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Abstract

This thesis is concerned with biharmonic wave maps, i.e. a bi-harmonic version of the wave
maps equation, which is a Hamiltonian equation for a higher order energy functional and arises
variationally from an elastic action functional for a manifold valued map.

In the first part we present local and global results from energy estimates for biharmonic wave
maps into compact, embedded target manifolds. This includes local wellposedness in high
regularity and global regularity in subcritical dimension n = 1, 2. The results rely on the
use of careful a priori energy estimates, compactness arguments in weak topologies and sharp
Sobolev embeddings combined with energy conservation in the proof of global regularity.

In part two, we extend these results to global regularity in dimension n ≥ 3 for biharmonic
wave maps into spheres and initial data of small size in a scale invariant Besov norm. This
follows from a small data global wellposedness and persistence of regularity result for more
general systems of biharmonic wave equations with non-generic nonlinearity. In contrast to
part one, the arguments in part two of the thesis rely on the analysis of bilinear frequency
interactions based on Fourier restriction methods and Strichartz estimates.
The results in both parts of the thesis fundamentally depend on the non-generic form of the
nonlinearity that is introduced by our biharmonic model problem.
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Introduction

A well known nonlinear wave equation is the (2 + 1) wave maps equation,

−∂2
t u+ ∆u = (|∂tu|2 − |∇u|2)u, (1)

which is obtained by the Lagrangian formalism for the action

W (u) =
1

2

∫
(|∂tu|2 − |∇u|2) d(x, t).

for (smooth) maps u : (−T, T )×R2 → S3 ⊂ R4 into the round sphere. Since this is a covariant
version of the free wave equation

�u = −∂2
t u+ ∆u = 0, i.e. Dα∂αu = 0,

whereDα is the covariant derivative along u, the equation (1) can be understood as generalizing
free wave propagation to the evolution of a hypersurface in the sphere S3 .
In this thesis, we introduce a bi-harmonic version of the classical wave maps equation (1)
(for general targets N and dimensions n ∈ N), by considering the following elastic action
functional

Φ(u) =
1

2

∫
(|∂tu|2 − |∆u|2) d(x, t),

where the potential energy can be considered a (linearized) bending energy. Hence, in the
Euler Lagrange equation, �u will be replaced by the biharmonic wave operator

Lu = ∂2
t u+ ∆2u,

where ∆2 = ∆(∆·) = ∂ij∂
ij is the (iterated) bi-Laplacien. In the case of the sphere N = SL,

a critical map u : (−T, T )× Rn → SL of Φ satisfies

∂2
t u+ ∆2u =− |∂tu|2u−∆(|∇u|2)u (2)

− (∇ · 〈∆u,∇u〉)u− 〈∇∆u,∇u〉u.
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Introduction

The operator L finds applications in the description of e.g. elastic beams (n = 1) or thin, stiff
elastic plates (n = 2) and hence introduces a rather rigid evolution. In particular, (2) can be
understood as generalizing the free propagation of L into the sphere.
In the following sections of the thesis, we introduce the biharmonic wave maps equation for
general targets and aim to prove local wellposedness with high initial regularity (Chapter 1)
and global regularity with small data in a scaling critical Besov space (Chapter 2). This is an
attempt to structurally extend the work on the wave maps equation (1) to equations of the type
(2).

The wave maps equation

Let N ⊂ RL be a smooth Riemannian (sub-)manifold with induced metric and T ∈ (0,∞].
Then, taking smooth, compact variations uδ : (0, T )× Rn → N of the action functional

S(u) =
1

2

∫ T

0

∫
Rn
|∂tu(t)|2 − |∇u(t)|2dx dt,

a smooth critcial map u : (0, T )× Rn → N satisfies the constraint

�u ⊥ TuN (3)

on (0, T )× Rn, i.e. u satisfies the equation

�u = A(u)(∂αu, ∂αu), (4)

where � = ∂α∂α = −∂2
t + ∆ is the d’Alembert operator, ∂αu∂αu = ∂tu∂tu − ∇u · ∇u and

A denotes the second fundamental form of N . Calculating (4) from (3), we use the smooth
family of orthogonal tangent projector

Pp : RL → TpN, p ∈ N,

such that (3) reads �u = (I − Pu)(�u) by which (4) follows since u maps into N , whence
Du ∈ TuN and A(u)(·, ·) = −dPu(·, ·) (on the tangent bundle).
The wave equation (4) is the extrinsic formulation of the general wave maps equation. In
the physics literature, (4) is known as nonlinear sigma model (for homogeneous N ) and was
introduced in high energy physics [16] by Gell-Mann and Lévy in 1960. Since the (3 + 1)
wave maps equation has scaling supercritical energy (see below), the singularity formation of
(4) is considered to be a relevant toy model, for instance in general relativity.

Concerning the regularity theory, over the past decades until now, (4) served as a model equa-
tion for geometric field equations due to the subtle theory of its Cauchy problem involving e.g.
the gauge invariance and the null structure of the nonlinearity. Especially, the energy critical
(2+1)wave maps equation admits an intriguing threshold behaviour and allows for rich classes
of singular solutions. We refer to the surveys [56] and [32]. Further, [15] and [53] contain an
overview over many advances in the local and global theory of the past decades, concerning
which we also give a few more details below.
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The biharmonic wave maps equation

As mentioned in the beginning, we take the elastic action functional

Φ(u) =
1

2

∫ T

0

∫
Rn
|∂tu(t)|2 − |∆u(t)|2 dx dt,

where ∆ = ∂i∂
i denotes the Laplace operator. Under smooth, compact variations uδ :

(0, T )× Rn → N , we obtain that a critical map u satisfies

∂2
ttu+ ∆2u ⊥ TuN, (5)

pointwise on (0, T ) × Rn. The derivation of (5) will be given rigorously below, including its
expansion into a semi-linear biharmonic wave equation of the form

∂2
t u+ ∆2u = dPu(ut, ut) + dPu(∆u,∆u) + 4dPu(∇u,∇∆u) (6)

+ 2dPu(∇2u,∇2u) +N (u,∇u,∇2u),

where dPu(·, ·) is the differential of the tangent projector Pp : RL → TpN , p ∈ N as explained
above. In fact, from the expansion of (5), the derivatives in the nonlinearity N appear in
tri-linear and quadri-linear forms (more precisely d2Pu and d3Pu).

The equation (6) is Hamiltonian with energy

E(u(t)) =
1

2

∫
Rn
|∂tu(t)|2 + |∆u(t)|2 dx, t ∈ (0, T ), (7)

and thus E(u) is (formally) conserved along a solution u. In contrast to (3) and (4), much less
is known about (5) and (6). In fact, this thesis will present the first local wellposedness and
global regularity results for (6). We now proceed by a brief overview of the wave maps theory,
wich serves as a motivation for the attempt of extending the wave maps theory to the higher
order equation (6).

Motivation

In the field of nonlinear partial differential equations, the class of geometric field equations,
such as e.g. the Yang-Mills equation, Einstein’s field equations, Dirac’s equation orMaxwell’s
equation (and couplings thereof) are of great interest, both in the physics and mathematics
literature. Besides describing fundamental laws of nature, the mathematical interest in such
equations is dedicated to the connection of the Cauchy problem to e.g. renormalization (via
gauge invariance) or the underlying geometry/topology of the background manifolds (e.g. via
the theory of solitary solutions).
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A particular, simpler model problem that shares this features with the above class of equations
and attracted substantial interest in the past decades, is the wave maps equation

�u = mαβA(u)(∂αu, ∂βu), (8)

for maps u : (Mn,1,m)→ N ⊂ RN on an (n+1) dimensional Lorentzian manifold (Mn,1,m),
i.e. the signature of the metric tensor is sig(m) = (−,+, . . . ,+), into an embedded target
manifold N ⊂ RN . Here √

−|m|�u = ∂α(mαβ
√
−|m|∂βu)

denotes the Laplace-Beltrami operator with |m| = det(mα,β)α,β . Especially, in this introduc-
tory text, we assume that we can choose a global chart for the domain manifold (Mn,1,m). As
mentioned before, (8) is the Euler-Lagrange equation of the action

S(u) =
1

2

∫
Mn,1

δijm
αβ∂αu

i∂βu
jdVg, dVg =

√
−|m|dx, (9)

where dVg is the volume form. The above condition (3), resp. its expansion (8), corresponds
to the extrinsic point of view, i.e. N ↪→ RL is embedded.

However, since (9) does not depend on the embedding forN , we can choose for instance Nash’s
isometric embedding, for which

u∗(∇∂αuX)T = DαX,

withDα denoting the covariant derivative (wrt. xα) in the pull-back bundle u∗TN ,X a section
of TN along u and ∇∂αu the directional derivative in the ambient euclidean space. Then, in
particular, equation (8) reads as

Dα(mαβ
√
−|m|∂βu) = 0, (10)

and can hence be seen as a free wave equation inN . This corresponds to the intrinsic viewpoint
of the wave maps equation. In particular, if u is localized, i.e. the image of u is contained in
the domain of a coordinate chart, this is fomulated via local coordinates u = uj∂j as

�uj = mαβΓjkl(u)∂αu
k∂βu

l, (11)

where Γ is the Christoffel symbol of the Levi-Civita connection on N . The formulations (8)
and (11) of this wave equation indicate that, unlike in the case of a flat target N , the presence
of curvature affects the asymptotic behaviour of solutions and might even lead to singularities.
Indeed, the wave maps equation admits a rich theory of global regularity results (e.g. for
small initial data) and singular solutions (in the equivariance reduction). We restrict to the
Minkowski domain (Mn+1,m), for which (8) is Hamiltonian with energy

E(u(t)) =
1

2

∫
|∂tu(t)|2 + |∇u(t)|2 dx.

10
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Remark: In fact the stress-energy tensor

Tαβ(u) = 〈∂αu, ∂βu〉 −
1

2
mαβ〈∂γu, ∂γu〉, α, β = 0, . . . d,

is divergence free
∂αT

αβ(u) = 0, β = 0, . . . d,

which corresponds to the conservation of energy for β = 0.

A specific invariance of (8), resp. (11) is introduced by an isometry on N , which leads to a
conservation law (Noether’s law). A related property (even if the target N is not symmetric)
is obtained by renormalization from the coordinate invariance of the wave maps equation. We
now give a heuristic argument for (11).
Gauge invariance: Let P : Mn+1 → SO(L) and u solve (11), then (formally)

�Pu = mαβ(PΓ(u)∂αuP
−1 + (∂αP )P−1)P∂βu,

where �Pu = P�u+ 〈dP, du〉m = div(PDu). It is verified that Γ(u)∂αu corresponds to the
connection form in the pull-back bundle u∗TN , respresented by a coordinate frame along u.
Especially, (PΓ(u)∂αuP

−1 + (∂αP )P−1) corresponds to this representaion in the coordinates
of Ψα = P∂αu and (11) is underdetermined up to the gauge orbit of Du. For instance, this
has been exploited in the intrinsic formulation (10), in the case where no localization to (11) is
possible (e.g. with rough data).

The gauge invariance introduces the freedom of fixing a good gauge transform, for example a
Coulomb gauge satisfying

∑n
k=1 ∂kAk = 0, and is essential in Hélein’s moving frame method

developed for harmonic maps in [17] (see [18]). It thus recovers (e.g. in the Coulomb
gauge) a similar Hodge structure as available in the presence of symmetry (for N ). We refer
to [15, chapter 1.2.5 - 1.2.8] for details.
The wave maps equation has hyperbolic scaling uλ(t, x) = u(t/λ, x/λ), λ > 0 and hence we
have the scaling laws

E(uλ(t)) = λn−2E(u(t/λ)),

‖uλ(t)‖Ḣs(Rn) = λ
n
2
−s ‖u(t/λ)‖Ḣs(Rn) .

Especially, the dimension n = 2 is scaling critical (for the energy E) and heuristically (11) is
expected to be locally wellposed in Hs ×Hs−1for s > n

2
and globally regular for small initial

data in Ḣ n
2 × Ḣ n

2
−1 (including the energy space in dimension n = 2).

The null condition

11
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One particularly relevant property of (11) is the null condition, i.e. we consider

�u = Γ(u)klQ(Duk, Dul), Q(u, v) := qαβuαvβ,

where Du = (∂αu)α. Then Q(u, v) = qαβuαvβ is said to be a null form, if Q degenerates
whenever u ⊥m v,

∀ ξ1 ξ2 ∈ Rn+1 : 〈ξ1, ξ2〉m = 0 ⇒ Q(ξ1, ξ2) = 0. (12)

For such equations, Klainerman, proved the existence of (3 + 1) global smooth solutions
starting from smooth L∞-small initial data in [28] (in fact the null condition in [28] applies to
quasilinear wave equations). This follows by the use of energy methods (for invariant vector
fields) and the Klainerman Sobolev inequality (see e.g. Sogge’s book [48]), where the null
condition is relevant for stronger decay in the vector field approach. This improves (3 + 1)
almost global existence for equations of type (11), which was proven in [23] and [37] for weaker
classes of wave equations.
Remark: It is shown that any null form decomposes into the linear combination of the RHS
of (11) and

Qαβ(u, v) = uαvβ − uβvα, α, β = 0, . . . , n.

Another way of representing the null form of (11), is via the following commutator identity

Q(u) = Γkl(u)(�(ukul)− uk�ul − ul�uk), � = ∂α∂α. (13)

Further, as explained in [53, chapter 6] via planar wave solutions, interacting spatial frequencies
are cancelled by the null form (13) if they are parallel and enhanced if they are perpendicular.
The local wellposedness of (11) inHs(Rn)×Hs−1(Rn) for s > n

2
was proved by Klainerman-

Machedon in [29] (n = 3) and Klainerman-Selberg in [31] (n ≥ 2). The results depend
crucially on the null condition in (11) via multilinear estimates in the Wave-Sobolev, or Xs,b,
spaces. Especially, an example of Lindblad in [38] shows that the sharp regularity index s0 > 0
for local existence satisfies s0 >

n
2
if the null condition is absent and the dependence onDu of

the nonlinearity is generic. A proof of the local wellposedness is outlined in [15], estimating
(13) and following the approach presented by D’Ancona-Georgiev [11].

The division problem

Small data global regularity in the scaling critical Besov space

Ḃ2,1
n
2

(Rn)× Ḃ2,1
n
2
−1(Rn),

was first proven by Tataru in [54] (n ≥ 4). The solution is based on estimating (13) in the
F, �F spaces, by a global bound for �u ∈ L1

tL
2
x correcting the Xs,b approach (which is

necessary in the threshold case of b = 1/2). The low dimensional case (n = 2, 3) was similarly
solved by Tataru in [55] via smoothing estimates in null-frame coordinates and is more involved
than the high dimensional case. Recently, the division problem has also been solved in a U2

based space by Candy-Herr in [8] (n ≥ 2) using (recent) advances in bilinear Fourier restriction
theory.
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The space Ḣ n
2 × Ḣ n

2−1

In [51] (n ≥ 5), Tao found a microlocal renormalization procedure which, in a crucial step
toward regularity in the scaling critical space Ḣ n

2 × Ḣ n
2
−1, recovers well-behaved pertubations

of Noether’s law in the sphere N = SL. Subsequently, in [30] (n ≥ 5), this was generalized to
target manifolds of bounded geometry by Klainerman-Rodnianski, following Hélein’s moving
frame technique and Tao’s renormalization idea (this was suggested by Tao in [51]).
The gauge invariance was e.g. exploited in the work of Shatah-Struwe [46] (n ≥ 4, alternative
proof of [30]) and Nahmod-Stefanov-Uhlenbeck in [42] (n ≥ 4, N homogeneous), by Héleins
moving frame approach (resp. a direct Hodge structure in [42]). The latter works are on the
physical side and depend on Strichartz estimates that control the (intrinsic) system a priori,
whereas the work in [51] and [30] is based on the control of frequency envelopes in a bootstrap
argument. In both cases the proof deals with limits of smooth approximations, which is due to
ill-posedness, see e.g. [25] and [11] for the results on the data-to-solution map.
For the particularly challanging case of small data in the energy space Ḣ1×L2, global regular-
ity was proved by Tao forN = S2 in [52], by Krieger forN = H2 in [33] and Tataru for general
targets in [57]. As seen above, the (2 + 1) wave maps equation has a scale invariant energy
and one can identify a more precise threshold for global regularity. This was confirmed to be
the energy gap (of harmonic maps) by Sterbenz-Tataru in [50] (along a Sacks-Uhlenbeck type
theorem) and Krieger-Schlag for the hyperbolic target in [34] by concentration-compactness
methods (in this case the threshold for global regularity is infinite).

The literature is vast and this brief overview is not complete. There are many aspects (respec-
tively details) that are left out and for which we refer to [53], [45], [15].

Biharmonic wave maps

Asmentioned above, we aim to model the free, rigid movement in an ambient curved space. As
a simplified model in linear elasticity theory, the bending energy of a thin, stiff elastic surface
(i.e. deflections are only marginal) is well approximated by the bi-harmonic energy

Ẽ(u) =
1

2

∫
|∆u|2 dx. (14)

The classical book of Courant and Hilbert [9] gives a general variational description the
evolution of elastic membranes and thin plates. For instance, in case of small deformations
|∇u| ∼ ε, the Lagrangian of the potential energy of elastic membranes is simplified from the
area density of the graph to the Dirichlet energy (on domains)

A(u) =
√

1 + |∇u|2 = 1 +
1

2
|∇u|2 + o(|∇u|2) ∼ 1 +

1

2
|∇u|2.
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For the evolution of a two-dimensional plate, we apply a similar reasoning. However, the
movement is rather rigid and theLagrangian for the bending energy of a thin plate is proportional
to

H(u) =
1

2

(
κ1 + κ2

)2
,

where κ1, κ2 are the principle curvature functions of the graph of u. Similar as above in the
case of small deformations, we approximate the sum κ1 + κ2

∂j

(
∂ju√

1 + |∇u|2

)
=

∆u√
1 + |∇u|2

− ∂iu∂ju

(1 + |∇u|2)
3
2

∂i∂
ju

= ∆u+∇2u · O(|∇u|2).

Hence, if ∆u ∈ L2, we observe that H(u) ∼ 1
2
|∆u|2 justifies the potential energy (14) in this

situation.
We now calculate the first variation δΦ of the (extrinsic) elastic action

Φ(u) =
1

2

∫ T

−T

∫
Rn
|∂tu|2 − |∆u|2 dx dt (15)

for maps u : (−T, T )× Rn → (N, h), where (N, h) ↪→ RL is isometrically embedded.
We denote by Π : RL → N the nearest point projector map, i.e. such that

|Π(p)− p| = inf
q∈N
|q − p|, dist(p,N)� 1,

and give a reference for the existence of this map in Chapter 1. Then we take

d

dε |ε=0

Π(u+ εΨ) = dΠu(Ψ) = ΨT ∈ TuN, Ψ ∈ C∞c ((−T, T )× Rn,RL).

Hence setting Pu := dΠu : RL → TuN (the orthogonal projector) and integrating by parts

0 =
d

dε |ε=0

Φ(Π(u+ εΨ)) = −
∫ T

−T

∫
Rn
〈Pu(∂2

t u(t) + ∆2u(t)),Ψ〉dx dt,

which gives

∂2
t u+ ∆2u ⊥ TuN on (−T, T )× Rn, (16)

respectively
∂2
t u+ ∆2u = (I − Pu)(∂2

t u+ ∆2u) on (−T, T )× Rn .

In order to derive (6), we calculate using Du = (∇u, ∂tu) ∈ TuN

[(I − Pu)(∂2
t u)]l = dP l

u(∂tu, ∂tu) = ∂pkP
l
m(u)∂tu

m∂tu
k

[(I − Pu)(∆u)]l = dP l
u(∂iu, ∂

iu) = ∂pkP
l
m(u)∂iu

m∂iuk,

14
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where k, l,m = 1, . . . , L and i = 1, . . . , n. Further, we obtain

(I − Pu)(∆2u) = ∆(dPu(∂iu, ∂
iu)) + ∂j(dPu(∂

ju,∆u)) + dPu(∂ju, ∂
j∆u).

We then calculate, writing dkPp = ∂p · · · ∂pPp : RkL → RL for the k-th order derivatives,

∆(dPu(∂iu, ∂
iu)) = 2dP (u)(∂i∆u, ∂

iu) + 2dP (u)(∂j∂
iu, ∂i∂

ju) (17)
+ 2d2P (u)(∂iu, ∂

i∂ju, ∂
ju) + 2d2P (u)(∆u, ∂iu, ∂

iu)

+ 2d3P (u)(∂iu, ∂
iu, ∂ju, ∂

ju),

∂j(dPu(∂
ju,∆u)) = d2P (u)(∆u, ∂ju, ∂

ju) + dP (u)(∆u,∆u) (18)
+ dP (u)(∂ju, ∂

j∆u).

Hence by (17) and (18), we write (5) into

∂2
t u+ ∆2u = dPu(∂tu, ∂tu) + dPu(∆u,∆u) + 4dPu(∇u,∇∆u) (19)

+ 2dPu(∇2u,∇2u) +N (u,∇u,∇2u),

where N (u) is defined by

N (u) = 2d2Pu(∇u,∇u,∆u) + 4d2Pu(∇u,∇u,∇2u) + d3Pu(∇u,∇u,∇u,∇u).

Here, we sum the derivatives as explicitly given by (17) and (18). The evaluation of
dPu, d

2Pu, d
3Pu is rather intuitive in the coordinates of u. However, we will state the

formulation in standard coordinates of RL in Chapter 1.
A major difference of (15) compared to the action (9) is that Φ depends on the embedding of
N ↪→ RL such that (19) is not an intrinsic Hamiltonian flow. However, there is an intrinsic
version of (15), namely

Φ̃(u) =
1

2

∫ T

−T

∫
Rn
|∂tu|2 − |(∆u)T |2 dx dt, (20)

=Φ(u) +
1

2

∫ T

−T

∫
Rn
|A(u)(∇u,∇u)|2 dx dt.

where (∆u)T = Dj∂ju is the (spatial) tension field of the map u(−T, T )× Rn → N . Clearly
Φ̃ does not require an embedding for (N, h). The draw back of considering the intrinsic action
Φ̃, is that an energy bound will only account for regularity of Dj∂ju (which is a nonlinear
expression) instead of the differential Du. Without further constraints, it is not clear how to
make sense of the energy topology or use the conservation of energy properly. In the following,
we restrict to the extrinsic version (19). The results of Chapter 1 apply to the Euler Lagrange
equation of (20) with data in the extrinsically defined Sobolev spaces.
Using that ∂tu ∈ TuN , we obtain formal conservation of the elastic energy (7)

d

dt
E(u(t)) =

∫
Rn
〈Pu(∂2

t u+ ∆2u), ∂tu〉 dx = 0,
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by (5). Further, (19) admits parabolic scaling uλ(t, x) = u(t/λ2, x/λ), λ > 0. Hence

E(uλ(t)) = λn−4E(u(t/λ2)),

‖uλ(t)‖Ḣs(Rn) = λ
n
2
−s ∥∥u(t/λ2)

∥∥
Ḣs(Rn)

.

In particular, the scaling critical dimension is n = 4 and heuristically we expect the following

(i) Dimension n ≤ 3: The biharmonic wave maps equation (19) has a global smooth
solution starting from smooth (compactly supported) data.

(ii) The biharmonic wave maps equation (19) is locally wellposed in Hs(Rn) × Hs−2(Rn)
for s > n

2
.

(iii) The biharmonic wave maps equation (19) is globally regular with small data in Ḣ n
2 ×

Ḣ
n
2
−2.

We give partial answers for this expectations, i.e. prove (slightly) weaker results such as the
solution of the division problem in chapter 2.
However, we stress that (19) is genuinely different from the wave maps equation (8), resp (11).
Especially, the formal decomposition

Lu = ∂2
t u+ ∆2u = (i∂t + ∆)(−i∂t + ∆)u,

shows that the place of the half-wave propagator e±it
√
−∆ is taken by the Schrödinger groups

e±it∆ for L. As a consequence, solutions to (19) are not expected to propagate with finite speed
and admit neither Lorentzian, nor a Galilean invariance, which imposes general restrictions in
the analysis for L.
In [20] the authors prove the existence of a global weak solution of (19) into the round sphere
N = SL by a Ginzburg -Landau approximation, which allows passing to a solution in the limit
by Noether’s conservation law. In [19], the authors prove local wellposedness from energy
methods, which is part of this thesis and presented in Chapter 1. At the end of Chapter 1, we
present an argument for the global existence of such solutions in dimension n = 1, 2, which
was published as a preprint in [44].

Further related models

For the past decades, many evolution equations with important applications to physics and ge-
ometry have been found to propagate by higher-order terms (compared to 2nd order differential
operator).
We close this introduction by giving two examples that involve the operator Lu = ∂2

t + ∆2u.
The first is related to effective thin plate equations, such as Kirchhoff or Von Kármán equations,
that usually take the form

∂2
t u+ ∆(h(∆u))− γ∆∂2

t u = F (u, ut,∇u,∇2u,∇3u).

16
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Hence L is relevant when internal deformations (h = id) and rotational forces (γ = 0) are
neglected. This has been considered explicitly in [14] on a domain with dissipative boundary
conditions.
The second example is concerned with the following Klein-Gordon type equation

∂2
t u+ ∆2u+mu+ |u|p−1u = 0. (21)

For instance, if m > 0 and 1 + 8
n
< p < n+4

n−4
, global existence and scattering of solutions of

(21) has been proved by Pausader in [43], as conjectured by Levandosky and Strauss in [36]

Main results and outline of the thesis

In the first Chapter 1, we prove local wellposedness of the biharmonic wave maps equation
corresponding to the condition

∂2
t u+ ∆2u ⊥ TuN,

derived from compact euclidean submanifolds N ⊂ RL. Here we restrict to high regularity,
i.e. we chose initial data inHk(Rn)×Hk−2(Rn) for k ∈ Z, k > bn

2
c+2. The result relies on a

compactness argument and energy estimates, thus we first prove wellposedness of a regularized
(dissipative) equation

∂2
t u

ε + ∆2uε − ε∆∂tuε ⊥ TuεN, ε ∈ (0, 1]

from a standard energy argument in Section 1.3.1. We then observe an improved a apriori
estimate (independent of the viscosity parmeter ε) in Section 1.3.2 by exploiting the geometric
form of the nonlinearity in (19). Especially, this gives the possibilty to obtain a weak* limit on
a uniform local existence interval for the solutions, which is proven in Section 1.3.2. Further
in Section 1.3.3, we prove the uniqueness of the limit and recover a energy estimate for the
difference of two solutions, which becomes useful for proving continuous dependence on the
initial data. This is carried out in Section 1.3.4.
In the last Section 1.4 of Chapter 1, we prove global energy bounds in the energy subcritical
dimensions n = 1, 2, which exclude finite time blow up of the local solutions from the previous
sections.

In the second Chapter 2, we construct the analogue of Tataru’s F, �F solution of the division
problem (from [54]) for wave maps adapted to a generalized Cauchy problem of type (6) into
the sphere N = SL. In particular, we prove the existence of global solutions of a biharmonic
wave equation with a non-generic nonlinearity and small initial data in the scaling critical space
Ḃ2,1

n
2

(Rn)× Ḃ2,1
n
2
−2(Rn) for any dimension n ≥ 3 in Section 2.4. We first prove corresponding

Strichartz estimates in Section 2.3. This includes lateral estimates that recover a local smoothing
effect known for the Schrödinger equation, which is outlined in the Appendix 2.A. A proof
of dyadic bilinear estimates is stated in Section 2.4.2, which also applies to conclude that
the solution persists initial regularity in the space Ḣs(Rn) × Ḣs−2(Rn). We finally give the
proof of the main results in Section 2.4.4 and deduce a small data global regularity result for
biharmonic wave maps in Section 2.5.
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CHAPTER 1

Local and global results from energy
estimates

The following Chapter (except for Section 1.4) is based on a local wellposedness result obtained
in joint work with S. Herr, T. Lamm and R. Schnaubelt and has been published in [19]. The
author of this thesis hereby ensures that he has contributed a significant part to this publication.
Section 1.4 has been prepublished in [44].
We briefly outline the structure of this chapter. In Section 1.3.1, we use a vanishing viscosity
approximation and solve the corresponding Cauchy problem for the damped problem

∂2
t u+ ∆2u− ε∆∂tu ⊥ TuN, ε ∈ (0, 1].

In order to obtain a limiting solution for (1.1.1) as ε ↘ 0, we prove a priori energy estimates
which are uniform in ε in Section 1.3.2. As a by-product we obtain the blow-up criterion in
Theorem 1.1.2. The existence part in Theorem 1.1.1 is also shown at the end of Section 1.3.2,
and in Section 1.3.3 we prove that the solutions are unique. Finally we establish the continuity
of the flow map in Section 1.3.4.

1.1 Introduction

As calculated in the introduction, smooth critical maps of

Φ(u) =
1

2

∫
Rn

(|∂tu(t)|2 − |∆u(t)|2)d(x, t)
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1.1. Introduction Chapter 1

satisfy

∂2
t u+ ∆2u ⊥ TuN, (1.1.1)

which by the smooth family of orthogonal projectior

Pp : RL → TpN, p ∈ N,

onto the tangent space TpN can thus be written as

∂2
t u+ ∆2u = (I − Pu)(∂2

t u+ ∆2u).

Exploiting that u takes values in N , we have

∂2
t u+ ∆2u = dPu(ut, ut) + dPu(∆u,∆u) + 4dPu(∇u,∇∆u) (1.1.2)

+ 2dPu(∇2u,∇2u) + 2d2Pu(∇u,∇u,∆u) + 4d2Pu(∇u,∇u,∇2u)

+ d3Pu(∇u,∇u,∇u,∇u)

=: N (u),

where the tensors djP are explicitly described in the Appendix 1.A.4. The goal of this chapter
is the proof of local wellposedness for the Cauchy problem corresponding to (1.1.1) in Sobolev
spaces with high regularity (for an energy estimate) and a proof that local smooth solutions
extend globally in time in dimension n = 1, 2. From now on, let N be a compact Riemannian
manifold, isometrically embedded into RL.

A local well-posedness result as in Theorem 1.1.1 is standard for second-order wave equations
with derivative nonlinearities such as wave maps. It can be found for example in the book of
Shatah-Struwe [45] and the book of Sogge [48].

In contrast to this case, our nonlinearity N (u) depends on ∇3
xu, which cannot directly be

controlled by the energy of (1.1.2) that boundsH2(Rn)×L2(Rn) (on compact time intervals).
Heuristically,∇3u ∈ H−1 if u is in the energy space, so that it is unclear if the equation can be
tested by velocity ∂tu for an a priori estimate.

In our proof we have to exploit the geometric form of N (u) repeatedly in order to recover an
indirect energy argument (via compactness of approximate solutions). To be specific, the core
property will be

N (u) ⊥ TuN, Du = (∇u, ∂tu) ∈ TuN,
in case u is a solution of (1.1.2) maps to N .
Concerning the continuous dependence of the solution on the initial data, as the nonlinearity
N (u) depends on third spatial derivatives, no Lipschitz estimate in the norm Hk × Hk−2 is
expected from the energy method (as we observe e.g. from the a priori estimates in Section
1.3.3).
Summing up, the energy method for (1.1.2) is more involved than for comparable geometric
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wave equations, due to the dependence N (u) = N (u,∇3u) and we overcome the difficulties
of the energy approach in the following sections.

We briefly note that our result applies to the intrinsic version of a biharmonic wave map defined
by (20) and remark that, compared with the right hand side of (1.1.2), the Euler-Lagrange
equation for the intrinsic biharmonic wave maps problem (20) differs by

Pu(dPu(∇u,∇u) · d2Pu(∇u,∇u, ·)) + Pu(div(dPu(∇u,∇u) · dPu(∇u, ·))). (1.1.3)

Since hence the Euler-Lagrange equation differs only by lower order terms (see (1.1.3) in
Section 1.2 below), we can prove the existence of local unique intrinsic biharmonic wave maps
with initial data as in Theorem 1.1.1. However, we do not have a result for initial data with
(only) covariant derivatives in L2.

1.1.1 The main results

We prove the existence of a unique local solution in Sobolev spacesHk×Hk−2 with sufficiently
high initial regularity k > bn

2
c + 2 in order to employ energy estimates. First we have the

following

Theorem 1.1.1 ( [19], Local existence & uniqueness). Let u0, u1 : Rn → RL satisfy u0(x) ∈ N
and u1(x) ∈ Tu0(x)N for a.e. x ∈ Rn as well as

(∇u0, u1) ∈ Hk−1(Rn)×Hk−2(Rn)

for some k ∈ N with k > bn
2
c+ 2. Then there exists a maximal existence time

Tm = Tm(u0, u1) > T = T (‖∇u0‖Hk−1 , ‖u1‖Hk−2) > 0

and a unique solution u : Rn×[0, Tm)→ N of (1.1.1) with u(0) = u0, ∂tu(0) = u1, and

u− u0 ∈ C0([0, Tm), Hk(Rn)) ∩ C1([0, Tm), Hk−2(Rn)).

The wellposedness then holds in the sense of the following Theorem

Theorem 1.1.2 ( [19], Continuous flow map & Blow up criterion).
For the solution u : Rn×[0, Tm)→ N in Theorem 1.1.1, there further holds the following.

(a) For T0 ∈ (0, Tm) there exists a (sufficiently small) radius R0 > 0 such that for all initial
data (v0, v1) as above that satisfy

‖(u0, u1)− (v0, v1)‖Hk(Rn)×Hk−2(Rn) ≤ R0,

the unique solution v : Rn×[0, Tm(v0, v1))→ N exists onRn×[0, T0]. Further, for such
initial data the map (v0, v1) → (v(t), ∂tv(t)) is continuous in Hk(Rn) ×Hk−2(Rn) for
t ∈ [0, T0].
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1.2. Preliminaries and Notation Chapter 1

(b) If Tm <∞, then ∫ Tm

0

‖∇u(s)‖2k
L∞ + ‖ut(s)‖2k

L∞ ds =∞. (1.1.4)

In particular, for smooth initial data u0, u1 : Rn → RL with u0(x) ∈ N and u1(x) ∈ Tu0(x)N
for x ∈ Rn having compact supp(∇u0) ⊂ Rn and supp(u1) ⊂ Rn, there exist Tm > 0 and a
smooth solution u : Rn×[0, Tm)→ N of (1.1.1).

We remark that both u0 and u(t) do not necessarily belong toL2(Rn) and it is only the difference
of these two functions which is contained in this space. We further mention that the lower
bound k > bn

2
c + 2 ensures the existence of L∞ bounds for ∂tu ∈ Hk−2(Rn) from Sobolev’s

embedding. This is necessary in order to establish our energy estimates in the following
sections.
In the last Section 1.4 of this chapter, we establish the following global result purely by the a
priori control via (conserved) energy.

Theorem 1.1.3 ( [44], Global solutions). Let n = 1, 2 and k ≥ n + 2. Further let u0, u1 :
Rn → RL satisfy u0(x) ∈ N and u1(x) ∈ Tu0(x)N for x ∈ Rn with

(∇u0, u1) ∈ Hk−1(Rn)×Hk−2(Rn).

Then the unique local solutions u : Rn×[0, Tm)→ N of Theorem 1.1.1 exist globally in time,
i.e. Tm =∞. Especially (1.1.2) has global smooth solutions starting from smooth, compactly
supported initial data in dimension n = 1, 2.

1.2 Preliminaries and Notation

In this section and in the following we will write C for a generic constant only depending on
N , n and k, and often also . . . . instead of ≤ C (· · · ).
The projectors Pp are derivatives of the metric distance (with respect to N ) in RL, i.e.,

p = Π(p) +
1

2
∇p(dist2(p,N)), Pp = dpΠ(p), dist(p,N) < δ0. (1.2.1)

Moreover, since Π maps to the nearest point on N there holds Π2 = Π and hence

dΠ|p = dΠ(p) = d(Π2(p)) = dΠ|Π(p)
dΠ|p ,

by which the projector maps Pp : RL → TΠ(p)N are well-defined. Using cut-off functions we
extend the identity (1.2.1), and thus also the equation Pp = dpΠ(p), to all of RL. Moreover, all
derivatives of Pp are bounded on Rn. In this way one can investigate (1.1.2) without restricting
the coefficients a priori. Further, for l ∈ N0 we denote by dlPp the derivative of order l of the
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1.2. Preliminaries and Notation Chapter 1

map Pp, which is a (l + 1)-linear form on RL. For the coefficients in the standard coordinates
in RL we write

(djPu)
k
l0,...,lj

=
∂

∂pl1
. . .

∂

∂plj
(Pp)

k
l0

(u).

We derive the exact coordinate expansion of (1.1.2) in the standard coordinates of RL in the
Appendix 1.A.4. How to sum the derivatives in (1.1.2) is explained in the introduction above.

In the following, we briefly recall well known results on, e.g. Sobolev embeddings and
interpolation inequlities.

Lemma 1.2.1 (Gagliardo-Nirenberg-Sobolev, Morrey). (i) Let s ∈ R, 1 ≤ p ≤ ∞, s− n
p
< 0,

thenW s,p(Rn) ↪→ Lq(Rn), q ∈ [p, p∗], p∗ = np
n−sp . In fact we have

‖u‖Lp∗(Rn) . ‖|∇|
su‖Lp(Rn) (1.2.2)

(ii) Let s ∈ R, 1 ≤ p ≤ ∞, s− n
p
> 0. Then

W s,p(Rn) ↪→ C
bs−n

p
c,s−n

p
−bs−n

p
c

0 (Rn).

(iii) Let s, s̃ ∈ R and 1 ≤ p ≤ q ≤ ∞, n ∈ N such that s− n
p
≥ s̃− n

q
. Then we have

W s,p(Rn) ↪→ W s̃,q(Rn).

Remark 1.2.2. (i) Here in (i) we use |∇|su = F−1(|ξ|sû(ξ)) and (1.2.2) is due to Sobolev
and Gagliardo-Nirenberg. The full embedding is then due to the interpolation, see also
the inequality below .

(ii) If we replaceW s,p in part (i), (ii) byW s,p
loc , then the embeddings

W s,p
loc (Rn) ↪→ Lqloc(R

n), W s,p
loc (Rn) ↪→ C

bs−n
p
c,s−n

p
−bs−n

p
c

loc (Rn)

are compact for q ∈ [p, p∗).

The following is the well-known Gagliardo-Nirenberg interpolation, for which we refer to any
classical book on Sobolev spaces and e.g. to [6] concerning optimality.

Lemma 1.2.3 (Gagliardo-Nirenberg). (i) Let j,m ∈ N with j ≤ m, α ∈ (0, 1) and 1 ≤
p, q, r ≤ ∞ such that

1

r
=
j

n
+ (

1

p
− m

n
)α +

1− α
q

,
j

m
≤ α.

Then ∥∥Dju
∥∥
Lr
. ‖Dmu‖αLp ‖u‖

1−α
Lq .
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The next Lemma states the sharp improvement of the Sobolev inequality due to Brezis-Galluet
(n = 2, k = 1) in [5] and Brezis-Wainger in [7]. In our case, this estimate will be necessary
in order to obtain global energy control for biharmonic wave maps in the energy subcritical
dimension n ∈ {1, 2} in Section 1.4.

Lemma 1.2.4 (Brezis-Gallouet, Brezis-Wainger). Let l ∈ N, 1 ≤ q ≤ ∞, u ∈ W l,q(Rn) with
u 6= 0, l − n

q
> 0. Then there holds for k ∈ N with 1 ≤ k < min{l, n+ 1}

‖u‖L∞ . ‖u‖Wk, n
k

(
1 + log

(n−k)
n

(
1 +

‖u‖W l,q

‖u‖
Wk, n

k

))
. (1.2.3)

Let N ⊂ RL be a Riemmanian submanifold of euclidean space (RL, δeuc) with induced metric
tensor. We say that N is of class Ck for k ∈ N if N is parametrized by an atlas of Ck chart
maps. The following is a well known fact, see e.g. [47]

Lemma1.2.5 (Nearest pointmap). LetN ⊂ RL be a compactCk, k ≥ 2 (respCω) submanifold
of dimension d ≤ L. Then there exists δ = δ(N) > 0 and a Ck−1 (rep. Cω) map

Π : Vδ(N) := {x ∈ RL | dist(x,N) < δ} → RL,

such that for all x ∈ Vδ(N) there holds

Π(x) ∈ N, (I − Π)(x) ∈ T⊥Π(x)N, |x− Π(x)| = dist(x,N).

Further we have Π(x+ z) = x for x ∈ N and z ∈ T⊥x N ∩ VδN and

Px := dΠ|x : RL → RL, x ∈ VδN

is a Ck−2 (rep. Cω) map to TΠ(x)N .

Remark 1.2.6. It is easy to verify, see [47], that

d2Π|x = dPx ∈ T ∗x (N)⊗ T ∗xN ⊗ RL

is the second fundamental form denoted by A(x) of the embedded manifold N ⊂ RL. In
particular

dPx(X, Y ) ⊥ TxN, X, Y ∈ TxN, x ∈ N.

Definition 1.2.7 (Star-Notation). We use the shorthand ∇k1u ?∇k2u for (linear combinations
of) products of partial derivatives of the components ul of u for l = 1, . . . , L. Here the partial
derivatives are of order k1 ∈ N and k2 ∈ N, respectively.

With this notation we can rewrite equation (1.1.2) as

∂2
t u+ ∆2u = dPu(ut, ut) + dPu(∇2u ?∇2u) + dPu(∇3u ?∇u)

+ d2Pu(∇u ?∇u ?∇2u) + d3Pu(∇u ?∇u ?∇u ?∇u).

This notation is also useful in light of the classical Leibniz formula, which implies the following
identity.
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Lemma 1.2.8. Form ∈ N and l ∈ N0 we have

∇m(dlPu) =
m∑
j=1

∑
∑j
k=1mk=m−j

dj+lPu(∇m1+1u ? · · · ?∇mj+1u). (1.2.4)

In order to include the case m = 0 in the Lemma, we will use
∑m

j=min{1,m} for the sum in
(1.2.4) or similar formulas.
The calculation of derivatives ∇m(N (u)) and ∇m(N (u) − N (v)) for sufficiently regular
u, v : Rn×[0, T ] → RL and m ∈ N0 has been included in Appendix 1.A.1, employing the
?-convention. The results from Appendix 1.A.1 will be used frequently throughout the chapter.
In the following sections, we also need a version of the following (Moser-type) estimate, see
e.g. [58, Chapter 13].

Lemma 1.2.9. Let l, k ∈ N and α1, . . . , αl ∈ Nn
0 satisfy

∑l
i=1 |αi| = k. There exists C > 0

such that for all f1, . . . , fl ∈ C0(Rn) ∩Hk(Rn) we have

‖Dα1f1 · · · · ·Dαlfl‖L2 ≤ C
l∏

i=1

‖fi‖
1− |αi|

k
L∞ ‖fi‖

|αi|
k

Hk . (1.2.5)

In particular,

‖Dα1f1 · · · · ·Dαlfl‖L2 ≤ C
l∑

j=1

l∏
i 6=j

‖fi‖L∞ (‖f1‖Hk + · · ·+ ‖fl‖Hk) . (1.2.6)

Now we state the standard energy estimate for the Cauchy problem{
∂2
t u+ ∆2u = F

u(0) = u0, ut(0) = u1

(1.2.7)

Lemma 1.2.10. Let F ∈ L1([0, T ), Hm−2), ∇u0 ∈ Hm−1, u1 ∈ Hm−2, m ∈ N,m ≥ 2.
Then the solution u of (1.2.7) satisfies

sup
t≤T

(‖∇u(t)‖Hm−1 + ‖∂tu(t)‖Hm−2) .(
√

1 + T )(

∫ T

0

‖F (s)‖Hm−2 ds (1.2.8)

+ ‖∇u0‖Hm−1 + ‖u1‖Hm−2).

Further for 0 ≤ t0 ≤ t < T we have

‖∇mu(t)‖2
L2 +

∥∥∇m−2ut(t)
∥∥2

L2 = 2

∫ t

t0

∫
Rn
∇m−2(F (s)) · ∇m−2ut(s) dx ds (1.2.9)

+ ‖∇mu(t0)‖2
L2 +

∥∥∇m−2ut(t0)
∥∥2

L2 .
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Remark 1.2.11. Especially, if

s 7→
∫
Rn
∇m−2(F (s)) · ∇m−2ut(s) dx

is continuous on [0, T ), then the map

t 7→ ‖∇mu(t)‖2
L2 +

∥∥∇m−2ut(t)
∥∥2

L2 , t ∈ (0, T )

is differentiable. A similar identity as (1.2.9) holds for theCauchy problemof the approximation

∂2
t u+ ∆2u− ε∆∂tu = F, ε ∈ (0, 1),

which will have relevance below.

Proof. The identity (1.2.9) and hence the estimate (1.2.8) follow in the case of smooth data by
differentiating (1.2.7) of order∇m−2 and testing the resulting equation by∇m−2ut. For general
data as required in the Lemma we regularize

F δ → F in L1([0, T ), Hm−2), ∇uδ0 → ∇u0 in Hm−1, uδ1 → u1 in Hm−2.

Then we apply as usual (1.2.8) to F δ −F δ′ , ∇uδ0−∇uδ
′

0 , u
δ
1− uδ

′
1 and obtain the convergence

of the solution uδ. Hence (1.2.8) and (1.2.9) hold for F, u0, u1.

1.3 Local wellposedness in high regularity

In this section, we present a proof of Theorem 1.1.1 and Theorem 1.1.2 by a vanishing viscosity
approach in a structurally damped approximation. However, the result hinges in a crucial way
on a the exploitation of the geometric nonlinearity in order to obtain a uniform existence time
in the viscosity parameter and uniqueness of the weak limit. Further, energy estimates that
make use of the geometric structre lead to a proof of continuous dependence on the inital map
with the Bona-Smith argument. The following four sections are the content of [19] and have
largely been taken from this publication.

1.3.1 The parabolic approximation

Since N (u) = N (u, ut,∇u,∇2u,∇3u), energy estimates for the operator ∂2
t + ∆2 are not

sufficient to show the existence of a solution of (1.1.2). Instead, we use the damped plate
operator

∂2
t + ∆2 − ε∆∂t,
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with ε ∈ (0, 1] fixed, as a regularization. More precisely, we prove the existence of a solution
uε : Rn×[0, Tε]→ N of the Cauchy problem{

∂2
t u

ε(x, t) + ∆2uε(x, t)− ε∆∂tuε(x, t) ⊥ Tuε(x,t)N, (x, t) ∈ Rn×[0, Tε],

uε(x, 0) = u0(x), uεt(0, x) = u1(x), x ∈ Rn,
(1.3.1)

where u0, u1 : Rn → RL satisfy u0(x) ∈ N and u1(x) ∈ Tu0(x)N for a.e. x ∈ Rn as well as

(∇u0, u1) ∈ Hk−1(Rn)×Hk−2(Rn)

for some k ∈ N with k > bn
2
c+ 2. In the following we mostly drop the super-/subscript ε and

write (u, T ) instead of (uε, Tε). We note that the condition in (1.3.1) reads as

∂2
t u+ ∆2u− ε∆∂tu = N (u)− ε(I − Pu)(∆∂tu). (1.3.2)

Using u(t, x) ∈ N , we can expand

ε(I − Pu)(∆∂tu) = εd2Pu(ut,∇u,∇u) + ε2dPu(∇ut,∇u) + εdPu(ut,∆u). (1.3.3)

We thus study the regularized problem

∂2
t u+ ∆2u− ε∆∂tu = N (u)− εd2Pu(ut,∇u,∇u)− ε2dPu(∇ut,∇u) (1.3.4)

− εdPu(ut,∆u) =: Nε(u).

We next solve (1.3.4) without the geometric constraint, recalling that only u(t)−u0 ∈ L2(Rn).

Lemma 1.3.1. Let ε ∈ (0, 1) and take u0, u1 : Rn → RL with u0(x) ∈ N and u1(x) ∈ Tu0(x)N
for a.e. x ∈ Rn such that

(∇u0, u1) ∈ Hk−1(Rn)×Hk−2(Rn)

for some k ∈ N with k > bn
2
c+ 2. Then (1.3.4) has a unique local solution u : Rn×[0, Tε]→

RL satisfying u(0) = u0, ut(0) = u1, and

u− u0 ∈ C0([0, Tε], H
k(Rn)) ∩ C1([0, Tε], H

k−2(Rn)) ∩H1(0, Tε;H
k−1(Rn)). (1.3.5)

In addition,

∇u ∈ L2(0, Tε;H
k(Rn)) (1.3.6)

and there exists a constant C <∞ such that for 0 ≤ t ≤ Tε∥∥∇k−2ut(t)
∥∥2

L2 +
∥∥∇ku(t)

∥∥2

L2 + ε

∫ t

0

∥∥∇k−1ut(s)
∥∥2

L2 ds+ ε

∫ t

0

∥∥∇k+1u(s)
∥∥2

L2 ds

(1.3.7)

≤ C
(∫ t

0

∫
Rn
∇k−2(Nε(u)) · ∇k−2ut dx ds+ ‖∇u0‖2

Hk−1 + ‖u1‖2
Hk−2

)
.
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Before we prove Lemma 1.3.1, we reduce the problem to functions in L2 by setting v(x, t) =
u(x, t)− u0(x). We thus rewrite (1.3.4) as

∂tU +AkU =

(
0

fε(U)

)
, U(0) =

(
0
u1

)
, (1.3.8)

where U =

(
v
vt

)
and fε(U) is defined through

fε(U) : = N (v + u0)− εd2Pv+u0(vt,∇(v + u0),∇(v + u0)) (1.3.9)
− ε2dPv+u0(∇vt,∇(v + u0))− εdPv+u0(vt,∆(v + u0))−∆2u0.

Further the operator Ak : Hk(Rn)×Hk−2(Rn) ⊇ D(A)→ Hk(Rn)×Hk−2(Rn) is given by

Ak =

(
0 −I

∆2 −ε∆

)
, D(A) = Hk+2(Rn)×Hk(Rn). (1.3.10)

Since the operators Ak extend each other we drop the subscript k. It is well known that −A
generates an analytic C0-semigroup {Sε(t)}t≥0, see e.g. [10, Prop. 2.3] for the case k = 2.
Using also standard parabolic theory, see e.g. [35, Prop. 0.1] and [40, Prop. 1.13], we obtain a
first linear existence result with some extra regularity.

Lemma 1.3.2. Let r ∈ N0, u1 ∈ Hr+1(Rn), and g ∈ C0([0, T ], Hr(Rn)). Then there exists a
unique solution U of the linear equation

∂tU +AU =

(
0
g

)
, U(0) =

(
0
u1

)
, (1.3.11)

satisfying

U ∈ L2(0, T ;Hr+4 ×Hr+2(Rn)) ∩ C0(0, T ;Hr+3 ×Hr+1(Rn)) ∩H1(0, T ;Hr+2 ×Hr(Rn)).

We remark that the solution of (1.3.11) is given by

U(t) = Sε(t)

(
0
u1

)
+

∫ t

0

Sε(t− s)
(

0
g(s)

)
ds. (1.3.12)

We quantify the above result by the following higher-order energy estimates.

Lemma 1.3.3. Let r ∈ N0, g ∈ C0([0, T ], Hr(Rn)), u1 ∈ Hr+1(Rn), and u0 : Rn → RL with
∇u0 ∈ Hr+3(Rn). Then v from Lemma 1.3.2 satisfies

‖vt(t)‖2
Hr+1 + ‖v(t)‖2

Hr+3 + ε

∫ T

0

‖∇vt(s)‖2
Hr+1 ds+ ε

∫ T

0

‖∇(v + u0)(s)‖2
Hr+3 ds

(1.3.13)

≤ C(1 + T )

(
1

ε

∫ T

0

∥∥g(s) + ∆2u0

∥∥2

Hr ds+ ‖u1‖2
Hr+1 + ‖∇u0‖2

Hr+2

)
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for 0 ≤ t ≤ T , and∥∥∇r+1vt(t)
∥∥2

L2 +
∥∥∇r+3v(t)

∥∥2

L2 + ε

∫ T

0

∥∥∇r+2vt(s)
∥∥2

L2 ds (1.3.14)

≤ C
(
−
∫ t

0

∫
Rn
∇r
(
g(s) + ∆2u0

)
· ∇r∆vt dx ds+ ‖u1‖2

Hr+1 + ‖∇u0‖2
Hr+2

)
.

Proof. Writing U = (v, vt) in Lemma 1.3.2, the function u = v + u0 fulfills

∂2
t u+ ∆2u− ε∆∂tu = g + ∆2u0 (1.3.15)

in L2(0, T ;Hr(Rn)). We first differentiate (1.3.15) of order ∇l with l ∈ {0, . . . , r}. Testing
with −∇l∆ut ∈ L2

t,x and integrating by parts in x, we derive

d

dt

∥∥∇l+1ut(t)
∥∥2

L2 +
d

dt

∥∥∇l+3u(t)
∥∥2

L2 + ε
∥∥∇l+2ut(t)

∥∥2

L2 (1.3.16)

≤ C

ε

∥∥∇l(g + ∆2u0)
∥∥2

L2 +
ε

2

∥∥∇l+2ut(t)
∥∥2

L2 ,

which makes sense for a.e. t. (Here and below we use the duality (H1, H−1) in intermediate
steps.) We then absorb the last term by the left-hand side and integrate the inequality in t.
To control the second summand with ε in (1.3.13), we test the differentiated version of (1.3.15)
by ε∇l∆2u. Here we proceed similarly as before, where we integrate the term

ε

∫ T

0

∫
Rn
∇l∂2

t u · ∇l∆2u dx ds

by parts in t and x before aborbing it.
It remains to estimate the L2-norm of vt(t) and theH2-norm of v(t). These inequalities follow
by testing the equation with ut and using the fact that

‖u− u0‖L∞t L2 ≤ T ‖ut‖L∞t L2 .

Before we give a prove of Lemma 1.3.1, we state the following estimates for the nonlinearity.

Lemma 1.3.4. Let u, v : [0, T ]× Rn → Rl, k > bn
2
c+ 2 be such that

(∇u, ∂tu), (∇v, ∂tv) ∈ L∞([0, T ], Hk−1 ×Hk−2),

and also u− u0, v − u0 ∈ L∞([0, T ], L2
x) for some u0 ∈ Rn → RL. Then for 0 ≤ s ≤ t < T

‖∇k−3(N (u(t))−N (v(s)))‖L2 (1.3.17)
. (1 + ‖∇u‖kL∞t Hk−1 + ‖ut‖kL∞t Hk−2 + ‖∇v‖kL∞t Hk−1 + ‖vt‖kL∞t Hk−2)

· (‖u(t)− v(s)‖Hk + ‖ut(t)− vt(s)‖Hk−2),

‖∇k−3(N (u(t)))‖L2 . (1 + ‖∇u‖kL∞t Hk−1 + ‖ut‖kL∞t Hk−2) (1.3.18)
· (‖∇u(t)‖Hk−1 + ‖ut(t)‖Hk−2).
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Here we note u(t)− v(s) = u(t)− u0 + u0 − v(s) ∈ L2
x. Further, we note that the estimates

above hold for Nε, where the constants then depend on ε ∈ (0, 1). By interpolation with a
similar (simpler) estimate for ‖N (u)−N (v)‖L2 , ‖N (u)‖L2 , we obtain the fullHk−3 norm on
the LHS.

Proof. The prove follows by means of the calculations in the Appendix, to be more precise
Lemma 1.A.1 and Corollary 1.A.4 combined with a careful application of the Moser estimate
in Lemma 1.2.9. We give the relevant details below in Section 1.3.2 in the proof of the a priori
estimate and in Section 1.3.3 for the energy bound, respectively the uniqueness. The arguments
used there are the very same and in fact require more thought for the a priori estimate in Section
1.3.2.

Proof of Lemma 1.3.1. We aim at constructing a solution U ∈ C0([0, T ], Hk×Hk−2), but due
to ∆2u0 ∈ Hk−4 we have fε(U) ∈ C0([0, T ], Hk−4), which is insufficient for an application of
Lemmas 1.3.2 and 1.3.3 in a fixed point argument for v.

. Step 1: We thus approximate u0 by uδ0 ∈ C∞(Rn,RL) for δ > 0 such that supp(∇uδ0) ⊂ Rn

is compact with

uδ0 → u0 a.e. and ∇uδ0 → ∇u0 in Hk−1(Rn) as δ → 0+. (1.3.19)

Defining fε,δ as above with uδ0 instead of u0, we obtain fε,δ(U) ∈ C0([0, T ], Hk−3(Rn)). For
the data (uδ0, u1) we now prove the existence of a fixed point for the operator v 7→ S(v) defined
through (

S(v)
∂tS(v)

)
= Sε(t)

(
0
u1

)
+

∫ t

0

Sε(t− s)
(

0
fε,δ(v)

)
ds, (1.3.20)

which acts on the space

BR(T ) :=
{
v ∈ C0([0, T ], Hk) ∩ C1([0, T ], Hk−2) | v(0) = 0, vt(0) = u1,

‖v‖B := ‖vt‖L∞Hk−2 + ‖v‖L∞L2 +
∥∥∇(v + uδ0)

∥∥
L∞Hk−1 ≤ R

}
,

for parameters R > 0 and T ∈ (0, 1) fixed below and the metric given by

‖v1 − v2‖B(T ) = ‖v1 − v2‖L∞Hk + ‖∂tv1 − ∂tv2‖L∞Hk−2 , v1, v2 ∈ BR(T ).

Let ε ∈ (0, 1) be fixed. We will show that the map

S : BR(T )→ BR(T )

is strictly contractive with respect to ‖·‖B(T ) if we choose R = Rδ and T = Tδ with

Rk
δ = 3(

∥∥∇uδ0∥∥Hk−1 + ‖u1‖Hk−2)k =: 3Rk
0,δ,

Tδ =
1

2
min


(

k
√

3− 1
k
√

3

)2
ε

Ĉ2(1 + 3Rk
0,δ)

2
,

ε

Ĉ2(1 + 6Rk
0,δ)

2

 (1.3.21)
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for a constant Ĉ depending only on N , n, and k. To show this statement, we have to prove the
estimates

‖S(v)‖B ≤
Ĉ

ε
1
2

T
1
2 (1 + ‖v‖kB) ‖v‖B +

∥∥∇uδ0∥∥Hk−1 + ‖u1‖Hk−2 , (1.3.22)

‖S(v)− S(ṽ)‖B(T ) ≤
Ĉ

ε
1
2

T
1
2 (1 + ‖v‖kB + ‖ṽ‖kB) ‖v − ṽ‖B(T ) (1.3.23)

for v, ṽ ∈ BR(T ). To employ the inequality (1.3.13) for r = k−3, we need to bound the norms∥∥Nε(v(t) + uδ0)
∥∥2

Hk−3 and
∥∥Nε(v(t) + uδ0)−Nε(ṽ(t) + uδ0)

∥∥2

Hk−3

by C(1 + ‖v‖2k
B ) ‖v‖2

B and C(1 + ‖v‖2k
B + ‖ṽ‖2k

B ) ‖v − ṽ‖2
B(T ), respectively. This is provided

by Lemma 1.3.4 and this way we obtain in the fixed point vδ = S(vδ) satisyfying

∥∥vδt∥∥2

L∞Hk−2 +
∥∥vδ∥∥2

L∞Hk + ε

∫ Tδ

0

∥∥vδt (s)∥∥2

Hk−1 ds

+ ε

∫ Tδ

0

∥∥∇(vδ + uδ0)
∥∥2

Hk ds . R2
δ . (1.3.24)

In particular, vδ ∈ L2(0, Tδ;H
k+1) ∩H1(0, Tδ;H

k−1).
. Step 2: We next defineR0, R and T̃ > 0 in the same way asR0,δ, Rδ and Tδ using u0 instead
of uδ0 and the R0 instead of Rδ

0. Thus,

R0,δ → R0, Rδ → R, Tδ → T̃ as δ → 0+.

For sufficiently small δ > 0 we have Tδ > 1
2
T̃ =: T and |R0,δ − R0| ≤ R0. Hence vδ :

Rn×[0, T ] → RL is well defined and
∥∥vδ∥∥B(T )

≤ CR for a constant C > 0. Observe that for
sufficiently small δ, δ′ > 0, the differences vδ − vδ′+ and ∂tvδ − ∂tvδ

′ solve (1.3.11) with the
nonlinearity

Nε(vδ + uδ0)−Nε(vδ
′
+ uδ

′

0 ) + ∆2(uδ0 − uδ
′

0 ) ∈ C0([0, T ], Hk−3).

Similar to the proof of the Lipschitz estimate (1.3.23), Lemma 1.3.3 then yields the bound∥∥∥vδ − vδ′∥∥∥2

B(T )
+ε

∫ Tδ

0

∥∥∥vδt (s)− vδ′t (s)
∥∥∥2

Hk−1
ds+ ε

∫ Tδ

0

∥∥∥∇(vδ − vδ′) +∇(uδ0 − uδ
′

0 )
∥∥∥2

Hk
ds

≤ C
T

ε
(1 +R2k)

∥∥∥vδ − vδ′∥∥∥2

B(T )
+ C̃ε,R

∥∥∥∇uδ0 −∇uδ′0 ∥∥∥2

Hk−1
.

Hence, if T = T (ε) is sufficiently small, as δ → 0 the functions vδ tend to a function

v ∈ C0([0, T ], Hk) ∩ C1([0, T ], Hk−2) ∩H1(0, T ;Hk−1)
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with∇(v+u0) ∈ L2(0, T ;Hk), where the limits exist in these spaces. In particular, (v, vt) is a
solution of (1.3.8) andu = v+u0 solves (1.3.4). Moreover, by (1.3.13) the functionuδ = vδ+uδ0
satisfies inequality (1.3.7), and therefore this estimate also holds for u since uδt → ut strongly
in C0([0, T ], Hk−2) and Nε(uδ) → Nε(u) strongly in L2(0, T ;Hk−2) because of Corollary
1.A.4 and Lemma 1.2.9.

. Step 3: For the uniqueness of v, we note that, for a second solution ṽ, the functions w =
v − ṽ and wt = vt − ṽt solve (1.3.11) with the nonlinearity Nε(v + u0) − Nε(ṽ + u0) ∈
C0([0, T ], Hk−3). Lemma 1.3.3 then yields the estimate

‖v − ṽ‖2
B(T ) ≤ C

T

ε
(1 +R2k) ‖v − ṽ‖2

B(T ) . (1.3.25)

(Note that u0 from the Lemma is different, namely u0 = 0.) Hence, if T is sufficiently small,
we obtain v = ṽ and thus u = v + u0 is unique.

Next, we show that u(t) ∈ N for all t ∈ (0, T ) if u0 ∈ N and u1 ∈ Tu0N .

Proposition 1.3.5. Let ε ∈ (0, 1) and take u0, u1 : Rn → RL with u0(x) ∈ N and u1(x) ∈
Tu0(x)N for a.e. x ∈ Rn satisfying

(∇u0, u1) ∈ Hk−1(Rn)×Hk−2(Rn)

for some k ∈ N with k > bn
2
c + 2. Then there exists a maximal existence time Tε,m ∈ (0,∞]

and a unique solution u ∈ Rn×[0, Tε,m)→ N of (1.3.1) with u(0) = u0, ∂tu(0) = u1,

u− u0 ∈ C0([0, Tε,m), Hk) ∩ C1([0, Tε,m), Hk−2) ∩H1
loc([0, Tε,m), Hk−1(Rn))

and ∇u ∈ L2
loc([0, Tε,m), Hk(Rn)) which satisfies (1.3.7) for t ∈ [0, Tε,m).

Proof. Fix ε ∈ (0, 1). Let u : Rn×[0, T ] → RL be the solution of (1.3.1) constructed in
Lemma 1.3.1. We first show that u(x, t) ∈ N for x ∈ Rn and t > 0 small enough. Since

C0([0, T ], Hk) ↪→ C0(Rn×[0, T ])

and u0 ∈ N a.e. on Rn, there exists a time T̃ ∈ (0, T ] such that for t ∈ [0, T̃ ] the distance

‖dist(u(t), N)‖L∞ ≤ sup
x∈Rn
|u(x, t)− u0(x)| . ‖u(t)− u0‖Hk

is so small that ū = Π(u) is well-defined. We then let w = ū − u and we note that w(0) =
∂tw(0) = 0. Calculating

∂2
t ū = dΠu∂

2
t u+ d2Πu(ut, ut),

∆ūt = dΠu∆ut + d2Πu(∆u, ut) + 2d2Πu(∇ut,∇u) + d3Πu(∇u,∇u, ut),

∆2ū = dΠu∆
2u+ d2Πu(∆u,∆u) + 4d2Πu(∇u,∇∆u) + 2d2Πu(∇2u,∇2u)

+ 2d3Πu(∇u,∇u,∆u) + 4d3Πu(∇u,∇u,∇2u)

+ d4Πu(∇u,∇u,∇u,∇u),
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we conclude that

(∂2
t + ∆2 − ε∆∂t)w = dΠu

(
(∂2
t + ∆2 − ε∆∂t)u

)
+Nε(u)−Nε(u)

= dΠu(Nε(u)) ∈ TūN.

Next, we note that since ū = Π(u) ∈ N , we have Nε(ū) ⊥ TūN and from Im(dΠu) ⊂ TūN ,
it follows dΠu(Nε(ū)) = 0. Hence

(∂2
t + ∆2 − ε∆∂t)w = dΠu(Nε(u)−Nε(ū)).

Now there also holds

‖∇ū‖Hk−1 + ‖ūt‖Hk−2 . (1 + ‖∇u‖k−1
Hk−1 + ‖ut‖k−1

Hk−2) (1.3.26)

· (‖∇u‖Hk−1 + ‖ut‖Hk−2),

‖dΠu(Nε(u)−Nε(ū))‖Hk−3 . (1 + ‖∇u‖k−3
Hk−1) ‖Nε(u)−Nε(ū)‖Hk−3 . (1.3.27)

We thus employ the energy bound (1.3.13) in Lemma 1.3.3 (with u0 = u1 = 0 in the Lemma)
and it therefore suffices to estimate ‖Nε(u)−Nε(ū)‖Hk−3 , which is provided by Lemma 1.3.4.
Especially, we obtain

‖w(t)‖2
Hk + ‖wt(t)‖2

Hk−2 ≤ CT̃ (‖w(t)‖2
Hk + ‖wt(t)‖2

Hk−2) , t ∈ [0, T̃ ],

where C = C(N, k, ε, ‖∇u‖L∞([0,T̃ ],Hk−1) , ‖ut‖L∞([0,T̃ ],Hk−2)) > 0. In particular, if T̃ > 0 is
small enough, there holds w = 0, i.e. u = Π(u) ∈ N on [0, T̃ ].
In order to see that any T̃ ∈ [0, T ) has this property, we apply a bootstrap argument. Let

J := {t ∈ [0, T ) | u|[0,t] maps to N}.

Then obviously 0 ∈ J by assumption and J is closed since u is continuous and N is compact.
The fact that J is indeed open follows by the above argument starting at t0 ∈ J , i.e. u(t0) ∈ N ,
for which we replace T̃ as above by t̃ − t0 > 0 small enough. The maximal existence time
Tε,m > 0, is then defined through the fixed point argument in Lemma 1.3.1.

1.3.2 The a priori estimate and taking a limit

In the previous section ε ∈ (0, 1) was fixed. The constants in the upper bound in estimates
such as (1.3.24), however, are of order O (ε−1).
We now have to prove ε independent estimates, which leads to a lower bound of the (maximal)
existence times Tε,m as ε↘ 0 and the possibility to take a limit by compactness arguments. We
then prove the existence of a solution stated in Theorem (1.1.1) and the blow up condition from
Theorem 1.1.2. This section is taken from [19] with modifications at the end of the section.
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The a priori estimate
We now prove an a priori estimate for the solution uε : Rn×[0, Tε,m)→ N of the equation

∂2
t u

ε + ∆2uε − ε∆∂tuε ⊥ TuεN on Rn×[0, Tε,m) (1.3.28)

given by Proposition 1.3.5 with ε ∈ (0, 1) and initial data u0, u1 : Rn → RL such that
u0(x) ∈ N and u1(x) ∈ Tu0(x)N for a.e. x ∈ Rn as well as

(∇u0, u1) ∈ Hk−1(Rn)×Hk−2(Rn)

for some k ∈ N with k > bn
2
c + 2. As before we write u instead of uε, and we fix a number

T < Tε,m. Moreover, (1.3.7) says that

∥∥∇k−2ut(t)
∥∥2

L2 +
∥∥∇ku(t)

∥∥2

L2 + ε

∫ t

0

∥∥∇k−1ut(s)
∥∥2

L2 ds (1.3.29)

.
∫ t

0

∫
Rn
∇k−2 [N (u)− ε(I − Pu)(∆ut)] · ∇k−2ut dx ds+

∥∥∇k−2u1

∥∥2

L2 +
∥∥∇ku0

∥∥2

L2

for t ∈ [0, T ]. We recall that the summand with ε on the right-hand side is well defined because
of (1.3.3).
In the following, we often make use of the relations N (u) ⊥ TuN and ut ∈ TuN which hold
since u(x, t) ∈ N for a.e. (x, t) ∈ Rn×[0, T ]. In particular, N (u) = (I − Pu)N (u). Using
this fact, we first write

∇k−2(N (u))∇k−2ut =
∑

m1+m2=k−2
m1>0

∇m1(I − Pu) ?∇m2(N (u))∇k−2ut (1.3.30)

+∇k−2(N (u))(I − Pu)∇k−2ut

=
∑

m1+m2=k−2
m1>0

∇m1(I − Pu) ?∇m2(N (u))∇k−2ut

−
∑

l1+l2=k−2
l1>0

∇k−2(N (u)) ?∇l1 [(I − Pu)]∇l2ut

=: I1 + I2,

where the second equality follows from the Leibniz formula

0 = ∇k−2 [(I − Pu)ut] =
∑

l1+l2=k−2
l1>0

∇l1 [(I − Pu)] ?∇l2ut + (I − Pu)∇k−2ut. (1.3.31)
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In (1.3.29) we thus split∫
Rn
∇k−2(N (u)− ε(I − Pu)(∆ut)) · ∇k−2ut dx

=

∫
Rn
∇k−2(N (u)) · ∇k−2ut dx− ε

∫
Rn
∇k−2((I − Pu)(∆ut)) · ∇k−2ut dx

=

∫
Rn
I1 dx+

∫
Rn
I2 dx− ε

∫
Rn
∇k−2((I − Pu)(∆ut)) · ∇k−2ut dx, (1.3.32)

We start by estimating∫
Rn
I1 dx ≤

∑
m1+m2=k−2

m1>0

‖∇m1(I − Pu) ?∇m2(N (u))‖L2

∥∥∇k−2ut
∥∥
L2 .

Lemma 1.2.8 yields the identity

∇m1(I − Pu) = −
m1∑
j=1

∑
∑j
i=1 k̃i=m1−j

djPu(∇k̃1+1u ? · · · ?∇k̃j+1u), (1.3.33)

which implies the pointwise inequality

|∇m1(I − Pu)| .
m1∑
j=1

∑
∑j
i=1 k̃i=m1−j

|∇k̃1+1u| · · · |∇k̃j+1u|. (1.3.34)

On the other hand, Lemma 1.A.1 allows us to bound |∇m2(N (u))| pointwise (up to a constant)
by terms of the form

|∇m̃1+1u| · · · |∇m̃i+1u|
[
|∇k1ut||∇k2ut|+ |∇k1+2u||∇k2+2u|+ |∇k1+3u||∇k2+1u|

]
, (1.3.35)

|∇m̃1+1u| · · · |∇m̃i+1u
[
|∇k1+1u||∇k2+1u||∇k3+2u|

]
, (1.3.36)

|∇m̃1+1u| · · · |∇m̃i+1u|
[
|∇k1+1u||∇k2+1u||∇k3+1u||∇k4+1u|

]
, (1.3.37)

where i = 1, . . . ,m2 and m̃1 + · · ·+m̃i+k1 + · · · = m2− i are as in Lemma 1.A.1. Moreover,
in the case i = 0 (where no derivatives fall on the coefficients) the terms are of the form

|∇k1ut||∇k2ut|+ |∇k1+2u||∇k2+2u|+ |∇k1+3u||∇k2+1u|,
|∇k1+1u||∇k2+1u||∇k3+2u|,
|∇k1+1u||∇k2+1u||∇k3+1u||∇k4+1u|,

where kj ∈ N0 and k1 + k2 + · · · = m2. Note thatm2 ≤ k− 3 sincem1 > 0. In the following
we use the notation (1.4.10) - (1.4.12) for all five cases, setting i = 0 for the latter three.
Combining the above considerations with Lemma 1.2.9, we can now estimate the norm

‖∇m1(I − Pu)∇m2(N (u))‖L2 ,
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where we distinguish five cases according to the terms in the brackets in (1.4.10) - (1.4.12).
Case 1: ∇k1ut ?∇k2ut
We use Lemma 1.2.9 with

f1 = ∇u, . . . , fj = ∇u, fj+1 = ∇u, . . . , fj+i = ∇u, fj+i+1 = ut, fj+i+2 = ut,

and derivatives of order

k̃1 + · · ·+ k̃j + m̃1 + · · ·+ m̃i + k1 + k2 = m1 +m2 − i− j = k − 2− (i+ j).

Employing also Young’s inequality, it follows∥∥∥|∇k̃1+1u| · · · |∇k̃j+1u||∇m̃1+1u| · · · |∇m̃i+1u||∇k1ut||∇k2ut

∥∥∥
L2

.
(
(1 + ‖∇u‖k−3

L∞ ) ‖ut‖2
L∞ + (1 + ‖∇u‖k−2

L∞ ) ‖ut‖L∞
)
(‖∇u‖Hk−2−i−j + ‖ut‖Hk−2−i−j)

. (1 + ‖∇u‖k−1
L∞ + ‖ut‖k−1

L∞ )(‖∇u‖Hk−1 + ‖ut‖Hk−2).

The other cases will be treated similarly. Note that here and in the following the L∞ norms and
especially ‖ut‖L∞ are bounded by our choice of k.
Case 2: ∇k1+2u ?∇k2+2u
Here it is exploited thatm1 > 0 in I1 due to the cancellation from (1.3.31). This time Lemma
1.2.9 is applied with f1 = · · · = fj+i+2 = ∇u and derivatives of order

k̃1 + · · ·+ k̃j + m̃1 + · · ·+ m̃i + k1 + k2 + 2 = m1 +m2 + 2− i− j = k − (i+ j) ≤ k − 1

since j > 0 by (1.3.33). We estimate∥∥∥|∇k̃1+1u| · · · |∇k̃j+1u||∇m̃1+1u| · · · |∇m̃i+1u||∇k1+2u||∇k2+2u|
∥∥∥
L2

.
∑
i,j

‖∇u‖i+j+1
L∞ ‖∇u‖Hk−i−j . (1 + ‖∇u‖k−1

L∞ ) ‖∇u‖Hk−1 .

Case 3: ∇k1+3u ?∇k2+1u
As in the previous case, C(1 + ‖∇u‖k−1

L∞ ) ‖∇u‖Hk−1 dominates∥∥∥|∇k̃1+1u| · · · |∇k̃j+1u||∇m̃1+1u| · · · |∇m̃i+1u||∇k1+3u||∇k2+1u|
∥∥∥
L2
.

Case 4: ∇k1+1u ?∇k2+1u ?∇k3+2u
We apply Lemma 1.2.9 to the functions f1 = · · · = fj+i+3 = ∇u with derivatives of order

k̃1 + · · ·+ k̃j + m̃1 + · · ·+ m̃i + k1 + k2 + k3 + 1 = m1 +m2 + 1− i− j = k− 1− (i+ j),

leading to the bound∥∥∥|∇k̃1+1u| · · · |∇k̃j+1u||∇m̃1+1u| · · · |∇m̃i+1u||∇k1+1u||∇k2+1u||∇k3+2u|
∥∥∥
L2

.
∑
i,j

‖∇u‖i+j+2
L∞ ‖∇u‖Hk−2−i−j . (1 + ‖∇u‖kL∞) ‖∇u‖Hk−1 .
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Case 5: ∇k1+1u ?∇k2+1u ?∇k3+1u ?∇k4+1u
We now use Lemma 1.2.9 with f1 = · · · = fj+i+4 = ∇u and derivatives of order

k̃1 + · · ·+ k̃j + m̃1 + · · ·+ m̃i + k1 + k2 + k3 + k4 = m1 +m2 − i− j = k − 2− (i+ j).

Hence, we have∥∥∥|∇k̃1+1u| · · · |∇k̃j+1u||∇m̃1+1u| · · · |∇m̃i+1u||∇k1+1u||∇k2+1u||∇k3+1u||∇k4+1u|
∥∥∥
L2

.
∑
i,j

‖∇u‖i+j+3
L∞ ‖∇u‖Hk−2−i−j . (1 + ‖∇u‖k+1

L∞ ) ‖∇u‖Hk−1 .

Summing up the five cases, we infer

‖I1‖L1 . (1 + ‖∇u‖k−1
L∞ + ‖ut‖k−1

L∞ )(‖∇u‖Hk−1 + ‖ut‖Hk−2). (1.3.38)

Next, in I2 from (1.3.32) we integrate by parts in order to conclude∫
Rn
I2 dx =

∑
l1+l2=k−2

l1>0

∫
Rn
∇k−3(N (u)) ? [∇l1+1(I − Pu)∇l2ut] dx

+
∑

l1+l2=k−2
l1>0

∫
Rn
∇k−3(N (u)) ? [∇l1(I − Pu)∇l2+1ut] dx

=: I1
2 + I2

2 .

These terms are estimated by

|I1
2 | .

∑
l1+l2=k−2

l1>0

∥∥∇k−3(N (u))
∥∥
L2

∥∥∇l1+1(I − Pu)∇l2ut
∥∥
L2 , (1.3.39)

|I2
2 | .

∑
l1+l2=k−2

l1>0

∥∥∇k−3(N (u))
∥∥
L2

∥∥∇l1(I − Pu)∇l2+1ut
∥∥
L2 . (1.3.40)

We control
∥∥∇k−3(N (u))

∥∥
L2 by terms of the form (1.4.10) - (1.4.12) in the L2 norm, obtaining

as above ∥∥∇k−3(N (u))
∥∥
L2 . (1 + ‖∇u‖kL∞ + ‖ut‖k−2

L∞ )(‖∇u‖Hk−1 + ‖ut‖Hk−2).

Equation (1.3.33) and Lemma 1.2.9 further imply

∥∥∇l1+1(I − Pu)∇l2ut
∥∥
L2 .

l1+1∑
j=1

∑
∑j
i=1 m̃i=l1+1−j

∥∥|∇m̃1+1u| · · · |∇m̃i+1u||∇l2ut|
∥∥
L2

. (1 + ‖∇u‖k−1
L∞ + ‖ut‖k−1

L∞ )(‖∇u‖Hk−1 + ‖ut‖Hk−2)
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where m̃1 + · · ·+ m̃i + l2 = k − 1− i ≤ k − 2. Similarly, we have

∥∥∇l1(I − Pu)∇l2+1ut
∥∥
L2 .

l1∑
j=1

∑
∑j
i=1 m̃i=l1−j

∥∥|∇m̃1+1u| · · · |∇m̃i+1u||∇l2+1ut|
∥∥
L2

. (1 + ‖∇u‖k−2
L∞ + ‖ut‖k−2

L∞ )(‖∇u‖Hk−1 + ‖ut‖Hk−2)

by Lemma 1.2.9 with m̃1 + · · · + m̃i + l2 + 1 = k − 1− i ≤ k − 2, since l1 > 0. The above
three inequalities yield

‖I2‖L1 . (1 + ‖∇u‖2k−1
L∞ + ‖ut‖2k−1

L∞ )(‖∇u‖2
Hk−1 + ‖ut‖2

Hk−2). (1.3.41)

Finally, for the regularization term, we observe

−ε
∫
Rn
∇k−2[(I − Pu)(∆ut)]∇k−2ut dx = ε

∫
Rn
∇k−3[(I − Pu)(∆ut)]∇k−1ut dx

≤ C
∥∥∇k−3[(I − Pu)(∆ut)]

∥∥2

L2 +
ε

2

∥∥∇k−1ut
∥∥2

L2 .

In view of (1.3.3), to bound
∥∥∇k−3[(I − Pu)(∆ut)]

∥∥2

L2 it suffices to estimate∥∥|∇m̃1+1u| · · · |∇m̃i+1u|
[
|∇k1+1ut||∇k2+1u|+ |∇k1ut||∇k2+2u|

]∥∥2

L2 , (1.3.42)∥∥|∇m̃1+1u| · · · |∇m̃i+1u||∇k1ut||∇k2+1u||∇k3+1u|
∥∥2

L2 , (1.3.43)

where m̃1 + · · ·+ m̃i + k1 + k2 + 1 = k− 2− i and m̃1 + · · ·+ m̃i + k1 + k2 + k3 = k− 3− i,
respectively. As before, Lemma 1.2.9 implies the inequalities∥∥|∇m̃1+1u| · · · |∇m̃i+1u|

[
|∇k1+1ut||∇k2+1u|+ |∇k1ut||∇k2+2u|

]∥∥2

L2 (1.3.44)

. (1 + ‖∇u‖2(k−2)
L∞ + ‖ut‖2(k−2)

L∞ )(‖ut‖2
Hk−2 + ‖∇u‖2

Hk−2 ,∥∥|∇m̃1+1u| · · · |∇m̃i+1u||∇k1ut||∇k2+1u||∇k3+1u|
∥∥2

L2 (1.3.45)

. (1 + ‖∇u‖2(k−1)
L∞ + ‖ut‖2(k−1)

L∞ )(‖ut‖2
Hk−2 + ‖∇u‖2

Hk−2).

Putting together (1.3.38), (1.3.41), (1.3.44) and (1.3.45), we arrive at the inequality∣∣∣∣∫
Rn
∇k−2(N (u)− ε(I − Pu)(∆ut)) · ∇k−2ut dx

∣∣∣∣
. (1 + ‖∇u‖2k

L∞ + ‖ut‖2k
L∞)(‖∇u‖2

Hk−1 + ‖ut‖2
Hk−2) +

ε

2

∥∥∇k−1ut
∥∥2

L2 .

Subtracting the last term on both sides of (1.3.29), for t ∈ [0, T ] we conclude∥∥∇k−2ut(t)
∥∥2

L2 +
∥∥∇ku(t)

∥∥2

L2 +
ε

2

∫ t

0

∥∥∇k−1ut(s)
∥∥2

L2 ds

.
∫ t

0

[
(1 + ‖∇u‖2k

L∞ + ‖ut‖2k
L∞)(‖∇u‖2

Hk−1 + ‖ut‖2
Hk−2)

]
ds+

∥∥∇k−2u1

∥∥2

L2 +
∥∥∇ku0

∥∥2

L2 .

(1.3.46)
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It remains to bound the lower order terms. Testing (1.3.28) by ut ∈ TuN , we infer

‖ut(t)‖2
L2 + ‖∆u(t)‖2

L2 + ε

∫ t

0

‖∇ut(s)‖2
L2 ds = ‖u1‖2

L2 + ‖∆u0‖2
L2 . (1.3.47)

Since also
d

dt

∫
Rn
|∇u|2 dx ≤

∫
Rn
|ut|2 dx+

∫
Rn
|∆u|2 dx,

it follows

‖∇u(t)‖2
L2 ≤ ‖∇u0‖2

L2 +

∫ t

0

‖∆u(s)‖2
L2 + ‖ut(s)‖2

L2 ds (1.3.48)

≤ ‖∇u0‖2
L2 + t(‖u1‖2

L2 + ‖∆u0‖2
L2)

for t ∈ [0, T ]. The other derivatives are treated via interpolation, more precisely∥∥∇lut
∥∥2

L2 .
∥∥∇k−1ut

∥∥ 2(l−1)
k−2

L2 ‖∇ut‖
2(k−1−l)
k−2

L2 , l = 2, . . . , k − 2,∥∥∇lut
∥∥2

L2 .
∥∥∇k−2ut

∥∥ 2l
k−2

L2 ‖ut‖
2(k−2−l)
k−2

L2 , l = 1, . . . , k − 3,∥∥∇lu
∥∥2

L2 .
∥∥∇ku

∥∥ 2(l−2)
k−2

L2 ‖∆u‖
2(k−l)
k−2

L2 , l = 3, . . . , k − 1.

Estimate (1.3.46) and the above inequalities lead to the core estimate

‖ut(t)‖2
Hk−2 + ‖∇u(t)‖2

Hk−1 +
ε

2

∫ t

0

‖∇ut(s)‖2
Hk−2 ds (1.3.49)

.
∫ t

0

[
(1 + ‖∇u‖2k

L∞ + ‖ut‖2k
L∞)(‖∇u‖2

Hk−1 + ‖ut‖2
Hk−2)

]
ds

+ (1 + T )(‖u1‖2
Hk−2 + ‖∇u0‖2

Hk−1), t ∈ [0, T ].

for solutions of (1.3.1) and T < Tε,m. Using Gronwall’s lemma we also obtain

sup
t∈[0,T ]

(
‖ut(t)‖2

Hk−2 + ‖∇u(t)‖2
Hk−1

)
(1.3.50)

≤ C(1 + T )
(
‖u1‖2

Hk−2 + ‖∇u0‖2
Hk−1

)
exp

(∫ T

0

(1 + ‖∇u‖2k
L∞ + ‖ut‖2k

L∞) ds

)
.

At least for small times we want to remove the dependence on u on the right-hand side of
(1.3.49) and thus we introduce the quantity

α(t) = ‖∇u(t)‖2
L2 + ‖∆u(t)‖2

L2 +
∥∥∇ku(t)

∥∥2

L2 + ‖ut(t)‖2
L2 +

∥∥∇k−2ut(t)
∥∥2

L2

for t ∈ [0, Tε,m). We observe that α(t) is equivalent to the square of the Sobolev norms
appearing in (1.3.49). Since the solutions to (1.3.1) are (locally) unique, our reasoning is also
valid for any initial time t0 ∈ (0, Tε,m). The estimates (1.3.46), (1.3.47) and (1.3.48) thus imply

α(t)− α(t0) ≤ C

∫ t

t0

(1 + α(s)k)α(s) ds.
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By the above arguments, the function α is differentiable a.e. so that

d

dt
E(t) ≤ C(1 + E(t)k)E(t) (1.3.51)

for a.e. 0 ≤ t0 ≤ t < Tε,m. We now proceed similarly to [27], where regularization by
the (intrinsic) biharmonic energy has been applied in order to obtain the existence of local
Schrödinger maps.

Lemma 1.3.6. Let ε ∈ (0, 1) and take data u0, u1 : Rn → RL with u0(x) ∈ N and u1(x) ∈
Tu0(x)N for a.e. x ∈ Rn satisfying

(∇u0, u1) ∈ Hk−1(Rn)×Hk−2(Rn) for some k ∈ N with k > bn
2
c+ 2.

Let Tε,m > 0 be the maximal existence time of the solution uε : Rn×[0, Tε,m) → N of
(1.3.1) with uε(0) = u0 and ∂tuε(0) = u1 from Proposition 1.3.5. Then there is a time
T0 = T0(‖∇u0‖Hk−1 , ‖u1‖Hk−2) > 0 such that Tε,m > T0 for all ε ∈ (0, 1).

Proof. Let ε ∈ (0, 1) and t ∈ [0, Tε,m). We write u = uε. From (1.3.51) we infer

d

dt
log

(
E

(1 + Ek) 1
k

)
=

E ′

(1 + Ek)E
≤ C, (1.3.52)

With α0 = α(0) it follows

E(t)k

(1 + E(t)k)
≤ eCtk

Ek0
(1 + Ek0 )

≤ (1 + 4Ctk)
Ek0

(1 + Ek0 )
,

E(t)k ≤ (1 + 4Ctk)Ek0 + 4CtkEk0 Ek

for 0 ≤ t ≤ 1
8Ck

, and hence

E(t)k ≤ 2(1 + 4Ctk)Ek0 ≤ 3Ek0

for 0 ≤ t ≤ 1
8Ck

min{1, 1
Ek0
} =: T0. Since α and the Sobolev norms are equivalent, we infer

‖ut(t)‖2
Hk−2 + ‖∇u(t)‖2

Hk−1 ≤ c0(‖u1‖2
Hk−2 + ‖∇u0‖2

Hk−1) (1.3.53)

for t ∈ [0,min{Tε,m, T0}) and some constant c0 = c0(k, n) > 0.
We now assume by contradiction that Tε,m ≤ T0 for some (fixed) ε ∈ (0, 1). We apply the
contraction argument in the proof of Lemma 1.3.1 for the initial time t0 ∈ [0, Tε,m) and data
(u(t0), ut(t0)) in the fixed-point space Br(T ) with radius

rk = 3r(t0)k := 3
(
‖∇u(t0)‖Hk−1 + ‖ut(t0)‖Hk−2

)k
.

Since t0 < T0, estimate (1.3.53) yields the uniform bound

r(t0) ≤
√

2c0(‖u1‖2
Hk−2 + ‖∇u0‖2

Hk−1)1/2 =: ĉ0.

40



1.3. Local wellposedness in high regularity Chapter 1

As a result, the time

T :=
1

4
min


(

k
√

3− 1
k
√

3

)2
ε

Ĉ2(1 + 3ĉk0)2
,

ε

Ĉ2(1 + 6ĉk0)2

 .

is less or equal than the time Tδ for Br(T ) in (1.3.21). Therefore, the solution can be uniquely
extended to [0, t0 + T ] in the regularity class of Proposition 1.3.5. For t0 > Tε,m − T this fact
contradicts the maximality of Tε,m, showing the result.

Proof of local existence
We now combine the existence result from Proposition 1.3.5 with Lemma 1.3.6. Thus, there
exists a solution uε : Rn×[0, T0] → N of (1.3.1) for each ε ∈ (0, 1), where T0 > 0 only
depends on ‖∇u0‖Hk−1 and ‖u1‖Hk−2 . From (1.3.53) and the inequality

‖uε − u0‖L∞t L2
x
≤ T0 ‖uεt‖L∞t L2

x
,

we extract a limit u : Rn×[0, T0]→ RL as ε→ 0+ of the solutions uε|[0,T0]
in the sense

∇l1uε
∗
⇀ ∇l1u, uε − u0

∗
⇀ u− u0, and ∇l2−2uεt

∗
⇀ ∇l2−2ut in L∞(0, T0;L2),

where 1 ≤ l1 ≤ k and 0 ≤ l2 ≤ k. (Here and below we do not indicate that we pass to
subsequences.) In particular,

u− u0 ∈ L∞(0, T0;Hk) ∩W 1,∞(0, T0;Hk−2)

and (∇u, ∂tu) is weakly continuous in Hk−1 ×Hk−2. We further note that (1.3.53) holds for
u by weak∗ lower semicontinuity of the norm. We first assume k ≥ 4 (which is no restriction
if n ≥ 2). Estimating the nonlinearity similarly to Section 1.3.2, we also deduce from (1.3.3)
and (1.3.53) that ∂2

t u
ε ∈ C0([0, T0], Hk−4) is uniformly bounded as ε → 0+. Compactness

and Sobolev’s embedding further yield

∇3uε → ∇3u in C0([0, T0], L2
loc(R

n)),

∂tu
ε → ∂tu, u

ε → u, ∇uε → ∇u, ∇2uε → ∇2u, (1.3.54)

where the latter holds locally uniformly on Rn×[0, T0]. More precisely for α ∈ (0, 1) and
vε = uε − u0, our a priori estimates and [39, Prop. 1.1.4] imply uniform bounds (in ε) in the
spaces

vε ∈ CαHk−2α, ∇vε ∈ CαHk−1−2α, ∇2vε ∈ CαHk−2−2α, ∂tv
ε ∈ CαHk−2−2α. (1.3.55)
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As a result, u takes values in N . Moreover, since (1.3.49) and (1.3.53) give∫ T

0

∥∥√ε∇uεt(s)∥∥2

Hk−2 ds (1.3.56)

.
(
T0(1 + ‖u1‖2k

Hk−2 + ‖∇u0‖2k
Hk−1) + 1

)
(‖u1‖2

Hk−2 + ‖∇u0‖2
Hk−1)

and k ≥ 3, we infer that ε∆∂tuε → 0 in L2
t,x. Combining this fact with (1.3.54) and recalling

(1.3.4), we conclude

Nε(uε)→ N (u) in L2
loc(R

n×[0, T0]).

In the case n = 1 and k = 3 we obtain the convergence Nε(uε) → N (u) in the sense of the
duality (H1, H−1) because we still have

∇uε → ∇u, ∇2uε → ∇2u, ∂tu
ε → ∂tu

locally uniformly, as well as∇3uε → ∇3u and∇∂tuε → ∇∂tu in C0([0, T0], H−1
loc ) as ε→ 0+.

Summing up, we have constructed a local solution u : [0, T0]×Rn → N of (1.1.2) with u(0) =
u0 and ∂tu(0) = u1 such that (∇u, ∂tu) is bounded and weakly continuous in Hk−1 ×Hk−2.
In Lemma 1.3.10 it will be shown that such a solution is locally unique. We recall from the
proof of Proposition 1.3.6 that the solution u : Rn×[0, T ) → N for some T > 0 can be
extended if lim supt→T−(‖∇u(t)‖Hk−1 +‖ut(t)‖Hk−2) <∞. There thus exists a maximal time
of existence Tm ∈ (T0,∞] of u with

lim sup
t→T−m

(‖∇u(t)‖Hk−1 + ‖ut(t)‖Hk−2) =∞ if Tm <∞.

Arguing as in Section 1.3.2, we establish the energy equality

∥∥∇ku
∥∥2

L2 +
∥∥∇k−2ut

∥∥2

L2 = 2

∫ t

0

∫
Rn
∇k−2(N (u)) · ∇k−2ut dx ds (1.3.57)

+
∥∥∇ku0

∥∥2

L2 +
∥∥∇k−2u1

∥∥2

L2

for t ∈ [0, Tm). (The integral is well-defined in view of the cancellation of one derivative
in (1.3.30).) However, in contrast to the approximations uε, the solution u has only k weak
spatial derivatives (and ∂tu has k − 2). For this reason, when deriving (1.3.57) we have to re-
place one spatial derivative by a difference quotient. The details are outlined inAppendix 1.A.3.

We conclude that the highest derivatives ∇k−2ut,∇ku : [0, Tm) → L2 are continuous, em-
ploying their weak continuity and that the right-hand side of (1.3.57) is continuous in t. For
the continuity of lower order derivatives, we can employ the same argument using the identity
(1.2.9) (for lower order derivatives). This follows from the standard energy argument in Lemma
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1.2.10 since N (u) ∈ L∞t Hm for 0 ≤ m ≤ k − 3 as Lemma 1.3.4 (by the estimate for the full
Hk−3 norm) shows. In particular

u− u0 ∈ C0([0, Tm), Hk) ∩ C1([0, Tm), Hk−2)

as asserted.
Finally, following the proof of the a priori estimate in Section 1.3.2 we can derive the blow-up
criterion (1.1.4), cf. Appendix 1.A.3.
In order to show the full statement of Theorem 1.1.1 and Theorem 1.1.2, it thus remains to
establish the uniqueness statement and the continuous dependence on the initial data, which is
done in the next Sections 1.3.3 and 1.3.4.

Remark 1.3.7. In addition, we apply Lemma 1.3.4 (for the difference with u(t) and v(s) =
u(s)) in order to see thatN (u) ∈ CtHm for 0 ≤ m ≤ k− 3. Especially, by the Remark below
Lemma 1.2.10, we have that the maps

t 7→ ‖∇u(t)‖2
Hm+1 + ‖ut(t)‖Hm , 0 ≤ m ≤ k − 3,

are differentiable with the corresponding identity (1.2.9). A similar statement using (1.2.9)
and Lemma 1.3.4 is given for the difference of two solutions, wich will be used in Section
1.3.3. Also, the calculation in the Appendix 1.A.3 shows (combined with Lemma 1.3.4) that
the above map is differentiable withm = k−2. A similar statement is proven for the difference
of solutions at regularitym = k − 2 if one of the solutions has higher regularity. This will be
used in Section 1.3.4 and we advise the reader to follow the details in this section.

1.3.3 Energy bounds and uniqueness

In the last Section 1.3.2 (respectively from the Appendix (1.3.57)), we have seen that the
solution u : [0, Tm)× Rn → N with regularity

(∇u, ∂tu) ∈ C([0, T ], Hk−1 ×Hk−2)

for some T ∈ (0, Tm) satisfies

sup
t≤T

(‖∇u(t)‖2
Hk−1 + ‖ut(t)‖2

Hk−2) ≤ C1(‖∇u0‖2
Hk−1 + ‖u1‖2

Hk−2), (1.3.58)

where C1 = C(T,N, k, ‖∇u‖L∞([0,T ]×Rn) , ‖ut‖L∞([0,T ]×Rn)) > 0.
For the uniqueness of the limit in Section 1.3.2 and in order to prove that solutions depend
continuously on the inital data, we need additional energy bounds for the difference w = u− v
of two solutions. These are obtained similarly as in Section 1.3.2. The section is slightly
modiefied compared to [19].
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Lemma 1.3.8 (Energy bounds). Let T > 0, k > bn
2
c + 2 and u, v be two solutions of (1.1.2)

with
(∇u, ∂tu), (∇v, ∂tv) ∈ C([0, T ], Hk−1 ×Hk−2)

and u(0) = u0, v(0) = v0, ut(0) = u1 and vt(0) = v1 such that u0−v0 ∈ L2. Then there holds

sup
t≤T

(‖u(t)− v(t)‖2
Hk−1 + ‖ut(t)− vt(t)‖2

Hk−3) (1.3.59)

≤ C2(‖u0 − v0‖2
Hk−1 + ‖u1 − v1‖2

Hk−3),

where C2 = C(T,N, k) > 0 further depends on the norm of ∇u,∇v in L∞(0, T ;Hk−1) and
ut, vt in L∞(0, T ;Hk−2).

Remark 1.3.9. The estimates in Lemma 1.3.8 depend as above on the cancellation introduced
by the identities

N (u) = (I − Pu)(N (u)), N (v) = (I − Pv)(N (v)).

However, this effect is weaker for the Lipschitz estimate (1.3.59) and can not be extended to
the level of the initial regularity of u, v.

Proof of Lemma 1.3.8. We derive (1.3.59) from a Gronwall argument based on the equality

d

dt

1

2

∫
Rn
|∇mwt|2 + |∇m+2w|2 dx =

∫
Rn
∇m(N (u)−N (v)) · ∇mwt dx, (1.3.60)

for w = u− v, m ∈ {0, . . . , k − 3} and t ∈ [0, T ], which is a consequence of (1.1.2) and the
remarks in the proof of local existence to why this identity holds. Setting

E(t) = ‖w(t)‖2
Hk−1 + ‖wt(t)‖2

Hk−3 ,

we want to prove

d

dt
E(t) ≤ C(1 + ‖∇u‖2k

Hk−1 + ‖ut‖2k
Hk−2 + ‖∇v‖2k

Hk−1 + ‖vt‖2k
Hk−2)E(t) (1.3.61)

for t ∈ [0, T ] and thus first consider (1.3.60) for m = k − 3. Since u and v map into N , we
have N (u) = (I − Pu)(N (u)) and analogously for v. It follows

N (u)−N (v) = (I − Pu)N (u)− (I − Pv)N (v)

= (Pv − Pu)N (u) + (I − Pv)(N (u)−N (v)),

and hence

∇k−3(N (u)−N (v)) · ∇k−3wt = ∇k−3[(Pv − Pu)N (u)] · ∇k−3wt

+∇k−3[(I − Pv)(N (u)−N (v))] · ∇k−3wt.
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In this way, we can avoid that all derivatives fall on∇3w. We next write

∇k−3[(Pv − Pu)N (u)] · ∇k−3wt = (Pv − Pu)∇k−3[N (u)] · ∇k−3wt

+
∑

l1+l2=k−3
l1>0

∇l1 [(Pv − Pu)] ?∇l2 [N (u)] · ∇k−3wt =: I1 + I2.

Observe that ∫
Rn
I1 dx . ‖w‖L∞

∥∥∇k−3N (u)
∥∥
L2

∥∥∇k−3wt
∥∥
L2 .

We then control
∥∥∇k−3N (u)

∥∥
L2 using Lemma 1.2.9 as above for the a priori estimate (1.3.49).

Further, Lemma 1.A.2 implies that
∫
Rn I2 dx is bounded by terms of the form

‖w‖L∞
∥∥|∇m1+1u| · · · |∇mj+1u||∇l2N (u)|

∥∥
L2

∥∥∇k−3wt
∥∥
L2 , (1.3.62)∥∥∇k−3wt

∥∥
L2

∥∥|∇m1+1w||∇m2+1h1| · · · |∇mj+1hj−1||∇l2N (u)|
∥∥
L2 , (1.3.63)

where m1, . . . ,mj and h1, . . . , hj−1 are as in Lemma 1.A.2. In (1.3.62) we then estimate as
above in the a priori estimate. For (1.3.63), it suffices to control terms of the form

|∇m1+1w||∇m2+1h1| · · · |∇mj+1hj−1||∇m̃1+1u| · · · |∇m̃i+1u|
[
|∇k1ut||∇k2ut| · · ·

]
, (1.3.64)

where
[
|∇k1ut||∇k2ut| · · ·

]
is given as in the nonlinearity N (u) and the orders m1 . . . ,mj ,

m̃1, . . . , m̃i, and k1, k2 . . . are as used before. To apply Lemma 1.2.9, as above we choose

f1 = w, f2 = ∇h1, . . . , fj = ∇hj−1, fj+1 = ∇u, . . . , fi+j = ∇u,

and fi+j+1, fi+j+2, . . . , according to the respective terms in N (u). We can thus estimate
(1.3.64) in L2 by

‖w‖
1− m1

k−2−i−j
L∞ ‖w‖

m1
k−2−i−j
Hk−2−i−j (1 + ‖∇u‖2k

Hk−1 + ‖ut‖2k
Hk−2 + ‖∇v‖2k

Hk−1 + ‖vt‖2k
Hk−2)

+ ‖w‖
1− m1

k−1−i−j
L∞ ‖w‖

m1
k−1−i−j
Hk−1−i−j (1 + ‖∇u‖2k

Hk−1 + ‖ut‖2k
Hk−2 + ‖∇v‖2k

Hk−1 + ‖vt‖2k
Hk−2)

. ‖w‖Hk−1 (1 + ‖∇u‖2k
Hk−1 + ‖ut‖2k

Hk−2 + ‖∇v‖2k
Hk−1 + ‖vt‖2k

Hk−2),

noting that l1 > 0, j ≥ 1 and i+ j < k − 2. We continue by computing

∇k−3[(I − Pv)(N (u)−N (v))] · ∇k−3wt

= ∇k−3(N (u)−N (v))(I − Pv)∇k−3wt +
∑

l1+l2=k−3
l1>0

∇l1(I − Pv) ?∇l2(N (u)−N (v)) · ∇k−3wt

= ∇k−3(N (u)−N (v))∇k−3[(Pu−Pv)ut]−
∑

l1+l2=k−3
l1>0

∇k−3(N (u)−N (v))·∇l1 [(I − Pv)]?∇l2wt

+
∑

l1+l2=k−3
l1>0

∇l1(I − Pv) ?∇l2(N (u)−N (v)) · ∇k−3wt =: J1 + J2 + J3.
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where the second equality is a consequence of

(I − Pv)wt = (I − Pv)ut = [(I − Pv)− (I − Pu)]ut = (Pu − Pv)ut.

We use integration by parts to treat
∫
J1 dx and

∫
J2 dx. Here we assume that k ≥ 4. (If k = 3

the estimate becomes easier and we only employ integration by parts for dPv(∇3w ? ∇u) in
the difference N (u)−N (v).) It follows∫

Rn
J1 dx = −

∫
Rn
∇k−4[N (u)−N (v)] · ∇k−2[(Pu − Pv)ut] dx,∫

Rn
J2 dx =

∑
l1+l2=k−3

l1>0

∫
Rn
∇k−4[N (u)−N (v)] · [∇l1+1(I − Pv) ?∇l2wt

+∇l1(I − Pv) ?∇l2+1wt] dx.

We first bound∫
Rn
J1 dx .

∥∥∇k−4[N (u)−N (v)]
∥∥
L2

∥∥∇k−2[(Pu − Pv)ut]
∥∥
L2 .

Corollary 1.A.3, Lemma 1.A.2 and Lemma 1.2.9 yield∥∥∇k−4[N (u)−N (v)]
∥∥
L2 . (‖w‖Hk−1 + ‖wt‖Hk−3)

· (1 + ‖∇u‖2k
Hk−1 + ‖ut‖2k

Hk−2 + ‖∇v‖2k
Hk−1 + ‖vt‖2k

Hk−2),∥∥∇k−2[(Pu − Pv)ut]
∥∥
L2 . ‖w‖Hk−1 (1 + ‖∇u‖2k

Hk−1 + ‖ut‖2k
Hk−2 + ‖∇v‖2k

Hk−1 + ‖vt‖2k
Hk−2).

The integrals of J2 and J3 are treated similary. Summing up, we obtain

d

dt

∫
Rn
|∇k−3wt|2+|∇k−1w|2 dx . E(t)(1 + ‖∇u‖2k

Hk−1 + ‖ut‖2k
Hk−2 + ‖∇v‖2k

Hk−1 + ‖vt‖2k
Hk−2).

We can similarly derive the estimate (integrating dPv(∇3w ?∇u) by parts)

d

dt

∫
Rn
|wt|2 + |∆w|2 dx . E(t)(1 + ‖∇u‖2k

Hk−1 + ‖ut‖2k
Hk−2 + ‖∇v‖2k

Hk−1 + ‖vt‖2k
Hk−2).

Interpolation on the left-hand side then yields

d

dt
E(t) . E(t)(1 + ‖∇u(t)‖2k

Hk−1 + ‖ut(t)‖2k
Hk−2 + ‖∇v(t)‖2k

Hk−1 + ‖vt(t)‖2k
Hk−2),

for t ∈ [0, T ]. By Gronwall we thus obtain the claimed estimate (1.3.59).

A direct consequence of (1.3.59) in Lemma 1.3.8 is the following uniqueness statement.
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Lemma 1.3.10 (Uniqueness). Let u, v : Rn×[0, T ] → N be two solutions of (1.1.1) with
initial data u0 : Rn → N and u1 : Rn → RL such that u1 ∈ Tu0N on Rn and

(∇u0, u1) ∈ Hk−1(Rn)×Hk−2(Rn)

for some k ∈ N with k > bn
2
c+ 2. Also let

u− u0, v − u0 ∈ L∞(0, T ;Hk(Rn)) ∩W 1,∞(0, T ;Hk−2(Rn)).

Then u|[0,T ]
= v|[0,T ]

.

1.3.4 Continuity of the flow map

We now prove that the solutions of the Cauchy problem for (1.1.1) depend continuously on the
initial data. As mentioned before in section 1.3.3 the difference u− v of two solutions u and v
satisfies the Lipschitz estimate with the loss of one order of derivatives compared the a priori
bounds such as (1.3.49) (or (1.3.58) for the solution of (1.1.2)).
To deal with this problem, we apply the Bona–Smith argument, which is outlined e.g. in [59]
(for the Burgers equation) and in [12] (for the KdV equation). The following section is taken
from [19] with minor changes.
Let Tm be the maximal existence time of the solution u with initial data (u0, u1) from Theorem
1.1.1. Fix T0 ∈ (0, Tm). Take data (v0, v1) as in the theorem satisfying

‖(u0, u1)− (v0, v1)‖Hk×Hk−2 ≤ R (1.3.65)

for some R > 0. (We note that we have to assume u0 − v0 ∈ L2 in order to establish the a
priori estimate for the difference of the solutions as in the Section 1.3.3.) We use regularized
data (uδ0, u

δ
1) and (vδ0, v

δ
1) in the sense of Lemma 1.A.6 from Appendix 1.A.2, where δ ∈ (0, δ∗]

for some δ∗ > 0 depending onN . The corresponding solutions are denoted by uδ and vδ. They
satisfy the regularity assertions of part a) of Theorem 1.1.1 for all k > bn

2
c + 2. It is crucial

that the a priori estimates for uδ and vδ are uniform in δ. We split u− v into

u− v = u− uδ + uδ − vδ + vδ − v

and bound each of the differences in Hk ×Hk−2.
In order to estimate uδ − u and vδ − v, we use the geometric structure (as before in Section
1.3.3). It allows us to fix a (small) parameter δ > 0 for which the differences are small in
Hk × Hk−2. This can be done uniformly for (v0, v1) in a certain ball around (u0, u1). For
fixed δ, one can then estimate uδ − vδ employing their extra regularity, but paying the price of
a large constant (arising from the small parameter δ). We can control this constant, however,
by choosing a small radius R > 0 in (1.3.65).
We start with some preparations concerning the cancellations caused by the geometric con-
straints. As in Section 1.3.3, we have

N (uδ)−N (u) = (Pu − Puδ)(N (uδ)) + (I − Pu)(N (uδ)−N (u)),

(I − Pu)(uδ − u)t = (Puδ − Pu)uδt . (1.3.66)
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We then calculate (again similar to Section 1.3.3)∫
Rn
∇k−2(N (uδ)−N (u)) · ∇k−2(uδ − u)t dx (1.3.67)

=

∫
Rn

(Pu − Puδ)∇k−2[N (uδ)] · ∇k−2(uδ − u)t dx

+
∑

l1+l2=k−2
l1>0

∫
Rn
∇l1 [(Puδ − Pu)] ?∇l2N (uδ) · ∇k−2(uδ − u)t dx

+
∑

l1+l2=k−2
l1>0

∫
Rn
∇l1(I − Pu) ?∇l2 [N (uδ)−N (u)] · ∇k−2(uδ − u)t dx

+

∫
Rn
∇k−2[N (uδ)−N (u)] · (I − Pu)∇k−2(uδ − u)t dx.

Using integration by parts and (1.3.66), the last term is rewritten as∫
Rn
∇k−2[N (uδ)−N (u)] · (I − Pu)∇k−2(uδ − u)t dx (1.3.68)

=
∑

l1+l2=k−2
l1>0

∫
Rn
∇k−3[N (uδ)−N (u)] · ∇(∇l1(I − Pu) ?∇l2(uδ − u)t) dx

−
∑

l1+l2=k−1
l1>0

∫
Rn
∇k−3[N (uδ)−N (u)] · ∇l1 [(Puδ − Pu)] ?∇l2uδt dx

−
∫
Rn
∇k−3[N (uδ)−N (u)] · (Puδ − Pu)∇k−1uδt dx,

which is well defined by the higher regularity of uδ. Technically this has to be established by
difference quotients as in Appendix 1.A.3, however we omit the details here. The advantage of
estimating uδ − u is that the bad terms (with respect to the regularity of u)∥∥∇k−2N (uδ)

∥∥
L2 and

∥∥∇k−1uδt
∥∥
L2 (1.3.69)

will be bounded by the regularized initial data from Lemma 1.A.6. Their norm will grow as
δ → 0+ in a controlled way. Moreover, when estimating (1.3.67) and (1.3.68), these bad terms
only appear in the products∥∥uδ − u∥∥

L∞

∥∥∇k−2N (uδ)
∥∥
L2

∥∥∇k−2(uδ − u)t
∥∥
L2 ,∥∥uδ − u∥∥

L∞

∥∥∇k−3(N (uδ)−N (u))
∥∥
L2

∥∥∇k−1uδt
∥∥
L2 .

Here the decay of
∥∥uδ − u∥∥

L∞
as δ → 0+ will compensate the growth in (1.3.69). We now

carry out the details in several steps.
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. Step 1. Since T0 < Tm, we have the bound

sup
t∈[0,T0]

(‖∇u(t)‖Hk−1 + ‖ut(t)‖Hk−2) =: C <∞.

Lemma 1.A.6 allows us to fix a parameter δ′1 ∈ (0, δ∗] depending on (u0, u1) such that∥∥(∇uδ0, uδ1)
∥∥
Hk−1×Hk−2 ≤ 3C/2 (1.3.70)

for all δ ∈ (0, δ′1]. We let δ ∈ (0, δ′1] and also R ≤ C/2 in (1.3.65). Hence

‖(∇v0, v1)‖Hk−1×Hk−2 ≤ ‖(∇u0, u1)‖Hk−1×Hk−2 +R ≤ 3C/2, (1.3.71)∥∥(∇vδ0, vδ1)
∥∥
Hk−1×Hk−2 ≤

∥∥(∇uδ0, uδ1)
∥∥
Hk−1×Hk−2 +R ≤ 2C. (1.3.72)

We define a time T̃0 > 0 as in Lemma 1.3.6, replacing α(0) there by a multiple of C. We then
combine the uniform a priori bound (1.3.53) for the approximate solution to the ε–problem for v
on [0, T̃0] with (1.3.71). Likewise one treats uδ and vδ using (1.3.70) and (1.3.72), respectively.

Following the existence proof in Section 1.3.2, we then see that the solutions u
[0,T̃0]

, v
[0,T̃0]

,

uδ
[0,T̃0]

, and vδ
[0,T̃0]

exist on [0, T̃0]. Proceeding as in Section 1.3.2, we further obtain a constant
C̃ = C̃(N, k, T̃0) > 0 such that

‖∇u‖2
Hk−1 + ‖ut‖2

Hk−2 ≤ C̃(‖∇u0‖2
Hk−1 + ‖u1‖2

Hk−2), (1.3.73)
‖∇v‖2

Hk−1 + ‖vt‖2
Hk−2 ≤ C̃(‖∇v0‖2

Hk−1 + ‖v1‖2
Hk−2), (1.3.74)

on [0, T̃0]. Analogously, uδ and vδ satisfy the estimates (1.3.73) respectively (1.3.74) with the
same constant C̃ > 0 independent of δ ∈ (0, δ∗]. Further from Lemma 1.3.8 in the previous
section combined with (1.3.73), (1.3.74), we have

‖u− v‖2
Hk−1 + ‖ut − vt‖2

Hk−3 ≤ C(‖u0 − v0‖2
Hk−1 + ‖u1 − v1‖2

Hk−3). (1.3.75)

on [0, T̃0], where C = C(N, k, T̃0, C) > 0. Analogously, u − uδ, v − vδ and uδ − vδ fufill
(1.3.75) with the same constantC > 0. For the regularized data we can replace here k by k+1,
deriving ∥∥∇uδ∥∥2

Hk +
∥∥uδt∥∥2

Hk−1 ≤ C(
∥∥∇uδ0∥∥2

Hk +
∥∥uδ1∥∥2

Hk−1), (1.3.76)∥∥∇vδ∥∥2

Hk +
∥∥vδt∥∥2

Hk−1 ≤ C(
∥∥∇vδ0∥∥2

Hk +
∥∥vδ1∥∥2

Hk−1),

which follows by (1.3.58) mentioned in the previous section and the fact that ‖∇u‖L∞ , ‖ut‖L∞
are bounded by the norm of Hk−1, respectively Hk−2.
. Step 2. Estimating (1.3.67) and (1.3.68) as in Section 1.3.3, we derive

d

dt

( ∥∥u− uδ∥∥2

Hk +
∥∥ut − uδt∥∥2

Hk−2

)
≤ C

∥∥u− uδ∥∥
L∞

∥∥∇k−2N (uδ)
∥∥
L2

∥∥∇k−2(ut − uδt )
∥∥
L2

+ C
∥∥u− uδ∥∥

L∞

∥∥∇k−3(N (uδ)−N (u))
∥∥
L2

∥∥∇k−1uδt
∥∥
L2

+ C(
∥∥u− uδ∥∥2

Hk +
∥∥ut − uδt∥∥2

Hk−2)
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for some C = C(N,C, C̃) > 0. The nonlinearities are treated as in Sections 1.3.2 and 1.3.3.
Using also (1.3.73), (1.3.75) and (1.3.76), we then conclude

d

dt

( ∥∥u− uδ∥∥2

Hk +
∥∥ut − uδt∥∥2

Hk−2

)
≤ C

∥∥u− uδ∥∥
Hk−1 (1 +

∥∥∇uδ∥∥
Hk +

∥∥uδt∥∥Hk−2)(‖ut‖Hk−2 +
∥∥uδt∥∥Hk−2)

+ C
∥∥u− uδ∥∥

Hk−1 (1 + ‖∇u‖Hk−1 + ‖∇uδ‖Hk−1 + ‖ut‖Hk−3 + ‖uδt‖Hk−3)
∥∥uδt∥∥Hk−1

+ C(
∥∥u− uδ∥∥2

Hk +
∥∥ut − uδt∥∥2

Hk−2)

≤ C(
∥∥u0 − uδ0

∥∥
Hk−1 +

∥∥ut − uδt∥∥Hk−3)(1 +
∥∥∇uδ0∥∥Hk +

∥∥uδ1∥∥Hk−1)

+ C(
∥∥u− uδ∥∥2

Hk +
∥∥ut − uδt∥∥2

Hk−2)

on [0, T̃0]. Gronwall’s inequality and Lemma 1.A.6 thus yield

sup
t∈[0,T̃0]

( ∥∥u− uδ∥∥2

Hk +
∥∥ut − uδt∥∥2

Hk−2

)
≤ CT̃0√

δ

( ∥∥u0 − uδ0
∥∥
Hk−1 +

∥∥u1 − uδ1
∥∥
Hk−3

)
+ C

( ∥∥u0 − uδ0
∥∥2

Hk +
∥∥u1 − uδ1

∥∥2

Hk−2

)
= o(1)

as δ → 0+. In view of our a priori bounds, we can estimate v − vδ in the same way. Here we
have to split the initial values, obtaining

sup
t∈[0,T̃0]

( ∥∥v − vδ∥∥2

Hk +
∥∥vt − vδt∥∥2

Hk−2

)
≤ CT̃0√

δ
(
∥∥v0 − vδ0

∥∥
Hk−1 +

∥∥v1 − vδ1
∥∥
Hk−3) + C(

∥∥v0 − vδ0
∥∥2

Hk +
∥∥v1 − vδ1

∥∥2

Hk−2)

≤ CT̃0√
δ

(
∥∥u0 − uδ0

∥∥
Hk−1 +

∥∥u1 − uδ1
∥∥
Hk−3) + C(

∥∥u0 − uδ0
∥∥2

Hk +
∥∥u1 − uδ1

∥∥2

Hk−2)

+
CT̃0√
δ

(‖u0 − v0‖Hk−1 + ‖u1 − v1‖Hk−3 +
∥∥uδ0 − vδ0∥∥Hk−1 +

∥∥uδ1 − vδ1∥∥Hk−3)

+ C(‖u0 − v0‖2
Hk + ‖u1 − v1‖2

Hk−2 +
∥∥uδ0 − vδ0∥∥2

Hk +
∥∥uδ1 − vδ1∥∥2

Hk−2).

Lemma 1.A.6 now implies that

sup
t∈[0,T̃0]

( ∥∥v − vδ∥∥2

Hk +
∥∥vt − vδt∥∥2

Hk−2

)
≤ CT̃0√

δ
(
∥∥u0 − uδ0

∥∥
Hk−1 +

∥∥u1 − uδ1
∥∥
Hk−3) + C(

∥∥u0 − uδ0
∥∥2

Hk +
∥∥u1 − uδ1

∥∥2

Hk−2)

+
CT̃0√
δ
R + CR2.
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On the regularized level, we use the coarse estimate

sup
t∈[0,T̃0]

( ∥∥uδ − vδ∥∥2

Hk +
∥∥uδt − vδt∥∥2

Hk−2

)
≤ C√

δ
T̃0(
∥∥vδ0 − uδ0∥∥Hk +

∥∥vδ1 − uδ1∥∥Hk−2)

+ C(
∥∥uδ0 − vδ0∥∥2

Hk +
∥∥uδ1 − vδ1∥∥2

Hk−2)

≤ CT̃0√
δ
R + CR2.

Since u− v = u− uδ + uδ − vδ + vδ − v, it follows

sup
t∈[0,T̃0]

(
‖u− v‖2

Hk + ‖ut − vt‖2
Hk−2

)
≤ CT̃0√

δ
(
∥∥u0 − uδ0

∥∥
Hk−1 +

∥∥u1 − uδ1
∥∥
Hk−3)

+ C(
∥∥u0 − uδ0

∥∥2

Hk +
∥∥u1 − uδ1

∥∥2

Hk−2)

+
CT̃0√
δ
R + CR2. (1.3.77)

Now take η ∈ (0, C/2] and r1 ∈ (0, η]. We first fix δ = δ1 = δ1(r1) ∈ (0, δ′1] and then choose
R1 = R1(δ1) ∈ (0, C/2] such that for all R ∈ (0, R1] we have

sup
t∈[0,T̃0]

(
‖u− v‖2

Hk + ‖ut − vt‖2
Hk−2

)
≤ r1 ≤ η. (1.3.78)

In the above reasoning we now replace (u0, u1) with corresponding solution u by data (û0, û1)
with solution û that satisfy the same assumptions as (v0, v1). The function û thus fulfills the
same a priori estimates as v and also (1.3.78). Moreover, we assume that

‖(û0, û1)− (v0, v1)‖Hk×Hk−2 ≤ R̂ (1.3.79)

for some radius R̂ > 0. We can then repeat the above arguments replacing u by û. The resulting
regularization parameter δ̂1 depends on û, and thus also the upper bound R̂1 = R̂1(δ1) for the
radii in (1.3.79). For given 0 ≤ r̂1 ≤ η̂, we infer

sup
t∈[0,T̃0]

(
‖û− v‖2

Hk + ‖ût − vt‖2
Hk−2

)
≤ r̂1 ≤ η̂ (1.3.80)

provided that 0 < R̂ ≤ R̂1 in (1.3.79).
. Step 3. In the case T̃0 ≥ T0 the proof is complete. Otherwise we repeat the same argument
starting from

(u
(1)
0 , u

(1)
1 ) = (u(T̃0), ut(T̃0)) and (v

(1)
0 , v

(1)
1 ) = (v(T̃0), vt(T̃0)).

Observe that (1.3.78) yields∥∥∥(∇v(1)
0 , v

(1)
1 )
∥∥∥
Hk−1×Hk−2

≤ η +
∥∥∥(∇u(1)

0 , u
(1)
1 )
∥∥∥
Hk−1×Hk−2

≤ 3C/2.
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For a sufficiently small δ′2 ∈ (0, δ∗] and all δ ∈ (0, δ′2], we derive∥∥∥(∇(u
(1)
0 )δ, (u

(1)
1 )δ)

∥∥∥
Hk−1×Hk−2

,
∥∥∥(∇(v

(1)
0 )δ, (v

(1)
1 )δ)

∥∥∥
Hk−1×Hk−2

≤ 2C

as in (1.3.70) and (1.3.72). Based on these bounds we can repeat the arguments of Steps 1 and
2 on the interval [T̃0,min{2T̃0, T0}] =: J1. However we have to replace the bound (1.3.65)
involving R by (1.3.78) which yields

‖(u(1)
0 , u

(1)
1 )− (v

(1)
0 , v

(1)
1 )‖Hk×Hk−2 ≤ r1.

Let r2 ∈ (0, η]. Lemma 1.A.6 allows us to fix a parameter δ = δ2 = δ2(r2) ∈ (0, δ′2] such that

CT̃0√
δ

(
‖u(1)

0 − (u
(1)
0 )δ‖Hk−1 + ‖u(1)

0 − (u
(1)
0 )δ‖Hk−3

)
+ C

(
‖u(1)

0 − (u
(1)
0 )δ‖Hk + ‖u(1)

0 − (u
(1)
0 )δ‖Hk−2

)
≤ r2/4.

As in (1.3.77) we then obtain

sup
t∈J1

(
‖u− v‖2

Hk + ‖ut − vt‖2
Hk−2

)
≤ r2/4 + r2/4 +

CT̃0√
δ2

r1 + Cr2
1 ≤ r2 ≤ η

if we choose r1, and hence R, small enough.
Again we can argue in the same way for û instead of u, replacing ri, δi and R by r̂i, δ̂i and R̂.
For given 0 < r̂2 ≤ η̂, we thus obtain

sup
t∈J1

(
‖û− v‖2

Hk + ‖ût − vt‖2
Hk−2

)
≤ r̂2/4 + r̂2/4 +

CT̃0√
δ̂2

r̂1 + Cr̂2
1 ≤ r̂2 ≤ η̂

if r̂1 and R̂ are small enough.
. Step 4.
The previous step can be repeated m times until mT̃0 ≥ T0. We set R0 = R(C/2) (with
η = C/2) and use the resulting radius R̂ = R̂(η̂) for the continuity at û, concluding the proof
of the continuous dependence in Theorem 1.1.2.

1.4 Global regularity for subcritical biharmonic wave maps in
low dimension

This section is taken (with modifications) from [44], which appeared as a prepublication.
We start the section by considering the case where N is parallelizable, for which we can work
with normal vectors.
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Since for solutions u of (1.1.1), resp. the Cauchy problem for (1.1.2), the term ∂2
t u+ ∆2u is a

section over the normal bundle of u∗(TN), we let codim(N) = L− l for l ∈ N, l ≤ L and first
assume the normalbundle T⊥N of N ⊂ RL is parallelizable. This means there exists a frame
of (smooth) orthogonal vectorfields {ν1(p), . . . , νL−l(p)} ⊂ RL, p ∈ N with νi(p) ⊥ TpN for
every p ∈ N .
In this case, for any local solution u, we have an explicit representation for the nonlinearity in
terms of νi(u).

∂2
t u+ ∆2u =:

L−l∑
i=1

Gi(u)νi(u) =: Gi(u)νi(u), (1.4.1)

where Gi(u) = 〈∂2
t u+ ∆2u, νi(u)〉. We thus calculate

〈∂2
t u, νi(u)〉 = −〈ut, dνi(u)ut〉,
〈∆2u, νi(u)〉 = −3〈∇∆u, dνi(u)∇u〉 − 〈∇u, dνi(u)∇∆u〉
− 〈∇u, d3νi(u)(∇u)3 + 2d2νi(u)(∇u,∇2u) + d2νi(u)(∇u,∆u)〉
− 2〈∇2u, d2νi(u)(∇u)2 + dνi(∇2u)〉 − 〈∆u, d2νi(u)(∇u)2 + dνi(∆u)〉,

where we denote by dkνi the kth order differential of νi on N and write (∇u)2, (∇u)3 for
products of first order derivatives of u with eiter two or three factors, respectively. The precise
product, e.g. ∂xju · ∂xju or ∂xiu · ∂xju · ∂xju will become clear in the terms of the expansion.
The result in Theorem 1.1.3 is known for N = SL−1 and n ≤ 2 thanks to [13].

1.4.1 The case n = 2

We apply ∆ = ∂i∂
i on both sides of (1.4.1). Then, testing the differentiated equation by ∆ut,

we infer
d

2dt

∫
Rn

(|∆ut|2 + |∆2u|2)dx =

∫
Rn

∆(Gi(u)νi(u))∆utdx. (1.4.2)

Since Gi(u) contains derivatives of order three, we can not proceed by the Hölder inequality.
Instead, we follow [13], where the authors showed that the highest order derivative cancel in
the case N = SL−1, ν(u) = u. Since

∆(Gi(u)νi(u))∆ut = ∆(Gi(u))νi(u)∆ut + 2∇(Gi(u)) · ∇(νi(u))∆ut +Gi(u)∆νi(u)∆ut,

and

0 = ∆(νi(u)ut) = 2dνi(u)(∇u) · ∇ut + νi(u)∆ut + d2νi(u)(∇u)2ut + dνi(u)(∆u)ut,

it follows

∆(Gi(u)νi(u))∆ut =−∆Gi(u)
(
2dνi(u)(∇u) · ∇ut + d2νi(u)(∇u)2ut + dνi(u)(∆u)ut

)
+ 2∇Gi(u) · dνi(u)(∇u)∆ut

+Gi(u)
(
d2νi(u)(∇u)2 + dνi(u)∆u

)
∆ut.
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Hence we observe, by integration by parts for the first summand,∫
Rn

∆(Gi(u)νi(u))∆ut dx =

∫
Rn
∇Gi(u) · [3d2νi(u)(∇u)2∇ut + 3dνi(u)(∆u)∇ut]dx

+

∫
Rn
∇Gi(u) · [4dνi(u)(∇u)∆ut + d3νi(u)(∇u)3ut]dx

+

∫
Rn
∇Gi(u) · [3d2νi(u)(∆u,∇u)ut + dνi(u)(∇∆u)ut]dx

+

∫
Rn
Gi(u)(d2νi(u)(∇u)2ut + dνi(u)(∆u))∆ut dx.

Instead of deducing bounds for this terms that depend on the normal frame {ν1, . . . νL−l}, we
turn to the general case and use the normal projector I − Pu : RL → (TuN)⊥ along the map
u : Rn×[0, T )→ N in order to represent the nonlinearity in (1.4.1) as

∂2
t u+ ∆2u = (I − Pu)(∂2

t u+ ∆2u). (1.4.3)

Here, we proceed similarly, ie. we use

∆((I − Pu)(∂2
t u+ ∆2u))∆ut = ∆((I − Pu)2(∂2

t u+ ∆2u))∆ut, (1.4.4)

and hence

∆((I − Pu)2(∂2
t u+ ∆2u))∆ut =∆[(I − Pu)]((I − Pu)(∂2

t u+ ∆2u))∆ut

+ 2∇(I − Pu) · ∇((I − Pu)(∂2
t + ∆2u))∆ut

+ (∆[(I − Pu)(∂2
t u+ ∆2u)])(I − Pu)∆ut.

In order to treat the last summand, we expand

0 = ∆((I − Pu)ut) = (I − Pu)∆ut − d2Pu((∇u)2, ut)− dPu(∆u, ut)− 2dPu(∇u,∇ut).

Hence, as before, integration by parts yields∫
Rn

∆((I − Pu)(∂2
t u+ ∆2u))∆ut

=−
∫
Rn
d2Pu((∇u)2, (I − Pu)(∂2

t u+ ∆2u))∆ut dx

−
∫
Rn
dPu(∆u, (I − Pu)(∂2

t u+ ∆2u))∆ut dx

− 2

∫
Rn
dPu(∇u,∇[(I − Pu)(∂2

t u+ ∆2u)])∆ut dx

−
∫
Rn
∇[(I − Pu)(∂2

t u+ ∆2u)] · ∇[dPu(∆u, ut) + 2dPu(∇u,∇ut) + d2Pu((∇u)2, ut)] dx.
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We first note the pointwise bounds

|(I − Pu)(∂2
t u+ ∆2u)| . |ut|2 + |∇2u|2 + |∇2u||∇u|2 + |∇3u||∇u|+ |∇u|4 (1.4.5)

|∇[(I − Pu)(∂2
t u+ ∆2u)]| . |∇ut||ut|+ |∇u||ut|2 + |∆2u||∇u| (1.4.6)

+ |∇3u|(|∇2u|+ |∇u|2) + |∇u||∇2u|2 + |∇u|3|∇2u|+ |∇u|5,

where the constants only depend on the supremum norm

‖dP‖C3
b

= ‖dP‖Cb(N) +
∥∥d2P

∥∥
Cb(N)

+
∥∥d3P

∥∥
Cb(N)

+
∥∥d4P

∥∥
Cb(N)

.

We now estimate, using (1.4.5) and (1.4.6),

‖d2Pu((∇u)2, (I − Pu)(∂2
t u+ ∆2u))∆ut‖L1

. ‖∆ut‖L2 ‖∇u‖2
L∞

[
‖ut‖L∞ ‖ut‖L2 +

∥∥∇2u
∥∥
L∞
‖∆u‖L2 + ‖∇u‖2

L∞ ‖∆u‖L2

+ ‖∇∆u‖L2 ‖∇u‖L∞ + ‖∇u‖2
L4 ‖∇u‖2

L∞

]
,

‖dPu(∆u, (I − Pu)(∂2
t u+ ∆2u))∆ut‖L1

. ‖∆ut‖L2 ‖∆u‖L∞
[
‖ut‖L∞ ‖ut‖L2 +

∥∥∇2u
∥∥
L∞
‖∆u‖L2 + ‖∇u‖2

L∞ ‖∆u‖L2

+ ‖∇∆u‖L2 ‖∇u‖L∞ + ‖∇u‖2
L4 ‖∇u‖2

L∞

]
= ‖∆ut‖L2 ‖∆u‖L∞

[
‖ut‖L∞ ‖ut‖L2 +

∥∥∇2u
∥∥
L∞
‖∆u‖L2

]
+ h(t)2 ‖∆ut‖L2 ‖∆u‖L∞

[
‖∆u‖L2 + ‖∇u‖2

L4

]
+ h(t) ‖∆ut‖L2 ‖∆u‖L∞ ‖∇∆u‖L2 .

where we set h(t) := ‖∇u(t)‖L∞ . We note further that the equality is up to the constant from
the estimate. We hence proceed by estimating

‖dPu(∇u,∇[(I − Pu)(∂2
t u+ ∆2u)])∆ut‖L1

. ‖∆ut‖L2 ‖∇u‖L∞
[
‖ut‖L∞ ‖∇ut‖L2 + ‖∇u‖L2 ‖ut‖2

L∞ +
∥∥∆2u

∥∥
L2 ‖∇u‖L∞

+ ‖∇∆u‖L2 (
∥∥∇2u

∥∥
L∞

+ ‖∇u‖2
L∞) + ‖∇u‖L∞ ‖∆u‖L2

∥∥∇2u
∥∥
L∞

+ ‖∆u‖L2 ‖∇u‖3
L∞

+ ‖∇u‖L2 ‖∇u‖4
L∞

]
.

The latter upper bound equals the sum of

h(t) ‖∆ut‖L2

[
‖ut‖L∞ ‖∇ut‖L2+‖∇u‖L2 ‖ut‖2

L∞+‖∇∆u‖L2

∥∥∇2u
∥∥
L∞

+‖∆u‖L2 ‖∇u‖3
L∞

]
,
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and

h2(t) ‖∆ut‖L2

[ ∥∥∆2u
∥∥
L2 + ‖∇u‖L∞ ‖∇∆u‖L2 + ‖∆u‖L2

∥∥∇2u
∥∥
L∞

+ ‖∇u‖L2 ‖∇u‖3
L∞

]
.

We calculate

∇[dPu(∆u, ut) + 2dPu(∇u,∇ut) + d2Pu((∇u)2, ut)]

= d2Pu(∇u,∆u, ut) + dPu(∇∆u, ut) + dPu(∆u,∇ut) + 2d2Pu((∇u)2,∇ut)
+ 2dPu(∇2u,∇ut) + 2dPu(∇u,∇2ut) + d3Pu((∇u)3, ut)

+ 2d2Pu(∇u,∇2u, ut) + d2Pu((∇u)2,∇ut),

and hence

‖∇[dPu(∆u, ut) + 2dPu(∇u,∇ut) + d2Pu((∇u)2, ut)] · ∇[(I − Pu)(∂2
t u+ ∆2u)]‖L1

.
(
‖∆u‖L2 ‖∇u‖L∞ ‖ut‖L∞ + ‖∇∆u‖L2 ‖ut‖L∞ + (‖∆u‖L∞ + ‖∇u‖2

L∞) ‖∇ut‖L2

+ ‖∆ut‖L2 ‖∇u‖L∞ + ‖∇u‖3
L∞ ‖ut‖L2

)[
‖ut‖L∞ ‖∇ut‖L2 + ‖∇u‖L2 ‖ut‖2

L∞

+
∥∥∆2u

∥∥
L2 ‖∇u‖L∞ + ‖∇∆u‖L2 (

∥∥∇2u
∥∥
L∞

+ ‖∇u‖2
L∞) + ‖∇u‖L∞ ‖∆u‖L2

∥∥∇2u
∥∥
L∞

.

+ ‖∆u‖L2 ‖∇u‖3
L∞ + ‖∇u‖L2 ‖∇u‖4

L∞

]
.

We now collect all terms which are at least quadratic, linear or constant in h(t), i.e. the latter
bound equals

J1(u) + h(t)J2(u) + h(t)J3(u) + h2(t)J4(u),

where

J1(u) = (‖∇∆u‖L2 ‖ut‖L∞ + ‖∆u‖L∞ ‖∇ut‖L2)
[
‖ut‖L∞ ‖∇ut‖L2 + ‖∇u‖L2 ‖ut‖2

L∞

+ ‖∇∆u‖L2

∥∥∇2u
∥∥
L∞

+ ‖∆u‖L2 ‖∇u‖3
L∞

]
,

J2(u) = (‖∇∆u‖L2 ‖ut‖L∞ + ‖∆u‖L∞ ‖∇ut‖L2)
[ ∥∥∆2u

∥∥
L2 + ‖∇u‖L∞ ‖∇∆u‖L2

+ ‖∆u‖L2

∥∥∇2u
∥∥
L∞

+ ‖∇u‖L2 ‖∇u‖3
L∞

]
,

J3(u) = (‖∆u‖L2 ‖ut‖L∞ + ‖∇ut‖L2 ‖∇u‖L∞ + ‖∆ut‖L2 + ‖∇u‖2
L∞ ‖ut‖L2)

[
‖ut‖L∞ ‖∇ut‖L2 ,

+ ‖∇u‖L2 ‖ut‖2
L∞ + ‖∇∆u‖L2

∥∥∇2u
∥∥
L∞

+ ‖∆u‖L2 ‖∇u‖3
L∞

]
,

J4(u) = (‖∆u‖L2 ‖ut‖L∞ + ‖∇ut‖L2 ‖∇u‖L∞ + ‖∆ut‖L2 + ‖∇u‖2
L∞ ‖ut‖L2)

[ ∥∥∆2u
∥∥
L2

+ ‖∇u‖L∞ ‖∇∆u‖L2 + ‖∆u‖L2

∥∥∇2u
∥∥
L∞

+ ‖∇u‖L2 ‖∇u‖3
L∞

]
.

We note that the energy is conserved, ie. for t ∈ [0, T )

2E(u(t)) = ‖∆u(t)‖2
L2 + ‖∂tu(t)‖2

L2 = ‖∆u0‖2
L2 + ‖u1‖2

L2 = 2E(u0, u1), (1.4.7)
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and further, this implies the bounds

sup
t∈[0,T )

‖∇u(t)‖L2 .
√

1 + T (
√
E(u0, u1) + ‖∇u0‖L2), and (1.4.8)

sup
t∈[0,T )

‖u(t)− u0‖L2 . T
√
E(u0, u1). (1.4.9)

We recall the following cases of Gagliardo-Nirenberg’s interpolation for n = 2

‖∆u‖L∞ + ‖∇∆u‖L2 .
∥∥∆2u

∥∥ 1
2

L2 ‖∆u‖
1
2

L2 , ‖ut‖L∞ . ‖∆ut‖
1
2

L2 ‖ut‖
1
2

L2 , (1.4.10)

‖∇u‖L∞ .
∥∥∆2u

∥∥ 1
3

L2 ‖∇u‖
2
3

L2 , ‖∇u‖L4 .
∥∥∆2u

∥∥ 1
6

L2 ‖∇u‖
5
6

L2 , and (1.4.11)

‖∇ut‖L4 . ‖∆ut‖
3
4

L2 ‖ut‖
1
4

L2 . (1.4.12)

Setting
E(u(t)) := ‖∆ut(t)‖L2 +

∥∥∆2u(t)
∥∥
L2 , t ∈ [0, T ),

by (1.4.10), (1.4.11) and the estimates above, there exists a constant C(T ) = C(N, u0, u1)(1 +
T )α for some α > 0, such that C(N, u0, u1) only depends on the norm ‖dP‖C3

b
, the optimal

Sobolev constant in Gagliardo-Nirenberg’s interpolation and E(u0, u1), ‖∇u0‖L2 and such
that the following holds.

d

dt
E2(u(t)) ≤ C(T )(1 + h(t) + h2(t))(E(t) + E2(t)) (1.4.13)

≤ C(T )(1 + h2(t))(1 + E2(t)), t ∈ [0, T ).

Using the idea from [13], we now apply the sharp Sobolev inequality of Brezis-Gallouet-
Wainger from [5], [7] in order to bound (we assume u is not a constant)

h(t) ≤ C̃ ‖∇u(t)‖H1

(
1 + log

1
2

(
1 +
‖∇u(t)‖2

H2

‖∇u(t)‖2
H1

))
, t ∈ [0, T ). (1.4.14)

Thus, using (1.4.10), (1.4.8) and (1.4.7),

h2(t) ≤ C(T )
(
1 + log

(
1 + E2(t)

))
, t ∈ [0, T ), (1.4.15)

and hence
d

dt
(e+ E2(u(t))) ≤ C(T ) log

(
e+ E2(t)

)
(e+ E2(t)), t ∈ [0, T ). (1.4.16)

This suffices for a Gronwall-type inequality for log(e+E2(t)) and hence by (1.4.7) and (1.4.10),
(1.4.11) and (1.4.12), we have

lim sup
t→T

(‖ut‖2
H2 + ‖∇u‖2

H3) <∞,

as long as T < ∞. Especially, we use that the above norm bounds ‖∇u‖L∞ , ‖ut‖L∞ on
compact (time) intervals. By the blow up condition (1.1.4) of Theorem 1.1.2, the solution
hence extends to a global solution with u− u0 ∈ C(R, Hk) ∩ C1(R, Hk−2).
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1.4.2 The case n = 1

Here, by Gagliardo-Nirenberg’s estimate, we infer the bound

‖∇u‖L∞ .
∥∥∇2u

∥∥ 1
2

L2 ‖∇u‖
1
2

L2 . (1.4.17)

Hence, the a priori bound is derived similarly for (∇u(t), ut(t)) ∈ H2(R)×H1(R). We note

d

dt

∫
R
|∇ut|2 + |∇∆u|2 dx = −

∫
R
dPu(∇u, (I − Pu)(∂2

t u+ ∆2u)) · ∇ut

−
∫
R
(I − Pu)(∂2

t u+ ∆2u) · (d2Pu((∇u)2, ut) + dPu(∇2u, ut) + dPu(∇u,∇ut))dx.

Thus we estimate, as before

‖dPu(∇u, (I − Pu)(∂2
t u+ ∆2u))∇ut‖L1

. ‖∇ut‖L2 ‖∇u‖L∞
[
‖ut‖L∞ ‖ut‖L2 +

∥∥∇2u
∥∥
L∞

∥∥∇2u
∥∥
L2

+ ‖∇u‖2
L∞

∥∥∇2u
∥∥
L2 +

∥∥∇3u
∥∥
L2 ‖∇u‖L∞ + ‖∇u‖2

L4 ‖∇u‖2
L∞

]
, and

‖(d2Pu((∇u)2, ut) + dPu(∇2u, ut) + dPu(∇u,∇ut))[(I − Pu)(∂2
t u+ ∆2u)]‖L1

. (‖ut‖L2 ‖∇u‖2
L∞ +

∥∥∇2u
∥∥
L2 ‖ut‖L∞ + ‖∇ut‖L2 ‖∇u‖L∞)

[
‖ut‖L∞ ‖ut‖L2

+
∥∥∇2u

∥∥
L∞

∥∥∇2u
∥∥
L2 + ‖∇u‖2

L∞

∥∥∇2u
∥∥
L2 +

∥∥∇3u
∥∥
L2 ‖∇u‖L∞ + ‖∇u‖2

L4 ‖∇u‖2
L∞

]
.

Hence from the interpolation estimates (1.4.17),∥∥∇2u
∥∥
L∞
.
∥∥∇4u

∥∥ 1
4

L2

∥∥∇2u
∥∥ 3

4

L2 , ‖ut‖L∞ . ‖∇ut‖
1
2

L2 ‖ut‖
1
2

L2 , (1.4.18)

and (1.4.7), (1.4.8), there holds (for C(T ) > 0 as before)

d

dt
(1 + E(t)) ≤ C(T )(1 + E(t)), t ∈ [0, T ) (1.4.19)

which suffices to use a Gronwall argument in order to conclude the proof.
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Appendix

1.A Auxiliary calculations and approximation of the initial
data

In this section, we provide basic calculations in Section 1.A.1 and 1.A.3 that are used throught
the chapter, as well as a standard approximation result for the initial data in Section 1.A.2,
which is applied for the Bona-Smith argument in Section 1.3.4.

1.A.1 Derivatives of the nonlinearity

In this section we assume u, v : Rn×[0, T ]→ RL are smooth maps. The calculations hold if u
and v are sufficiently regular to apply the Leibniz formula (e.g. with weak derivatives in L2).
Lemma 1.2.8 and the Leibniz formula imply the following substitution rule.

Lemma 1.A.1. Let l ∈ N. Then we have

∇l(N (u)) = J1 + J2 + J3,

where the terms J1, J2, and J3 are of the form (with ki,mi ∈ N0)

J1 =
∑
(∗)

dj+1Pu(∇m1+1u?. . .?∇mj+1u)[∇k1ut?∇k2ut +∇k1+2u?∇k2+2u+∇k1+3u?∇k2+1u]

with (∗) : 0 ≤ m ≤ l,
∑2

i=1 ki = l −m, j = min{1,m}, . . . ,m,
∑j

k=1mk = m− j;

J2 =
∑
(∗)

dj+2Pu(∇m1+1u ? · · · ?∇mj+1u)[∇k1+1u ?∇k2+1u ?∇k3+2u]

with (∗) : 0 ≤ m ≤ l,
∑3

i=1 ki = l −m, j = min{1,m}, . . . ,m,
∑j

k=1mk = m− j;

J3 =
∑
(∗)

dj+3Pu(∇m1+1u ? · · · ?∇mj+1u)[∇k1+1u ?∇k2+1u ?∇k3+1u ?∇k4+1u]

with (∗) : 0 ≤ m ≤ l,
∑4

i=1 ki = l −m, j = min{1,m}, . . . ,m,
∑j

k=1mk = m− j.
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The following lemmata are used to prove the existence of a fixed point in Section 1.3.1 and the
uniqueness result in Section 1.3.3.
Lemma 1.A.2. Letm ∈ N, k ∈ N0, and w = u− v. Form ≥ 2 we have

∇m(dkPu − dkPv) =
m∑
j=1

∑
m1+···+mj=m−j

(dj+kPu − dj+kPv)(∇m1+1u, . . . ,∇mj+1u) (1.A.1)

+
m∑
j=2

∑
m1+···+mj=m−j

dj+kPv(∇m1+1w,∇m2+1u, . . . ,∇mj+1u)

+
m∑
j=2

∑
m1+···+mj=m−j

dj+kPv(∇m1+1v,∇m2+1w,∇m3+1u, . . . ,∇mj+1u)

:

+
m∑
j=2

∑
m1+···+mj=m−j

dj+kPv(∇m1+1v, . . . ,∇mj−1+1v,∇mj+1w),

and form = 1

∇(dkPu − dkPv) = (dkPu − dkPv)(∇u) + dkPv(∇w). (1.A.2)

Proof. The result follows from subtracting the expansion in Lemma 1.2.8 for dkPv

∇m(dkPv) =
m∑
j=1

∑
m1+···+mj=m−j

dj+kPv(∇m1+1v ? · · · ?∇mj+1v),

from the same expansion of ∇m(dkPu). Then subsequently adding and subtracting the inter-
mediate terms in the formula above gives the result.
Corollary 1.A.3. Letm ∈ N, k ∈ N0, and w = u− v. Then we have

∇m
[
(dPu − dPv)(ut · ut +∇2u ?∇2u+∇3u ?∇u)

]
=
∑
(∗)

(dj+1Pu − dj+1Pv)(∇m1+1u, . . . ,∇mj+1u)(∇k1ut ?∇k2ut

+∇k1+2u ?∇k2+2u+∇k1+3u ?∇k2u)

+
∑
(∗∗)

dj+1Pv(∇m1+1w,∇m2+1u, . . . ,∇mj+1u)(∇k1ut ?∇k2ut

+∇k1+2u ?∇k2+2u+∇k1+3u ?∇k2u)

:

+
∑
(∗∗)

dj+1Pv(∇m1+1v, . . . ,∇mj−1+1v,∇mj+1w)(∇k1ut ?∇k2ut

+∇k1+2u ?∇k2+2u+∇k1+3u ?∇k2u),
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where (∗) : j = 1, . . . ,m andm1+· · ·+mj+k1+k2 = m−j, and (∗∗) : j = 2, . . . ,m andm1+
· · ·+mj + k1 + k2 = m− j. Likewise we have

∇m
[
(d2Pu − d2Pv)(∇u ?∇u ?∇2u)

]
=
∑
(∗)

(dj+2Pu − dj+2Pv)(∇m1+1u, . . . ,∇mj+1u)(∇k1+1u ?∇k2+1u ?∇k3+2u)

+
∑
(∗∗)

dj+2Pv(∇m1+1w,∇m2+1u, . . . ,∇mj+1u)(∇k1+1u ?∇k2+1u ?∇k3+2u)

:

+
∑
(∗∗)

dj+2Pv(∇m1+1v, . . . ,∇mj−1+1v,∇mj+1w)(∇k1+1u ?∇k2+1u ?∇k3+2u)

where (∗) : j = 1, . . . ,m and m1 + · · · + mj + k1 + k2 + k3 = m − j, and (∗∗) : j =
2, . . . ,m andm1 + · · ·+mj + k1 + k2 + k3 = m− j. Further

∇m
[
(d3Pu − d3Pv)(∇u ?∇u ?∇u ?∇u)

]
=
∑
(∗)

(dj+3Pu − dj+3Pv)(∇m1+1u, . . . ,∇mj+1u)(∇k1+1u ?∇k2+1u ?∇k3+1u ?∇k4+1u)

+
∑
(∗∗)

dj+3Pv(∇m1+1w,∇m2+1u, . . . ,∇mj+1u)(∇k1+1u ?∇k2+1u ?∇k3+1u ?∇k4+1u)

:

+
∑
(∗∗)

dj+3Pv(∇m1+1v, . . . ,∇mj−1+1v,∇mj+1w)(∇k1+1u ?∇k2+1u ?∇k3+1u ?∇k4+1u)

where we sum over (∗) : j = 1, . . . ,m andm1 + · · ·+mj + k1 + k2 + k3 + k4 = m− j, (∗∗) :
j = 2, . . . ,m andm1 + · · ·+mj + k1 + k2 + k3 + k4 = m− j.
Also, the casem = 1 is similar.

Proof. The assertions are consequences of the Leibniz rule and Lemma 1.A.2.

Corollary 1.A.4. We have form ∈ N, m ≥ 2 and w = u− v that

∇m(N (u)−N (v))
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is a linear combination of terms of the form

(dj+1Pu − dj+1Pv)(∇m1+1u, . . . ,∇mj+1u)(∇k1ut ?∇k2ut

+∇k1+2u ?∇k2+2u+∇k1+3u ?∇k2u),

dj+1Pv(∇m1+1w,∇m2+1h1, . . . ,∇mj+1hj−1)(∇k1ut ?∇k2ut

+∇k1+2u ?∇k2+2u+∇k1+3u ?∇k2u),

(dj+2Pu − dj+2Pv)(∇m1+1u, . . . ,∇mj+1u)(∇k1+1u ?∇k2+1u ?∇k3+2u),

dj+2Pv(∇m1+1w,∇m2+1h1, . . . ,∇mj+1hj−1)(∇k1+1u ?∇k2+1u ?∇k3+2u),

(dj+3Pu − dj+3Pv)(∇m1+1u, . . . ,∇mj+1u)(∇k1+1u ?∇k2+1u ?∇k3+1u ?∇k4+1u),

dj+3Pv(∇m1+1w,∇m2+1h1, . . . ,∇mj+1hj−1)(∇k1+1u ?∇k2+1u ?∇k3+1u ?∇k4+1u), and

dj+1Pv(∇m1+1v, . . . ,∇mj+1v)(∇k1wt ?∇k2ht +∇k1+2w ?∇k2+2h

+∇k1+3w ?∇k2h+∇k1+3h ?∇k2w), h ∈ {u, v},

dj+2Pv(∇m1+1v, . . . ,∇mj+1v)(∇k1+1w ?∇k2+1h1 ?∇k3+2h2

+∇k1+1h1 ?∇k2+1h2 ?∇k3+2w),

dj+3Pv(∇m1+1v, . . . ,∇mj+1v)(∇k1+1w ?∇k2+1h1 ?∇k3+1h2 ?∇k4+1h3),

where j, k1, k2, k3, k4,m1, . . .mj and h, h1, . . . , hj−1 ∈ {u, v} are as above in Corollary 1.A.3.
Also, we have a similar (but simpler) statement form = 1.

Proof. We write, according to the definition of N (u) in (1.1.2),

N (u)−N (v) = (dPu − dPv)(ut · ut +∇2u ?∇2u+∇3u ?∇u)

+ (d2Pu − d2Pv)(∇u ?∇u ?∇2u) + (d3Pu − d3Pv)(∇u ?∇u ?∇u ?∇u)

+ dPv(wt · ut + vt · wt +∇w ?∇u+∇v ?∇w +∇3w ?∇u+∇3v ?∇w)

+ d2Pv(∇w ?∇u ?∇2u+∇v ?∇w ?∇2u+∇v ?∇v ?∇2w)

+ d3Pv(∇w ?∇u ?∇u ?∇u+∇v ?∇w ?∇u ?∇u
+∇v ?∇v ?∇w ?∇u+∇v ?∇v ?∇v ?∇w).

Then, we use Corollary 1.A.3 for the first three terms in the sum above. For the latter three, we
use Lemma 1.2.8 and the Leibniz rule.

Let ε ∈ (0, 1). We recall from (1.3.4) the definition

Nε(u) = N (u)− εd2Pu(ut,∇u,∇u)− ε2dPu(∇ut,∇u)− εdPu(ut,∆u).
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Lemma 1.A.5. For m ∈ N0 the derivative ∇m(Nε(u)) compared to ∇m(N (u)) contains the
additional terms

dj+1Pu(∇m1+1u ? · · · ?∇mj+1u)(∇k1ut ?∇k2+2u+∇k1+1ut ?∇k2+1u), and

dj+2Pu(∇m1+1u ? · · · ?∇mj+1u)(∇k1ut ?∇k2+1u ?∇k3+1u),

with j,m1, . . . ,mj, k1, k2, k3 similarly to Lemma 1.A.1.
Further∇m(Nε(u))−∇m(Nε(v)) compared to∇m(N (u))−∇m(N (v)) contains additional
terms of the form

(dj+1Pu − dj+1Pv)(∇m1+1u, . . . ,∇mj+1u)(∇k1ut ?∇k2+2u+∇k1+1ut ?∇k2+1u),

dj+1Pv(∇m1+1w,∇m2+1h1, . . . ,∇mj+1hj−1)(∇k1ut ?∇k2+2u+∇k1+1ut ?∇k2+1u),

(dj+2Pu − dj+2Pv)(∇m1+1u, . . . ,∇mj+1u)(∇k1ut ?∇k2+1u ?∇k3+1u),

dj+2Pv(∇m1+1w,∇m2+1h1, . . . ,∇mj+1hj−1)(∇k1ut ?∇k2+1u ?∇k3+1u), and

dj+1Pv(∇m1+1v, . . . ,∇mj+1v)(∇k1wt ?∇k2+2h+∇k1+1wt ?∇k2+1h

+∇k1h ?∇k2+2w +∇k1+1ht ?∇k2+1w), h ∈ {u, v},

dj+2Pv(∇m1+1v, . . . ,∇mj+1v)(∇k1wt ?∇k2+1h1 ?∇k3+1h2

+∇k1(h1)t ?∇k2+1h2 ?∇k3+1w),

with w = u− v and j,m1, . . . ,mj, k1, k2, k3, h1, . . . , hj−1 similarly to Corollary 1.A.4.

The implicit constants may depend on ε here.

1.A.2 Approximation of the initial data

In this sectionwe construct certain approximations of initial data in order to conclude continuous
dependence of the solution on the initial data. As in the previous sections, take functions
u0, u1 : Rn → RL with u0 ∈ N , u1 ∈ Tu0N a.e. on Rn, and

(∇u0, u1) ∈ Hk−1(Rn)×Hk−2(Rn).

for some k > bn
2
c+ 2 with k ∈ N.

Lemma 1.A.6. Let the functions (u0, u1) be as above. Then there is a number δ∗ = δ∗(N) > 0
such that for δ ∈ (0, δ∗] there exist maps uδ0, uδ1 ∈ C∞(Rn,RL) such that ∇uδ0, uδ1 ∈ Hm for
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allm ∈ N, uδ0 ∈ N and uδ1 ∈ Tuδ0N on Rn which satisfy

u0 − uδ0 ∈ L2 and
∥∥u0 − uδ0

∥∥
L2 ≤ C0δ, (1.A.3)∥∥(∇uδ0, uδ1)− (∇u0, u1)

∥∥
Hk−2×Hk−3 = o(

√
δ) as δ → 0+, (1.A.4)∥∥(∇uδ0, uδ1)− (∇u0, u1)

∥∥
Hk−1×Hk−2 = o(1) as δ → 0+, (1.A.5)∥∥(∇uδ0, uδ1)
∥∥
Hk×Hk−1 ≤ C0

1√
δ

(1.A.6)

for a constant C0 = C0(‖Pp‖Ckb , ‖∇u0‖Hk−1 , ‖u1‖Hk−2) > 0. Further let (v0, v1) be as above
with u0 − v0 ∈ Hk(Rn) and

‖(u0, u1)− (v0, v1)‖Hk×Hk−2 ≤ R

for some R > 0. Then for δ ∈ (0, δ∗] we have∥∥(∇vδ0, vδ1)
∥∥
Hk×Hk−1 ≤ C0(1 +Rk)

1√
δ
, (1.A.7)∥∥(uδ0, u

δ
1)− (vδ0, v

δ
1)
∥∥
Hk×Hk−2 ≤ C0(1 +Rk) ‖(u0, u1)− (v0, v1)‖Hk×Hk−2 . (1.A.8)

Proof. We choose the caloric extension for regularization, i.e., we consider ηδ ∗ u0 and ηδ ∗ u1

where
ηδ(x) = (4πδ)−

n
2 e−

|x|2
4δ , δ > 0, x ∈ Rn,

andT (δ)f = ηδ∗f is the heat semigroup. Since u1 ∈ C0
b (Rn) and u0 ∈ C2

b (Rn) by assumption,
the convolution is well defined for u0 and u1. Moreover, ηδ ∗ u0 tends to u0 and ηδ ∗ u1 to u1

uniformly as δ → 0+, as well as

∇(ηδ ∗ u0)→ ∇u0 in Hk−1(Rn), ηδ ∗ u1 → u1 in Hk−2(Rn) as δ → 0+.

The uniform convergence yields

dist(u0 ∗ ηδ(x), N) ≤ |u0 ∗ ηδ(x)− u0(x)| → 0 as δ → 0+ (1.A.9)

uniformly in x ∈ Rn. Hence, if δ > 0 is small enough we can define

uδ0 := π(u0 ∗ ηδ) and uδ1 := Pu0∗ηδ(u1 ∗ ηδ).

Recall that π is the nearest point map and that Pu0∗ηδ(u1 ∗ ηδ) ∈ Tuδ0N by definition of the
projector P and uδ0. Especially we have

|uδ0(x)− u0 ∗ ηδ(x)| = dist(u0 ∗ ηδ(x), N) ≤ |u0(x)− u0 ∗ ηδ(x)|,

|uδ0(x)− u0(x)| ≤ 2|u0(x)− u0 ∗ ηδ(x)|
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for x ∈ Rn . We further note that uδ0 and uδ1 are smooth maps and that we have the uniform
convergence

uδ0 → u0, uδ1 → u1

as δ → 0+ by construction of uδ0 (and the mean value theorem for uδ1). Assertion (1.A.3)
follows from ∥∥δ−1(u0 ∗ ηδ − u0)

∥∥
L2 =

∥∥∥∥1

δ

∫ δ

0

(∆u0) ∗ ηs ds
∥∥∥∥
L2

. ‖∆u0‖L2 ,

by Young’s inequality for the convolution. Since ∇uδ0 = Pu0∗ηδ((∇u0) ∗ ηδ), we further have
to treat the terms

Pu0∗ηδ((∇u0) ∗ ηδ)−∇u0 = Pu0∗ηδ((∇u0) ∗ ηδ −∇u0) + (Pu0∗ηδ − Pu0)∇u0,

Pu0∗ηδ(u1 ∗ ηδ)− u1 = Pu0∗ηδ(u1 ∗ ηδ − u1) + (Pu0∗ηδ − Pu0)u1.

We start by estimating (by means of the mean value theorem for P )

‖Pu0∗ηδ((∇u0) ∗ ηδ)−∇u0‖L2 ≤ ‖Pu0∗ηδ((∇u0) ∗ ηδ −∇u0)‖L2 + ‖(Pu0∗ηδ − Pu0)∇u0‖L2

. δ

(
O(1) + ‖∇u0‖L2

∥∥∥∥1

δ
(u0 ∗ ηδ − u0)

∥∥∥∥
L∞

)
,

where 1
δ
(u0 ∗ ηδ − u0)→ ∆u0 uniformly as δ → 0+ since u0 ∈ C2

b (Rn). Similarly, employing
Lemmas 1.2.8, 1.2.9 and 1.A.2 as before, we see∥∥∇k−2(Pu0∗ηδ((∇u0) ∗ ηδ)−∇u0)

∥∥
L2

.
∑

l1+l2=k−2

[ ∥∥∇l1(Pu0∗ηδ) · ∇l2((∇u0) ∗ ηδ −∇u0)
∥∥
L2 +

∥∥∇l1(Pu0∗ηδ − Pu0) · ∇l2+1u0

∥∥
L2

]
. (1 + ‖∇u0‖kHk−2 + ‖(∇u0) ∗ ηδ‖kHk−2) ‖(∇u0) ∗ ηδ −∇u0‖Hk−2

+ δ
∥∥∇k−1u0

∥∥k
L2

∥∥δ−1(u0 ∗ ηδ − u0)
∥∥
L∞

. o(
√
δ) as δ → 0+.

Here we also use [39, Prop. 2.2.4]. Interpolation and an analogous argument for uδ1 in Hk−3

then allows us to conclude (1.A.4). Assertion (1.A.5) is shown in the same way, with o(1)
instead of o(

√
δ) in the upper bound. For (1.A.6), we compute∥∥∇k(Pu0∗ηδ((∇u0) ∗ ηδ))

∥∥
L2

.
∑

l1+l2=k
l1>0

∥∥∇l1(Pu0∗ηδ) · (∇l2+1u0 ∗ ηδ)
∥∥
L2 +

∥∥Pu0∗ηδ∇(∇ku0 ∗ ηδ)
∥∥
L2

. (1 + ‖∇u0‖kHk−1) ‖∇u0‖Hk−1 +
∥∥Pu0∗ηδ∇(∇ku0 ∗ ηδ)

∥∥
L2
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as before. The last term is bounded via∥∥Pu0∗ηδ∇(∇ku0 ∗ ηδ)
∥∥
L2 .

∥∥(∇ku0) ∗ ∇(ηδ)
∥∥
L2 .

1√
δ
‖∇u0‖Hk−1

again by Young’s inequality. Similarly, the term ∇k−1uδ1 is estimated in L2(Rn). The above
reasoning also shows (1.A.7) if we choose the constant C0 > 0 suitably. In order to prove
(1.A.8), similarly as above we compute∥∥uδ0 − vδ0∥∥L2 . ‖ηδ ∗ (u0 − v0)‖L2 . ‖u0 − v0‖L2 .

by the mean value theorem and Young’s inequality. Writing

Pu0∗ηδ((∇u0) ∗ ηδ)− Pv0∗ηδ((∇v0) ∗ ηδ)
= Pu0∗ηδ((∇u0) ∗ ηδ − (∇v0) ∗ ηδ) + (Pu0∗ηδ − Pv0∗ηδ)((∇v0) ∗ ηδ),

we deduce

‖∇k−1(Pu0∗ηδ((∇u0) ∗ ηδ)− Pv0∗ηδ((∇v0) ∗ ηδ))‖L2

.
∑

l1+l2=k−1

∥∥∇l1(Pu0∗ηδ) · ∇l2((∇u0) ∗ ηδ − (∇v0) ∗ ηδ)
∥∥
L2

+
∑

l1+l2=k−1

∥∥∇l1(Pu0∗ηδ − Pv0∗ηδ) · (∇l2+1v0) ∗ ηδ
∥∥
L2

. (1 + ‖∇u0‖kHk−1 + ‖∇v0‖kHk−1) ‖∇u0 −∇v0‖Hk−1 +
∥∥∇kv0

∥∥k
L2 ‖u0 − v0‖L∞

. (1 + ‖∇u0‖kHk−1 +Rk) ‖∇u0 −∇v0‖Hk−1 +
∥∥∇kv0

∥∥k
L2 ‖u0 − v0‖Hk

. (1 + ‖∇u0‖kHk−1 +Rk) ‖∇u0 −∇v0‖Hk−1 ,

The claim (1.A.8) then follows by interpolation and a proper choice of C0 > 0. Finally the
estimate for

uδ1 − vδ1 = Pu0∗ηδ(u1 ∗ ηδ − v1 ∗ ηδ) + (Pu0∗ηδ − Pv0∗ηδ)(v1 ∗ ηδ)

works similarly.

1.A.3 Establishing the identity (1.3.57)

For f, g ∈ H1(Rn), h ∈ R and i ∈ {1, . . . , n} we set

Di
hf(x) =

1

h
(f(x+ eih)− f(x)).
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Observe that Di
h(fg)(x) = (Di

hf)(x)g(x + eih) + f(x)(Di
hg)(x). Since we only use the

product rule integrated over x ∈ Rn and g(·+ hei)→ g strongly in H1 as h→ 0, we drop the
h-dependence in g(·+ eih) in the following calculation.

1

2

d

dt

(∥∥Di
h∇k−3ut

∥∥2

L2 +
∥∥Di

h∇k−1u
∥∥2

L2

)
=

∫
Rn
Di
h∇k−3

(
(I − Pu)N (u)

)
·Di

h∇k−3ut dx

=
k−3∑
l=1

∫
Rn
Di
h(∇l(I − Pu) ?∇k−3−lN (u)) ·Di

h∇k−3ut dx

+

∫
Rn
Di
h(I − Pu)∇k−3N (u) ·Di

h∇k−3ut dx+

∫
Rn
Di
h∇k−3N (u) · (I − Pu)Di

h∇k−3ut dx

=
k−3∑
l=1

∫
Rn
Di
h(∇l(I − Pu) ?∇k−3−lN (u)) ·Di

h∇k−3ut dx

+

∫
Rn
Di
h(I − Pu)∇k−3N (u) ·Di

h∇k−3ut dx+

∫
Rn
Di
h(∇k−3N (u) · (I − Pu)Di

h∇k−3ut) dx

+

∫
Rn
∇k−3N (u) ·Di

h(D
i
h(I − Pu)∇k−3ut) dx

+
k−3∑
l=1

∫
Rn
∇k−3N (u) · (Di

h)
2(∇l(I − Pu) ?∇k−3−lut) dx =:

∫
Rn
T ih(u) dx,

where the second identity follows from (I − Pu)ut = 0. For a fixed time t ∈ [0, Tm), the
regularity of u yields the limit

lim
h→0

∫
Rn
T ih(u(t)) dx =

k−3∑
l=1

∫
Rn
∂xi(∇l(I − Pu) ?∇k−3−lN (u)) · ∇k−3∂xiut dx

−
∫
Rn
dPu(∂xiu,∇k−3N (u)) · ∇k−3∂xiut dx

−
∫
Rn
∇k−3N (u) · ∂xi

(
dPu(∂xiu,∇k−3ut)

)
dx

+
k−3∑
l=1

∫
Rn
∇k−3N (u) · ∂2

xi
(∇l(I − Pu) ?∇k−3−lut) dx

=:

∫
Rn
T i(u(t)) dx.

Here we also used that∫
Rn
Di
h(∇k−3N (u) · (I − Pu)Di

h∇k−3ut) dx→ 0 as h→ 0
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by Gauss’ Theorem. Estimating as in Section 1.3.2, we derive∣∣∣∣∫
Rn
T i(u(t)) dx

∣∣∣∣ . sup
s∈[0,T ]

(1 + ‖∇u(s)‖2k
Hk−1 + ‖ut(s)‖2k

Hk−2)(‖∇u(s)‖2
Hk−1 + ‖ut(s)‖2

Hk−2).

for t ∈ [0, T ] and T < Tm. In the limit h→ 0 it follows∥∥∇k−3∂xiut
∥∥2

L2 +
∥∥∇k−1∂xiu

∥∥2

L2 = 2

∫ t

0

∫
Rn
T i(u(s)) dx ds+

∥∥∇k−3∂xiu1

∥∥2

L2 +
∥∥∇k−1∂xiu0

∥∥2

L2

by dominated convergence. The right-hand side is continuous in t, and hence the highest
derivatives ∇kut,∇k−2u : [0, Tm) → L2 are continuous, since we already know their weak
continuity. Finally, summing over i = 1, . . . , n and estimating T i(u) as in Section 1.3.2, we
conclude the blow-up criterion from (1.1.4) for the solution u.

1.A.4 Coordinate expansion of the mapping equation

We now derive (1.1.2) from the condition (1.1.1) for smooth solutions u : Rm×[0, T ) → N .
Note thatwe use the sumconvention, i.e. the same indices in super-/subscriptmeans summation.
Since ∂tu ∈ TuN , we infer the identity

[(I − Pu)(∂2
t u)]k = (δkl − (Pu)

k
l )(∂

2
t u

l) = ∂t(δ
k
l − (Pu)

k
l )(∂tu

l) + (∂mPu)
k
l ∂tu

l∂tu
m

= (dPu)
k
m,l∂tu

l∂tu
m

for k = 1, . . . , L. Because of∇u ∈ TuN , we also obtain
[(I − Pu)(∆u)]k = ∂xα(δkl − (Pu)

k
l )(∂xαu

l) + (∂mPu)
k
l ∂

xαul∂xαu
m

= (dPu)
k
m,l∂

xαul∂xαu
m,

and hence
[(I − Pu)(∆2u)]k = ∆((dPu)

k
m,l∂

xαul∂xαu
m) + ∂xα((dPu)

k
m,l∆u

l∂xαu
m)

+ (dPu)
k
m,l(∂

xα∆ul)∂xαu
m.

The symmetry of the indices then implies
[(I − Pu)(∆2u)]k = (d3Pu)

k
l0,l1,l2,l3

∂xαul0∂xαu
l1∂xβul2∂xβu

l3

+ 2(dPu)
k
l0,l1

∂xα∂
xβul0∂xα∂xβu

l1 + (dPu)
k
l0,l1

∆ul0∆ul1

+ 2(d2Pu)
k
l0,l1,l2

∂xαul0∂xαu
l1∆ul2 + 4(dPu)

k
l0,l1

∂xα∆ul0∂xαu
l1

+ 4(d2Pu)
k
l0,l1,l2

∂xαul0∂xα∂
xβul1∂xβu

l2 .

We briefly state the expressions from (1.1.3) in coordinates, i.e.,[
Pu(dPu(∇u,∇u) · d2Pu(∇u,∇u, ·))

]l
=
∑

j
(Pu)

l
jdPu(∇u,∇u) · (d2Pu)k,m,j∂xαu

k∂xαum,

[Pu(div(dPu(∇u,∇u) · dPu(∇u, ·)))]l =
∑

j
(Pu)

l
j∂

xα(dPu(∇u,∇u) · (dPu)kj ∂xαuk)

for l = 1, . . . , L.
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CHAPTER 2

Further global results

In this chapter, we study two Cauchy problems that are motivated by critical points of the
extrinsic (rigid) action functional

Φ(u) =
1

2

∫
R

∫
Rd
|∂tu|2 − |∆u|2 dx dt,

which satisfy the Euler Lagrange condition (1.1.1), i.e.

∂2
t u+ ∆2u ⊥ TuN, on R×Rd,

respectively the biharmonic wave equation (19) for a Riemannian submanifold N . We recall
that for maps into the round sphere N = SL, the condition (1.1.1) leads to equation (2) from
the beginning of the introduction, i.e. u satisfies

∂2
t u+ ∆2u = −|∂tu|2u−∆(|∇u|2)u (2.0.1)

− (∇ · 〈∆u,∇u〉)u− 〈∇∆u,∇u〉u

= −(|∂tu|2 + |∆u|2 + 4〈∇u,∇∆u〉+ 2〈∇2u,∇2u〉)u,

where ∆2 denotes the bi-Laplacien and 〈∇2u,∇2u〉 = 〈∂i∂ju, ∂j∂iu〉. As mentioned in the
introduction, see the surveys [56], [32], the null condition of the wave maps equation

�u = Γ(u)(∂αu, ∂
αu) = Γ̃(u)(�(u · u)− 2u ·�u),

leads to improved local and global wellposedness (or regularity) results compared to a generic
nonlinearity N (u,Du). We refer to [29], [31], [38], [11] and [15] for a general overview.

In this chapter, we prove the analogue of the division problem for equations of type (2.0.1),
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i.e. we prove global regularity with small data in Ḃ2,1
d
2

(Rd)× Ḃ2,1
d
2
−2

(Rd). For a short overview
over the corresponding results for wave maps, we refer to the introductory chapter of this
thesis. For (2.0.1), we achieve to solve the division problem in dimension d ≥ 3 using spaces
Z, W = L(Z) which are the analogues of Tataru’s F,�F spaces in [54]. Especially,

L : Z → W

is a continuous operator.

2.1 Introduction

We consider the following generalized Cauchy problem
∂2
t u+ ∆2u = Qu(ut, ut) +Qu(∆u,∆u) + 2Qu(∇u,∇∆u)

+2Qu(∇∆u,∇u) + 2Qu(∇2u,∇2u) =: Q(u),

(u(0), ∂tu(0)) = (u0, u1)

(2.1.1)

where

QJ(u) = [Qu]
J
K,M(∂tu

K∂tu
M) + [Qu]

J
K,M(∆uK∆uM) + 2[Qu]

J
K,M(∂iu

K∂i∆uM)

+ 2[Qu]
J
K,M(∂i∆u

K∂iuM) + 2[Qu]
J
K,M(∂i∂

juK∂j∂
iuM),

and {Qx | x ∈ RL} is a smooth family of bilinear forms Qx(·, ·) : RL×RL → RL (in fact
required to be analytic at the origin x0 = 0). Here we contract the derivatives over i = 1, . . . , d
and the components of u over K,M, J ∈ {1, . . . , L}. The bilinear term Q(u) in (2.1.1) is
non-generic for our results, in the sense that for bilinear interactions, the set of resonances{

((τ1, ξ1), (τ2, ξ2)) | (τ1 + τ2)2 − |ξ1 + ξ2|4 = τ 2
1 + τ 2

2 − |ξ1|4 − |ξ2|4
}
,

is canceled by Q(u). We use this fact in the form of the following commutator identity for the
operator L = ∂2

t + ∆2

Q(u) =
1

2
Qu(L(u · u)− u · Lu− Lu · u) (2.1.2)

=
1

2
[Qu]K,M(L(uK · uM)− uK · LuM − uM · LuK).

This will then be exploited following the work of Tataru in [54], [55] for wave maps. To be
precise, the idea used in Tataru’s F, �F spaces from [54] allow to treatQ(u) by continuity of
L. As a consequence, we find a simple way to solve the disvision problem for (2.1.1) even in
low dimensions compared to the energy scaling (of (7)) for biharmonic wave maps (2.0.1), see
e.g. the introduction and the remark below. However, we do not obtain scattering at t→ ±∞
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from this approach.
The main difference to [54] is that we have to use the control of a lateral Strichartz space and
a maximal function bound in order to exploit a smoothing effect for the Schrödinger group.
More details are given below.
The second Cauchy problem will be solved with the same approach (presented in the following
Sections) and further (in Section 2.5) applies to solve (19).
The Euler Lagrange condition (1.1.1) is equivalent to

Lu = (I − Pu)(Lu) = (I − dΠu)(Lu), (2.1.3)

via the smooth family of orthogonal tangent projector Pu : RL → TuN . Since u ∈ N we have
Π(u) = u and Pu = dΠu, where Π is nearest point projector

Π : Vε(N)→ N, |Π(p)− p| = inf
q∈N
|q − p|.

Hence (2.1.3) can be written as

Lu = L(Π(u))− dΠu(Lu) =Q(u) + 2d3Πu(∂ju, ∂
ju,∆u) + 4d3Πu(∂ju, ∂

iu, ∂i∂
ju)

+ d4Πu(∂iu, ∂
iu, ∂ju, ∂

ju),

where Q(u) is as above with Qu(·, ·) = d2Πu(·, ·).
We now generalize this equation and take a smooth vector field

Π : RL → RL,

such that Π is real analytic at x0 = 0. We consider the Cauchy problem
Lu = Q(u) + 2d3Πu(∂ju, ∂

ju,∆u) + 4d3Πu(∂ju, ∂
iu, ∂i∂

ju)

+d4Πu(∂iu, ∂
iu, ∂ju, ∂

ju),

(u(0), ∂tu(0)) = (u0, u1),

(2.1.4)

with Q defined over d2Πx(·, ·). For constructing a solution, we use that the RHS equals

L(Π(u))− dΠu(Lu), (2.1.5)

from which we infer the formal series expansion for the RHS of (2.1.4),

L(Π(u))− dΠu(Lu) =
∑
k≥2

Ckd
kΠ0(L(uk)− kuk−1Lu).

This wil be made precise later and we observe that the RHS thus reduces the same non-
resonant form (2.1.2). This expression, and in particular the ability to commute L with the
series expansion of Π, is justified by the spaces we use.
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At least formally, we find a Duhamel representation(
u(t)
ut(t)

)
= S(t) ·

(
u0

u1

)
+

∫ t

0

S(t− s) ·
(

0
Lu(s)

)
ds, (2.1.6)

where

S(t) =

(
cos((−∆)t) (−∆)−1 sin((−∆)t)

∆ sin((−∆)t) cos((−∆)t)

)
=

1

2
Q−1

(
e−it∆ 0

0 eit∆

)
Q

with

Q =

(
−i∆ 1
i∆ 1

)
. (2.1.7)

Thus, in the analysis for biharmonic wave maps (19), it is in principle possible to exploit
methods developed for derivative Schrödinger equations, which will become apparent below.
Results on the division problem for Schrödinger maps, see e.g. [2], [22], involve versions of
lateral Strichartz estimates in the norm (x 7→ xee+ xe⊥ , e ∈ Sd−1)

LpeL
q
t,e⊥

,

in order to exploit smoothing effects for Schrödinger equations, see Section 2.3 and the Ap-
pendix 2.A below. Especially, we likewise rely on factoring

L∞e L
2
t,e⊥ · L

2
eL
∞
t,e⊥ ⊂ L2

t,x,

where the (lateral) energy L∞e L2
t,e⊥ gives additional regularity of order |∇| 12 and the maximal

function bound L2
eL
∞
t,e⊥ is controlled uniform in e ∈ Sd−1. Apart from the usual Strichartz

space Sλ, this will be essential (in one particular frequency interaction) in Section 2.4.2.

Outline of the chapter

In Section 2.3, we provide Strichartz estimates and the lateral version in LpeL
q
t,e⊥

(including
an L2

eL
∞
t,e⊥ estimate) for the linear Cauchy problem of the operator L = ∂2

t + ∆2. This is a
consequence of the corresponding estimates for e±it∆ which orginally appeared in [21], [22]
and [2]. In the Appendix 2.A, we briefly outline proofs of the Strichartz estimates we need for
e±it∆ based on the calculation by Bejenaru in [2].

In Section 2.4.1, we construct spaces Z d
2 ,W

d
2 such that

Z
d
2 ⊂ C(R, Ḃ2,1

d
2

(Rd)) ∩ Ċ1(R, Ḃ2,1
d
2
−2

(Rd)), (2.1.8)

‖u‖
Z
d
2
. ‖(u0, u1)‖Ḃ2,1

d
2

×Ḃ2,1
d
2−2

+ ‖Lu‖
W

d
2
, (2.1.9)
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and similar Zs,W s for s > d
2
with data in Ḣs(Rd)× Ḣs−2(Rd).

Further, we prove the algebra properties

Z
d
2 · Z

d
2 ⊂ Z

d
2 , (2.1.10)

W
d
2 · Z

d
2 ⊂ W

d
2 , (2.1.11)

in Section 2.4.2.
For the higher regularity, we need to provide the following embeddings

(Z
d
2 ∩ Zs) · (Z

d
2 ∩ Zs) ⊂ Z

d
2 ∩ Zs, (2.1.12)

(W
d
2 ∩W s) · (Z

d
2 ∩ Zs) ⊂ W

d
2 ∩W s. (2.1.13)

To be more precise, as in [54] and [2], from the dyadic estimates in Section 2.4.2, we infer for
s > d

2
,

‖uv‖Zs . ‖u‖Zs ‖v‖Z d2 + ‖v‖Zs ‖u‖Z d2 , u, v ∈ Z
d
2 ∩ Zs, (2.1.14)

‖uv‖W s . ‖u‖W s ‖v‖
Z
d
2

+ ‖v‖Zs ‖u‖W d
2
, u ∈ W

d
2 ∩W s, v ∈ Z

d
2 ∩ Zs, (2.1.15)

in Section 2.4.2.
Finally, we provide the fixed point argument from [54] in Section 2.4.4. Especially, we state a
few details of how to estimate the coefficients in the Cauchy problems (2.1.1) and (2.1.4). We
then apply Theorem 2.1.1 to biharmonic wave maps in Corollary 2.1.2 .

We emphasize that the construction of the dyadic blocks Zλ,Wλ are the analogues of Tataru’s
Fλ, �Fλ spaces in [54], since we globally bound Lu in the spaces L1

tL
2
x. In particular, the

operator
L : Zλ → Wλ

is continuous by construction of Zλ and Wλ. Combining this with (2.1.10) and (2.1.11), it
suffices to estimate Q(u) in (2.1.1) with the identity (2.1.2).
As mentioned above, we can not fully rely on the usual Strichartz norm and have to use the
control of the lateral Strichartz norm, which exploits additional smoothing in the proof of
(2.1.10). This idea has been used in the similar context of the Schrödinger maps flow by
Ionescu-Kenig [21], [22], Bejenaru [2] and Bejenaru-Ionescu-Kenig [3].

2.1.1 The main results

The system (2.1.1) is largely motivated by biharmonic wave maps, however the results for
(2.1.1) are based on the structural extension of evolution equtions with a nonlinearity that, due
to (2.1.2), can be considered non-generic.
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We turn to general systems (2.1.1) and (2.1.4) for functions u1, . . . , uL with L ∈ N, where we
assume that x 7→ Qx, as well as x 7→ Π(x) are real analytic in the point x0 = 0. That means
we require the Taylor series at x0 = 0 to have a positive radius of convergence and to coincide
with Q, resp Π on a neighborhood of x0 = 0 (where the series converges uniformly).

Theorem 2.1.1. For d ≥ 3 there exists δ > 0 sufficiently small such that the following holds.
Let (u0, u1) ∈ Ḃ2,1

d
2

(Rd)× Ḃ2,1
d
2
−2

(Rd) such that

‖u0‖Ḃ2,1
d
2

(Rd) + ‖u1‖Ḃ2,1
d
2−2

(Rd) ≤ δ. (2.1.16)

Then (2.1.1) and (2.1.4) have a global solution u ∈ C(R, Ḃ2,1
d
2

(Rd)) ∩ Ċ1(R, Ḃ2,1
d
2
−2

(Rd)) with

sup
t≥0

(
‖u(t)‖Ḃ2,1

d
2

(Rd) + ‖∂tu(t)‖Ḃ2,1
d
2−2

(Rd)

)
≤ Cδ, (2.1.17)

for some C > 0. Further, the solution depends Lipschitz on the initial data.
If additionally (u0, u1) ∈ Ḣs(Rd)× Ḣs−2(Rd) for some s > d

2
, then also

(u(t), ∂tu(t)) ∈ Ḣs(Rd)× Ḣs−2(Rd)

for all t ∈ R and in fact

sup
t≥0

(
‖u(t)‖Ḣs(Rd) + ‖∂tu(t)‖Ḣs−2(Rd)

)
≤ C(‖u0‖Ḣs(Rd) + ‖u1‖Ḣs−2(Rd)).

The theorem applies to (2.0.1), however it is not clear if the solution maps to SL for all times.
This is proven within the following (slightly more general) setup.
LetN ⊂ RL be an embeddedmanifold and such that the nearest point projectorΠ : Vε(N)→ N
is analytic on N with a uniform lower bound on the radius of convergence.

Example: The above class includes the standard space forms SL, HL and TL = RL /ZL. In
general we take e.g. non-degenerate level sets of uniformly (real) analytic functions.
A function f : Rd → R is uniformly analytic on S ⊂ Rd, if there exists C > 0 such that for all
k ∈ N

sup
|α|=k

sup
x∈S
|Dαf(x)| ≤ Ck+1k!.

We take a uniformly analytic pertubation of the round sphere SL−1. That means we take
η̃ ∈ Cω(SL−1), uniformly analytic with ‖η̃‖L∞ < 1 and η(x) = η̃(x/|x|) for x ∈ RL \{0}.
Then for

fη(x) = |x|2 − 1− η(x), x ∈ RL \{0}, (2.1.18)

the manifold N = f−1
η ({0}) will have the required property. Note that∇xη(x) ⊥ x and hence

∇xf(x) 6= 0 for x ∈ RL \{0}.
The following Corollary holds
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Corollary 2.1.2. Let (u0, u1) : Rd → TN , i.e. u0 ∈ N, u1 ∈ Tu0N , be a smooth map such
that supp(∇u0, u1) is compact, d ≥ 3. Then if

‖u0‖Ḃ2,1
d
2

(Rd) + ‖u1‖Ḃ2,1
d
2−2

(Rd) ≤ δ,

where δ = δ(d,N) > 0 is sufficienty small, then (2.1.3), respectively the biharmonic wavemaps
equation (19), has a global smooth solution u : R×Rd → N with (u(0), ∂tu(0)) = (u0, u1).

The statement of Corollary 2.1.2 has to be rigorously corrected to u − p ∈ Ḃ2,1
d
2

(Rd) for
p = limx→∞ u0(x) since u0 : Rd → N has no decay. Further, as mentioned in the introduction,
equation (2.0.1) has parabolic scaling

uλ(t, x) = u(λ2t, λx), x ∈ Rd, t ∈ R .

Thus it holds
λ4−dE(u(λ2t)) = E(uλ(t))

and d = 4, the (energy) critical dimension, is included in our results Theorem 2.1.1 and
Corollary 2.1.2. This is due to the larger Strichartz range for the dispersion rate d/2, whereas
the low dimensional case for wave maps is more involved than [54] and has first been solved
by Tataru in [55].

2.2 Preliminaries and Notation

The notation in this chapter is mostly common and largely consistent with [15]. However, we
have to adapt the Littlewood-Paley projector for frequency and modulation to parabolic scaling
(respectively the symbol of L), which is similar to e.g. [2]. Any special notation or definitions
will be explained in the following.

Notation
For real A,B ≥ 0 we write A . B short for A ≤ cB, where c > 0 is a constant. Likewise we
write A ∼ B if there holds A . B and B . A. The space of Schwartz functions S(Rd) will
be as usual the Fréchet space

S(Rd) = {f ∈ C∞(Rn) | sup
x∈Rd
|xαDβ

xf(x)| <∞, α, β ∈ Nd
0},

where xα = Πd
j=1x

αj
j , D

β
xf(x) = ∂|β|

∂
β1
x1
···∂βdxd

f(x). The semi-norms for the Fréchet property are
given by

‖f‖N = sup
|α|,|β|≤N

sup
x∈Rd
|xαDβ

xf(x)|, N ∈ N,
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and we dentote by S ′(Rd) its (dual) space of tempered distributions with the weak∗ topology.
The Fourier transform is

F(u)(ξ) =

∫
Rd
e−ix·ξu(x) dx, u ∈ S(Rd), (2.2.1)

which extends well-defined to S ′(Rd) by duality

〈F(v), u〉 = 〈v,F(u)〉, u ∈ S(Rd), v ∈ S ′(Rd).

We write û(ξ) = F(u)(ξ) for short and indicate by Fx′(ξ) that the Fourier transform is taken
over x′ where x = (x′, x̃) if necessary. The well known inversion formula for F

u(x) =
1

(2π)d

∫
Rd
eix·ξû(ξ) dξ, u ∈ S(Rd),

defines the inverse of the isometry F : S(Rd)→ S(Rd) through

F−1(u)(x) = (2π)−dF(u)(−x), x ∈ Rd, u ∈ S(Rd),

and extends by duality to S ′(Rd).

Littlewood-Paley and multiplier
We now let ϕ ∈ C∞(R) be a Littlewood-Paley function, i.e. such that

supp(ϕ) ⊂ (
1

2
, 2), ϕ ∈ [0, 1], and

∑
j∈Z

ϕ(2−js) = 1, for s > 0. (2.2.2)

We define the multiplier P,Q for u ∈ S ′(Rd), v ∈ S ′(R1+d) and dyadic numbers λ, µ ∈ 2Z by

P̂λ(∇)u(ξ) = ϕ(|ξ|/λ)û(ξ), P̂λ(D)v(τ, ξ) = ϕ((τ 2 + |ξ|4)
1
4/λ)v̂(τ, ξ),

Q̂µ(D)v(τ, ξ) = ϕ(w(τ, ξ)/µ)v̂(τ, ξ),

P≤λ =
∑
λ̃≤λ

Pλ̃, Q≤µ =
∑
µ̃≤µ

Qµ̃,

P>λ = I − P≤λ, Q>µ = I −Q≤µ.

where
w(τ, ξ) =

|τ 2 − |ξ|4|
(τ 2 + |ξ|4)

1
2

∼ ||τ | − ξ2|, (τ 2 + |ξ|4)
1
4 ∼ (|τ |+ ξ2)

1
2 .

Further, we write vλ = Pλv = Pλ(D)v, Pλ,≤µ = PλQ≤µ(D) for short and define

Aλ = {(τ, ξ) | λ/2 ≤ (τ 2 + ξ4)
1
4 ≤ 2λ},

Adλ = {ξ | λ/2 ≤ |ξ| ≤ 2λ}.
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For a distribution f ∈ S ′(Rd+1) we say that f is localized at frequency λ ∈ 2Z if

supp(f̂) ⊂ Aλ/2 ∪ Aλ ∪ A2λ

and a similar notation is used for g ∈ S ′(Rd) and Adλ. In addition, we need to localize in the
sets

Ae :=

{
ξ | ξ · e ≥ |ξ|√

2

}
, e ∈ Sd−1,

in order to exploit the smoothing effect for the linear equation. Thus, as in [2], we choose
M⊂ Sd−1 with e ∈M⇒ −e ∈M such that

Rn =
⋃
e∈M

Ae, ∀e ∈M : #{ẽ ∈M | Ae ∩ Aẽ 6= ∅ } ≤ K, (2.2.3)

with a constant K = Kd > 0. Further we require a smooth partition of unity {he}e∈M
subordinate to {Ae}e∈M, i.e.

he ∈ C∞(Rd), supp(he) ⊂ Ae, he ∈ [0, 1] (2.2.4)∑
e∈M

he(ξ) = 1, ξ ∈ Rn \{0}. (2.2.5)

We note that this is possible since in particular for x ∈ Rn \{0} we have x ∈ Ae if and only if
](x, e) ≤ π

4
.

Remark 2.2.1. An explicit example would be the set

M =
{
x/|x|2 | x ∈ {0, 1,−1}d\{0Rd}

}
, |x|22 =

d∑
i=1

x2
i .

Here we take e.g. a non-negative ψ ∈ C∞(R) with ψ(x) = 1 if x ≤ π/5 and ψ(x) = 0 if
x > π/4. Then we set

he(ξ) =
ψ(](ξ, e))∑
ẽ∈M ψ(](ξ, ẽ))

, ](v1, v2) = arccos(〈v1, v2〉), v1, v2 ∈ Sd−1.

We define the respective Fourier multiplier by

P̂e(∇)v(τ, ξ) = he(ξ)v̂(τ, ξ), v ∈ S ′(Rd+1). (2.2.6)

Finally, we choose χ ∈ C∞(Rd+1) such that

χ(τ, ξ) =

{
1 |τ 2 − |ξ|4| < τ2+|ξ|4

100
,

0 |τ 2 − |ξ|4| > τ2+|ξ|4
10

.
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In order to have χ invariant under parabolic scaling, we choose χ(τ, ξ) = η(| τ
2−|ξ|4
τ2+|ξ|4 |), where

η ∈ C∞(R) with 0 ≤ η ≤ 1 and such hat η(x) = 1 if |x| < 1/100 and η(x) = 0 if |x| > 1/10.
We then define

P̂0v(τ, ξ) = χ(τ, ξ)v̂(τ, ξ), ̂(1− P0)v(τ, ξ) = (1− χ(τ, ξ))v̂(τ, ξ). (2.2.7)

Thus, we have

supp(P̂0v) ⊂
{

(τ, ξ) | ||τ | − ξ2| ≤ |τ |+ ξ2

10

}
, (2.2.8)

supp( ̂(1− P0)v) ⊂
{

(τ, ξ) | ||τ | − ξ2| ≥ |τ |+ ξ2

100

}
. (2.2.9)

Especially, measuring the distance to the characteristic surface P ,

dist((τ, ξ), P ) ∼ ||τ | − ξ2|
(|τ |+ ξ2)

1
2

, P =
{

(τ, ξ) | τ 2 = ξ4
}
,

we infer that (1− P0)v (with v being localized at frequency λ) is localized where

dist((τ, ξ), P ) ∼ λ,

such that frequency (τ 2 + |ξ|4)
1
4 ∼ λ and modulation ||τ | − ξ2| ∼ µ are of comparable size

µ ∼ λ. For P0v we have localization where

dist((τ, ξ), P ) = O(λ),

with a small constant that suffices to obtain additional smoothing in the linear estimates of the
following sections.

Function spaces
We define the spaces Ḣs(Rd), Hs(Rd) for s ∈ R are defined as the closure of

‖u‖Ḣs(Rd) = ‖|∇|su‖L2(dx)

‖u‖Hs(Rd) = ‖〈∇〉su‖L2(dx) ,

in S(Rd), where in the homogeneous case we restrict to s > −d/2. Here

〈∇〉su = F−1((1 + |ξ|2)
s
2 û(ξ)), |∇|su = F−1(|ξ|sû(ξ)).

The homogeneous Besov spaces Ḃq,p
s (Rd), 1 ≤ q, p <∞ are given by the closure of

‖u‖p
Ḃq,ps (Rd)

=
∑
λ∈2Z

λsp ‖Pλu‖pLqx , u ∈ S(Rd).
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The semi-norms ‖u‖Ḃq,ps (Rd) degenerate if and only if supp(û) ⊂ {0}, i.e. if and only if u is
a polynomial. We further have Ḣs(Rd) ∼ Ḃ2,2

s (Rd), s > d
2
and Ḃ2,1

d
2

(Rd) ⊂ L∞(Rd) is a
well-defined Banach space.
Especially, we mention that in the higher regularity statement of Theorem 2.1.1, we observe
that the solution u(t) ∈ Ḃ2,1

d
2

(Rd) ∩ Ḣs(Rd) for some s > d
2
and all t ∈ R, which implies

Fx(u(t, ·)) ∈ L1(dx) for t ∈ R.
We further introduce the Hölder space Ck,α(Rd) with k ∈ N, α ∈ (0, 1], defined as usual by
the norm

{f ∈ Ck(Rd) | ‖u‖Ck,α(Rd) = sup
|β|≤k

∥∥∂βu∥∥
L∞

+ sup
|β|=k

sup
x 6=y

|∂βu(x)− ∂βu(y)|
|x− y|α

<∞}.

Perturbative argument
We use the following (straight forward) wellposedness argument (which is similarly stated in
e.g. [15, chapter 3.2] and [25]). The scaling argument in the second part of the Lemma was
used in [54].

We first state the abstract Cauchy problem{
Lu = N (u) in (−T, T )× Rn

u[0] = f in Rn,
(2.2.10)

where L is an evolution operator of (time) order d ∈ N, N (0) = 0, 0 ≤ T ≤ ∞, f =
(f0, . . . , fd−1) ∈ D the initial data. Here we letD, D̃ to be Banach spaces and Z, Z̃ be Banach
spaces such that test functions are dense in Z, Z̃.
We choose a function ϕ : R → R with ϕ(t) = 1 for t ∈ (−T, T ). By Duhamel’s formula we
write the solution of (2.2.10) as

u(t) = ϕ(t)(S(t)f + V (N (u(t))),

where L(Sf) = 0, S(0)f = f and v = V F solves Lv = F with initial data v(0) = 0. Then
we have the following.

Lemma 2.2.2 (Wellposedness & persistence). Let Z,D, ϕ be as above, such that

‖ϕ(Sf)‖Z ≤ C1 ‖f‖D , f ∈ D (2.2.11)

sup
t∈(−T,T )

(‖u(t)‖D) ≤ C2 ‖u‖Z , u ∈ Z, (2.2.12)

where C1, C2 > 0. Assume further that for u, v ∈ BZ(0, δ) for some δ > 0 there holds

‖ϕ(V (N (u)−N (u)))‖Z ≤ C3(‖u‖Z + ‖v‖Z) ‖u− v‖Z . (2.2.13)
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Then, provided

‖f‖D ≤
δ

4C1

<
1

24C1C3

, (2.2.14)

the Cauchy problem (2.2.10) has a unique solution in C(−T, T ;D) ∩ BZ(0, δ) such that the
map f 7→ u(f) is Lipschitz from BD(0, (3C1)−1δ) into C(−T, T ;D).
Now we additionally assume that Z̃, D̃ satisfy (2.2.11), (2.2.12) and further there holds for
u, v ∈ BZ(0, δ) ∩ Z̃

‖ϕ(V (N (u)−N (u)))‖Z̃ ≤ C3(‖u‖Z + ‖v‖Z) ‖u− v‖Z̃ (2.2.15)

+ C3(‖u‖Z̃ + ‖v‖Z̃) ‖u− v‖Z .

Then, provided also f ∈ D̃, the solution from above satisfies u ∈ C(−T, T ; D̃) and

sup
t∈(−T,T )

(‖u(t)‖D̃) . ‖f‖D̃ .

Proof. We define the fixed point map via

T (u)(t) = ϕ(t)(S(t)f + V (N (u))|t), u ∈ B(0, δ).

Then it is easily seen form (2.2.11) and (2.2.13) with v = 0

‖Tu‖Z ≤ C1 ‖f‖D + C3 ‖u‖2
Z ≤

δ

4
+ C3δ

2 < δ,

by (2.2.14). Similarly it follows by (2.2.13)

‖T (u)− T (v)‖Z ≤ C3(2δ) ‖u− v‖Z , u, v ∈ B(0, δ),

which gives the desired fixed point. The continuity of t 7→ ‖u(t)‖D is obtained by smooth
approximation of u ∈ Z and (2.2.12). The Lipschitz estimate against the initial data follows
similarly by

‖T (u1)− T (u2)‖Z ≤C1 ‖f1 − f2‖D + 2C3δ ‖u1 − u2‖Z ,

and hence

‖T (u1)− T (u2)‖Z . ‖f1 − f2‖D .

Now for the second part, we define (as in [54]) the norm

‖u‖Zδ =
1

δ
‖u‖Z +

1

M
‖u‖Z̃ , M > 0,
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andwe consider u 7→ ϕ(V (N (u))). Thus both (2.2.13) and (2.2.15) are defined onBZδ(0, 1) ⊂
Zδ and (again for v = 0)

‖ϕ(V (N (u)))‖Z ≤ C3 ‖u‖2
Z ≤ C3δ ‖u‖Z ,

‖ϕ(V (N (u)))‖Z̃ ≤ 2C3 ‖u‖Z ‖u‖Z̃ ≤ 2C3δ ‖u‖Z̃ .

In particular, we have for u ∈ BZδ(0, 1)

‖ϕ(V (N (u)))‖Zδ ≤
2C3

M
δ ‖u‖Z̃ + C3 ‖u‖Z ≤ 3C3δ (2.2.16)

where 3C3δ <
1
2
by assumption. For the contraction, we have similarly

‖ϕ(V (N (u1)−N (u2)))‖Z ≤ 2C3δ ‖u1 − u2‖Z ,
‖ϕ(V (N (u1)−N (u2)))‖Z̃ ≤ 2C3δ ‖u1 − u2‖Z̃ + 2C3M ‖u1 − u2‖Z .

Thus we conclude

‖ϕ(V (N (u1)−N (u2)))‖Zδ ≤ 6C3δ ‖u1 − u2‖Zδ

where δ < 1
6C3

. We now fixM = 4C1 ‖f‖D̃. For the fixed point map, we obtain from (2.2.16)

‖T (u)‖Zδ < C1 ‖f‖D
1

δ
+ C1 ‖f‖D̃

1

M
+

1

2
≤ C1 ‖f‖D

1

δ
+

3

4
≤ 1.

Hence we obtain a solution u in BZδ(0, 1) ⊂ BZ(0, δ) (which is unique in Z) and further

‖u‖Z̃ ≤ 4C1 ‖f‖D̃ .

2.2.1 Some preliminary results from harmonic analysis

In this section, we recall statements from Fourier Analysis, for which we refer to [15, chapter
2].

Lemma 2.2.3 (Bernstein). For s ≥ 0, uλ = Pλ(D), 1 ≤ p ≤ q ≤ ∞ we have∥∥|D|±suλ∥∥Lpt,x ∼ λ±s ‖uλ‖Lpt,x , F(|D|su)(τ, ξ) = (τ 2 + |ξ|4)
s
4 û(τ, ξ) (2.2.17)∥∥|∂t| s2uλ∥∥Lpt,x + ‖|∇|suλ‖Lpt,x . λs ‖uλ‖Lpt,x , (2.2.18)

where Ft(|∂t|su)(τ) = |τ |sû(τ), and Fx(|∇|su)(ξ) = |ξ|sû(ξ). Further

‖uλ‖Lqt,x . λd( 1
p
− 1
q

) ‖uλ‖Lpt,x . (2.2.19)
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Remark 2.2.4. Estimate (2.2.19) is the (bounded frequency) version of the Sobolev embedding

Ẇ s,p(Rd) ⊂ Lp∗(Rd), p∗ = q, s = d
(1

p
− 1

q

)
,

which is why we refer to it as Sobolev embedding in the following. Further Lemma 2.2.3 is
stated in [15] for the Littlewood-Paley projector Pλ(∇) in ξ only.

For the regularity statement of Theorem 2.1.1, we use the following

Lemma 2.2.5 (Embedding into Ck,α). Let s > d
2
such that s− d

2
/∈ N. Then there holds

Ḣs(Rd) ∩ Ḃ2,1
d
2

(Rd) ⊂ Cbs−
d
2
c,s− d

2
−bs− d

2
c(Rd).

The Lemma is stated in [1, chapter 1.3.4]. However, for f ∈ Ḣs(Rd) as defined in [1], it is
required that f̂ ∈ L1

loc. If we intersect as above, we especially embedd in the homogeneous
Sobolev spaces defined in [1].

Lemma 2.2.6 (Littlewood-Paley). For 1 < p <∞∥∥∥∥∥
(∑

λ

|uλ|2
) 1

2

∥∥∥∥∥
Lp

∼ ‖u‖Lp . (2.2.20)

∑
λ

‖uλ‖2
Lp . ‖u‖

2
Lp , 1 < p ≤ 2 (2.2.21)

∑
λ

‖uλ‖2
Lp & ‖u‖

2
Lp , 2 ≤ p <∞. (2.2.22)

Remark 2.2.7. The statement is posed in [15, chapter 2] on Rd for uλ = Pλ(∇)u. In
the case where we localize in Rd+1 by Pλ(D)u = uλ, we define the dyadic regions by
(τ, ξ) 7→ (|τ |+ ξ2)

1
2 , which is however equally correct. We refer to [41, chapter 8.2].

We now state the classical convolution inequalities.

Lemma 2.2.8 (Young). Let 1 ≤ r, p, q ≤ ∞ and further

1 +
1

r
=

1

p
+

1

q
.

Then there holds

‖f ∗ g‖Lr(Rd) . ‖f‖Lp(Rd) ‖g‖Lq(Rd) . (2.2.23)

Lemma 2.2.9 (Hardy-Littlewood-Sobolev). Let 0 < α < d and 1 < p < q <∞ with

1− α

d
=

1

p
− 1

q
.

Then there holds ∥∥|x|−α ∗ f∥∥
Lq(Rd)

. ‖f‖Lp(Rd) . (2.2.24)
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We further need the following statement on the decay of surface carried measures, for which
we also refer to [49, chapter 8]

Lemma 2.2.10. We let S ⊂ Rd+1 be a hypersurface with k non-vanishing principle curvature
functions. Then for any Ψ ∈ C∞c (S) we have∣∣∣∣∫

S

e−iξ·xΨ(x) dσ(x)

∣∣∣∣ . 1

(1 + |ξ|) k2
, (2.2.25)

where σ is the surface measure of S ⊂ Rd+1.

In order to proof Strichartz estimates, we need the next Lemma for wich we denote the space
of continuous linear operator between Banach spaces B1 and B2 by L(B1, B2).

Lemma 2.2.11 (TT ∗). For a Hilbert space H and a Banach space B we consider a linear
operator T : H → B and its adjoint T ∗ : B∗ → H defined by

〈T ∗u, v〉H = (u, Tv), u ∈ B∗, v ∈ H.

Here (·, ·) is the duality of (B∗, B). Then we have eqauivalence of

(i) T ∈ L(H,B)

(ii) T ∗ ∈ L(B∗, H)

(iii) TT ∗ ∈ L(B∗, B)

(iv) The form 〈T ∗u, T ∗v〉H , u, v ∈ B∗ is bounded.

In any case
‖TT ∗‖L(B∗,B) = ‖T ∗‖2

L(B∗,H) = ‖T‖2
L(H,B) .

The heuristic argument for our (non-endpoint) Strichartz estimate, see e.g. [24] and [48], is as
follows. The operatorT in Lemma 2.2.11 is useful for the frequency localized linear propagator,
such as

T (t)f = e±it
√
−∆f, supp(f̂) ⊂ Adλ

which has a group structure. In praticular the TT ∗ bound in (iii) of Lemma 2.2.11 is accessible
to Lemma 2.2.8 or Lemma 2.2.9 in d = 1 via T (t)T ∗(s) = T (t − s), which is controlled by
a dispersive factor. In order to prove a dispersive estimate, we e.g. apply Lemma 2.2.10 (or a
stationary phase method) to the convolution kernel of T (t).
The T bound in (i) of Lemma 2.2.11 gives the homogeneous Strichartz estimates for the wave
equation in this case. The inhomogeneous estimate follows by an application of (i) to the
inhomogeneous part in the integral representation of a solution.
Then we would like to use (ii), however one needs to pass to a retarted integral opertor, which
is clearified in the following Lemma by Christ-Kiselev.
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Lemma 2.2.12 (Christ-Kiselev). Let B1, B2 be Banach spaces and K : J × J → L(B1, B2),
where J ⊂ R is an interval. Then we assume that the operator

Tu(t) =

∫
J

K(t, s)u(s) ds, u ∈ B1,

satisfies
‖Tu‖Lq(J,B2) ≤ C ‖u‖Lp(J,B1) , 1 ≤ p < q ≤ ∞.

Then
T̃ u(t) =

∫
J

χ{s ≤ t}K(t, s)u(s) ds, u ∈ B1,

satisfies ∥∥T̃ u∥∥
Lq(J,B2)

.p,q C ‖u‖Lp(J,B1) .

The next Lemma was proven by Keel-Tao in [24] and is suitable for the endpoint Strichartz
estimate. Any pair (p, q) with 1 ≤ p, q ≤ ∞ is said to be σ-admissible for σ > 0, if
(p, q, σ) 6= (2,∞, 1) and

1

p
+
σ

q
≤ σ.

Lemma 2.2.13 (Keel-Tao). Let H be a Hilbert space and U(t) : H → L2
x be a familiy of

operator such that

‖U(t)f‖L2
x
. ‖f‖H ,

‖U(t)U∗(s)f‖L∞x . (1 + |t− s|)−σ ‖f‖L1
x
,

where U∗(s) is the adjoint of U(s). Then

‖U(t)f‖LptLqx . ‖f‖H , (2.2.26)∥∥∥∥∫ U(s)∗F (s) ds

∥∥∥∥
H

. ‖F‖
Lp
′
t L

q′
x
, (2.2.27)∥∥∥∥∫

s<t

U(t)U(s)∗F (s) ds

∥∥∥∥
LptL

q
x

. ‖F‖
Lp̃
′
t L

q̃′
x
, (2.2.28)

hold for all σ-admissible pairs (p, q), (p̃, q̃).

In case that (p, q) 6= (2, 2σ
σ−1

), the proof follows as outlined above by interpolating the energy
estimate and the dispersive estimate in Lemma 2.2.13. The three estimates are then concluded
from the TT ∗ argument Lemma 2.2.11 applying Lemma 2.2.8 (for the continuity of the form
(iv)) and Christ-Kiselev’s Lemma 2.2.12. The endpoint is slightly more delicate and requires
untruncated dispersion for scaling reasons. We recommend the reader to consult [24] for
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further details.
The last Lemma in this section was used by Tataru in [54] and is stated in [15, chapter 2.4,
Lemma 2.8]. The Lemma in particular gives a sufficient condition for a multiplier

Mf = F−1(m(τ, ξ)û(τ, ξ))

to define a bounded operatorM : L1
tL

2
x → L1

tL
2
x. We note that even though (τ, ξ) 7→ m(τ, ξ)

is smooth in our case, the classical Mikhlin theorem gives L1,∞ bounds.

Lemma 2.2.14. Let C > 0 andM = F−1(m(τ, ξ)F(·)) be a Fourier multiplier such that the
following holds.

(i) For any ξ, there holds supp(τ 7→ m(τ, ξ)) ⊂ Aξ, where Aξ has measure ≤ C.

(ii) For N ≥ 2 there exists CN > 0 such that

‖m‖L∞τ,ξ + CN
∥∥∂Nτ m(τ, ξ)

∥∥
L∞τ,ξ
≤ CN .

Then the operator

M : LptL
2
x → LptL

2
x, 1 ≤ p ≤ ∞, (2.2.29)

is continuous and ‖M‖ . CN .

Proof. By Plancherel (in ξ) and Young’s inequality (in t), it suffices to proof K ∈ L1
tL
∞
ξ ,

where
K(t, ξ) =

∫
eitτm(τ, ξ) dτ.

However by (i), (ii) it follows ‖K‖L1
tL
∞
ξ
. CNC and by (ii) and integration by parts

|K(t, ξ)| =
∣∣∣∣(−1)N

|t|N iN

∫
eitτ∂Nτ m(τ, ξ) dτ

∣∣∣∣ . CNC

CN |t|N
,

by which
|K(t, ξ)| . CNC

(1 + C|t|)N
.

2.2.2 Xs,b spaces and their properties

We define the classical space Xs,b
τ=h(ξ)(R

d+1) for s, b ∈ R adapted to the equation

∂tu = ih(∇)u, h(∇)u = F−1(h(ξ)û(ξ)), (2.2.30)
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where ξ 7→ h(ξ) is a real continuous phase, by the closure of the norm

‖u‖Xs,b(Rd+1) =
∥∥〈ξ〉s〈|τ − h(ξ)|〉bû(τ, ξ)

∥∥
L2
τ,ξ

, u ∈ S(R×Rd)

and similar for the homogeneous version Ẋs,b(Rd+1) replacing the brackets 〈·〉s by |ξ|s and 〈·〉b
by |τ − h(ξ)|b.
We state the following Lemma, for which we refer to [53, chapter 2.6]

Lemma 2.2.15. Let h be a (real) polynomial, s, b ∈ R. Then∥∥eith(∇)f
∥∥
Xs,b
τ=h(ξ)

. ‖f‖Hs
x
,

(Xs,b
τ=h(ξ))

′ = X−s,−bτ=−h(−ξ), X̄s,b
τ=−h(−ξ) = Xs,b

τ=h(ξ),

where u ∈ X̄s,b if and only if ū ∈ Xs,b.
If s ∈ R, b > 1

2
then there holds

‖u‖Y . ‖u‖Xs,b
τ=h(ξ)

,

if for all τ ∈ R and f ∈ Hs
x(R

d) there holds∥∥eit(τ+h(∇))f
∥∥
Y
. ‖f‖Hs

x(Rd) .

Further for s ∈ R, b > 1
2
and η(t) a smooth compact cut-off function, we have

‖η(t)u(t)‖Xs,b
τ=h(ξ)

. ‖u(0)‖Hs
x(Rd) + ‖(∂t − ih(∇))u‖Xs,b−1

τ=h(ξ)
.

The results that require b > 1
2
are in particular useful to work with e.g. Strichartz estimates or

energy estimates in the Xs,b
τ=h(ξ) space and to use perturbative methods directly in Xs,b.

There are different (similar) ways to defineXs,b, see e.g. [15] for wave equations. Most notably
we can use (non-degenerate) space-time weights a(τ, ξ)s instead of 〈ξ〉s. For higher order
(time) evolution operator, we can also replace τ − h(ξ) in the definition by a normalized
symbol. For our purpose, we set

‖u‖Ẋs,b =
∥∥(τ 2 + |ξ|4)

s
4 |w(τ, ξ)|bû(τ, ξ)

∥∥
L2
τ,ξ

, (2.2.31)

where
w(τ, ξ) =

|τ 2 − |ξ|4|
(τ 2 + |ξ|4)

1
2

∼ ||τ | − ξ2|, (τ, ξ) ∈ R1+d,

as defined above. In the context of wave equtions h(ξ) = |ξ| these spaces have first been used
(implicitly) by Klainerman-Machedon in [29] and for dispersive equations by Bourgain, we
refer to [53] for a good introduction.

With the regularity imposed in Theorem 2.1.1, we have to consider the limit case b = 1
2
, for
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which the corresponding estimates in Lemma 2.2.15 fail. Further, it suffices for us to restrict
to functions with a fixed frequency λ ∈ 2Z.
We define the Besov-type modification of (2.2.31). Let λ be a fixed dyadic number. Then for
b ≤ 1

2
and p ∈ [1,∞) we set

‖f‖p
Xb,p
λ

=
∑
µ≤4λ2

µpb ‖Qµ(D)f‖p
L2
t,x
, (2.2.32)

and denote by Xb,p
λ the closure of the (semi-)norm in S restricted to functions f localized at

frequency λ. This definition is extended as usual to the case p =∞. We observe that f ∈ Xb,p
λ

has the representation

f =
∑
µ≤4λ2

hµ + h, (2.2.33)

where h is a solution of Lh = 0 (with initial data localized at frequency λ). Thus f is only
well-defined up to homogeneous solutions Lh = 0. In the following, we will correct (2.2.32)
by ‖h‖L∞t L2

x
+‖∂th‖L∞t Ḣ−2

x
as a limiting dyadic block (µ↘ 0), whereLh = 0 and h(0) = f(0)

and ∂th(0) = ∂tf(0).
More precisely, the atomic decomposition (2.2.33) has the form

hµ(t, x) =

∫ ∞
−∞

eits

|s|b
hµ(s, x) ds, (2.2.34)

‖f‖p
Ẋb,p
λ

∼
∑
µ.λ2

(∫ ∞
−∞
‖hµ(s, x)‖2

L2
x
ds

) p
2

. (2.2.35)

Here the hµ(s, ·) solves Lhµ(s, ·) = 0 for some L2 × Ḣ−2 initial data and is localized where
s ∼ µ. Further (2.2.35) only holds up to µ = 0 as mentioned above. We infer (2.2.34) and
(2.2.35) by foliation, which also shows that the sum in (2.2.33) is well-defined distributionally
for the cases b < 1

2
and p ≥ 1 or b = 1

2
and p = 1.

We will give the foliation explicitly in the proof of Lemma 2.3.7. The analogue statements
from Lemma 2.2.15 are proven in the following sections.

2.3 Strichartz estimates and (local) smoothing for the linear
Cauchy problem

The goal of this section is to develope estimates for the linear equation{
∂2
t u(t, x) + ∆2u(t, x) = F (t, x) (t, x) ∈ R×Rd

u[0] = (u(0), ∂tu(0)) = (u0, u1), on Rd,
(2.3.1)
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with data F, u0, u1. In the following we provide Strichartz estimates and a maximal function
estimate for the Cauchy problem (2.3.1) in case F ∈ L1

tL
2
x. The main results of this section

summarize all necessary homogeneous bounds in Lemma 2.3.5 and the inhomogeneous bounds
in Lemma 2.3.6. Further we give a proof of the trace estimate in Lemma 2.3.7.

We start with the classical Strichartz estimate, which follows directly from the results in Section
2.2.1, respectively the framework in Lemma 2.2.13 (especially for the endpoint we rely on the
work of Keel-Tao).

Definition 2.3.1. We say that a pair (p, q) with 1 ≤ p, q ≤ ∞ is admissible in dimension
d ∈ N, d ≥ 2 if there holds

2

p
+
d

q
≤ d

2
. (2.3.2)

and (p, q) 6= (2,∞) in the case of d = 2.

Lemma 2.3.2 (Strichartz). Let u be a weak solution of (2.3.1) for data u0, u1, F . Then there
holds

‖u‖C(R,Ḣγ) + ‖u‖LptLqx . ‖u0‖Ḣγ + ‖u1‖Ḣγ−2 + ‖F‖
Lp̃
′
t L

q̃′
x
, (2.3.3)

where (p, q), (p̃, q̃) are admissible pairs with q, q̃ <∞ and γ ∈ [0, 2] satisfies

2

p
+
d

q
=
d

2
− γ =

2

p̃′
+
d

q̃′
− 4 (2.3.4)

Proof. We prove the inequality for Pλ(∇)u, Pλ(∇)F , where λ is a dyadic number. Then
(2.3.3) follows by Lemma 2.2.6 since q, q̃ <∞. Further, (2.3.3) is invariant under scaling

uλ(t, x) = u(λ2t, λx), Fλ = λ4F (λ2t, λx),

which follows from (2.3.4). Especially, since (Pλu)λ−1 = P1uλ−1 , we assume λ ∼ 1. By
Duhamels formula we obtain

u(t) = cos(−t∆)u0 +
sin(−t∆)

(−∆)
u1 +

∫ t

0

sin(−(t− s)∆)

(−∆)
F (s) ds.

Therefore, as used above already, we decompose

sin(−t∆)f =
1

2i
(e−it∆f − eit∆f), cos(−t∆)f =

1

2
(e−it∆f + eit∆f),

and by λ ∼ 1 this can hence be estimated via

Û±(t)f(ξ) = χ{t ≥ 0}e∓itξ2

ψ(|ξ|)f̂(ξ), f ∈ S(Rd),
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where ψ ∈ C∞c ((0,∞)) with ψ(x) = 1 for x ∈ supp(ϕ) and ϕ is the Littlewood-Paley function
from Section 2.2. Clearly U±(t) extends to L1(Rd) ∩ L2(Rd) satisfying the energy bound in
Lemma 2.2.13. For the dispersive estimate, we use

U±(t)f = K±(t, ·) ∗d f, K±(t, x) = χ{t ≥ 0} 1

(2π)d

∫
Rd
eix·ξ∓it|ξ|

2

ψ(|ξ|) dξ.

The kernel then applies to Lemma 2.2.10 with the characteristic P± = {(τ, ξ) | ± τ + ξ2 = 0},
for which all principle curvature functions are non-vanishing ((τ, ξ) 6= (0, 0)). Thus, we
conclude

‖U±(t)f‖L∞(Rd) . (1 + |t|)−
d
2 ‖f‖L1(Rd) ,

and Lemma 2.2.13 applies. In particular (2.2.26) implies the homogeneous estimate, whereas
since U(s)∗ is the adjoint of U(s) on L2

x, we obtain the inhomogeneous estimate from
(2.2.28). This in particular implies (2.3.3) on [0,∞) and we apply this inequality to u−(t, x) =
u(−t, x), F−(t, x) = F (−t, x), which in turn implies the full estimate. It remains to prove
u ∈ CtL2

x, for which we refer to the argument (for the wave equation) in [24].

Corollary 2.3.3. Let u have Fourier support in Aλ. Then

‖u‖Sλ . ‖u(0)‖L2 + ‖∂tu(0)‖Ḣ−2 + λ−2 ‖Lu‖L1
tL

2
x
, (2.3.5)

where

Sλ =
{
f ∈ CtL2

x | supp(f̂) ⊂ Aλ, ‖f‖Sλ = sup
(p,q)

(
λ

2
p

+ d
q
− d

2 ‖f‖LptLqx
)
<∞

}
and the supremum is taken over admissible pairs (p, q).

Proof. We obtain by Lemma 2.2.3

‖u0‖Ḣγ + ‖u1‖Ḣγ−2 . λγ(‖u0‖L2 + ‖u1‖Ḣ−2),

which by Lemma 2.3.3 and the gap (2.3.4) implies the desired estimate for all admissible pairs
(p, q) with q <∞. For the case q =∞ in d ≥ 3 we estimate by Soblev embedding in Lemma
2.2.3 for any q ≥ 2d

d−2

λ−
d−2

2 ‖u‖L2
tL
∞
x
. λ−

d
2

+1+ d
q ‖u‖L2

tL
q
x

. ‖u(0)‖L2 + ‖∂tu(0)‖Ḣ−2 + λ−2 ‖Lu‖L1
tL

2
x
.

The Corollary 2.3.3 is not sufficient for our proof of bilinear estimates in Section 2.4.2 and we
additionally need to apply a well known smoothing estimate for the Schrödinger group.
For this reason, we define the following norm (see also 2.A)

‖u‖p
LpeL

q

t,e⊥
=

∫ ∞
−∞

(∫
[e]⊥

∫ ∞
−∞
|u(t, re+ x)|qdt dx

) p
q

dr, e ∈ Sd−1. (2.3.6)
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In order to introduce the necessary notation, we recall Bejenaru’s calculus from [2] (see also
the Appendix 2.A) for the Cauchy problem (2.3.1). In the case F = 0 we have

supp(û) ⊂ P = {(τ, ξ) | τ 2 − |ξ|4 = 0},

which is a paraboloid in the variables (τ, ξ). More precisely, denoting by Ξ = (τ, ξ) the Fourier
variables, we split the symbol (in case of general F )

F̂ (τ, ξ) = L(Ξ)û(τ, ξ) = −(τ − ξ2)(τ + ξ2)û(τ, ξ). (2.3.7)

Hence, we further split in the Fourier space into

− (τ + ξ2)−1F̂ (τ, ξ)χ{τ > 0} = (τ − ξ2)û(τ, ξ)χ{τ > 0}, (2.3.8)

(−τ + ξ2)−1F̂ (τ, ξ)χ{τ ≤ 0} = (τ + ξ2)û(τ, ξ)χ{τ ≤ 0}, |ξ| 6= 0, (2.3.9)

and introduce coordinates adapted to a characteristic unit normal e ∈ Sd−1. That means we
use the change of coordinates

Ξ 7→ (τ, ξ · e, ξ − (ξ · e)e) =: (τ, ξe, ξe⊥) =: Ξe,

and the sets

Ae =

{
ξ | ξe ≥

|ξ|√
2

}
, Be :=

{
(τ, ξ) | ||τ | − ξ2| ≤ |τ |+ ξ2

10
, ξ ∈ Ae

}
(2.3.10)

B±e :=

{
(τ, ξ) | | ± τ − ξ2| ≤ |τ |+ ξ2

10
, ξ ∈ Ae

}
= Be ∩ {±τ > 0} ∪ {(0, 0)}. (2.3.11)

Then for any (τ, ξ) ∈ Be, we clearly have

|τ | − ξ2
e⊥ ≥ 0, ξe ∼ (|τ |+ ξ2)

1
2 , ξe +

√
|τ | − ξ2

e⊥
∼ (|τ |+ ξ2)

1
2 , (2.3.12)

and similar for ±τ on B±e .
Especially, the latter two quantities in (2.3.12) are controlled by frequency. Also, if we assume
that supp(û) ⊂ Be, then for |τ |+ ξ2 > 0, we have from (2.3.8) and (2.3.9)

−(|τ |+ ξ2)−1
(
ξe +

√
|τ | − ξ2

e⊥

)−1

F̂ (τ, ξ) =
(√
|τ | − ξ2

e⊥
− ξe

)
û(τ, ξ), (2.3.13)

Now, taking the FT in the variable Ξe, we obtain that (2.3.1) is equivalent to(
i∂xe +Dt,e⊥

)
ũ(t, xe, xe⊥) = F̃ (t, xe, xe⊥), (2.3.14)

where

D̂t,e⊥u(τ, ξe, ξe⊥) =
(√
|τ | − ξ2

e⊥

)
û(τ, ξ), (2.3.15)

F(F̃ )(τ, ξe, ξe⊥) = −(|τ |+ ξ2)−1
(
ξe +

√
|τ | − ξ2

e⊥

)−1

F̂ (τ, eξe + ξe⊥) (2.3.16)

F(ũ)(τ, ξe, ξe⊥) = û(τ, ξee+ ξe⊥), (2.3.17)
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Remark 2.3.4. The calculations above apply to prove inhomogeneous linear estimates for
(2.3.1) with F ∈ L1

eL
2
t,e⊥ that are based on on the reduction to (2.3.14). However, using the

above notation for the sets Be and Ae, we only need estimates for F ∈ L1
tL

2
x localized on

Be ∩ Aλ. These estimates follow directly from Corollary 2.A.3 (a) and Lemma 2.A.5 (a) in
the Appendix 2.A.

We now state the homogeneous estimates which follow from the Appendix 2.A.

Lemma 2.3.5 (Linear estimates I). Let u0, u1 ∈ L2(Rd), e ∈ M, λ > 0 dyadic with
supp(û0), supp(û1) ⊂ Adλ ∩ Ae. Then the solution u of (2.3.1) with F = 0 satisfies

‖u‖LpeLq
t,e⊥
≤ Cλ

d
2
− 1
p
− (d+1)

q (‖u0‖L2 + ‖u1‖Ḣ−2) , (2.3.18)

where (p, q) is an admissible pair. Further if d ≥ 3 and û0, û1 have Fourier support in Adλ,
then the solution u of (2.3.1) with F = 0 satisfies

sup
e∈M
‖u‖L2

eL
∞
t,e⊥
≤ Cλ

d−1
2 (‖u0‖L2

x
+ ‖u1‖Ḣ−2

x
). (2.3.19)

‖u‖LptLqx ≤ Cλ
d
2
− 2
p
− d
q (‖u0‖L2 + ‖u1‖Ḣ−2) . (2.3.20)

Proof. By (2.1.6), we note

u(t) =
1

2
e−it∆(u0 − i(−∆)−1u1) +

1

2
eit∆(u0 + i(−∆)−1u1),

hence (2.3.18) follows from Corollary 2.A.3 and (2.3.19) follows from Lemma 2.A.5. Estimate
(2.3.20) is the classical Strichartz estimate for the Schrödinger group, for which we refer to
Corollary 2.3.3.

Lemma 2.3.6 (Linear estimates II). For e ∈ M and λ > 0 a dyadic number let F ∈ L1
tL

2
x be

localized in Aλ ∩Be. Then the solution u of (2.3.1) with u0 = u1 = 0 satisfies

‖u‖LpeLq
t,e⊥
. λ(d+1)( 1

2
− 1
q

)− 1
p
− 5

2 ‖F‖L1
tL

2
x
, (2.3.21)

sup
ẽ∈M

(
‖u‖L2

ẽL
∞
t,ẽ⊥

)
. λ

d
2
− 5

2 ‖F‖L1
tL

2
x
, (2.3.22)

where (p, q) is an admissible pair. If F̂ has support in Aλ, then the solution u of (2.3.1) with
u0 = u1 = 0 satisfies

‖u‖LptLqx . λd( 1
2
− 1
q

)− 2
p
−2 ‖F‖L1

tL
2
x
, (2.3.23)

where (p, q) is an admissible pair.
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Proof. The estimate (2.3.23) is the classical Strichartz estimate, which is stated in Corollary
(2.3.3). For the remaining bounds (2.3.21), (2.3.22), we decompose the solution

u(t) =

∫ t

0

sin(−(t− s)∆)

(−∆)
F (s) ds =

1

2i

∫ t

0

e−i(t−s)∆(−∆)−1F (s) ds

+
1

2i

∫ t

0

ei(t−s)∆(−∆)−1F (s) ds.

Especially, we have the pointwise bound∣∣∣∣∫ t

0

e±i(t−s)∆(−∆)−1F (s) ds

∣∣∣∣ ≤ ∫ ∞
0

|e±i(t−s)∆(−∆)−1F (s)| ds,

and observe (2.3.21) and (2.3.22) by Corollary 2.A.3 (a), Lemma 2.A.5 (a). If X denotes
either one of the spaces on the LHS of (2.3.23) and (2.3.22), we estimate∥∥∥∥∫ t

−∞
e±i(t−s)∆(−∆)−1F (s) ds

∥∥∥∥
X

≤
∫ ∞
−∞

∥∥e−±i(t−s)∆(−∆)−1F (s)
∥∥
X
ds

.
∫ ∞
−∞
‖(−∆)−1F (s)‖L2

x
ds.

Herewe note that in order to use theCorollary and the Lemma, we verify that e∓is∆(−∆)−1F (s)
has Fourier support (in ξ) in (Adλ ∪Adλ/2) ∩Ae for all s ∈ R. This follows since F is localized
on Be ∩ Aλ and hence also implies for normalized frequencies λ ∼ 1∥∥(−∆)−1F

∥∥
L1
tL

2
x
. ‖F‖L1

tL
2
x
.

The next lemma follows from the homogeneous estimates in Lemma 2.3.5, resp. Corollary
2.A.3 and Lemma 2.A.5.

Lemma 2.3.7 (Trace estimate). Let F ∈ X
1
2
,1

λ for a dyadic number λ.

(a) There holds

sup
e∈M

(
‖F‖L2

eL
∞
te⊥

)
. λ

d−1
2 ‖F‖

X
1
2 ,1

λ

(2.3.24)

‖F‖LptLqx . λ
d
2
− d
q
− 2
p ‖F‖

X
1
2 ,1

λ

, (2.3.25)

for any admissible pair (p, q).

(b) We additionally assume F̂ (τ, ·) has support in Ae for some e ∈M and all τ ∈ R. Then
there holds

‖F‖LpeLq
t,e⊥
. λ

d
2
− d+1

q
− 1
p ‖F‖

X
1
2 ,1

λ

, (2.3.26)

where (p, q) is an admissible pair, p ≥ 2.
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Remark 2.3.8. In the following, we often use the dual estimates of (2.3.25) - (2.3.26), i.e.

‖F‖
X
− 1

2 ,∞
λ

. λ
d
2
− d
q
− 2
p ‖F‖

Lp
′
t L

q′
x
,

‖F‖
X
− 1

2 ,∞
λ

. λ
d
2
− d+1

q
− 1
p ‖F‖

Lp
′
e L

q′
t,e⊥

,

Proof of Lemma 2.3.7. For F ∈ X
1
2
,1

λ , we have the representation

F =
∑
µ≤4λ2

QµF + h,

where Lh = 0 as mentioned in the previous section. We want to use (2.2.34) and (2.2.35).
However, here we split over sign(τ) and write∑
µ∈2Z

QµF =
∑
µ∈2Z

∫ ∫
eix·ξ+itτϕ(w(τ, ξ)/µ)F̂ (τ, ξ) dτ dξ

=
∑
µ∈2Z

∫ ∫
χ(s+ ξ2 > 0)eix·ξ+it(s+ξ

2)ϕ(w(s+ ξ2, ξ)/µ)F̂ (s+ ξ2, ξ) ds dξ

+
∑
µ∈2Z

∫ ∫
χ(−s+ ξ2 > 0)eix·ξ+it(s−ξ

2)ϕ(w(s− ξ2, ξ)/µ)F̂ (s− ξ2, ξ) ds dξ

=
∑
µ∈2Z

∫
eit(s−∆)h+

µ (s) ds+
∑
µ∈2Z

∫
eit(s+∆)h−µ (s) ds,

where

h±µ (s) = χ
{
µ/2

3
2 ≤ |s| ≤ 2µ

}∫
eix·ξχ(±s+ ξ2 > 0)ϕ(w(s± ξ2, ξ)/µ)F̂ (s± ξ2, ξ) dξ,

and we used

µ/2 ≤ w(τ, ξ) = ||τ | − ξ2| |τ |+ ξ2

(τ 2 + |ξ|4)
1
2

≤
√

2||τ | − ξ2| ≤
√

2w(τ, ξ) ≤ 2
√

2µ.

Now we assume there holds
∥∥eiθe±it∆f∥∥

X
. ‖f‖L2

x
for some space X and all θ, t ∈ R , then

∑
µ

∑
±

∥∥∥∥∫ eit(s∓∆)h±µ (s) ds

∥∥∥∥
X

.
∑
µ

∑
±

µ
1
2

(∫ ∥∥h±µ (s)
∥∥2

L2
x
ds

) 1
2

∼
∑
µ

∑
±

µ
1
2

∥∥∥χ(±τ > 0)ϕ(w(±τ, ξ)/µ)F̂ (τ, ξ)
∥∥∥
L2
ξ,τ

.
∑
µ

µ
1
2 ‖QµF‖L2

t,x
.
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Hence (2.3.25) follows from the Strichartz estimate for Schrödinger groups and Lemma 2.A.5,
since (for the limiting dyadic block µ = 0 with Lh = 0) we have (see Lemma 2.3.3, resp.
Lemma 2.3.5)

‖h‖X . ‖h(0)‖L2 + ‖∂th(0)‖Ḣ−2 , (2.3.27)

where X = λ
d
2
− 2
p
− d
qLptL

q
x. For (2.3.24), (2.3.26), we use the decomposition

F = Q≤λ2

16

F + (1−Q≤λ2

16

)F.

Then we check that calculating h±µ (s) in the above argument for Q≤λ2

16

F , the function

ξ 7→ ĥ±µ (s)(ξ)

has support in Adλ/2 ∪ Adλ for all s ∈ R. Hence, following the argument with

X = λ
d
2
− 1
p
− (d+1)

q LpeL
q
t,e⊥

, X =
⋂
e

λ
d−1

2 L2
eL
∞
t,e⊥ ,

we obtain (2.3.24), (2.3.26) by Corollary 2.A.3 and Lemma 2.A.5 for Q≤λ2

16

F on the LHS. For
(2.3.26), we further note that by assumption h±µ (s) localizes inAe for all s ∈ R. The remaining
estimates for (1−Q≤λ2

16

)F are equivalent to

‖(1−Q≤λ2

16

)F‖X . λ‖(1−Q≤λ2

16

)F‖L2
t,x
,

which follow from Sobelev embedding (thus the restriction to p ≥ 2). As above, we obtain the
estimates for the Lh = 0 part of the limiting dyadic block µ = 0 by Lemma 2.3.5.

2.4 Global wellposedness in the scaling critical Besov space

In this section, we define the space Z d
2 that solves the division problem for the Cauchy

problems (2.1.1) and (2.1.4) (as stated above in Theorem 2.1.1). Further, we establish the
bilinear estimates in Section 2.4.2 that are necessary to prove the Lipschitz bound in Lemma
2.2.2 and finally state the proof of Theorem 2.1.1. The proof of Corollary 2.1.2 is a consequence
of Theorem 2.1.1 and will be stated in the next section.

2.4.1 Function spaces

Wenowdefine the dyadic building blocks of the function spacesZ d
2 , W

d
2 and use the convention

‖·‖λBλ = λ−1 ‖·‖Bλ .
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We set

Zλ = X
1
2
,1

λ + Yλ, (2.4.1)

where Yλ is the closure of

{f ∈ S | supp(f̂) ⊂ Aλ, ‖f‖Yλ <∞ },

‖f‖Yλ = λ−2 ‖Lf‖L1
tL

2
x

+ ‖f‖L∞t L2
x
,

and the norm of Zλ is given by

‖u‖Zλ = inf
u1+u2=u

(
‖u1‖

X
1
2 ,1

λ

+ ‖u2‖Yλ
)
.

For the nonlinearity, we constructWλ = L(Zλ), i.e.

Wλ = λ2
(
X
− 1

2
,1

λ + (L1
tL

2
x)λ
)

(2.4.2)

where (L1
tL

2
x)λ is the closure of

{F ∈ S | supp(F̂ ) ⊂ Aλ, ‖F‖L1
tL

2
x
<∞ },

and
‖F‖Wλ

= λ−2 inf
F1+F2=F

(
‖F1‖

X
− 1

2 ,1

λ

+ ‖F2‖L1
tL

2
x

)
.

Then, we define

‖u‖Z =
∑
λ∈2Z

λ
d
2 ‖Pλ(D)u‖Zλ , (2.4.3)

‖F‖W =
∑
λ∈2Z

λ
d
2 ‖Pλ(D)F‖Wλ

, (2.4.4)

and

‖u‖2
Zs =

∑
λ∈2Z

λ2s ‖Pλ(D)u‖2
Zλ

for s >
d

2
. (2.4.5)

‖F‖2
W s =

∑
λ∈2Z

λ2s ‖Pλ(D)F‖2
Wλ

for s >
d

2
. (2.4.6)

Embeddings, linear estimates and continuous operator

In this section, we provide some useful embeddings and multiplier theorems concerning Zλ
andWλ. We also show that the solution of (2.3.1) satisfies u ∈ Zs if Lu ∈ W s with the correct
initial regularity Ḃ2,1

d
2

× Ḃ2,1
d
2
−2

or Ḣs × Ḣs−2, respectively for s > d
2
.
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At the end of this section, we show that Zλ bounds

λ−
1
2L∞e L

2
t,e⊥ ,

⋂
e

λ
d−1

2 L2
eL
∞
t,e⊥ ,

in a suitable sense. Therefore, we apply the following heurstic argument, used similarly in [2]
for Schrödinger maps. For solving (2.3.1) by u = V (F ) with u0 = u1 = 0, we rely on the
inhomogeneous Strichartz estimate Lemma 2.3.6

‖V (F )‖
λ−

1
2L∞e L

2
t,e⊥
. λ−2 ‖F‖L1

tL
2
x
, (τ, ξ) ∈ supp(P̂0F )

and otherwise on inverting the symbol of L

V (F ) = F−1
( F̂ (τ, ξ)

τ 2 − |ξ|4
)
, (τ, ξ) ∈ supp( ̂(1− P0)F ).

We first consider the following Lemma, which clearifies how the the spaces Zλ,Wλ behave
under modulation cut-off and is essentially from [54] (adapted to the paraboloid τ 2 = |ξ|4).
Lemma 2.4.1. The following operator are continuous for 1 ≤ p < ∞ with norms that are
uniformly bounded in µ ≤ 4λ2.

(a) Pλ,≤µ, PλP0 : LptL
2
x → LptL

2
x, µ ≤ 4λ2

(b) (1−Q≤µ)Pλ : Yλ → µ−1L1
tL

2
x, µ ≤ 4λ2.

Proof. We follow Tataru’s argument in [54], which we stated in Lemma 2.2.14 in Section 2.2.1.
This argument applies, similar to [54], to Pλ,≤µ with multiplier

mµ,λ(τ, ξ) =
∑
µ̃≤µ

ϕ((τ 2 + ξ4)
1
4/λ)ϕ(w(τ, ξ)/µ̃),

since there holds for N ∈ N and ξ ∈ Rd fixed

|∂Nτ mµ,λ(τ, ξ)| .N µ−N , supp(mµ,λ) ⊂ {(τ, ξ) | ||τ | − ξ2| ≤ 2µ}. (2.4.7)

For the second operator

PλP0u = F−1(ϕ((τ 2 + ξ4)
1
4/λ))χ(τ, ξ)û(τ, ξ))

in (a), we note that χ is invariant under scaling and hence the claim reduces to continuity of
P1P0 : LptL

2
x → LptL

2
x. This follows directly from the above argument.

Now for part (b), we write

F(1−Q≤µ)Pλu)(τ, ξ) =
(
1−

∑
µ̃≤µ

ϕ(w(τ, ξ)/µ̃)
)
ϕ((τ 2 + ξ4)

1
4/λ)û(τ, ξ)

= µ−1λ−2
(
1−

∑
µ̃≤µ

ϕ(w(τ, ξ)/µ̃)
)ϕ((τ 2 + ξ4)

1
4/λ)µλ2

w(τ, ξ)(τ 2 + ξ4)
1
2

L̂u(τ, ξ)

=: µ−1λ−2m̃µ,λ(τ, ξ)L̂u(τ, ξ).
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It hence suffices to prove continuity of the operator F−1(m̃µ,λF(·)) on L1
tL

2
x. As in Lemma

2.2.14, by Young’s inequality and Plancherel, this reduces to a proof of K ∈ L1
tL
∞
ξ , where

K(t, ξ) =

∫
eitτm̃µ,λ(τ, ξ) dτ,

is the convolution kernel (in t). This follows similarly as in the proof for the cone in [54]. We
sketch the argument following the proof in [15, chapter 2.4]. There holds

||τ | − ξ2|m̃µ,λ(τ, ξ) + ||τ | − ξ2|3∂2
τ m̃µ,λ(τ, ξ) . µ. (2.4.8)

Hence, considering the support

{(τ, ξ) | ||τ | − ξ2| ≥ µ/
√

2, |τ |+ ξ2 ≤ 4
√

2λ2 },

we infer ∣∣∣∣∫ eitτm̃µ,λ(τ, ξ) dτ

∣∣∣∣ . µ log(λ2/µ),

∣∣∣∣t2 ∫ eitτm̃µ,λ(τ, ξ) dτ

∣∣∣∣ . µ−1.

Integration gives boundedness of the following terms (uniform in µ, λ)

‖K‖L1
tL

2
ξ
.
∫
|t|≤ 1

4
√

2λ2

‖K(t, ·)‖L∞ dt+

∫
|t|≥

√
2
µ

‖K(t, ·)‖L∞ dt+

∫
1

4
√

2λ2≤|t|≤
√

2
µ

‖K(t, ·)‖L∞ dt.

For the last term, we estimate

‖K(t, ·)‖L∞ .
∫

µ√
2
≤||τ |−ξ2|≤ 1

|t|

µ

||τ | − ξ2|
dτ +

1

t2

∫
||τ |−ξ2|≥ 1

|t|

µ

||τ | − ξ2|3
dτ . µ(1− log(|t|µ)),

and hence ∫
1

4
√

2λ2≤|t|≤
√

2
µ

‖K(t, ·)‖L∞ dt . 1.

Lemma 2.4.2. We have

Wλ ⊂ λ3L2
t,x, Zλ ⊂ λ

d
2L∞t,x (2.4.9)

X
1
2
,1

λ ⊂ Zλ ⊂ X
1
2
,∞

λ . (2.4.10)

Proof. For (2.4.10), we note thatX
1
2
,1

λ ⊂ Zλ follows by definiton and Zλ ⊂ X
1
2
,∞

λ is proven as
follows.
The norm of X

1
2
,∞

λ is estimated against the norm of the X
1
2
,1

λ part and further, for the L1
tL

2
x

part in Yλ, we deduce from Lemma 2.3.7

‖uλ‖
X

1
2 ,∞
λ

. λ−2 ‖Luλ‖
X
− 1

2 ,∞
λ

+ ‖u(0)‖L2
x

+ ‖∂tu(0)‖H−2
x

. λ−2 ‖Luλ‖L1
tL

2
x

+ ‖uλ‖L∞t L2
x
,
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which reads as

‖uλ‖
X

1
2 ,∞
λ

. ‖uλ‖Yλ , uλ ∈ Yλ.

Concerning (2.4.9) in the Lemma, we note

‖uλ‖L2
t,x
. λ ‖uλ‖L1

tL
2
x
∼ λ3 ‖uλ‖λ2L1

tL
2
x
, uλ ∈ L1

tL
2
x,

where we used that ûλ(·, ξ) is localized (in τ ) on an interval on length∼ λ2. Hence, since also,

‖uλ‖L2
t,x
. λ

∑
µ.λ2

µ−
1
2 ‖Qµ(uλ)‖L2

t,x
, uλ ∈ X

− 1
2
,1

λ ,

we obtain the first claim. For the L∞t,x embedding, we estimate similarly by Lemma 2.3.7

‖uλ‖L∞t,x . λ
d
2 ‖uλ‖

X
1
2 ,1

λ

.

For the Yλ part, we obtain by a direct application of the classical Strichartz estimate

‖uλ‖L∞t,x . ‖u(0)‖
Ḣ
d
2

+ ‖∂tu(0)‖
Ḣ
d
2−2 + λ

d
2
−2 ‖Lu‖L1

tL
2
x
. λ

d
2 ‖uλ‖Yλ .

from Lemma 2.3.5 and Lemma 2.3.6 for p = q =∞.

Proposition 2.4.3. There holds

Z
d
2 ⊂ C(R, Ḃ2,1

d
2

) ∩ Ċ1(R, Ḃ2,1
d
2
−2

) (2.4.11)

Zs ⊂ C(R, Ḣs) ∩ Ċ1(R, Ḣs−2) (2.4.12)

Further we have

‖u‖
Z
d
2
. ‖(u(0), ∂tu(0))‖Ḃ2,1

d
2

×Ḃ2,1
d
2−2

+ ‖Lu‖
W

d
2
, (2.4.13)

‖u‖Zs . ‖(u(0), ∂tu(0))‖Ḣs×Ḣs−2 + ‖Lu‖W s , s >
d

2
, (2.4.14)

‖Lu‖
W

d
2
. ‖u‖

Z
d
2
, ‖Lu‖W s . ‖u‖Zs , s >

d

2
. (2.4.15)

Proof. The claim (2.4.15) follows from the definition of Zλ,Wλ since λ2L1
tL

2
x = LYλ and for

the X
1
2
,p

λ part, we use
‖Lu‖

X
− 1

2 ,1

λ

. λ2 ‖u‖
X

1
2 ,1

λ

.

For (2.4.11) and (2.4.12), if suffices to show

‖Pλ(D)u‖L∞t Ḃ2,1
d
2

+ ‖Pλ(D)∂tu(t)‖L∞t Ḃ2,1
d
2−2

. λ
d
2 ‖Pλ(D)u‖Zλ ,
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where by Bernstein

‖Pλ(D)∂tu(t)‖L∞t Ḃ2,1
d
2−2

. ‖Pλ(D)u‖L∞t Ḃ2,1
d
2

. (2.4.16)

Then, since

‖Pλ(D)u‖L∞t Ḃ2,1
d
2

≤
∑
λ̃≤λ

(
λ̃/λ

) d
2λ

d
2 ‖Pλ(D)Pλ̃(∇)u‖L∞t L2

x
, (2.4.17)

the embedding and the continuity in time follow from Zλ ⊂ Sλ ⊂ CtL
2
x and we proceed

similarly for the emdedding of Zs using square sums. Now for (2.4.13) and (2.4.14), we use
Duhamel’s formula

u = S(u(0), ∂tu(0)) + V (Lu),

where S(u0, u1) solves (2.3.1) for F = 0 and V F solves (2.3.1) for u0 = u1 = 0. The
homogeneous solution is estimated by the Strichartz bound in Lemma 2.3.5 in the energy case
p =∞, q = 2. This is also directly verified by

Fx(Pλ(D)S(u(0), ∂tu(0)))(t, ξ) = ϕ(2
1
4 |ξ|/λ)(cos(|ξ|2t)û(0)(ξ)+ |ξ|−2 sin(|ξ|2t)∂̂tu(0)(ξ)),

and hence

‖PλS(u(0), ut(0))‖Zλ . ‖PλS(u(0), ut(0))‖L∞t L2
x
. ‖uλ(0)‖L2 + ‖∂tuλ(0)‖H−2 .

For the inhomogeneous solution V (Lu) we estimate the X
1
2
,p

λ part by

‖V (Luλ)‖
X

1
2 ,1

λ

. λ−2 ‖Luλ‖
X
− 1

2 ,1

λ

, (2.4.18)

and for Yλ, we use Lemma 2.3.6 in order to conclude

‖V (Luλ)‖Yλ = λ−2 ‖Luλ‖L1
tL

2
x

+ ‖uλ‖L∞t L2
x
. λ−2 ‖Luλ‖L1

tL
2
x
.

We further estimate the lateral Strichartz norm and establish the maximal function estimate.

Proposition 2.4.4. For any dyadic number λ ∈ 2Z we have

Zλ ⊂ Sλ ∩
∑
e∈M

Seλ, (2.4.19)

Zλ ⊂
⋂
e∈M

λ
n−1

2 L2
eL
∞
t,e⊥ . (2.4.20)

where Seλ is the closure of{
f ∈ S | supp(f̂) ⊂ Aλ, ‖f‖Seλ = sup

(p,q)

(
λ

1
p

+
(d+1)
q
− d

2 ‖f‖LpeLq
t,e⊥

)
<∞

}
with (p, q) ranging over all admissible pairs with p ≥ 2.
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Proof. For (2.4.19), we first consider the embedding Zλ ⊂ Sλ. Thus, the X
1
2
,1

λ part satisfies
for any admissible pair (p, q)

λ
2
p

+ d
q
− d

2 ‖uλ‖LptLqx . ‖uλ‖X 1
2 ,1

λ

,

by Lemma 2.3.7. Likewise, we obtain the same bound against the Yλ part by Lemma 2.3.5 and
Lemma 2.3.6. For the Seλ embedding, we decompose as follows

uλ =
∑
e∈M

ueλ, u
e
λ = Pe(∇)uλ, (2.4.21)

which suffices to obtain (2.4.19) for theX
1
2
,1

λ part directly fromLemma 2.3.7. Now, considering
the Yλ part of Zλ, we further write

ueλ = P0u
e
λ + (1− P0)ueλ.

Then, P0u
e
λ is localized in Be and (by definition of P0, 1− P0)

P0u
e
λ = S(ueλ(0), ∂tu

e
λ(0)) + V (P0L(ueλ)), (1− P0)ueλ = V ((1− P0)L(ueλ)).

Hence by Lemma 2.3.5 and Lemma 2.3.6 we have

λ
1
p

+
(d+1)
q
− d

2 ‖P0u
e
λ‖LpeLq

t,e⊥
. λ−2 ‖P0Lu

e
λ‖L1

tL
2
x

+ ‖ueλ(0)‖L2 + ‖∂tueλ(0)‖H−2 (2.4.22)

. ‖uλ‖Y eλ ,

by Lemma 2.4.1 and continuity of Pe(∇) on L1
tL

2
x. Similarly, by Lemma 2.3.7, we infer

λ
1
p

+
(d+1)
q
− d

2 ‖(1− P0)ueλ‖LpeLq
t,e⊥
. ‖V (1− P0)(Lueλ)‖

X
1
2 ,1

λ

. λ−2 ‖(1− P0)Lueλ‖
X
− 1

2 ,1

λ

. λ−2 ‖(1− P0)Lueλ‖
X
− 1

2 ,∞
λ

. ‖uλ‖Y eλ ,

where we used (1− P0)X
1
2
,1

λ ∼ (1− P0)X
1
2
,∞

λ uniform in the frequency λ ∈ 2Z and the dual
trace inequelity from Lemma 2.3.7 in the last step. Hence we sum over e ∈ M and take the
infimum over uλ =

∑
e u

e
λ with ueλ ∈ Seλ. The L2

eL
∞
t,e⊥ embedding (2.4.20) follows similarly

using Lemma 2.3.7, the decomposition (2.4.21) and Lemma 2.3.5, 2.3.6. Especially

sup
ẽ

(
λ

1−d
2 ‖P0u

e
λ‖L2

ẽL
∞
t,ẽ⊥

)
. ‖uλ‖Yλ , (2.4.23)

sup
ẽ

(
λ

1−d
2 ‖(1− P0)ueλ‖L2

ẽL
∞
t,ẽ⊥

)
. λ−2 ‖Luλ‖

X
− 1

2 ,∞
λ

. ‖uλ‖Yλ (2.4.24)

Again the estimate for the X
1
2
,1

λ part follows directly by Lemma 2.3.7.
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2.4.2 Bilinear estimates

For the bilinear interaction, we write

u · v =
∑
λ1,λ2,λ

(uλ1vλ2)λ

=
∑
λ2�λ1

[
(uλ1vλ2)λ2/2 + (uλ1vλ2)λ2 + (uλ1vλ2)2λ2

]
(2.4.25)

+
∑
λ1�λ2

[
(uλ1vλ2)λ1/2 + (uλ1vλ2)λ1 + (uλ1vλ2)2λ1

]
(2.4.26)

+
∑

| log2(λ1/λ2)|∼1

∑
λ.max{λ1,λ2}

(uλ1vλ2)λ. (2.4.27)

Due to symmetry, we restrict (2.4.25) - (2.4.27) to∑
λ2�λ1

[
(uλ1vλ2)λ2/2 + (uλ1vλ2)λ2 + (uλ1vλ2)2λ2

]
+
∑
λ1∼λ2

∑
λ.λ2

(uλ1vλ2)λ,

and thus further reduce to the interactions

λ1 � λ2 : (uλ1vλ2)λ2 , and λ1 ≤ λ2 : (uλ2vλ2)λ1 .

Lemma 2.4.5.

(a) ‖uλ1vλ2‖Zλ2
. λ

d
2
1 ‖uλ1‖Zλ1

‖vλ2‖Zλ2
, λ1 � λ2 (2.4.28)

(b) ‖(uλ2vλ2)λ1‖Zλ1
. λ

d
2
2 ‖uλ2‖Zλ2

‖vλ2‖Zλ2
, λ1 ≤ λ2. (2.4.29)

Proof. For part (a), we decompose

(uλ1vλ2)λ2 = Q≤4λ1λ2(uλ1vλ2)λ2 + (1−Q≤4λ1λ2)(uλ1vλ2)λ2 . (2.4.30)

First, we place Q≤4λ1λ2(uλ1vλ2)λ2 ∈ X
1
2
,1

λ2
by estimating

‖(uλ1vλ2)λ2‖L2
t,x
. λ

d−1
2

1 λ
− 1

2
2 ‖uλ1‖Zλ1

‖vλ2‖Zλ2
. (2.4.31)

Then, from X
1
2
,1

λ2
⊂ Zλ2 , (2.4.31) gives

‖Q≤4λ1λ2(uλ1vλ2)λ2‖Zλ2
. ‖Q≤4λ1λ2(uλ1vλ2)λ2‖

X
1
2 ,1

λ2

.
( ∑
µ≤4λ1λ2

µ
1
2 (λ1λ2)−

1
2

)
λ
d
2
1 ‖uλ1‖Zλ1

‖vλ2‖Zλ2
.
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For (2.4.31), we write uλ1vλ2 =
∑

e∈M uλ1v
e
λ2

where veλ2
∈ Seλ2

. Hence∥∥(uλ1v
e
λ2

)λ2

∥∥
L2
t,x
≤ ‖uλ1‖L2

eL
∞
t,e⊥

∥∥veλ2

∥∥
L∞e L

2
t,e⊥

(2.4.32)

≤ λ
d−1

2
1 ‖uλ1‖

λ
d−1

2
1

⋂
ẽ L

2
ẽL
∞
t,ẽ⊥

λ
− 1

2
2

∥∥veλ2

∥∥
λ
− 1

2
2 L∞e L

2
t,e⊥

. (2.4.33)

Summing over e ∈M, the claim follows from Proposition 2.4.4. Secondly, we note for λ2
1 � µ

Qµ(uλ1vλ2)λ2 = Qµ

(
uλ1

∑
|j|≤2

Q2jµvλ2

)
(2.4.34)

Hence we write

(1−Q≤4λ1λ2)(uλ1vλ2)λ2 = (1−Q≤4λ1λ2)(uλ1(1−Q≤λ1λ2)vλ2)λ2

In order to estimate the remaining part in (2.4.30), using Lemma 2.4.1, it thus suffices to prove

‖(uλ1(1−Q≤λ1λ2)vλ2)λ2‖
X

1
2 ,1

λ2

. ‖uλ1‖Zλ1
‖vλ2‖

X
1
2 ,1

λ2

(2.4.35)

‖(uλ1(1−Q≤λ1λ2)vλ2)λ2‖Yλ2
. ‖uλ1‖Zλ1

‖vλ2‖Yλ2
. (2.4.36)

The estimate (2.4.35) and the L∞t L2
x summand of (2.4.36) follow from the embedding Zλ1 ⊂

λ
d
2
1 L
∞
t,x by factoring off the L∞t,x norm of uλ1 . For the second estimate (2.4.36), we further

calculate

L(uλ1(1−Q≤λ1λ2)vλ2)λ2 = uλ1L(1−Q≤λ1λ2)vλ2 + ∂tuλ1∂t(1−Q≤λ1λ2)vλ2

+ ∂2
t uλ1(1−Q≤λ1λ2)vλ2 + ∆2(uλ1(1−Q≤λ1λ2)vλ2)

− uλ1∆2(1−Q≤λ1λ2)vλ2),

hence we estimate

‖L(uλ1(1−Q≤λ1λ2)vλ2)λ2‖L1
tL

2
x

. ‖uλ1L(1−Q≤λ1λ2)vλ2‖L1
tL

2
x

+ ‖∂tuλ1∂t(1−Q≤λ1λ2)vλ2‖L1
tL

2
x

+
∥∥∂2

t uλ1(1−Q≤λ1λ2)vλ2

∥∥
L1
tL

2
x

+
∥∥∆2(uλ1(1−Q≤λ1λ2)vλ2)− uλ1∆2(1−Q≤λ1λ2)vλ2)

∥∥
L1
tL

2
x
.

Calculating the expression in the latter norm and factoring off the derivatives of uλ1 in L∞, we
infer (using Bernstein’s inequality)

‖L(uλ1(1−Q≤λ1λ2)vλ2)λ2‖L1
tL

2
x

. ‖uλ1L(1−Q≤λ1λ2)vλ2‖L1
tL

2
x

+ λ1 ‖uλ1‖L∞ λ
3
2 ‖(1−Q≤λ1λ2)vλ2‖L1

tL
2
x

≈ ‖uλ1L(1−Q≤λ1λ2)vλ2‖L1
tL

2
x

+ ‖uλ1‖L∞ λ1λ
3
2(λ1λ2)−1 ‖(1−Q≤λ1λ2)vλ2‖(λ1λ2)−1L1

tL
2
x

102



2.4. Global wellposedness in the scaling critical Besov space Chapter 2

where we note λ1 � λ2. We now proceed by Lemma 2.4.1 (b) (for µ = λ1λ2)

λ−2
2 ‖L(uλ1(1−Q≤λ1λ2)vλ2)λ2‖L1

tL
2
x

. λ
d
2
1 ‖uλ1‖Zλ1

(λ−2
2 ‖Lvλ2‖L1

tL
2
x

+ ‖vλ2‖Yλ2
),

which gives the claim. The proof part (b) follows similarly, in fact easier, since we can directly
place (uλ2vλ2)λ1 ∈ X

1
2
,1

λ1
by estimating

‖uλ2vλ2‖L2
t,x
. λ

d
2
−1

2 ‖uλ2‖Zλ2
‖vλ2‖Zλ2

. (2.4.37)

Then, from X
1
2
,1

λ1
⊂ Zλ1 , (2.4.37) gives

‖(uλ2vλ2)λ1‖Zλ1
.
∑
µ≤4λ2

1

(
µ

λ2
1

) 1
2

λ2 ‖uλ2vλ2‖L2
t,x

. λ2(λ
d
2
−1

2 ‖uλ2‖Zλ2
‖vλ2‖Zλ2

).

For (2.4.37), we write uλ2vλ2 =
∑

e∈M ueλ2
vλ2 where ueλ2

∈ Seλ2
. Hence∥∥ueλ2

vλ2

∥∥
L2
t,x
≤
∥∥ueλ2

∥∥
L∞e L

2
t,e⊥
‖vλ2‖L2

eL
∞
t,e⊥

≤ λ
− 1

2
2

∥∥ueλ2

∥∥
λ
− 1

2
2 L∞e L

2
t,e⊥

λ
d−1

2
2 ‖vλ2‖

λ
d−1

2
2

⋂
ẽ L

2
ẽL
∞
t,ẽ⊥

.

Summing over e ∈M, we infer the claim.

From Lemma 2.4.5, we obtain (2.1.10) as outlined above by summation according to the
definiton of Z d

2 and W d
2 . Note that the estimates for the remaining frequency interactions in

(2.4.25) and (2.4.27) follow the same arguments provided in Lemma 2.4.5.

Similarly, for the embedding (2.1.11) we prove the subsequent estimates.

Lemma 2.4.6.

‖uλ2vλ1‖W d
2
. λ

d
2
1 λ

d
2
2 ‖uλ2‖Zλ2

‖vλ1‖Wλ1
, λ1 ≤ λ2 (2.4.38)

‖uλ2vλ1‖Wλ2
. λ

d
2
1 ‖uλ2‖Wλ2

‖vλ1‖Zλ1
, λ1 � λ2 (2.4.39)
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Proof. We first estimate by Sobolev embedding
λ−2

2 ‖uλ2vλ1‖L1
tL

2
x
. λ−2

2 ‖uλ2‖
L2
tL

2d
d−2
x

‖vλ1‖L2
tL

d
x

. λ−2
2 ‖uλ2‖

L2
tL

2d
d−2
x

λ
d−2

2
1 ‖vλ1‖L2

t,x

. ‖uλ2‖Sλ2
λ
d
2
−3

1 ‖vλ1‖L2
t,x

. ‖uλ2‖Zλ2
λ
d
2
1 ‖vλ1‖Wλ1

where we used Lemma 2.4.2 forWλ1 ⊂ λ3
1L

2
t,x. Thus from∥∥ueλ2

vλ1

∥∥
W

d
2
. λ

d−4
2

2 ‖uλ2vλ1‖L1
tL

2
x
. λ

d
2
2 λ

d
2
1 ‖uλ2‖Zλ2

‖vλ1‖Wλ1
,

we obtain the claim (2.4.38). Estimate (2.4.39) is implied by

λ
− d

2
1 Zλ1 · L1

tL
2
x ⊂ L1

tL
2
x, (2.4.40)

λ
− d

2
1 Zλ1 ·X

− 1
2
,1

λ2
⊂ Wλ2λ

−2
2 , (2.4.41)

where the first embedding follows from Zλ1 ⊂ λ
d
2
1 L
∞
t,x. For (2.4.41), we note that since we

restrict to λ1 � λ2, we only consider λ1 ≤ λ2

C
for a large, fixed constant C > 0. We thus

decompose
uλ2 = Q≤C2λ2

1
uλ2 + (1−Q≤C2λ2

1
)uλ2 .

In particular, each dyadic piece Qµuλ2 in (1−Q≤C2λ2
1
)X
− 1

2
,1

λ2
satisfies λ2

1 � µ ≤ λ2
2.We then

estimate (note that we use (2.4.34))∥∥∥vλ1(1−Q≤C2λ2
1
)uλ2

∥∥∥
X
− 1

2 ,1

λ2

∼
∑

C2λ2
1≤µ≤4λ2

2

µ−
1
2 ‖vλ1Qµuλ2‖L2

t,x

.
∑

C2λ2
1≤µ≤4λ2

2

µ−
1
2 ‖vλ1‖L∞t,x ‖Qµuλ2‖L2

t,x

. λ
d
2
1 ‖vλ1‖Zλ1

‖uλ2‖
X
− 1

2 ,1

λ2

.

Further
λ2

2

∥∥∥vλ1Q≤C2λ2
1
uλ2

∥∥∥
Wλ2

.
∥∥∥vλ1Q≤C2λ2

1
uλ2

∥∥∥
L1
tL

2
x

. ‖vλ1‖L2
tL
∞
x

∥∥∥Q≤C2λ2
1
uλ2

∥∥∥
L2
t,x

. λ
d
2
1 ‖vλ1‖

λ
d−2

2
1 L2

tL
∞
x

∑
µ≤C2λ2

1

µ−
1
2 ‖Qµuλ2‖L2

t,x

. λ
d
2
1 ‖vλ1‖Zλ1

‖uλ2‖
X
− 1

2 ,1

λ2

,
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which follows from Zλ1 ⊂ Sλ1 .

We now infer (2.1.10) and (2.1.11) by the summation argument provided in the beginning of
the section.

2.4.3 Higher regularity

The percisteny of higher regularity of the Ḃ2,1
d
2

× Ḃ2,1
d
2
−2

solution as stated in Theorem 2.1.1
follows as in [54] and [2] from (2.1.14) and (2.1.15). We will show how to employ these
estimates in order to apply Lemma 2.2.2 in the next Section 2.4.4.

For (2.1.14), we rely again on Lemma 2.4.5 and the decomposition

uv =
∑
λ1�λ2

uλ2vλ1 +
∑
λ2�λ1

uλ2vλ1 +
∑
λ1∼λ2

uλ2vλ1 ,

from the beginning of the Section 2.4.2. However, we now sum as follows(∑
λ

λ2s ‖(uv)λ‖2
Zλ

) 1
2

.
∑
λ1

(∑
λ

λ2s

∥∥∥∥( ∑
λ1�λ2

uλ2vλ1

)
λ

∥∥∥∥2

Zλ

) 1
2

+
∑
λ2

(∑
λ

λ2s

∥∥∥∥( ∑
λ2�λ1

uλ2vλ1

)
λ

∥∥∥∥2

Zλ

) 1
2

+
∑
λ1∼λ2

‖uλ2vλ1‖Zs .

Hence, we need to estimate the three terms∑
λ1

( ∑
λ1�λ

λ2s‖(uλvλ1)λ‖2
Zλ

) 1
2

,
∑
λ2

( ∑
λ2�λ

λ2s‖(uλ2vλ)λ‖2
Zλ

) 1
2

,
∑
λ1∼λ2

‖uλ2vλ1‖Zs ,

where for s > d
2
, the latter sum is treated by Lemma 2.4.5 (b) similar as before via (note that

we identify λ1 and λ2 for simplicity)∑
λ2

∑
λ.λ2

λs ‖(uλ2vλ2)λ‖Zλ .
∑
λ2

(λ2s
2 ‖uλ2‖

2
Zλ2

)
1
2λ

d
2
2 ‖vλ2‖Zλ2

. ‖u‖Zs ‖v‖Z d2 .

The LHS of this inequality now bounds the l2(Z) norm (wrt λ) and for the first two sums above
we directly estimate the squares via Lemma 2.4.5 (a). For (2.1.15), we sum in the same way
and use the following dyadic estimates∑

λ1.λ2

λs1 ‖(uλ2vλ2)λ1‖Wλ1
. λ

s+ d
2

2 ‖uλ2‖Zλ2
‖vλ2‖Wλ2

,

‖(uλ2vλ1)λ2‖Wλ2
. λ

d
2
1 ‖uλ2‖Wλ2

‖vλ1‖Zλ1
, λ1 � λ2

‖(uλ2vλ1)λ2‖Wλ2
. λ

d
2
1 ‖uλ2‖Zλ2

‖vλ1‖Wλ1
, λ1 � λ2
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which are the same as in (or follow from) Lemma 2.4.6.

2.4.4 Proof of the main theorem

The proof of Theorem 2.1.1 follows straight forward pertubatively by convergence of

uk+1 = Su[0] + V (Q(uk)), k ≥ 0, u0(t, x) = 0 (2.4.42)

in the space Z d
2 , where Su[0] = S(u0, u1) solves (2.3.1) with F = 0 and V F solves (2.3.1)

with u[0] = 0. To be more precise, we combine Proposition 2.4.3, i.e.

‖uk+1‖
Z
d
2
. ‖u0‖Ḃ2,1

d
2

+ ‖u1‖Ḃ2,1
d
2−2

+ ‖Q(uk)‖
W

d
2

sup
t∈R

(
‖u(t)‖Ḃ2,1

d
2

+ ‖∂tu(t)‖Ḃ2,1
d
2−2

)
. ‖u‖

Z
d
2
,

with the Lipschitz estimates

‖Q(uk)−Q(ul)‖W n
2
. C(‖uk‖

Z
d
2
, ‖ul‖

Z
d
2
) ‖uk − ul‖

Z
d
2
,

‖Q(uk)−Q(ul)‖W s . ‖uk − ul‖Zs (‖uk‖
Z
d
2

+ ‖ul‖
Z
d
2
) + ‖uk − ul‖

Z
d
2

(‖uk‖Zs + ‖ul‖Zs).

The first estimate is a direct consequence of (2.1.10), (2.1.11), (2.1.2) and Lemma 2.4.3
providedQ is analytic (at x0 = 0) and (2.1.16) holds, which is a priori necessary to expand the
coefficients of Q. The latter estimate follows similarly using (2.1.14) and (2.1.15) and hence
this framework applies to Lemma 2.2.2.

For the interested reader, we now make this precise and establish (2.2.11) and (2.2.12) in the
Lemma for Z = Z

d
2 in Proposition 2.4.3. It hence suffices to prove the Lipschitz estimates

(2.2.13) and (2.2.15), which follow from the continuity V : Wλ → Zλ (see Proposition 2.4.3)
and for a small δ > 0 and s > d

2
, as mentioned above,

‖Q(u)−Q(v)‖
W

n
2
. (‖u‖

Z
d
2

+ ‖v‖
Z
d
2
) ‖u− v‖

Z
d
2
, u, v ∈ BZ

d
2 (0, δ), (2.4.43)

‖Q(u)−Q(v)‖W s . ‖u− v‖Zs (‖u‖
Z
d
2

+ ‖v‖
Z
d
2
)

+ ‖u− v‖
Z
d
2

(‖u‖Zs + ‖v‖Zs), u, v ∈ BZ
d
2 (0, δ) ∩ Zs, (2.4.44)

and similar for the nonlinearity in (2.1.4). Then we conclude Theorem 2.1.1 from Lemma 2.2.2
for δ > 0 such that additionally (2.2.14) is satisfied. In order to obtain (2.4.43) and (2.4.44),
we first note that from (2.1.14) (combined with (2.1.10)) there holds by induction over kj ∈ N
with j = 1, . . . ,m for uj ∈ Z

d
2 ∩ Zs

∥∥ m∏
j=1

u
kj
j

∥∥
Zs
.

m∑
j=1

∏
i 6=j

kj ‖uj‖Zs ‖uj‖
kj−1

Z
d
2
‖ui‖ki

Z
d
2
. (2.4.45)
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Here we ignore the fact that uj are vector-valued. In particular, the smallness assumption is
only necessary in Z d

2 in order to estimate the series expansion ofQ(u), Q(v) in (2.1.1) and Π

in (2.1.4). We apply (2.4.45) for power of w = u− v, u, v where u, v ∈ Z d
2 ∩ Zs.

We proceed by expanding x 7→ Qx(·, ·) and x 7→ Π(x) at x0 = 0, i.e. by assumption

Qx =
∞∑
k=0

∑
k=|α|

1

α!
Dα(Qx)|x=0x

α, Π(x) =
∞∑
k=0

∑
k=|α|

1

α!
DαΠ(x)|x=0x

α,

converge uniformly in B(0, ε) ⊂ RL for some ε > 0, where α ∈ NL
0 , α! = ΠL

j=1αj!, x
α =

ΠL
j=1x

αj
j . For convenience, we write

Qx =
∞∑
k=0

1

k!
(dkQx)|x=0(xk), Π(x) =

∞∑
k=0

1

k!
dkΠ(x)|x=0(xk), (2.4.46)

where dkQx, d
kΠ(x) are (k + 2)-, resp. k-tensors with the notation for l = 1, . . . , L

dkQl
0(xk) = dkQl

0(x, . . . , x) =
∑

l1+···+lL=k

k!

l1! · · · lL!
(∂l1x1
· · · ∂lLxLQ

l
0)xl11 · · ·x

lL
L ,

and similar for dkΠ. Especially we have for any v ∈ RL

dΠx(v) =
∞∑
k=1

1

(k − 1)!

L∑
l=1

dk−1∂xlΠ(x)|x=0(xk−1)vl (2.4.47)

=
∞∑
k=1

1

k!

L∑
l=1

dk−1∂xlΠ(x)|x=0(xk−1)kvl.

Since e.g.

∥∥ 1

k!
(dkQx)|x=0(xk)

∥∥
Z
d
2
.
∑
|α|=k

1

α!
|Dα(Qx)|x=0 |RLδk, u ∈ BZ

d
2 (0, δ),

we have that (2.4.46) exist absolutely in BZ
d
2 (0, δ) if δ > 0 is small enough. We now consider

Q(u) =
1

2
Qu(L(u · u)− u · Lu− Lu · u),

N (u) = L(Π(u))− dΠu(Lu).
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Then we have for w = u− v

Q(u)−Q(v) =
1

2
(Qu −Qv)(L(u · u)− u · Lu− Lu · u)

+
1

2
Qv(L(w · u) + L(v · w)− w · Lu− v · Lw − Lw · u− Lv · w),

(Qu −Qv) =
∑
k≥1

1

k!
(dkQx)|x=0(uk − vk)

=
∑
k≥2

k−1∑
l=0

1

k!
(dkQx)|x=0(vlwuk−l−1) + (dQx)|x=0(w),

where in (dkQx)|x=0(vlwuk−l−1), we capture all terms of the form∑
l1+...lm=l

lm+2···+lL=k−1−l

Cl1,...,lL(∂l1xi1 · · · ∂
lL
xiL
Q0)vl1i1 · · · v

lm
im
wim+1u

lm+2

im+2
· · ·ulLiL , ij ∈ {1, . . . , L}.

Especially, this implies (2.4.43) by (2.1.10), (2.1.11) and continuity of L : Z
d
2 → W

d
2

(Proposition 2.4.3).
We show more details for the proof of (2.4.44). Therefore, we use simplyfied notation and
estimate using (2.1.15)

‖(vlwuk−l−1)(L(u · u)− u · Lu− Lu · u)‖W s . J1 + J2,

where

J1 .
∥∥(vlwuk−l−1)

∥∥
Zs

(
∥∥u2
∥∥
Z
d
2

+ ‖uLu‖
W

d
2
)

.
∥∥(vlwuk−l−1)

∥∥
Zs
‖u‖2

Z
d
2

.δ l ‖v‖Zs ‖v‖
l−1

Z
d
2
‖w‖

Z
d
2
‖u‖k−l−1

Z
d
2

+ ‖w‖Zs ‖v‖
l

Z
d
2
‖u‖k−l−1

Z
d
2
‖u‖2

Z
d
2

+ (k − l − 1) ‖u‖Zs ‖v‖
l

Z
d
2
‖w‖

Z
d
2
‖u‖k−l−2

Z
d
2

.δ (k − 1)δk−2(‖u‖Zs + ‖v‖Zs) ‖w‖Z d2 + δk ‖w‖Zs (‖u‖
Z
d
2

+ ‖v‖
Z
d
2
).

by (2.4.45) and (2.1.14). Further

J2 .
∥∥(vlwuk−l−1)

∥∥
Z
d
2
‖u‖Zs ‖u‖Z d2 .δ ‖w‖Z d2 δ

k ‖u‖Zs .

Similarly we estimate

‖vk(L(w · u) + L(v · w)− w · Lu− v · Lw − Lw · u− Lv · w)‖W s . I1 + I2
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where

I1 .
∥∥vk∥∥

Zs
(‖u‖

Z
d
2

+ ‖v‖
Z
d
2
) ‖w‖

Z
d
2
.δ kδ

k−1 ‖v‖Zs ‖w‖Z d2 ,

I2 .
∥∥vk∥∥

Z
d
2

((‖u‖
Z
d
2

+ ‖v‖
Z
d
2
) ‖w‖Zs + (‖u‖Zs + ‖v‖Zs) ‖w‖Z d2 )

.δ δ
k((‖u‖

Z
d
2

+ ‖v‖
Z
d
2
) ‖w‖Zs + (‖u‖Zs + ‖v‖Zs) ‖w‖Z d2 ).

Now we turn to the second Cauchy problem (2.1.4), respectively the nonlinearity N . We note
that by continuity of L : Z

d
2 → W

d
2 , i.e.

‖Lv‖
W

d
2
. ‖v‖

Z
d
2
. δ,

and by convergence of (2.4.46) in BZ
d
2 (0, δ), we justify to pull L into the series expansion and

all terms in the series expression of N (u) are at least quadratic. More precisely in the above
notation

N (u) =
∑
k≥2

1

k!
(dkΠ(x))|x=0(L(uk)− kuk−1Lu),

converges absolutely in W d
2 if u ∈ BZ

d
2 (0, δ) and δ > 0 is small enough. Here we use the

identity (2.4.47) and write similarly as before

N (u)−N (v) =
∑
k≥2

k−1∑
l=0

1

k!
(dkΠ(x))|x=0(L(vlwuk−1−l)− kvlwuk−2−lLu− kvk−1Lw),

where for the middle term, we only sum l = 0, . . . , k − 2. This form applies to derive (2.4.43)
and (2.4.44) with the same arguments used above.

2.5 Application to biharmonic wave maps

We now want to prove Corollary 2.1.2 and construct a global solution of (2.1.3), which reads
as

∂2
t u+ ∆2u = dPu(ut, ut) + dPu(∆u,∆u) + 4dPu(∇u,∇∆u) + 2dPu(∇2u,∇2u)

+ 2d2Pu(∇u,∇u,∆u) + 4d2Pu(∇u,∇u,∇2u)

+ d3Pu(∇u,∇u,∇u,∇u),

where

d2Pu(∇u,∇u,∇2u) = d2Pu(∂
iu, ∂ju, ∂i∂

ju),

d3Pu(∇u,∇u,∇u,∇u) = d3Pu(∂iu, ∂
iu, ∂ju, ∂

ju),
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and dPu, d2Pu, d
3Pu are derivatives of the orthogonal tangent projector Pp : RL → TpN for

p ∈ N .

We extend this equation via the nearest point map Π (dΠu = Pu for u ∈ N ) to functions that
only map to the neighborhood Vε(N). By direct calculation or comparison to (2.1.5), it can be
verified that (2.1.4) is the canonical extension for this setting. We thus consider

Lv = L(Π(v + p))− dΠv+p(Lv) =: N (v),

for v = u − p where p := lim|x|→∞ u0(x). Since for δ > 0 small enough, we conclude (note
that in Ḃ2,1

d
2

we have C0 data)

sup
t∈R

dist(u,N) ≤ ‖u− p‖L∞t,x . ‖v‖L∞t B2,1
d
2

. ‖v‖
Z
n
2
. δ, (2.5.1)

the map v 7→ Π(v+p) and thus (2.1.4) is welldefined in aB(0, Cδ) ball inZ d
2 . In particular, we

apply Theorem 2.1.1 to the Cauchy problem (2.1.4) with the nearest point map v 7→ Π(v + p)
and obtain a global solution in Ḃ2,1

d
2

(Rd), which belongs to Ḣs(Rd) for any s > d
2
. Especially

we recover that u = v + p is a smooth map from Lemma 2.2.5.

The only thing left to show is that u(t) ∈ N for t ∈ R, such that in particular, (2.1.4) implies
(2.1.3).

If v = u − p ∈ B(0, Cδ) ⊂ Z
d
2 for a small δ > 0, then since Π(p) = p we have Π(u) − p =

Π(v + p)− p ∈ Z d
2 by the series expansion and Π(u)− u = Π(v + p)− p− v ∈ Z d

2 with

‖Π(u)− u‖
Z
d
2

+ ‖Π(u)− p‖
Z
d
2
. ‖v‖

Z
d
2
,

provided δ > 0 is small. We now have

L(u− Π(u)) = L(v − Π(v + p)) = −dΠv+p(Lv) = −dΠv+p(N (v)), (2.5.2)

Note that, since we haveΠ(u) on the LHS, the linear part of the expansion of dΠv+p on the RHS
is present. Since Π(u) ∈ N , we have N (Π(u)− p) ⊥ TΠ(u)N and from Im(dΠu) ⊂ TΠ(u)N ,
u = v + p, we obtain

dΠv+p(N (Π(u)− p)) = 0.

Hence (2.5.2) reads as

L(u− Π(u)) = −dΠv+p(N (v)−N (Π(u)− p)). (2.5.3)

At this point, however, we mention that since

N (v) = L(Π(v + p))− dΠv+p(Lv),

N (Π(u)− p) = L(Π(Π(u)))− dΠΠ(u)(L(Π(u))),
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we cancel the linear part in the series expansion for L(Π(v + p)) with the linear part of
dΠv+p(Lv) inN (v). Likewise we cancel the linear part of L(Π(Π(u))) with dΠΠ(u)(L(Π(u)))
in N (Π(u) − p) on the RHS. We proceed using the notation as before and obtain (following
the definition of N )

L(u− Π(u)) = −dΠv+p

(
(dΠ(Π(u)−p)+p − dΠv+p)L(Π(u)− p) (2.5.4)

+ dΠv+p(L(Π(u)− p− v))

+ L(Π(v + p)− Π((Π(u)− p) + p))
)
.

Note that we don’t want to use Π2 = Π, since technically we want the identity for the series
expressions forΠ, dΠwithmissing linear (resp. constant) parts. Especially, all terms appearing
on the RHS are at least quadratic in v, Π(u)− p.
This implies (note that u(0) = Πu(0), ut(0) = ∂t(Πu)(0) by assumption)

‖u− Π(u)‖
Z
d
2
. (1 + ‖v‖

Z
d
2
)
∥∥(dΠ(Π(u)−p)+p − dΠv+p)L(Π(u)− p)

∥∥
W

d
2

+ (1 + ‖v‖
Z
d
2
) ‖dΠv+p(L(Π(u)− p− v))‖

W
d
2

+ (1 + ‖v‖
Z
d
2
) ‖L(Π(v + p)− Π((Π(u)− p) + p))‖

W
d
2

. (1 + ‖v‖
Z
d
2
) ‖u− Π(u)‖

Z
d
2
‖L(Π(u)− p)‖

W
d
2

+ (1 + ‖v‖
Z
d
2
) ‖v‖

Z
d
2
‖L(Π(u)− p− v)‖

W
d
2

+ (1 + ‖v‖
Z
d
2
)(‖v‖

Z
d
2

+ ‖Π(u)− p‖
Z
d
2
) ‖u− Π(u)‖

Z
d
2

. (1 + ‖v‖
Z
d
2
) ‖v‖

Z
d
2
‖u− Π(u)‖

Z
d
2
.

In particular, if ‖v‖
Z
d
2
≤ δ is sufficiently small, we have u = Π(u) ∈ N .
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Appendix

2.A Local smoothing and Strichartz inequalities

In this section, we recall the local smoothing effect (i.e. lateral Strichartz estimates with
localized data) and a maximal function estimate for the linear Cauchy problem{

i∂tu(t, x)±∆u(t, x) = f(t, x) (t, x) ∈ R×Rd

u(0, x) = u0(x) x ∈ Rd
(2.A.1)

in the lateral space LpeL
q
t,e⊥

for e ∈ Sd−1 with norm

‖f‖p
LpeL

q

t,e⊥
=

∫ ∞
−∞

(∫
[e]⊥

∫ ∞
−∞
|f(t, re+ x)|qdt dx

) p
q

dr. (2.A.2)

The norm (2.A.2) was used by Kenig, Ponce, Vega, see e.g. [26], in order to establish local
smoothing estimates for nonlinear Schrödinger equations.
The estimates for LpeL

q
t,e⊥

, L1
eL

2
t,e⊥ , L2

eL
∞
t,e⊥ in Corollary 2.A.3 and Lemma 2.A.5 below

are substantial in the wellposedness theory of Schrödinger maps and were proven by Ionescu,
Kenig in [21], [22] (see also the work of Bejenaru in [2] and Bejenaru, Ionescu, Kenig in [3]).
Similar ideas (however more involved due to the absence of the L2

eL
∞
t,e⊥ estimate in d = 2) have

been used by Bejenaru, Ionescu, Kenig and Tataru in [4] for global Schrödinger maps into S2

in dimension d ≥ 2 with small initial data in H d
2 .

Here we follow Bejenaru’s calculation in [2], which recovers the smoothing effect for (2.A.1)
provided the data u0, f is sufficiently localized in the sets

Ae =
{
ξ | ξ · e ≥ |ξ|√

2

}
,

B±e =

{
(τ, ξ) | | ± τ − ξ2| ≤ |τ |+ ξ2

10
, ξ ∈ Ae

}
Aλ = {(τ, ξ) | λ/2 ≤ (τ 2 + |ξ|4)

1
4 ≤ 2λ},
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as defined in Section 2.3. Especially for (τ, ξ) ∈ B±e ∩ Aλ, there holds

±τ − ξ2
e⊥ ≥ 0, ξe ∼ λ, ξe +

√
±τ − ξ2

e⊥
∼ λ. (2.A.3)

Remark 2.A.1. We note that our definition of B±e slightly differs from [2].

Taking the FT (in t, x) of (2.A.1), with u being localized in B±e ,

f̂(τ, ξ) = (τ ∓ |ξ|2)û(τ, ξ) = ±
(√
±τ − ξ2

e⊥
− ξe

)(√
±τ − ξ2

e⊥
+ ξe

)
û(τ, ξ). (2.A.4)

Hence, considering (2.A.3), we proceed by taking the (inv.) FT in the coordinates t, xe⊥ ,

±F−1(f̂(ξe, τ,ξe⊥)
(√
±τ − ξ2

e⊥
+ ξe

)−1
) (2.A.5)

= F−1
(√
±τ − ξ2

e⊥
û(ξe, τ, ξe⊥)

)
− ξeû(ξe, t, xe⊥).

Thus, (2.A.1) is equivalent to an intial value problem of the following type{
(i∂r +D±t,x)v(t, r, x) = f,

v(t, 0, x) = u(t, x),
(2.A.6)

where D̂±t,xv(τ, ξ) =
√
±τ − |ξ|2v̂(τ, ξ). Thus (at least formally) the homogeneous solution

of (2.A.6) is represented as
v(t, r, x) = eirD

±
t,xu(t, x).

In the following, we only consider homogeneous estimates for (2.A.1), wich imply all linear
estimates we need in Section 2.3. Inhomogeneous bounds for the biharmonic problem (2.3.1)
with F ∈ L1

eL
2
t,e⊥ can be proven similarly as for the Schrödinger equation using the calculation

in Section 2.3.

The equation (2.A.6) has the scaling vλ(t, r, x) = v(λ2t, λr, λx), λ > 0 and we now prove the
following Strichartz estimate.

Lemma 2.A.2 (Strichartz estimate). Let u ∈ S ′(R×Rd−1), f ∈ S ′(R×(R×Rd−1)) have
Fourier support in

{±τ ≥ ξ2} ∩ Aλ
for some dyadic λ ∈ 2Z. Then there holds∥∥∥eirD±t,xu(t, x)

∥∥∥
LprL

q
t,x

. λ
d+1

2
− 1
p
− d+1

q ‖u‖L2
t,x
, (2.A.7)

∥∥∥∥∫ r

−∞
ei(r−s)D

±
t,xf(s, t, x) ds

∥∥∥∥
LprL

q
t,x

. λ
1
p̃′−

1
p

+(d+1)( 1
q̃′−

1
q

)−1 ‖f‖
Lp̃
′
r L

q̃′
t,x
, (2.A.8)

where (p, q), (p̃, q̃) are admissible, i.e. 1 ≤ p, q ≤ ∞, (p, q) 6= (2,∞) if d = 2 and
2

p
+
d

q
≤ d

2
. (2.A.9)
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Proof. We use the Littlewood-Paley decomposition from Section 2.2

P̂λ(u)(τ, ξ) = ϕ((τ 2 + |ξ|4)
1
4/λ)û(τ, ξ),

and by scaling of (2.A.6), we have P1(uλ−1) = (Pλu)λ−1 . Thus we reduce the estimate (2.A.7)
to ∥∥∥eirD±t,xP1u(t, x)

∥∥∥
LprL

q
t,x

≤ Cd,p,q

∥∥∥ϕ((τ 2 + |ξ|4)
1
4 )û(τ, ξ)

∥∥∥
L2
τ,ξ

. (2.A.10)

We further have eirD
±
t,xP1u(t, x) = K ∗t,x P1u, with kernel

K(t, r, x) =

∫ ∫
ei(x,t,r)·(ξ,τ,

√
±τ−ξ2)ψ(τ, ξ) dτdξ, (2.A.11)

where ψ ∈ C∞c (R×Rd−1) with ψ(τ, ξ) = 1 for (τ, ξ) ∈ supp((τ, ξ) 7→ ϕ((τ 2 + |ξ|4)
1
4 ))).

which is the Fourier transform of a (compactly supported) surface carried measure on the
hypersurface

S =
{(
ξ, τ,

√
±τ − ξ2

)
| ξ ∈ Rd−1, τ ∈ R, ξ2 ≤ ±τ

}
,

and S has d non-vanishing principal curvature functions in the relevant coordinate patch. Thus,
from Lemma 2.2.10 we observe

|K(t, r, x)| . (1 + |r|)−
d
2 , t ∈ R, x ∈ Rd−1, (2.A.12)

which gives ∥∥∥eirD±t,xP1u(t, x)
∥∥∥
L∞t,x

. (1 + |r|)−
d
2 ‖P1u‖L1

t,x
. (2.A.13)

Now in the endpoint case (p, q) = (2, 2d
d−2

), we apply Lemma 2.2.13 and otherwise we can use
a direct argument as outlined in Section 2.2. More precisely, combining (2.A.13) and the fact
that eirD

±
t,x is a group on L2

t,x with a classical TT ∗ argument and the Christ-Kiselev Lemma
2.2.12, we deduce (2.A.7) and (2.A.8) for P1u.

We remark that Lemma 2.A.2 is valid if u, f are localized at frequency λ as stated in Section
2.2. For a dyadic number λ ∈ 2Z, we recall the definition of Adλ = {ξ | λ/2 ≤ |ξ| ≤ 2λ}. An
immediate consequence of the Strichartz estimate is the following Corollary.

Corollary 2.A.3. Let u0 ∈ L2(Rd), e ∈ Sd−1, λ > 0 dyadic with supp(û0) ⊂ Adλ ∩ Ae. Then
there holds ∥∥e±it∆u0

∥∥
LpeL

q

t,e⊥
≤ Cλ

d
2
− 1
p
− (d+1)

q ‖u0‖L2
x
, (2.A.14)

where (p, q) is an admissible pair. Let u ∈ S ′(R×Rd), e ∈ Sd−1, λ > 0 dyadic such that

supp(û) ⊂
{

(τ, ξe⊥) | (τ, ξ) ∈ B±e ∩ Aλ
}
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Then there holds∥∥∥eixeD±t,xe⊥u(t, xe⊥)
∥∥∥
LptL

q
x

≤ Cd,p,qλ
d+1

2
− 2
p
− d
q ‖u(t, xe⊥)‖L2

t,x
e⊥
, (2.A.15)

where (p, q) is an admissible pair.
Proof. For the first statement, we identify ξ = (ξ ·e)e+ξe⊥ 7→ (ξe, ξe⊥) and proceed as follows.
By the change of coordinates

√
±τ − ξ2

e⊥
= ξe, we have∫

Rd
eix·ξe±it|ξ|

2

û0(ξ) dξ

=

∫
[e]⊥

∫
{±τ≥ξ2

e⊥
}
e±itτeixe⊥ξe⊥e

ixe
√
±τ−ξ2

e⊥ û0(
√
±τ − ξ2

e⊥
e+ ξe⊥)

dτ

2
√
±τ − ξ2

e⊥

dξe⊥ .

Now we set

û(τ, ξe⊥) = û0(
√
±τ − ξ2

e⊥
e+ ξe⊥)

(
2
√
±τ − ξ2

e⊥

)−1

, if ± τ ≥ |ξe⊥ |2,

and û(τ, ξe⊥) = 0 elsewhere. By assumption on û0, we have u ∈ S ′(R×Rd−1) (upon the
identification of [e]⊥ = Rd−1) and for (τ, ξe⊥) ∈ supp(û) there holds

√
±τ − ξ2

e⊥
= ξe ∼ λ

and λ/2 ≤
√
|τ |+ ξ2

e⊥
≤ 4λ (since in particular u0 localizes in Ae ∩ Adλ). Thus, we apply

Lemma 2.A.2 and conclude∥∥e±it∆u0(x)
∥∥
LpeL

q

t,e⊥
=

∥∥∥∥∫
Rd
eix·ξe±it|ξ|

2

û0(ξ) dξ

∥∥∥∥
LpeL

q

t,e⊥

=

∥∥∥∥∥
∫

[e]⊥

∫
{±τ≥ξ2

e⊥
}
e±itτeixe⊥ξe⊥e

ixe
√
±τ−ξ2

e⊥ û(τ, ξe⊥)dτdξe⊥
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LpeL

q

t,e⊥

. λ
d+1

2
− 1
p
− d+1

q

∥∥∥∥û0(
√
τ − ξ2

e⊥
e+ ξe⊥)

(
2
√
±τ − ξ2

e⊥

)−1

χ{±τ > ξ2
e⊥}
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L2
τ,e⊥

. λ
d
2
− 1
p
− d+1

q ‖u0‖L2
x
,

where, for the last inequality, we reverse the coordinate change and estimate the Jacobian. For
the second statement, the estimate follows from Strichartz estimates for the Schrödinger group
and from the above coordinate transform in the backward direction. To be more precise, we
estimate∥∥∥e−ixeD±t,xe⊥u(t, xe⊥)

∥∥∥
LptL

q
x

=

∥∥∥∥∫
Rd
eix·ξe±it|ξ|

2

û(±|ξ|2, ξe⊥) 2(ξ · e)dξ
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LptL

q
x

. λ
d+1

2
− 2
p
− d
q

∥∥∥(ξ · e)
1
2 û(±|ξ|2, ξe⊥)χ{ξ · e ≥ 0}
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L2
x

. λ
d+1

2
− 2
p
− d
q ‖u(t, xe⊥)‖L2

t,x
e⊥
.
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Remark 2.A.4. In the case supp(û0) ⊂ Adλ, we obtain from Corollary 2.A.3

sup
e∈M

∥∥e±it∆Pe(∇)u0

∥∥
LpeL

q

t,e⊥
≤ Cλ

d
2
− 1
p
− (d+1)

q ‖u0‖L2
x
, (2.A.16)

and especially the LpeL∞t,e⊥ estimate for q =∞, pd ≥ 4, d ≥ 3.

The next Lemma (from [2]) shows that the Pe(∇) localization on the LHS of (2.A.16) is not
necessary in the case q =∞ if dp > 4.

Lemma 2.A.5. Let u0 ∈ L2(Rd) such that supp(û0) ⊂ Adλ for some dyadic λ ∈ 2Z. Then there
holds

sup
e∈M

∥∥e±it∆u0

∥∥
LpeL

∞
t,e⊥
≤ Cd,pλ

d
2
− 1
p ‖u0‖L2

x
, (2.A.17)

where 1 ≤ p ≤ ∞ and dp > 4. Let u ∈ S ′(R×Rd), such that

supp(û) ⊂ {(τ, ξẽ⊥) | (τ, ξ) ∈ B±ẽ ∩ Aλ}

for some λ ∈ 2Z and ẽ ∈M. Then there holds

sup
e∈M

∥∥∥e−irD±t,xeu(t, xe⊥)
∥∥∥
LprL

∞
t,x
e⊥

≤ Cd,pλ
d+1

2
− 1
p ‖u(t, xẽ⊥)‖L2

t,x
ẽ⊥
, (2.A.18)

where (d, p) are as above.

Proof. By scaling we reduce again to the unit frequency λ = 1. Then estimate (2.A.17) is a
consequence of the TT ∗ argument for the Schrödinger group in the space LpeL∞t,e⊥ and Young’s
inequality. As mentioned before, we obtain the decay∣∣∣∣∫

Rd
eix·ξe±it|ξ|

2

ϕ(|ξ|)dξ
∣∣∣∣ . (1 + |x · e|)−

d
2 ,

which implies (for dp > 4) ∥∥∥∥∫
Rd
eix·ξe±it|ξ|

2

ϕ(|ξ|)dξ
∥∥∥∥
L
p
2
e L
∞
t,e⊥

. 1.

Then by Young’s inequality∥∥∥∥∫ e±i(t−s)∆f(s) ds

∥∥∥∥
LpeL

∞
t,e⊥

. ‖f‖
Lp
′
e L

1
t,e⊥

,
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which implies (2.A.17) by TT ∗. For (2.A.18), we use again (note û is localized in B±e , thus
(2.A.3) holds)∫

Rd
eix·ξe±it|ξ|

2

ϕ(|ξ|)dξ (2.A.19)

=

∫
[e]⊥

∫
±τ≥ξ2

e⊥

eixe
√
±τ−ξ

e⊥ei(xe⊥ ,t)·(ξe⊥ ,±τ)ϕ0(
√
±τ)

dτ

2
√
±τ − ξe⊥

dξe⊥ (2.A.20)

and thus we obtain (2.A.18) also from TT ∗ and Young’s inequality for exp(−iD±
t,e⊥

).

Remark 2.A.6. The first estimate in Lemma 2.A.5 holds more general by the same argument
in the following sense. Let u0, u as above in Lemma 2.A.5 and further 1 ≤ p, q ≤ ∞ such that
q > 4 and {

4q
q−4

< dp, q <∞
4 < dp, q =∞.

(2.A.21)

Then there holds

sup
e∈M

∥∥e±it∆u0

∥∥
LpeL

q

t,e⊥
≤ Cd,p,qλ

d
2
− d+1

q
− 1
p ‖u0‖L2

x
, (2.A.22)

Provided (2.A.21) holds, it is verified that∫ ∞
∞

(∫ ∞
0

(1 + |xe|+ r)−
dq
4 rd−1 dr

) p
q

dxe <∞,

which is required by the argument in the proof of Lemma 2.A.5, if we use∣∣∣∣∫
Rd
eix·ξe±it|ξ|

2

ϕ(|ξ|)dξ
∣∣∣∣ . (1 + |xe|+ |(t, xe⊥)|)−

d
2 .

Under the assumption (2.A.21), we especially infer

2

p
+
d

q
<

2d(q − 4) + 4d

4q
=
d(q − 2)

2q
<
d

2
,

so that (p, q) is admissible. This is a natural requirement, since typically Strichartz bounds with
bounded frequency rely on estimating the truncated dispersion factor via Young’s inequality.

Remark 2.A.7. We apply the estimates to Lemma 2.3.5 and Lemma 2.3.6 in Section 2.3. Also,
in Section 2.3, we need to use Corollary 2.A.3 and Lemma 2.A.5 for functions on Rd that are
localized at frequency λ as stated in Section 2.2. This is observed (for all t ∈ R) e.g. for
functions on Rd+1 localized (in (τ, ξ)) in Be ∩ Aλ, which have Fourier support in Adλ ∪ Adλ/2,
and poses no problem to the proof.
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