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Abstract

As levelized costs of electricity for many renewable
generation sources are continuing to fall and as feed-in
tariffs are consequently being phased out, financial
risk hedging for intermittent renewable generators takes
a central stage. Battery storage as complementary
capacity can support renewable generators regarding a
more stable supply of electricity. In this study, we take
first steps in modelling battery storage options as service
products that are provided by battery storage operators
to renewable generation operators. We model the
situation theoretically, develop corresponding hedging
strategies and apply the models to a fictional solar PV
plant. The results show that battery storage options can
reduce the risk for intermittent renewable generators
and that the options can be financially beneficial for
both the battery storage and the renewable capacity
operator.

1. Introduction

Around the globe, the decarbonization of electricity
generation through renewable energy sources is at
the heart of efforts to mitigate the effects of climate
change. Decreasing costs of intermittent renewable
generation capacity as well as subsidy schemes
lead to a substantial expansion of photovoltaic and
wind generation capacity. The intermittent nature of
weather dependent generation causes uncertainty that
complicates the electricity system operation. Shorter
ramping times are required from conventional thermal
power plants to react to changes in renewable generation
and forecasting techniques for intermittent renewable
generation need to be improved [1]. However, the
intermittent nature of renewable energy generation
also affects the operators of the renewable capacity.
The uncertain generation coupled with uncertain
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market prices causes high financial risk for renewable
generators.  Even if they enter power purchasing
agreements or are being compensated through a feed-in
tariff they still face a considerable quantity risk [2].

Feed-in tariffs are usually limited to some time
period over which they are paid to generators. In
Germany, the first renewable installations lose their
feed-in tariff in the beginning of 2021. In their brief,
the authors of [3] find that risk hedging will soon
take a center stage for renewable generation. This
moves risk assessment and management to the top
of the agenda for renewable generators. Renewable
generators face two types of risk: Quantity and price
risk. A similar perspective on price and quantity
risk is described in [4] for load serving entities. The
authors also describe some correlation between the
two risks. A higher demand in terms of quantity is
positively correlated with high prices and vice versa.
This is similarly true for renewable generation but with
inverse correlation. Higher renewable generation from
intermittent resources leads to lower electricity prices
as their marginal cost of production is zero. Therefore,
higher generation is inversely correlated with the market
price. This is a dilemma for renewable generators even
though it allows for some natural hedging because lower
quantities are supported by higher prices and lower
prices are associated with higher generation. However,
as the relationship is not strictly linear, renewable
generators face considerable market risks [2].

The intermittency of renewable generation can be
complemented with battery storage capacity to increase
the controllability in regards to the system but also the
profit of renewable generators. A battery storage can
be used to shift the income of excessive generation to
times with lower generation and higher prices. This way,
renewable generators are less vulnerable to temporarily
low market prices. However, battery storage capacity
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is expensive and it is not profitable to keep a battery
charged over several days only to discharge in times
of low generation. This way the battery capacity is
idle for a substantial time horizon and can therefore
not turn any profit. Consequently, renewable generators
need battery storage service providers that agree to
charge their batteries at certain times and discharge
them for the renewable generator when needed, while
simultaneously optimizing their own profits in between.
The storage operators are thus providing a service for
renewable generators that needs to be fairly priced. In
this paper, we model this situation and the fair pricing of
such an instrument. We then introduce several heuristic
strategies for renewable generators which intend to
reduce their price and quantity risk. We assess the
effect and the pricing for these strategies in a case
study. We also discuss whether this service is financially
viable given the price of battery storage or other storage
capacity. We thus provide three contributions with
this paper: We model the use of battery storage for
renewable risk hedging as a form of option and provide a
fair pricing mechanism. We develop heuristic strategies
for renewable generator risk hedging through the use of
battery storage and finally we assess the use of these
strategies in a case study and determine a fair market
price.

2. Related work

Risk hedging strategies have a long tradition in
energy market research (e.g., [5, 6, 7]). Options as
a specific hedging instrument and their effects are
described in [8], for example. One of the first
considerations of combined price and quantity risk is
presented in [4] for load serving entities that need to
supply varying demand from a wholesale market with
varying prices at fixed retail rates. In [9], the authors
use a copula approach to assess joint generation and
price risk for a wind turbine in Denmark. They find
that an independent consideration of the two risks leads
to an underestimation of the total risk for the wind
turbine. The case risk hedging for renewable generators
has recently attracted more attention. In [2], the authors
find that the intermittent generation by the growing
renewable generation capacities further increases the
price and quantity related risks of operators. They
conclude that unhedged renewable portfolios carry a
significant amount of risk and that plain vanilla forwards
provide poor hedging opportunities. However, they are
the only liquid market alternative for risk hedging on
the electricity market. In [4], the authors develop a
hedging strategy but state themselves that the results are
purely hypothetical as options are not actively traded on

electricity markets. The authors of [10] describe risk
reduction strategy for renewable generators through the
diversification over different technologies and locations
to reduce the dependence on local weather phenomena.
In [11], the authors describe the interplay between
forward and spot trading and the effects of different
trading strategies for renewable generators.

Another approach is the short-term risk hedging
through multi-period trading on the day-ahead and
intraday market which has been considered by [12]
for solar and [13] for wind park operators. Both
studies include imbalance prices to model penalties for
deviations from production forecasts and thus consider
a short-term hedging problem for daily deviations. The
authors of [14] consider the dynamic sizing of storage
capacities in order to compensate wind production
forecast deviations, again focusing on short-term
deviations from production forecasts in order to avoid
imbalance penalties. The authors of [15] link a solar
plant and a natural gas generation unit that do not have to
be located in physical proximity into a virtual generator
that is able to provide stable electricity production. Solar
and gas swaps are introduced as financial instruments
to mitigate the price- and quantity related risk of both
operating entities.

The joint operation of a renewable power plant and
a connected storage has been addressed in numerous
publications, however, often not in regards to risk
reduction. For example, the authors of [16] investigate
the optimal operation of a co-located photovoltaic and
storage system in order to maintain a systems voltage
limits. The authors of [17] develop a strategy for a
photovoltaic plant with an integrated storage system to
optimally participate in the electricity market. Control
strategies to enhance grid integration and to smoothen
short-time production deviations from large solar plants
using battery storage systems have been designed by
[18]. The authors of [19] assess hydrogen production
as storage option for renewable generation but find
that it is not economical to re-convert the hydrogen to
power. One closely related study is [20]. The authors
are evaluating the use of options as hedging instruments
for renewable generation and compare it to the use of a
pumped hydro power plant. However, the authors hedge
the deviation from a forecasted generation instead of
a deviation from long-term financial expectations of
generation. They are also assuming known electricity
prices which they formulate as possible future work.
We address both limitations in this study.

As shown, previous studies usually focus on an
integrated renewable energy and storage system that
is jointly installed and operated. @ This approach
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significantly increases the investment costs that an
operator faces in advance. For the case of risk hedging
with battery storage, the authors of [14] find that the
best results can be achieved through dynamic sizing of
the storage unit, i.e., the utilization of different storage
capacities each day. The authors suggest that the storage
should operate ”as an independent market entity, where
each producer may rent the necessary daily storage
capacity for hedging the risk”. Following these results,
we consider the utilization of a battery storage unit as
a service provider. We investigate the potential of a
solar plant operator to protect herself against quantity
and price risk through a service agreement with a storage
provider that allows the charging of the battery storage
at one point in time and the discharging at another freely
chosen point in time within the agreed duration period of
the contract. In the course of this paper, we describe the
general features of risk hedging strategies for the solar
plant operator and demonstrate an exemplary strategy
on the example of a simulated solar plant. Besides the
description of the storage strategy, the main contribution
is the evaluation of the possibility of using battery
storage capacity as a service for risk hedging purposes
for renewable generators in the form of battery storage
options.

3. Theoretical considerations

In this section, we begin by describing the problem
analytically. We model the risk of renewable generators
and introduce the use of a battery storage for risk
reduction. Assume that ¢, is the actual generation of
a renewable generator at time ¢ and (); is the random
variable of the generation at time t. Furthermore,
assume that Q; is the distribution of that generation.
We use the same nomenclature for the price at any
given time with p; as the actual market price, P; is the
random variable of the price and P, is the corresponding
distribution. The random profit of a renewable generator
with marginal generation cost of zero is then given as
follows.

I = Q- P 6]

From this, we can calculate the expected profit for
any given time. This leads to the following equation.
As higher renewable infeed leads to lower wholesale
electricity prices, the covariance in this equation serves
as a natural hedging as it is negative between prices and
renewable quantities. However, while this association
is true on a global level, it is not necessarily true for
individual renewable power plants.

E(1L) = E(Q¢) - E(P) + Cov(Qy, Pr) 2

To assess the associated risk, we need to consider the
variance of the profit. It is described in the following
formula.

Var(Ily) = Var(Qy - P;) = Cov(Q7, P?)+
(Var(Q:) - ]EZ(Qt)) -(Var(P) - EZ(Pt))— 3)
(Cov(Q, Pr) + E(Q1)E(P))?

The joint variance increases with the individual
variances and the expected values. It can be reduced
through a negative covariance between the prices and
generation quantities but it depends on the individual
mechanics.

A renewable generator that wants to reduce the
uncertainties of its profits is not necessarily interested
in reducing the risk of individual time steps but would
rather try to guarantee a stable stream of profits over
periods of time, such as days or weeks. Therefore,
in this paper, we consider the differences in profit
relative to an average day in the respective month. As
renewable generation varies greatly over the seasons,
it is reasonable to assume that a renewable generator
would have different profit expectations for a day in
July and December. However, even in December, a
renewable generator might achieve an average, above
average or below average day. Being able to hedge
against below average days is an argument towards
investors for lower interest rate payments and thus an
important tool for renewable generators. It is important
to define the risk measure that renewable generators are
trying to minimize. One obvious choice is the reduction
of the variance. A renewable generator has the following
objective in regards to the reduction of the variance with
m being a particular month, n being the number of
considered days for that month and d,,, being a particular
day in that month.

n 24 24
min(7™ — %)% = min(— - mrdm)2
( ) (- ; 2. ; ")

“4)

Other measures that we consider in this study are the
Value at Risk (VaR) and the Conditional Value at Risk
(CVaR) [21]. The VaR for a certain confidence level
« is the a-quantile of the distribution function of the
loss function X for a certain portfolio. The CVaR is the
integral over the interval [0,«] of the inverse distribution
function of losses. Assume that the losses of a renewable
generator for a day in a specific month are distributed
according to F'(7n™). Then the VaR to the level of «
is defined as VaR™(X) = min(z|Fx(z) > «) and
the CVaR is defined as CVaR™ = L . foa VaR™(X) .
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The VaR for a« = 0.05 thus corresponds to the lowest of
the 5% largest losses. The CVaR is the average of the
5% largest losses and is therefore always higher than
the VaR, but is a more robust measure of risk. The
VaR and the CVaR are better measures to model the
risk of a renewable generator than the variance as they
describe negative deviations from the mean rather than
also punishing positive deviations. Consequently, they
have been used as risk measures by the authors of the
studies presented in [12, 13].

We now introduce the battery storage as a risk hedging
instrument. The action of charging and discharging
a battery storage can only be described over a time
horizon. Therefore, we propose a time period 7' that
is associated to each battery storage option equivalent
to the life of a regular financial option. The renewable
generator has to choose this period when charging the
battery storage, which influences the option pricing. We
can then differentiate between battery storage options
that can be exercised at any time during the period
(American battery storage options) or which can only
be exercised at the end of the period (European battery
storage options). We will describe the impact on
the option price later in this section. In the case
of American battery storage options, the renewable
generator also needs to decide on when to exercise the
option. She can develop a strategy with a specific time
to exercise or try to optimize the time to exercise over
the lifetime of the battery storage option. It is of course
important to discuss when such decisions need to be
communicated to the battery storage operator so that she
can optimize her load schedule around these decisions of
the renewable generator. This detailed definition of the
financial product is subject to future work. The profit of
the renewable generator with battery storage 7! over
a time horizon 7" with the charging decisions s; is then
given by the following equation.

T

= Z(Qt — 5t) " Pt &)

t=1

Therefore, a risk neutral renewable generator is willing
to pay the difference between the profit with and without
the use of storage (ﬂ'é’ﬁt — 7mr). However, risk averse
renewable generators can use this strategy to reduce
their VaR and CVaR and might therefore be willing to
pay a premium.

To price the service from a storage perspective, we
ignore the cycling costs for the moment and focus
on the opportunity costs of the battery storage. The
renewable generator charges the battery storage for free
but then reserves the right to sell the charged energy
at any moment within the battery storage option period

(American) or at the end of the period (European). To
price the American form of the option, we first define
Prt, = mazier(p:) as the maximum price within the
option period T that starts at ty. This price can also be
expressed as a random variable Py that has a distribution

PtO,T depending on the time period 7' and the starting
time to. This is easier for the European battery storage
option because we only need to consider the distribution
of the price at the end of the option period at ¢; for which
we have already defined a probability distribution as P, 1
The pricing of the according options then depends on
the risk propensity of the battery storage. Assuming a
risk neutral battery storage and ignoring cyclic aging and
fixed costs, then a fair price p° for the American battery
storage option is calculated as follows.

p° = (E(Pr) — piy) - 51, (6)

It is the difference between the expected maximal
price over the option period and the current price
multiplied with the charged quantity. The calculation
for the European battery storage option is equivalent.
If a storage provider is more or less risk averse then
the pricing changes. However, for a battery storage
provider, providing such a service also reduces risks.
By receiving a fixed premium she is less dependent on
price volatility and has a secure income. Therefore, the
pricing of such battery storage options also depends on
the preferences of the involved parties. In the following,
we describe these theoretical considerations along a case
study for a fictional solar PV power plant.

4. Data analysis

In order to investigate the presented theory of risk
hedging of the revenues of an operator of a renewable
energy generation plant, we implement and evaluate the
concept by means of a case study. We select the case
of a solar PV plant operator, mainly for one apparent
reason: Since the price risk is increased by the feed-in
from renewable energies, in the case of a wind park it
might be necessary to bridge long periods of time to
avoid the price risk, since periods of high wind feed-in
can continue over several days or weeks. A negative
influence on electricity prices can also be observed
during periods of high feed-in from solar generation, but
naturally only for a few hours each day. This means that
a solar PV plant operator can avoid her price risk by
a short-term shift of production from the midday hours
into the evening. In the case of a solar PV plant operator,
the results for a delimited period of time are more robust
and can be interpreted more generally. For our analysis,
we use the German price, load and generation data for
the years from 2015 to 2019 which is publicly available
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[22]. We use the years 2015 to 2018 as training data
to create a risk hedging storage strategy for a solar PV
plant operator and subsequently test it for the months
from May to September of 2019. We deliberately only
take the summer months into account, as this is when
the price effects from feed-in of solar PV generation are
most pronounced and the most significant results can
therefore be expected.

0 5 10 25 30

15
Day in May 2019

Figure 1. Daily revenues of a 1 MW solar plant
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The analysis of the training data set shows the effects
of quantity- and price-related risks. Daily revenues
of a solar PV plant operator who directly markets
her generation on the day-ahead-market fluctuate
significantly. This is illustrated for the period of one
month in Figure 1 using the example of a fictional 1
MW solar plant. Revenues are calculated according to
Equation 7, where for each hour ¢ in a day, the respective
solar generation ¢; and price on the day-ahead-market
p¢ are multiplied and then added. We assume that
in hours with negative prices, generation is curtailed
instead of sold, thus the revenue in hours with negative
prices is zero. To investigate the influence of prices
and daily production on the daily revenues, we plot
these dependencies in in Fig. 2. The daily production
is calculated as g% = Y otin a4, gt and the realized

average price for the solar generation as Ps°!e"
mdm /Q%m . Tt can be seen that both the daily production
quantity and the price that is realized per MWh have
a positive effect on the daily income. The graphs
show this dependency for all days in the months May
to September of the training data set (2015 - 2018),
whereas the generation is scaled down to 1 MW of
installed capacity.

In order to hedge the price and quantity risk of a solar
PV plant operator, we therefore create storage utilization
strategies that are specifically targeted to counteract
the respective cause of losses in revenues. We assess
the risk of the solar PV plant operator using the risk

Daily Revenues [€]
I 8
g 8
g ¥ 8

Daily Revenues [€]
@

0 2 40 & & 1
Average Realized Price of Solar Generation [€/MWh]

5

2 4
Daily Generation [MWh]

Figure 2. Influence of generation quantity and
realized price on daily income

measure CVaR described in the previous section. This
measure penalises downward deviations in revenues,
i.e., losses compared to the expected daily revenue,
while above-average revenues are not considered.The
strategies developed, which are presented in the
following section, are therefore aimed at specifically
preventing downward deviations in profits caused by
quantity or price fluctuations.

5. Storage strategies to mitigate price and
quantity risk of a solar PV plant
operator

On a given day, the storage operator faces the
decision of how much of the electricity forecast for
the next day to sell directly on the day-ahead-market
and how much to charge or discharge at a given time
during the next day. We stipulate that the operator
must inform the storage service provider about these
charging and discharging decisions in advance, so
that the storage operator has enough time to plan
her operation schedule accordingly. To address the
revenue fluctuations associated with price and quantity
uncertainties of a solar PV plant operator, we employ
strategies for the storage service utilization specifically
targeted at counteracting each of the two risks of
negative deviations of next day’s prices and production
quantities. For the determination of benchmarks and
decision rules, we analyze generation, load and price
data from the years 2015 - 2018 and apply the derived
rules to the months of May to September 2019 to test and
evaluate the storage strategies. As the quantity and price
risks differ with regard to the time horizon concerned,
we develop two strategies to address each of the risks
separately first and then later examine the effects of the
individual and combined strategies. Whereas losses due
to price drops can be mitigated by shifting generation
within one day from low price hours to later occurring
high price hours, quantity-related losses can only be
compensated by shifting generation from days with
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above average production to days with low production.
5.1. Price risk strategy

The main risk of price-related losses consists of
periods of high feed-in from renewable energy sources,
as these have marginal production costs of zero and
thus negatively affect prices on the day-ahead market.
This is particularly noticeable at times of high wind
feed-in, but also during the summer, when solar feed-in
is at its peak, prices are systematically lower around
midday than in the morning or evening hours. If
additional influences, such as a high wind speeds occur
simultaneously, periods with negative prices can occur.

A solar PV plant operator can circumvent the price
risk through a short-term utilization of the storage
service. If significantly lower prices are expected on
the following day, solar production can be shifted from
the hours of high generation into the evening hours,
thus avoiding significant price drops even with little
and short-term storage usage. The price risk storage
strategy for a solar plant operator, which is intended to
reduce downward deviations from the expected revenue
that are caused by price drops, consists of shifting
generation from the midday hours, which are high in
solar generation, to the evening hours during which
higher prices occur due to declining feed-in from solar
PV. To this end, we train a decision tree on the data
for the years 2015 to 2018, which takes the respective
national load-, wind- and solar generation forecasts for
the following day as input, as well as the respective
month and day of the week. On this basis, the decision
tree predicts whether the prices in the five hours of the
following day with the highest generation fall below
the 25% quantile of a month’s historic electricity prices
during 2015 to 2018. If the algorithm predicts such a
price drop for the next day, the price hedging strategy is
triggered. For each of the hours ¢ in the charging period
CP, ashare a € [0, 1] of the generation forecast is stored
(Equation 8). The entire stored electricity of the midday
hours is then discharged in equal parts in the hours of the
discharging period DP in the evening hours (Equation
9), where Np p is the number of hours in the discharging
period. The price risk strategy does not postpone the
sales of the generator beyond one day.

National Load Forecast

Wind Production Forecast . R
Decision Tree trained on

Solar Production Forecast data from 2015 - 2018

Weekday
Month

Next Day Prices <
25% Percentile

Figure 3. Implementation of decision tree to trigger
the price risk strategy

Charget =a-q \v/t c CP (8)
discharge; = M ©)
Npp

5.2. Quantity risk strategy

The short-term quantity-related risk is expressed by
the fact that the total generation on some days falls
short of the average for a month, usually due to weather
influences that are only predictable in the short-term
future. Shifting production within one day is therefore
not sufficient to protect the solar PV plant operator
against these quantity associated deviations from the
expected revenues. Instead, in order to counteract the
quantity risk, the operator can request discharging of
stored electricity from the storage service provider on
days of low production to increase the daily production.
In order to do so, she must preventively store surplus
generation on days with above-average generation in
order to build up credit with the storage service provider.
The quantity risk strategy thus includes decision rules
for such charging and discharging events. Based on the
generation data from 2015 to 2018, the average daily
generation is calculated for each month. This serves
as a benchmark for the expected generation E(Qg,,)
on a typical day d in a given month m. Based on
her risk aversion, the storage operator then chooses
a factor [€[0,1] that triggers a discharging event. If
the generation forecast for the next day (Qg41 falls
below this threshold (e.g., 0.8 - E(Qg,,) ), a discharging
event is requested in the amount of the forecast deficit,
if the operator has enough credit with the storage
service provider. Credit can be built up by charging
electricity to the storage and is treated as described in
the previous section in the same way as an American
option. When a charging event is commissioned, the
solar PV plant operator determines a time horizon T for
the option, within which she can retrieve, i.e., discharge,
the credit at any time. However, as with all charging and
discharging events, she must announce the discharging
of electricity in advance. In order to make sure that
sufficient credit is available with the storage service
provider to cover a discharge event when it occurs, the
solar PV plant operator has to built up credit in advance
on days with excess generation. For the quantity risk
strategy, the operator may decide on a planning horizon
T, i.e., how long in advance a shortfall should should
be planned for. The longer this period is chosen, the
more likely it is that all discharge events can be covered
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but this security may come with a higher price for the
storage service as the battery storage service provider
faces larger uncertainties. The charging events of the
quantity risk strategy are triggered as follows: For
each month, we calculate the expected generation deficit
that is faced by the operator for a given threshold [
and a planning horizon 7', based on the years 2015 to
2018. On each day, the solar PV plant operator decides
whether electricity should be charged to the storage the
next day based on two conditions. (1) A charging event
is only requested when the generation forecast for the
next day is above a month’s expected daily generation
and only this excess will be stored and (2) a charging
event is only requested if the existing credit with the
storage service provider is below the expected quantity
deficits over the planning period 7. When electricity
is stored, the solar PV plant operator has the option
of discharging this credit at any given time within the
planning horizon. Note that credit with the storage
service provider may expire if the requested number of
days of the option elapses without a discharging event.
In that case, the solar PV plant operator will request
a discharging event on the last day of validity of the
option in any case. In case of a discharging event,
the credit with a shorter remaining option lifetime is
always requested first. Figure 4 shows an exemplary set
of consecutive days and the respective daily generation
(blue lines) to illustrate the benchmarks for charging
and discharging events. The corresponding algorithms
that determine the amount of generation to be charge or
discharged in each hour ¢ when an event is triggered are
displayed in Figure 5. For both the price and quantity
risk, the strategy s is then defined as s; = charge; —
discharge;.

When combining the two strategies, it can make
a difference in which order they are employed. If,
for example, the price risk strategy is commissioned
first, it is possible that generation has already been
stored, which is then no longer available to use for
the quantity risk strategy. We therefore deploy and
investigate four different storage strategies for the solar
PV plant operator: price risk only, quantity risk only,
price risk first, then quantity and quantity risk first, then
price.

6. Evaluation

We apply the strategies presented in the previous
section to the price, load and renewable generation data
in Germany during the months May to September 2019.
For the design and evaluation of a storage strategy for a
fictional solar PV plant operator, we scale the generation
to 1 MW of installed capacity. Based on the historical

&tharga {\ (\ f\
Time
Figure 4. Schematic illustration of a charging and a
discharging event in the quantity risk strategy

Generation

charging event

while excessGen > 0:
for tin CH:
charge, = min(generation,, excessGen)
excessGen = excessGen - charge;

excessGen = Qqyy - E(Q™)
CH = historically cheap hours in ascending order

discharging event

while deficitGen > 0:
for t in EH:
discharge, = min(deficit, remainingCredit)
deficitGen = deficitGen - discharge;

deficitGen = | * E(QI™) - Qg4
EH = historically expensive evening hours in descending order

Figure 5. Algorithm for charging and discharging
events

training data from 2015 to 2018, we train the decision
tree that decides when the price strategy is applied
and determine the parameters that are required for each
strategy. For the price risk strategy, we set the charging
period C'P to the fixed hours between 11 a.m. and 4
p-m. and the discharging period DP to be between 6
p-m. and 11 p.m. for each day when that the price risk
strategy is triggered. We set the share a that is to be
charged during each hour in the charging period to be 1,
thus all generation is charged and then later discharged.
For the quantity risk strategy, we set the parameter [ to
0.8, thus a discharging event is commissioned whenever
the generation forecast for the next day is below 0.8 -
E(Q%). The planning horizon 7" and accordingly the
time period for the battery option that is chosen when
charging the storage is set to four days. For the price risk
strategy, the battery option is analogous to a European
option since the time of discharging is specified to be at
the end of a one day period.

Fig. 6 shows a section of the resulting storage
strategies based on the selected parameters, where
positive values are charging events and negative values
indicate discharging events. In this section, it can be
seen that the two strategies do not overlap and can
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Figure 6. Extract of the resulting storage strategies

therefore easily be combined. In general, only very
few overlaps occurred throughout the testing period, so
that the strategies quantity risk first, price second and
price risk first, quantity second only differ slightly. This
indicates that the solar PV plant operator can address
both the quantity and price risk through the utilization
of a storage service without the two objectives getting in
each others way. In the next paragraphs, we analyse the
implications of the resulting strategies for the solar PV
plant operator as well as the storage service provider in
terms of revenues and risk hedging.

6.1. Solar PV plant operator

The CVaR serves as risk measure for the revenues
of the solar PV plant operator. This measure penalises
“losses” in terms of negative deviations from the average
daily revenue. In order to obtain comparable values, we
use the average revenues without storage utilization to
measure the downward deviations and to determine the
CVaR. Our results in Fig. 7 show that the CVaR can
be reduced substantially through the utilization of the
storage service. Especially the strategies that involve
the price risk strategy improve the CVaR in all months
under consideration. In fact, only the quantity risk
strategy by itself is not suitable to reduce the CVaR in
all but one month. The combination of the two strategies
yields the best CVaR in three out of five months and ties
with the price risk strategy in the other two months.

A closer look at the amount of electricity stored
in Fig. 9 in the respective strategies could provide
an explanation for the findings. The quantity risk
strategy uses the storage service for a comparatively
small quantity of stored electricity. This could indicate
that the parameters for the quantity risk strategy have
been chosen too conservatively. For example, the
threshold [ for a discharging event could have been
set higher. However, Fig. 8 also suggests that the
quantity may not have the same importance as the price
for the largest deviations from the average revenues.
In May, the three largest deviations (on days 12, 26
and 30) can be reduced with the price risk strategy,

which is expressed in the positive effect on the CVaR.
The quantity risk strategy only affects the fifth largest
deviation (day 16), which is not reflected in the CVaR
with o = 0.05. In summary, we find that the CVaR can
be improved substantially with the proposed strategies
based on decision heuristics from the four years prior to
the testing period. This is a promising finding for future
work considering the utilization of a storage as a service
to hedge price and quantity related risks of renewable
generation operators. We expect that with more data and
a more granular strategy design, even better results can
be achieved.
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Figure 9. Quantity of stored electricity
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6.2. Storage service provider

In this subsection, we evaluate the necessary
payments to the storage operator for him to accept
providing the battery storage options for the above
described strategies. To do so, we are optimizing
the storage operation assuming perfect foresight of the
price development with and without the storage hedging
strategy of the PV solar plant operator interfering with
the storage strategy. The difference between the results
gives us the opportunity costs for the battery storage
operator. The storage operator solves the following
optimization problem.

T
max Z_St -y (10)
t=1
st Sy =81 +s1 + sVt € T\{0} (11)
|s¢] < s (12)
0<5, <8 (13)
So=0 14
S Storage capacity
Sy State of charge at time t
s Storage charging power
St Charging decision of storage at time t
ssolar  Charging decision of solar PV at time t
o Price at time t

During the considered period and with a
parametrization of s = 2MW and S = 4MWh
the storage can achieve a profit of 22,618 Euros
without interference of a strategy. Including the
price risk strategy, the storage profit decreases to
20,486 Euros. For the quantity risk strategy, the
profit decreases slightly to 22,304 Euros. Finally,
for the combined strategy the profit is 20,270 Euros.
Another important consideration is the throughput. An
increasing throughput can lead to more cyclic aging
which would lead to more costs for the battery storage.
The throughput without the provision of battery storage
options is 1,436 MWh, with the price risk strategy it
is only 1,429 MWh, with the quantity risk strategy it
is 1,434 MWh and with the combined strategy it is
1,429 MWh. Therefore, the impact of cyclic aging in
regards to battery storage option provision is negligible.
Finally, to give an indication of the cost per MWh of
the battery storage option we can divide the lost profit
for the battery storage by the throughput caused by the
renewable generator. Thus, the cost is 25.7 Euros per
MWh for the price risk strategy, 15.2 Euros per MWh

for the quantity risk strategy and 23.2 Euros per MWh
for the combined strategy. It is therefore in the range
of storage costs but further cost decreases for battery
storage or increasing price volatility are necessary to
make it profitable.
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Figure 10. Revenues from storage utilization

7. Discussion

In the presented case study, we show that both the
solar PV plant operator and the storage operator can
benefit from the proposed constellation. Future storage
costs are difficult to estimate due to the large number
of technologies and dynamic price developments.
However, the assessment of the opportunity costs of
the storage service provider showed that the optimal
strategy of the service provider actually yields less
cycles when including the strategy of the solar PV plant
operator and therefore marginal cyclic costs of zero
could be assumed. Fig. 10 shows the revenues that the
solar PV plant operator realizes through the utilization
of the storage service. The values are in the range of
the compensation that the storage service provider needs
to request for her service as determined in the previous
section. As we argued in Section 3, the solar PV plant
operator might even be willing to pay a premium for
the ability to decrease her risks in revenue streams in
order to provide a stable investment plan. Likewise,
the storage service provider may have incentives to
adjust the demanded compensation according to her risk
aversion and operational goals. Future research should
further look into the extent to which the revenues of
the solar PV plant operator justify the reimbursements
for the storage service provision and the cyclic costs of
storage utilization as well as the pricing of the service
provided by the storage operator. However, it should be
noted that electricity price spreads are likely to increase
in the future as installed renewable capacities increase,
thereby increasing the potential revenues from storage
usage as well.

In our model, we assume that a storage is accessible
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as a service on demand. This is not a feasible use
case for a storage facility under current regulation in
many countries, mainly because of the fees charged
for the charging and discharging processes. However,
we assume that, in a system increasingly based on
renewable energy sources, more flexibility solutions will
be necessary and thus the usage of storage facilities
will be promoted more strongly in the course of this
development. In particular, the deployment of storage
to balance intermittent generation, as presented in this
study, can make a significant contribution to integrating
the increasing feed-in from renewable energies into the
energy system and is thus an important contribution to
the stability of the energy supply.

8. Conclusion

In this paper, we make several contributions towards
the financial risk management for intermittent renewable
energy generation through the utilization of a battery
storage service. We provide a theoretical model for
the risk assessment of a renewable plant operator
and the pricing of the storage service. We then
develop heuristic storage strategies for a solar PV plant
operator to mitigate price and quantity related negative
deviations in profits. In a case study, we can show
first promising results, which indicate that the use of
battery storage similarly to an option as a financial
instrument can provide a feasible contribution to the
risk hedging objectives of the solar PV plant operator.
We furthermore determine the pricing of the storage
service and conclude that the proposed constellation can
be beneficial for both the solar operator and the battery
storage service provider.
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