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a b s t r a c t

The electrocardiogram (ECG) is a standard cost-efficient and non-invasive tool for the early detection
of various cardiac diseases. Quantifying different timing and amplitude features of and in between
the single ECG waveforms can reveal important information about the underlying (dys-)function of
the heart. Determining these features requires the detection of fiducial points that mark the on- and
offset as well as the peak of each ECG waveform (P wave, QRS complex, T wave). Manually setting
these points is time-consuming and requires a physician’s expert knowledge. Therefore, the highly
modular ECGdeli toolbox for MATLAB was developed, which is capable of filtering clinically recorded
12-lead ECG signals and detecting the fiducial points, also called delineation. It is one of the few
open toolboxes offering ECG delineation for P waves, T Waves and QRS complexes. The algorithms
provided were evaluated with the QT database, an ECG database comprising 105 signals with fiducial
points annotated by clinicians. The median difference between the fiducial points set by the boundary
detection algorithm and the clinical annotations serving as a ground truth is less than 4 samples
(16ms) for the P wave and the QRS complex markers. The T wave onset, peak and offset were detected
with a median difference of 5, 2 and 7 samples, respectively. Results were compared to two free
algorithms available on PhysioNet. Our results show that ECGdeli can reliably detect P waves, QRS
complexes and T waves. Thus, it can contribute to diagnose specific cardiac diseases by analyzing the
ECG signal. As ECGdeli is published under GNU GPLv3 and thanks to its modularity, it can be used to
extend existing algorithms or as a benchmark for new algorithms.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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This software repository is listed in Zenodo with the DOI 10.5281/zenodo.3977971 [1].
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Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00010
Code Ocean compute capsule doi 10.24433/CO.9115981.v1
Legal Code License GNU GPLv3
Code versioning system used git
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1. Motivation and significance

As the amount of recorded data increases in all fields, auto-
atic processing is inevitably needed. This is the case for health
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data, too. Especially the electrocardiogram (ECG) as a cheap and
available standard heart activity monitoring device [2] is used
in medicine around the world. Automatic ECG processing can be
applied to batch process many ECGs in a short amount of time. In
this way, manual annotation work of physicians can be avoided.
Furthermore, retrospective analysis especially plays an important

role in clinical research to reveal effects of new drugs on the
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Fig. 1. Flowchart of QRS detection algorithm. WT: wavelet transform, SWDN: detail coefficients of the SWT at level N. FPT: fiducial point table, twindow: search window
ength, candQRSx: QRSx candidates, n: sample index, Qj: threshold, Qj,k: adapted threshold.
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eart, optimize diagnosis and treatment strategies of cardiac dis-
ases [3–8]. The automatic analysis of the ECG usually starts with
etermining wave types (P waves, T waves and QRS complexes),
ollowed by finding the peaks and boundaries, i.e., wave onsets
nd offsets. Starting from that, further temporal parameters, like
T intervals, RR intervals, etc. can be derived. As well, these an-
otations are needed to calculate further features like amplitudes,
lopes, and parameters like heart rate variability [9].
In this work, we present a toolbox for MATLAB comprising

lgorithms for ECG pre-processing and ECG wave delineation for
 k

2

esearch use, freely available on github. We call this open source
oolbox ECGdeli. The aim of this work is not to present new
pproaches for wave delineation as the algorithms or slightly
odified versions were already used in several studies [11–15].
ather, this work should be seen as accompanying documen-
ation of the open software resource. We will describe shortly
he main ideas behind the algorithms and compare them to two
xisting open implementations on PhysioNet: ecg-kit [16] and
cgpuwave [17]. The algorithms for comparison, especially ecg-
it, offer more options for evaluation and data import/export,
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Fig. 2. T wave (A) and P wave (B) detection for signal sel100 from [10]. Extrema of WT in line 3 correspond to the T and P wave boundaries and peaks shown in
line 4 in A and B, respectively.
however, at the cost of a more complicated non-modular frame-
work or perform worse. The advantages of ECGdeli in comparison
with the existing implementations are a simple and modular
design concentrating on the essential algorithms needed for ECG
evaluation yielding an easy to use software; ECGdeli focuses
on one concrete purpose: ECG wave detection and delineation.
File input/output, post processing like feature calculation and a
graphical user interface are intentionally not included. Thus, users
can easily integrate the single algorithms or the whole toolbox
in their evaluation frameworks, replace single algorithms, all by
using few clear and standardized interfaces.
3

In the following, we present a short description of the sin-
gle algorithms provided with the toolbox and discuss the main
advantages of ECGdeli.

2. Software description

2.1. ECG preprocessing

The ECG preprocessing functionalities are shown in Fig. 5,
lines one to four and include a baseline removal technique [15]
ECG_Baseline_Removal.m, a bandpass filter
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Fig. 3. A: Flowchart of the T wave detection algorithm. B: Flow chart of the P wave detection algorithm. WT: wavelet transform, AUC: area under the curve, min:
minimum, max: maximum, fid: fiducial.
ECG_High_Low_Filter.m and a notch filter Notch_Filter.m,
s well as a method for correcting the electrical isoline Iso-
line_Correction.m. All preprocessing steps are performed
lead by lead.

2.2. QRS detection

In the QRS detection algorithm QRS_detection.m (an
overview is shown in Fig. 1), the input signal is first bandpass
filtered (5Hz to 100Hz) in order to reduce high frequency noise,
baseline wander, to attenuate P and T waves and to obtain QRS
complexes with pronounced Q and S waves. Then, a phase-free
stationary wavelet transformation (SWT) using the Haar wavelet
is applied [12]. The detail coefficients SWDN of the SWT are
calculated at the level including frequencies around 45Hz, which
is the frequency range where spectral components of the QRS

complex being relevant for delineation can be found [18].

4

To detect intervals containing the QRS complexes, a threshold
based approach is chosen. This threshold is adapted dependent
on a changing time windows which is applied to SWDN and a
signal dependent statistical measure. Among all sets of solutions
calculated with different thresholds, a voting algorithm yields the
most consistent solution.

The R peak is annotated at the position with the highest
amplitude within the bounds of the QRS interval. The Q- and S
peak are subsequently marked at the minimum amplitude in the
regions from QRS onset to R peak and from R peak to QRS offset,
respectively. The onset and the offset of the QRS complex are
afterwards marked 20 ms prior the Q-peak and 20 ms after the S-
peak, respectively. In the end, all detected peaks and boundaries
are stored in a fiducial point table (FPT) in columns five to eight.
The structure is shown in Table 1.
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2
.3. T wave detection

The implemented T wave detection method T_Detection.m
relies on QRS detection and is performed for each lead separately.
Fig. 3A shows an overview of the algorithm. To detect the T
waves, the following pre-processing steps are needed: QRS re-
placement, filtering and SWT. First, a fixed part of each RR interval
is replaced by a sigmoid function, such that QRS complexes and
P waves are blanked (see Fig. 2A, second line). Subsequently,
phase-free Butterworth band-pass filtering (passband from 0.3Hz
to 20Hz) of order 4 is performed. This QRS-free signal is fed
into a phase-free SWT [12] with the rbio3.3 wavelet yielding a
wavelet signal hardly showing activity in the QRS segment (see
Fig. 2A, third line). The level N of the detail coefficients to be
analyzed is determined based on the central frequency of the T
wave (7Hz) [18].

After preparing the signal, the polarity of the T wave is de-
termined considering all positive and negative extrema in the
SWT signal. In a search window dependent on the RR interval
and QRS offset, we determine the peak of the T wave (Tpeak)
in each RR interval by choosing the time instant of maximum
amplitude (for positive polarity) or of the minimum amplitude
(for negative polarity). According to the polarity, a correction of
this peak is made in the ECG signal (time domain). Afterwards,
T wave boundaries are determined. Around every T peak in each
RR interval, we calculate the area under the curve of the SWT at
level N − 1 within a search window dependent on the respective
RR interval. With two preset thresholds for the area distribution
and the positions of the peaks in the interval, we estimate the
position of T wave onset (Ton) and T wave offset (Toff). Finally, all
detected peaks and boundaries are stored in the FPT (columns ten
to twelve as shown in Table 1).

2.4. P wave detection

P wave detection P_Detection.m also relies on the phase-
free SWT as well as on QRS detection and T wave detection.
Fig. 3B provides an overview of the algorithm which was pre-
sented in [12]. The single lead input signal is band-pass filtered
with a Gaussian filter (passband 1Hz to 15Hz). QRS complexes
and T waves are replaced by sigmoid functions (see Fig. 2B,
second line). The SWT is performed with the quadratic spline
wavelet at the detail coefficients of level N corresponding to the
P wave center frequency of 7Hz [18] (see Fig. 2B, third line).

The peaks of the SWT in each RR interval are determined by
annotating the absolute maximum of the SWT as P wave peak in
a search window dependent on each RR interval and the Q peak
location. The user can also choose to set a nearby extremum in
the filtered ECG signal as peak.

After peak detection, P wave boundaries are determined. Since
P waves are low in amplitude, a template of the SWT in a window
of 50 waves around the current P wave peak is built to estimate
the boundaries. Hotelling’s T-squared method is applied to ob-
tain a clean template. P wave onset and offset are estimated by
initial guesses from the template considering the nearest wavelet
extremum as the respective wave boundary.

The found peaks and wave boundaries are stored in the FPT,
columns one to three as shown in Table 1.

2.5. Multilead processing

As already mentioned, P wave, QRS complex, and T wave
detection are generally performed lead by lead. To achieve a mul-
tilead delineation, a voting algorithm (Sync_Beats.m) discards
possible beats in the FPT if they are not visible in the majority
of all leads and averages over the found positions to deliver a
overall delineation result. Innately, a reasonable result can only

be achieved with more than two leads.

5

Fig. 4. A possible pipeline for processing an ECG signal with ECGdeli. After
preprocessing, ECG wave peak and boundary detection are performed. The
arrows pointing into the box determine input parameters, arrows pointing away
output parameters, respectively.

2.6. Software architecture and functionality

A high-level view on the pipeline for the ECG preprocessing
and annotation is shown in Fig. 4. First, baseline removal, filtering
and isoline correction are performed (see Fig. 5, lines one to
four). Following that, the signal can be annotated by launching
the script Annotate_ECG_Multi.m. Here, QRS detection, T and
P wave detection are run (see Fig. 5, line five). Afterwards, in the
case of a multilead signal, the voting algorithm (Sync_Beats.m)
would discard possible beats in the FPT if they are not visible in
the majority of all leads.
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Fig. 5. Application of the filtering and wave detection to an ECG signal for signal sel100 from [10]. Line 1: Estimated baseline wander and ECG. Line 2: ECG without
aseline wander. Line 3: Bandpass filtered signal and estimated isoline. Line 4: Bandpass filtered signal with isoline correction. Line 5: The annotated on- and offsets
s well as the peaks for the P and T wave and the QRS complex.
Table 1
Structure of the FPT. Lines in the FPT represent the number of the detected beat. Column 9 is reserved (res.) for
the J point, column 13 for a beat classification.

1 2 3 4 5 6 7 8 9 10 11 12 13

Beat number Pon Ppeak Poff QRSon Q R S QRSoff res. Ton Tpeak Toff res.
3. Performance evaluation

The algorithms provided in the toolbox were evaluated with
he QT database, an ECG database comprising 105 signals that
ere either recorded during normal sinus rhythm or represent
ne of six selected cardiac diseases with fiducial points annotated
y clinicians [10]. We extracted annotations from the *.q1c and
.q2c files of the database. To obtain the detection errors, we
nalyzed both of the two leads separately. For each annotation,
e subsequently took the best result among the two leads mean-

ng choosing the annotation being closest to the annotation. To
et the clostest annotation, every annotation available in one
eat was considered finding the respective annotation beat. We
arried out the exact same evaluation for ECGdeli, ecg-kit [16]
6

available on github (version 1.0, Commit c8e3de4) and the ecg-
puwave [17] algorithm as provided in PhysioNet. With ecg-kit,
we used the wavedet delineation algorithm which is the default
selection for ECG delineation. Detection errors for all types of
annotations for all algorithms were calculated, including median
errors and the interquartile ranges, mean errors and standard
deviations of the signed and unsigned (absolute) errors.

3.1. Results

Fig. 6 shows the differences between the calculated fiducial
points with the ECGdeli and the manually annotated points by
clinicians for all annotated beats in the QT database. Especially
with the detection of QRS and T wave annotations, outliers were
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able 2
etection errors of ECGdeli, ecg-kit and ecgpuwave compared to manual expert annotations in samples as well as number of detected points/available annotations.
ed: median, iqr: interquartile range, m: mean, std: standard deviation, signed: signed errors, abs: absolute errors.
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med±iqr ECGdeli 2.00 ± 3.00 1.00 ± 2.00 3.00 ± 4.00 2.00 ± 4.00 1.00 ± 1.00 3.00 ± 4.00 5.00 ± 9.00 2.00 ± 3.00 3.00 ± 7.00
m±std abs ECGdeli 3.87 ± 6.14 2.46 ± 5.70 4.17 ± 6.38 4.01 ± 8.50 2.46 ± 8.46 4.39 ± 8.53 8.86 ± 9.98 6.24 ± 12.29 7.18 ± 11.24
m±std signed ECGdeli −1.51 ± 7.10 0.65 ± 6.18 2.26 ± 7.27 −1.31 ± 9.30 −0.60 ± 8.79 2.19 ± 9.34 −3.65 ± 12.84 −0.72 ± 13.76 −1.92 ± 13.20
med±iqr ecg-kit 2.00 ± 4.00 1.00 ± 2.00 2.00 ± 3.00 1.00 ± 4.00 2.00 ± 2.00 1.00 ± 3.00 5.00 ± 14.00 1.00 ± 14.00 3.00 ± 11.00
m±std abs ecg-kit 3.33 ± 6.66 2.71 ± 6.57 3.30 ± 5.64 1.66 ± 2.14 3.36 ± 4.37 1.91 ± 2.40 9.82 ± 13.43 4.62 ± 12.24 6.67 ± 14.38
m±std signed ecg-kit −1.10 ± 7.36 −1.17 ± 7.01 −2.18 ± 6.15 0.54 ± 2.65 −3.13 ± 4.54 −0.46 ± 3.04 −1.11 ± 16.60 −2.18 ± 12.90 −2.81 ± 15.60

med±iqr ecgpuwave 3.00 ± 5.00 2.00 ± 2.00 2.00 ± 4.00 2.00 ± 4.00 3.00 ± 2.00 2.00 ± 3.00 8.00 ± 14.00 2.00 ± 14.00 6.00 ± 11.00
m±std abs ecgpuwave 4.52 ± 6.05 2.96 ± 4.62 3.89 ± 4.91 3.46 ± 3.55 3.54 ± 4.32 3.51 ± 5.48 13.10 ± 13.98 10.50 ± 17.66 11.57 ± 16.56
m±std signed ecgpuwave 3.33 ± 6.78 −0.24 ± 5.48 −1.23 ± 6.14 −1.61 ± 4.69 −1.71 ± 5.31 −0.38 ± 6.49 9.96 ± 16.37 7.51 ± 19.12 3.86 ± 19.84

Detected points ECGdeli 3194 3194 3194 4019 4019 4019 1414 3936 3936

Detected points ecg-kit 3096 3096 3096 4019 4013 4018 1332 3801 3812

Detected points ecgpuwave 2127 2127 2127 4018 4019 4017 1315 3865 3864

Number of clinical annotations 3194 3194 3194 4019 4019 4019 1414 3936 3936
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ig. 6. Boxplot of the absolute errors obtained when applying ECGdeli on the
T database. N is the number of detected waves.

isible. Detection errors for all three algorithms are given in Ta-
le 2. ECGdeli and ecg-kit performed comparably, dependent on
he performance measure and the annotation type, one was out-
erforming the other. Regarding only median and interquartile
anges, ecgpuwave was always outperformed by ecg-kit.

A particular difference was visible in the number of detected
aveforms. This number was highest in the case of ECGdeli (see

ast lines in Table 2). ecg-kit and ecgpuwave discarded waves
ven though they should ideally be detected due to the fact that
linicians clearly found and annotated the respective wave in the
ignal. ECGdeli did not so.
7

.2. Discussion

In this section, three main points connected with the results
rom Section 3.1 will be discussed.

First, we decided to evaluate the two leads separately and
hen take the lowest error per annotation as the annotator had
lso both leads at hands during annotation and we did not know
hich lead was chosen. We therefore did not evaluate a possible

mprovement by using a multilead approach which would have
een hardly possible for ECGdeli since a voting between two
ifferent annotations does not deliver an advantage.
Second, we want to reference to further publications compar-

ng more closed source implementations [19,20]. We intention-
lly did not repeat the results of the closed source implemen-
ations here for two main reasons: first, we wanted to compare
ur results to the two most visible algorithms for ECG delineation
ffering P wave, T wave and QRS detection. Second, as there is no
tandard procedure to generate the final evaluation results, it is
ardly possible to guarantee the comparability.
Third, we want to highlight the possibility of a postprocessing

tep for ECGdeli and a possible improvement of the average
etection errors. With the current implementation, and as already
tated, the algorithm is forced to detect a P and T wave in
ach RR interval. On the one hand, this implies that every wave
s detected. Nevertheless, an adequate detection of the outliers
visible e.g. for the T wave in Fig. 6) and a subsequent correction
r dropping of those, could have lowered the average errors of
CGdeli.

. Impact

ECG delineation algorithms are important in clinical and re-
earch practice. As stated in Section 1, many parameters depend
n the result of the wave detection. With ECGdeli we offer one
f the few open toolboxes to solve this relevant problem. By
omparing the toolbox with two alternative implementations for
ave delineation, we showed that ECGdeli is already at its current
tate delivering results en par with existing open approaches.
owever, several partly unique features of ECGdeli should be
ighlighted:
The simple input/output and modular structure make the tool-

ox functions easy and intuitive to use. In this way, the anno-
ation functions can also be executed separately if for example
nly a P wave detection is necessary. This goes hand in hand with
he fact that by making ECGdeli freely available under the GPLv3,
ingle algorithms can be extracted and incorporated into existing
rojects to extend them.
Furthermore, others can easily apply ECGdeli as a benchmark

or new algorithms as we did with ecg-kit and ecgpuwave. Usu-
lly, the evaluation of the algorithms with standard databases,
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ike the QT database, allows to compare new work to already
xisting. However, manual annotations in these databases can be
rone to error and different ways of calculating performance pa-
ameters impair comparability (as discussed in Section 3). More-
ver, there might be pathologies not represented in a freely
vailable database that can however be relevant for the intended
pplication of a new algorithm. The best way to compare the
wn work to existing algorithms is to have benchmark algorithms
vailable.
At last, ECGdeli is capable of detecting all P and T waves in

provided input ECG signal if the respective QRS complex was
etected. Thus, for example a P wave gets detected in any case
etween two subsequent R peaks. In this way, no false negative
etected waves are possible and false positive waves can still
e eliminated in a postprocessing step that is designed for the
pecific problem.

. Conclusions

In this work, we present the ECGdeli MATLAB toolbox for ECG
ave delineation. The modularity is the major advantage as single
lgorithms can be used and adapted independently from the
thers (e.g., use another QRS detector as long as the standardized
PT is used). By publishing ECGdeli under GPLv3, the toolbox
an be freely used for wave detection, serve as a benchmark
ethod for future works on non-standard datasets or as a basis

or extended feature extraction algorithms.
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