result follows from subtracting the expansion in Lemma 1.2.8 for d* P,

- Zm: Z dj+ka(vm1+lv ko k vmj+1v)7

=1 mi+-+mi=m—j
from the same expansion of V™ (d*P,). Then subsequently adding and subtracting the inter-
mediate terms in the formula above gives the result. U
Corollary 1.A.3. Let m € N, k € Ny, and w = v — v. Then we have

V™ [(dP, — dP,)(u; - u + Viux Vu+ Viux Vu)]
= > (&P, — TP (VM L VT ) (Vg % VR,
()
4 VA2 % VF2T2y 4 W3y 4 Wh2y)
+ Z AP, (VM vty V) (VR « V2,
(%)
4 VA2 % VR T2y 4 W3, 4 Wh2y)

+ ) TPV, Ty, V) (VR « VR,
(%)
VR TRy 4 TRy TRy,
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where (%) : j = 1,...,mandmy+- - -+mj+ki+ky = m—j,and (+x) : j = 2,...,mandm;+
-+ mj + ki + ko = m — j. Likewise we have

= > (&P, — P (V™M L VT ) (VR VR VR Ry

+ Z dj-*'QPU(vmﬁ-lw7 VmQ-&-lu7 o 7vmj+1u) (Vk1+1u % ket o vk3+2u)
()

+ Z dj+2PU(Vm1+1v, U VAL SR ij+1w)(vk1+1u * V2t & Vk3+2u)
(%)

where () : j = 1,...,mand my + ---+mj + k1 + ko + ks = m — j, and (%) : j =
2,...,mandmy +---+m; + ki + k2 + ks = m — j. Further

V™ [(d*P, — d*P,)(Vux Vux Vux Vu)]
Z (@P2P, — &2 R,) (V™ u, . V) (VR WLy 5 VR Ly 5 VR Ly
)

E ]+3P vml—i—lw sz—Hu o 7vmj+lu) (Vkl-‘rlu * Vk2+1u % Vk3+lu* Vk’4+1u)
*)

+ Z AP, (V™ Ty, L Vi ) (VR Ty« VR Ty« VRt 5 Ry
()

where we sumover (%) : j =1,...,mandmy+---+m;+ ki + ko +ks+ ks =m—j, (xx):

j:2,...,mandm1+--~+mj+k1+k2+k3+k4:m—j.

Also, the case m = 1 is similar.
Proof. The assertions are consequences of the Leibniz rule and Lemma 1.A.2. ]

Corollary 1.A.4. We have form € N, m > 2 and w = u — v that

V"N (u) = N(v))
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is a linear combination of terms of the form
(TP, — TP (V™ . V) (VR « V2,
+ VFH20 % VP22 + VA3 % V’”u)
dP, (V™M T, VT Ry VT ) (VR x VR,

4 VI 2y 5 VR t2y 1 RISy 0 TRy,

(2P, — &2 P,) (VM . V) (VR TRty o T2y,

A SN VAR VI VAR I VA Ay FIPD [ VAR VI VAL AR TS VACRE AN
(dT3P, — P3P, (V™ Ty, . V) (W Ty % VR 5 Ry o TRy,
dT3P,(V ™My, VTt o VT R ) (VR Ry s VR TRy« R TLy) and

PV, V) (VRw « VR hy 4+ VR0« VR
+ VR FBw x VR h + VR34 5 VR2w), h e {u, v},

AP, (V™ Ty L V) (VR T« VR « VRS T2,
+ VR by« VR by« VR ),

AP, (V™ Ty, L VT ) (VR T« VR ) % VEs Ty 5 VR,

where 7, ky, ko, ks, ky, mq,...mjand h, hy, ..., hj_y € {u,v} are as above in Corollary 1.A.3.
Also, we have a similar (but simpler) statement for m = 1.

Proof. We write, according to the definition of A/ (u) in (1.1.2),
N(u) — N(v) = (dP, — dP,)(u; - u; + V*ux Vu + V3u x Vu)
+ (d*P, — d*P,)(Vu x Vu x V?u) + (d* P, — d*P,)(Vu * Vux Vux Vu)
+ dPy(w; - ug + vy - wy + Vw x Vu + Vo x Vw + V3w x Vu + V3o x Vo)
+ d?P,(Vw x Vu* V*u + Vo x Vw x V2u + Vo « Vo « V)
+ d*P,(Vw x Vu * Vu  Vu + Vo x Vw x Vux Vu
+ Vux Vu* Vw x Vu + Vo * Vux Vo x Vw).

Then, we use Corollary 1.A.3 for the first three terms in the sum above. For the latter three, we
use Lemma 1.2.8 and the Leibniz rule. OJ

Let e € (0,1). We recall from (1.3.4) the definition
N(u) = N(u) — ed® P, (us, Vu, Vu) — 2d P, (Vuy, Vu) — ed P, (uys, Au).
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Lemma 1.A.5. For m € Ny the derivative V™ (N (u)) compared to V'™ (N (u)) contains the
additional terms

AP, (V™M Ty o V) (VR % VR T2y - VR Yy, o V2T and
AP, (V™M 5 V) (VR VR % VR Ty,
with j,mq, ..., m;, ki, ko, kg similarly to Lemma 1.A.1.

Further V™(NZ(u)) — V™(N:(v)) compared to V™ (N (u)) — V™ (N (v)) contains additional

terms of the form

(7P, — 7T P) (V™ T, .. V™) (VEuy « V220 4 VR Ty, « VR,
P (VM w, VT Ry VT R ) (VR VR VR g VR ),
(2P, — PP (V™ o, VT ) (VMg % VR« VR ),

AP, (V™M VT o VT ) (VR x VR« VR and

dj+1PU(Vm1+lv, o vm]--l—lv)(vlﬂwt % k2] + vkﬁ-lwt % Vk2tlp
+ VM hx VR 2 4 VR, VR y) o b€ {u, v},

dj+2pv(vm1+11), e ijJrlv)(vklwt * VkQJrlhl * Vk3+1h2
+ VL (hy)y % V2T Ry % VR ),

withw = u—vand j,my, ..., mj, ki, ke, ks, ha, ..., hj_y similarly to Corollary 1.A.4.

The implicit constants may depend on ¢ here.

1.A.2 Approximation of the initial data
In this section we construct certain approximations of initial data in order to conclude continuous
dependence of the solution on the initial data. As in the previous sections, take functions
ug, uy : R™ — R* with ug € N, u; € T, N a.e. on R", and

(Vug,uy) € H 1 (R™) x HF*2(R™).

for some k > | 5| + 2 withk € N.

Lemma 1.A.6. Let the functions (ug, uy) be as above. Then there is a number §* = §*(N) > 0
such that for 6 € (0, %] there exist maps ud,u} € C®(R",R") such that Vul,u] € H™ for
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allm e N, ug e N and u‘f € TugN on R" which satisfy

Ug — ug € L* and Huo — ug”L2 < Cyo, (1.A.3)

[(Vud, uf) = (Vg, u1)|| s, s = 0(V0) as §— 07, (1LA4)

H(Vug,u‘f) — (Vuo,ul)HH,cfle,ﬁ2 =o(l) asd— 0", (L.A.5)
1

O (LA6)

for a constant Cy = CO(||PP||C{§ Vol grer s ||Jua || ga—z) > 0. Further let (vo, v1) be as above
with uy — vg € H*(R™) and

||(U0,U,1) - (UO7UI)||HkXHk—2 S R

for some R > 0. Then for 6 € (0,6*| we have

1
1(V0d, )] o grn < Co(1 +R’“>%, (1.A.7)
(g, 1) = (W, 0D)|| e s < Co(1+ RF) (g, ur) — (o, v0) || gz - (1LAS)

Proof. We choose the caloric extension for regularization, i.e., we consider 15 * uy and 75 * uq

where ,
ns(z) = (477'5)_%6_%, d>0, xeR",

and T'(0) f = ns= [ is the heat semigroup. Since u; € CP(R") and uy € CZ(R™) by assumption,
the convolution is well defined for uy and u;. Moreover, 75 * ug tends to uy and 75 * uy to uy
uniformly as 6 — 07, as well as

V(ns * ug) — YVaug in H1(R"), ns *uy — up in H¥2(R™)  asd — 0T,
The uniform convergence yields
dist(ug * ns(z), N) < |ug * ns(z) —ug(x)] -0  as § — 0 (1.A.9)
uniformly in € R". Hence, if 6 > 0 is small enough we can define
s

ud = m(ug*ms)  and Ul = Pyyun, (U1 * 1s).

Recall that 7 is the nearest point map and that P, ., (u, * 15) € T,; N by definition of the
projector P and uj. Especially we have

[ug(@) = uo + ns(w)| = dist(uo * n5(x), N) < Juo(w) — uo * ns(w)],

[ug(w) — uo(x)] < 2|uo(x) — uo * s ()]
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for z € R™. We further note that u{ and u{ are smooth maps and that we have the uniform
convergence
Ug — Ug, uf — U1

as 6 — 0T by construction of ug (and the mean value theorem for u‘ls). Assertion (1.A.3)
follows from

1

5
H(S_l(uo * 15 — UO)”L2 = Hg/ (Aug) * s ds
0

N ||Au0||L2>
L2

by Young’s inequality for the convolution. Since Vud = P, ., ((Vug) * 1s), we further have
to treat the terms

puo*n&((vuo) * 775) — Vug = puo*na((vuo) *Tls — vuo) + (Puo*ms - PUO)VuO>
Pugins (U1 % ms) — 1 = Pyguys (wr x5 — 1) + (Puguns — Pug )1
We start by estimating (by means of the mean value theorem for P)

[ Pugans (Vo) * 15) = Vo]l o < [ Prguns (Vo) * 15 = Vo) || 2+ [[(Puguns = Pug) Vo]l

)
Lo°

where 3 (ug * s — ug) — Aug uniformly as & — 0% since uy € C7(R"). Similarly, employing
Lemmas 1.2.8, 1.2.9 and 1.A.2 as before, we see

1
—(Uo * s — Uo)

ORI

V52 (P (Vo)  15) — Vo) | .
S > [HVh(Puo*%) V2 (Vo) * 05 — Vo) || 1o + ||V (Pagens — Puo) - Vb“uo}lm]

li+lo=k—2
S (L4 | Vaolles + [[(Vao) * 05l ja—z) (Vo) # 05 — V|| s
8| [ 167 (0 % 5 — )
< o(V9) as § — 0%,
Here we also use [39, Prop. 2.2.4]. Interpolation and an analogous argument for u§ in H*~3

then allows us to conclude (1.A.4). Assertion (1.A.5) is shown in the same way, with o(1)
instead of 0(1/¢) in the upper bound. For (1.A.6), we compute

[ V¥ (Pagens (Vi) 5 1)) | .2
S Z Hvll(PUO*%) (Vg = 775)||L2 + HPUO*%v(kaO * 776)HL2

lh+la=k
11>0

S (U [Vuollggu-1) 1V toll s + || Pagrns V (V20 % 115) |
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as before. The last term is bounded via
1
| Pagsns V(VFu0 % 05)|| . S [[(VFu0) * Vns)|| 2 S 7 Vo || s

again by Young’s inequality. Similarly, the term V*~1u is estimated in L?(R™). The above
reasoning also shows (1.A.7) if we choose the constant C;y > 0 suitably. In order to prove
(1.A.8), similarly as above we compute

|ug = vd|| 2 S llms * (o — vo)ll 2 S lluo — ol 2 -
by the mean value theorem and Young’s inequality. Writing

Puo*n5(<vu0) *15) — on*ms((vvo) % 1)5)
= Puo*na((vuo) *Ts — (V"Uo) * 775) + (PUO*TM - on*na)((vvo) * 775)’

we deduce

||vk_1(Pu0*775((Vu0) * 775) - on*ms((vvﬂ) * 775))||L2
S N IV Pugens) - (Vo) %15 — (Vo) 5 735)||

l1+1la=k—1

+ Z th (PUO*US - on*na) ’ (vl2+17}0) * 7]6||L2
l1+la=k—1

k
,S (1 + HvuoHquk—l + ”VU()HI;_I}C_J HVUO — V’UoHHk_l + ||VkUOHL2 HUQ — UUHLoo
k
< (L4 Vol + BY) [ Vg = Vool s + [[VFuo |2 uo = woll
S (U4 [IVuollgps + BY) [ Vao — Voo | g

The claim (1.A.8) then follows by interpolation and a proper choice of Cy > (. Finally the
estimate for

u? - Uf - PUO*na(ul *T)g — U1 * 775) + (PUO*T]S - on*na)(vl * 775)

works similarly. [

1.A.3 Establishing the identity (1.3.57)

For f,g € H'(R"),h€ Randi € {1,...,n} we set
Dif(r) = 3 (7w +eih) — f(2)).
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Observe that Di(fg)(z) = (D;f)(z)g(x + e;h) + f(x)(Dig)(x). Since we only use the
product rule integrated over x € R™ and g(- + he;) — g strongly in H' as h — 0, we drop the
h-dependence in g(- + ¢;h) in the following calculation.

i 2 ivrk—1_ |2 ik i on
331 (1Dl + DAV al,) = [ D= (( = PON @) - DLV P o

—Z Di (VI — P,)« V"N (u)) - DiV* 3y, dx

R’Il

+ [ Di(I—P)V*3N(u)-DiV*3u,de+ | DiV*N(u)- (I — P,)DiV*3u,dx

R’ﬂ R’ﬂ
= Z DV = P« VN (W) - DLV Py da

+ / Di(I — PO)V* 3N (u) - DiV*3u,de + | Di (V¥ 3N (u) - (I — P,)DiV*3u,) da

R"”

+ [ V*3N(u) - Di(Di(I — P)V*3u,) da

R"™

+Z / VAN (u) - (D)X(VHI — P,) * V3, do =: / Ti (u) de,

n

where the second identity follows from (I — P,)u; = 0. For a fixed time ¢ € [0,7,,), the
regularity of u yields the limit

lim dac—Z/ O, (V P) x VF3IN(u)) - VR0, u, do

h—0 Rn
- / dP,(0y,u, VF3N () - VF30, 4, do

— | V*PN(u) - 0y, (dPu(9p,u, V¥ ) dx

+ Z VN () - 05 (VT = P+ V) da
=: /n T (u(t)) d.

Here we also used that
/ Di(V*3N (u) - (I — P,)DiV*3u)dz — 0 as h— 0
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by Gauss’ Theorem. Estimating as in Section 1.3.2, we derive

/ T(u(t)) de

fort € [0,7] and T < T,,,. In the limit » — 0 it follows

2, = // $)) dzds + | V¥ 0,00 || + || V¥ 10utio]|

by dominated convergence. The right-hand side is continuous in ¢, and hence the highest
derivatives V¥u,;, V=2 : [0,7,,) — L? are continuous, since we already know their weak
continuity. Finally, summing over i = 1,...,n and estimating 7"(u) as in Section 1.3.2, we
conclude the blow-up criterion from (1.1.4) for the solution w.

S EEPT](Nr IVa($) I g-r + () [ gm2) (V08 guor + llee(8) [ pu-s)-

V" 200 2 + [ 9* 0r

1.A.4 Coordinate expansion of the mapping equation

We now derive (1.1.2) from the condition (1.1.1) for smooth solutions u : R™ x[0,T) — N.
Note that we use the sum convention, i.e. the same indices in super-/subscript means summation.

Since 0yu € T,,N, we infer the identity
(1 = P)(0fw)]" = (6 — (P)0)(0Fu') = 0u(0) — (Pu)i)(Oru') + (O Pu); Oru' O™
= (dPu):%latulatum
fork =1,..., L. Because of Vu € T;,, N, we also obtain
(I — P)(Au)])* = 9% (6F — (P)F)(0p, 1) + (0 Py)FO"ul Dy, u™
= (dPu)fml@””“ul@xaum,
and hence
(I = P)(A*u)]* = A((dP,)L, 0% u' 0y u™) + 0% ((dP,)k,  Aul 0, u™)
+ (dPu)m’l(axaAu )0z u™.
The symmetry of the indices then implies
(I = P)(A*u)]" = (dPPL)} 1, 10,0700y u" 0020, u
+2(dP,)} 1, 00, 0P U0 0y u + (dP,)}
+ 2(d* Py, 4, 1,000, u" A + 4(dP,)}
+ 4(d* P, 4, 1,070, 0" u" 9, ul2
We briefly state the expressions from (1.1.3) in coordinates, i.e.,

[Pu(dP.(Vu, V) - d*Pu(Vu, Vu, )] = 3 (PSP (Vit, V) - (02 P n,jOs, b 07 u™
J

Aulo Ayl
T l l
0" Au®0,, u"

lo,l1

[P, (div(dP,(Vu, Vu) - dP,(Vu, )] = Zj(Pu);axa (dP,(Vu, Vu) - (dP,)k; Op,u")
forl=1,...,L.
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CHAPTER 2

Further global results

In this chapter, we study two Cauchy problems that are motivated by critical points of the
extrinsic (rigid) action functional

1
B(u) = 5/1@/1& Oul? — |Aul? da dt,

which satisfy the Euler Lagrange condition (1.1.1), i.e.
O*u+ A*u L T,N, on RxR%

respectively the biharmonic wave equation (19) for a Riemannian submanifold N. We recall
that for maps into the round sphere N = S, the condition (1.1.1) leads to equation (2) from
the beginning of the introduction, i.e. u satisfies

Otu + A*u = —|0wu)*u — A(|Vul*)u (2.0.1)
— (V- (Au, Vu))u — (VAu, Vu)u
= —(|0u* + |Aul* + 4(Vu, VAu) + 2(V?u, V*u))u,

where A? denotes the bi-Laplacien and (V2u, V2u) = (9;07u, d;0"u). As mentioned in the
introduction, see the surveys [56], [32], the null condition of the wave maps equation

Ou = '(u)(Dau, 0%u) = T(u)(O(u - u) — 2u - Ou),

leads to improved local and global wellposedness (or regularity) results compared to a generic
nonlinearity N (u, Du). We refer to [29], [31], [38], [11] and [15] for a general overview.

In this chapter, we prove the analogue of the division problem for equations of type (2.0.1),
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i.e. we prove global regularity with small data in B'(R?) x B3" 2(Rd). For a short overview
2 2

over the corresponding results for wave maps, we refer to the introductory chapter of this
thesis. For (2.0.1), we achieve to solve the division problem in dimension d > 3 using spaces
Z, W = L(Z) which are the analogues of Tataru’s F, JF' spaces in [54]. Especially,

L:Z =W

1S a continuous operator.

2.1 Introduction

We consider the following generalized Cauchy problem

02u + A%u = Q,(ug, ur) + Qu(Au, Au) + 2Q(Vu, VAu)
+2Q.(VAu, Vu) + 2Q,(V?u, V) =: Q(u), (2.1.1)
(u(0), 9¢u(0)) = (uo, u1)
where
Q”(u) = [Qulzenr (O™ 0eu™) + [Qulie ar (Au™ Au) + 2[Qul e 1 (O™ 0" Au™)
+ Q[Qu]{(’M(@iAuKﬁiuM) + Z[Qu]{QM((?ﬁjuKajﬁiuM),
and {Q, | € R"} is a smooth family of bilinear forms Q,(-,-) : R¥ x R* — R” (in fact
required to be analytic at the origin £y = 0). Here we contract the derivatives overi = 1,...,d

and the components of u over K, M,J € {1,...,L}. The bilinear term Q(u) in (2.1.1) is
non-generic for our results, in the sense that for bilinear interactions, the set of resonances

{((r,&), (12,8)) | (m+72)* = &+ &|* =7+ 75 —|&a]* — &'}

is canceled by Q(u). We use this fact in the form of the following commutator identity for the
operator L = 97 + A?

Qu) = %QU(L(U cu) —u- Lu— Lu - u) (2.1.2)

1

= §[QU]K,M(L(UK . uM) —uf L™ — M. LuK).

This will then be exploited following the work of Tataru in [54], [55] for wave maps. To be
precise, the idea used in Tataru’s F,, [1F spaces from [54] allow to treat Q(u) by continuity of
L. As a consequence, we find a simple way to solve the disvision problem for (2.1.1) even in
low dimensions compared to the energy scaling (of (7)) for biharmonic wave maps (2.0.1), see
e.g. the introduction and the remark below. However, we do not obtain scattering at t — +00
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from this approach.

The main difference to [54] is that we have to use the control of a lateral Strichartz space and
a maximal function bound in order to exploit a smoothing effect for the Schrédinger group.
More details are given below.

The second Cauchy problem will be solved with the same approach (presented in the following
Sections) and further (in Section 2.5) applies to solve (19).

The Euler Lagrange condition (1.1.1) is equivalent to
Lu= (I - P,)(Lu) = (I —dIl,)(Lu), (2.1.3)

via the smooth family of orthogonal tangent projector P, : R* — T, N. Since u € N we have
II(u) = u and P, = dIl,, where II is nearest point projector

IT:V.(N) = N, [l(p)—p|=inf |¢g—p|
qeEN

Hence (2.1.3) can be written as
Lu = L(I(u)) — dIL,(Lu) =Q(u) + 2d°T1,(0;u, ¥ u, Au) + 4d°TL,(0;u, O'u, 0;0"u)
+ d*IL,(Osu, O'u, Oju, H'u),
where Q(u) is as above with Q, (-, ) = d*I1,(, -).
We now generalize this equation and take a smooth vector field
II: R — RE,
such that I is real analytic at z, = 0. We consider the Cauchy problem
Lu = Q(u) + 2d*1L,(d;u, & u, Au) + 4d*TL,(0;u, O'u, ;07 u)
+d*11, (Osu, O'u, Oju, Diu), (2.1.4)
(u(0), Bru(0)) = (uo, ua),
with Q defined over dzﬂx(-, -). For constructing a solution, we use that the RHS equals
L(II(u)) — dIl,(Lu), (2.1.5)
from which we infer the formal series expansion for the RHS of (2.1.4),

L(T(u)) — dIl,(Lu) = Y _ Cpd*TIo(L(u*) — ku*~" Lu).

k>2

This wil be made precise later and we observe that the RHS thus reduces the same non-
resonant form (2.1.2). This expression, and in particular the ability to commute L with the
series expansion of I1, is justified by the spaces we use.
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At least formally, we find a Duhamel representation

(Z((?)) = S(t) - (Z;)) + /0 S(t—s)- ( LUO(S)) ds, (2.1.6)

) L) e (7 2)e

where
cos((—A)t

S(t) )

I
A~
e
.
=X
|
>

with

—A 1
Q= ( iA 1) . (2.1.7)

Thus, in the analysis for biharmonic wave maps (19), it is in principle possible to exploit
methods developed for derivative Schrodinger equations, which will become apparent below.

Results on the division problem for Schrodinger maps, see e.g. [2], [22], involve versions of
lateral Strichartz estimates in the norm (z — z.e + .., e € S1)

rrd

e tel?

in order to exploit smoothing effects for Schrodinger equations, see Section 2.3 and the Ap-
pendix 2.A below. Especially, we likewise rely on factoring

LELY . - L2LY, C LY,
where the (lateral) energy LSOL? .. gives additional regularity of order |V|% and the maximal
function bound L2L>°, is controlled uniform in e € S?!. Apart from the usual Strichartz

e tel
space S}, this will be essential (in one particular frequency interaction) in Section 2.4.2.

Outline of the chapter

In Section 2.3, we provide Strichartz estimates and the lateral version in LQL;] ol (including

an LgLf’; . estimate) for the linear Cauchy problem of the operator L = 97 + A2 This is a
consequence of the corresponding estimates for ¥ which orginally appeared in [21], [22]
and [2]. In the Appendix 2.A, we briefly outline proofs of the Strichartz estimates we need for

eT*2 based on the calculation by Bejenaru in [2].

In Section 2.4.1, we construct spaces %, W% such that

7t C C(R, By'(RM) N C'(R, BY' (RY)), (2.1.8)
2 2
ull 4 < H(u(hul)HBgleQ%’I_Q + [ Lull g, (2.1.9)
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and similar Z°, W* for s > ¢ with data in H*(R%) x H*~2(R).

Further, we prove the algebra properties

[NJisH

7% 7% C 75, (2.1.10)

[S1ISW

d d
2 2

We.Z2 c We, (2.1.11)

in Section 2.4.2.

For the higher regularity, we need to provide the following embeddings
(Z:NZ%)-(Z:NZ°) C 22N Z°, (2.1.12)
(WenW*) - (Z:NZ%) Cc WenW?*. (2.1.13)

To be more precise, as in [54] and [2], from the dyadic estimates in Section 2.4.2, we infer for
d

S>3
2 b

luvll 7o S lull = 1ol g + 0l g llull g, w0 € 22 N2, (2.1.14)

ull g, ueE WenWs, veZenzs,  (2.1.15)

lwvllys S llullws 10,4 + ol

in Section 2.4.2.

Finally, we provide the fixed point argument from [54] in Section 2.4.4. Especially, we state a
few details of how to estimate the coefficients in the Cauchy problems (2.1.1) and (2.1.4). We
then apply Theorem 2.1.1 to biharmonic wave maps in Corollary 2.1.2 .

We emphasize that the construction of the dyadic blocks Z,, W, are the analogues of Tataru’s
F), OF) spaces in [54], since we globally bound Lu in the spaces L] L2. In particular, the
operator

L:Z,— W,

is continuous by construction of Z, and W),. Combining this with (2.1.10) and (2.1.11), it
suffices to estimate Q(u) in (2.1.1) with the identity (2.1.2).

As mentioned above, we can not fully rely on the usual Strichartz norm and have to use the
control of the lateral Strichartz norm, which exploits additional smoothing in the proof of
(2.1.10). This idea has been used in the similar context of the Schrodinger maps flow by
Ionescu-Kenig [21], [22], Bejenaru [2] and Bejenaru-Ionescu-Kenig [3].

2.1.1 The main results

The system (2.1.1) is largely motivated by biharmonic wave maps, however the results for
(2.1.1) are based on the structural extension of evolution equtions with a nonlinearity that, due
to (2.1.2), can be considered non-generic.
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We turn to general systems (2.1.1) and (2.1.4) for functions u!, ..., u* with L € N, where we
assume that x — @, as well as x — II(z) are real analytic in the point -, = 0. That means
we require the Taylor series at o = 0 to have a positive radius of convergence and to coincide
with @), resp II on a neighborhood of zy = 0 (where the series converges uniformly).

Theorem 2.1.1. For d > 3 there exists 0 > 0 sufficiently small such that the following holds.
Let (ug,u;) € B¥'(R?) x Bi’iz(Rd) such that
2 2

[woll g2t gy + Hu1||32%,1_2(w) <4 (2.1.16)

2

Then (2.1.1) and (2.1.4) have a global solution u € C(R, B¥'(R%)) N C'(R, BZ{Q(R”Z)) with
2 2

sup ( [[u(t)]l g2 gy + 10u(®)ll g22 gey) < C9, 2.1.17)
>0 4 —2

2
for some C > 0. Further, the solution depends Lipschitz on the initial data.
If additionally (ug, u;) € H*(R?) x H*~2(R%) for some s > 4, then also

(u(t), dyu(t)) € H*(RY) x H*2(R%)

forallt € R and in fact

sup ( [[u(®) 1z aey + 10Ol -2ty ) < Cllluoll ey + laallre-2(een)-

The theorem applies to (2.0.1), however it is not clear if the solution maps to S” for all times.
This is proven within the following (slightly more general) setup.

Let N C R” be an embedded manifold and such that the nearest point projector IT : V.(N) — N
is analytic on N with a uniform lower bound on the radius of convergence.

Example: The above class includes the standard space forms S, H” and T* = R /Z". In
general we take e.g. non-degenerate level sets of uniformly (real) analytic functions.

A function f : R — R is uniformly analytic on S C R, if there exists C' > 0 such that for all
keN

sup sup | D* f(x)] < C* k!,
la|=k z€S

We take a uniformly analytic pertubation of the round sphere S*~!. That means we take
i € C*(SP71), uniformly analytic with ||7j|| .. < 1 and n(z) = 7i(z/|z|) for + € R*\{0}.
Then for

fol@) = [z]> = 1 =n(z), =€ R"\{0}, (2.1.18)

the manifold N' = f,-'({0}) will have the required property. Note that V,7(z) L  and hence
V.f(x) # 0 forz € R¥\{0}.

The following Corollary holds
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Corollary 2.1.2. Let (ug,u;) : R* — TN, i.e. ug € N, u, € T,,N, be a smooth map such
that supp(Vug, uy) is compact, d > 3. Then if

HUOHBQ%J(RCI) + ||U1||B§i2(Rd) <0,

where 6 = 0(d, N) > 0 is sufficienty small, then (2.1.3), respectively the biharmonic wave maps
equation (19), has a global smooth solution v : R x R — N with (u(0), 0,u(0)) = (ug, u1).

The statement of Corollary 2.1.2 has to be rigorously corrected to u — p € BZ’l(Rd) for
2

p = lim,_, o, up(z) since uy : R? — N has no decay. Further, as mentioned in the introduction,
equation (2.0.1) has parabolic scaling

ur(t,z) = u(M\?t, \x), v e REt € R.

Thus it holds
NTUE(u(Vt) = E(ua(t))

and d = 4, the (energy) critical dimension, is included in our results Theorem 2.1.1 and
Corollary 2.1.2. This is due to the larger Strichartz range for the dispersion rate d/2, whereas
the low dimensional case for wave maps is more involved than [54] and has first been solved
by Tataru in [55].

2.2 Preliminaries and Notation

The notation in this chapter is mostly common and largely consistent with [15]. However, we
have to adapt the Littlewood-Paley projector for frequency and modulation to parabolic scaling
(respectively the symbol of L), which is similar to e.g. [2]. Any special notation or definitions
will be explained in the following.

Notation

For real A, B > 0 we write A < B short for A < ¢B, where ¢ > 0 is a constant. Likewise we
write A ~ B if there holds A < B and B < A. The space of Schwartz functions S(R?) will
be as usual the Fréchet space

S(RY) = {f € C*=(R") | sup [z°D? f(z)| < o0, @, 3 € Nj},

zeR?

where 2% = T19_, 257, D f(x) = 8/3;9'1,; - f(x). The semi-norms for the Fréchet property are
zy Vg

given by
Iflly = sup sup|z*DJf(z)|, N €N,

lal,|BI<N zeRrd
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and we dentote by S’ (Rd) its (dual) space of tempered distributions with the weak™ topology.
The Fourier transform is

F(u)(€) = / e " u(z) do, u € S(RY), (2.2.1)

Rd
which extends well-defined to S’'(R?) by duality
(F(v),u) = (v, F(u)), ue SR, ve SR

We write u(§) = F(u)(&) for short and indicate by F,/ () that the Fourier transform is taken
over 2’ where « = (2, Z) if necessary. The well known inversion formula for F

) = gz [ € S(€) de. e SR,
defines the inverse of the isometry F : S(R?) — S(R?) through
F ) (x) = 2m) F(u)(—z), 2 € R u € S(R?),
and extends by duality to S'(R?).

Littlewood-Paley and multiplier

We now let ¢ € C*°(RR) be a Littlewood-Paley function, i.e. such that

1 .
5,2), ¢€[0,1], and > (27s) =1, fors > 0. (2.2.2)

supp(y) C (5

jeL
We define the multiplier P, Q for u € S'(R?), v € S'(R*™) and dyadic numbers ), 1 € 2% by
PA(V)u(€) = ¢(I€l/Na(),  PA(D)o(r,€) = o((7 + [€[*)3 /N (7, ),

—

Qu(D)v(7,&) = p(w(r,§)/ )0 (T, €),

PS/\:ZPZV QSu:ZQﬁa

A< A<p
P>)\:[—P§)\, Q>u:I_Q§u-

where ) A
(3
_—

w(r,§) =
(72 + [€]4)?
Further, we write vy = Pyv = Py(D)v, Py <, = P\QQ<,(D) for short and define

Tl =€, (P24 €97 ~ (|7] + %)z,

Ay ={(r,6) | M2 < (rF + €M1 < 22},
Al ={&| N2 <€) <2A}
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For a distribution f € S'(R*™) we say that f is localized at frequency X € 2% if

A

supp(f) C A)\/Q U A)\ U Ag)\

and a similar notation is used for g € S’'(R?) and A¢. In addition, we need to localize in the

sets "
A, = e > == ,eESd_l,
eree= 7
in order to exploit the smoothing effect for the linear equation. Thus, as in [2], we choose
M C S with e € M = —e € M such that

R'= | J A, Vee M : #H{ee M[ANA; #0} <K, (2.2.3)
eeEM

with a constant K = K; > 0. Further we require a smooth partition of unity {h.}ecr
subordinate to { A, }een, i-e.

he € C=(RY), supp(he) C Ae, he € [0,1] (2.2.4)
D he(§) =1, £ e R*\{0}. (2.2.5)
eeM

We note that this is possible since in particular for z € R" \{0} we have x € A, if and only if
L(r,e) < T

Remark 2.2.1. An explicit example would be the set

M= {aflals | @ € {01, ~1}\{0xu}}, |af = > a

Here we take e.g. a non-negative ¢ € C°(R) with ¢(z) = 1 if x < n/5 and ¢(x) = 0 if
x > 7 /4. Then we set

P(£(E €))
ZéeM Yﬂ(l(f, é))

We define the respective Fourier multiplier by

. £(v1,v9) = arccos((vy, v3)), vy, vy € ST

h/E (g) =

—

P.(V)v(T,€) = ho()0(7, &), ve S (RM™. (2.2.6)

Finally, we choose y € C°(R%"!) such that

1 2 |gld <72+\£I47
ol 1o

2 4 2+1g)*
0 It — gt > TR
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In order to have x invariant under parabolic scaling, we choose x(7,&) = n(!%l), where

n € C*(R) with0 <7 < 1andsuchhat n(x) = 1if |z| < 1/100 and n(x) = 0if |x| > 1/10.
We then define

Pou(r, &) = x(1, ©)i(r, &), (1= Po)u(r,€) = (1 — x(r,€))i(7, &). (2.2.7)

Thus, we have

— 2
supp(F0) € {<T, & | lirl— & < "1—;5} 028)
— 2
supp((1= Fojo) < { () 1117 - €212 229

Especially, measuring the distance to the characteristic surface P,

dist((7,€), P) ~ - = P={(ng) |7 =¢"},

we infer that (1 — Pp)v (with v being localized at frequency \) is localized where
dist((7,&), P) ~ A,

such that frequency (72 + |£[*)1 ~ X and modulation ||7| — £2| ~ p are of comparable size
1~ A. For Pyv we have localization where

dist((7,€), P) = O(\),

with a small constant that suffices to obtain additional smoothing in the linear estimates of the
following sections.

Function spaces

We define the spaces H*(R?), H*(R?) for s € R are defined as the closure of

[l Hs(RY) — H|V|SU’||L2(d:v)
||UHHS(W) = H<V>SU||L2(dx)’
in S(R?), where in the homogeneous case we restrict to s > —d /2. Here

(V)y'u=F Y1 +[¢P)2a€)), |VI'u=TF'(|¢la)).

The homogeneous Besov spaces Bgvp (Rd), 1 < ¢,p < oo are given by the closure of

HuH%g,P(Rd) = Z AP HP)\UHig , U € S(Rd).

re2Z

78



2.2. Preliminaries and Notation Chapter 2

The semi-norms |[|ul| gs.» ey degenerate if and only if supp(a) C {0}, i.e. if and only if u is
a polynomial. We further have 7°*(R?) ~ B2*(R?), s > ¢ and B'(R?) C L®(R%) is a
well-defined Banach space. i

Especially, we mention that in the higher regularity statement of Theorem 2.1.1, we observe
that the solution u(t) € B>'(R?Y) N H*(RY) for some s > ¢ and all ¢+ € R, which implies
2

Fo(u(t,-)) € L'(dx) fort € R.

We further introduce the Holder space C**(R%) with k € N, € (0, 1], defined as usual by
the norm

o° — 98
{f € CFRY) | el ooty = sup |07ul| . + sup sup 97u(z) u(y) < o0}
18I<k

1Bl=k wy |z — y|*

Perturbative argument

We use the following (straight forward) wellposedness argument (which is similarly stated in
e.g. [15, chapter 3.2] and [25]). The scaling argument in the second part of the Lemma was
used in [54].

We first state the abstract Cauchy problem

Lu=N in (—7,T) x R"
{ w=Nw in ) (2.2.10)

ul0] = f in R",

where L is an evolution operator of (time) order El eEN,NWO0)=0,0<T < oo, f =
(fos---, fa1) € D the initial data. Here we let D, D to be Banach spaces and Z, Z be Banach
spaces such that test functions are dense in Z, Z.

We choose a function ¢ : R — R with ¢(¢t) = 1 fort € (—=7,7). By Duhamel’s formula we
write the solution of (2.2.10) as

u(t) = () (S f + V(N (u(®))),

where L(Sf) =0, S(0)f = fand v = V F solves Lv = F with initial data v(0) = 0. Then
we have the following.

Lemma 2.2.2 (Wellposedness & persistence). Let Z, D, o be as above, such that

le(SHllz < Cullfllp, feD (2.2.11)

sup ([[u(t)|p) < Callull,, v e Z, (2.2.12)
te(=T.7)

where Cy, Cy > 0. Assume further that for u,v € BZ(0,6) for some § > 0 there holds

lp (VN (w) = N(u))llz < Cs(llullz + vl [lu = vll5 - (2.2.13)
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Then, provided

5 1
<
11l = 367 < a0

(2.2.14)

the Cauchy problem (2.2.10) has a unique solution in C(=T,T; D) N BZ(0,6) such that the
map f — u(f) is Lipschitz from BP (0, (3C,)7%8) into C(=T,T; D).

Now we additionally assume that Z,D satisfy (2.2.11), (2.2.12) and further there holds for
u,v € B4(0,6)NZ

le(VN (u) =N))llz < Cs(llully +[lvll2) lu = vl (2.2.15)
+ Cs([lullz +vll2) llu =2l -

Then, provided also f € D, the solution from above satisfies u € C (=T,T; [)) and

sup ([lu(t)lp) S /5 -
te(—=T,T)

Proof. We define the fixed point map via
T(u)(t) = eSS +VN(w)),), ue B(0,5).

Then it is easily seen form (2.2.11) and (2.2.13) with v = 0

)
ITull; < Collfllp + Cs flully < 5 + Cs0* <0,

by (2.2.14). Similarly it follows by (2.2.13)

[T'(u) = T()|l; < C3(20) lu =05, u,v e B(0,9),
which gives the desired fixed point. The continuity of ¢ — ||u(t)]|, is obtained by smooth
approximation of v € Z and (2.2.12). The Lipschitz estimate against the initial data follows
similarly by

|7 (w1) = T(ua)l| ; <Cy |1 = foll p + 2056 [lur — wal 4,
and hence

1T (u1) = T(u2)llz S 2 = follp -

Now for the second part, we define (as in [54]) the norm

1 1
lullz, = 5 lullz + 7 lullz. M >0,
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and we consider u — o(V (N '(u))). Thus both (2.2.13) and (2.2.15) are defined on B%(0,1) C
Zs and (again for v = 0)

le (VN (@)l < Csllully < Csdlull,,
le(VIN (W)l z < 2Cs [|ull [lullz < 2C30 [Jul| -

In particular, we have for u € B%(0, 1)

205

le (VN )z, < 70 llullz + Cs flull ; < 3Cs (2.2.16)

where 3C'30 < % by assumption. For the contraction, we have similarly

(VN (u1) = N (u2)))ll ; < 2C38 [Jur — uzll 4,
(VN (u1) = N(u)))ll 7 < 2C36 [Juy — ua|| 7 + 203 M |luy — ugl| , -

Thus we conclude
lp (VN (ur) = N(u2))ll 7, < 6C30 [[ur — uall g,
where § < ﬁ. We now fix M = 4C || f|| 5. For the fixed point map, we obtain from (2.2.16)
1 1 1 1 3
IT@5, < CIflp 5 +Cillflls 37 +5 S Cillflp 5 +5 <1

Hence we obtain a solution v in BZ(0,1) C B#(0, ) (which is unique in ) and further

lullz < 4C 15 -

2.2.1 Some preliminary results from harmonic analysis

In this section, we recall statements from Fourier Analysis, for which we refer to [15, chapter
2].

Lemma 2.2.3 (Bernstein). For s > 0, uy = P\(D), 1 < p < ¢ < oo we have

D wly ~ X fusly, . FIDF0)(6) = (2 + lgia(re) @217

10

full VPl S A sl (2.2.18)
where F,(|0;|*u)(T) = |7|*u(T), and F.(|V|*u)(&) = [£|°u(§). Further

1_1
liallg, < X9 el (22.19)
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Remark 2.2.4. Estimate (2.2.19) is the (bounded frequency) version of the Sobolev embedding
. 1 1
WP(R?) c LP*(RY), p* =¢q, s = d(=—--),
p q
which is why we refer to it as Sobolev embedding in the following. Further Lemma 2.2.3 is
stated in [15] for the Littlewood-Paley projector Py(V) in £ only.
For the regularity statement of Theorem 2.1.1, we use the following

Lemma 2.2.5 (Embedding into C*). Let s > 4 such that s — ¢ ¢ N. Then there holds
(R N By (RY) ¢ olmslemamlms)(RY),
2

The Lemma isA stated in [1, chapter 1.3.4]. However, for [ € H S(Rd) as defined in [1], it is
required that f € L} . If we intersect as above, we especially embedd in the homogeneous

loc*

Sobolev spaces defined in [1].

Lemma 2.2.6 (Littlewood-Paley). For1 < p < oo

%
(}jmm) ~ Jall (2220,
A Lp
> luallz, S llullz,, 1<p<2 2.2.21)
A
> uallzy 2 llull?,, 2<p < oo (2.2.22)
A

Remark 2.2.7. The statement is posed in [15, chapter 2] on R? for u, = P\(V)u. In
the case where we localize in R*™! by P\(D)u = u,, we define the dyadic regions by
(7, €) — (7] + £2)2, which is however equally correct. We refer to [41, chapter 8.2].

We now state the classical convolution inequalities.

Lemma 2.2.8 (Young). Let 1 < r,p,q < oo and further

1 1 1
l+-—=—+-.
r p q
Then there holds
1f * 9l e ey S Nl powey 1191 pogrey - (2.2.23)
Lemma 2.2.9 (Hardy-Littlewood-Sobolev). Let 0 < a < dand 1 < p < q < oo with
o1 1
d p ¢
Then there holds
el 5 £ gty S 15 Ly - (22.24)
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We further need the following statement on the decay of surface carried measures, for which
we also refer to [49, chapter 8]

Lemma 2.2.10. We let S € R*™ be a hypersurface with k non-vanishing principle curvature
functions. Then for any V € C°(S) we have

. 1
e Y (x) do(x)| S ———rp, (2.2.25)
/s (L+1[€D)>

where o is the surface measure of S C R4,

In order to proof Strichartz estimates, we need the next Lemma for wich we denote the space
of continuous linear operator between Banach spaces B; and B, by £( By, Bs).

Lemma 2.2.11 (I'T™). For a Hilbert space H and a Banach space B we consider a linear
operator'l' : H — B and its adjoint T™ : B* — H defined by

(T"u,v)y = (u,Tv), ue€ B*, ve H.
Here (-, ) is the duality of (B*, B). Then we have eqauivalence of
(i) T € L(H, B)
(i) T* € L(B*, H)
(iii) TT* € L(B*, B)
(iv) The form (T*u,T*v)y, u,v € B* is bounded.

In any case

* *12 2
7T HL(B*,B) =T HL(B*,H) = HTH£(H,B)'

The heuristic argument for our (non-endpoint) Strichartz estimate, see e.g. [24] and [48], is as
follows. The operator 7"in Lemma 2.2.11 is useful for the frequency localized linear propagator,
such as

T(t)f = e "2F, supp(f) C AS
which has a group structure. In praticular the 77* bound in (7i¢) of Lemma 2.2.11 is accessible
to Lemma 2.2.8 or Lemma 2.2.9 in d = 1 via T'(t)T*(s) = T'(t — s), which is controlled by

a dispersive factor. In order to prove a dispersive estimate, we e.g. apply Lemma 2.2.10 (or a
stationary phase method) to the convolution kernel of 7°(¢).

The 7" bound in (i) of Lemma 2.2.11 gives the homogeneous Strichartz estimates for the wave
equation in this case. The inhomogeneous estimate follows by an application of (i) to the
inhomogeneous part in the integral representation of a solution.

Then we would like to use (i7), however one needs to pass to a retarted integral opertor, which
is clearified in the following Lemma by Christ-Kiselev.
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Lemma 2.2.12 (Christ-Kiselev). Let By, By be Banach spaces and K : J x J — L(B1, By),
where J C R is an interval. Then we assume that the operator

Tu(t) = /]K(t7s)u(s) ds, u € DBy,

satisfies
“Tu“Lq(J,Bg) <C ||U||LP(J,31) , L<p<g<oo.
Then
Tu(t) = /X{s < t}K(t, s)u(s) ds, u € By,
J
satisfies

HTUHLq(J,BQ) Sea Cllull o m,) -

The next Lemma was proven by Keel-Tao in [24] and is suitable for the endpoint Strichartz
estimate. Any pair (p,q) with 1 < p,¢ < oo is said to be o-admissible for o > 0, if

(P q,0) # (2,00,1) and
1 o
-+ —-<o
p q

Lemma 2.2.13 (Keel-Tao). Let H be a Hilbert space and U(t) : H — L2 be a familiy of
operator such that

1Tz S Wl
1@ () fllpge S (L1t =)™ ([ flly »

where U*(s) is the adjoint of U(s). Then

IOl zrrs S Wl s (2.2.26)
H/U(S)*F(S) ds|| S F g (2.2.27)
H L
‘ / UMU(s)F(s)ds| S IFl 0. (2.2.28)
s<t Pl Lo

hold for all o-admissible pairs (p,q), (D, q)-

In case that (p, q) # (2, 2% ), the proof follows as outlined above by interpolating the energy
estimate and the dispersive estimate in Lemma 2.2.13. The three estimates are then concluded
from the 77T argument Lemma 2.2.11 applying Lemma 2.2.8 (for the continuity of the form
(iv)) and Christ-Kiselev’s Lemma 2.2.12. The endpoint is slightly more delicate and requires

untruncated dispersion for scaling reasons. We recommend the reader to consult [24] for
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further details.

The last Lemma in this section was used by Tataru in [54] and is stated in [15, chapter 2.4,
Lemma 2.8]. The Lemma in particular gives a sufficient condition for a multiplier

Mf=F " (m(r,§)(r,€))

to define a bounded operator M : L} L2 — L} L?. We note that even though (7, &) — m(7,§)
is smooth in our case, the classical Mikhlin theorem gives L1 bounds.

Lemma 2.2.14. Let C > 0 and M = F~Y(m(7,£)F(-)) be a Fourier multiplier such that the
following holds.

(i) For any &, there holds supp(t — m(7,§)) C Ae, where A¢ has measure < C.

(ii) For N > 2 there exists C'y > 0 such that

||m||L§<j£ +cv H@]—Vm(ﬂ S)HLZCE < Cy.

Then the operator
M:LPL2 — VL2 1< p< oo, (2.2.29)
is continuous and ||M|| < Ch.

Proof. By Plancherel (in &) and Young’s inequality (in t), it suffices to proof K & Ltngo,
where

K(t,¢) = /eitTm(T, §) dr.

However by (i), (i) it follows |[K|[ L < CnC and by (i7) and integration by parts

K. = |ty [ et ar] 5 S
by which
CnC
|K(t,8)] < RERCLE
[

2.2.2 X*" spaces and their properties
We define the classical space Xf:b he) (R for s,b € R adapted to the equation

O = ih(V)u, h(V)u=F 1 (h(&)a(¢)), (2.2.30)
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where £ — h(£) is a real continuous phase, by the closure of the norm

[l

ooty = [T = MO AT 2, ue S(R x RY)

and similar for the homogeneous version X **(R%™!) replacing the brackets (-)* by |£|* and (-)°
by |7 — h(&)I"
We state the following Lemma, for which we refer to [53, chapter 2.6]

Lemma 2.2.15. Let h be a (real) polynomial, s,b € R. Then
” ith(V f‘

s,b r —s,—b s,b
(Xrone) —szfhe&)’ S

Xsb

s,b
= X lhe:

where u € X if and only if i € X*?.
IfseRb> % then there holds

< 5
lally S Nlleo,

ifforall T € Rand [ € H:(R?) there holds
|| it(t+h(V)) f”y

Further for s € R; b > % and n(t) a smooth compact cut-off function, we have

In@u®)lxe, < Oy + 10 = Bl o

The results that require b > % are in particular useful to work with e.g. Strichartz estimates or
energy estimates in the Xf_:b n(e) Space and to use perturbative methods directly in X*?.

There are different (similar) ways to define X*?, see e.g. [15] for wave equations. Most notably
we can use (non-degenerate) space-time weights a(7,£)*® instead of (£)°. For higher order
(time) evolution operator, we can also replace 7 — h(&) in the definition by a normalized
symbol. For our purpose, we set

lull oo = [|(7> + [€]*) Tl (T, ) Pa(r, Oz (2.2.31)

where

[ — 1€ ]
(72 + [€]4)2

as defined above. In the context of wave equtions h(§) = |£| these spaces have first been used
(implicitly) by Klainerman-Machedon in [29] and for dispersive equations by Bourgain, we
refer to [53] for a good introduction.

w(T,§) = ~lTl =€, (r,€) e R™,

With the regularity imposed in Theorem 2.1.1, we have to consider the limit case b = % for
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which the corresponding estimates in Lemma 2.2.15 fail. Further, it suffices for us to restrict
to functions with a fixed frequency \ € 2Z.

We define the Besov-type modification of (2.2.31). Let A be a fixed dyadic number. Then for
b<:andp € [1,00) we set

1o = D 1" 1QUD)IIG, (2.2.32)

p<4N?

and denote by Xﬁ’p the closure of the (semi-)norm in S restricted to functions f localized at
frequency A. This definition is extended as usual to the case p = co. We observe that f € X i’p
has the representation

F=> hu+h, (2.2.33)

pu<4N?

where h is a solution of Lh = 0 (with initial data localized at frequency \). Thus f is only
well-defined up to homogeneous solutions LA = 0. In the following, we will correct (2.2.32)
by ||| peo 12 +[|0¢h| oo g2 as alimiting dyadic block (1 ™\, 0), where Lh = 0 and 2(0) = f(0)
and 0,h(0) = 9,f(0).

More precisely, the atomic decomposition (2.2.33) has the form

oo its
h(t,z) = / C hi(s, ) ds, (2.2.34)

oo |8[°

p

\W%~Z<[m%@@@f. (2.2.35)

nSA? o

Here the h*(s, ) solves Lh*(s,-) = 0 for some L? x H~?2 initial data and is localized where
s ~ . Further (2.2.35) only holds up to i+ = 0 as mentioned above. We infer (2.2.34) and
(2.2.35) by foliation, which also shows that the sum in (2.2.33) is well-defined distributionally
for the cases b < ; andp > lorb= S andp = 1.

We will give the foliation explicitly in the proof of Lemma 2.3.7. The analogue statements
from Lemma 2.2.15 are proven in the following sections.

2.3 Strichartz estimates and (local) smoothing for the linear
Cauchy problem

The goal of this section is to develope estimates for the linear equation
{ Ou(t,x) + A%u(t,x) = F(t,z)  (t,x) € RxR?

(2.3.1)
ul[0] = (u(0), Qu(0)) = (ug,u1), on R?,
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with data F’ ug, u;. In the following we provide Strichartz estimates and a maximal function
estimate for the Cauchy problem (2.3.1) in case F' € L; L2. The main results of this section
summarize all necessary homogeneous bounds in Lemma 2.3.5 and the inhomogeneous bounds
in Lemma 2.3.6. Further we give a proof of the trace estimate in Lemma 2.3.7.

We start with the classical Strichartz estimate, which follows directly from the results in Section
2.2.1, respectively the framework in Lemma 2.2.13 (especially for the endpoint we rely on the
work of Keel-Tao).

Definition 2.3.1. We say that a pair (p,q) with 1 < p,q < oo is admissible in dimension
d € N, d > 2 if there holds

IN
IE-S

(2.3.2)

N
Q|

and (p, q) # (2,00) in the case of d = 2.

Lemma 2.3.2 (Strichartz). Let u be a weak solution of (2.3.1) for data g, w1, F'. Then there
holds

lelle i + el o s S lluoll g + llwall g2 + 1E Nl oo (2.3.3)

where (p, q), (P, q) are admissible pairs with q,§ < oo and v € [0, 2| satisfies

2 d d 2 d
p q 2 P q

Proof. We prove the inequality for Py\(V)u, P\(V)F, where A is a dyadic number. Then
(2.3.3) follows by Lemma 2.2.6 since ¢q, ¢ < oo. Further, (2.3.3) is invariant under scaling

ux(t, z) = u(\*t, \x), F\ = M F(\%t, \x),

which follows from (2.3.4). Especially, since (Pyu)y\-1 = Pjuy-1, we assume A ~ 1. By
Duhamels formula we obtain

u(t) = cos(—tA)ug + —Sir(l(__At)A)ul + /0 Sin(_((_tA_)S)A)F(s) ds.

Therefore, as used above already, we decompose

sin(—tA)f = %(e_imf — ™), cos(—tA)f = %(e_imf L eth ),

and by A ~ 1 this can hence be estimated via

U=()1(€) = x{t > 0}e™ (1) f(€), f € S(RY),
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where ¢ € C'2°((0, 00)) with ¢p(x) = 1 for z € supp(y) and ¢ is the Littlewood-Paley function
from Section 2.2. Clearly U (t) extends to L'(R%) N L?(R?) satisfying the energy bound in
Lemma 2.2.13. For the dispersive estimate, we use

Us(t)f = K(t,) #a f, Ka(t,z) = x{t > 0} (Qi)d /R eI ((g) de.

The kernel then applies to Lemma 2.2.10 with the characteristic Py = {(7,¢) | £7+¢&* =0},
for which all principle curvature functions are non-vanishing ((7,£) # (0,0)). Thus, we
conclude .
1U£() fll poo ey S (L4 [E) 72 [ f ] 21 ey »

and Lemma 2.2.13 applies. In particular (2.2.26) implies the homogeneous estimate, whereas
since U(s)* is the adjoint of U(s) on L2, we obtain the inhomogeneous estimate from
(2.2.28). This in particular implies (2.3.3) on [0, c0) and we apply this inequality to u_ (¢, z) =
u(—t,z), F_(t,x) = F(—t,x), which in turn implies the full estimate. It remains to prove
u € C’tLi, for which we refer to the argument (for the wave equation) in [24]. O]

Corollary 2.3.3. Let u have Fourier support in Ay. Then

lullgy S Nlw(O) 2 + 10su(0) || -2 + A7 | L]l 2 (2.3.5)
where
P 2,d_d
Sy = {f € CyL3 | supp(f) C Ay, [flls, = ?UF)’ ()‘ﬁq ° HfHLng) < o0 }
p,q

and the supremum is taken over admissible pairs (p, q).

Proof. We obtain by Lemma 2.2.3

[woll v + lluall g2 S A (luoll 2 + [luall g-2),

which by Lemma 2.3.3 and the gap (2.3.4) implies the desired estimate for all admissible pairs
(p, q) with ¢ < co. For the case ¢ = oo in d > 3 we estimate by Soblev embedding in Lemma
2.2.3 forany q > d%

_d=2 _dyg,d
A7 ullppre S A 2t lull g2 g

S w02 + 10(0) [l g + A~ | Ll y s -
[]

The Corollary 2.3.3 is not sufficient for our proof of bilinear estimates in Section 2.4.2 and we
additionally need to apply a well known smoothing estimate for the Schrodinger group.
For this reason, we define the following norm (see also 2.A)

HuHing A :/ (/[]i/ |u(t, re + x)|%dt d:c) ' dr, ec ST (2.3.6)
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2.3. Strichartz estimates and (local) smoothing for the linear Cauchy problem Chapter 2

In order to introduce the necessary notation, we recall Bejenaru’s calculus from [2] (see also
the Appendix 2.A) for the Cauchy problem (2.3.1). In the case ' = 0 we have

supp(a) € P = {(7,€) | 7° — [¢{]* = 0},

which is a paraboloid in the variables (7, £). More precisely, denoting by = = (7, {) the Fourier
variables, we split the symbol (in case of general F’)

P(7.6) = LE)i(r.€) = (7 = &)(7 + £)a(r.€). (2.3.7)

Hence, we further split in the Fourier space into
— (1 + &) F(nox{r > 0} = (7 - )7, §)x{r > 0}, (23.8)
(=7 + &) F(rOx{r <0} = (1 + )alr. Ox{r <0}, I¢] #0, (2.3.9)

and introduce coordinates adapted to a characteristic unit normal e € S%~!. That means we
use the change of coordinates

B (1,6 6,6 = (E-e)e) = (1,6, &r) = E,

and the sets

2
Ae = {5 | & > %} B, = {(r,g) |I7] — €3 < Ml—gg €€ Ae} (2.3.10)
B = {(T, e e ’T|1+0 52, e Ae} = B.N{xr>0}U{(0,0)}. (23.11)

Then for any (7,&) € B., we clearly have

7= &0 >0, &~ (I +8)2, &+ /I - ~ (7] + 823, (2.3.12)
and similar for +7 on BE.

Especially, the latter two quantities in (2.3.12) are controlled by frequency. Also, if we assume
that supp() C B, then for |7| + & > 0, we have from (2.3.8) and (2.3.9)

(7l + €7 (& + yr\—g;)_lﬁ(ﬂg):(./\Ty—g;—ge)a(f,g), (2.3.13)

Now, taking the FT in the variable =., we obtain that (2.3.1) is equivalent to

(i0n, + Dy o1 )ult, ze, wr) = F(t, e, x,00), (2.3.14)

where
m(Ta §e7£ei) = < ’7—| - 63¢> ’&(7’, 6)7 (2315)
- -1
F(F)T,€erer) = —(I7| + )7 <€e+ vakd —5;) F(r et +€.1) (2.3.16)
F(a) (7, &, &) = (T, e + Eor), (2.3.17)
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Remark 2.3.4. The calculations above apply to prove inhomogeneous linear estimates for
(2.3.1) with F' € LiLie . that are based on on the reduction to (2.3.14). However, using the
above notation for the sets B, and A., we only need estimates for F' € L!L? localized on
B. N A,. These estimates follow directly from Corollary 2.A.3 (a) and Lemma 2.A.5 (a) in
the Appendix 2.A.

We now state the homogeneous estimates which follow from the Appendix 2.A.

Lemma 2.3.5 (Linear estimates I). Let ug,u; € L*(RY), e € M, X > 0 dyadic with
supp(tig), supp(iy) C A$ N A.. Then the solution u of (2.3.1) with F' = 0 satisfies

d_1_ (d+1)

lull gz < CX277 7 ([Juoll 2 + lua]lgr-2) (2.3.18)

where (p, q) is an admissible pair. Further if d > 3 and 1y, i, have Fourier support in A,
then the solution u of (2.3.1) with F' = ( satisfies

d—1
sup Jull oy < ONF (ol 3 + llusll2): (2:3.19)
eeEM te

d_2_d
[ullprg < CA272 7o (Jluoll 2 + [l 7)) (2.3.20)

Proof. By (2.1.6), we note
[N ; —1 L iin ; -1
u(t) = 3¢ (ug — i(—A) uy) + 3¢ (ug +i(—A) " uy),

hence (2.3.18) follows from Corollary 2.A.3 and (2.3.19) follows from Lemma 2.A.5. Estimate
(2.3.20) is the classical Strichartz estimate for the Schrodinger group, for which we refer to
Corollary 2.3.3. ]

Lemma 2.3.6 (Linear estimates II). For e € M and A > 0 a dyadic number let F' € L} L? be
localized in Ay N B,. Then the solution u of (2.3.1) with ug = uy = 0 satisfies

1 1y 1_5
H“”L@Lg . < A@DG=g) =53 HFHLnga (2.3.21)

_5
sup (llullzz, ) S A2 1E Lz (23.22)

where (p, q) is an admissible pair. If F has support in Ay, then the solution u of (2.3.1) with
ug = uy = 0 satisfies

1_1y_2_
el prg S AT P e (2.3.23)

where (p, q) is an admissible pair.
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Proof. The estimate (2.3.23) is the classical Strichartz estimate, which is stated in Corollary
(2.3.3). For the remaining bounds (2.3.21), (2.3.22), we decompose the solution

mw:iésm““f”ﬂwp@ym—ﬂ e 9A(A) 1P (s) ds

&y =2 J,
1 [
+ % J, e=IR (AL (s) ds.

Especially, we have the pointwise bound

t
/ e:l:i(t—s)A(_A)—lF<S) ds
0

and observe (2.3.21) and (2.3.22) by Corollary 2.A.3 (a), Lemma 2.A.5 (a). If X denotes
either one of the spaces on the LHS of (2.3.23) and (2.3.22), we estimate

¢ [e.9]
H/ HIIA Q)T F(s) ds|| < / lem 92 (=2) " F (s)]|  ds
- x -

o0

< / 59D (AR ()] ds,
0

S [N FO ds

o0

Here we note that in order to use the Corollary and the Lemma, we verify that e T2 (—A) ™1 F(s)
has Fourier support (in £) in (A§ U A§ ,) N A, for all s € R. This follows since /" is localized
on B, N A, and hence also implies for normalized frequencies A ~ 1

H(_A)_IFHLtng S ”F”L}Lg-
O

The next lemma follows from the homogeneous estimates in Lemma 2.3.5, resp. Corollary
2.A.3 and Lemma 2.A.5.

Lemma 2.3.7 (Trace estimate). Let F' € X} ’1for a dyadic number ).
(a) There holds

<\F
sup (I1Fllzpe, ) SN IFI g (23.24)
d_d_2
1F N ppg S A2 (1FN g0 (2.3.25)
A

for any admissible pair (p, q).

(b) We additionally assume F(T, -) has support in A, for some e € M and all T € R. Then
there holds

d+1

d_d+l_ 1
1N re S AR 2 IFN g (2.3.26)

~J

where (p, q) is an admissible pair, p > 2.
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Remark 2.3.8. In the following, we often use the dual estimates of (2.3.25) - (2.3.26), i.e.

A

1 - S AT (Talp

d_d+l_ 1
1PN g SN Ny

1
Proof of Lemma 2.3.7. For F' € X ’1, we have the representation
F=> Q.)F+h,
p<AN?

where Lh = 0 as mentioned in the previous section. We want to use (2.2.34) and (2.2.35).
However, here we split over sign(7) and write

S QF =3 [ [ i o) /i) dr de

pe2t pe2t

=3 [ [+ 00 et 1 € 6) )5+ €2.6) do e

ne2s

+Z// =5+ & > 0)e I Dplw(s — €,6)/p) F(s — £2,€) ds dg
ue2’

_ h+ dS—I— zt(s—l—A

R g )

where
et = x{n/2t < 1ol <2} [ Ces 46 > Ohpluls = €,/ Fls +€4.6) d,
and we used

1/2 < wir,€) = ||| - fl%_ﬂ!ﬂ €] < Vau(r,€) < 23

Now we assume there holds ||e”e*"4 f|| v < |If| 2 for some space X and all §,¢ € R , then
1
S (f Il o)
X +
~ Z Z u ||y

< Zm 1QuF 2
w

e“(ﬂA)hfL (s)ds

(7 > OpplwEr O/whre)|
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2.4. Global wellposedness in the scaling critical Besov space Chapter 2

Hence (2.3.25) follows from the Strichartz estimate for Schrodinger groups and Lemma 2.A.5,
since (for the limiting dyadic block ¢ = 0 with Lh = 0) we have (see Lemma 2.3.3, resp.
Lemma 2.3.5)

1Pl x S 1RO 22 + 10:2(0) | -2 (2327

d

where X = Ai_%_gLng. For (2.3.24), (2.3.26), we use the decomposition
F:QS%F+(1—QS%)F.

Then we check that calculating hfj(s) in the above argument for @) _ 2 F', the function
— 16

—

&= Ny (s)(€)
has support in A 2 U A4 for all s € R. Hence, following the argument with
1_ (d+1 _
X=X, X = (T LA,

we obtain (2.3.24), (2.3.26) by Corollary 2.A.3 and Lemma 2.A.5 for Q<£F on the LHS. For

— 16
(2.3.26), we further note that by assumption hff (s) localizes in A, for all s € R. The remaining

estimates for (1 — @ _,2 ) F’ are equivalent to
— 16

11 = Q) Fllx S AL - Q

2 )FHL%’za

A%
16

which follow from Sobelev embedding (thus the restriction to p > 2). As above, we obtain the
estimates for the Lh = 0 part of the limiting dyadic block p# = 0 by Lemma 2.3.5. [l

2.4 Global wellposedness in the scaling critical Besov space

In this section, we define the space Z % that solves the division problem for the Cauchy
problems (2.1.1) and (2.1.4) (as stated above in Theorem 2.1.1). Further, we establish the
bilinear estimates in Section 2.4.2 that are necessary to prove the Lipschitz bound in Lemma
2.2.2 and finally state the proof of Theorem 2.1.1. The proof of Corollary 2.1.2 is a consequence
of Theorem 2.1.1 and will be stated in the next section.

2.4.1 Function spaces
We now define the dyadic building blocks of the function spaces Z : , W% and use the convention
Fllag, = A7 ML, -
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2.4. Global wellposedness in the scaling critical Besov space Chapter 2

We set
Zy =X 47, 2.4.1)
where Y, is the closure of
{f €S| supp(f) C Ax, [|flly, < o0},
1Al = A2 N F gz + 1 ppora s
and the norm of Z) is given by

inf  (fuall g0+ lJuzlly, )

HuH% = w1 Lot X}

For the nonlinearity, we construct W = L(Z,), i.e
1
Wy = A2 (X, 2" + (LLL2))) (2.4.2)
where (L} L2), is the closure of

{F eS| supp(F) C Ay, [|Fllpype < o0},

and
I1F by, =22 inf (IR g+ 1Bl )
Then, we define
d
lull, = > A2 [ Px(D)ull, , (2.4.3)
ae2z
1PNy = Y A2 [ PA(D)Fly, . (2.4.4)
Ae2L
and
d
lull3. = 5= 2 | P(D)ully, fors > 5. (2.4.5)
A\e2L
d
1|5 = Y A |PA(D)F |}, fors > 7 (2.4.6)
€27

Embeddings, linear estimates and continuous operator

In this section, we provide some useful embeddings and multiplier theorems concerning 2
and W,. We also show that the solution of (2.3.1) satisfies u € Z° if Lu € W* with the correct
initial regularity Bg’l X Béi ,or H® x H s72_ respectively for s > g.

95



2.4. Global wellposedness in the scaling critical Besov space Chapter 2

At the end of this section, we show that 2, bounds
_aLOOLtei’ ﬂ/\ t,ei7

in a suitable sense. Therefore, we apply the following heurstic argument, used similarly in [2]
for Schrodinger maps. For solving (2.3.1) by w = V(F') with ug = u; = 0, we rely on the
inhomogeneous Strichartz estimate Lemma 2.3.6

VN4 g A NF Nz (7€) € supp(ROF)
and otherwise on inverting the symbol of L

F(r,§)
T — [¢]*
We first consider the following Lemma, which clearifies how the the spaces Z), IV, behave
under modulation cut-off and is essentially from [54] (adapted to the paraboloid 72 = |€ |4).

V(F) = J’:_l( ), (1,6) € supp((lfPTo)F).

Lemma 2.4.1. The following operator are continuous for 1 < p < oo with norms that are
uniformly bounded in 1 < 4)\2.

(@) Pr<p, PaPo: LYY — LYLY, pu < 4N
(b)) (1=Q<)Pr: Yy — p 'LIL2, u < 4N

Proof. We follow Tataru’s argument in [54], which we stated in Lemma 2.2.14 in Section 2.2.1.
This argument applies, similar to [54], to P, <, with multiplier

mun(T,€) = > (7 + €)1 /N p(w(r, &) /i),

asp
since there holds for N € N and ¢ € R? fixed
07 mu (1, )| Sv u™™, supp(my,n) € {(1,€) | |I7] = €] < 2u}. (2.4.7)

For the second operator

PyPyu = FHp((2 + 91 /N)x(7, €)a(r, €))

in (a), we note that y is invariant under scaling and hence the claim reduces to continuity of
PyPy: LYL? — LYL2. This follows directly from the above argument.

Now for part (b), we write

F1= Qe )Pu)(r,€) = (1= Y o(w(r,&)/i)e((r* + €)1 /N)a(r, €)

a<p

. el e
= A2 Lu(T,
! ng wim e et 409

=t TN 2 (T, 5)5%, ).
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It hence suffices to prove continuity of the operator F (1, \F(-)) on L;L2. As in Lemma
2.2.14, by Young’s inequality and Plancherel, this reduces to a proof of K € L} L2°, where

K(t€) = / ¢ iy (7, ) d,

is the convolution kernel (in ¢). This follows similarly as in the proof for the cone in [54]. We
sketch the argument following the proof in [15, chapter 2.4]. There holds

17 = {1 (7,€) + [|7] = [ OFrma(7,€) < . (2.4.8)
Hence, considering the support

() | Ir] = €1 = V2, 7]+ € < 43N,
we infer

< /,[/71_

‘/eitTﬁzu,A(T, ) dr t2/ei”mu7,\(7, £)dr| <

Integration gives boundedness of the following terms (uniform in p, \)

< plog(N*/p),

1Kl S [ G dt [ K des [ 6 .
<A [t]>~2 A St
For the last term, we estimate
7 1 L
()| oo 5/ . m dr + t_z/ . W dr S p(1 = log([t|u)),
L<lr|-g2< llrl—€2[2> 74
and hence
K@ ) e dt S T
/4\/15/\2<|t|<\{l§
O
Lemma 2.4.2. We have
Wy C A L2, 7y C ALY (2.4.9)
1 1
X zyc X% (2.4.10)

1 L.
Proof. For (2.4.10), we note that X { N/ » follows by definiton and Z, C X' is proven as
follows.

1 o . . . 1
The norm of X" is estimated against the norm of the X /\2’1 part and further, for the L} L?
part in Y, we deduce from Lemma 2.3.7

Joall g S A2 HEaall g+ (O + [0a(0)
A

A

SA ”LU/\HL,}Lg + HUAHL;X’Lg y
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which reads as
||UA||X%,OO S llually, s ux € Ya.
Concerning (2.4.9) in the Lemma, we note
lusllzz S Muallpyza ~ N llualleryzs - ua € Ly L,

where we used that @, (-, £) is localized (in 7) on an interval on length ~ 2. Hence, since also,
1 -11
||UA||L?¢ 5/\ Z/’L 2 HQ/L(UA)”Lazv U GX)\2 )
pSA2

we obtain the first claim. For the L{* embedding, we estimate similarly by Lemma 2.3.7

, T

d
lunllpze < A% luall_y.r-

Xk
For the Y, part, we obtain by a direct application of the classical Strichartz estimate

luall e S 1O g + 10(0) ] g2 + A2 1Ll a2 S A2 ually, -
from Lemma 2.3.5 and Lemma 2.3.6 for p = ¢ = . [
Proposition 2.4.3. There holds

Z: c O(R,BY)NCYR, BY') (2.4.11)
2 2
Z* c C(R,H*) N CY(R, H*?) (2.4.12)
Further we have
ull ¢ < ||(U(0),@U(O))Hgglxggg + [ Lull ¢, (2.4.13)
2 27
d
lull 7+ < 1(w(0), Quw(ON)l| o ra-2 + | Lullyye s 8> 5, (24.14)
d
1Lull g S llull g [ Lully. S lullz. s> 5 (2.4.15)

Proof. The claim (2.4.15) follows from the definition of Zy, Wy since A2L} L2 = LY, and for

X
1
55D
the X{" part, we use

Ll g X2 ] g0

For (2.4.11) and (2.4.12), if suffices to show

d
I PAD)ullge s + IPAD)Ou(t) | eze S AL IPAD)ul,
2 27
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where by Bernstein

|PAD) () g S IPADull s (2.4.16)
72 b

Then, since

Lo d
HPA(D)UHL;wBZ’l < Z (A/)‘) ’

A<

2 | PA(D) Py (V)ul| oo 2 (2.4.17)

the embedding and the continuity in time follow from Z, C S, C CtL?E and we proceed
similarly for the emdedding of Z° using square sums. Now for (2.4.13) and (2.4.14), we use
Duhamel’s formula

u = S(u(0),0u(0)) + V(Lu),

where S(ug,u1) solves (2.3.1) for F' = 0 and V F solves (2.3.1) for ug = u; = 0. The
homogeneous solution is estimated by the Strichartz bound in Lemma 2.3.5 in the energy case
p = 00, q = 2. This is also directly verified by

Fo(PA(D)S(u(0), 9u(0)))(¢,€) = @(25[¢]/A) (cos (1€ )u(0)(€) + €| > sin([¢[*6)Du(0)(£)),
and hence

[1PAS (u(0), ue(0)l 7, < 1S ((0), ue(O)[ e 2 S [[ua(0) 2 + (| Gsux(0) || 7 -

1
For the inhomogeneous solution V' (Lu) we estimate the X ¢ ¥ part by

HV(LuA)HX%,1 < \72 HLUAHX;%J , (2.4.18)

and for Y,, we use Lemma 2.3.6 in order to conclude
IV (Lun)llyy, = A N Luall gz + luallpo s S A2 Luall s -
]
We further estimate the lateral Strichartz norm and establish the maximal function estimate.

Proposition 2.4.4. For any dyadic number )\ € 2% we have

ZyC SNy S5, (2.4.19)
eeM
ZyC (| NTLALE,. (2.4.20)
eeM

where S¥ is the closure of

N 1, (@d+1) d
[ s son(f) € A, 1l = smp (V5 sy ) < o

(p,9)

with (p, ¢) ranging over all admissible pairs with p > 2.
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19
Proof. For (2.4.19), we first consider the embedding Z, C Sy. Thus, the X" part satisfies
for any admissible pair (p, q)

2,d_d
AbTa lurllprrs < HU/\HX%,U
A

by Lemma 2.3.7. Likewise, we obtain the same bound against the Y, part by Lemma 2.3.5 and
Lemma 2.3.6. For the S§ embedding, we decompose as follows

uy= Y _u§, uf = Pe(V)uy, (2.4.21)
eeM

which suffices to obtain (2.4.19) for the X ? ! part directly from Lemma 2.3.7. Now, considering
the Y), part of Z,, we further write

Ui = P()U/e\ + (1 - P())Ui.
Then, Fyuf is localized in B, and (by definition of Iy, 1 — Fp)
Foui = S(u5(0), 0,us(0) + V(P L(uy)), (1= Po)uy =V((1 = Fy)L(uy)).

Hence by Lemma 2.3.5 and Lemma 2.3.6 we have

(d+l) d
p+

A “PouAll e, S A [PoLul 2 + 1S (O g2 + [0S (0)]| > (24.22)

S [lual

€
Y)\

by Lemma 2.4.1 and continuity of P.(V) on L} L2. Similarly, by Lemma 2.3.7, we infer

FECES .
A (= Po)usllppge | S IV = Po)(Luf)ll g S AT (I(1 = Fo) Lus]|

A

1
X, 2"

SN2 - R)Lus] g -
A
N HUA“Y;v

where we used (1 — Pp) X A% b (1—-PFPy)X % > uniform in the frequency A € 2% and the dual
trace inequelity from Lemma 2.3.7 in the last step. Hence we sum over e € M and take the
infimum over uy = ) __u§ with u§ € S§. The L2LOo - embedding (2.4.20) follows similarly
using Lemma 2.3.7, the decomposition (2.4.21) and Lemma 2.3.5, 2.3.6. Especially

1-d e
SQP (>\ 2 ||P0%HL§L;><;L ) N Hu/\HYA , (2.4.23)
—d —_
sup (7 (1= R g ) S A2 Ll y S sl (24.24)
é A
1
Again the estimate for the X : part follows directly by Lemma 2.3.7. 0
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2.4. Global wellposedness in the scaling critical Besov space

2.4.2 Bilinear estimates

For the bilinear interaction, we write

u-v= Z (U, Ux, )

A1,A2,A
= Z [<UA1UA2))\2/2 + (uMU)\z))\z + (u/\lv)\2)2>\2} (2.4.25)
A2>A1
+ Z u>\1v)\2 a2t (u)\1v>\2)>\1 + (uz\1v>\2)2/\1} (2.4.26)
A1>A2
(2.4.27)

> > (ma
[logs (A1/A2)|~1 A<max{A1,A2}
Due to symmetry, we restrict (2.4.25) - (2.4.27) to
Z [(u)\1v/\2)>\2/2 + (u/\I/U)Q))\Q + (u)qv)\z)?)\z}

A2 >

+ D> (woa)

A1~ Ao

and thus further reduce to the interactions
)\1 <K /\2 : (U)\ﬂ))@))q, and )\1 < /\2 : (UAQUM)M'

Lemma 2.4.5.
@ Junvnalz, A lunllz,, oz, A< o (2428)
B urvadnllzy, M luslz,, lonllz,, A< Ao (2.429)
Proof. For part (a), we decompose
(Ur;V25) 00 = Q<aryro (Un V)2, + (1 = Qaanyng) (Un, V)2, (2.4.30)
First, we place QQ<ax, x, (Ux, Uny )2y Xi’l by estimating
(2.4.31)

-1 _1
[ on )z, S A7 A llunllz,, vsallz,, -

1
Then, from X/\QZ’1 C Zy,, (2.4.31) gives

||Q<4>\1>\2 (UA1U>\2)>\2 HZA2 S HQS4>\1)\2 (uA1U>\2))\2 ||
A2

1 1y, 4
SO0 m2) )AL lunly,, o, -
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For (2.4.31), we write u, vy, = Y, U, V5, Where v§ € S5 . Hence

o vsnall e, < onllzzree 05l s | (2432)
d—1 _1

<A Jun |l e W |0 : 2.4.33

SN ol gt M I (2.4.33)

Summing over e € M, the claim follows from Proposition 2.4.4. Secondly, we note for A\? <

Qu(u,\lv,\Q)AQ = QN (’LL/\1 Z QQjM'U)\Q) (2434)

l71<2
Hence we write
(1 - QS4>\1>\2)(U>\10)\2))\2 - (1 - QS4>\1>\2)(U>\1(1 - QS>\1>\2>U>\2)>\2

In order to estimate the remaining part in (2.4.30), using Lemma 2.4.1, it thus suffices to prove

||(U)\1(1 - QS/\1)\2)U>\2)>\2H ia S ||u)\1||Z)\ ||U>\2” 1a (2.4.35)
Xf\z ! X/\z
[(un (1 = Qoxn)vn)nally, ) S llunillz, loxally,, - (2.4.36)

The estimate (2.4.35) and the L{°L? summand of (2.4.36) follow from the embedding 7y, C

d
Af Li5, by factoring off the Ly, norm of wy,. For the second estimate (2.4.36), we further
calculate

L(u, (1 = Qaxrg)Vas)as = Un, L(1 — Q<xiny)un, + Optun, O5(1 — Q<nyng JUr,
+ O ux, (1 — Qaring)vrg + A% (un, (1 — Qaring)vn,)
- U,\1A2(1 — Q<xra)Ung),
hence we estimate
I L(wx, (1 = Q<xing)vao)rllzirz
S llua L = Qaaing)vrllizz + 100ua, 01 — Qering)Unll 12
+ Hafu)\l(l - QS/\Mz)UMHLtng
+ HAQ(uM(l — Q<xng)Un) — Uy, A?(1 — QSAlA?)UA?)HL}L% )

Calculating the expression in the latter norm and factoring off the derivatives of u,, in L™, we
infer (using Bernstein’s inequality)

[[L(ux (1 = Q<rine)vrs el iz
S lun L0 = Qonna)vrallpyz + A llun [l A 111 = Qnine) ool 2
~ ||U>\1L(1 - QS>\1>\2)UA2HL%L§

+ [l AMASAA) I = Qnina)vaa | ayag) 11222
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where we note \; < \y. We now proceed by Lemma 2.4.1 (b) (for u = A Ao)
252 L (ury (1= Qengnn)vas ) llzi 2
d
SJ )‘12 ||u>\1HZ>\1 ()‘2_2 ||LUA2||L%L% + HUMHYAQ)?

which gives the claim. The proof part (b) follows similarly, in fact easier, since we can directly

11 . .
place (ux,v,)x, € X3 by estimating

4
lussvsalls, S A5 unsll, o, (2.4.37)

Then, from Xfl’l C Zy,, (2.4.37) gives

1
w2
H(u)\2v)\2))\1”Z>\ 5 N2 )‘2 HuM’U/\QHLQ
1 )\ t,x
p<axz N

4
< 25 unllz, ol

For (2.4.37), we write ux,vx, = >, US,Ux, Where u§, € S5, . Hence

; < [l
Hu/\zwzHLgm = U, LeL? | [0 | LZLY |

<57l 27 ol
= Ag T ||U, 27 v, W

27, L2

1
T 270072
Ay 2LL LD

t,eL

Summing over e € M, we infer the claim.
O

From Lemma 2.4.5, we obtain (2.1.10) as outlined above by summation according to the
. d d . .. . . .
definiton of Z2 and W 2. Note that the estimates for the remaining frequency interactions in

(2.4.25) and (2.4.27) follow the same arguments provided in Lemma 2.4.5.

Similarly, for the embedding (2.1.11) we prove the subsequent estimates.

Lemma 2.4.6.
d d
lsosally g S MM lunallz, lon s, A < 2o (2:4.38)
d
lusson v, A2 s llws, ol A< s (2.4.39)
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Proof. We first estimate by Sobolev embedding

e ||U/\2U/\1||Lt1L:2E S A2 [Juns |l . 75 ||U>\1||L3Lg

tHT

d—2
< 2 2
SA Tl 2 M7 llonlig,

d_3
S Mgy, A llos .

d
S luxsllz,, AT llow llw,,

where we used Lemma 2.4.2 for Wy, C A}L7,. Thus from

d—4 d d
Huigv)\lHW% S /\22 ”u)\QU)\lHL%Lg 5 )‘22 /\12 ||u>\2||Z,\2 ||U)\1||WA1 )

we obtain the claim (2.4.38). Estimate (2.4.39) is implied by
N7, L2 C L2, (2.4.40)
N2y X2 WY, (2.4.41)
where the first embedding follows from Z,, C )\1% L. For (2.4.41), we note that since we
restrict to \; << A9, we only consider \; < %3 for a large, fixed constant C' > 0. We thus

decompose
Uy, = Qeezrzin, + (1- Qgc%\%)%-

_1
In particular, each dyadic piece Q,uy, in (1 — Q<c2x2) X A;’l satisfies \? <y < \2. We then
estimate (note that we use (2.4.34))

_1
Xf%,l ~ Z w2 |’U/\1Quu)\2||[,iz

A2 C2A2<pu<aN?

1
S Z I ||U>\1||Lt°fx ||QMUA2||L§’Z

C2A2<pu<4N3

HUM (1 - QSCQ)\%)U’/\Z

d
SN ol ol g

Further

2
)\2 U/\IQ<CQ>\QU)\2 S UA1Q<02)\QU)\2
> 1 = 1 L1L2
Ao t-x

S ”UMHL,%Lgo HQ§C2)\§U/\2 12
t,x

_1
S uE Qs

d
A Jonll a2
p<C222

L2Lg°

d

SJ )‘15 ||U)\1||ZA1 ||u>\2”X,\_2%’1 )
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which follows from Z,, C S,. O

We now infer (2.1.10) and (2.1.11) by the summation argument provided in the beginning of
the section.

2.4.3 Higher regularity

The percisteny of higher regularity of the 32 b x B2 ! , solution as stated in Theorem 2.1.1

follows as in [54] and [2] from (2.1.14) and (2.1. 15) We will show how to employ these
estimates in order to apply Lemma 2.2.2 in the next Section 2.4.4.

For (2.1.14), we rely again on Lemma 2.4.5 and the decomposition

uv = g Un, Uy, + E Up,Ux, + E UNy Uy

A1 A2 A2 A1~A2
from the beginning of the Section 2.4.2. However, we now sum as follows

: 2\ 1
(ZA% H(uvhHZ) < Z(sz ( 3 u) )
A A1 A A< A2 Al Zy

2\ 1
+Z(Z)\25 ) + Z [l tx,
Ao A Z)

(3 o)
AM~A2
Hence, we need to estimate the three terms

Ao A

S (S #1mn ) S (i) ¥ b

A1 AL A2 A2 <A A1~ A2

VAR

where for s > 4, the latter sum is treated by Lemma 2.4.5 (b) similar as before via (note that
we identify A\; and )\, for simplicity)

d
Z Z A || UAQU)\Q HZ,\ Z )‘gs ||u>\2||Z,\ /\22 ||,U>\2||Z,\2 S ||u|

A2 ASA2

zs UHZg-

The LHS of this inequality now bounds the /?(Z) norm (wrt )\) and for the first two sums above

we directly estimate the squares via Lemma 2.4.5 (a). For (2.1.15), we sum in the same way
and use the following dyadic estimates

s+4
> A Husondnlw, < A7 sz, losallw,, -
A1SA2

H(u)\2v>\1>>\2HWA < )‘2 Hu/\2HWA HUMHZ)\ ;A< A

d
[(ursornollw,, S AT lursllz, lloadllw, - A <A
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which are the same as in (or follow from) Lemma 2.4.6.

2.4.4 Proof of the main theorem

The proof of Theorem 2.1.1 follows straight forward pertubatively by convergence of
U1 = Sul0] + V(Q(ug)), k>0, ug(t,x) =0 (2.4.42)

in the space Z2, where Su[0] = S(uo,u;) solves (2.3.1) with £ = 0 and V' F solves (2.3.1)
with u[0] = 0. To be more precise, we combine Proposition 2.4.3, i.e.

el S ollg + ol + 190l

z2 ™~
2

sup (llu(®)ll g + 10u(t)ll s ) < lull g
teR 4 g2

2

with the Lipschitz estimates
1Q(ur) = QUun)llyys S Clllusll g, lwll ,g) lluw —wll g,

1Q(ux) = Qur)llys S [lur — il zo F llwllz)-

The first estimate is a direct consequence of (2.1.10), (2.1.11), (2.1.2) and Lemma 2.4.3
provided Q is analytic (at zo = 0) and (2.1.16) holds, which is a priori necessary to expand the
coefficients of Q. The latter estimate follows similarly using (2.1.14) and (2.1.15) and hence
this framework applies to Lemma 2.2.2.

zo ([l g + llwll ,g) + llun — wll g ([l

For the interested reader, we now make this precise and establish (2.2.11) and (2.2.12) in the
Lemma for Z = Z% in Proposition 2.4.3. It hence suffices to prove the Lipschitz estimates
(2.2.13) and (2.2.15), which follow from the continuity V' : W) — Z, (see Proposition 2.4.3)
and for a small 6 > 0 and s > %’, as mentioned above,

d
1Q(uw) = Q)lly g < (lull g +llvll ,g) lu—vll 4. uveB*(0,0), (2.4.43)

1Q(u) = Q) < llu— v

2o (all g + ol g)

d
2), u,v € BZ2(0,0)NZ% (2.4.44)

zs T |v]

+llu =2l g (lu|

and similar for the nonlinearity in (2.1.4). Then we conclude Theorem 2.1.1 from Lemma 2.2.2
for 0 > 0 such that additionally (2.2.14) is satisfied. In order to obtain (2.4.43) and (2.4.44),
we first note that from (2.1.14) (combined with (2.1.10)) there holds by induction over k; € N
withj =1,... mforu; € A aVA

m k m
ITTw N, <> 11l
j=1

=1 i#j

ki1 ki
Zs “J”Z% HUzHZg (2.4.45)
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Here we ignore the fact that u; are vector-valued. In particular, the smallness assumption is
only necessary in Z2 in order to estimate the series expansion of Q(u), Q(v) in (2.1.1) and IT
in (2.1.4). We apply (2.4.45) for power of w = u — v, u, v where u, v € ARaWAS

We proceed by expanding x — Q. (-, -) and z — TI(z) at xy = 0, i.e. by assumption

Z Z Da Qz lz=0L s Z Z 'Da \z oxav

kOkzla\ ! k=0 k=|a|

converge uniformly in B(0,¢e) C R” for some ¢ > 0, where o € NZ, ! = Hleaj!, ¢ =
Hlexj%. For convenience, we write

= 1 = 1
=D (@ Q) (@), T(x) = Y d (@), (a¥), (2.4.46)
k=0 k=0

where d*Q,, d*T1(x) are (k + 2)-, resp. k-tensors with the notation for/ = 1,..., L

k!
htotlp=k L:

and similar for d*II. Especially we have for any v € R”

[e%9) L
T, (v) :kz i ! N Idelamn(g;)M (2F1)u, (2.4.47)
=1 =1

00 L
1 - p—
=2 7l D d 10, (), (=" k.
Since e.g.

1 1 §
| @ Q@) g S D0 1P Q)calsd®, we B (0,0),
' laf=k

d
we have that (2.4.46) exist absolutely in BZ* (0, §) if § > 0 is small enough. We now consider

Qu) = %QU<L(U ‘u) —u- Lu— Lu-u),
N(u) = L(II(u)) — dI0,(Lu).
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Then we have for w = u — v
O(u) ~ Qv) = 5 (@u — Qu)(L{u-u) - Lu — Lu-u)
—i—%QU(L(w-u)—l—L(v-w)—w~Lu—v-Lw—Lw-u—Lv~w),

(@u = Q) =Y 1 Qo —o¥)

k>1

93 Q) o () (42, ()

k>2 1=0

where in (d"Q,),_, (v'wu"'""), we capture all terms of the form

lm .
> Cy,ap (O - 0 Qo)vlt - vfmwy, w2 ot iy € {1, L},

L
i+ lm=l
42+l =k—1-1

Especially, this implies (2.4.43) by (2.1.10), (2.1.11) and continuity of L : Z: — Wt
(Proposition 2.4.3).

We show more details for the proof of (2.4.44). Therefore, we use simplyfied notation and
estimate using (2.1.15)

| (W'wuF Y (L(u - u) — w - Lu — Lu - u)||ws < Jy + Jo,

where
S S [[@wut Y]], 2H g +llulull,q)
< H(vlwuk’l“)
Ss Lllollg. o1l 4 llwll ;g HUHk T lwll g 1l lally T ull g
+ (k= 1= 1) Jull g« [0l lwll g llull g~
So (k=16 2(Jull 5o + [[0ll 7o) 1wl ¢ + 0" Jwll 5. ( l,4)-

by (2.4.45) and (2.1.14). Further

Ja S l@hwe = |l Nl S5 Tl 8
Similarly we estimate
|v*(L(w - u) + L(v-w) —w-Lu—v-Lw— Lw-u— Lv-w)|ws <1+ I
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where
1S o e all g + ol _g) Trwll g S5 k65 ol el g
I S {|o* g (Wlall g + el ) lawll e + (el + ol z2) el g)
Ss 0 ((Nlull g + 110l yg) lwll e+ (lull 7o + loll 2 1wl ,g)-

Now we turn to the seconddCauchydproblem (2.1.4), respectively the nonlinearity A/. We note
that by continuity of L : Z2 — W2, 1i.e.

[Lvll,, g S llvll,4 S0,
W2 7?2

d
and by convergence of (2.4.46) in BZ” (0, §), we justify to pull L into the series expansion and
all terms in the series expression of N (u) are at least quadratic. More precisely in the above
notation

) = 3 (T (L) — b L),

k>2

d
converges absolutely in W2 if u € BZ*(0,6) and § > 0 is small enough. Here we use the
identity (2.4.47) and write similarly as before

N(u) —N(v) = Z Z l(all‘cl_l(:zc))b::o(L(vlujuk_l_l) — kvlwub " Ly — ko Lw),

where for the middle term, we only sum [ = 0, ..., k — 2. This form applies to derive (2.4.43)
and (2.4.44) with the same arguments used above.

2.5 Application to biharmonic wave maps

We now want to prove Corollary 2.1.2 and construct a global solution of (2.1.3), which reads
as

Ofu + A*u = dP,(us, ut) + dP,(Au, Au) + 4dP,(Vu, VAu) + 2dP,(V?u, Vu)
+ 2d*P,(Vu, Vu, Au) 4 4d*P,(Vu, Vu, Vu)
+ d*P,(Vu, Vu, Vu, Vu),

where
d*P,(Vu, Vu, V*u) = d*P,(0"u, 0ju, 8;0°u),
d* P,(Vu, Vu, Vu, Vu) = d*P,(0;u, 0'u, du, ¥ u),
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and dP,, d*P,, d*P, are derivatives of the orthogonal tangent projector P, : RE — T,N for
pE N.

We extend this equation via the nearest point map 11 (dIl, = P, for u € N) to functions that
only map to the neighborhood V.(/N). By direct calculation or comparison to (2.1.5), it can be
verified that (2.1.4) is the canonical extension for this setting. We thus consider

Lv = L(II(v + p)) — dll,,(Lv) =: N (v),

for v = u — p where p := lim||_, ug(x). Since for § > 0 small enough, we conclude (note
that in B5" we have C; data)
2

5 <6, 2.5.1)

sup dist(u, N) < |lu —pHL% S ||UHL§°B§1 S ol 43
' 2

teR

the map v — I1(v+p) and thus (2.1.4) is welldefined in a B(0, ') ball in Z2. In particular, we
apply Theorem 2.1.1 to the Cauchy problem (2.1.4) with the nearest point map v — I(v + p)
and obtain a global solution in B>"(R?), which belongs to H*(R?) for any s > 4. Especially

2
we recover that u = v + p is a smooth map from Lemma 2.2.5.

The only thing left to show is that u(t) € N for ¢ € R, such that in particular, (2.1.4) implies
(2.1.3).

Ifv=u—pe B(0,05) C Z2 forasmall § > 0, then since I1(p) = p we have I1(u) — p =
II(v+p) — p € Z% by the series expansion and IT(u) — u = II(v + p) — p — v € Z2 with

d

() = ull g + [[T(w) = pll ¢ S vl 4,

7% ~
provided 6 > 0 is small. We now have
L(u—1(u)) = L(v — (v + p)) = —dIl4,(Lv) = —dIl,,(N(v)), (2.5.2)

Note that, since we have II(«) on the LHS, the linear part of the expansion of dII,.;, on the RHS
is present. Since II(u) € N, we have N (II(u) — p) L TN and from Im(dIl,) C Trw) N,
u = v + p, we obtain

dlLy (N (T(w) — p)) = 0.

Hence (2.5.2) reads as

L(u — TI(u)) = —dIL, 4, (N (v) — N(IL(u) - p)). (2.53)
At this point, however, we mention that since

N(v) = L(I(v + p) — dIl,.(Lv),

N (T1(u)  p) = L(IL(TI(w))) — dlTn (L(T1(w)),
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we cancel the linear part in the series expansion for L(II(v + p)) with the linear part of
dIl, 4, (Lv) in N(v). Likewise we cancel the linear part of L(TI(II(u))) with dITr ) (L(I1(u)))
in N(I1(u) — p) on the RHS. We proceed using the notation as before and obtain (following
the definition of \)

L(u —T(u)) = —dlyyp (AT 110 —py+p — Alogp) LT (1) — p) (2.5.4)
+ dITy 4 (L(TI(u) — p — v))
+ L(ITI(v + p) — T((TT(u) — p) + p))).

Note that we don’t want to use IT> = II, since technically we want the identity for the series
expressions for I, dII with missing linear (resp. constant) parts. Especially, all terms appearing
on the RHS are at least quadratic in v, I1(u) — p.

This implies (note that u(0) = ITu(0), u;(0) = 9;(I1u)(0) by assumption)

lu =TI 4 < L+l [[(dT e -pyp — dlosp) LII(w) — p) |

(14 ol g) 4L, (L(TI() = p = )] g

(L [0l ) I + p) — T(() — p) + P, 4
S @+ flollg) e — ) g LTI — Pl g

(L llolg) ol g L) —p— 0], 4

(1ol g) (ol g+ 1T102) = pllg) e — THCw)]

d
Z w2

ISH

72
S @+ ol ) ol g Tl = TI)]] g -

In particular, if [|v|| ¢ < ¢ is sufficiently small, we have u = TI(u) € N.

111



2.5. Application to biharmonic wave maps Chapter 2

112



Appendix

2.A Local smoothing and Strichartz inequalities

In this section, we recall the local smoothing effect (i.e. lateral Strichartz estimates with
localized data) and a maximal function estimate for the linear Cauchy problem
{z’@tu(t, z) + Au(t,z) = f(t,z) (t,z) € R xR

2.A.1
u(0,z) = up(x) zcR? ( )

in the lateral space LEL! | fore € S?-! with norm

HfH]ZgLZ A :/ (/[]L/ |f(t,re + x)|%dt dx) dr. (2.A.2)

The norm (2.A.2) was used by Kenig, Ponce, Vega, see e.g. [26], in order to establish local
smoothing estimates for nonlinear Schrodinger equations.

The estimates for LVL{ ., L;L7 ., L:Ly, in Corollary 2.A.3 and Lemma 2.A.5 below
are substantial in the wellposedness theory of Schrédinger maps and were proven by Ionescu,
Kenig in [21], [22] (see also the work of Bejenaru in [2] and Bejenaru, Ionescu, Kenig in [3]).
Similar ideas (however more involved due to the absence of the L2L°° -1 estimate in d = 2) have

been used by Bejenaru, lonescu, Kenig and Tataru in [4] for global Schrodmger maps into S?
in dimension d > 2 with small initial data in H 7.

Here we follow Bejenaru’s calculation in [2], which recovers the smoothing effect for (2.A.1)
provided the data ug, f is sufficiently localized in the sets

A= {e]€e> ‘5'}

Bét:{(ﬂf)llif—£2l<|7|+€2 cea }
Ay = {(r, &) | A2 < (P2 + [¢[Y3 < 20,
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as defined in Section 2.3. Especially for (7,&) € BE N A,, there holds

+7 €2 >0, L~ A LA ET -~ (2.A.3)

Remark 2.A.1. We note that our definition of BZ slightly differs from [2].
Taking the FT (in ¢, z) of (2.A.1), with u being localized in BZ,

fr6) = (rFlghalne) = + (Er - € - &) (- +&) in6). @A

Hence, considering (2.A.3), we proceed by taking the (inv.) FT in the coordinates ¢, z..1,

FUfE ) (JET - €+ &) 2.A.5)
= F (T - il 7. 60)) - Gt ),

Thus, (2.A.1) is equivalent to an intial value problem of the following type

(i, + D, )v(t, rx) = f,
v(t,0,2) = u(t, x),

(2.A.6)

where DjE v(1,§) = /T — [£|>0(, ). Thus (at least formally) the homogeneous solution
of (2.A.6) is represented as

v(t,r,z) = e"Dfxu(t, x).

In the following, we only consider homogeneous estimates for (2.A.1), wich imply all linear
estimates we need in Section 2.3. Inhomogeneous bounds for the biharmonic problem (2.3.1)
with F € L! Lf .. can be proven similarly as for the Schrodinger equation using the calculation
in Section 2.3.

The equation (2.A.6) has the scaling vy (¢, 7, ) = v(A\%t, A\r, Az), A > 0 and we now prove the
following Strichartz estimate.

Lemma 2.A.2 (Strichartz estimate). Let u € &' (R xR™), f € S'(Rx(R x R*™1)) have
Fourier support in

{ZET Z §2} N A)\
for some dyadic \ € 27. Then there holds

Dt 41_1_gh1
e Dt@u(t’x) Lo 5 A2 p ||U||L2 ) (2.A.7)
H/ ei(r—s)Di[zf<S,t’x) ds < A7 /**+(d+1 Lf*% - Hf”LP Lq ’ (2A8)
NN L,

where (p,q), (D, q) are admissible, i.e. 1 < p,q < 00, (p,q) # (2,00) ifd = 2 and

2
-+ gi <= (2.A9)
p q

I\DQ.
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Proof. We use the Littlewood-Paley decomposition from Section 2.2

Pu(u)(7,€) = o((72 + €193 /N )a(r, ),

and by scaling of (2.A.6), we have P (uy-1) = (P\u)y-1. Thus we reduce the estimate (2.A.7)
to

< Cd,p,q

(2.A.10)
Lf«’Lf,z

e"Dti@Plu(t, x)‘

P72+ I¢1) )i, ©)

LE’ ¢

We further have e”"” e Piu(t, z) = K %, Pyu, with kernel
K(t,r,z) = / / @t ETVET=E) (7€) drdE, (2.A.11)

where ¢ € C*(Rx R*™) with ¢)(r,€) = 1 for (7,€) € supp((7,€) = (7> + [€]")))).
which is the Fourier transform of a (compactly supported) surface carried measure on the

hypersurface
s={(emVE ) |¢eR TR < £,

and S has d non-vanishing principal curvature functions in the relevant coordinate patch. Thus,
from Lemma 2.2.10 we observe

K(t,r,2)| S(1+|r])°2, teR, z € R (2.A.12)

which gives

e"waplu(t, x))

S )R Py (2.A.13)

t,x

Now in the endpoint case (p, q) = (2, d2—f2), we apply Lemma 2.2.13 and otherwise we can use

a direct argument as outlined in Section 2.2. More precisely, combining (2.A.13) and the fact

that e™Pe+ is a group on ng with a classical 7" argument and the Christ-Kiselev Lemma
2.2.12, we deduce (2.A.7) and (2.A.8) for Pu. O

We remark that Lemma 2.A.2 is valid if u, f are localized at frequency A as stated in Section
2.2. For a dyadic number A\ € 2%, we recall the definition of A = {£ | A\/2 < [£] < 2A\}. An
immediate consequence of the Strichartz estimate is the following Corollary.

Corollary 2.A.3. Let uy € L*(RY), e € S, X\ > 0 dyadic with supp(tiy) C A¢ N A,. Then
there holds

He:l:itA

U0|

<COXNTE T gl (2.A.14)

g, S
where (p, q) is an admissible pair. Let u € S'(R x R?), e € S*', \ > 0 dyadic such that
supp(it) € {(7, &) | (7.€) € B N Ay}
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Then there holds

. +
elIeDt,xeL U(t, ng_)

d+1_2_d
. < Capgh 2 7 a|ult,zer)] 2 (2.A.15)
pra te |

+ Lz e
where (p, q) is an admissible pair.
Proof. For the first statement, we identify £ = (£-e)e+&.1 — (&, &) and proceed as follows.

By the change of coordinates |/£7 — &2, = &, we have

[ et e de
]Rd

; ; 1Ty /ET—E2, | d
B / / eFTeel el it uo(\/ +7 — 5;6 +&et) S de..
[e] - J{£T>€2, } 24/xT — §€2L
Now we set

(r, €)= oy 7 — et e) (227 —€1) L i 272 Jel,

and (7, &,1) = 0 elsewhere. By assumption on i, we have u € S'(R x R%"!) (upon the
identification of [e]* = R%"!) and for (7,&,1) € supp() there holds /47 — 2, =E& ~ A

and \/2 < ,/|7| + 53 . < 4 (since in particular u, localizes in A, N Ai). Thus, we apply
Lemma 2.A.2 and conclude

L | = / e e g (€) dg
¢ t,e Rd

€L

+itA

I P uo(@)]

Ler?
€ t,eL

. . e, /ET—E2, .
/ / GEIT i €n L G e e
el J{£r>€2, }

-1
d+l 1 _d+1 || |
<\N? Tr g uo(@/'r—ﬁie—i-feﬁ <2\/Z|27'—§3¢> X{i7>sz}
Lz
d_1_dt1
ST (ol e

where, for the last inequality, we reverse the coordinate change and estimate the Jacobian. For
the second statement, the estimate follows from Strichartz estimates for the Schrodinger group
and from the above coordinate transform in the backward direction. To be more precise, we
estimate

—iz.DF LT . >
e utt, )| = ‘ / e I E[E2, €,0) 2 - €)d
d+1_ 2 _d 1,
<A (e o faEeR, eoxlE e > 0}
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]
Remark 2.A.4. In the case supp(iig) C A4, we obtain from Corollary 2.A.3
d_1_ (d+1)
sup ||6i’tAP( uoHLqu n SOXNTr T lul e (2.A.16)

eeM

and especially the L7L7, estimate for ¢ = oo, pd > 4, d > 3.

The next Lemma (from [2]) shows that the P.(V) localization on the LHS of (2.A.16) is not
necessary in the case ¢ = oo if dp > 4.

Lemma 2.A.5. Let ug € L>(R?) such that supp(tiy) C AS for some dyadic A € 2%. Then there
holds

sup e %0 - | < CaphEF ol QA1)
where 1 <p < ooanddp > 4. Letu € §'(R X ]Rd), such that

supp(@) € {(7,&+) | (1,€) € BE N Ay}
for some \ € 2% and é € M. Then there holds

< CupA 7 77 |ult, vellzz, (2.A.18)

sup H i@feu (t,2er)

ceM LR,

where (d, p) are as above.

Proof. By scaling we reduce again to the unit frequency A = 1. Then estimate (2.A.17) is a
consequence of the 77™ argument for the Schrodinger group in the space LEZL?° | and Young’s
inequality. As mentioned before, we obtain the decay

. itle)? -4
/Rd ezmﬁeﬂ: tlg] ¢(|§|)d§‘ 5 (1 + |[[‘ €|) 2,

Then by Young’s inequality

H/G:I:i(ts)Af(S) ds

which implies (for dp > 4)

< 1.

~Y

[ et el
Rd

L2 L>
€ t,eJ-

<
LQL;(;J_ ~ ||fHLig/L;€L )
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which implies (2.A.17) by TT*. For (2.A.18), we use again (note « is localized in BjE thus
(2.A.3) holds)

/R d e H R o(|¢])de (2.A.19)

/ / ﬂ:T f L 1 i) (€ L’iT)SDO(‘ /:i:T) dr
e+ iT>§2

ﬁd@ (2.A.20)

and thus we obtain (2.A.18) also from 77 and Young’s inequality for exp(—iDtjEe L) 0

Remark 2.A.6. The first estimate in Lemma 2.A.5 holds more general by the same argument
in the following sense. Let ug, u as above in Lemma 2.A.5 and further 1 < p, ¢ < oo such that
q > 4 and

4q

—L < dp, < 00

-1 =P (2.A.21)

4 <dp, q=0
Then there holds
, d_d+1_1

sSup He:tZtAUOHLqu S C’d,p,q 2oaw ||U'0||L2 ) (2A22)
eeM ¢ tel *

Provided (2.A.21) holds, it is verified that

/ (/ (1+ |xe| + r)*%rd’l dr) " dr, < 00,
[e's) 0

which is required by the argument in the proof of Lemma 2.A.5, if we use

d

[ s (el S (14 fal + 12,0

Under the assumption (2.A.21), we especially infer

2 d  2d(qg—4 -
2. d_ (¢—4)+4d _ d(q 2)<
P q 4q 2q

[\ ]

so that (p, q) is admissible. This is a natural requirement, since typically Strichartz bounds with
bounded frequency rely on estimating the truncated dispersion factor via Young’s inequality.

Remark 2.A.7. We apply the estimates to Lemma 2.3.5 and Lemma 2.3.6 in Section 2.3. Also,
in Section 2.3, we need to use Corollary 2.A.3 and Lemma 2.A.5 for functions on R? that are
localized at frequency X as stated in Section 2.2. This is observed (for all ¢ € R) e.g. for
functions on R localized (in (7, £)) in B, N A, which have Fourier support in A U A4 /25
and poses no problem to the proof.
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