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Abstract

The computational complexity of wave-based image ultrasound transmission reconstructions
is very high especially in 3D. Hence, ray-based approximations are often used. Bent ray
approaches like the fast marching method are time-consuming in comparison to the straight
ray approximation. The Bézier curve technique for refraction approximation, introduced by
Perez-Liva et al., could be a compromise between computational effort and image quality. In
this work, the method was extended to 3D and an evaluation on two 3D datasets was carried
out. The first dataset was simulated with the k-wave toolbox, with hemispherically arranged
emitters and receivers and a sound speed inhomogeneity. With a mean squared error of 9.98
m/s the method produces similar results as the fast marching method (11.85 m/s). The object
size is represented better in comparison to the straight ray method. Applied to real data of
the KIT 3D USCT both methods performed similarly. The object size was better preserved
using bent ray methods. The Bézier bent ray method shows first promising results in 3D as
it leads to similar results than the fast marching method.
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1 Introduction

Ultrasound computer tomography is a new imaging modality for breast cancer detection
[1]. Both transmission and reflection information can be obtained. Transmission images
provide quantitative information about tissue properties like sound speed and attenuation
[2, 3]. The focus of this paper is on the sound speed reconstruction as part of the transmission
tomography.

For the image reconstruction, the wave propagation through tissue needs to be described
(forward model) and an inverse problem needs to be solved for the image given the mea-
sured pressure fields and the forward model. The computational complexity of wave-based
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image reconstructions is very high, especially in 3D at high frequencies [4]. For this reason,
approximations are required. Here, ray-based approaches are commonly used to describe the
path of propagation between emitter and receiver. The straight ray approximation neglects
physical effects like refraction. Bent ray approaches like the widely used fast marching
method [5, 6] may include this effect yet are still computationally demanding [7], especially
in 3D.

Pérez Liva et al. [3, 7] introduced a ray-based method where a single refraction is approxi-
mated with a quadratic Bézier curve. The idea is that including the refraction of the water-
tissue interface leads already to an improvement. A brute force search for the fastest curve
out of a set of Bézier curves with different curvature connecting emitter and receiver is ap-
plied. The presented method was developed for the application in 2D. In this paper it is
expanded to 3D, for the use on KIT 3D USCT, and an evaluation for 3D datasets is carried
out.

2  Methods

2.1 Bent ray calculation with Bézier polynom

The basic idea of Pérez Liva et al. [3] is to link two points, which in USCT are emitter and
receiver, with a curve described by an Bézier polynomial [8]. For such a curve the sound
speed map is used to derive the time of flight (TOF) of an ultrasound pulse travelling along
this curve. Using a brute force search the curve with lowest TOF is determined.

For implementation in 3D, we consider a quadratic Bézier curve, discretized by ¢, which is
described by the following equation:

C(t)=(1—1)*Py+2t(1 —1)P, +1>P,t € [0,1] . (1)

Py, P, correspond to the start- and endpoint of the curve. In 3D USCT these positions are
given by the emitter and receiver coordinates. P; is a free point. It controls the curvature
of the Bézier curve. By moving this control point, different curves between emitter and
receiver can be generated. The free points P are distributed along and vertical to the direct
line connecting emitter and receiver in order to derive a set of possible curves connecting Py
and P>. The distribution was calculated via linear equation from the emitter-receiver-centre
with the given direction vectors (see Fig. 1 (a)):
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Figure 1: Bézier curve calculation. (a) shows the calculation of the 3D point distribution for determining the set of
Bézier curves. It is calculated by the three direction vectors along and orthogonal to the emitter receiver
line. The start and endpoint is given by the emitter and receiver ((b), blue points). An example Bézier
curve (red) is shown on the underlying first guess sound of speed reconstruction.
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The selection of the optimal curve is based on a sound speed map. As a first guess, the
sound speed map reconstructed with straight rays is used. For each discretized point of the
curve the corresponding sound speed value (c;) is obtained via linear interpolation and the
euclidean distance between the sample points is calculated to determine /a; in equation 3.
The TOF of an ultrasound pulse travelling along each curve is then defined by:

t=k

TOF = Z(lla,) . 3)

=1 Cr

The curve with the lowest TOF is selected as the optimal one following Fermat’s principle
[9]. An example curve on an underlying sound speed map is shown in Fig. 1 (b).

2.2 Reconstruction

The image reconstruction is formulated as a linear equation system

bh=Mx. “)
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For reconstructing the sound speed image X, the equation system needs to be solved for ¥
given the measured time of flight b and the system matrix M. It is solved iteratively by an
algebraic reconstruction technique using total variation minimization (TVAL3 algorithm [10,
11]). The time of flight values b= (by,...,bm)T are gained by calculating the time differences
of the recorded signal between the patient measurement and an empty measurement of each
emitter-receiver-combination. Matrix M contains the ray paths which describe the wave
propagation. For each emitter-receiver combination the voxel discretized Bézier curve is
recorded in M. This results in a matrix size of number of measurements () X number of
voxels (n).

Considering the refraction, the reconstruction is an iterative procedure. The solution X is
taken as the new sound speed map on which the Bézier curve method is applied on and M is
updated accordingly. By solving the equation system a new estimate for X is generated. This
proceeding is repeated until convergence (change between iterations < €) or the number of
maximum iterations is reached.

3 Results

3.1 2D Evaluations

Before applying the method to 3D, we analyzed the characteristics of the Bézier curve
method in 2D experiments due to decreased computing time. The change of the mean
squared error (MSE) over the iterations was analyzed. 20 iterations have been carried out.
A simple experimental set up was used, with emitter and receiver arranged circular and an
circular sound speed inhomogeneity in the centre (see Fig. 2). For the emitter-receiver-ring
a radius of 5 cm has been chosen. 200 emitter and 200 receiver were placed. The center
frequency was 2.5 MHz with a bandwidth of 1 MHz. The data had been simulated with k-
wave [12]. For this setup the MSE decreases the most on the first iterations. For this reason,
the following bent ray reconstructions in 3D have been calculated with one iteration as a
trade-off between computing time and accuracy. The minimum MSE for the fast marching
bent ray reconstruction was reached in the second iteration with 35,00 m/s, for Bézier it was
the tenth iteration with 25,64 m/s (straight ray 74,45 m/s).

Furthermore an experiment with third order Bézier curves had been taken for one exemplary
ray. The results have been compared to the path calculated using Fermat’s principle for a
simple setup (see Fig. 3 top) [13]. The ray of the cubic Bézier curve seems to get closer
to the calculated one following Fermat‘s principle. The length deviation is reduced to 1.2
mm in comparison to 1.9 mm. However, the calculation time for the selected parameters
increase around factor 100 as the number of free points doubles and all permutations have to
be evaluated in the brute force search. Due to the high computational cost and the relatively
low gain by cubic Bézier curves on simple object evaluation, we decided to carry out 3D
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Figure 2: Evaluation of MSE change over iterations. On the upper left the experimental setup is presented, with
the emitter/receiver arrangement collar coded red. At the bottom the MSE change over the iterations for
Bézier and fast marching is shown. The difference images of zero iteration (straight ray) and the bent ray
reconstructions to the reference image are shown.

reconstruction with quadratic Bézier curves. Cubic Bézier curves may be investigated further
in future, when a performant GPU implementation is available.

Furthermore the discretization of the Bézier curve, i.e. the step size for t in equation 1
was calculated. The discretization is coupled to the distance in pixels between emitter and
receiver. The number of discrete points on the Bézier curve is given by this distance times
a factor. Due to the curvature of the Bézier curve, equidistant distribution of t leads to an
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irregular point distribution in space, we investigated which factor is required such that the
largest distance between two discrete points on the Bézier curve is smaller than half the pixel
size in order to fulfill the sampling theorem. With the same experimental 2D setup as before
we found that the factor needs to be equal or higher than 3.6.
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Figure 3: Evaluation of quadratic and cubic Bézier curves. bent rays according to Fermat’s principle. Reference
beams are calculated using Fermat’s principle (top image). The black dots represent the transducers.
The example receiver is outlined in blue, the example transmitter is outlined in red. Green or yellow are
the discretized points on the circular surface. In blue exemplary paths are given describing possible paths
from transmitter to receiver. At the bottom the quadratic and cubic Bézier curves are shown in comparison
to the calculated one, with a detailed view on the bottom right.

3.2 Application in 3D

A comparison between Bézier bent ray reconstruction, fast marching bent ray reconstruction
and straight ray reconstruction was carried out. For the bent ray reconstruction, one iteration
was performed based on the straight ray reconstruction. For the 3D evaluation two datasets
are used, one with simulated data and one recorded dataset with KIT 3D USCT [14]. For
simulation a simple setup with one sound speed inhomogeneity was selected to examine the
main refraction of the water object/tissue interface. In addition more complex phantom data
from KIT 3D USCT have been used.

240



Bézier curves for 3D transmission imaging

3.2.1 3D k-wave simulation data

For evaluation in 3D simulated A-scan data was used first. We applied a k-wave [12] simu-
lation with a setup of 231 emitter and 1781 receiver. Emitter and receiver are arranged in an
hemisphere around a spherical object (0.58 cm diameter) with sound speed inhomogeneity
(background: 1500 m/s, object: 1450 m/s). Due to computing time and memory require-
ments the aperture size with a radius of 1 cm and a depth of 1 cm is smaller than the KIT
3D USCT setup. A center frequency of 2,5 MHz with 1 Mhz bandwidth was chosen. The
arrival time of the ultrasound pulse (see equation 3) was calculated via a threshold on the
amplitude. The reconstructed image size is 96 x 96 x 48 pixel.

The Bézier curve method produces similar results to the fast marching method. The results
are represented for one x/y-, y/z- and x/z-slice in Fig. 4. The mean squared error of the Bézier
curve technique is 9.98 m/s in comparison to fast marching (11.85 m/s) and straight ray
(15.09 m/s). The standard deviation is 3.63 m/s for straight ray, 3.19 m/s for fast marching
and 2.88 m/s for Bézier. The maximum deviation reduces from 48.95 m/s for straight ray to
42.20 m/s for fast marching and 41.09 m/s for Bézier respectively. Both bent ray techniques
were able to represent the object size more accurately (see difference image presented in
Fig. 4), however differ especially in the speed of sound values in the border regions due to
blurring by the total variation regularisation required for the sparse aperture. Especially in
the upper z regions the boarder is washed out because of the data sparsity.

3.2.2 KIT 3D USCT phantom data

The methods are also applied on a dataset recorded with KIT 3D USCT [14] with 157 trans-
ducer array systems (TAS, containing 4 emitters and 9 receivers each) arranged in a semi-
ellipsoidal aperture. The imaged phantom consists of a mixture of gelatine, glycerine and
propanol with an approximate sound speed of 1560 - 1570 m/s and an olive placed centrally
in the phantom. 10 different aperture positions had been recorded resulting in approximately
500000 A-scans used for reconstruction. The arrival time was calculated via a cross corre-
lation between measurement with object and empty measurement. The reconstructed image
size is 96 x 96 x 55 pixel for a 25.92 cm x 25.91 cm x 14.97 cm image.

The straight and bent ray reconstructions are shown in Fig. 5 for three slices. The object
size of the phantom in the Bézier bent ray reconstructed image changed similarly to the fast
marching reconstructed image. Two region of interests (ROI) have been selected to evaluate
the sound speed values of the gelatine mixture. The median of the Bézier curve reconstructed
image in the first ROI is 1580.4 m/s in the second one 1564.9 m/s, for fast marching 1574.5
m/s and 1560.4 m/s in comparison to straight ray with 1560.7 m/s and 1560.4 m/s. In the
area of the olive higher sound of speed differences can be observed (see Fig. 5).
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Figure 4: Evaluation of 3D reconstruction with simulated k-wave data. Left column from top to bottom: simulated
ground truth, reconstructions with straight ray approximation, fast marching bent ray approximation, and
Bézier curve bent ray approximation. The right column shows an enlarged image section of the respective
difference to the ground truth with the errors colour coded. Each set of images shows a y/z, x/z and x/y
slice from the 3D image.

4 Conclusion

Using Bézier curves for approximating the refraction shows first promising results on 3D
simulation data as well as for real data. For simple objects, the Bézier method leads to
similar results like the fast marching method. The reconstruction of the object’s size im-
proved compared to the straight ray method, the shrinking effect or accordingly the over
representation of the object size could be reduced. Bézier curves seem to approximate the
main refraction on the object-water interface well. In future, evaluations for more complex
objects and real patient data could be carried out to compare the behaviour of the methods.
A 3D GPU implementation is currently being developed to compare the computation time
for 3D USCT.
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Reconstruction of real experiment data with the KIT 3D USCT. The phantom imaged consists of a mixture

of gelatine, glycerine and propanol with an approximate sound speed of 1560 - 1570 m/s. An olive was
embedded centrally in the phantom. The images on the left from top to bottom show reconstructed sound
speed images with the straight ray approximation, the fast marching bent ray approximation and the Bézier
curve bent ray approximation. On the right the sound of speed changes are considered between straight
ray and the two bent ray reconstruction.
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