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The synthesis of highly substituted hydroanthraquinone
derivatives with up to three stereogenic centres via a Diels–
Alder reaction, starting from easily accessible 2-substituted
naphthoquinones, is described. The [4+2]-cycloaddition is
applicable for a broad range of substrates, runs under mild
conditions and results in high yields. The highly regioselective
outcome of the reactions is enabled by a benzoyl substituent
at C2 of the dienophiles. The obtained hydroanthraquinones
can be further modified and represent ideal substrates for
follow-up intramolecular coupling reactions to create unique
bicyclo[3.3.1] or -[3.2.2]nonane ring systems which are
important natural product skeletons.
1. Introduction
Secondary metabolites produced by fungi, such as anthraquinone
compounds, are known to possess a wide range of biological
activities, including anti-cancer [1,2] antiviral [3,4] or antimicrobial
activity [5]. Furthermore, anthraquinones exhibit chromatic
properties enabling their use as dyes [6], are useful as chemical
sensors [7] or organochelators [8]. Hydroanthraquinones as well
are reported to inherit interesting properties such as cytotoxicity
[9], antibacterial [10] and anti-cancer activity [11]. Nevertheless,
only a few publications deal with synthetic approaches towards
these attractive compounds [12–18].

Mycotoxins such as beticolins are natural products
containing a hydroanthraquinone moiety linked to a chlorinated
tetrahydroxanthone via a characteristic bicyclo[3.2.2]nonane ring
system (figure 1) [19,20]. A diverse set of biological activities
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Figure 1. The structure of ortho-beticolins [19,20].
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such as antiproliferative effects on tumour cells and cytotoxicity owing to the formation of ion channels
through cellular membranes are exhibited by these natural products [21–28]. The characteristic structure
as well as the specific properties make these molecules intriguing to not only an organic chemist.

Given the manifold interesting properties of the described various anthraquinone compounds, efficient
and reliable synthetic procedures towards diverse hydroanthraquinones need to bedeveloped. Therefore, the
use of the Diels–Alder (DA) reaction to build such attractive compounds from simple precursors is reported
herein.

The well-known [4+2]-cycloaddition serves as a powerful and widely applied tool for introducing
complexity in chemical structures; hence, it is important for the synthesis of natural products as well
as new materials [29]. Quinones as dienophiles are the very first example investigated by Diels &
Alder in 1928 [30]. These cyclic diones are synthetically useful and highly reactive molecules in
pericyclic reactions and, therefore, one of the most important dienophiles for total synthesis
applications [31]. Important carbocyclic scaffolds, more precisely hydroanthraquinones, are the typical
products of DA cycloadditions with activated naphthoquinones and play an important role as
building blocks in a large number of drugs and natural products [32,33].

The functionalized tetrahydroanthraquinone derivatives obtained in this study (table 1) represent
valuable precursors for intramolecular couplings, such as palladium-catalysed Heck reactions, to
create bicyclo[3.3.1] or -[3.2.2]nonane ring system scaffolds.
2. Results and discussion
2.1. Starting material synthesis
The studies were initiated with the straightforward synthesis of highly activated quinones by modifying
a procedure developed by Buccini & Piggott [34]. The three-step synthesis provided 2-(2-
iodobenzoyl)naphthalene-1,4-dione 5a in excellent yield (scheme 1).

To synthesize similar 2-substituted naphthoquinones bearing functionalities, different benzoic acids
3a–f were used in the acylation reaction (scheme 2, a). By introducing iodinated as well as brominated
benzoic acids containing methoxy groups, hydroxy groups, N-acetyl or N-trifluoroacetyl residues,
diverse quinone derivatives 5a–g, which were supposed to function as dienophiles in following
cycloadditions, were obtained in good yields of up to 84% over two steps.

The overall benefit of the two-step route from dimethoxynaphthalene 2 is its tolerance towards
various functional groups and the scalability up to the multi-gram range.

X-ray analysis of naphthoquinone derivatives 5a–b and 5d, as well as their precursors 4a–f confirmed
the desired molecular structures with the naphthoquinone system being a planar structure. Selected
examples are shown in figure 2 (see more in the electronic supplementary material).

2.2. Diels–Alder cycloadditions
By applying easily accessible precursors, the reaction conditions were investigated in a model reaction.
For this purpose, solid 3-sulfolene 7 was suspended in high-boiling o-xylene and by heating the
mixture to 125°C, gaseous 1,3-butadiene 6a was released. The latter was led into a cooled reaction
vessel containing either naphthoquinone 5a or 5b dissolved in dichloromethane. After warming the
mixture to room temperature and subsequent stirring for 2 h, the iodinated 8aa or the brominated
anthraquinone derivative 8ba, respectively, were isolated in good yields of up to 82% after flash
chromatography on silica gel (scheme 3).



Table 1. Scope of the DA reactions between naphthoquinone derivatives 5a–g and functionalized dienes 6a–h. (Reaction
conditions: argon atmosphere, dienophile (1.00 equiv.), diene (3.00–5.00 equiv.), CH2Cl2, 40°C, 3–5 h.)
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entry dienophile diene
product (yield (%)), {ratio of
regioisomers}

1 X = I, R1 = R2 = H 5a 6b 8ab b,c (63), {7.1 : 1}

2 X = Br, R1 = R2 = H 5b 6b 8bb b,c (53), {7.7 : 1}

3 X = I, R1 = R2 = H 5a 6c 8ac a (70)

4 X = Br, R1 = R2 = H 5b 6c 8bc a (88)

5 X = I, R1 = R2 = H 5a

OTMS

6d 8ad a (20), 9ad a (68)

6 X = Br, R1 = R2 = H 5b

OTMS

6d 8bd a (20), 9bd a (61)

7 X = I, R1 = R2 = H 5a

OTMS

6e 8ae a (26), 9ae a (48)

8 X = I, R1 = R2 = H 5a

OTBDMS

6f 8af a (29), 9af a (38)

9 X = Br, R1 = R2 = H 5b

OTBDMS

6f 8bf a (27), 8/9bf d (53)

10 X = I, R1 = R2 = H 5a OTIPS 6g 8ag a (75)

11 X = I, R1 = R2 = H 5a OTBDPS 6h 8ah (72)

12 X = Br, R1 = R2 = H 5b OTBDPS 6h 8bh a (79)

13 Br

OMe

5c 6b 8cb b,c (51), {10 : 1}

14 Br

OMe

5c 6c 8cc (65)

(Continued.)
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Table 1. (Continued.)
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15 Br

OMe

5c

OTMS

6d 8/9cd d (63), {5.6 : 1}

16 Br

OMe

OMe 5d 6b 8db b,c (70), {6.7 : 1}

17 Br

OMe

OMe 5d 6c 8dc (39)

18 Br
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OH 5e 6c 8ec (54)
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O 5f 6b 8fb b,c (38), {7.7 : 1}
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N
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O 5f 6c 8fc a (68)
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N
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CF3

O 5g 6b 8gb b,c (79), {7.7 : 1}

22 Br

N
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O 5g 6c 8gc a (84)

23 Br

N
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CF3

O 5g

OTMS

6d 8/9gd a,d (76), {3.7 : 1}

aRelative stereochemistry was determined by X-ray diffraction.
bThe product was isolated as a non-separable mixture of diastereomers, (ratio of isomers as estimated by 1H NMR).
cFor R4 and R5, two options are given since the exact structure could not be resolved by NMR spectra analysis.
dThe exact structure was not resolved by NMR spectra analysis.
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Analysis of the X-ray crystallographic data confirmed that the isolated products correspond to the novel
tetrahydroanthraquinone scaffolds 8aa and 8ba bearing a halogenated benzoyl residue, in the solid state
(figure 3). Two stereogenic centres have been created, including a sterically congested all-carbon
quaternary stereocentre. The compounds represent interesting hydroanthraquinone structures which
make suitable precursors for further functionalization reactions as well as intramolecular couplings.

Anthraquinone derivatives of higher complexity were obtained via DA cycloadditions between
functionalized dienes 6b–6h and highly activated 2-substituted naphthoquinones 5a–g. All dienes
6a–h subjected to cycloaddition reactions with the above-described naphthoquinone derivatives 5a–g
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Scheme 1. Synthesis of 2-(2-iodobenzoyl)naphthalene-1,4-dione 5a from dihydroxynaphthalene 1. Reagents and conditions: a MeI,
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are shown in figure 4. The dienes contain different substitution patterns, including alkyl groups as well as
silyl protected hydroxy groups with various steric demands.

Dienes 6b–dwere commercially available while trimethylsilyl-dienes 6e and 6fwere synthesized from
trans-2-methyl-2-butenal according to literature procedures [35,36]. Triisopropylsilyl (TIPS)-protected
diene 6g as well as tert-butyldiphenylsilyl (TBDPS) diene 6 h were accessed via but-3-en-2-one [37].

In a typical DA reaction, the dienophile (1.00 equiv.) and the diene (3.00–5.00 equiv.) were dissolved in
dry dichloromethane and the mixture was heated to 40°C. After completion of the reaction, as indicated by
thin-layer chromatography (TLC) control, the solventwas removedunder reducedpressure, and purification
by flash chromatography on silica gel afforded the pure anthraquinone derivatives in yields of up to 88%.

The results of the reactions are summarized in table 1 with the general structures for the exo (8) and
endo (9) products shown in the respective scheme. The regioselectivity of the DA reactions is described by
the ortho/meta/para nomenclature with 1,2-disubstituted adducts named ‘ortho’ as well as 1,4-adducts
referred to as ‘para’.



(a) (b)

Figure 2. Molecular structures of the iodinated quinone 4a (a), and the brominated dimethoxy dienophile 5d (b). Displacement
parameters are drawn at 50% probability level.
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Figure 3. Molecular structures of 8aa (a) and 8ba (b) determined by single-crystal X-ray diffraction. Displacement parameters are
drawn at 50% probability level.
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In general, the substrates underwent the cycloaddition very smoothly, under mild conditions and
gave good to excellent yields. The cycloadditions with 1-substituted dienes resulted in diastereomeric
mixtures; however, most of the reactions proceeded in a highly regioselective manner owing to the
substituent at C2 of the dienophiles.

By using commercially available isoprene (6b), the DA reactions of both the iodinated 5a and the
brominated dienophile 5b performed well and provided a mixture of regioisomers with one molecule
occurring in large excess 8ab/8bb (entries 1–2). The exact structure of the products could not be
assigned with analysis of the nuclear magnetic resonance (NMR) spectra; however, the expected
regioselectivity for the reaction with isoprene (6b) would give the 1,4-disubstituted ‘para’ products 8ab
and 8bb with R5 being represented by the methyl group. Attempts to separate the regioisomers by
flash chromatography on silica gel, preparative TLC on silica gel and preparative high-performance
liquid chromatography were unsuccessful.
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To stepwise increase the complexity of the molecules, the reaction between 2,3-dimethyl-1,3-
butadiene 6c and dienophiles 5a and 5b was investigated next (entries 3–4). Here, excellent yields of
up to 88% were obtained with the molecular structures of anthraquinones 8ac and 8bc being resolved
by X-ray analysis.

For the incorporation of a protected hydroxy group into the anthraquinone core, TMS diene 6d was
used in the cycloadditions with 5a and 5b which gave the two diastereomers 8ad (exo) and 9ad (endo)
(ratio 1 : 3.5) or 8bd (exo) and 9bd (endo) (ratio 1 : 3.0) which in each case were separated via flash
chromatography on silica gel (entries 5–6). The reactions are proceeded by the usually high endo
selectivity of DA reactions governed by the stereoelectronic nature of the reactants and owing to less
steric clash in the endo transition state. The regioselectivity for the 1,2-disubstituted ‘ortho’ structure in
all four obtained products (8ad, 9ad, 8bd and 9bd) was confirmed by X-ray structure determination.

The application of methylated TMS diene 6e in the DA reaction with iodinated dienophile 5a
provided the two ‘ortho’ diastereomers 8ae and 9ae (ratio 1 : 1.9) that could be separated via flash
chromatography on silica gel (entry 7). Because the residue at position 1 of the dienes was the
directing group in the reaction, exclusively the ‘ortho’ products were isolated, while no effect of the
substituents at the diene on the regioselectivity of the reaction was observed. Single-crystal X-ray
diffraction confirmed the selectivity of the reaction by resolving structures 8ae and 9ae.

By replacing the TMS group in the diene with a sterically more demanding tert-butyldimethylsilyl
(TBDMS) group, as in 6f, the complexity of the naphthoquinone products was further increased. The
cycloaddition between dienophiles 5a and 5b and diene 6f each afforded a mixture of two separable
diastereomers (entries 8–9). The products were obtained with very similar yields and ratios of isomers
in comparison to the reaction with trimethylsiloxy (OTMS) diene 6e and, as the silyl ether acts as the
directing group, the ‘para’ products were selectively formed. X-ray diffraction provided the molecular
structure of the three products 8af, 9af and 8bf. Empirical evidence suggests that the regioselectivity
of the DA reactions with non-symmetrical dienes is predominantly governed by the electronic nature
of the molecules, instead of steric effects.

The incorporation of a space demanding TIPS functionality in diene 6 g resulted in a regioselective
cycloaddition giving ‘para’ product 8ag in 75% yield with its structure verified by X-ray
crystallography (entry 10). Further regioselective cycloadditions owing to electronic reasons were
observed in the reactions between TBDPS diene 6h and dienophiles 5a and 5b. The iodinated
anthraquinone 8ah was isolated in 72% yield while the brominated product 8bh yielded 79% with its
structure verified by X-ray diffraction experiments (entries 11–12, figure 5).

To enable further modifications, such as the attachment of a tetrahydroxanthone moiety on the
dienophiles, to facilitate anthraquinone–xanthone heterodimeric structures as found in beticolins
(figure 1), it was envisioned to incorporate functionalities into the halogenated benzene ring of the
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naphthoquinone derivatives. Cycloaddition reactions between brominated dienophile 5c bearing a
methoxy group and isoprene (6b) as well as dimethylbutadiene 6c gave a similar yield and ratio of
products in comparison to the reactions with dienophiles 5a and 5b (entries 13–14).

The DA reaction between methoxy naphthoquinone 5c and TMS diene 6e resulted in a minor
decrease in yield with the ratio of products shifted from 1 : 3.1 to 1 : 5.6 (entry 15), in comparison to
the reaction of TMS diene 6e with bromo dienophile 5b (entry 6). This indicates an effect of the
methoxy functionality on the selectivity of the reaction with one diastereomer forming in large excess.
The exact structure of the products could not be verified by NMR spectra analysis. However, it is
assumed that the same selectivity for the ‘ortho’ products with the major product being the endo
tetrahydroanthraquinone is observed as in the reaction between 5b and 6e, as comparison of the
NMR spectra gives the same characteristic signal pattern for the CH2 group.

In addition, dimethoxy dienophile 5d was employed in DA cycloadditions with isoprene (6b) as well
as dimethyl diene 6c (entries 16–17). By applying herein developed standard conditions, the reaction with
6b resulted in an increased yield containing a non-separable mixture of products with a consistent ratio
of regioisomers (6.7 : 1), in comparison to the cycloaddition between 5b and 6b (entry 2). In the reaction
of dienophile 5d with diene 6c, only 39% of product 8dc were obtained.

Cleavage of themethyl ethers of dimethoxy dienophile 5dprovided polar dihydroxy naphthoquinone 5e
which through a DA reaction with 6c gave anthraquinone 8ec in moderate yield (entry 18).

Via a cycloaddition reaction of dienophile 5f bearing an N-acetyl residue with isoprene (6b),
naphthoquinone 8fb was obtained with 38% yield as a non-separable mixture of regioisomers in a
ratio of 7.7 : 1 (entry 19). The DA cycloaddition of dimethyl diene 6c with N-acetylated
naphthoquinone 5f proceeded smoothly to afford 8fc in good yield (entry 20).

Dienophile 5 g with an N-trifluoroacetyl residue was employed in cycloadditions with various
dienes. First, the reaction with isoprene (6b) gave trifluoromethylated anthraquinone derivative 8gb in
significantly improved yield in comparison to the reaction of 5b and 6b; however, again, a non-
separable mixture of regioisomers (ratio 7.7 : 1) was isolated (entry 21). Additionally, dienophile 5 g
underwent a reaction with dimethyl diene 6c to give 8gc, which was successfully crystallized and its
molecular structure identified, in a very good yield of 84% (entry 22). The DA reaction with TMS
diene 6d resulted in a diastereomeric mixture of products, which showed the expected regiochemistry
(entry 23). ‘Ortho’ anthraquinone derivatives 9gd and 8gd were isolated in 76% total yield in an endo/
exo ratio of 3.7 : 1. The structure of the endo product 9gd was verified by X-ray crystallography (figure 6).

The substituents at the dienophiles, in general, did not render a significant impact on the outcome of
the DA reactions. In some cases, however, decreased yields were observed, presumably owing to steric
hindrance, whereas for the cycloadditions with isoprene (6a), mostly improved yields were obtained, in
comparison to the reactions with non-functionalized dienophiles.
2.3. Modification of hydroanthraquinone 8ah
When methods for the cleavage of the silyl ethers were examined, it was found that application of
standard reagents such as tetrabutylammonium fluoride result in decomposition of the
tetrahydroanthraquinones. By following a literature procedure for the cleavage of TBDMS ethers, it
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was attempted to cleave TBDPS ether in 8ah using a catalytic amount of acetyl chloride in dry methanol.
Presumably, the reaction took place as expected; however, subsequent acid-catalysed addition of
methanol occurred, resulting in modified hydroanthraquinone 10 bearing an acetal group (scheme 4).

2.4. Intramolecular coupling of anthraquinone 8aa
To study the applicability of the synthesized anthraquinone derivatives for the construction of
bicyclo[3.3.1] or -[3.2.2]nonane ring systems, an intramolecular Heck reaction under standard
conditions was performed. By applying palladium acetate and triphenylphosphine, the reaction of 8aa
resulted in an anthraquinone bearing a novel [3.3.1]ring system 12 in good yield (scheme 5). Methods
for the synthesis of [3.2.2]ring systems are currently under investigation.
3. Conclusion
Via a two-step route from dimethoxynaphthalene, the synthesis of various highly activated dienophiles
applicable in [4+2]-cycloadditions was accomplished.

A DA approach facilitated straightforward access to highly functionalized anthraquinone derivatives
by applying 2-substituted 1,4-naphthoquinones and various dienes in cycloadditions. Among these, a
significant amount was analysed by single-crystal X-ray diffraction. The reactions tolerated a broad
substrate scope, proceeded under mild conditions and resulted in good yields. The regiochemistry of
the DA reactions was controlled by the benzoyl substituent at the dienophile, with 2-substituted
dienes yielding ‘para’ hydroanthraquinones and dienes bearing substituents at C1 providing ‘ortho’
products. Moreover, the ‘ortho’ hydroanthraquinones were isolated as a diastereomeric mixture,
favouring the sterically less hindered endo products, consistent with what was expected according to
the endo rule. The results of this work suggest that the electronic rather than the steric nature of the
substituents had the strongest influence on the regioselective outcome of the reaction. The
incorporation of functionalities like methoxy groups into the anthraquinone derivatives paves the way
for further modifications such as the installation of a tetrahydroxanthone subunit, for example, via a
domino oxa-Michael–aldol condensation [38], to facilitate anthraquinone–xanthone heterodimers.

The hydroanthraquinone products of the DA cycloadditions comprise up to three stereogenic centres
including a sterically congested all-carbon quaternary stereocentre and can be further modified, as
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demonstrated exemplarily. The high potential of the obtained anthraquinones was demonstrated with

the construction of a bicyclo[3.3.1]nonane ring system via an intramolecular Heck reaction.
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4. Experimental procedure
4.1. General information
Reactions carried out under argon atmosphere were conducted using previously flame-dried glassware
with standard Schlenk techniques. 1H NMR spectra were recorded on a Bruker Avance AV 300
(300 MHz) or a Bruker Avance 400 (400 MHz) as solutions at room temperature. Chemical shifts are
expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to
CHCl3 (7.26 ppm) as an internal standard. All coupling constants are absolute values and J values
are expressed in Hertz (Hz). 13C NMR spectra were recorded on a Bruker DRX 500 (126 MHz)
spectrometer. Chemical shifts are expressed in parts per million (ppm, δ) downfield from TMS and
are referenced to CDCl3 (77.2 ppm) as an internal standard. The measurements for analytical data
were performed on a Finnigan MAT 95 instrument using the fast atom bombardment (FAB) method,
where 3-nitrobenzyl alcohol (3-NBA) was used as the matrix. Atmospheric pressure chemical
ionization (APCI) and electrospray ionization (ESI) experiments were recorded on a Q-Exactive
(Orbitrap) mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a HESI II
probe to record high resolution. Infrared spectra were recorded with an ALPHA-T instrument made
by Bruker. Solvents of p.a. quality ( per analysis) were bought from Sigma Aldrich, Carl Roth or Acros
Fisher Scientific and used without previous purification unless otherwise stated.

The experimental details and analytical data for quinones 4b–c and 5b–c, anthraquinones 8aa–ac,
acetal 10 as well as [3.3.1]ring system 12 are given below while the experimental data for all other
molecules as well as the X-ray analysis can be found in the electronic supplementary material.

4.2. General procedures

4.2.1. General procedure A for the dienophile precursors (4)

A mixture of trifluoroacetic anhydride (7.00–10.00 equiv.), 1,4-dimethoxynaphthalene (2) (1.00 equiv.)
and a benzoic acid derivative 3 (1.00–1.20 equiv.) was heated to reflux under argon atmosphere. After
24 h, the mixture was cooled to room temperature, quenched by the addition of H2O and the aqueous
phase was extracted with EtOAc. The combined organic phases were washed with saturated aq.
NaHCO3 solution, dried over Na2SO4 and the solvents were removed under reduced pressure. The
crude product was purified via flash chromatography on silica gel.

4.2.2. General procedure B for the dienophiles (5)

Under an argon atmosphere, a 1 M solution of ammonium cerium (IV) nitrate (CAN) (3.70 equiv.) in H2O
was rapidly added to a 0.1 M solution of the 1,4-dimethoxynaphthalene derivative 4a–g (1.00 equiv.) in
MeCN/CH2Cl2 (4 : 1) at –40°C. The resulting reaction mixture was warmed to –20°C for 1 h and then
poured into H2O. The aqueous phase was extracted with EtOAc and the combined organic phases
were dried over Na2SO4. The solvents were removed under reduced pressure and the remaining crude
product was dissolved in CH2Cl2. CHex was added, and the product was crystallized by the
evaporation of CH2Cl2.

4.2.3. General procedure C for the Diels–Alder reaction (8/9)

In a crimp vial under an argon atmosphere, the dienophile 5a–g (1.00 equiv.) was dissolved in dry
CH2Cl2 and the diene 6a–h (3.00–5.00 equiv.) was added. The reaction was stirred at 40°C until the
consumption of the dienophile was completed, as indicated by TLC. The solvent was removed under
reduced pressure and the crude product was purified via flash chromatography on silica gel.

(1,4-Dimethoxynaphthalen-2-yl)(2-bromophenyl)-methanone (4b): according to general procedure
A, a mixture of trifluoroacetic anhydride (1.5 ml, 1.47 g, 7.00 mmol, 7.00 equiv.), 1,4-
dimethoxynaphthalene (2) (188 mg, 1.00 mmol, 1.00 equiv.) and 2-bromobenzoic acid (3b) (201 mg,
1.00 mmol, 1.00 equiv.) was used. The crude product was purified via flash chromatography on silica
gel (cHex/EtOAc = 15 : 1). The product 4b was obtained as a yellow solid (310 mg, 0.835 mmol, 84%).
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– Rf (cHex/EtOAc = 15 : 1) = 0.36. – 1H NMR (400 MHz, CDCl3): δ = 8.33–8.25 (m, 1H, CHAr), 8.12–8.05

(m, 1H, CHAr), 7.69–7.64 (m, 1H, CHAr), 7.63–7.53 (m, 2H, CHAr), 7.47 (dd, 3J = 7.5 Hz, 4J = 2.0 Hz, 1H,
CHAr), 7.43–7.29 (m, 2H, CHAr), 7.12 (s, 1H, CHAr), 4.04 (s, 3H, OCH3), 3.62 (s, 3H, OCH3) ppm. – 13C
NMR (101 MHz, CDCl3): δ = 195.3 (Cq, 1×C =O), 152.1 (Cq, 1×CqAr), 151.8 (Cq, 1×CqAr), 142.3 (Cq,
1×CqAr), 133.1 (+, 1 ×CHAr), 131.1 (+, 1 ×CHAr), 129.4 (+, 1 ×CHAr), 129.3 (Cq, 1 ×CqAr), 128.5 (Cq, 1 ×
CqAr), 128.0 (+, 1 ×CHAr), 127.0 (+, 1 ×CHAr), 126.8 (+, 1 ×CHAr), 126.0 (Cq, 1 ×CqAr), 123.3 (+, 1 ×
CHAr), 122.4 (+, 1 ×CHAr), 119.5 (Cq, 1 ×CqAr), 102.6 (+, 1 ×CHAr), 63.8 (+, 1 × OCH3), 55.7 (+, 1 ×
OCH3) ppm. – IR (ATR): ν = 2931 (w), 1655 (m), 1583 (m), 1457 (m), 1366 (s), 1271 (m), 1206 (m), 1111
(m), 1092 (m), 1050 (m), 1027 (m), 1000 (m), 955 (m), 860 (m), 846 (m), 804 (m), 761 (m), 750 (s), 692
(m), 669 (m), 652 (m), 636 (m), 480 (w), 458 (w), 429 (w) cm–1. – MS (FAB, 3-NBA), m/z (%): 371/373
(82/80) [M+H]+, 370/372 (87/100) [M]+. – HRMS (FAB, C19H15

79BrO3): calc. 370.0205; found 370.0204. –
X-ray: the structure of 4b could be confirmed by single-crystal X-ray diffraction (see crystallographic
information in the electronic supplementary material, CCDC 1992178). – repository ID: CRR-9656.

(2-Bromo-5-methoxyphenyl)(1,4-dimethoxynaphthalen-2-yl)-methanone (4c): according to general
procedure A, a mixture of trifluoroacetic anhydride (2.82 ml, 4.20 g, 20.0 mmol, 10.0 equiv.), 1,4-
dimethoxynaphthalene (2) (376 mg, 2.00 mmol, 1.00 equiv.) and 2-bromo-5-methoxybenzoic acid (3c)
(555 mg, 2.40 mmol, 1.20 equiv.) was used. The crude product was purified via flash chromatography
on silica gel (cHex/EtOAc = 12 : 1). The product 4c was obtained as a yellow solid (588 mg, 1.47 mmol,
73%). – Rf (cHex/EtOAc = 12 : 1) = 0.24. – 1H NMR (400 MHz, CDCl3): δ = 8.32–8.26 (m, 1H, CHAr),
8.13–8.07 (m, 1H, CHAr), 7.64–7.55 (m, 2H, CHAr), 7.52 (d, 3J = 8.8 Hz, 1H, CHAr), 7.09 (s, 1H, CHAr),
7.00 (d, 4J = 3.0 Hz, 1H, CHAr), 6.90 (dd, 3J = 8.7 Hz, 4J = 3.0 Hz, 1H, CHAr), 4.03 (s, 3H, OCH3), 3.79 (s,
3H, OCH3), 3.67 (s, 3H, OCH3) ppm. – 13C NMR (101 MHz, CDCl3): δ = 195.5 (Cq, 1 ×C =O), 158.8
(Cq, 1 ×CqAr), 152.4 (Cq, 1 ×CqAr), 152.1 (Cq, 1 ×CqAr), 143.4 (Cq, 1 ×CqAr), 134.1 (+, 1 ×CHAr), 129.6
(Cq, 1 × CqAr), 128.8 (Cq, 1 ×CqAr), 128.3 (+, 1 ×CHAr), 127.3 (+, 1 ×CHAr), 126.2 (Cq, 1 ×CqAr), 123.7
(+, 1 ×CHAr), 122.8 (+, 1 ×CHAr), 117.5 (+, 1 ×CHAr), 114.9 (+, 1 ×CHAr), 110.2 (Cq, 1 ×CqAr), 103.0 (+,
1 × CHAr), 64.1 (+, 1 × OCH3), 56.0 (+, 1 × OCH3), 55.8 (+, 1 × OCH3) ppm. – IR (ATR): ν = 2935 (w),
2838 (w), 1650 (m), 1620 (m), 1592 (m), 1568 (m), 1458 (m), 1404 (m), 1366 (s), 1310 (m), 1281 (m),
1214 (s), 1162 (m), 1113 (m), 1094 (s), 1057 (m), 1020 (m), 962 (m), 853 (m), 813 (m), 767 (s), 709 (m),
669 (m), 603 (m), 486 (w), 430 (w) cm–1. – MS (APCI), m/z (%): 401/403 (100/100) [M+H]+. – HRMS
(APCI, C20H18

79BrO4): calc. 401.0388; found 401.0374. – X-ray: the structure of 4c could be confirmed by
single-crystal X-ray diffraction (see crystallographic information in the electronic supplementary
material, CCDC 1992874). – repository ID: CRR-9668.

2-(2-Bromobenzoyl)naphthalene-1,4-dione (5b): following general procedure B, the crude product
was obtained from CAN (10.1 g, 18.5 mmol, 3.70 equiv.) and (1,4-dimethoxynaphthalen-2-yl)(2-
bromophenyl)methanone (4b) (2.09 g, 5.63 mmol, 1.00 equiv.). The product 5b was isolated as an
orange solid (1.92 g, 5.63 mmol, quant.). – Rf (cHex/EtOAc = 9 : 1) = 0.30. – 1H NMR (400 MHz,
CDCl3): δ = 8.15–8.08 (m, 2H, CHAr), 7.83–7.79 (m, 2H, CHAr), 7.71–7.69 (m, 1H, CHAr), 7.61 (d,
J = 7.8 Hz, 1H, CHAr), 7.48 (t, J = 7.4 Hz, 1H, CHAr), 7.45–7.41 (m, 1H, CHAr), 7.18 (s, 1H, = CH ) ppm.
– 13C NMR (101 MHz, CDCl3): δ = 192.6 (1 × C =O), 185.1 (1 × C =O), 182.7 (1 ×C =O), 145.9 (1 ×Cq),
139.0 (1 × Cq), 137.3 (+, 1 × = CH), 134.7 (+, 1 × CHAr), 134.5 (+, 1 × CHAr), 133.9 (+, 1 ×CHAr), 133.6
(+, 1 ×CHAr), 132.2 (1 × Cq), 131.8 (1 ×Cq), 131.3 (+, 1 ×CHAr), 128.0 (+, 1 × CHAr), 127.1 (+, 1 ×CHAr),
126.6 (+, 1 × CHAr), 121.0 (1 ×Cq) ppm. – IR (ATR): ν = 3041, 1653, 1584, 1465, 1430, 1352, 1328, 1283,
1252, 1101, 1051, 1025, 975, 947, 843, 799, 773, 750, 713, 696, 634, 592, 463, 403 cm−1. – MS (FAB, 3-
NBA), m/z (%): 342/344 (14/14) [M+H]+, 341/343 (16/21) [M]+. – HRMS (FAB, C17H10

79BrO3): calc.
340.9813; found 340.9814. – X-ray: the structure of 5b could be confirmed by single-crystal X-ray
diffraction (see crystallographic information in the electronic supplementary material, CCDC 1992875).
– repository ID: CRR-9662.

2-(2-Bromo-5-methoxybenzoyl)naphthalene-1,4-dione (5c): following general procedure B, the
crude product was obtained from CAN (10.1 g, 18.4 mmol, 3.70 equiv.) and (2-bromo-5-
methoxyphenyl)(1,4-dimethoxynaphthalen-2-yl)methanone (4c) (2.00 g, 4.98 mmol, 1.00 equiv.). The
product 5c was isolated as an orange solid (1.37 g, 3.69 mmol, 74%). – Rf (cHex/EtOAc = 4 : 1) = 0.44. –
1H NMR (400 MHz, CDCl3): δ = 8.16–8.08 (m, 2H, CHAr), 7.84–7.78 (m, 2H, CHAr), 7.47 (d, 3J = 8.8 Hz,
1H, CHAr), 7.23 (d, 4J = 3.1 Hz, 1H, CHAr), 7.17 (s, 1H, C = CH ), 6.98 (dd, 3J = 8.8 Hz, 4J = 3.1 Hz, 1H,
CHAr), 3.86 (s, 3H, OCH3) ppm. – 13C NMR (101 MHz, CDCl3): δ = 192.5 (Cq, 1 × C =O), 185.1 (Cq,
1 × C =O), 182.6 (Cq, 1 × C =O), 159.3 (Cq, 1 × CqAr), 146.1 (Cq, 1 ×CqAr), 139.6 (Cq, 1 ×CqAr), 137.2
(+, 1 ×CHAr), 134.7 (+, 1 ×CHAr), 134.7 (+, 1 ×CHAr), 134.5 (+, 1 ×CHAr), 132.2 (Cq, 1 ×CqAr), 131.9
(Cq, 1 ×CqAr), 127.1 (+, 1 ×CHAr), 126.6 (+, 1 × CHAr), 120.3 (+, 1 ×CHAr), 115.9 (+, 1 × C =CH), 111.6
(Cq, 1 × CqAr), 55.9 (+, 1 × OCH3) ppm. – IR (ATR): ṽ = 2934 (w), 1655 (m), 1589 (m), 1460 (m), 1399



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200626
12
(w), 1349 (w), 1281 (m), 1236 (m), 1097 (w), 1018 (w), 993 (w), 920 (w), 885 (w), 818 (m), 765 (m), 720 (w), 667

(w), 607 (w), 584 (m), 456 (w), 413 (vw) cm–1. –MS (FAB, 3-NBA),m/z (%): 371/373 (13/17) [M+H]+, 291 (17),
[M–Br]+. – HRMS (FAB, C18H12

79BrO4): calc. 370.9919; found 370.9918. – repository ID: CRR-9674.
4a-(2-Iodobenzoyl)-1,4,4a,9a-tetrahydroanthracene-9,10-dione (8aa): a suspension of 3-sulfolene (7)

(5.00 g, 42.0 mmol, 16.4 equiv.) in o-xylene (15 ml) was heated to 125°C for 0.5 h. The thereby
developed gaseous 1,3-butadiene (6a) was led into a reaction vessel containing a solution of 2-(2-
iodobenzoyl)naphthalene-1,4-dione (5a) (1.00 g, 3.00 mmol, 1.00 equiv.) in CH2Cl2 (5.0 ml) at –78°C.
After completion of the evolution of 1,3-butadiene gas (6a), the mixture of dienophile 5a and diene 6a
in CH2Cl2 was slowly warmed to room temperature and stirred at this temperature for 2 h. The
solvent was removed under reduced pressure. After flash chromatography on silica gel (cHex/
EtOAc = 4 : 1), the product 8aa was obtained as a colourless solid (925 mg, 2.09 mmol, 81%). – Rf

(cHex/EtOAc = 4 : 1) = 0.45. – 1H NMR (400 MHz, CDCl3): δ = 8.17 (dd, 3J = 7.6 Hz, 4J = 1.5 Hz, 1H,
CHAr), 8.03 (dd, 3J = 7.8 Hz, 4J = 1.4 Hz, 1H, CHAr), 7.87 (dd, 3J = 7.8 Hz, 4J = 1.1 Hz, 1H, CHAr), 7.76
(dtd, 3J = 23.2, 7.5 Hz, 4J = 1.5 Hz, 2H, CHAr), 7.31 (td, 3J = 7.6 Hz, 4J = 1.1 Hz, 1H, CHAr), 7.16–7.01 (m,
2H, CHAr), 5.70 (s, 2H, CH2-CH=CH-CH2), 3.68 (dd, 3J = 9.9, 6.3 Hz, 1H, C = CH-CH2-CH ), 3.07–2.93
(m, 1H, C-CHH-CH), 2.50–2.45 (m, 1H, C-CHH-CH), 2.44–2.38 (m, 1H, CH-CHH-CH), 2.34–2.20 (m,
1H, CH-CHH-CH) ppm. – 13C NMR (101 MHz, CDCl3): δ = 200.6 (Cq, 1 ×C =O), 196.1 (Cq, 1 ×C =O),
194.0 (Cq, 1 × C =O), 142.6 (Cq, 1 ×CqAr), 141.0 (+, 1 ×CHAr), 135.3 (+, 1 ×CHAr), 134.3 (+, 1 ×CHAr),
133.1 (Cq, 1 ×CqAr), 131.7 (+, 1 ×CHAr), 127.5 (+, 1 ×CHAr), 127.4 (+, 1 ×CHAr), 127.2 (+, 1 × CHAr),
126.8 (+, 1 ×CHAr), 124.4 (+, 1 × C =CH), 123.9 (+, 1 × C = CH), 93.1 (Cq, 1 × CqAr), 68.1 (Cq, 1 ×CqAr),
50.0 (+, 1 ×CH), 28.4 (–, 1 ×CH2), 26.4 (–, 1 ×CH2), 14.4 (Cq, 1 ×Cq) ppm. – IR (ATR): ṽ = 2922 (vw),
1690 (w), 1672 (w), 1588 (w), 1424 (vw), 1290 (w), 1248 (w), 1219 (w), 1158 (vw), 1059 (w), 1016 (w),
984 (w), 941 (w), 920 (vw), 891 (vw), 807 (vw), 783 (vw), 761 (w), 746 (w), 728 (w), 687 (w), 660 (w),
635 (vw), 598 (w), 528 (vw), 442 (vw), 407 (w) cm–1. – MS (EI, 70 eV), m/z (%): 443 (2) [M+H]+, 442 (7)
[M]+, 231 (100) [C7H4IO]+, 211 (26) [C14H11O2]

+, 203 (19) [C6H4I]
+. – HRMS (EI, C21H15IO3): calc.

442.0060; found 442.0062. – X-ray: the structure of 8aa could be confirmed by single crystal X-ray
diffraction (see crystallographic information in the electronic supplementary material, CCDC 1992179).
– repository ID: CRR-12148.

(4aR,9aR)-4a-(2-Bromobenzoyl)-1,4,4a,9a-tetrahydroanthracene-9,10-dione (8ba): a suspension of 3-
sulfolene (7) (2.00 g, 16.9 mmol, 28.9 equiv.) in o-xylene (15 ml) was heated to 125°C for 0.5 h. The
thereby developed gaseous 1,3-butadiene (6a) was then led into a reaction vessel containing a solution
of 2-(2-bromobenzoyl)naphthalene-1,4-dione (5b) (500 mg, 1.47 mmol, 1.00 equiv.) in CH2Cl2 (3.0 ml)
at –78°C. After completion of the evolution of 1,3-butadiene gas (6a), the mixture of dienophile 6b
and diene 6a in CH2Cl2 was slowly warmed to room temperature and stirred at this temperature for
2 h. The solvent was removed under reduced pressure. After flash chromatography on silica gel
(cHex/EtOAc = 8 : 1), the product 8ba was obtained as a colourless solid (480 mg, 1.21 mmol, 82%).
– Rf (cHex/EtOAc = 8 : 1) = 0.21. – 1H NMR (400 MHz, CDCl3): δ = 8.16 (dd, 3J = 7.6 Hz, 4J = 1.5 Hz, 1H,
CHAr), 8.03 (dd, 3J = 7.6 Hz, 4J = 1.4 Hz, 1H, CHAr), 7.79 (td, 3J = 7.6 Hz, 4J = 1.5 Hz, 1H, CHAr), 7.74 (td,
3J = 7.5 Hz, 4J = 1.5 Hz, 1H, CHAr), 7.60–7.55 (m, 1H, CHAr), 7.31–7.22 (m, 2H, CHAr), 7.15–7.09 (m, 1H,
CHAr), 5.72–5.64 (m, 2H, CH2-CH=CH-CH2), 3.68 (dd, 3J = 9.6, 6.3 Hz, 1H, C = CH-CH2-CH ),
3.03–2.93 (m, 1H, C-CHH-CH), 2.51–2.40 (m, 2H, CHH, CHH ), 2.33–2.24 (m, 1H, CHH ) ppm. – 13C
NMR (101 MHz, CDCl3): δ = 199.9 (Cq, 1 × C =O), 196.2 (Cq, 1 ×C =O), 193.9 (Cq, 1 ×C =O), 139.2
(Cq, 1 ×CqAr), 135.3 (+, 1 ×CHAr), 134.3 (+, 1 ×CHAr), 134.2 (Cq, 1 ×CqAr), 134.1 (+, 1 ×CHAr), 133.1
(Cq, 1 ×CqAr), 131.6 (+, 1 ×CHAr), 127.4 (+, 1 ×CHAr), 127.2 (+, 2 ×CHAr), 126.8 (+, 1 ×CHAr), 124.5 (+,
1 × C = CH), 123.8 (+, 1 × C =CH), 119.8 (Cq, 1 ×CqAr), 68.3 (Cq, 1 × Cq), 49.7 (+, 1 × CH), 28.2 (–, 1 ×
CH2), 26.2 (–, 1 × CH2) ppm. – IR (ATR): ν = 2830 (vw), 2926 (vw), 2885 (vw), 1684 (w), 1589 (w), 1423
(w), 1252 (w), 1218 (w), 1064 (w), 1025 (w), 988 (w), 942 (w), 917 (w), 890 (w), 842 (vw), 798 (vw), 761
(w), 733 (w), 683 (w), 638 (w), 592 (w), 560 (w), 532 (vw), 442 (vw), 424 (vw), 401 (vw) cm–1. – MS
(FAB, 3-NBA), m/z (%): 395/397 (18/17) [M+H]+. – HRMS (FAB, C21H16

79BrO3): calc. 395.0283; found
395.0285. – X-ray: the structure of 8ba could be confirmed by single crystal X-ray diffraction (see
crystallographic information in the electronic supplementary material, CCDC 1992876). – repository
ID: CRR-10340.

(4aR,9aR)-4a-(2-Iodobenzoyl)-2,3-dimethyl-1,4,4a,9a-tetrahydroanthracene-9,10-dione (8ac): according
to general procedure C, the cycloaddition was performed with 2-(2-iodobenzoyl)naphthalene-1,4-dione (5a)
(388 mg, 1.00 mmol, 1.00 equiv.) and 2,3-dimethylbuta-1,3-diene (6c) (0.34 ml, 246 mg, 3.00 mmol, 3.00
equiv.) in dry CH2Cl2 (5.0 ml). After 3 h, the crude product was purified via flash chromatography on silica
gel (cHex/EtOAc = 9 : 1) to obtain product 8ac as a yellow solid (328 mg, 697 µmol, 70%). – Rf (cHex/
EtOAc = 9 : 1) = 0.31. – 1H NMR (400 MHz, CDCl3): δ= 8.16 (dd, 3J = 7.6 Hz, 4J = 1.5 Hz, 1H, CHAr), 8.02
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(dd, 3J = 7.5 Hz, 4J = 1.6 Hz, 1H, CHAr), 7.88 (dd, 3J = 8.1 Hz, 4J = 1.2 Hz, 1H, CHAr), 7.78 (td, 3J = 7.5 Hz, 4J =

1.5 Hz, 1H, CHAr), 7.73 (td, 3J = 7.5 Hz, 4J = 1.5 Hz, 1H, CHAr), 7.33 (td, 3J = 7.6 Hz, 4J = 1.1 Hz, 1H, CHAr),
7.22 (dd, 3J = 7.8 Hz, 4J = 1.7 Hz, 1H, CHAr), 7.08 (td, 3J = 7.7 Hz, 4J = 1.7 Hz, 1H, CHAr), 3.70 (t, 3J = 7.7 Hz,
1H, CH ), 2.81 (d, 2J = 17.2 Hz, 1H, CHH), 2.38 (d, 2J = 17.2 Hz, 1H, CHH), 2.29 (d, 3J = 7.7 Hz, 2H, CH2),
1.60 (s, 3H, CH3), 1.55 (s, 3H, CH3) ppm. – 13C NMR (101 MHz, CDCl3): δ= 200.9 (Cq, 1 ×C=O), 196.4 (Cq,
1 ×C=O), 194.8 (Cq, 1 ×C =O), 142.6 (Cq, 1 ×CqAr), 141.0 (+, 1 ×CHAr), 135.2 (+, 1 ×CHAr), 134.4 (Cq, 1 ×
CqAr), 134.3 (+, 1 ×CHAr), 133.2 (Cq, 1 ×CqAr), 131.6 (+, 1 ×CHAr), 127.4 (+, 1 ×CHAr), 127.4 (+, 1 ×CHAr),
127.2 (+, 1 ×CHAr), 127.1 (+, 1 ×CHAr), 123.9 (Cq, 1 ×Cq), 123.1 (Cq, 1 ×Cq), 93.2 (Cq, 1 ×CqAr), 68.5 (Cq,
1 ×Cq), 50.5 (+, 1 ×CH), 34.6 (–, 1 ×CH2), 31.9 (–, 1 ×CH2), 19.1 (+, 1 ×CH3), 18.9 (+, 1 ×CH3) ppm. – IR
(ATR): ṽ = 3065 (vw), 2912 (vw), 1678 (w), 1592 (w), 1425 (w), 1252 (w), 1218 (w), 1055 (vw), 1005 (w), 933
(vw), 884 (vw), 836 (vw), 764 (w), 745 (w), 672 (vw), 638 (vw), 609 (vw), 554 (vw), 447 (vw), 386 (vw) cm–1.
– MS (FAB, 3-NBA), m/z (%): 470 (3) [M]+, 471 (16) [M+H]+, 307 (32), 231 (40), 154 (100). – HRMS (FAB,
C23H20

127IO3): calc. 471.0457; found 471.0456. – X-ray: the structure of 8ac could be confirmed by single-
crystal X-ray diffraction (see crystallographic information in the electronic supplementary material, CCDC
1992877). – repository ID: CRR-9796.

(4aR,9aR)-4a-(2-Iodobenzoyl)-2,2-dimethoxy-1,2,3,4,4a,9a-hexahydroanthracene-9,10-dione (10): to a
solution of (4aR,9aR)-2-((tert-butyldiphenylsilyl)oxy)-4a-(2-iodobenzoyl)-1,4,4a,9a-tetrahydroanthracene-
9,10-dione (8ah) (44.6 mg, 64.0 µmol, 1.00 equiv.) in a mixture of dry MeOH and dry CH2Cl2 (1 : 1)
(0.4 ml) was added a drop of AcCl (50 µl, 55.3 mg, 700 µmol, 11 equiv.) at 0°C and the reaction mixture
was stirred for 3.5 h at this temperature. After completion of the reaction (monitored by TLC), CH2Cl2
was added (4.0 ml), the reaction mixture was neutralized with 10% NaHCO3 (0.5 ml) and washed with
H2O (5 ml). The organic layer was dried over Na2SO4 and concentrated in vacuo to give the crude
product, which was purified via silica gel flash chromatography on silica gel (cHex/EtOAc = 3 : 1) to give
product 10 (31.0 mg, 61.5 µmol, 96%). – Rf (cHex/EtOAc = 3 : 1) = 0.37. – 1H NMR (300 MHz, CDCl3): δ =
8.21–8.15 (m, 1H, CHAr), 8.08–8.02 (m, 1H, CHAr), 7.85–7.68 (m, 3H, CHAr), 7.29 (td, 3J = 7.6 Hz, 4J =
1.2 Hz, 1H, CHAr), 7.07 (td, 3J = 7.7 Hz, 2J = 1.6 Hz, 1H, CHAr), 6.91 (dd, 3J = 7.7 Hz, 4J = 1.6 Hz, 1H, CHAr),
3.63 (dd, J = 13.9, 4.1 Hz, 1H, CH ), 3.21 (s, 3H, OCH3), 3.14 (s, 3H, OCH3), 2.69–2.58 (m, 1H, CHH), 2.27
(ddd, J = 13.6, 4.1, 3.0 Hz, 1H, CHH), 2.10–1.97 (m, 1H, CHH), 1.85 (td, J = 13.4, 4.1 Hz, 1H, CHH), 1.67–
1.53 (m, 1H, CHH), 1.40 (t, 2J = 13.8 Hz, 1H, CHH) ppm. – 13C NMR (76 MHz, CDCl3): δ = 201.0 (Cq, 1 ×
C =O), 195.8 (Cq, 1 ×C =O), 193.1 (Cq, 1 ×C =O), 143.6 (Cq, 1 ×CqAr), 140.2 (+, 1 ×CHAr), 135.3 (Cq, 1 ×
CqAr), 134.3 (+, 1 ×CHAr), 134.0 (Cq, 1 ×CqAr), 133.4 (+, 1 ×CHAr), 131.2 (+, 1 ×CHAr), 127.3 (+, 3 ×CHAr),
126.1 (+, 1 ×CHAr), 98.2 (Cq, 1 ×CqOCH3), 91.5 (Cq, 1 ×CqAr), 69.4 (Cq, 1 ×Cq), 51.6 (+, 1 ×CH), 47.9 (+,
1 ×OCH3), 47.7 (+, 1 ×OCH3), 34.9 (–, 1 ×CH2), 28.7 (–, 1 ×CH2), 26.3 (–, 1 ×CH2) ppm. – IR (ATR): ṽ =
395 (w), 424 (w), 445 (m), 487 (w), 561 (w), 596 (w), 636 (m), 674 (w), 691 (s), 732 (vs), 744 (vs), 759 (s), 772
(s), 785 (m), 807 (w), 823 (m), 846 (m), 902 (m), 929 (vs), 982 (s), 1006 (s), 1045 (vs), 1081 (vs), 1112 (s), 1143
(vs), 1160 (w), 1218 (vs), 1255 (vs), 1358 (w), 1425 (w), 1459 (w), 1562 (w), 1591 (m), 1680 (vs), 2830 (w),
2936 (w), 2949 (w) cm–1. – MS (EI, 70 eV), m/z (%): 504 (12) [M]+, 473 (28) [M–OCH3]

+, 231 (100). – HRMS
(EI, C23H22O3

127I): calc. 473.0614; found 473.0616. – repository ID: CRR-12066.
(5S,13aR)-6H-5,13a-Methanobenzo[4,5]cycloocta[1,2-b]naphthalene-8,13,14(5H)-trione (12): under

argon atmosphere, a mixture of (4aR,9aR)-4a-(2-iodobenzoyl)-1,4,4a,9a-tetrahydroanthracene-9,10-
dione (8aa) (53.1 mg, 120 µmol, 1.00 equiv.), Pd(OAc)2 (5.4 mg, 24.0 µmol, 20 mol%), PPh3 (12.6 mg,
48.0 µmol, 40 mol%) was placed into a high-pressure glass tube. The mixture was dissolved in dry
dimethylacetamide (0.50 ml), pentamethylpiperidine (45 µl, 37.2 mg, 240 µmol, 2.00 equiv.) was added
and the mixture was stirred at 70°C for 22 h. After completion of the reaction, as indicated by TLC, it
was quenched by the addition of H2O. The aqueous phase was extracted with EtOAc and the
combined organic phases were dried over Na2SO4. The solvents were removed under reduced
pressure and the crude product was purified via flash chromatography on silica gel (cHex/EtOAc = 6 :
1) to obtain 12 as a yellow solid (27.0 mg, 85.9 µmol, 72%). – Rf (cHex/EtOAc = 6 : 1) = 0.22. – 1H
NMR (400 MHz, CDCl3): δ = 8.25–8.22 (m, 1H, CHAr), 8.18–8.15 (m, 1H, CHAr), 7.88–7.84 (m, 1H,
CHAr), 7.82–7.78 (m, 1H, CHAr), 7.56 (td, 3J = 7.5 Hz, 4J = 1.5 Hz, 1H, CHAr), 7.34–7.29 (m, 2H, CHAr),
7.24 (m, 2H, C = CH, CHAr), 3.58 (m, 1H, CH ), 3.16 (ddd, 2J = 13.5 Hz, 3J = 3.8 Hz, 4J = 1.7 Hz, 1H,
CHH ), 3.01 (ddd, 2J = 20.6 Hz, 3J = 6.1, 2.7 Hz, 1H, CHH), 2.52 (ddt, 2J = 20.6 Hz, 3J = 5.2 Hz, 4J =
1.6 Hz, 1H, CHH ), 2.28 (dd, 2J = 13.5 Hz, 3J = 2.6 Hz, 1H, CHH) ppm. – 13C NMR (101 MHz, CDCl3):
δ = 196.2 (Cq, 1 ×C =O), 195.1 (Cq, 1 ×C =O), 183.0 (Cq, 1 ×C =O), 147.1 (Cq, 1 × CqAr), 140.2 (+, 1 ×
CHAr), 137.3 (Cq, 1 ×CqAr), 135.4 (Cq, 1 × CqAr), 135.1 (+, 1 ×CHAr), 134.9 (+, 1 × CHAr), 134.8 (+, 1 ×
CHAr), 132.7 (Cq, 1 ×CqAr), 129.4 (Cq, 1 × CqAr), 128.8 (+, 1 ×CHAr), 128.7 (+, 1 × CHAr), 128.1 (+, 2 ×
CHAr), 127.0 (+, 1 × C =CH), 59.8 (Cq, 1 ×Cq), 34.3 (–, 1 ×CH2), 32.5 (+, 1 × CH), 31.1 (–, 1 ×CH2) ppm.
– IR (ATR): ṽ = 2923 (w), 1731 (m), 1697 (m), 1669 (m), 1589 (m), 1453 (w), 1411 (w), 1269 (s), 1250 (s),
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1156 (m), 969 (w), 946 (w), 927 (m), 890 (w), 858 (m), 825 (w), 780 (w), 754 (m), 718 (m), 694 (m), 635 (w),

578 (w), 541 (w), 519 (w), 445 (w) cm–1. – MS (EI, 70 eV), m/z (%): 314 (91) [M+H]+. – HRMS (EI,
C21H14O3): calc. 314.0937; found 314.0937. – X-ray: the structure of 12 could be confirmed by single-
crystal X-ray diffraction (see crystallographic information in the electronic supplementary material,
CCDC 1992893). – repository ID: CRR-12176.
publishing.org/journal/rsos
R.Soc.Open

Sci.7:200626
Data accessibility. The obtained data were deposited in the repository Chemotion (reaction details and compound
characterization) and the CCDC (crystal structures). The related IDs which can be used to identify the submissions
(web access: https://www.chemotion-repository.net/home/publications; https://www.ccdc.cam.ac.uk/structures/)
are given as repository ID (Chemotion Repository Reaction ID—CRR; Cambridge Crystallographic Data Centre—
CCDC). Chemotion Repository: https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-VIFKGORYWD-
UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (4a); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADP
SC-BLDZZLLBER-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (4b); https://dx.doi.org/10.14272/reaction/SA-
FUHFF-UHFFFADPSC-ISSAVWGYAU-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (4c); https://dx.doi.org/10.
14272/reaction/SA-FUHFF-UHFFFADPSC-ANVMBMPZHQ-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (4d);
https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-OPAWPZCMGG-UHFFFADPSC-NUHFF-NUHFF-
NUHFF-ZZZ (4e); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-IOGOYECUJC-UHFFFADPSC-
NUHFF-NUHFF-NUHFF-ZZZ (4f); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-CIZDEMMLYC-
UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (5a); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-
UANJEQXEUP-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (5b); https://dx.doi.org/10.14272/reaction/SA-FUHFF-
UHFFFADPSC-HDMBZXQPNM-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (5c); https://dx.doi.org/10.14272/
reaction/SA-FUHFF-UHFFFADPSC-LQLVWTVLQD-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (5d); https://dx.
doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-BCJAVVNVCV-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ
(5e); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-MWUPABMFGF-UHFFFADPSC-NUHFF-
NUHFF-NUHFF-ZZZ (5f); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-YREQDOIZJY-
UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (5g); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-
TZBXDZKIGZ-UHFFFADPSC-NUHFF-NDRCZ-NUHFF-ZZZ (8aa); https://dx.doi.org/10.14272/reaction/SA-
FUHFF-UHFFFADPSC-BGJIBRAFUH-UHFFFADPSC-NUHFF-NDRCZ-NUHFF-ZZZ (8ba); https://dx.doi.org/10.
14272/reaction/SA-FUHFF-UHFFFADPSC-HTUXSVMUHU-UHFFFADPSC-NUHFF-NUWWY-NUHFF-ZZZ (8/9ab);
https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-UWSTXCXPGI-UHFFFADPSC-NUHFF-NUWWY-
NUHFF-ZZZ (8/9bb); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-BJHRMKGCWP-
UHFFFADPSC-NUHFF-NUGKD-NUHFF-ZZZ (8ac); https://dx.doi.org/10.14272/reaction/SA-FUHFF-
UHFFFADPSC-VQHSHKAJCS-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (8bc); https://dx.doi.org/10.14272/
reaction/SA-FUHFF-UHFFFADPSC-ZUBFTCRJYO-UHFFFADPSC-NUHFF-NRFRK-NUHFF-ZZZ (8ad, 9ad); https://
dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-LRHPRUPFRY-UHFFFADPSC-NUHFF-NRFRK-NUHFF-
ZZZ (8bd, 9bd); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-PHEQJDFJHL-UHFFFADPSC-
NUHFF-NUWAF-NUHFF-ZZZ (8ae, 9ae); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-UMSRH
QGWSN-UHFFFADPSC-NUHFF-NHVYL-NUHFF-ZZZ (8af, 9af); https://dx.doi.org/10.14272/reaction/SA-FUHFF-
UHFFFADPSC-AYOHXYGZVK-UHFFFADPSC-NUHFF-NHVYL-NUHFF-ZZZ (8/9bf); https://dx.doi.org/10.14272/
reaction/SA-FUHFF-UHFFFADPSC-GYGDJDFWRC-UHFFFADPSC-NUHFF-NXQUO-NUHFF-ZZZ (8ag); https://dx.
doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-VGCVCLYBTD-UHFFFADPSC-NUHFF-NLYQR-NUHFF-ZZZ
(8ah); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-FOIXCRBFVL-UHFFFADPSC-NUHFF-NLY
QR-NUHFF-ZZZ (8bh); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-XQBNRFKTLB-UHFFFA
DPSC-NUHFF-NUGKD-NUHFF-ZZZ (8/9bb); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-
UKTGPOJWCW-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (8cc); https://dx.doi.org/10.14272/reaction/SA-
FUHFF-UHFFFADPSC-TWNQMZQUUQ-UHFFFADPSC-NUHFF-NNMJJ-NUHFF-ZZZ (8/9cd); https://dx.doi.org/
10.14272/reaction/SA-FUHFF-UHFFFADPSC-PWQZDRACEZ-UHFFFADPSC-NUHFF-NGJAF-NUHFF-ZZZ (8/9db);
https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-FDOSUKYERH-UHFFFADPSC-NUHFF-NUHFF-N
UHFF-ZZZ (8dc); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-GNLDMLVTJD-UHFFFADPSC-
NUHFF-NLDCB-NUHFF-ZZZ (8ec); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-YMLGBYYT
IH-UHFFFADPSC-NUHFF-NRQYZ-NUHFF-ZZZ (8/9fb); https://dx.doi.org/10.14272/reaction/SA-FUHFF-
UHFFFADPSC-BBXGNCLCSR-UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (8fc); https://dx.doi.org/10.14272/
reaction/SA-FUHFF-UHFFFADPSC-CYVQCLLXOP-UHFFFADPSC-NUHFF-NGMWY-NUHFF-ZZZ (8/9gb); https://
dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-LWPRQCGBQO-UHFFFADPSC-NUHFF-NUHFF-NUHFF-
ZZZ (8gc); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-SMNBKPYPJX-UHFFFADPSC-NUHFF-
NDPHN-NUHFF-ZZZ (8/9gd); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-UXHJHTBPRQ-
UHFFFADPSC-NUHFF-NUHFF-NUHFF-ZZZ (10); https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-
IKYAJDXLFU-UHFFFADPSC-NUHFF-NFYFD-NUHFF-ZZZ (12). Cambridge Crystallographic Data Centre (CCDC):
1992178 (4b), 1992179 (8aa), 1992180 (5a), 1992181 (9ad), 1992182 (8ae), 1992183 (9af), 1992184 (8af ), 1992185 (8bh),
1992874 (4c), 1992875 (5b), 1992876 (8ba), 1992877 (8ac); 1992878 (4a), 1992879 (4d), 1992880 (4e), 1992881 (4f), 1992882
(5d), 1992883 (8bc), 1992884 (8ad), 1992885 (9bd), 1992886 (8bd), 1992887 (9ae), 1992888 (9bf ), 1992889 (8ag), 1992890
(8fc), 1992891 (8gc), 1992892 (9gd) and 1992893 (12) contain the supplementary crystallographic data for this paper.
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