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Abstract Conjoint analysis and discrete choice models are widely accepted
methods for preference measurement in marketing research. However, in all of
these methods, the measurement of overall consumer preferences is based on
binary, nominal or ordinal scales without implying any measurement model of
these overall preferences. The aim of the paper is to propose Item Response
Theory (IRT) latent variable models of overall preference measurement model for
conjoint analysis. The model–based overall preference index (as a factor or ability
scores) may be introduced into traditional conjoint analysis, instead of ordinal or
choice-based preferences measured on weak scales without evidence of measure
reliability. Two classes of models, Rasch-conjoint and nominal response-conjoint
models, are developed and compared in the paper. The advantage of model-based
preferences is to control for error of measurement and reliability (via standard
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error of measurement and test information function) of preference measurement
model and the size of potential distortions related to preference scale unreliability
and part-worth parameters bias. The comparative analysis based on the banking
products described with 5 binary attributes was done on the sample of 542
respondents from 172 households in the southern part of Poland.

1 Introduction

Conjoint analysis consists of two broad classes of models: Traditional conjoint
analysis (TCA), in which overall stated preferences are measured with weak
rating (Likert-type), rank-ordered, pairwise comparisons and best-worse ordinal
scale and choice-based conjoint (CBC), where overall preferences are revealed
on the bases of several choice tasks.

All these approaches assume that stated overall preferences are measured with-
out errors and Ordinary Least Squares, MONANOVA or rank-order logistic re-
gression are used for the estimation of part-worth function parameters in the TCA,
whereas various versions of multinomial logit models (conditional logit, alterna-
tive specific conditional logit, nested logit) are used in case of the CBC.

Lack of explicit measurement model for the identification of overall
preferences makes the TCA and CBC problematic with parameter esti-
mation that relies on a latent response variable concept as an approxi-
mation of continuous latent preferences. Second, the reliability of overall
preferences cannot be estimated. There is no possibility of checking the
size of parameters and standard errors attenuation in conjoint models due
to the unreliability of the dependent variable.

To fill this gap we propose the IRT conjoint measurement model for measure-
ment latent overall preferences. The Item Response Theory (IRT) models use
binary, polytomous or nominal indicators of unobserved latent variables and
create person ability scores as continuous measures of underlying measured
personal traits. This enables to replace weak measurement scales and the CBC
approach with an OLS regression-based model for conjoint analysis both in
the TCA and the CBC framework. Introducing measurement error to overall
preferences in an IRT (Rasch) model is related to a paradox known also as
“Rasch paradox” (Michell, 2008a,b). The main idea is as follows: The Rasch
model implies that eliminating all error factors from observational conditions
dramatically decreases the precision of our observations in psychological testing.
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This is paradoxical because it is normally thought that eliminating error factors
improves the precision of observations.

2 Conjoint Analysis and IRT Models

2.1 Conjoint Measurement and Analysis

Conjoint measurement is simultaneous scaling (transformation) of the two
variables, together with the response variable, to obtain an additive structure.
Additive conjoint measurement using IRT models are models, where the item
response probability is an additive function of two independent variables: (1)
person ability and (2) item difficulty. Specific objectivity in the analysis is that
person abilities do not depend on particular items and item difficulties do not
depend on given persons. This property is given by a logistic response function.
According to Coombs A Theory of Data, conjoint measurement is an Object ×
Person comparison (Coombs, 1964).

Conjoint analysis originated in mathematical psychology and was developed
since the mid-sixties also by researchers in marketing and business. Conjoint
analysis is a statistical method for finding out how consumers make trade-offs
and choose among competing products or services. It is also used to predict
(simulate) consumers’ choices for future products or services. In our study
IRT models are for TCA, however this techniques might be useful for CBC,
Persona-Joint Method (PJM; Uchida et al, 2014) as well. Our approach is suitable
for ordinal (paired-comparison, best-worst or ranking data) and CBC.

The main aim of conjoint analysis is to estimate part-worth utilities for attribute
levels, as well as the ability to simulate all attribute (level) combinations to show
the share of choice for different products. Part-worth utilities are estimated for
each respondent separately and as average values for the whole sample. Estimated
part-worth utilities allow to estimate the following values: Total utilities of the
profile for all respondents, average total utilities in the sample, average attribute
importance and average total utilities in the segments (clusters) of respondents.
These elements are necessary for a comparative analysis of models.

A conjoint analysis model can be estimated at an individual level (number
of models is equal to the number of respondents) and at an aggregated level.
According to Coombs theory of data (Coombs, 1964), conjoint analysis is
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based on Object × Object comparison. However, in prevailing conjoint analysis
studies, overall preferences of profiles are often measured on ordinal scales
(i.e. Likert-type) without any assumptions concerning the measurement model
(Steiner and Meißner, 2018).

2.2 IRT Models

Item Response Theory (IRT) is a statistical theory that distinguishes the latent
trait (ability) of a participant from the difficulty of a set of items with well-
correlated response patterns (Lawley, 1943; Rasch, 1960; Samejima, 1968;
DeMars, 2010; Neubauer, 2003). IRT is a psychometric theory and a family
of associated mathematical models that relate a latent trait of interest to the
probability of responses to items on the assessment. It is a very general
method, permitting one or more traits, various (testable) model assumptions
and the analysis of binary or polytomous data. The mechanism of IRT can
be presented most easily in terms of a dichotomous one-parameter (1PL)
model, that is, a model for items with only two response alternatives. Such
items require responses that are either correct or incorrect. In dichotomous
IRT models, the item category that represents a positive response (and is
subsequently coded 1) is described as indicating a correct response on an item;
the alternative category, coded 0, indicates an incorrect response. Moreover, the
item location parameter is commonly referred to as the item difficulty parameter.
The IRT function is a function reflecting the conditional probability of selecting
a positive response on an item.

The two-parameters (2PL) function requires the estimation of two parameters.
One is a location parameter, which describes where along the trait continuum
the function is centered. The second parameter is estimated to give an infor-
mation on of how well an item discriminates among people along the trait
continuum and shows how well an item can tell people apart with respect to
the amount of a trait that they have.

The three-parameters (3PL) IRT model adds a guessing parameter that defines
the non-zero lower asymptote of the item characteristic curve (ICC) that indicates
above-zero item-response probability for extreme low person ability. And finally,
the four-parameters (4PL) IRT model has an additional parameter that defines
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upper non-one asymptote of the item characteristic curve (ICC) that indicates
below-one item-response probability for extreme high person ability.

Table 1: Classification and restrictions of IRT measurement models.

IRT Model Response Scale Restrictions

Nominal Response Model Multiple choices No restrictions
Partial Credit Model Likert scales Order restrictions
Samejima IRT Models Binary responses Boundary restrictions
Rasch model Binary responses Equality restrictions

A Nominal Response Model (NRM; Bock, 1972; Baker and Kim, 2004) is a
model for nominally scored responses (items) that may vary in their difficulty
and discrimination parameters. The item parameters are calculated using
a multinomial logistic model. The difficulty parameter measures the propensity
to choose a given item category instead of the base outcome (the first item
usually). The probability of responding in any given category is modelled
directly by multivariate generalization of the logistic latent trait model. The
NRM is an extension of the multinomial, fixed-effects, logit-linear models
to the mixed-effects setting of IRT. The implicit purpose of the NRM is to
find the unobserved ordering within unordered categorical data. We present
classification and restrictions of IRT measurement models in Table 1.

3 Research Design

The research on banking products and bank account preferences was con-
ducted in Poland. The product analyzed was bank account choices of bank
customers. The questionnaire consisted of the following yes/no questions for
the following 5 attributes:

1. Bank account access via mobile devices (-1),

2. bank account commission (-2),

3. credit card payment return (-3),

4. fee for withdrawal in foreign ATM machines (-4), and

5. credit card free of charge (-5).
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A full factorial design contained 32 profiles (depending on the number of levels
and variables in the study: 2×2×2×2×2 = 32). However, a fractional factorial
design was developed and prepared using R programme and the final design
consists of 8 profiles. As a result, the respondents (231 in total) were asked to
make a choice between 28 pairs of profiles. The profiles for the Rasch and NRM
models of banking products are given in Table 2.

Table 2: Profiles in conjoint analysis.

Profile X1 X2 X3 X4 X5

A no no yes yes yes
B yes yes no yes yes
C no yes yes no yes
D yes no no no yes
E yes no yes yes no
F no yes no yes no
G yes yes yes no no
H no no no no no

3.1 Measurement Rasch Models

The Rasch model is the simplest one parametric IRT model assuming equality
of discrimination parameters (discrimination parameter= 1):

%(. 9 = 1 | \ 9 , 18) =
exp(\ 9 − 18)

1 + exp(\ 9 − 18)
. (1)

The Rasch model of preferences was estimated using a structural equation model
on paired comparison data (Maydeu-Olivares and Böckenholt, 2005). The
structural model of pairwise comparison of profiles is based on latent utilities
model where the choice between 8 and : profiles is given as:

H =

{
1 if C8 ≥ C:
0 if C8 < C:

(2)
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where C8 and C: represent the latent utilities of 8 and : profiles. The re-
sponse process can be described as differences between latent utilities
H∗
;
= C8 − C: . And, therefore:

H =

{
1 if H; ≥ 0
0 if H; < 0 (3)

The response process in matrix form can be rephrased as H∗ = �C, where H∗

is the vector of latent difference responses, � is design matrix and C is vector
of latent utilities.The design matrix is based on pairwise comparisons of all
= profiles and has the form =(=−1)

2 · =. The CFA model for pairwise data is
set of linear relations of =(=−1)

2 indicators H∗ on ? latent variables [ defined
as H∗ = E + Λ[ + n , where E represents the =(=−1)

2 dimensional vector of the
intercepts for the measurement equation, _ is an =(=−1)

2 × ? matrix of factor
loadings (1 and −1), and n is =(=−1)

2 dimensional vector of residuals.

Figure 1: Rasch model (profile A).

Specific items represent preferences of profiles (A over B, A over C etc.).
Factor loadings are fixed to 1 (if A dominates B) or −1 (if B dominates A) for
particular items. The means of latent preference for the profiles are fixed to 0 and
thresholds for binary items are estimated. The model assumes unidimensionality
of preferences. The number of models is equal to the number of profiles. Only
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positive domination structures are shown on the item characteristic curves.
Preference analysis is based on the comparison between appropriate pairs of
items. For example, the comparison of the AC threshold (0.118) in profile A
model with the CA threshold (−0.112) in profile C model, gives the information
about the preference C over A, whereas the comparison of AD (0.001) with DA
(−0.112) results in the preference of A over D etc.

Table 3: The parameters of the Rasch models.

Profile .A .B .C .D .E .F .G .H j2 df p

A - - - −0.380 0.118 0.001 0.217 −0.219 −0.041 −0.120 300.22 120 0.000
B 0.401 - - - −0.362 0.259 −0.021 −0.321 −0.548 −0.465 211.22 120 0.000
C −0.112 0.370 - - - 0.288 0.088 −0.293 0.188 0.028 182.12 120 0.000
D −0.112 0.370 0.288 - - - 0.088 −0.293 0.188 0.028 182.12 120 0.000
E −0.202 0.035 −0.083 0.174 - - - −0.302 −0.322 −0.282 189.34 120 0.000
F 0.241 0.343 0.302 0.322 0.322 - - - 0.261 0.017 168.14 120 0.020
G 0.056 0.559 −0.182 0.155 0.335 −0.242 - - - −0.362 234.04 120 0.000
H 0.120 0.465 −0.039 0.465 0.281 −0.019 0.362 - - - 220.4 120 0.000

The item characteristic curves for the profile A are depicted in Figure 1. The ICC
shows the conditional probabilities of endorsing profile A. The lower (reading
row-wise) the difficulty (location) parameter is, the higher the location of the
ICC curve and the probability of responding to specific preferences of the A
profile with respect to the others. The parameters of the Rasch models are
presented in Table 3.

To summarize, the Rasch-based measurement model enables to use esti-
mated factor scores as a metric latent variable of banking product preferences
for a conjoint model.

3.2 Nominal Response Measurement Model

Now we present a nominal response measurement model (Table 4). The model
was estimated on the basis of the overall choices between eight profiles. the
nominal response model or nominal category model is based on the multivariate
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logit model where for item 8, the probability of person 9 choosing category :

on item 8, given person 9 latent trait \ 9 is (Bock, 1972; Baker and Kim, 2004):

%(.8 9 = : |\ 9) =
exp(08: (\ 9 − 18:))∑ 
ℎ=1 exp(08: (\ 9 − 18:))

(4)

where 08: represents the discrimination of category : for item 8, 18: is the
difficulty (location) of category : for item 8, and \ 9 is the latent trait of person
9 . The first outcome category is the base outcome with which other parameters
will be compared; this implies the constraint 081 = 0 and 181 = 0 for each item 8.
With this constraint, 08: and 18: are the discrimination and difficulty to choose
category : relative to the first category. Profile A was selected as a reference
profile for the preference analysis.

Table 4: Model parameters.

Profile Discrimination Parameters Difficulty Parameters

B 0.90 −0.29
C 0.85 −0.77
D 0.86 −0.69
E 0.91 −0.08
F 0.76 −1.43
G 0.94 0.25
H 0.85 −0.77

The difficulty parameters of B-H profiles are related to the difficulty of base
profile A (11 = 0) and also the discrimination parameters are related to
the discrimination parameter of base profile A (01 = 0). An item with a
large discrimination value has a high correlation (with respect to base profile
A) between the latent trait and the probability of success on that item. In
other words, an item with a large discrimination parameter can distinguish
better between low and high levels of the latent trait. We present category
characteristic curves in Figure 2 and boundary characteristic curves (BCC)
for the nominal response model in Figure 3.

In the nominal response model the category characteristic curves (CCC)
show the probability of endorsing a particular category (here profile) given
the latent trait (theta). We see that respondents with the latent trait level below
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approximately −1.7 tend to endorse profile 1 (blue, A), and respondents with
a latent trait level above that point tend to choose profile 6 (red, F). BCCs
represent cumulative probabilities and represent the theta point (value on the
latent preference dimension for the person) where the probability of responding
in profile : or higher is 0.5. We present the test characteristic curve in Figure 4
and the total information curve for the nominal response model in Figure 5.
The test characteristic curve is the sum of ICCs for the entire instrument
(all profiles) and thus plots the expected score on the preference scale along
the latent trait continuum.

Figure 2: Category Characteristic Curves
(CCC).

Figure 3: Boundary Characteristic Curves
(BCC).

Figure 4: Test Characteristic Curve (TCC). Figure 5: Total Information Curve (TIC).

In IRT, the term information is used to describe the reliability or precision
of measurement along the latent preference (theta). More reliable instruments
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measure the latent trait around the estimated difficulty parameter with greater
precision. The TIC, displayed in Figure 5, shows that the preference scale is
more reliable at the left extreme end of the scale (lower preferences) and less
reliable for average respondents and those with higher preferences. On the basis
of the IRT models the factor scores (theta) for all 8 profiles are obtained and can
be used as dependent metric variables for regression-based conjoint analysis.
Because of the measurement error (unreliability) of IRT, preference scales are
incorporated into the conjoint model, the part-worth parameters are therefore
corrected for attenuation.

To sum up, a Rasch model was estimated using pairwise comparisons between
items (A–B), (A–C), (A–D) etc. so it reveals preferences between pairs of profiles.
The nominal response model is related to the choice between the items and
is estimated using a multinomial conditional logit model that enables overall
comparisons with the reference profile (profile A).

4 Conclusions

The presented Rasch and nominal response IRT models for conjoint analysis
allow the introduction of a measurement model in the estimation of overall
latent preferences of product bundles (profiles) for conjoint analysis and to
overcome the problems with weak ordinal scales for preference measurement
in traditional conjoint models. IRT-based analysis introduces the measurement
model for overall preference measurement, whereas in classic Conjoint Analysis
no measurement model is used for measuring the overall preferences.

The IRT-based approach helps to assess the amount of information and error of
the measurement in the preference scale and, therefore, the reliability of scale and
possible corrections for attenuation of parameter estimates. Correction for attenu-
ation of parameter estimates deals with the problem of the influence of reliability
on regression coefficients. The lower the reliability, the stronger the attenuation
of “true” regression (parth-worth) coefficients in conjoint analysis.

The use of the IRT model allows replacing a weak profile measurement scale
with a scale with known psychometric properties. Having an overall preferences’
scale as a single dependent variable with known distributional properties and
reliability, the part-worth functions can be estimated using a classic metric
conjoint model and they can be used for preference simulation.
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