
Fundamental Properties of the Layer Below
a Payment Channel Network

Matthias Grundmann and Hannes Hartenstein

Institute of Telematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
{matthias.grundmann,hannes.hartenstein}@kit.edu

Abstract. Payment channel networks are a highly discussed approach
for improving scalability of cryptocurrencies such as Bitcoin. As they
allow processing transactions off-chain, payment channel networks are
referred to as second layer technology, while the blockchain is the first
layer. We uncouple payment channel networks from blockchains and look
at them as first-class citizens. This brings up the question what model
payment channel networks require as first layer. In response, we formalize
a model (called RFL model) for a first layer below a payment channel
network. While transactions are globally made available by a blockchain,
the RFL model only provides the reduced property that a transaction is
delivered to the users being affected by a transaction. We show that the
reduced model’s properties still suffice to implement payment channels.
By showing that the RFL model can not only be instantiated by the
Bitcoin blockchain but also by trusted third parties like banks, we show
that the reduction widens the design space for the first layer. Further,
we show that the stronger property provided by blockchains allows for
optimizations that can be used to reduce the time for locking collateral
during payments over multiple hops in a payment channel network.

1 Introduction

Payment channel networks (PCNs) became popular as an approach for improving
the scalability of blockchain based cryptocurrencies such as Bitcoin [12]. While
Bitcoin scales well in the amount of coins that can be transferred by a trans-
action, it can only process a limited number of transactions per second. PCNs,
e.g., the Lightning Network [14] for Bitcoin, perform transactions off-chain in a
second layer and they do not require global consensus for every transaction as
long as all participants are honest.

PCNs have mostly been looked at as second layer on top of a blockchain.
While the idea to use banks as a first layer has already been mentioned in 2015
by Tremback and Hess [17], to the best of our knowledge it has not been analyzed
which properties PCNs require for the layer below. We look at PCNs as first-
class citizen independent from the specific first layer and analyze whether PCNs
can be used on top of models that are different from a blockchain (with the term
blockchain, we refer to a public permissionless blockchain such as Bitcoin). As
an affirmative answer, we present a reduced model for the first layer which



2 M. Grundmann, H. Hartenstein

we call RFL model (Reduced First Layer) whose properties give reduced
guarantees compared to a blockchain but yet suffice to implement a protocol
for a PCN on top. The reduced property of the RFL model in comparison to a
blockchain is that a blockchain delivers each transaction to all peers participating
in the network while in the RFL model a transaction is only guaranteed to be
visible for a transaction’s affected users. A transaction’s affected users are the
users who receive the transferred coins and the users who were able to spend the
same coins that the transaction transfers. To show that a PCN can still securely
be implemented using the RFL model as underlying first layer, we show the
following property: A payment channel between two users can be closed within
a given time so that each user u receives at least their correct balance if u is
honest and checks the first layer regularly for new transactions. We will refer
to this property as the security property and formally define it. We prove this
security property for a PCN protocol that is executed on a first layer that
implements the properties defined by the RFL model: liveness, affected user
synchrony, persistence, and transaction validity.

Our analysis of the relationship between the RFL model and a blockchain
shows that a blockchain instantiates the RFL model under typical assumptions
for blockchains such as Bitcoin. Having shown that a PCN can be implemented
on a reduced model compared to a blockchain, we show that the RFL model
can not only be instantiated by blockchains but there is a wider design space
for the first layer, e.g., using trusted third parties like banks. Implementation of
PCNs on different first layers allows for a range of design opportunities, e.g., with
respect to trust, privacy, liquidity, online requirements, and currencies. Having
seen the advantages of a model for the first layer that is reduced compared to a
blockchain, we also look at the advantages of using a blockchain that guarantees
more than the RFL model: A blockchain’s property to deliver a transaction to
everyone can be used to optimize payments in PCNs so that collateral is
locked for a shorter amount of time [11]. We show that this requires stronger
assumptions than the basic construction of PCNs.

For readers, being not familiar with payment channels and PCNs, we pro-
vide a section on fundamentals in the extended version of this paper [6]. In the
following section, we put our work in the context of related work. In Section 3,
we present the RFL model. We show in Section 4 that a simplified version of
the Lightning Network’s protcol fulfills the security property if it is used on a
first layer that instantiates the RFL model. Section 5 presents and compares
instances of the RFL model using a blockchain and trusted banks. In Section 6,
we show how the stronger properties fulfilled by a blockchain can be used to
optimize payments in a PCN. Finally, we conclude in Section 7.

2 Related Work

Kiayias and Litos provide in [10] a formalization and security analysis of the
Lightning Network using a global ledger functionality modeled in [2]. The global
ledger fulfills a global synchrony property: An honest user that is connected to



Fundamental Properties of the Layer Below a PCN 3

the required resources is being synchronized (receives the latest state) within
a bounded time. Their work is orthogonal to our work because it appears that
their proof would still work with the assumptions of the RFL model. We leave it
for future work to provide a security proof for the Lightning Network that uses
the RFL model instead of the global ledger functionality provided by Bitcoin.

Credit networks as proposed in [3] are a concept that is related to that of
PCNs. A credit network, however, does not have an underlying layer. In a credit
network, users are connected through credit links (IOUs) which represent the
amount one user owes another user. This construction requires users to trust
each other to an extent that is quantified by the size of the credit link. In a
PCN, users are instead required to trust the first layer and not each other.

Recently, Avarikioti et al. proposed Cerberus channels, [1] a protocol for
payment channels that includes watchtowers watching for outdated commitment
transactions on the first layer. They also define a security property and show
that Cerberus channels fulfill this property. The security property we define
is inspired by the security property used in [1]; however, our definition does
explicitly consider the timeouts and includes HTLCs which are required for
payments over intermediaries.

3 RFL Model of First Layer

In this section, we present the RFL model, a model for the first layer that
guarantees a reduced set of properties compared to a blockchain. The main
difference of the RFL model to a blockchain is that, when using a blockchain, a
transaction is delivered to all users. In this section, we define the affected user
synchrony property which only requires the first layer to deliver a transaction
to the users being affected by a transaction.

In the RFL model, we have a set of users U who can create transactions.
Each user u ∈ U has an asymmetric key pair with private key su and the public
key pu. A transaction t consists of an amount of coins and is associated with a set
of receivers ΩR

t ⊆ U that the coins are transferred to. The set of users who were
able to spend the coins that are spent by t is referred to as the potential senders
ΩS

t ⊆ U . We denote as affected users of the transaction t the set Ωt = ΩS
t ∪ΩR

t .
For a transaction to be valid, it needs to fulfill conditions depending on the coins
that are spent (e.g., a signature using a specified key or some timeout having
passed). In general, it is possible that not all potential senders need to sign a
transaction and thus some potential senders and receivers might not have seen
the transaction before it has been published on the first layer.

We model the first layer as a (logically) single party L that is connected to all
other parties via secure and reliable channels. Users can send transactions t to
the first layer L. We refer to this action as publishing t. L can send a confirmation
that the transaction t has been executed, i.e. the coins have been transferred, and
users can query L whether a transaction has been confirmed. The time a user has
to wait for the confirmation is determined by the liveness property parametrized
below by the waiting time ∆lconf . The first layer L can send transactions from



4 M. Grundmann, H. Hartenstein

other users and confirmations to users. Users can check the first layer L for
the confirmation of a transaction. Whether the first layer’s response about the
confirmation is consistent among different users, is determined by the affected
user synchrony property below parametrized by the time ∆lsync.

The first layer L has to have these essential properties:

– Liveness: If a user sends a valid transaction t to the first layer L, then L will
confirm the transaction after at most ∆lconf .

– Affected User Synchrony : If a user has received a confirmation from L for a
transaction t with affected users Ωt, then L makes t and the confirmation
visible to all affected users u ∈ Ωt within at most ∆lsync.

– Persistence: If a user has received a confirmation for transaction t from L,
then L will always report t as confirmed.

– Transaction Validity : A transaction t will only be confirmed by L if t is valid.

Note that instead of the affected user synchrony, a blockchain implements an
unrestricted synchrony property: If a transaction is confirmed by the blockchain,
the transaction will be seen as confirmed by all users within a given time. We
will look deeper into the relationship between the RFL model and blockchains
in Section 5.

For the RFL model, we use a UTXO (unspent transaction output) model for
transactions which is also used by Bitcoin. In the UTXO model, a transaction
consists of multiple inputs and multiple outputs. Each input spends an output
of a previous transaction. An output specifies a condition that an input needs to
meet to spend the output. An example for a condition is the signature of a public
key that is specified in the output and the signature needs to be provided in the
input. If a transaction is processed by the first layer, the first layer checks whether
the transaction is valid. For a transaction to be valid, all inputs have to spend
transaction outputs that are unspent and the conditions of the UTXOs need to
be met. For a PCN as defined later, we require the following types of conditions:
signature corresponding to a given public key, preimage for a given image of a
hash function, time since confirmation of UTXO spent, and combinations thereof
using logical operators OR and AND. The set of receivers ΩR

t contains all users
whose signature is required by at least one condition to spend an output of t.
Analogously, the set of potential senders ΩS

t of a transaction t is comprised of all
users whose signature is required by at least one condition to spend an output
that is spent by t.

4 Security Property for a Payment Channel Network
Protocol based on the RFL model

In this section, we show that the RFL model suffices as a first layer to securely
implement a PCN. To this end, we make use of a slightly simplified version of
the Lightning Network’s protocol, define a security property, and then show that
the protocol fulfills this security property when it uses the RFL model as first
layer. A more detailed description of the protocol can be found in the extended



Fundamental Properties of the Layer Below a PCN 5

version of our paper [6]. Here, we only introduce the notation and explain some
differences that we assume in comparison to the Lightning Network’s protocol
specification on Github1 as a basis for the proof.

The current specification of the Lightning Network’s protocol is only for
single-funded channels, i.e. a channel is created by putting funds of only one
participant in the channel. Payments are executed using HTLCs even if they
are direct payments over just one channel. We use Alice and Bob as names for
two users participating in the protocol. Alice has a secret key sA associated
with the public key pA that she uses for commitment transactions and HTLCs.
This is a simplification; the Lightning Network specification uses different keys
to sign HTLCs and commitment transactions to allow for separating keys in
cold and hot storage2. We count the states of a channel using n ≥ 1 and de-
note the commitment transaction held by Alice for state n as tCnA (tCnB for
Bob). For revocation, Alice creates a new revocation key sRnA for each com-
mitment transaction tCnA. Each output of Alice’s commitment transaction tCnA

is spendable using the revocation key sRnA and Bob’s public key, i.e. Bob can
spend all outputs of tCnA if Alice publishes tCnA after she has revoked tCnA by
sending sRnA to Bob. This is another simplification. The Lightning Network uses
a construction that generates a revocation key for tCnA from a long term secret
created by Bob and the per-commitment secrets created by Alice and, to revoke
a transaction, Alice shares the corresponding per-commitment secret with Bob.

Each commitment transaction tCnA held by Alice for state n of the chan-
nel between Alice and Bob is built in the following way (tCnB held by Bob is
constructed analogously): The commitment transaction’s input spends the chan-
nel’s funding transaction’s output which requires Alice’s and Bob’s signatures.
We use the term stable balance for a user’s balance that is not part of an HTLC.
The HTLC outputs of tCnA cannot directly be spent by Alice but only using the
HTLC timeout transaction tTnyA and the HTLC success transaction tSnyA which
will be explained below. Outputs spendable by Alice are locked for ∆tcomm time
to give Bob time to spend the output in case Alice publishes tCnA after it has
been outdated. Alice’s commitment transaction tCnA has the following outputs:

– An output for Alice’s stable balance that is spendable
• by Bob using Alice’s revocation key sRnA for state n or
• by Alice after delay ∆tcomm; aka ‘to self delay’.

– An output for Bob’s stable balance that is spendable by Bob.
– For each outgoing HTLC an output for the HTLC’s balance that is spendable
• by Bob if he provides a preimage for a given y, or
• by Bob using Alice’s revocation key for state n, or
• by the HTLC-timeout transaction tTnyA after point in time THTLC

y .
– For each incoming HTLC an output for the HTLC’s balance that is spendable
• by Bob after point in time THTLC

y , or
• by Bob using Alice’s revocation key for state n, or
• by the HTLC-success transaction tSnyA using preimage for a given y.

1
https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.md

2
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md#rationale



6 M. Grundmann, H. Hartenstein

There are two HTLC transactions per HTLC with preimage y that depend
on tCnA: An HTLC timeout transaction tTnyA and an HTLC success transaction
tSnyA. The inputs for the HTLC transactions are the outputs indicated above
for the commitment transaction tCnA and need to be signed by Alice and Bob.
Both HTLC transactions held by Alice have one output that is spendable

• by Alice after delay ∆tcomm, or
• by Bob using Alice’s revocation key for state n.

We define the forwarding timeout delta ∆forw as a global value. This simpli-
fies the Lightning Network’s specification which uses values that are chosen by
the users of each channel. Lastly, the closing of channels can be cooperative in the
Lightning Network specification to allow both parties to access their funds im-
mediately. However, we assume that users simply send their latest commitment
transaction to the first layer.

Security Property for the Payment Channel Network Protocol based
on the RFL model We now show that the protocol described above fulfills
the security property as defined in Lemma 1 when used with a first layer that
implements the RFL model. We start by defining the term correct balance:

Definition 1. The correct balance of a user Alice is the sum of Alice’s stable
balance and the amounts of outgoing HTLCs that she has not received the secret
for and the amounts of incoming HTLCs that she has received the secret for.

To facilitate understanding of the following lemma we give a brief review of
the most important relative and absolute timings that are used: The first layer
L confirms a valid transaction within ∆lconf , other users will see a confirmed
transaction within ∆lsync, a user can spend their own commitment transaction’s
outputs after ∆tcomm, and an HTLC with condition y times out at time THTLC

y .

Lemma 1. The protocol as defined above fulfills the property security: At each
point in time Tnow, Alice can close the payment channel between Alice and Bob so
that she has received at least her correct balance at time T = max(THTLC

max , Tnow)+
2 ·∆lconf +∆tcomm if she is honest and checks the first layer L for transactions at
least once every ∆user and 0 < ∆user < ∆tcomm −∆lsync −∆lconf , where THTLC

max

denotes the maximal timeout of all HTLCs in the channel.

Lemma 1 follows from the following arguments. We first look at the case that
Alice initiates the closing of the channel and then at the case that Bob closes
the channel and Alice did not want to close the channel. Let n be the number of
the latest state. To close the channel, Alice sends her latest commitment trans-
action tCnA and the associated HTLC transactions to L at Tnow. Alice has Bob’s
signature for tCnA because she receives Bob’s signature for the initial commit-
ment transaction tC1A during the opening of the channel (n = 1) and during
each update of the channel (n > 1), Alice receives Bob’s signature for the latest
commitment transaction tCnA and the associated HTLC transactions. If there
are no conflicting transactions, tCnA will be confirmed within ∆lconf according



Fundamental Properties of the Layer Below a PCN 7

to the liveness property of L. The funding transaction can only be spent by
Alice and Bob and thus a transaction conflicting with tCnA can only be sent to
L by Bob until tCnA is confirmed by L. At time Tnow +∆lconf one commitment
transaction will be confirmed – either Alice’s transaction or a transaction sent
by Bob. Thus, we need to distinguish three scenarios:

Bob does not publish a commitment transaction: The first layer L
will confirm Alice’s commitment transaction tCnA within ∆lconf according to
the liveness property. Alice can spend her stable balance after an additional
∆tcomm. The associated output cannot be spent by Bob because Bob does not
have the revocation key sRnA for the latest commitment transaction. For the
incoming HTLCs in tCnA that Alice has the secret for, she publishes the success
transactions tSnyA together with tCnA and the success transactions’ outputs can
be spent by Alice after ∆tcomm. Bob cannot spend the HTLC output because
the associated time THTLC

y has not come (else, Alice would have removed the
HTLC or timely gone on-chain) and Bob does not have the revocation keys.
Thus, Alice can spend her stable balance and her balance of incoming HTLCs at
Tnow+∆lconf +∆tcomm. Her transaction to spend these outputs will be confirmed
within ∆lconf . For the outgoing HTLCs in tCnA that Alice does not have the
secret for, she can spend the output using the timeout transaction tTnyA after
THTLC
y . The timeout transaction is confirmed by L and its output is spendable

after THTLC
y + ∆lconf + ∆tcomm. If Bob spends the HTLC using the preimage,

Alice receives the preimage because of the affected user synchrony property of L
because Alice is a potential sender of the HTLC output, so the HTLC’s amount is
not taken into account for this channel’s correct balance. Thus, Alice has received
her correct balance after at most max(Tnow, T

HTLC
max ) + 2 ·∆lconf +∆tcomm = T .

Bob has published his latest commitment transaction tCnB: In this
case, the affected user synchrony property of the first layer asserts that Alice
can see Bob’s commitment transaction tCnB because she is a potential sender.
Alice can instantly spend her stable balance in the channel once she sees the
transaction tCnB at time Tnow + ∆lconf + ∆lsync. Alice’s transaction spending
her stable balance will be confirmed within ∆lconf . For each outgoing HTLC,
Alice can spend the HTLC output after THTLC

y . If Bob spends the HTLC output
using tSnyB by providing a preimage for the given y, Alice receives the preimage
because of the affected user synchrony property of L. For each incoming HTLC,
Alice must publish a transaction to redeem the HTLC if she has the preimage
for the given y which takes ∆lconf to be confirmed. Thus, Alice has received her
correct balance within max(Tnow +∆lconf +∆lsync, T

HTLC
max ) +∆lconf ≤ T .

Bob has published an outdated commitment transaction: For each
update to state number i + 1, Alice receives Bob’s revocation key sRiB. Say,
Bob has published an outdated commitment transaction tCoB with o < n. Alice
can see the transaction after Tnow + ∆lconf + ∆lsync. Bob can only spend his
stable output of tCoB after an additional ∆tcomm. In case Bob publishes an
HTLC success or timeout transaction, Alice also sees Bob’s HTLC transaction
because of the affected user synchrony property of L and Bob can only spend
its output after ∆tcomm. Thus, Alice must use her key sA and Bob’s revocation



8 M. Grundmann, H. Hartenstein

key sRoB to create a revocation transaction that spends the whole balance in the
channel (output for Alice, output for Bob, and all HTLC outputs). After ∆lconf
this revocation transaction has been confirmed. Because ∆lconf < ∆tcomm (see
Lemma 1), Bob cannot have spent his outputs before Alice. Thus, Alice has
received her correct balance within Tnow + 2 ·∆lconf +∆lsync ≤ T .

In case Bob closes the channel by sending tCiB, i ≤ n to L at Tnow and
Alice did not want to close the channel, too, Alice receives tCiB from L within
TrecvA = Tnow + ∆lconf + ∆lsync + ∆user because Alice is an affected user of
the transaction and the affected user synchrony property of L asserts that she
can see the transaction within ∆lsync and Alice checks the first layer L at least
every ∆user for new transactions. Bob’s stable output and HTLC transaction
outputs cannot be spent by him until TspendB = Tnow + ∆lconf + ∆tcomm. If
i < n, Alice must use her key sA and Bob’s revocation key sRiB to spend
the whole balance in the channel using a revocation transaction when she sees
Bob’s transaction at time TrecvA. This revocation transaction will be confirmed
by the first layer after TrecvA + ∆lconf . Bob cannot have spent his outputs at
this time because TrecvA + ∆lconf = Tnow + ∆lconf + ∆lsync + ∆user + ∆lconf <
Tnow+∆lconf +∆tcomm = TspendB because ∆user < ∆tcomm−∆lsync−∆lconf =⇒
∆lconf +∆lsync +∆user < ∆tcomm. Thus, Alice has received her correct balance
after Tnow + ∆lconf + ∆lsync + ∆user + ∆lconf < Tnow + ∆lconf + ∆tcomm ≤ T .
If i = n, Alice reacts analogously to the case above that Bob has published his
latest commitment transaction but the times are postponed by ∆user (see [6]).

5 Instances and Options of the RFL model

The RFL model describes an ideal first layer that guarantees the properties
required by a PCN. In this section, we show that, under certain assumptions, a
blockchain instantiates such a first layer. We also sketch the idea of an instance
of a first layer using a bank or a network of banks and provide a comparative
exploration of design options.

Using a Blockchain. Garay et al. show in various works (e.g., [4,5]) that the
Bitcoin protocol satisfies consistency and liveness with high probability under
the assumption of a bounded-delay network model and an honest majority of
computing power [5]. In comparison to our definition in Section 3, their definition
of liveness assumes that a transaction is provided to all honest parties. This is
implemented in Bitcoin by flooding transactions in the peer-to-peer network.
The definition of consistency used in [5] implies our definition of persistence and
affected user synchrony. It is even stronger and implies synchrony for all honest
peers, i.e. the first layer L makes a transaction t and the confirmation visible to
all honest peers. Assuming an honest majority of computing power and using a
bounded-delay network model, the results of Garay et al. show that a blockchain
similar to Bitcoin instantiates the RFL model with high probability.

Note that for a blockchain, liveness is not guaranteed because the blocksize
is limited and there can be times during which the blockchain is congested so
that users have to compete for publishing their transactions on the blockchain.



Fundamental Properties of the Layer Below a PCN 9

Recent work [9,18,7] has shown attacks against payment channels that attack
the liveness of a blockchain, e.g. by bribing miners to censor transactions. These
works show the importance of considering the properties of the first layer when
building second layer architectures.

Using a Single or Multiple Banks. Having an abstract model of the
first layer allows for developing architectures that instantiate a first layer with-
out a blockchain. For example, a network of banks can be used to instantiate a
first layer under the assumption of trust in the banks. We assume the common
features of banks as described in the following but the bank does not necessar-
ily need to be a classical bank and can also be a payment service provider. A
contemporary bank offers to their consumers an interface that implements live-
ness, transaction validity, and persistence. The usual visibility for a transaction
matches the visibility required by affected user synchrony: A bank makes a trans-
action visible (only) to the potential senders and receivers of transferred funds.
A transaction has multiple potential senders if it is sent from a joint account.
Using banks as first layer, their customers could perform transactions using a
PCN. While this requires trust into the bank to implement the RFL model, the
transactions are hidden from the bank which improves privacy because the bank
gains less information. So the PCN could be used for decentralized digital cash.

Comparative Exploration of Design Options. We now discuss differ-
ences between using a blockchain and trusted banks as different ways to instan-
tiate the RFL model.

Trust While banks have to be fully trusted, trust into a blockchain is more
distributed (e.g., honest miners have the largest share of computation power).

Privacy While PCNs do not categorically improve privacy [8,15,16], the pri-
vacy properties of the first layer are crucial for privacy in the PCN. While users
are identified by pseudonyms on a blockchain, a bank is required to implement
methods for customer identification. This reduces privacy for the users because
the bank learns about their transactions. However, it allows the bank to imple-
ment access control on the transactions and to make a transaction only visible
to the affected users of the transaction which, in turn, improves privacy. By fa-
cilitating tracing of money laundering, customer identification can be a way to
increase chances of mainstream adoption of a digital payment system.

Liquidity Payment channels require users to deposit funds by locking them
on the first layer while the channel is open. On a blockchain, users can only use
coins in their channel that they own on the blockchain. Using banks to implement
a first layer allows for letting users open channels using credit they receive from
their bank. This can improve the liquidity within the network because more
users are able to forward payments if they have channels with higher capacity.

Online requirement While the first layer needs to provide affected user syn-
chrony to make transactions visible, the corresponding part for the user is to
check the first layer regularly for new transactions to react to outdated commit-
ment transactions. With a blockchain as a first layer, this task requires a user
to stay connected and analyze new blocks or to outsource this task to a watch-
tower. With a centralized system of banks as first layer, the bank needs to be



10 M. Grundmann, H. Hartenstein

trusted to run a system that provides affected user synchrony. Because the bank
knows their customers, they could even contact them to inform about relevant
transactions and, thus, include watchtower functionality in the first layer.

Currencies The two different ways for instantiating the RFL model also
differ in the type of currencies they can support. While a blockchain can pro-
vide a decentralized currency, a system of banks can make traditional currencies
managed by central banks available for use in PCNs.

6 Optimization of HTLCs using a Blockchain

The basic construction of PCNs leaves room for optimizations. One issue is that
the amount of collateral that needs to be locked for one transaction allows for
balance availability attacks [13] which lock the balance so that it cannot be used
by honest parties. Recent research [11] has found ways to reduce the required
collateral during one transaction over multiple hops assuming a blockchain as
first layer that offers (global) synchrony instead of the reduced affected user
synchrony. The Sprites protocol [11] uses a (logically) central “preimage man-
ager” that can be read and written to by any party of the PCN. All channel
updates on the route of a payment depend on the condition that the secret x
has been published before a specific timeout that is the same across all channels.
By using it as a “global synchronization gadget”, the preimage manager is used
to synchronize the timeouts so that all parts of the route timeout at the same
time in contrast to increasing timeouts from the receiver’s end in the Lightning
Network. As all participants have the same view on the blockchain, either all
updates that depend on the publication of the secret before a given timeout fail
or all are valid. For a first layer instantiated by banks, a bank or another trusted
party could implement such a preimage manager. However, this would add a
central entity as dependency for the payments and thus, payments would not
be decentralized anymore. This shows that, while the RFL model allows for a
PCN to be implemented as second layer, the stronger properties fulfilled by a
blockchain enable optimizations for HTLCs. The solution of Sprites can improve
the PCN protocol because it makes use of the gap between the properties of the
RFL model and a blockchain’s properties.

7 Conclusion

For a PCN, a first layer can be used that delivers only a reduced set of proper-
ties compared to a blockchain. We defined these properties in the RFL model
and showed that this model suffices to implement a secure protocol for PCNs.
Furthermore, the RFL model can be instantiated by blockchains. We examined
how the difference between the properties that blockchains have in comparison
to the RFL model can be used to improve payments over HTLCs and we have
shown that this difference has already been used by improvements that have
been proposed in previous works. We also showed that banks can instantiate the
RFL model. Implementing a first layer might be a role banks play in the future.



Fundamental Properties of the Layer Below a PCN 11

References

1. Avarikioti, Z., Litos, O.S.T., Wattenhofer, R.: Cerberus Channels: Incentivizing
Watchtowers for Bitcoin (Feb 2020)

2. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a Transaction
Ledger: A Composable Treatment. In: Katz, J., Shacham, H. (eds.) Advances in
Cryptology – CRYPTO 2017. pp. 324–356. Lecture Notes in Computer Science,
Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

3. Fugger, R.: Money as IOUs in a Social Trust Network and A Proposal for a Secure,
Private, Decentralized Digital Currency Protocol. Tech. rep. (2004)

4. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis
and Applications. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology -
EUROCRYPT 2015. pp. 281–310. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 10

5. Garay, J., Kiayias, A., Leonardos, N.: Full Analysis of Nakamoto Consensus in
Bounded-Delay Networks. Tech. Rep. 277 (2020), https://eprint.iacr.org/2020/277

6. Grundmann, M., Hartenstein, H.: Fundamental Properties of the Layer Below a
Payment Channel Network (Extended Version). arXiv:2010.08316 [cs] (Oct 2020),
http://arxiv.org/abs/2010.08316, arXiv: 2010.08316

7. Harris, J., Zohar, A.: Flood & Loot: A Systemic Attack On The Lightning Network.
arXiv:2006.08513 [cs] (Jun 2020), http://arxiv.org/abs/2006.08513

8. Kappos, G., Yousaf, H., Piotrowska, A., Kanjalkar, S., Delgado-Segura, S., Miller,
A., Meiklejohn, S.: An Empirical Analysis of Privacy in the Lightning Network.
arXiv:2003.12470 [cs] (Mar 2020), http://arxiv.org/abs/2003.12470

9. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Timelocked Bribes. Tech.
Rep. 774 (2020), https://eprint.iacr.org/2020/774

10. Kiayias, A., Litos, O.S.T.: A Composable Security Treatment of the Lightning Net-
work. In: 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). pp.
334–349 (Jun 2020). https://doi.org/10.1109/CSF49147.2020.00031, iSSN: 2374-
8303

11. Miller, A., Bentov, I., Kumaresan, R., Cordi, C., McCorry, P.: Sprites and State
Channels: Payment Networks that Go Faster than Lightning. arXiv:1702.05812 [cs]
(Feb 2017), http://arxiv.org/abs/1702.05812

12. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. Tech. rep. (2008)

13. Perez-Sola, C., Ranchal-Pedrosa, A., Herrera-Joancomartı, J., Navarro-Arribas,
G., Garcia-Alfaro, J.: LockDown: Balance Availability Attack against Lightning
Network Channels p. 18

14. Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments. Tech. rep. (2016)

15. Rohrer, E., Tschorsch, F.: Counting Down Thunder: Timing Attacks on
Privacy in Payment Channel Networks. arXiv:2006.12143 [cs] (Jun 2020),
http://arxiv.org/abs/2006.12143

16. Romiti, M., Victor, F., Moreno-Sanchez, P., Haslhofer, B., Maffei, M.: Cross-Layer
Deanonymization Methods in the Lightning Protocol. arXiv:2007.00764 [cs] (Jul
2020), http://arxiv.org/abs/2007.00764

17. Tremback, J., Hess, Z.: Universal Payment Channels (Nov 2015)

18. Tsabary, I., Yechieli, M., Eyal, I.: MAD-HTLC: Because HTLC is Crazy-Cheap to
Attack. arXiv:2006.12031 [cs] (Jun 2020), http://arxiv.org/abs/2006.12031



12 M. Grundmann, H. Hartenstein

The final publication is available at https://doi.org/10.1007/978-3-030-66172-4 -
26.


