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Abstract A considerable experimental effort is currently
under way to test the persistent hints for oscillations due to
an eV-scale sterile neutrino in the data of various reactor
neutrino experiments. The assessment of the statistical sig-
nificance of these hints is usually based on Wilks’ theorem,
whereby the assumption is made that the log-likelihood is
χ2-distributed. However, it is well known that the precon-
ditions for the validity of Wilks’ theorem are not fulfilled
for neutrino oscillation experiments. In this work we derive
a simple asymptotic form of the actual distribution of the
log-likelihood based on reinterpreting the problem as fitting
white Gaussian noise. From this formalism we show that,
even in the absence of a sterile neutrino, the expectation
value for the maximum likelihood estimate of the mixing
angle remains non-zero with attendant large values of the
log-likelihood. Our analytical results are then confirmed by
numerical simulations of a toy reactor experiment. Finally,
we apply this framework to the data of the Neutrino-4 exper-
iment and show that the null hypothesis of no-oscillation is
rejected at the 2.6σ level, compared to 3.2σ obtained under
the assumption that Wilks’ theorem applies.

1 Introduction

Despite the strong evidence for the existence of physics
beyond the Standard Model (SM), searches for new parti-
cles at high-energy colliders have been so far unsuccessful.
A possible explanation is that the new physics lies at rela-
tively low scales, and that the dark and the visible sectors
communicate through a very weakly-interacting particle. A
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particularly appealing scenario in this context is the addi-
tion of right-handed neutrinos to the SM, which could also
source the SM neutrino masses. While right-handed neutri-
nos are singlets of the SM gauge group (and therefore ster-
ile under the SM interactions), they may lead to observable
signatures through their mixing with the SM neutrinos at a
variety of experiments, depending on their masses. In partic-
ular, and motivated by the LSND anomaly [1], considerable
experimental effort was directed towards the search for eV-
scale right-handed neutrinos using short-baseline oscillation
experiments over the past two decades, see Ref. [2] for a
recent review. In this article we focus on reactor neutrino
experiments, which have been playing a crucial role in neu-
trino physics since the discovery of the neutrino by Cowan
et al. [3], and have been central to the search for eV-scale
sterile neutrinos.

Calculations of the anti-neutrino fluxes emitted from
nuclear reactors performed in 2011 [4,5] have lead to the
so-called “reactor anti-neutrino anomaly” [6], providing a
hint for the existence of sterile neutrinos due to an observed
mis-match between predicted and observed rates. This hint
remains controversial up to today, see Refs. [7,8] for dis-
cussions of the latest developments on this issue. There-
fore, modern experiments focus on the relative comparison
of measured spectra at different baselines [9–16], which is
more robust against uncertainties in flux predictions. Recent
global fits of reactor data still find indications for sterile neu-
trino oscillations at the level of 2−3σ , even when using only
spectral ratios [17–20]. Those indications are based purely on
spectral distortions which may feature oscillatory patterns.

Note, however, that the necessary conditions to apply
Wilks’ theorem [21] are typically not fulfilled for sterile neu-
trino searches in oscillation experiments, which can lead to
wrong results when evaluating significance or confidence lev-
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els based on χ2 values.1 Therefore, one should wonder if the
hints may be coming from a mis-interpretation of the data.
This has recently been pointed out in Refs. [27–29], where
the authors have shown by way of Monte Carlo simulations
that there are indeed corrections and that the statistical signif-
icance of the hints is reduced. In this paper we attempt to go
one step further and, besides providing analytical arguments
that allow to understand the expected distribution for the test
statistics, we also study the dependence of the observed cor-
rections on relevant experimental parameters and numerical
details of the analysis.

The outline of the paper is as follows. In Sect. 2 we start
with some general remarks, introduce a test statistic to eval-
uate the significance of the presence of sterile neutrino oscil-
lations and give some qualitative arguments why it is likely
that experiments find a hint for sterile neutrinos even if there
are none. In Sect. 3 we consider an idealized disappearance
experiment and derive the expected distribution of the test
statistics. We show that the above statement is a consequence
of the fact that in a Fourier composition of white noise some
frequency will appear with largest amplitude. This will allow
us to make predictions for the expected distribution of the best
fit points for sin2 2θ . In Sect. 4 we perform numerical sim-
ulations of toy reactor experiments, and we study in detail
the distribution of the test statistic as well as the location
of the best-fit points. We also investigate the impact of var-
ious parameters, such as restriction to the physical region,
the impact of systematics, or alternative χ2 definitions. In
Sect. 6 we consider as a case study the recent results for the
Neutrino-4 experiment [16,30], which has reported a ∼ 3σ

hint for sterile neutrino oscillations. We perform a Monte-
Carlo study of the Neutrino-4 data and show that the sig-
nificance for the presence of sterile neutrinos is somewhat
lower than expected under the assumption of a χ2 distri-
bution of the test statistics, and we present the confidence
regions obtained by explicit Neyman–Pearson construction
based on the Feldman–Cousins prescription [31]. We con-
clude in Sect. 6.

2 General remarks

Reactor neutrino experiments look for the disappearance of
electron anti-neutrinos. In this work we assume that a sin-
gle sterile neutrino is relevant for the phenomenology and
we consider only experimental setups where the baseline is
short enough such that oscillations due to the standard three-
flavor mass-squared differences can be safely neglected. In
this limit, sterile neutrino oscillations are described by an

1 For similar studies in the context of three-flavor neutrino oscillations
see for instance [22–26].

effective two-flavor survival probability:

Posc = 1 − 1

2
sin2 2θ

(
1 − cos

Δm2L

2E

)
, (1)

where E is the neutrino energy, L is the baseline, θ is an effec-
tive neutrino mixing angle, and Δm2 stands for the mass-
squared splitting between the eV-scale mass state and the
light SM neutrinos.

In order to analyze the results of a given experiment a
least-squares function of binned spectral data is considered,
χ2(sin2 2θ,Δm2). A common test statistic T for evaluating
the hypothesis of the presence of sterile neutrino oscillations
is the Δχ2 (or, equivalently, the likelihood ratio) between the
best-fit point and the no-oscillation case:

T = χ2(no osc) − χ2(best fit)

= χ2(0, 0) − χ2( ̂sin2 2θ, ̂Δm2), (2)

where ̂sin2 2θ and ̂Δm2 indicate the parameter values at the
χ2 minimum. If Wilks’ theorem [21] applies,T should be dis-
tributed as a χ2-distribution for 2 degrees of freedom (DOF),
corresponding to the two minimized parameters.

Indeed, for the problem at hand, there are several reasons
to suspect that the necessary conditions for Wilks’ theorem to
apply are not fulfilled: First, there is a physical boundary for
the mixing angle, sin2 2θ ≥ 0. Second, the parameter Δm2

becomes undefined for sin2 2θ → 0 and sin2 2θ becomes
unphysical for Δm2 → 0. Third, the cosine dependence on
Δm2 of the oscillation probability in Eq. 1 leads to a strong
non-linear behavior. Therefore, significant deviations of the
distribution of T from a χ2-distribution are expected a priori,
see also [27,31]. A recent review discussing the applicability
of Wilk’s theorem can be found in Ref. [32].

As we will show in Sect. 3, for an idealized situation the
distribution of

√
T is the one of the maximum of N standard

normal random variables, where N corresponds to an effec-
tive number of bins. We will give physical arguments, as to
why for this type of experiments a non-vanishing value for
sin2 2θ at the best-fit is likely, with a relatively large value
of T . In fact, its typical value is set by the size of the relative
statistical uncertainty of the sample. In Sect. 4 we will com-
pute the distribution of T for more realistic configurations
and will always confirm rather large deviations from a χ2-
distribution. This suggests that reliable statements about sig-
nificance and confidence levels require explicit Monte-Carlo
simulations, in agreement with previous results [27,28]. We
will demonstrate this explicitly using the recent results from
Neutrino-4 in Sect. 5.
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3 Expected distribution of the test statistics

In this section we derive the expected test statistic T for a toy
model. After making a series of assumptions that allow us to
write the randomly fluctuated events in each bin as a discrete
Fourier transform, we will proceed and minimize theχ2 func-
tion analytically. This will provide us with an expression in
terms of the Fourier coefficients of the expansion, which we
can then substitute into Eq. 2 to get an analytical expression
for the expected test statistic.

3.1 Derivation of the test statistic for a toy model

Let us consider a toy model for an oscillation disappearance
experiment. We consider N bins in L/E and write the pre-
dicted event number in each bin as

pi ≈ p0
i P

osc
i , (3)

where p0
i is the predicted number of events in case of no

oscillations, Posc
i is given in Eq. 1, and the index i labels the

bins in L/E . Let us now adopt the following assumptions:

(a) We assume that there is no sterile neutrino in Nature, i.e.,
the observed data in bin i is given by the no-oscillation
prediction plus a statistical fluctuation with variance σ 2

i :

di = p0
i + δdi with

〈δdi 〉 = 0, 〈δdiδd j 〉 = σ 2
i δi j . (4)

For Poisson statistics we would have σi =
√
p0
i . For

simplicity we assume that δdi are Gaussian.
(b) We assume that only shape information in L/E is used,

but not on the absolute normalization. This applies to
experiments where energy spectra are fitted leaving the
overall normalization free, but also to setups or combi-
nations of experiments where relative spectra at different
baselines are considered.

The second assumption is implemented in a χ2 by intro-
ducing a free pull parameter ξ , such that

χ2 =
N∑
i=1

[
di − (1 + ξ)pi

σi

]2

, (5)

where minimization with respect to ξ is understood. Working
to linear order in ξ and sin2 2θ , and assuming that terms
involving a sum over δdi or cos(Δm2L/2Ei ) average to zero,
one finds that ξ ≈ (1/2) sin2 2θ minimizes the χ2. Using this

together with assumption (a) above we find

χ2 =
N∑
i=1

[
ni − p0

i

2σi
sin2 2θ cos

Δm2L

2Ei

]2

, (6)

where ni ≡ δdi/σi are independent standard normal random
variables with 〈ni 〉 = 0, 〈nin j 〉 = δi j , see Eq. 4.

Let us now adopt the additional simplifying assumptions
to build a mathematical toy model:

(c) We assume that the relative statistical uncertainty σi/p0
i

has the same value for each bin and define the new param-
eter

s ≡ p0
i

2σi
sin2 2θ. (7)

Although this is not strictly the case for a reactor experi-
ment, in Sect. 4 we will see that it works relatively well for
the experimental setups under consideration in this work.
Furthermore we assume that bins have equal width in L/E
and define

Δm2

2

(
L

E

)
j
= 2π

N
κ j ≡ ϕκ j . (8)

Hence, j labels bins in L/E while the index κ labels dis-
crete frequencies proportional to Δm2. With this idealization,
Eq. 6 becomes

χ2(s, κ) =
N∑
i=1

[ni − s cos ϕκi ]
2 . (9)

We see that in this limit the sterile neutrino search is equiv-
alent to fitting Gaussian white-noise with a cosine function
with the amplitude s and the frequency κ as free parameters.
This form suggests to consider the discrete Fourier transform
of the N random variables ni :

ni =
N∑

κ=1

(aκ cos ϕκi + bκ sin ϕκi ) (10)

with aκ , bκ ∈ R. Focusing on the cosine term, the coeffi-
cients aκ can be computed as

aκ = 2

N

N∑
i=1

ni cos ϕκi . (11)

Since ni are independent standard Gaussian variables, it is
clear that aκ are random Gaussian variables as well, with

〈aκ 〉 = 0, 〈aκaλ〉 = 2

N
δκλ, (12)
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where we have assumed that sums over cos ϕκi (cos2 ϕκi )

average to 0 (N/2).
Let us now look for the best fit point (ŝ, κ̂). We start by

minimizing the χ2 in Eq. 9 with respect to s, for fixed κ . This
gives

ŝ(κ) =
∑N

i=1 ni cos ϕκi∑N
i=1 cos2 ϕκi

= aκ , (13)

where in the last step we have inserted ni from Eq. 10, using
the fact that all terms average to zero except the one contain-
ing cos2 ϕκi . This implies that, for fixed κ , ŝ(κ) follows a
Gaussian distribution with its mean and variance as given by
Eq. 12. Also, we see that, for fixed κ , the χ2 is minimized
by choosing s as the Fourier coefficient corresponding to the
frequency κ . Inserting the Fourier transform from Eq. 10 as
well as the solution from Eq. 13 into the χ2 in Eq. 9, we find

χ2(ŝ(κ), κ) =
N∑
i=1

⎡
⎣∑

λ�=κ

aλ cos ϕλi +
∑
λ

bλ sin ϕλi

⎤
⎦

2

= N

2

∑
λ�=κ

a2
λ + C. (14)

where in the second step we have expanded the square and
used the fact that only terms of the form cos2 ϕλi or sin2 ϕλi

survive, while all mixed terms average to zero. Here, the
constant C contains the bλ terms and is independent of κ .

Next, we minimize with respect to κ . Since Eq. 14 is a
sum of positive terms, the χ2 would be minimal for κ = κ̂ ,
such that aκ̂ is the Fourier coefficient with the largest absolute
value. However, considering the definition of s in Eq. 7, we
see that the physical requirement sin2 2θ ≥ 0 implies s ≥ 0.
Therefore, if the minimization is restricted to the physically
allowed region we obtain

ŝ ≡ ŝ(κ̂) = aκ̂ = max
[
0, max

κ
aκ

]
. (15)

For N Gaussian variables with 〈aκ 〉 = 0, the probability that
all aκ are negative is (1/2)N . Hence, for sufficiently large N
it is very likely to obtain at least one positive aκ , such that
Eq. 15 leads to a positive best-fit point for the parameter s (and
therefore for sin2 2θ ). For simplicity we neglect hereafter the
unlikely case that none of the aκ is positive.

Finally, let us consider the test statistic T = χ2(0, 0) −
χ2(ŝ, κ̂) defined in Eq. 2. Using Eqs. 9 and 10 we find the
χ2 for the SM point as

χ2(0, 0) =
∑
i

(ni )
2 = N

2

∑
λ

a2
λ + C, (16)

where C is the same constant as in Eq. 14. Evaluating now
the minimum of the χ2, χ2(ŝ, κ) as given in Eq. 14 at k = κ̂ ,
we finally obtain

T = N

2
a2
κ̂

=
[
max

κ
ãκ

]2
, (17)

where ãκ ≡ √
N/2aκ are standard normal random variables,

〈ãκ 〉 = 0, 〈ãκ ãλ〉 = δκλ (see Eq. 12).

3.2 Discussion

Equations 15 and 17 are the main results of this section. The
latter shows that the square-root of the test statistic T has the
distribution of the maximum of N standard normal variables.
It is proportional to the best fit amplitude ŝ, and hence, up to
a normalization factor, the best-fit point in Eq. 15 follows the
same distribution. Distributions of this type are considered
in the field of “extreme value statistics”, see e.g., [33,34].

For the case of Gaussian variables of interest here, there
exists a limiting distribution for N → ∞. It is based on the
so-calledGumbel distribution e−e−z

. Let x = maxi ãi , where
ãi are N standard normal variables. For finite N the cumu-
lative probability distribution (CDF) F(x) can be approxi-
mated by [34]:

F(x) = exp {− exp [−AN (x − BN )]} , (18)

with

AN = √
2 log N , BN = AN − log log N + log 4π

2AN
. (19)

In Fig. 1 (left) we show 1–CDF for the maximum of N
standard normal variables obtained by numerical calculations
(solid) compared to the approximate formula in Eq. 18 (long-
dashed) for N = 30 and 60. We see that they agree reasonably
well for 1 − CDF � 0.1, but start to deviate for smaller
values. Indeed, the convergence to the Gumbel distribution
goes only as 1/ log N [34]. Therefore, since the distribution
can be easily calculated numerically, we will for the rest
of the paper stick to the numerical method and denote this
distribution by “Max. Gauss” in the following.

The important property of this distribution is, that small
values of T are rather unlikely. In Fig. 1 we compare 1–CDF
as well as the probability density function (PDF) for

√
T to

the one for the square-root of a χ2 distribution.2 Indeed, if
Wilks’ theorem was applicable, T should be distributed as χ2

with 2 DOF. Obviously, the conditions for Wilks’ theorem to
hold are badly violated in this case, for the reasons mentioned
in Sect. 2. The peak at

√
T ∼ 2 and the small probability to

2 Note that the Jacobian of the variable transformation has to be taken
into account when transforming the PDF for χ2 into the PDF for

√
χ2.
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Fig. 1 Expected distribution for the square-root of the test statistic√
T = maxκ ãκ , where ãκ are N standard normal random variables.

The left panel shows 1-CDF, while the PDF is shown in the right panel.
Dark (light) blue curves correspond to N = 30 (60). Solid curves are

obtained by numerical simulations, whereas long-dashed curves corre-
spond to the approximation in Eq. 18. For comparison, the short-dashed
gray and black curves show the distributions obtained if T would follow
a χ2 distribution for 2 and 5 DOF, respectively

obtain
√
T � 1 indicates that, even if there is no sterile

neutrino present in Nature, it is very likely to obtain a best-fit
point with finite sin2 2θ as well as relatively large value of
T . This would lead to claiming a signal at relevant statistical
significance, if evaluated with a χ2-distribution. The physical
reason for this behavior can be understood from Eq. 9: in a
white noise spectrum it is very likely to find some frequency
with sizable amplitude that is able to fit the data.

The expectation value for a random variable z with the
CDF F(z) = e−e−z

is given by [34] 〈z〉 = γ , where γ =
0.57721 . . . is the Euler–Mascheroni constant. From Eqs. 17
and 18 follows then
〈√

T
〉
= BN + γ

AN
≈ 2 . . . 2.4, (20)

where the numbers hold for N ≈ 30 . . . 60. These values
agree to a good accuracy with the mean values obtained
numerically, and depend only weakly (logarithmically) on
N . We can use these results to estimate the expectation value
for sin2 2θ . Let N be the total number of observed events.
According to assumption (c) above we have p0

i ≈ N /N and

σi =
√
p0
i . Then Eq. 7 leads to

sin2 2θ = 2

√
2

N
√
T and 〈sin2 2θ〉 ≈ 6.2√N , (21)

where in the second relation we have used the numerical val-
ues from Eq. 20. We see that up to a numerical factor, the
expected best fit value for sin2 2θ is set by the relative statisti-
cal uncertainty of the event sample. We will find this behavior

in the simulations discussed in the following sections. From
Fig. 1 we see that there is a lower bound of

√
T � 1.5 at

99% CL for N = 30 . . . 60, which translates into a lower
bound on sin2 2θ according to Eq. 21.

To conclude this section, we remark that the idealized
situation considered here is certainly an over-simplification,
and especially assumption (c) will not be satisfied in a realis-
tic oscillation experiment. Nevertheless, these considerations
capture the most relevant features and the results obtained
here allow an intuitive understanding of the numerical results
we are going to present below. In particular, the preference
for the presence of sterile neutrino oscillations even in case of
no true signal is predicted from those arguments, and allows
a qualitative (in some cases even quantitative) understanding
of the more realistic simulations discussed in the remainder
of this paper.

4 Numerical simulations for a toy experiment

4.1 Description of the simulation

In order to verify the validity of the analytical approach pre-
sented in the previous section, we now proceed to perform a
numerical simulation for a toy experiment. For this purpose,
we choose a reactor disappearance experiment which aims to
set a constraint on the sin2 2θ − Δm2 parameter space from
the observation of ν̄e → ν̄e oscillations. We consider generic
shapes of the anti-neutrino flux and inverse beta-decay detec-
tion cross section. The distance between the reactor core and
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the detector is set to L = 10 m. In order to account for the
finite size of the reactor core, the probability is averaged over
a window ΔL = ±1 m:

〈Posc(θ,Δm2)〉 = 1−sin2 2θ

∫ L+ΔL
L−ΔL dL ′ sin2(Δm2L ′

4E )/L ′2
∫ L+ΔL
L−ΔL dL ′ 1

L ′2
.

(22)

This ensures that fast oscillations are averaged-out at the
detector. Unless otherwise stated, the exposure is set such
that the total number of events is 1.5 × 104. A binned χ2

analysis is performed, using 43 bins in energy of equal size
distributed between 2 and 8 MeV, and a Gaussian energy
resolution of the form σ(E) = 0.03

√
E/MeV is applied to

the event distributions.
The experimental details outlined above have been chosen

to lie in the same ballpark as for some of the running short
baseline reactor disappearance experiments [12–16]. How-
ever, we have explicitly checked that changing any of these
parameters does not qualitatively affect our results. Finally,
we have assumed negligible backgrounds in our analysis for
simplicity, in order to ease the interpretation of our results.
Again in this case, we have checked that the inclusion of a
sizable background component does not alter qualitatively
our conclusions.

The results presented in this section have been obtained by
simulating a large sample of pseudo-experiments, applying
random statistical fluctuations to the expected event rates for
the reactor experiment setup outlined above. Since here we
are mostly interested in evaluating the significance of a poten-
tial positive signal, throughout this section we will generate
random data under the null-hypothesis, that there is no sterile
neutrino in Nature, i.e., for no oscillations. These are gener-
ated on a bin-per-bin basis, sampling a normal distribution
with its mean set to the expected number of events in a given
bin for the SM hypothesis p0

i ≡ pi (θ = 0), and its width set

to the associated statistical uncertainty
√
p0
i . For the large

number of events considered here the Gaussian approxima-
tion to the Poisson distribution is well justified. Unless oth-
erwise stated, the number of pseudo-experiments simulated
is set to 20,000 for each of the cases studied in this section.

The sample of pseudo-experiments will then be used to
determine the distribution of our test statistics T defined in
Eq. 2. In order to do so, for each pseudo-experiment a Poisson
χ2 function is built. For a set of parameters (θ,Δm2), it reads
[35]:

χ2
stat,Poisson(θ,Δm2) = 2

∑
i

[
(1 + ξ) pi (θ,Δm2)

−di − di log
(1 + ξ) pi (θ,Δm2)

di

]
,

(23)

where pi is the expected number of events in the i-th bin for θ

and Δm2 (in the absence of statistical fluctuations), while di
is the “observed” number of events, i.e., the pseudo-data gen-
erated as described above. Here, ξ is a nuisance parameter,
introduced in order to account for the systematic uncertainty
in the prediction of the expected event rates. Once Eq. 23
has been computed, a pull-term is added and the result is
minimized over the nuisance parameter ξ :

χ2(θ,Δm2) = min
ξ

[
χ2

stat,Poisson(θ,Δm2) +
(

ξ − ξ̄

σsys

)2
]

(24)

where σsys stands for the prior uncertainty on the signal nor-
malization. Here, ξ̄ is a parameter introduced to account
for the fact that the normalization of the signal is typically
obtained from previous experimental data, which is also sub-
ject to statistical fluctuations. In order to account for the asso-
ciated uncertainty, for each pseudo-experiment the value of ξ̄

is drawn from a normal distribution centered at zero and with
a width equal to σsys, as for instance in Ref. [24]. For each
pseudo-data realization we minimize the χ2 in Eq. 24 with
respect to sin2 2θ and Δm2 and calculate a value for the test
statistic T = χ2(0, 0)−χ2

min. From the ensemble of all sim-
ulated realizations we obtain then the expected distribution
of T under the null-hypothesis of no oscillations.

Equation 23 will be our default χ2 definition. But we
have also studied the case where the Poisson χ2 in Eq. 23 is
replaced by other commonly used χ2 definitions. The clas-
sical definition going back to Pearson [36] is

χ2
stat,Pearson(θ,Δm2) =

∑
i

[
(1 + ξ) pi (θ,Δm2) − di√

pi (θ,Δm2)

]2

.

(25)

In order to avoid the parameter dependence in the denomi-
nator, the variance is often estimated by the data itself. We
denote this version in the following as Gauss χ2:

χ2
stat,Gauss(θ,Δm2) =

∑
i

[
(1 + ξ) pi (θ,Δm2) − di√

di

]2

.

(26)

As we will show below, the Gaussian χ2 can lead to different
results for the distribution of T , while the Pearson definition
leads to the same result as the Poisson case, Eq. 23, for suf-
ficiently large event numbers per bin (as it is the case for the
situations considered here).

For the results presented in the following we assume
a single baseline setup. However, the arguments presented
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in Sect. 3 apply also to multi-baseline configurations, for
instance when ratios of spectra at different baselines are con-
sidered, or in case of segmented detectors with additional L
information. The derivation in Sect. 3 relies only on general
binning in (L/E) including also bins in L . We have verified
explicitly that the simulation of a setup combining energy
spectra at two different baselines leads to very similar results
as the single-baseline configuration. This is also confirmed
in Sect. 5, when we consider the Neutrino-4 experiment.

4.2 Results

Figure 2 presents the results of two simulations with differ-
ent exposures: our default setup, with N = 1.5 × 104 total
number of events (dark blue), and the same setup with 100
times more events,N = 1.5×106 (light blue). The left panel
shows the distribution of the test statistic T . We observe a
clear deviation from the χ2 distribution, and a good agree-
ment with the max. Gauss distribution derived in Sect. 3.

The agreement is excellent for the high statistics case and,
in particular, we obtain the best match when the number of
bins for the max. Gauss distribution is set at N = 45, to
be compared with the 43 spectral bins used in the simula-
tion. The reason for this (small) difference is that for a more
realistic spectrum, some of the assumptions from Sect. 3 are
only approximately fulfilled. In particular, assumption (c)
(defined in Sect. 3.1) requires that relative statistical uncer-
tainties are equal in all bins, which is obviously not true
for a peaked spectrum as in reactor experiments. Therefore,
N = 45 should be considered as the effective number of
random standard normal variables, which leads to the best
representation of the T distribution from simulation.

In Table 1 we show, for various values of the test statistic
T , the significance which would be obtained by assuming
a χ2 distribution for 2 DOF (as we would expect if Wilks’
theorem held) compared to the correct result following from
the max. Gauss distribution for N = 45. For example, if
a value of T = 11.83 is observed, we would exclude the
SM at 3σ (p-value 0.27%) under the assumption of Wilks’
theorem, while the correct significance would be only 2.48σ

(p-value 1.3%). As a rule of thumb, we can see from the
table that p-values are under-estimated by about a factor 5,
and the number of σ gets reduced by roughly 0.5σ (except
for low CL, where the difference is close to 1σ ).

The right panel in Fig. 2 shows the distribution of the best-
fit points obtained in the simulations. Although the pseudo-
data has been generated under the no-oscillation hypothesis,
we observe a clear preference for a non-vanishing value of
sin2 2θ . Note that actually none of the best fit points is located

near the “true value” (sin2 2θ = 0). Obviously ̂sin2 2θ and
̂Δm2 are biased estimators in this case. Comparing the light
and dark blue bands we confirm the scaling of the value of the

mixing angle at the best fit with the relative statistical uncer-
tainty 1/

√N , as expected from the discussion in Sect. 3.
Indeed, in the region 0.5 eV2 � Δm2 � 3 eV2 the mean
value of the sin2 2θ best-fit points agrees rather well with the
prediction from Eq. 21, as indicated by the vertical dashed
lines.3 Interestingly, this region also contains the highest con-
centration of best-fit points (indicated by the darker shading
in each case), while it is more difficult to obtain a result favor-
ing larger/smaller values of the mass splitting. However, out-
side this region of Δm2 the best-fit points lie at larger values
for the mixing angle. The reason is that for extreme values of
Δm2 the idealizations assumed in Sect. 3.1 do not apply. For
example, the feature around Δm2 ∼ 0.4 eV2 corresponds to
Δm2L/(2E) � π at E � 3 MeV and, as a result, the first
minimum of the survival probability is located at the peak
of the event spectrum. This corresponds roughly to the case
where half an oscillation period fits into the effective energy
range, and therefore corresponds to the minimal frequency
which can be sampled by the data. In contrast, for high mass-
squared differences the frequency becomes much higher than
the bin width can capture and therefore corresponds to over-
sampling of the data.4 Hence, in both cases we are leaving
the domain of the discrete parameterization of Δm2 in terms
of the index κ = 1, . . . , N adopted in Sect. 3.1, see Eq. 8,
which leads to the observed deviations with respect to the
estimate in Eq. 21.

For comparison, we also show in the right panel of Fig. 2
the expected sensitivity at 95% CL under the assumption
that Wilks’ theorem holds (solid lines). They are obtained by
using as “data” the no-oscillation prediction without statis-
tical fluctuations (“Asimov data”) and considering contours
of Δχ2 = 5.99. As can be seen from the figure, the best-
fit points always lie very close to the expected sensitivity
limit in this case and, for a sizeable fraction of the pseudo-
experiments simulated, they lie to the right of the sensitivity
curve, if naively computed assuming a Δχ2 for 2 DOF (as
is usually the case in the literature).

Let us now discuss the impact of a systematic uncertainty
on the overall normalization of the spectrum for the dis-
tribution of the test statistic T . Figure 3 shows the results
obtained for different assumed priors on the systematic error
for the signal, σsys = 20%, 1% as well as the no-systematics
case. In all cases we assume a total number of events of
N = 1.5 × 104. We see from the figure that the distribu-
tion for the no-systematic case is somewhat χ2-like, with
a number of DOF between 1 and 2. Although some devi-
ations from this behaviour are observed (due to the effect
of the physical boundary sin2 2θ ≥ 0 as well as the non-

3 We have verified that the range of values of Δm2 where this is satisfied
scales with the baseline as expected from Δm2L = const .
4 Let us note that the optimal bin width should be determined by the
energy resolution of the detector.
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Fig. 2 Left panel: Distribution of the test statistics obtained from
numerical simulations for the toy reactor experiment described in the
text. For comparison, the red-dashed curves shows the max. Gauss dis-
tribution for N = 45. Right panel: location of the best-fit points in the
sin2 2θ − Δm2 plane, after minimization over nuisance parameters. In
both panels, darker (lighter) blue lines/points correspond to the results
obtained for N = 1.5 × 104 (1.5 × 106) events, using a sample of
20,000 pseudo-experiments simulated under the no-oscillation hypoth-
esis. In the right panel, the regions with a higher density of best-fit

points are indicated by the darker shades. The dotted gray lines in the
left panel show the χ2-distributions as the number of degrees of freedom
is increased from 1 (lightest gray line to the left) to 5 (darkest gray line
to the right). In the right panel, the vertical lines indicate the predicted
value of 〈sin2 2θ〉 from Eq. 21. The solid curves show the expected sen-
sitivity at 95% CL assuming that Wilks’ theorem holds. These results
have been obtained using a Poisson χ2, with no background, for 10%
signal systematics, and restricting 0 < sin2 2θ < 1 in the fit

Table 1 Comparison of the confidence level (CL), p-value, and corresponding number of standard deviations (σ ), for several values of T , obtained
for a χ2 distribution with 2 DOF and for the max. Gauss distribution for N = 45

T CL (%) p-value (%) Number of σ

χ2(2) Max. G. χ2(2) Max. G. χ2(2) Max. G.

4.61 90.00 48.55 10.0 51.4 1.64 0.65

6.18 95.45 74.73 4.55 25.3 2.00 1.14

9.21 99.00 94.72 1.00 5.27 2.58 1.94

9.49 99.13 95.45 0.87 4.55 2.62 2.00

11.83 99.73 98.69 0.27 1.31 3.00 2.48

14.78 99.938 99.73 0.062 0.27 3.42 3.00

linearity of the model), the distribution is clearly different
from a max. Gauss. The reason is that in Sect. 3 we assumed
that only shape information is used (assumption (b)), whereas
in the absence of systematic errors the information on the total
event rate is also available. In this case the model of fitting
white noise, Eq. 9, does not fully correspond to fitting the
disappearance probability in Eq. 1, which can only reduce
the event numbers. In contrast, for the case σsys = 20%
the systematic uncertainty is much larger than the statisti-
cal one for the assumed event sample, σsys � 1/

√N . This
corresponds effectively to a free normalization in the fit and
assumption (b) is satisfied. Correspondingly, we observe in
Fig. 3 a very good agreement with the max. Gauss distri-
bution for this case. Note that also for the 10% systematic
assumed in Fig. 2 we have σsys � 1/

√N , such that assump-

tion (b) defined in Sect. 3.1 is fulfilled. For the 1% case we
have σsys � 1/

√N , which corresponds to an intermediate
situation between fixed and free normalization.

Figure 3 also shows the impact due to the treatment of
systematics when simulating the random pseudo-data. Solid
curves show the results obtained randomizing the central
value of the pull parameter, i.e., for each realization of the
pseudo-data we draw ξ̄ in Eq. 24 from a Gaussian distribution
with width σsys (as outlined in Sect. 4.1). In contrast, for the
dash-dotted curves the central value for the pull parameter is
not randomized and kept fixed at ξ̄ = 0 for all pseudo-data
samples. We see that this has a rather large impact on the√
T distribution as long as systematic and statistical uncer-

tainties are comparable (σsyst = 1%), whereas for an effec-
tively free normalization (σsyst = 20%) the difference is
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Fig. 3 Impact of a systematic uncertainty on the overall normalization.
We show the distribution of the square-root of the test statistic,

√
T , for

no systematic uncertainty, 1, and 20% uncertainty. The total number of
events is N = 1.5 × 104. For the solid curves we randomize the central
values for the systematic for each draw of the pseudo-data, whereas for
the dash-dotted curves the central value is kept fixed. The black-dashed
curves corresponds to the max. Gauss distribution for N = 45. The
gray dotted lines show the χ2-distributions as the number of degrees of
freedom is increased from 1 (lightest gray line to the left) to 5 (darkest
gray line to the right)

largely reduced. The reason is that in the latter case the fit can
always adjust the normalization within the statistical uncer-
tainty, with negligible impact of the penalty term for the pull
parameter.

4.3 Further studies of the properties of the T distribution

In this subsection we investigate in some detail additional
properties of the distribution of the test statistic T . We start
by discussing the impact of the two χ2 implementations from
Eq. 23 (Poisson χ2) versus Eq. 26 (Gauss χ2). Naively one
expects that they should give similar results if the number
of events per bin is � 10. The differences on the resulting
distributions for the two χ2 implementations are shown in
Fig. 4.

In the left panel of Fig. 4 we adopt different choices
for the normalization uncertainty. Interestingly, we find for
σsys � 2% notably differences, despite the rather large event
number of N = 1.5 × 104. For the 43 bins in our simula-
tion this corresponds to about 350 events per bin on average,
where the bin with the smallest number of events has a mean
above 20 events. We have checked that for the no-systematic
case the differences between Poisson and Gauss disappear
only for N � 105. From the figure we also see that for
N = 1.5 × 104 the differences between the Gauss and Pois-
son implementations disappear for large enough systematic
uncertainty, when both cases approach the max. Gauss dis-
tribution. The origin of the different behavior is related to
the assumption σi = √

di in Eq. 26. We have confirmed
that when we use instead the Pearson definition, Eq. 25, with

σi =
√
p0
i , the Pearson and Poisson χ2 implementations lead

to identical results.
In the right panel of Fig. 4 we study the impact of the phys-

ical boundary sin2 2θ ≥ 0 in the case of N = 1.5 × 104 and
no systematic uncertainty on the normalization. Note that,
while only sin2 2θ ≥ 0 makes sense from the mathematical
point of view, this parameter controls the amplitude of the
oscillation and in principle it is possible to try to fit data with-
out taking this requirement into account. Thus, in the figure
we compare three cases: sin2 2θ ≥ 0 (blue lines), sin2 2θ ≤ 0
(green lines), and a third case where no restriction is imposed
on sin2 2θ (red lines). For the Poisson χ2 implementation we
see that restricting the sign of sin2 2θ has a notable impact
on the distribution, but the effect is similar regardless of the
sign of sin2 2θ . In contrast, for the Gauss χ2 implementa-
tion we observe significant differences between the cases
sin2 2θ ≥ 0 and sin2 2θ ≤ 0. Again this is a consequence
of using

√
di as the statistical uncertainty in the Gauss χ2,

Eq. 26: as di includes statistical fluctuations,
√
di is not sym-

metric between upward and downward fluctuations, which
leads to the asymmetric behavior with respect to the sign of
sin2 2θ . In contrast, if the theoretical prediction is used as
variance as in the Pearson definition, Eq. 25, the χ2 becomes
symmetric between upward and downward fluctuations. We
have explicitly checked that in this case the dependence on
the sign of sin2 2θ disappears and we recover the result from
the Poisson χ2. Surprisingly, these second order effects are
not negligible even for N = 1.5 × 104 events.

Overall, we observe that the results agree with the Poisson
χ2 if we use the Pearson χ2, where the square-root of the pre-
diction to calculate the statistical uncertainty, while sizeable
deviations occur for the Gaussian χ2, where the square-root
of the data is used as statistical uncertainty. Let us remark,
however, that as long as the distribution of the test statistic is
numerically evaluated by Monte Carlo simulation, of course
any reasonable χ2 definition can be used (including also the
Gauss χ2 as defined in Eq. 26).

To summarize the results found in this section, we find that
as long as σsys � 1/

√N , the distribution of the test statistic
T is sensitive to details of the analysis, such as size of sys-
tematics, treatment of systematics during randomization, χ2

variants, physical boundaries. However, once σsys � 1/
√N

(i.e., for experiments where only shape information is used)
the max. Gauss distribution seems to be a rather robust result.

5 Application: Neutrino-4 as a case study

The Neutrino-4 experiment [16,30] has recently claimed
a possible indication of sterile neutrino oscillations with
Δm2 � 7.2 eV2 and sin2 2θ � 0.26. They report a sta-
tistical significance using their combined phase 1 and 2 data
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Fig. 4 Impact on the distribution of
√
T due to the choice of the χ2

implementation. Solid curves correspond to a Poisson χ2, while dashed
lines correspond to a Gauss χ2. The left panel shows the effect of
increasing the systematic uncertainties from no systematics to an over-
all 10% signal normalization uncertainty. In the right panel we show

the results by imposing different restrictions on the allowed range for
sin2 2θ , as indicated by the labels. In all cases, a total of 1.5×104 events
are simulated for each pseudo-experiment. Dotted curves indicate the
χ2 distribution for 1 to 5 DOF from left to right

of 3.2σ [30]. Then an estimate of their systematic uncertainty
is quoted, leading to a combined statistical/systematical sig-
nificance of a positive sin2 2θ of 2.8σ . In this section we use
the Neutrino-4 results to illustrate the arguments presented
above on a real-life example. We concentrate on the purely
statistical aspect and will show that, in light of the discus-
sions in the previous sections, the significance from statistical
uncertainties alone is already lower than the quoted 3.2σ .

Neutrino-4 uses a segmented detector, which allows to bin
their data in both L and E . The data is binned using 9 bins in
energy with width ΔE = 0.5 MeV starting at 2.3 MeV, and
24 bins in baseline with ΔL = 0.235 m starting at 6.25 m,
resulting into a total of 216 bins in L/E . The bin width in
energy of 0.5 MeV corresponds to the energy resolution of the
detector [30]. Eventually, each consecutive group of 8 bins
are combined together, leading to N = 27 data points. The
observed data correspond to the ratio

Robs
i = di

1
N

∑N
i=1 di

, (27)

where di stands for the observed number of events in bin i .
Out of these, the first 19 bins are shown for the combined
phase 1 and phase 2 data sets in Fig. 47 of [30] (blue points).
Following the Neutrino-4 collaboration, we fit these 19 data
points with the survival probability for a given L/E bin over
the averaged probability:

Rpred
i =

1 − sin2 2θ
〈
sin2 Δm2L

4E

〉
i

1 − 1
2 sin2 2θ

. (28)

Here 〈 · 〉i indicates the average over an energy interval ΔE ,
with the value of L/E set at the bin center of the correspond-
ing (L/E)-bin i . The fit is performed with a simple Gaussian
χ2 definition, using the statistical uncertainties read off from
Fig. 47 of [30]. Note that, due to the particular way the fit is
performed by Neutrino-4, using the ratios in Eqs. 27, 28 the
analysis is only sensitive to spectral distortions in L/E , and
therefore assumption (b) from Sect. 3.1 is fulfilled.

With our fit we can reproduce to good accuracy the
results from Ref. [30]. Our best-fit point is located at
Δm2 = 8.84 eV2, sin2 2θ = 0.42; however, we find a
quasi-degenerate local minimum with Δχ2 = 5 × 10−3 at
Δm2 = 7.28 eV2, sin2 2θ = 0.34, close to the best-fit point
obtained by Neutrino-4. We explain this slight difference by
the fact that the fit reported in Ref. [30] uses more informa-
tion in L/E than available to us. This additional informa-
tion seems to somewhat disfavor the local minimum around
Δm2 � 9 eV2 compared to the one at � 7.25 eV2. Further-
more, we obtain for the χ2 minimum and the test statistic T ,
i.e., the Δχ2 between no oscillations and the best-fit point:

χ2
min = 16.05, T = 12.94 (our result), (29)

χ2
min = 17.11, T = 12.87 (Fig. 47 of Ref. [30]), (30)

showing good agreement, especially for T .
If evaluated under the assumption of Wilks’ theorem with

a χ2 distribution with 2 DOF we would get from T = 12.9
a p-value of 1.58 × 10−3, corresponding to 3.16σ . In order
to check this reasoning, we have generated a large sample of
artificial data sets for Neutrino-4, under the null-hypothesis
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Fig. 5 Distribution of the square-root of the test statistics
√
T for

the Neutrino-4 experiment, obtained from the simulation of 100,000
pseudo-data sets under the assumption of no oscillations. The numer-
ical result (solid blue curve) is compared to the expectation for a χ2

distribution with 1 . . . 5 DOF (dotted curves, from left to right), as well
as to the distribution for the max. Gauss distribution with 19 and 40
bins (dashed curves). The vertical line indicates the value of

√
T = 3.6

obtained from the observed Neutrino-4 data, whereas the horizontal line
shows the corresponding p-value

of no oscillations, in order to calculate the distribution of T
explicitly. The result is shown in Fig. 5, which shows signif-
icant deviations from a χ2-distribution. In agreement with
the discussions above, the distribution of

√
T is found to be

more similar to the max. Gauss distribution. In this case we
find that the effective N = 40 for the max. Gauss distribution
providing the closest fit to the numerical distribution devi-
ates substantially from the actual number of bins in the data,
N = 19. Based on the numerical T distribution we obtain a
p-value of 9.1 × 10−3 (or 2.6σ ), indicating that the actual
statistical significance is clearly lower. Note that here we
study the significance based on statistical uncertainties only.
Systematic effects as mentioned in Ref. [30] will reduce the
significance even further. See also the discussion in Ref. [29]
in this context.

In addition, we have calculated confidence regions in the
plane of sin2 2θ and Δm2 by performing a Feldman–Cousins
analysis [31]. For given values of sin2 2θ and Δm2 we have
generated many artificial data sets, assuming that these values
are the true values in Nature. This allows us to compute the
correct distribution of

Δχ2(sin2 2θ,Δm2) = χ2(sin2 2θ,Δm2) − χ2
min (31)

for each point in the parameter space. Comparing the value
of Δχ2

exp obtained from the actual experimental data to the

numerical distribution for Δχ2(sin2 2θ,Δm2), we obtain the
confidence level (CL) at which a particular point can be
rejected. Repeating this procedure for the whole parameter
space we obtain confidence regions at a given CL as the set
of all points which are accepted at that CL.

Fig. 6 Confidence regions from our re-analysis of Neutrino-4 data [30]
at 68.3% (dark green), 95.45% (medium green), and 99.73% CL (light
green). Shaded regions correspond to the confidence regions constructed
by Monte-Carlo simulations following the Feldman–Cousins prescrip-
tion [31], whereas black curves show the corresponding CL contours in
Δχ2 assuming it follows aχ2-distribution for 2 DOF, that is,Δχ2 = 2.3
(solid), 6.18 (dashed), 11.83 (dotted)

The results of this analysis are shown in Fig. 6 as shaded
regions for 68.3% (dark green), 95.45% (medium green), and
99.73% (light green) CL. Our regions are also compared to
Δχ2 contours obtained under the assumption that Δχ2 fol-
lows a χ2 distribution with 2 DOF, which would be the case
if Wilks’ theorem held. We clearly observe that true confi-
dence regions are substantially larger than the ones based
on the χ2 distribution. In particular, the no-oscillation case
is contained in the 3σ contour for the Monte-Carlo calcula-
tion, in agreement with the discussion of the test statistic T
above.5

6 Summary and conclusions

In this paper we have studied the statistical interpretation
of sterile neutrino oscillation searches in the disappearance
mode, specifically when no information on the absolute nor-
malization of the signal is used. A priori there are several
good reasons to expect that Wilks’ theorem does not apply
in this case: the presence of a physical boundary, the fact that
the parameter space changes dimension if either Δm2 → 0

5 Let us note that our Δχ2 contours are also somewhat larger than the
ones shown in Fig. 45 of Ref. [30]. We believe that the reason for this
difference is that contours in Ref. [30] are drawn for a χ2 distribution
with 1 DOF, while ours are shown for 2 DOF. We have checked that
using the same prescription we can reproduce their regions with good
accuracy.
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or sin2 2θ → 0, and the highly non-linear dependence of the
number of events on Δm2. Not surprisingly, we do indeed
find significant deviations. Although in this work we decided
to focus on short-baseline reactor experiments as a case study,
our results are more general. We find that this situation, under
some assumptions, is equivalent to fitting Gaussian white
noise with a single frequency of free amplitude. This allows
us to express the distribution of the test statistic T to be the
maximum of N Gaussian random variables where N is the
effective number of bins (“max. Gauss distribution”). There-
fore, this class of oscillation searches will always find a best-
fit for a non-zero signal even if there is no oscillation in the
data, with a non-negligible statistical significance if inter-
preted as if Wilks’ theorem would apply. In other words, the
parameters obtained at the minimum of the χ2 are biased
estimators in this case.

We then perform Monte Carlo simulations of a toy reac-
tor disappearance experiment, to confirm that our analytic
understanding carries over to a more realistic setting. The
test statistic T we consider is equivalent to the log-likelihood
either for a Gaussian likelihood or Poissonian likelihood. We
find that, if the systematic uncertainty on the event normal-
ization is comparable to (or smaller than) the statistical uncer-
tainty of the event sample, the distribution function of T is
rather sensitive on fine details of the chosen simulation and,
in particular, on: whether the central value of the nuisance
parameter is randomized or not, and whether a Gaussian or
a Poissonian log-likelihood is used (despite the fairly large
number of events per bin). Conversely, for experiments rely-
ing on shape information only (that is, when no information
on the absolute normalization is used) the max. Gauss distri-
bution is a rather robust prediction for the distribution of the
test statistic. Although the shape of the max. Gauss does not
depend strongly on the value of N (only logarithmically), we
have not found a simple way to predict the value that provides
the best description of the distribution of the test statistic.

Finally, we apply our understanding to the actual data
of the Neutrino-4 experiment. We are able to reproduce the
quantitative details of their analysis quite well if we assume
that Wilks’ theorem applies. However, in agreement with
our arguments presented above we find that the test statis-
tics shows significant deviations from a χ2 distribution. In
particular, we show by explicit Monte Carlo simulation that
the significance of the claimed oscillation signal is reduced
from 3.2σ (p = 1.58 × 10−3) to 2.6 σ (p = 9.1 × 10−3),
that is, the probability that this is a mere statistical fluctuation
is about 6 times larger than that expected if Wilks’ theorem
were to hold. It should be noted that our Neutrino-4 analysis
is based on statistical uncertainties only, and that the inclu-
sion of systematic effects may reduce the significance even
further.

In summary, our results provide a simple, intuitive under-
standing on why and how shape-only oscillation searches

are different from the usual case. Applied to Neutrino-4 we
find a reduced significance for sterile neutrino oscillation,
but not to the extent to completely dismiss this indication as
a pure statistical fluctuation. It would be interesting to see
how this type of analysis would play out in a global fit of all
short-baseline reactor data, but this is beyond the scope of
the present work.
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