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Abstract

A linear visco-elasticity ansatz for the multiphase-field method is introduced in the form
of a Maxwell-Wiechert model. The implementation follows the idea of solving the
mechanical jump conditions in the diffuse interface regions, hence the continuous
traction condition and Hadamard’s compatibility condition, respectively. This makes
strains and stresses available in their phase-inherent form (e.g. εα

ij , ε
β
ij ), which

conveniently allows to model material behaviour for each phase separately on the basis
of these quantities. In the case of the Maxwell-Wiechert model this means the
introduction of phase-inherent viscous strains. After giving details about the
implementation, the results of the model presented are compared to a conventional
Voigt/Taylor approach for the linear visco-elasticity model and both are evaluated
against analytical and sharp-interface solutions in different simulation setups.

Keywords: multiphase-field, linear visco-elasticity, Maxwell-Wiechert model,
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Introduction
The phase-fieldmethod (PFM) is an established simulation technique in science and engi-
neering due to its capability to predict free boundarymovement numerically in an efficient
way. The key is to replace free boundaries between (physically) separable regions—or
phases—by a transition region—or diffuse interface—which allows to track the position
and orientation of the free boundary implicitly. In the context of microstructure evolution
this reflects e.g. in the movement of grain boundaries driven by the influence of different
thermodynamical fields. Typical applications are solidification, solid-state phase trans-
formations, precipitate growth and coarsening, martensitic transformations and grain
growth [1–4]. Further fields of application include topology optimisation [5] and crack
propagation [6]. Apart from the capability of capturing free boundarymovements, another
asset of the PFM is the ability to represent complex structures and geometries without
requiring a complex mesh [7]. Within the scope of the PFM the geometry is described by
the phases and their diffuse interfaces, and not by a conforming mesh.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-020-00178-x&domain=pdf
http://orcid.org/0000-0002-0401-0105
http://orcid.org/0000-0002-9250-2918
http://creativecommons.org/licenses/by/4.0/


Schwab et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:47 Page 2 of 32

By extending the scope of materials and processes examined, different material
behaviours may be observed. One of the four basic material behaviours, besides elasticity,
plasticity and visco-plasticity, is visco-elasticity [8], which may describe the behaviour of
amorphous and semi-crystalline polymers or metals at high temperatures, amongst oth-
ers. In the context of solid mechanics on the basis of the PFM the predominantly used
physically non-linear material behaviours are plasticity (e.g. Guo et al. [9], Ammar et al.
[10], Schneider et al. [11] and Herrmann et al. [12], amongst others) and visco-plasticity
(e.g. de Rancourt et al. [13], amongst others). Visco-elasticity is nearly exclusively applied
to crack propagation simulations in polymeric and rubbery materials (e.g. Liu et al. [14],
Shen et al. [15] and Yin et al. [16], amongst others).
In the aforementioned cases of crack propagation, the material model implementation

is restricted to a single phase, as common phase-field crack models only consist of two
phase formulations: a crack and a solid phase. Therefore these implementations do not
have to deal with phase-field-specific questions as how tomodel the visco-elastic material
behaviour at diffuse solid-solid interfaces.
A common approach to treat the material behaviour at diffuse interfaces is to use clas-

sical homogenisation schemes, namely those introduced by Voigt/Taylor [17,18] (VT) or
Reuss/Sachs [19,20] (RS). As they assume locally uniform strain or stress in multiphase
domains, respectively, they lead only in (quasi) 1D cases to physically exact behaviour on
a continuum scale. In all other scenarios they only render the upper and lower bound,
respectively, of the actual behaviour, because they do not consider shape and orientation
of the phases. However, due to their simple implementation, and the argument in the lim-
iting case of zero interface thickness they lead to a sharp-interface (SI) behaviour, they are
applied regularly. A slightly different procedure is proposed by Khachaturyan [21], who
suggests to use the VT scheme for elastic strains, and to treat inelastic strains by the RS
scheme. More recently, the Hashin-Shtrikman bounds [22] (HS, which are second-order
bounds while VT and RS are first-order bounds) have been applied by Chen and Shu
[23] to simulate martensitic phase transformations. Durga et al. [24] examined how VT
and RS schemes lead to excess stress, strain and elastic energy in diffuse interfaces. Their
results mainly confirm that VT and RS homogenisations are only free of excess energy
in special 1D cases, i.e. a straight interface does not introduce excess quantities if it is
purely uniaxially loaded in directions tangential or normal to the interface, respectively. A
more wholistic approach on the continuum scale is to consider mechanical jump condi-
tions within the diffuse interface region to ensure kinematic compatibility and continuous
traction. A model for two phases and finite deformations was introduced by Mosler et al.
[25]. Schneider et al. [26] formulated a model for infinitesimal deformations and two
phases, which assembles a locally compatible stiffness matrix based on mechanical jump
conditions. Furthermore, by using their homogenisation scheme, they introduced a driv-
ing force resembling configurational forces (see, e.g. Gurtin [27]), which could match an
analytical solution of the Gibbs-Thomson effect for a spherical inclusion. At the same
time, but independently, Durga et al. [28] used their previous work to derive a similar
model for the two-component, two-phase chemo-mechanical case, but without exami-
nation of a driving force. The work of Mosler et al. is continued in Kiefer et al. [29] and
Bartels andMosler [30] by extension to configurational andmicro forces, accompanied by
comparisons to VT and RS homogenisations and convergence studies. The basis remains
two phase systems and finite deformations. Concurrently Schneider et al. [31] proposed a
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procedure for multiphase domains and finite deformations, which uses a locally implicit
scheme to solve for both mechanical jump conditions. Again, the work also covers the
derivation and evaluation of a consistent driving force. Schneider et al. [32] furthermore
generalised their ansatz from Schneider et al. [26] to themultiphase-fieldmethod by using
a generalised interface normal vector in multiphase interface regions. Svendsen et al. [33]
extended the finite deformation ansatz to model multicomponent, multiphase systems.
Herrmann et al. [12] used the procedure introduced by Schneider et al. [31] to implement
small strain elasto-plasticity. They showed thatwithin this framework it is possible to com-
pletely separate the material behaviour in diffuse interfaces and therefore to assign each
phase its own distinctmaterial model. This is possible because these advanced approaches
are based on calculating stresses and strains phase-inherently. Lately, Henning et al. [34]
used an approach based on Schneider et al. [26] and Durga et al. [28] to study mate-
rial interfaces and point out that convergence and numerical stability may be improved
compared to pure sharp-interface simulations.
To further show the versatile applicability of this ansatz of separablematerial behaviour,

linear visco-elasticity in the form of theMaxwell-Wiechert model is considered. Details of
the derivation of the theory and simulations are provided in Schwab [35]. The visco-elastic
model is implemented on a multiphase-field basis and for infinitesimal deformations and
is evaluated in a set of scenarios with a varying number of phases. The corresponding
driving force may be calculated following the approach of Schneider et al. [26,31], but this
is not in the scope of this work.
In the following, the PFM is described and the approachmodelling linear visco-elasticity

is introduced. Then the PFM-based approach is applied to various simulation setups and
the results are compared and discussed before conclusions are drawn.

Models
The basis for this work is the multiphase-field model as formulated by Nestler et al.
[36], and the continuum mechanics models considering jump conditions as introduced
by Schneider et al. [31] and Herrmann et al. [12]. Hence, only relevant parts of these
underlying works are recalled and in the following the focus lies on the new models
implemented. As themechanics are modelled in an infinitesimal deformation framework,
no distinction is made between reference and current configuration.
In the following, the notation uses Einstein’s summation convention [37]. A fixed Carte-

sian coordinate system exists, and hence only subscripts appear in the notation (spatial
indices are i = {1, 2, 3}). Therefore, there is no summation over superscripts, especially
phases α, if not explicitly mentioned.

Multiphase-field model

The multiphase-field model by Nestler et al. [36] introduces an N-tuple of order param-
eters φα with α = {1, . . . ,N}, N ∈ N. These order parameters denote phase volume frac-
tions, and hence the individual phases themselves. This allows different physical regions
within a domain to be parametrised in space xi and time t by such order parameters
φα = φα (xi, t). In their function as a volume fraction, the phases furthermore fulfil the
condition 0 ≤ φα ≤ 1 and the local constraint

∑
α φα (xi, t) = 1 is enforced. When two

neighbouring physical regions meet, the phases form a diffuse interface, which indicates
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that the involved phases smoothly transit into each other. Accordingly the same hap-
pens at triple- or multi-lines, where several physical regions coexist. Here, the transition
between phases is governed by a multi-obstacle potential, cf. Nestler et al. [36], which
results in a sine-shaped profile across a two-phase interface region. In this context, for a
phase φα , this is expressed by

φα(xn) = 1
2

(

1 + sin
(

4
επ

xn
))

, (1)

where xn is the distance perpendicular to the interface’s centre line (the sharp-interface
position) and ε stretches or compresses the sine-profile in this direction. Hence ε is a
measure for the width of the diffuse interface. To identify the location of diffuse interfaces,
the gradient of the involved phasesmay be calculated, denoted byφα

,i . Alike the orientation
or normal vector of selfsame diffuse two-phase αβ-interface may be retrieved (see, e.g.
Beckermann et al. [38]):
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vectors may be constructed. For example, following Moelans et al. [39], Schneider et al.
[31] use a generalised normal vector of the form
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(3)

in their mechanics model.
The energy densities associated with the diffuse interfaces, γ , and with the bulk regions,

ψ , are collected in a free energy functional f over the volume of interest v, which generally
reads as

f
(
φα ,φα

,i , . . .
) =

∫

v
γ
(
φα ,φα

,i , . . .
)+ ψ

(
φα ,φα

,i , . . .
)
dv, (4)

which may, indicated by the ellipses, incorporate further dependencies on physical quan-
tities apart from the domain parametrisation by the phase-fields φα .
By taking the variational derivate of the free energy functional f an evolution equation for

the phases φα , and hence the diffuse interfaces, may be constructed. A common approach
is the Allen-Cahn equation [40,41] in the form given by Steinbach and Pezzolla [42],

∂φα

∂t = − 1
εÑ

Ñ∑

β �=α

Mαβ

{
δf
δφα

− δf
δφβ

}

, (5)

which allows for binary interactions of the locally involved phases. Here,Mαβ is a positive
mobility parameter, which may be individual for each αβ-interface, Ñ is the number of
locally existing phases and ε controls the width of the diffuse interfaces as specified by Eq.
(1). The operator δ (•) describes a variational derivative.
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In this section the authors intentionally did not introduce and discuss a specific energy
functional, because phase changes of any kind—as shortly noted in the introduction
section—are not considered in this work. By only vaguely defining an energy functional
the authors furthermore want to point out that their method may not only be applied to
phase-field models (see, e.g. [12,31]) or continuummechanics based approaches (see, e.g.
[35]) but to diffuse interface approaches in general.

Multiphase continuummechanics with infinitesimal deformations and phase-inherent

quantities

By assuming the interfaces to be singular surfaces as well as the per-volume bulk free
energy to be a volume average, ψ = ∑

α φαψα , and following Schneider et al. [31] and
Herrmann et al. [12], the mechanical quantities have to fulfil the following conditions:

(1) Total quantities are a volume average of their phase-inherent counterparts, i.e.

(a) the local total stress is σij = ∑
α φασα

ij .
(b) the local total strain is εij = ∑

α φαεα
ij .

(2) In each diffuse αβ-interface region it must hold

(a) Hadamard’s compatibility condition (no slip): �ui,j�αβ = aαβ

i nαβ

j .
(b) the continuous traction condition: �σij�αβnαβ

j = 0.

In the above lines, σij is a Cauchy stress tensor, εij is an infinitesimal strain tensor and
aαβ

i is the jump vector at a specific αβ-interface. Furthermore, �•�αβ = (•)α − (•)β are the
jump brackets. When considering non-linearities, all four conditions may be brought in
line by using a local Newton-Raphson scheme. The basic idea here is to solve a system of
equations which accounts for all locally existing traction conditions (the residual), where
each line is of the form

�σij�αβnαβ

j =
{
σα
ij − σ

β

ij

}
nαβ

j = 0. (6)

The involved phase-inherent stresses, σα
ij , are calculated via Hooke’s law,

σα
ij = Cα

ijklε
α,el
kl , (7)

whereCα
ijkl is the stiffness tensor and ε

α,el
kl is the elastic part of the phase-inherent infinites-

imal total strain tensor. The phase-inherent infinitesimal (total) strain tensor εα
ij , in turn, is

calculated from combining Hadamard’s compatibility condition and the volume average
condition for the local total strain εij .
While based on a physically soundmotivation, it unfortunately turns out that, in regions

with more than two phases, the system above is usually overdetermined and it is generally
not possible to satisfy all equations above simultaneously. In fact, considering for simplicity
the purely elastic case, i.e. ε

α,el
ij = εα

ij , the phase-inherent (PI) approach outlined above
introduces Ñ phase-inherentdisplacement gradientsuα

i,j aswell as Ñ
(
Ñ − 1

)
jumpvectors

aαβ

i as additional degrees of freedom. Using the condition on the volumetric average of
the displacement gradient (cf. Item 1b), the phase-inherent quantity uα

i,j may be retrieved
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in terms of the volume-averaged displacement gradients and the jumps �ui,j�βα

ui,j =
∑

α

φαuα
i,j = φαuα

i,j +
∑

β �=α

{
φβ
(
uα
i,j + �ui,j�βα

)}

=
⎧
⎨

⎩
φα +

∑

β �=α

φβ

⎫
⎬

⎭

︸ ︷︷ ︸
=1

uα
i,j +

∑

β �=α

{
φβ�ui,j�βα

}

⇐⇒ uα
i,j = ui,j −

∑

β �=α

{
φβ�ui,j�βα

}
. (8)

Assuming Hadamard’s compatibility condition (cf. Item 2a) to hold between all phases,
this allows expressing the Ñ phase-inherent displacement gradients as

uα
i,j = ui,j −

∑

β �=α

{
φβaβα

i nβα

j

}
, (9)

and thus as a function of the average displacement gradient and the jump vector alone.
A priori, this leaves 3Ñ

(
Ñ − 1

)
additional degrees of freedom for satisfying the same

number of continuous traction conditions in Item 2b. As nαβ

j = −nβα

j and �ui,j�αβ =
aαβ

i nαβ

j = −�ui,j�βα = −aβα

i nβα

j = aβα

i nαβ

j , one necessarily has aβα

i = aαβ

i , which allows
reducing the number of unknown jump vectors to Ñ(Ñ−1)/2, given by aαβ

i for 1 ≤ α < β ≤
Ñ . This does not impose any additional difficulties with regards to the solvability since,
at the same time, with �σij�αβnαβ

j = −�σij�βαnαβ

j = �σij�βαnβα

j , one may simultaneously
reduce the number of continuous traction conditions to be satisfied to those for 1 ≤ α <

β ≤ Ñ . In regions with more than two phases though, the algebraic equalities

aαβ

i nαβ

j = �ui,j�αβ = �ui,j�αδ + �ui,j�δβ = aαδ
i nαδ

j + aδβ

i nδβ

j (10)

for δ �= α,β impose an additional set of compatibility conditions on the jump vectors.
This may significantly reduce the number of remaining degrees of freedom and in general
one may therefore not satisfy all the continuous traction conditions simultaneously.
One way of partially circumventing this difficulty is to choose to enforce Hadamard’s

compatibility and the continuous traction condition with respect to one reference phase
R only. As Eq. (9) remains valid for the reference phase R, and so does the relation
uα
i,j = uRi,j + aαR

i nαR
j (as well as Eq. (8)) for all α �= R, the phase-inherent strains are still

completely fixed in terms of the Ñ −1 jump vectors aαR
i , α �= R, whichmay be determined

by the corresponding number of conditions on the normal components of the stresses
�σij�αRnαR

j = 0.When solved numerically, the updates yield an adjusted, volume-averaged
local total stress σij , which may be used to solve the static linear momentum balance, here
without body forces,σij,j = 0. Formore details the reader is referred to the aforementioned
work of Schneider et al. [31] and Herrmann et al. [12].
Note that, since this way of restoring solvability is based on dropping some of the

equations, the jump in the displacement gradient (cf. Eq. (10)) between two phases α,β �=
R is of the form

�ui,j�αβ = aαR
i nαR

j + aRβi nRβj (11)



Schwab et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:47 Page 7 of 32

σext

σext

C0
ijkl

εel,0kl

C1
ijkl εel,1kl

V 1
ijkl εv,1kl

Cm
ijkl εel,mkl

V m
ijkl εv,mkl

CP
ijkl εel,Pkl

V P
ijkl εv,Pkl

Fig. 1 Maxwell-Wiechert model: A rheological representation withm = {
1, . . . , Pα

}
, Pα ∈ N, Maxwell

branches, where σ ext is an outer stress load, Cijkl is a stiffness tensor, Vijkl is a viscosity tensor, εelkl is an elastic
strain and εvkl is a viscous strain. A similar representation may be found in e.g. Haupt [8]

and thus in general consists of a rank-two tensor which is incompatible with Hadamard’s
compatibility condition. Similarly, in general, there is no reason for the continuous traction
condition to hold for any such phase pairings. Nevertheless, for pure two-phase regions
the overall approach is definite and for multiphase regions still sufficient, as the same
problem would exist for multilines or -junctions in a sharp-interface context.

Phase-inherent linear visco-elasticity using the Maxwell-Wiechert model

In contrast to elasticity, visco-elastic material behaviour shows a rate-dependence, but
both have no equilibrium hysteresis (see, e.g. Haupt [8]). Hence, Eq. (7), which formulates
rate-independent, linear elastic behaviour, is reformulated and written in a more general
form for a phase α as

σα
ij = f α

ij
(
εα
kl
)+ hα

ij
(
εα
kl , ε̇

α
mn
)
. (12)

The equilibrium elastic behaviour is retrieved if ε̇α
mn = 0. A general visco-elasticity law

covers creep and relaxation behaviour. The former describes a behaviour when strain
increases towards its equilibrium under a constant stress load, and the latter happens
under a constant strain load which causes the stress to decrease towards its equilibrium.
Such a general model capturing the behaviour outlined by Eq. (12) is the Maxwell-

Wiechert model. As depicted in Fig. 1, the model splits the rate-dependent part of the
equation,hα

ij , into P
α functions of the same type, so-calledMaxwell elements. Each element

describes an individual creep and relaxation process, often linked to a specific time scale.
As the model allows to connect an arbitrary number of Maxwell elements in parallel,
the model may be adjusted to any visco-elastic behaviour. Therefore it is also called
Generalised Maxwell model.
The Maxwell-Wiechert model, cf. Fig. 1, is composed of springs, an idealisation of the

time-independent elastic behaviour (stiffness tensorCijkl , related quantities superscripted
by “el” for elastic), and dampers, which render the time-dependent viscous behaviour
(viscosity tensor Vijkl , related quantities superscripted by “v” for viscous). As all branches
of the model are connected in parallel, the response of a material α to a load with a total
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stress and strain is

σ
α,tot
ij = σ

α,0
ij +

Pα
∑

m=1
σ

α,M,m
ij and ε

α,tot
ij = ε

α,0
ij = ε

α,M,m
ij . (13)

Here,m = {1, . . . ,Pα}, Pα ∈ N, indicates a Maxwell element, εα,M,m
ij its strain and σ

α,M,m
ij

its stress, respectively. Quantities representing the overall response of a Maxwell branch
are also superscripted by a capital M. The strain of the zeroth branch, which consists only
of a spring, is ε

α,0
ij = ε

α,el,0
ij , and its stress is σ

α,0
ij . Within a single Maxwell element spring

and damper are connected in series, giving the relations

σ
α,M,m
ij = σ

α,el,m
ij = σ

α,v,m
ij and ε

α,M,m
ij = ε

α,el,m
ij + ε

α,v,m
ij . (14)

Using the general behaviour of a spring, σij = Cijklεkl , and a damper, σij = Vijkl ε̇kl , the
total stress is retrieved as

σ
α,tot
ij = Cα,0

ijkl ε
α,tot
kl +

Pα
∑

m=1
Cα,m
ijkl

{
ε
α,tot
kl − ε

α,v,m
kl

}
. (15)

In the same way, by combining the stresses in a single Maxwell element, the evolution
equation for the viscous strain of each Maxwell element is given by

ε̇
α,v,m
ij =

{
V α,m
ijkl

}−1
Cα,m
klst

{
ε
α,tot
st − ε

α,v,m
st

}
. (16)

A common simplification is to assume that viscous strains are incompressible, i.e. only
the deviatoric part effects the behaviour ε

v,dev
st = εvst − ε

v,sph
st , with the spherical part being

ε
v,sph
st = 1/3εkkδst , and that the springs and dampers act isotropically, resulting in the
stiffness and the viscosity being describable by the bulk modulus K , the shear modulus G
and the scalar viscosity η. With this, Eqs. (15) and (16) change to

σ
α,tot
ij = 3

Pα
∑

m=0

{
Kα,m} ε

α,tot,sph
ij + 2Gα,0εα,tot,dev

ij

+ 2
Pα
∑

m=1
Gα,m

{
ε
α,tot,dev
ij − ε

α,v,m,dev
ij

}
(17)

and

ε̇
α,v,m,dev
ij = {

ηα,m}−1Gα,m
{
ε
α,tot,dev
ij − ε

α,v,m,dev
ij

}
. (18)

Of course, with these assumptions, the rheological model in Fig. 1 only represents the
behaviour due to the deviatoric part of the strain. In such cases, the spherical part is now
connected in series, as the above equations suggest.
Now, to change thematerial behaviour of a single phase within the continuummechan-

ics model derived in the previous subsection, Eq. (7) has to be changed to the stress-strain
relation of the Maxwell-Wiechert model in either of its forms.
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Implementation of the phase-inherent visco-elastic model

The introduction of phase-inherent strains and viscous strains in the form above leads
to a model containing a relatively large number of additional unknowns as compared
to more traditional models based on phase-averaged quantities only. After an implicit
discretisation in time, these consist, in addition to the average displacement field ui, of the
Ñ − 1 jump vectors n+1aRαi allowing for the determination of the Ñ phase-inherent total
strains n+1εα,tot

ij as well as the
∑Ñ

α=1 Pα different phase-inherent viscous strains n+1εα,v,m
ij .

These are accompaniedby an equal number of additional conditions to be satisfied, namely
the update rule (from Eq. (16) by temporal discretisation)

n+1εα,v,m
ij =

{

δiuδjw + �t
{
V α,m
ijkl

}−1
Cα,m
kluw

}−1

×
{
nεα,v,m

uw + �t
{
V α,m
uwop

}−1
Cα,m n+1
opqr εα,tot

qr

}

= nεα,v,m
ij + Dα,m

ijqr

(
n+1εα,tot

qr −n εα,v,m
qr

)
(19)

with

Dα,m
ijqr =

{

δiuδjw + �t
{
V α,m
ijkl

}−1
Cα,m
kluw

}−1 {

�t
{
V α,m
uwop

}−1
Cα,m
opqr

}

(20)

for the viscous strains and the continuous traction conditions

rαR
j = −�σjk�

αRnαR
k =

{
σR
jk − σα

jk

}
nαR
k = 0 (21)

with respect to the reference phase R in the sense of Eq. (6). Inserting the expression for
the new viscous strains and, for convenience, dropping the superscript (•)tot for the total
strain of a phase α as well as dropping the superscript n+1(•) for the quantities at the new
time step, the residual in Eq. (21) becomes

rαR
i =

⎛

⎝CR,0
irstε

R
st +

PR∑

m=1
CR,m
irst

{
εRst − ε

R,v,m
st

}

−Cα,0
irstε

α
st −

Pα
∑

m=1
Cα,m
irst

{
εα
st − ε

α,v,m
st

}
)

nαR
r

=
⎛

⎝CR,0
irstε

R
st +

PR∑

m=1
ER,m
irst

{
εRst −n ε

R,v,m
st

}

−Cα,0
irstε

α
st +

Pα
∑

m=1
Eα,m
irst

{
εα
st −n ε

α,v,m
st

}
)

nαR
r (22)

with Eα,m
irst = Cα,m

iruv
(
δusδvt − Dα,m

uvst
)
. Unlike Dα,m

uvst , E
α,m
irst is again a symmetric tensor since

the term Cα,m
iruvD

α,m
uvst is given by

Cα,m
iruvD

α,m
uvst = Cα,m

iruv

{
δuqδvw + �t

{
V α,m
uvkl

}−1 Cα,m
klqw

}−1

×
{

�t
{
V α,m
qwop

}−1
Cα,m
opst

}
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= Cα,m
iruv

{
1

�t V
α,m
uvop + Cα,m

uvop

}−1
Cα,m
opst . (23)

Rewriting Eα,m
irst based on this expression, and using Cα,m

opst = 1
�t V

α,m
opst + Cα,m

opst − 1
�t V

α,m
opst ,

gives

Eα,m
irst = Cα,m

irst − Cα,m
iruv

{
1

�t V
α,m
uvop + Cα,m

uvop

}−1
Cα,m
opst

= Cα,m
iruv

{
1

�t V
α,m
uvop + Cα,m

uvop

}−1 1
�t V

α,m
opst . (24)

From the first line it follows that Eα,m
irst is in addition positive (semi-)definite provided

V α,m
ijkl and Cα,m

ijkl are also positive (semi-)definite. The examination of the second line for
�t → ∞ and�t → 0 reveals thatEα,m

irst tends towards zero and towardsCα,m
irst , respectively,

which corresponds to the long-term and short-term behaviour of the linear visco-elastic
material model.
Combined with the expressions

uRs,t = us,t −
∑

β �=R
φβaβR

s nβR
t , uα

s,t = uRs,t + aαR
s nαR

t , α �= R (25)

for the phase-inherent displacement gradients in terms of the jump vectors aαR
i based on

Eq. (9), Hadamard’s compatibility condition (cf. Item 2a) with respect to the reference
phase andmaking use of the subsymmetries of the tensors used, a short calculation allows
to transform Eq. (22) into the linear system

{
nαR
r
({

1 − φα
}
Ĉα
irst + φαĈR

irst
)
nαR
t
}
aαR
s

−
∑

β �=α,R
φβnαR

r
{
Ĉα
irst − ĈR

irst
}
nβR
t aβR

s

= nαR
r

⎛

⎝
{
ĈR
irst − Ĉα

irst
}

εst −
PR∑

m=1
ER,m n
irst ε

R,v,m
st

+
Pα
∑

m=1
Eα,m n
irst ε

α,v,m
st

)

,α �= R, (26)

for the jump vectors, where εst is the volume-averaged strain tensor and

Ĉα
irst = Cα,0

irst +
Pα
∑

m=1
Eα,m
irst

= Cα,0
irst +

Pα
∑

m=1
Cα,m
iruv

{
1

�t V
α,m
uvop + Cα,m

uvop

}−1 1
�t V

α,m
opst (27)

is thealgorithmically consistent phase-inherent effective stiffness tensor (in termsof�t),
which, by the discussion of Eqs. (23) and (24), is symmetric and positive (semi-)definite.
A similar calculation may also be performed for the isotropic model depending on the

deviatoric viscous strains described by Eqs. (17) and (18). With respect to the properties
of Ĉα

irst it is important to stress that the use of strictly deviatoric viscous strains will
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only lead to a symmetric effective stiffness if the projector onto the deviatoric tensors
commutes with Eα,m

irst . This is obviously the case if all materials are isotropic, and may also
be fulfilled for other relatively simple anisotropies, but it is not generally true. As, for a
complex anisotropy, the use of purely deviatoric viscous strains does not allow for any
major simplifications in the algorithm above anyway, it may be better to avoid such an
assumption in such cases.
Solving the system in Eq. (26) leads to the jump vectors as a function of the (given) phase-

inherent viscous strains nεα,v,m
ij from the previous time-step and the volume-averaged

strain εst . From these, one may first calculate the phase-inherent total strains εα
st , then the

updated viscous strains ε
α,v,m
ij , and finally the volume-averaged stress σij using thematerial

law in Eq. (15) for the phase-inherent total stresses combined with the volume-averaging
condition in Item 1a.
Note that the procedure above essentially just corresponds to a Schur complement

approach based on an implicit block-elimination of all unknown (local) phase-inherent
quantities εα

ij , aRαi and ε
α,v,m
st in terms of the volume-averaged strain and the known phase-

inherent viscous strains nεα,v,m
ij from the previous time step (see e.g. Vassilevski [43]

for a detailed discussion of the Schur complements associated with block-eliminations).
In terms of the global problem given by the static linear momentum balance, σij,j =
0, regarding the determination of the displacement field ui, the compatibility with any
standard Krylov solution algorithm should be mentioned. This is due to the fact that, in
addition to the initial residual calculation, they only require the ability to evaluate the
action of the system based on increment-type auxiliary vectors δui. The viscous strains
nεα,v,m

ij , being fixed, need to be dropped from the update rules in Eqs. (19) and (26) in
order to obtain the corresponding increments in the viscous strains and the jump vectors.
Alternatively, if the solution of the linear momentum balance requires more than a

few iterations or more generally for preconditioning purposes, it is often computationally
preferable to form the resulting Schur complement system explicitly. In fact, even though
based on the solution of small local subsystems only, repeatedly applying the update
procedure above may become expensive due to the potentially large number of phase-
inherent quantities. As the phase-inherent quantities are, except for the finally converged
values, only auxiliary quantities for evaluating the effective volume-averaged stresses in
terms of the volume-averaged strains, their action may simply be replaced by the use
of an average algorithmically consistent stiffness tensor Ĉijkl . Abbreviating the matrix
corresponding to the linear system in Eq. (26) as Aαβ

ij ,

Aαβ

ij =
⎧
⎨

⎩

nαR
r
(
{1 − φα} Ĉα

irjt + φαĈR
irjt

)
nαR
t α = β ,

−φβnαR
r
{
Ĉα
irjt − ĈR

irjt

}
nβR
t α �= β ,

(28)

the increments�aαR
i of the jump vectors corresponding to increment�εij of the volume-

averaged strain are given by

�aαR
i =

∑

β �=R

{
Aαβ

ij

}−1
nβR
r
{
ĈR
jrst − Ĉβ

jrst

}
�εst , α �= R. (29)
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Using

�εRij = �εij −
∑

β �=R
φβ 1

2

{
�aβR

i nβR
j + nβR

i �aβR
j

}
,

�εα
ij = �εRij + 1

2

{
�aαR

i nαR
j + nαR

i �aαR
j
}
,α �= R, (30)

together with the definition of the volume-averaged stress in Item 1a and the phase-
inherent effective stiffness tensors Ĉα

ijkl from Eq. (27), yields

�σij =
∑

α

φαĈα
ijkl�εα

kl

=
∑

α

φαĈα
ijkl

⎧
⎨

⎩
�εkl −

∑

β �=R
φβnβR

l �aβR
k

⎫
⎬

⎭
+
∑

α �=R
φαĈα

ijkln
αR
l �aαR

k . (31)

With
∑

α φα = 1 and exchanging the summation variable in the last term, this may be
rewritten more compactly as

�σij =
∑

α

φαĈα
ijkl�εkl +

∑

α

φα
∑

β �=R
φβ
{
Ĉβ

ijkl − Ĉα
ijkl

}
nβR
l �aβR

k (32)

and thus finally, combinedwith the expression for the jump increments in Eq. (29), leads
to the average effective stiffness

Ĉijkl =
∑

α

φαĈα
ijkl +

∑

α

φα

⎛

⎝
∑

β �=R
φβ
{
Ĉβ

ijpq − Ĉα
ijpq
}
nβR
p

×
∑

δ �=R

{
Aβδ
qr
}−1

nδR
s
{
ĈR
rskl − Ĉδ

rskl

}
⎞

⎠ (33)

based on the phase-inherent stiffnesses Ĉα
ijkl in Eq. (27).

Despite its cumbersome explicit expression, this effective stiffness only needs to be
precalculated and stored once at the beginning of each time step. After the calculation of
the initial residual, all subsequent iterations may then be performed completely in terms
of the volume-averaged strains and stresses (without any reference to phase-inherent
variables) simply using the precalculated effective stiffness in Eq. (33). It is only after
convergence on the global problem has been achieved that the jump vectors and the
phase-inherent viscous strains need to be updated based on the converged strain εij .
Finally, it should be noted that - despite the incremental character in time of the viscous

strains - both approaches introducedmay in principle be implemented using only a single
field for the storage of the phase-inherent viscous strains as the updates may always be
generated locally based on the update rule, Eq. (19), and only need to be stored at the end
of each time step. This reduction may be quite important for problems involving a larger
number of phases and Maxwell elements as storing all the strains involved during such
calculations would require a relatively large amount of memory.
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Conventional approach on the basis of a VT homogenisation

For the sake of comparison, the previously introduced Maxwell-Wiechert model is also
briefly noted using a VT approach. Here, the basic assumption is that there is no phase-
inherent deformation (cf. Item 1b), hence εij = εα

ij and the same applies for the viscous
strains. Thus, thematerial parameters are averaged over all phases (compared to averaging
strains and stresses), and, for an isotropic material, this yields

K̄ =
∑

α

φαKα , Ḡ =
∑

α

φαGα and η̄ =
∑

α

φαηα . (34)

With this, the total stress response in a local point (cf. Item 1a) is directly the stress-strain
relation of the Maxwell-Wiechert model in its modified form,

σ tot
ij = 3

N∑

m=0

{
K̄m} ε

tot,sph
ij + 2Ḡ0εtot,devij

+ 2
N∑

m=1
Ḡm

{
ε
tot,dev
ij − ε

v,m,dev
ij

}
, (35)

and analogously the evolution equation of each singleMaxwell element is averaged over
all locally existing phases,

ε̇
v,m,dev
ij = {

η̄m
}−1 Ḡm

{
ε
tot,dev
ij − ε

v,m,dev
ij

}
. (36)

Simulation results and discussion
The linear visco-elasticitymodels presented in theprevious section are implemented in the
multiphysics and multiphase-field software environment Pace3d [44]. In the following,
the mechanical model is solved implicitly on an equidistant finite element grid with linear
elements and reduced integration. The spatial discretisation is �x = �y = �z = 1.0µm
in all simulations. Furthermore, only isotropic materials are considered and viscous
behaviour under shear is assumed. The 2D simulations shown were conducted as 3D
simulations with a thickness of 1.0µm discretised by one cell, and the boundary condi-
tions in z-directionmimic a plane strain state. For visualisation, the softwareVisit [45,46]
is partly used.

Behaviour in a single material point

Initially, the basic implementation of the visco-elasticity equations is validated. This is
done for a single material point with only one phase existent, hence whether the model
is implemented phase-inherently or conventionally does not play any role. The usage of
a standard linear solid material behaviour (see Fig. 2) allows the calculation of analytical
solutions of the temporal behaviour (cf. Haupt [8], Kaliske and Rothert [47] or Careglio
et al. [48]).
These are used in the following to compare the numerical solutions of the model under

relaxation and creep conditions.
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σext σext

C0
ijkl

εel,0ij

C1
ijkl

εel,1ij

V 1
ijkl

εv,1ij

Fig. 2 Standard linear solid: Maxwell-Wiechert model with one Maxwell element

Table 1 Relaxation test: Material properties

G0 G1 η1

1 GPa 3 GPa {1, 3, 9, 15, 30} GPa s

0 2 4 6 8 10 12 14 16 18 20
0.00

0.10

0.20

0.30

0.40

0.50

t s→

→
σ
12

G
P
a

analytical numerical

ηα,1 =1GPa s ηα,1 =3GPa s

ηα,1 =9GPa s ηα,1 =15GPa s

ηα,1 =30GPa s

Fig. 3 Relaxation test, one phase: Comparison of numerical and analytical solution

Relaxation

Using Fig. 2, the analytical solution for the relaxation of stress under a constant shear
strain load reads as

σ12 (t) =
{

G0 + G1 exp
(

−G1

η1
t
)}

ε12. (37)

For the comparison, a constant shear strain ε12 = 0.1 is considered, and a time period of
t = 20 s is simulated by using�t = 0.01 s. The simulation is performed with five different
viscosities ηα,1, a complete list of material properties is found in Table 1.
As depicted in Fig. 3, the numerical implementation produces values which are nearly

identical to the analytical solution.

Creep

Similarly to the relaxation test, the analytical solution for the creep test under a constant
shear stress load may be constructed from the rheological model in Fig. 2. This yields the
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Table 2 Creep test: Material properties

G0 G1 η1

1.5GPa 4.5GPa {1, 3, 9, 15, 30} GPa s

Fig. 4 Creep test, one phase: Comparison of numerical and analytical solution

equation

ε12 (t) = 1
G0

{

1 − G1

G0 + G1 exp
(

−G1

η1
G0

G0 + G1 t
)}

σ12. (38)

In this case a constant shear stress σ12 = 50MPa is chosen. Again the simulation covers
t = 20 s with a temporal discretisation of �t = 0.01 s, and the used material properties
are composed in Table 2.
The creep behaviour simulated by the numerical implementation agrees well with the

analytical solutions (see Fig. 4).

Behaviour in two-phase interface regions

After verifying the material behaviour in a single material point, the two model imple-
mentations are used in three different scenarios of two-phase interface regions. These are
a domain with two phases, connected by a straight interface, a circular inclusion phase
within a matrix phase, hence connected by a curved interface, and a domain divided by
an inclined interface, whose two subdomains, thus created, contain a circular inclusion
each. Not all phases aremodelled linear visco-elastically in these scenarios, but also purely
linear elastic phases occur to better show the capability of the phase-inherent modelling
approach. Sharp-interface solutions, computed by Pace3d, are given to better classify the
results. If non-horizontal and non-vertical interfaces are part of a simulation domain, the
sharp-interface simulation relies on Abaqus [49]. In Abaqus, for better comparability,
linear elements with reduced integration are used as well. The element size of Abaqus
simulations is leaned on the cell size in the Pace3d equidistant grid, but due to the com-
plex interface geometries the element size is non-constant. In such cases, the element size
of Abaqus simulations tends to be smaller than in Pace3d, hence small deviations in the
solutions may be attributed to the different resolutions.
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µ

µ

µ

µ

µ

µ

Fig. 5 Setup: Two phases, purely linear elastic α and linear visco-elastic β , are connected by a diffuse or
sharp interface

Table3 Two phases, straight interface: Material properties

φ K 0 G0 K 1 G1 η1

α 125
3 GPa 250

13 GPa – – –

β 25
6 GPa 25

13 GPa
25
3 GPa 50

13 GPa
50
13 GPa s

Two phases, straight interface

The basic setup for a 100µm × 100µm plate with two phases and an x-centred, straight
interface is given inFig. 5.Thedomain is loadedbyoutwardand inwardpointedorthogonal
and constant displacement of ū = 0.05µm for the x- and y-boundaries, respectively. This
means the remaining displacement components on the boundaries are not set and hence
free to evolve.
The diffuse interface exhibits twelve points within the range 0 ≤ φα ≤ 1, here giving

a width of l = 12µm. The system is relaxed over a time of t = 20 s and the temporal
discretisation is�t = 0.01 s. In Table 3 thematerial properties for the purely linear elastic
phase α and the linear visco-elastic phase β are given.
The results are plotted along x for a constant y = 49.5µm and at times t =

{0.5, 1.5, 20.0} s. In Fig. 6, the conventional/VT and the PI approaches are compared to a
sharp-interface solution.
The phase-inherent ansatz is able to match the sharp-interface solution at all times,

obviously for ε11 having its jump stretched over the diffuse interface region (Fig. 6a).
Furthermore, the centre of the jump coincides with the centre of the interface. For the
conventional VT ansatz the ε11 values are shifted towards the visco-elastic phase, and it
is unable to match the bulk values. For σ11 (Fig. 6b) both approaches have a continuous
stress field, but with the VT approach not matching the sharp-interface solution. In Fig. 7
the basic behaviour of the PI approach is illustrated.
In this example it is shown that indeed two separate strains are existingwithin the binary

diffuse interface region, one for each phase. As a sharp-interface ε11 exhibits a jump in
the direction normal to the interface, the phase-inherent quantities εα

11 and ε
β
11 do not
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µ

µ

a

b
Fig. 6 Results for a ε11 and b σ11: Comparison of the VT and the PI approach in mechanics to the
sharp-interface solution. Three different times (t = {0.5, 1.5, 20.0} s) are plotted along x with y = 49.5µm
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µ

Fig. 7 Phase-inherent quantities in the interface region: Development of εα
11 and ε

β
11 and the volume

averaged quantity ε11 over x with y = 49.5µm

meet but stay discontinuous. The volume-averaged ε11 forms a continuous field, which is
nothing else than the jump distributed across the interface width.
For this setup the influence of the interface width, the grid resolution and material

behaviour have been briefly examined as well.
The results for the interface widths l = {6, 12, 22} µm are depicted in Fig. 8.
The PI approach in Fig. 8b and d matches the sharp-interface solution for all examined

interface widths. In case of ε11 it is stressed, that the (diffuse) jump of the quantity remains
symmetric to the centre of the interface for all l. The VT approach (see Fig. 8a, c) shows
a clear trend towards growing deviations in values with a growing interface width. Espe-
cially quantities which exhibit a jump across the interface, here ε11, also show a growing
deviation in shape, i.e. the jump is not symmetric to the interface centre but shifted. This
implicates if l → 0µm the deviations will fully disappear, but since the PFM method
needs a certain number of grid points in the interface to work properly, the deviations of
the VT approach will de facto never fully vanish.
In Fig. 9 the grid spacing �x has been varied, while the number of grid points in the

interface is kept constant.
As visible in Fig. 9a, the PI approach yields results in the bulk regions identical to the

sharp-interface solution for all grid spacings examined. For finer resolutions, the physical
interface width becomes smaller and hence the (diffuse) jump of ε11 is performed over a
shorter distance. The VT scheme slowly approaches the sharp-interface solution in the
bulk regions the finer the grid is resolved, and the jump of the quantity approaches a sharp
jump but stays slightly shifted compared to the symmetric shape resulting from the PI
approach. Examining the interface region not on the basis of the physical width, but from
the number of grid points within the region (see Fig. 9b), it becomes obvious, that besides
the gain in accuracy in the bulk regions, the VT approach stays nearly equivalently shifted
and distorted for all grid spacings. Hence, even by using physically narrow interfaces,
the driving force calculation and therefore the movement of the interface might stay
equally defective (e.g. distortion of the interface, excess energy) as with physically or
computationally broad interfaces.
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Fig. 8 Influence of different interfaces widths: Results for ε11 and σ11 compared to a sharp-interface solution
at t = 20 s. The results of the VT approach are depicted in a and c, while the PI approach is shown in b and d.
Three interface width of l = {6, 12, 22} µm are plotted along x with y = 49.5µm

The last test with this simulation setup varies the material properties and hence
behaviour of the purely elastic phase α. Compared to the values listed in Table 3 the
values for Kα and Gα have once been multiplied by 0.2 and once by 5.0. The simulation
results are shown in Fig. 10.
As previously, the PI approach stays very close to the sharp-interface solution and

renders jumps symmetrically independently from changes in material properties. For the
VT approach, the simulation results nearly match the sharp-interface solution when the
material properties are not too different (see Fig. 10a, c). In such cases the values in the bulk
regions are quite identical and the jump of the quantity is only marginally distorted. The
more different the material properties and behaviours are, the greater are the deviations
in values and shape of the jump (see Fig. 10b, d).
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b
Fig. 9 Influence of different resolutions: Results for ε11 compared to a sharp-interface solution at t = 20 s.
Three resolutions of �x = {1.00, 0.50, 0.25} µm are plotted along a x with y = 49.5µm and b the grid points
in the interface (i.e. the interface is entered from the left at interface grid point 0 and left towards the right at
interface grid point 12)

Two phases, curved interface

A plate with a circular inclusion exhibiting constant normal stress loads of 100MPa is
depicted in Fig. 11. The domain measures 400µm × 400µm and the centred inclusion
of phase β , embedded in phase α, has a radius of r = 50µm. For the simulation, only a
quarter of the plate is considered, as pointed out by the dash-dotted symmetry lines.
As previously, the diffuse interface width is l = 12µm. A physical time of t = 2 s is

simulated while the temporal discretisation is again �t = 0.01 s. This time, both phases
have a linear visco-elastic material behaviour with parameters as listed in Table 4.
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Fig. 10 Influence of differently stiff material behaviour: Results for a, b ε11 and c, d σ11 compared to a
sharp-interface solution at t = 20 s. The results of a less stiff elastic phase α are depicted in a and c, while
stiffer material behaviour is shown in b and d. The quantities are plotted along x with y = 49.5µm

Table4 Two phases, curved interface: Material properties

φ K 0 G0 K 1..4 G1..4

α 3GPa 1GPa
{
0.75, 0.752 ,−,−}× Kα,0

{
0.75, 0.752 ,−,−}× Gα,0

β 3GPa 1GPa
{
1.50, 1.502 , 1.503 , 1.504

}× Kβ ,0
{
1.50, 1.502 , 1.503 , 1.504

}× Gβ ,0

φ η1..4

α
{
0.75, 0.752 ,−,−}× 1GPa s

β
{
1.504 , 1.503 , 1.502 , 1.50

}× 1GPa s

In Fig. 12 the results are plotted along the ξ coordinate, which goes from the centre of
the inclusion to the upper right corner (cf. Fig. 11).
In Fig. 12a the continuous quantity εtt (component orthogonal to the direction of ξ ,

hence tangential to the interface) is depicted. The solution of the PI approach follows
the sharp-interface solution simulated withAbaqus closely, except for small non-smooth
parts within the diffuse interface regions of course. The VT approach on the other hand



Schwab et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:47 Page 22 of 32

µ
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Fig. 11 Setup: Two linear visco-elastic phases, where an α-phase surrounds a β-phase inclusion

differs from the sharp-interface solution in each time step, but with locally varying inten-
sity. E.g., while at the beginning the difference in the results is mostly within the inclusion,
towards the end of the simulation the deviation in the matrix region increases. The dis-
continuous quantity σtt, which is oriented orthogonally to the ξ -direction, shows for all
cases a distinct jump, which is smoothed in case of the phase-field simulations. The over-
all picture is basically the same as before: The PI approach matches the sharp-interface
simulation results, while the VT approach shows deviations in the inclusion and matrix
regions.

Four phases, straight and curved interfaces

The last example in this section of binary interfaces is a two-dimensional plate of dimen-
sions 200µm × 200µm. It consists of two regions α and β , which are separated by an
interface inclined by 45◦ equipartitioning the domain. Within both regions there is a
circular inclusion embedded each. The positions and further dimensions may be taken
from Fig. 13. Furthermore a variable displacement load (Fig. 13, right) is applied to the
ux-components on the x-boundaries. All other boundaries are orthogonally fixed.
The width of each diffuse interface is once more l = 12µm. The variable load is

applied over a time of t = 10 s, where during the first 5 s there is a linear increase from
ūx = 0µmto ūx = 1µm.Thereafter the load is kept constant at ūx = 1µm.The temporal
discretisation used is �t = 0.1 s. The material properties of the three linear visco-elastic
phases (α, β , γ ) and the purely linear elastic phase δ are given in Table 5.
Firstly, in Fig. 14, the results for sharp-interface (simulated with Abaqus), VT and PI

simulation approaches are plotted at times t = {1.0, 5.0, 10.0} s. The plots go along ξ as
depicted in Fig. 13. For all approaches the strain component εnn (see Fig. 14a), which
is oriented in the same direction as ξ , has noticeable jumps in the interface regions.
Especially at later times it is obvious that the VT approach fails to follow the sharp-
interface solution when material properties and/or material behaviour differ too much
(rate-independent elasticity versus rate-dependent visco-elasticity). In the respective bulk
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Fig. 12 Results for a εtt and b σtt along ξ : Comparison of quantities tangential to the interface of the VT and
the PI approach to the sharp-interface solution computed with Abaqus. Three different times
(t = {0.05, 1.00, 2.00} s) are plotted along ξ
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Fig. 13 Setup: 2D plate consisting of two triangular parts with an inclusion each. The x-boundaries are
exposed to a variable load (see graph on the right), while the y-boundaries are fixed in y-direction

Table5 Four phases, straight and curved interfaces: Material properties

φ α β γ δ

K0 3.00GPa 13.00GPa 0.50GPa 70.00GPa

G0 1.00GPa 4.00GPa 0.35GPa 10.00GPa

K1 1.25 × Kα,0 0.50 × Kβ ,0 1.15 × Kγ ,0 –

G1 1.25 × Gα,0 0.50 × Gβ ,0 1.15 × Gγ ,0 –

η1 2.50 × 1.0GPa s 1.75 × 1.5GPa s 2.00 × 0.5GPa s –

K2 1.252 × Kα,0 0.502 × Kβ ,0 1.152 × Kγ ,0 –

G2 1.252 × Gα,0 0.502 × Gβ ,0 1.152 × Gγ ,0 –

η2 2.502 × ηα,1 1.752 × ηβ ,1 2.00 × ηγ ,1 –

K3 1.253 × Kα,0 – 1.153 × Kγ ,0 –

G3 1.253 × Gα,0 – 1.153 × Gγ ,0 –

η3 2.502 × ηα,1 – 2.00 × ηγ ,1 –

K4 – – 1.154 × Kγ ,0 –

G4 – – 1.154 × Gγ ,0 –

η4 – – 2.00 × ηγ ,1 –

regions the behaviour visibly deviates. Furthermore, the jump in εnn is shifted from the
centre of the diffuse interface region. Compared to this, the PI approach manages to stay
close to the sharp-interface solution at all times in the bulk regions and to have the jump
centred in the interfacial regions.
A similar picture may be observed in Fig. 14b, where the continuous stress component

σnn (component in ξ -direction) is depicted. Here again the VT approach differs in val-
ues throughout the domain, while the PI approach nearly resembles the sharp-interface
solution. At t = 10 s there is also a deviation from the sharp-interface result seen in the
phase-inherent solution. The values in the purely linear elastic phase δ and the linear
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Fig. 14 Results for a εnn and b σnn along ξ (whole diagonal): comparison of nn-components of the VT and
the PI approach to the sharp-interface solution. Three different times (t = {1.0, 5.0, 10.0} s) are plotted along
ξ
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Fig. 15 Results for a, b εnn and c, d σnn along the simulation time: The data is plotted for
x = y = {49.5, 149.5} µm. Compared to the VT approach, the PI approach stays for stresses and strains closer
to the sharp-interface solution in both, a purely linear elastic (x = y = 49.5µm) and a linear visco-elastic
(x = y = 149.5µm) material

visco-elastic phase γ differ slightly from the reference solution, but several times less than
those of the VT approach.
In Fig. 15 two points are picked along the previous plot, namely points close to the

centre of the purely elastic phase δ and the centre of the visco-elastic phase γ .
In Fig. 15b, d, and slightly less in a,c, the influence of the treatment of the mechanical

quantities in the diffuse interface region becomes obvious. While the PI approach stays
close or at least near the sharp-interface solution, the VT approach largely fails to predict
the correct material behaviour. A further observation is that the deviations visibly grow
over time when using the VT approach (compared to the PI approach). This happens
during times when the displacement load is increased as well as in the period when
the load is kept constant. As a conclusion, the mixing of material properties as done
in the VT (or similar) approach leads not only to a mixture of material behaviour in
respective interfaces (e.g. purely linear elastic mixed with linear visco-elastic), but also to
a different evolution of the viscous strains, which introduces a second source of deviation
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Fig. 16 Setup: Plate consisting of four regions with the same sizes and meeting at a multi-point in the
centre. The x- and y-boundaries are exposed to a variable load (see graph on the right). The coordinate ζ

starts at (0.0µm, 74.5µm) and η at (74.5µm, 0.0µm)

to the material behaviour. In contrast, the PI approach allows for a clear separation of
material behaviours (here rate-dependent and -independent behaviour) which minimises
the effects of having a diffuse interface region present.

Behaviour in multiphase interface regions

The last simulation example focuses on a multiphase region. Therefore a plate of size
100µm× 100µm is divided in four equally sized regions measuring 50µm× 50µm. The
setup is illustrated in Fig. 16. At each x- and y-boundary an outward pointing orthogo-
nal and variable displacement load is applied. The temporal development of the load is
depicted on the right side of Fig. 16.
The diffuse interface has a width of l = 8µm. The development and the magnitude of

the variable load, the simulation time span and the temporal discretisation are the same
as in the previous example. The phases and their material properties are listed in Table 6.
In Fig. 17 strain components εtt and ε11 are plotted along ξ and ζ , η, respectively (cf.

Fig. 16). As previously, the tt-component is orthogonal to the direction of ξ .
The PI approach again stays for all three cuts close to the sharp-interface solution. In

Fig. 17a, where the multiphase region is cut, the PI approach slightly deviates from the SI
solution already before the coordinate enters the multiphase region. This may indicate,
that treating multiphase regions as superposed jumps of binary interfaces is not fully
consistent. But compared to the VT approach, which also mostly - as before - deviates
from the SI solution in the bulk areas, the PI solution is still quite close to the SI results.
In both approaches, the singularity in the centre is smeared out, but in a different way.
In Fig. 18, the stress components σtt and σ11 are plotted along the same coordinates as
the strain components.
For σtt, depicted in Fig. 18a, the picture is similar to εtt previously. The PI approach

matches the SI solution in the bulk regions, and alsomanages to stay close to the SI solution
when already being in themultiphase region. But the closer σtt is plotted to the singularity,
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Fig. 17 Results for a εtt and b, c ε11 along ξ and ζ , η, respectively: Comparison of the VT and the PI approach
to the sharp-interface solution after t = 10.0 s

themore deviation is seen, which further foster the thought, that additionalmeasures have
to be taken in multiphase regions. Yet the PI approach renders better results compared to
theVTapproach. Thismanifests in the purely binary interface regions shown in Fig. 18b, c.
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Table 6 Multiphase region: Material properties

φ α β γ δ

K0 3.00GPa 4.50GPa 2.00GPa 30.00GPa

G0 1.00GPa 1.50GPa 0.50GPa 10.00GPa

K1 1.25 × Kα,0 0.50 × Kβ ,0 1.15 × Kα,0 –

G1 1.25 × Gα,0 0.50 × Gβ ,0 1.15 × Gα,0 –

η1 2.50 × 1.0GPa s 1.75 × 1.5GPa s 2.00 × 1.0GPa s –

K2 1.252 × Kα,0 0.502 × Kβ ,0 1.152 × Kα,0 –

G2 1.252 × Gα,0 0.502 × Gβ ,0 1.152 × Gα,0 –

η2 2.502 × ηα,1 1.752 × ηβ ,1 2.00 × ηγ ,1 –

K3 1.253 × Kα,0 – 1.153 × Kα,0 –

G3 1.253 × Gα,0 – 1.153 × Gα,0 –

η3 2.502 × ηα,1 – 2.00 × ηγ ,1 –

K4 – – 1.154 × Kα,0 –

G4 – – 1.154 × Gα,0 –

η4 – – 2.00 × ηγ ,1 –

Conclusions
In this work a model for the treatment of mechanical quantities on the basis of jump
conditions is used and adapted to incorporate a linear visco-elastic material behaviour
in a multiphase-field model. The linear visco-elastic material behaviour is represented
by a Maxwell-Wiechert model and makes use of phase-inherent strains and stresses. In
the simulative application this PI approach shows a close agreement to sharp-interface
solutions in binary interface regions, while a conventional VT approach cannot reach
the same accuracy and with rate-dependence leads to noticeable deviations in values and
shape of the material behaviour. This is associated to the mixture of material properties
and mechanical quantities in two- or multiphase regions in the case of the VT approach,
which means a direct coupling between different material behaviours (here, e.g. linear
elasticity and linear visco-elasticity, but also in the sense of differences in material prop-
erties or rate- or similar dependencies). Through the PI approach the model presented
is capable to strictly separate material behaviours leading to results in close proximity to
the desired sharp-interface solution on this length scale. Naturally, through this separa-
tion of mechanical quantities any other material behaviour may be easily incorporated in
the basic model (e.g. plasticity or visco-plasticity, or other non-linearities). Furthermore,
this indicates that the application of more than two different material behaviours in one
simulation might show a similar good approximation of the sharp-interface behaviour.
Despite the good agreement in binary interfaces, the presented approach may show

deviations in values in multiphase regions. Still, in such regions, the PI approach is closer
to the sharp-interface solution than theVTapproach.As briefly discussed, these occurring
deviations for the phase-inherent model in multiphase regions may be remedied by using
more sophisticated theories in such regions. Improvements may be expected from using
gradient continua, as e.g. suggested by Svendsen et al. [33], or adjusted formulations for
the force balance and the kinematic compatibility condition in the junction region (e.g.
outlined by Simha and Bhattacharya [50]).
Furthermore, the phase-inherent modelling (compared to conventional VT or simi-

lar approaches) manages to map the sharp-interface behaviour reliably onto the diffuse
interface, no matter of the diffuse interface width, the grid resolution or the difference in
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Fig. 18 Results for a σtt and b, c σ11 along ξ and ζ , η, respectively: Comparison of the VT and the PI
approach to the sharp-interface solution after t = 10.0 s

material properties or behaviour. It is again stressed, that in the sense of driving forces
this is unconditionally necessary, especially as correct interfacemovement needs a certain
number of grid points within.
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