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Second order phase dispersion by optimized rotation pulses
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We show that the duration of broadband universal control pulses can be halved by choosing control targets
with a quadratic function of phase dispersion. This class of control pulses perform a broadband universal rotation
around an axis, in the Bloch sphere representation of two-level systems, given by this phase dispersion function.
We present an effective optimal control method to avoid the problem of convergence to local extrema traps.
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I. INTRODUCTION

The critically important milestones on the road-map of
quantum technology development are expected to include
quantum optimal control [1,2]. The main result of this com-
munication is to reduce the time and energy required to con-
trol a quantum system. As an application of optimal control
theory, quantum optimal control can be tasked with finding
control pulses, usually in the form of electromagnetic radia-
tion, to perform a desired operation on an arbitrary quantum
state. Already this method has been applied successfully to
a wide range of experiments, including magnetic resonance
spectroscopy [3,4], error-correction for quantum computing
[5], quantum information registers [6], robust atom interfer-
ometry [7,8], and high-resolution medical imaging satisfying
legal irradiation constraints [9].

The growing number of reported applications of quantum
optimal control are expanded by the concurrent development
of optimal control algorithms. There are a number of ap-
proaches to optimal control, such as Lagrangian methods
[10], time optimal control [11], annealing quantum systems
to a desired effective Hamiltonian [4], sophisticated gradient-
free searches [12], rapidly converging Krylov-Newton meth-
ods [13], and optimal control using analytic controls [14].
This development is essential as desired solutions push to
the limit of what is physically possible and control prob-
lems become computationally and numerically challenging
[15].

Quantum optimal control problems can be solved numer-
ically by using a piecewise-constant control pulse approxi-
mation [16–19], and the trajectory gradient can be calculated
and followed by using the gradient ascent pulse engineering
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(GRAPE) method [3]. The initial GRAPE method showed
linear convergence to a desired optimum destination and
was later extended to give superlinear convergence [20],
then quadratic convergence [21,22]. This communication in-
troduces an ordered optimal control method, based on the
GRAPE method, to avoid local convergence traps encountered
in the optimal control problem set out below. This method is
termed morphic-GRAPE by the authors.

In addition, and vital to effective experimental applica-
tions, optimal control has advanced theoretical studies cal-
culating universal gates for quantum computing [23–27]. A
subset of universal quantum gates include control targets
designed as an effective rotation in the Bloch sphere repre-
sentation of a two-level system, with a defined rotation axis
and rotation angle, for any initial basis-state vector [6,28].
The developments reported here will be concerned with this
universal rotation class of control pulses.

One of the drawbacks associated with universal rotation
solutions is the long duration of control pulses when compared
with the easier control problem of optimizing state-to-state
problems [1,28]. The optimal control method presented here
will show that the previously required pulse duration can be
halved by defining target propagators as a function of phase
dispersion.

II. BROADBAND OPTIMAL CONTROL
TO EFFECTIVE PROPAGATORS

An ensemble of noninteracting two-level systems should
include frequency dispersion terms from local environmen-
tal conditions. Uniform manipulation of the ensemble is a
difficult practical task but by describing the ensemble as a
bilinear control problem [16,18], numerical optimization can
be used to find solutions that are difficult to find analytically.
In formulating this bilinear control problem, the controllable
parts of the Hamiltonian are the pulses, and the uncontrollable
part is the local frequency dispersion term. Restricting control
pulses to phase modulation, ϕ(t ), with constant amplitude
A, the time-dependent Hamiltonian for this ensemble of K
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noninteracting two-level systems can be written as

Ĥ (t ) =
K∑

k=1

ωk σ̂
(k)
z + A cos [ϕ(t )]σ̂ (k)

x + A sin [ϕ(t )]σ̂ (k)
y ,

(1)

where the angular frequency ωk is variously termed the
resonant frequency offset, chemical shift, or detuning and
describes the local frequency dispersion within the ensemble.
Practically, this ensemble of resonant frequency offsets form a
discrete grid of noninteracting two-level systems spread over
a relevant bandwidth [29,30]. σ̂ (k)

x,y,z are operators of the kth
two-level system, operating in a Hilbert space and related to
the Pauli matrices σ̂x,y,z by

σ̂ (k)
x,y,z = E (k) ⊗ σ̂x,y,z, (2)

where E (k) is a K × K single-entry matrix with the diagonal
element E (k)

kk = 1.
The GRAPE (gradient ascent pulse engineering) method of

optimal control [3] proceeds to describe the time-dependent
control pulses as piecewise constant over a small time interval
�t [18,19]. This approximation allows for a numerical solu-
tion of Eq. (1) through time-ordered propagation,

ˆ̂Pn = exp [−i ˆ̂Ln�t],
Un = ˆ̂Pn · · · ˆ̂P2

ˆ̂P1,

Vn = ˆ̂P
†

n+1 · · · ˆ̂P†
NR,

(3)

with the Liouvillian ˆ̂Ln being an adjoint representation of a
Hamiltonian: ˆ̂L = 1 ⊗ ˆ̂H − ˆ̂H† ⊗ 1 [20]. At a time increment
n, the effective propagator Un evolves the system forward
in time over the interval [0, tn], and the effective propagator
of the adjoint control problem, Vn, evolves backwards from
a desired target R over the interval [T, tn]. The effective
propagator UN is the solution to the ensemble Hamiltonian (1)
over the total pulse duration T . The effective propagator of
the adjoint problem, Vn, is needed for a fidelity gradient
calculation, outlined below.

The Hilbert-Schmidt inner product of the desired effective
propagator R and the effective propagator over the control
duration, UN , gives a measure to numerically maximize and is
termed the fidelity [3,4,6,28]:

max
ϕ

{F} = 1

d
max

ϕ
{Re〈R|UN 〉}. (4)

This fidelity measure F is normalized by the dimension of the
Hilbert space, d , to give sensible and predictable bounds F ∈
[−1,+1]. The desired target R is interpreted as a rotation in
the Bloch sphere representation in all that follows.

Given an initial guess for control pulses, optimal con-
trol pulses can be found by stepping in the direction of
the fidelity gradient vector over control manifold, until a
maximum fidelity is found. The distance to step is set by
an appropriate Newton-type optimization method [31]. The
gradient-following GRAPE method [3] requires a fidelity
gradient vector ∇F and, for phase modulated control, this is
constructed from the elements

∂F
∂ϕn

= Re

〈
Vn

∣∣∣∣∣
[

A cos (ϕn)
∂ ˆ̂Pn

∂ ˆ̂σy
− A sin (ϕn)

∂ ˆ̂Pn

∂ ˆ̂σx

]
Un

〉
. (5)

The two partial derivatives on the right-hand side are direc-
tional propagator derivatives, and can be interpreted at the
derivative of the propagator, ˆ̂Pn, in the direction of the oper-
ators ˆ̂σx and ˆ̂σy. The fidelity gradient is calculated by using
the same fidelity definition of Eq. (4), with the directional
propagator derivatives sandwiched by the effective propagator
and its adjoint in Eq. (3).

For each time slice, the time propagator in Eq. (3) and
each of the directional derivatives in Eq. (5) can be calculated
analytically with one exponentiation of a block-triangular
matrix [32,33],

exp

[
−i

[ ˆ̂Ln
ˆ̂σ

0 ˆ̂Ln

]
�t

]
=

⎡
⎣ ˆ̂Pn

∂ ˆ̂Pn

∂ ˆ̂σ

0 ˆ̂Pn

⎤
⎦, (6)

in each direction ˆ̂σ ∈ { ˆ̂σx, ˆ̂σy}. Considering the large and
sparse Hamiltonian formulation of Eq. (1), the main com-
putational cost is 2N exponential operations, which can be
performed in parallel and can include a efficient propagator
recycling scheme [22].

Pulses are linearly scalable with the desired bandwidth
[1], with the transform from one pulse p1, with duration T1,
amplitude A1, and covering a bandwidth �1, to a second pulse
p2, with duration T2, amplitude A2, and covering a bandwidth
�2, having the same effect if

�1T1 = �2T2 = b and
β

A1T1
= β

A2T2
= s, (7)

where the subscripts refer to the according property of pulse
p1 and p2. The dimensionless bandwidth factor b and scaling
factor s are defined here to characterize the pulse, rather than
the system-specific quantities of bandwidth, pulse amplitude,
and pulse duration. This is common in the discipline of
magnetic resonance, and the rotation angle β is included
in the scaling factor to normalize with this use in magnetic
resonance. In this definition, bandwidths are measured in
Hertz, pulse duration in seconds, pulse amplitudes in radians
per second, and rotation angles in radians. In the investigation
that follows the scaling factor is chosen to be s = 2β

πb which,
in effect, gives the same pulse amplitude over all bandwidth
factors for a defined system.

The choice of constant amplitude, phase modulated, con-
trol pulses is one of inference: both chirped pulses [34–38]
and universal rotation pulses [28] are close to constant ampli-
tude, and it is expected that pulses produced in this work will
have a similar form.

The piecewise-constant time slices used in calculations are
a very good approximation in nuclear magnetic resonance
(NRM) spectroscopy. In cases where this piecewise-constant
approximation is not valid, such as applications to electron
paramagnetic resonance (EPR) spectroscopy, a feedback con-
trol method [39,40] or a transfer-matrix method [41–43] can
be used to calibrate pulses due to these hardware-specific
cavity effects. Further to this, optimal control can be designed
to include a robustness to pulse amplitude miscalibration [29].
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III. ROTATION AXES WITH QUADRATIC
PHASE DISPERSION

Derived from Landau-Zener-Stückelberg-Majorana theory
[37], the ensemble of Eq. (1) can be controlled with adiabatic
evolution [44–46] and is described as a linear frequency sweep
over the two-level systems. The phase dispersion resulting
from a linear frequency sweep is quadratic and can be used to
define the local targets of an optimal control method. Previous
work on this theme has optimized state-to-state problems
with linear phase dispersion [47–49] and quadratic phase
dispersion [44,50–52].

Although state-to-state solutions are useful, they are only
functionally defined for a specified state preparation: the
desired control is only effective for a given initial state of the
system. A universal control method, independent of the initial
state, attempts to find desired unitary propagators which repre-
sent a rotation of the Bloch sphere; rotating all components of
the coordinate system about an axis through the origin [6,28].

The effective unitary propagator representing a universal
rotation can be formulated for each member of the ensem-
ble, k,

Rk (β ) = exp [−i ˆ̂nkβ], (8)

for a rotation angle β. The desired axes of rotation, ˆ̂nk , can be
defined as

ˆ̂nk = cos (αk ) ˆ̂σ (k)
x + sin (αk ) ˆ̂σ (k)

y , (9)

where the angle αk is a phase on the transverse plane of the
Bloch sphere and is described by a phase dispersion function.
This study uses a quadratic phase dispersion similar to that of
the linear frequency swept chirped pulses [34–38]:

αk � πbQ

(
1 − ω2

k

�2

)
. (10)

This is the phase that the transverse components of states
acquire during the pulsing time [47]. The introduction of Q is
defined here as the quadratic coefficient of a phase dispersion
function, which is closely related to previous work using a
linear phase dispersion function [47]. The case when Q = 0
has been previously published as broadband universal rotation
by optimized pulses (BURBOP) [28].

It should be emphasized that the desired pulses in the com-
munication are an improvement towards universal rotation
pulses with reduced control duration, using a phase dispersion
function similar to chirped pulses, rather than a generalization
of chirped pulses to universal rotation pulses. Furthermore,
the function in Eq. (10) is a quadratic function of Q but could
be formulated, in principle, by any function of Q. This new
class of pulses are named second order phase dispersion by
optimized rotation (SORDOR) pulses by the authors.

IV. MORPHIC OPTIMAL CONTROL

In the authors’ experience, the standard procedure of start-
ing GRAPE from a random guess or an informed guess,
e.g., an adiabatic passage pulse, produces a fidelity profile
periodically reducing to zero over the bandwidth, particularly
when setting Q � 0.1 in Eq. (10). The reason for this is that,
as the optimization progresses, fidelity sections either side

of the zeroed fidelity increase, also increasing the average
fidelity, trapping these local fidelity minima into the control
manifold [15,22]. This can make the process of finding the
desired optimal solutions set out in Eq. (8) a difficult task.
Furthermore, a high average fidelity over the bandwidth is not
sufficient for acceptable pulse performance—the pulse should
uniformly manipulate the entire bandwidth.

An ordered optimization procedure of morphic-GRAPE is
set out below to avoid these traps. This method is effective,
yet easy to use, and proceeds by morphing one optimization
problem into an incrementally modified optimization prob-
lem; using the solution of one as the new starting point of
the next.

A grid of coefficients, Q ∈ [0, 1], and bandwidth factors,
b ∈ (0, 18], sets a morph area for the results that follow.
SORDOR pulses are created with four directional morphs:
forward morph, incrementing Q with +�Q; backward morph,
decrementing Q with −�Q; compressed morph, interpolating
a control pulse from b to b − �b; and expanded morph,
interpolating a control pulse from b to b + �b. An additional
smoothing stage can be used to remove discontinuities in
the fidelity profile, using sequences of forward or backward
morphs from the largest extrema in the dF

dQ profile. The
ordered recipe of finding SORDOR pulses is outlined as
follows:

(1) Start with a universal rotation pulse (Q = 0) and use
morphic-GRAPE:

(a) Forward, increasing from Q = 0.
(b) Backward, decreasing from Q = 1.

(2) Smoothing morphic-GRAPE for b = 18, from extrema
in the dF

dQ profile.
(3) Start with a SORDOR pulse of high bandwidth factor

(b = 18) and use morphic-GRAPE:
(a) Compressed, decreasing from b = 18.
(b) Expanded, increasing from b = �b.

Empirical investigation finds an adequate grid spacing of
�b = 0.2 and �Q = 0.01. Convergence is accepted when
‖∇F‖ � min (10−4, 10−5( 210

583 + b
36 ) ). The smoothing morph

starts from the eleven largest extrema, with the first five of
these shown in Fig. 1. Figure 1(a) shows the places on the Q-
coefficient grid where the smoothing starts, after the forward
and backward stages, and Fig. 1(b) shows how the fidelity
increases and decreases over these stages. Both are plotted
as a function of the number of gradient calculations which
shows the computational cost of morphic-GRAPE at b =
18.0, which can be regarded as the seed for the compressed
and expanded stages. The forward and backward stages at
different values of b show a similar profile to those stages in
Fig. 1.

A direct comparison of the computational cost of this
morphic-GRAPE method to the previously published univer-
sal rotation pulses [28] is not appropriate, because morphic-
GRAPE essentially includes that previous work.

V. RESULTS

The main results of this work are shown in Fig. 2. The
SPINACH optimal control toolbox [20,22,33] is used to sim-
ulate the ensemble of two-level systems, defined by Eq. (1),
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FIG. 1. An indication of the computational cost of calculating
SORDOR pulses at b = 18.0. Panel (a) shows the number of fidelity
gradient calculations as the Q coefficient is increased and decreased,
with the forward, backward and smoothing stages of this morphic
optimal control method. Panel (b) shows the corresponding fidelity
as a function of gradient calculations. Horizontal arrows in panel
(a) show the point from which the waveform is morphed to start
the smoothing stage. Dashed lines in panel (b) show the maximum
fidelity obtained.

with minimal modification to enable optimization to the
desired unitary propagators in Eq. (8). A linearly spaced
resonance offset profile in Eq. (1), with K = 1 + �10b�, and
a piecewise constant approximation of Eq. (3), with N = 50b,
is optimized with the �-BFGS method [20], forming a Hessian
approximation from the previous twenty gradients.

It is not only interesting to see how the fidelity increases
over the grid of Q coefficients but it is also practically useful
because experiments requiring combinations of pulses with
different rotation angles β should be matched, i.e., a sequence
consisting of pulse p1 followed by pulse p2, should have bp1

=
mbp2

with Qp2
= mQp1

, where m is an arbitrary multiplier. The
maximum fidelities found over the grid of Q coefficients and
bandwidth factors, from the forward, backward, compressed,
and expanded morphic optimizations, are shown in Figs. 2(a)
and 2(b).

It should be noted that the morphic optimizations for
β = π

2 are difficult, numerically and computationally; the
backward, compressed, and expanded stages of the morphic
optimizations give little improvement when β = π , and were
designed primarily for the case when β = π

2 .
Figure 2(c) shows the maximum fidelity at each band-

width factor compared with the fidelity of an equivalent
universal rotation pulse, broadband universal rotations by
optimized pulses (BURBOP): the shortest duration univer-
sal rotation pulses known to the authors [1,28]. The BUR-
BOP in this comparison have the same constant ampli-
tude A and scaling factor s as the SORDOR pulses. BUR-
BOP pulses start from the same ones as published previ-
ously [28], then are further optimized with the same exact
gradients [Eq. (6)] and optimization tolerances. It is clear
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FIG. 2. Fidelity of (a) SORDOR β = π

2 pulses, and (b) SOR-
DOR β = π pulses, over a grid of Q coefficients and bandwidth
factors. The dashed lines in panels (a) and (b) are the maximum
fidelities at each bandwidth factor. Plot (c) shows these maximum
SORDOR fidelities compared with the previous best universal rota-
tion pulses (BURBOP). Dashed lines in panel (c) are reference plots
exp(−0.50b) and exp(−0.25b).

that SORDOR pulses show significant improvement over
BURBOP.

VI. EXAMPLE OF AN APPLICATION IN MAGNETIC
RESONANCE SPECTROSCOPY

This section will proceed to apply the phase modulated
pulses above, the subject of this article, to the experimentally
relevant system of nuclear magnetic resonance spectroscopy.

As an example, a spin- 1
2

13C nucleus in a static magnetic
field of B0 = 14.0954 T forms the ensemble of two-level
systems in Eq. (1). For the analysis of small molecules,
pulses should cover a bandwidth of � = 37.5 kHz [53]
at this magnetic field due to chemical shielding effects
from varying molecular environments. This chemical-shift
range is linearly spaced with ωk ∈ [−π�, +π�] covering a
bandwidth of � = 40 kHz, slightly more than the required
37.5 kHz, and represents a 13C spin ensemble with K = 451
members.

Pulses produced with the method outlined are morphed
from one grid point to another in Fig. 2, and this morph-
ing is key to obtaining high fidelities. This indicates that
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FIG. 3. A selection of SORDOR pulses showing the unwrapped phase of the constant amplitude pulse as a function of time, measured from
the center of the pulse. (a) β = π

2 pulses at six pulse durations; (b) the same pulses shown with a quadratic phase subtracted. (c) β = π pulses
at six different pulse durations; (d) the same pulses shown with a quadratic phase subtracted. The formula for the quadratic phase, shown as a
dashed line in panels (b) and (c), is outlined in the main text.

pulses should be related to each other and asks the question
of whether pulses close on the grid look like each other.
Twelve pulses produced by the expanded stage of the mor-
phic optimal control method are shown in Fig. 3, six of
each have β = π

2 in Fig. 3(a) and β = π in Fig. 3(c), at
(200, 250, 300, 350, 400, 450) μs.

Interestingly, SORDOR π
2 and SORDOR π both are of

very similar constitution. As shown in Figs. 3(a) and 3(c),
pulse shapes in all cases are symmetric in time, while no sym-
metry constraints are imposed during the optimization proce-
dure. In essence, a parabolic time course of the pulse phase
is observed, as is reminiscent of linearly frequency swept
chirped pulses [34–36,54,55], but with regular spike-like fea-
tures that also frequently come with approximate π , 2π , or
4π jumps in phase. The features are even better visualized if
the quadratic phase contribution is subtracted [Figs. 3(b) and
3(d)]. Similar phase behavior has previously been reported for
BIP [56] and BIBOP [57,58] β = π inversion pulse shapes,
but not for β = π

2 rotation or excitation pulses.

The comparison of the SORDOR pulses to a chirped pulse
show an additional phase modulation, where the chirped phase
is from the formula

ϕ(t ) = π�cT

(
t

T
− 1

2

)2

, �c = AT . (11)

The bandwidth of this chirped phase, �c, is chosen to give
the same pulse amplitude as the SORDOR pulses, A =
(2π )10 kHz. Clearly, this does not match the quadratic
component of all SORDOR pulses in Figs. 3(b) and 3(c),
particularly for the shorter duration pulses. However, this is a
good match for the 450 μs pulses, and the comparison chosen
in this way has no difference in pulse amplitude, only the extra
phase modulation on top of the chirped pulse.

SORDOR pulses are very close to symmetric, which
should not be a surprise because a rotation should be a
reversible operation and a time-symmetric pulse is a common
form for this [28,59]. Although not implemented in this work,
including this symmetry as a constraint should halve the

FIG. 4. Plots of final states, projected onto a Bloch sphere, as a function of resonance offsets ωk ∈ [−π�,+π�]. The three line plots on
each representing time propagation from initial states ρ0 = |x〉 (red), ρ0 = |y〉 (blue), and ρ0 = |z〉 (cyan). Upper plots show the desired unitary
propagators R. Lower plots show the final states after propagating SORDOR pulses UN . The columns show (a) one π

2 pulse, (b) one π pulse,
(c) the two-pulse sequence π

2 → π [60], (d) the three-pulse sequence π

2 → π → π

2 , and (e) the five-pulse perfect echo sequence [62].
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computation time because only half the time propagators and
their directional derivatives need to be calculated with Eq. (6).

Two SORDOR pulses are further investigated in combina-
tion: a π

2 pulse from Fig. 2(a), and a π pulse from Fig. 2(b),
each with Q = 0.78 and b = 18. This corresponds to a pulse
duration of T = 450 μs, a time increment of �t = 0.5 μs in
Eq. (3), and the constant pulse amplitude of A = (2π )10 kHz
in Eq. (1). Both of the SORDOR pulses were obtained from
the expanding stage of morphic optimal control method out-
lined above, these being the best performing combination of
pulses produced in Fig. 2.

Illustrative examples of sequences using these two SOR-
DOR pulse are shown in Fig. 4. Figures 4(a) and 4(b) depict
the performance of SORDOR π

2 |x and π |x pulses (subscripts
denote the axis about which an ω = 0 rotation is defined)
projected onto a Bloch sphere for three different initial states.
Figure 4(c) depicts these two pulses in the sequence π

2 |x →
π |x, named the Hahn echo [60], Fig. 4(d) is the sequence
π
2 |x → π |x → π

2 |x, a building block within the INEPT se-
quence [61], and Fig. 4(e) is the perfect echo sequence π

2 |x →
π |y → π

2 |y → π |y → π
2 |−x [62]. The fidelities presented for

each of these last three examples clearly show that SORDOR
pulses can perform effectively in sequence.

VII. CONCLUSIONS

Broadband universal rotation pulses with second or-
der phase dispersion define a new class of pulses, named
SORDOR pulses by the authors, with the universality of
rotation pulses and an evolution character of adiabatic pulses.
The difficulty in producing universal rotation pulses with

second order phase dispersion, similar to adiabatic passage
pulses, poses an interesting question regarding methods of
optimal control.

A simple but effective morphic-GRAPE optimal control
method has been designed to avoid local extrema traps and
find shorter-duration control pulses when compared with the
current best universal rotation (BURBOP) pulses. The trend
of this comparison shows that SORDOR pulses are approx-
imately 50% of BURBOP durations: a significant improve-
ment.

The advance in pulse performance, compared with BUR-
BOP, derives from a phase dispersion function used to define
target unitary propagators. The particular phase dispersion
function used in this work consists of a constant term, a
quadratic term, and a variable multiplier. The exact form of
this function is not derived within this work and is used
in this form simply because the function produces high-
fidelity pulses. Studies using other phase dispersion func-
tions, e.g., of higher or arbitrary order, are left to future
investigations.
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