KIT | KIT-Bibliothek | Impressum | Datenschutz

Three-Dimensional Numerical Simulations on the Effect of Particle Porosity of Lithium-Nickel–Manganese–Cobalt–Oxide on the Performance of Positive Lithium-Ion Battery Electrodes [in press]

Cernak, Susanne; Schuerholz, Florian; Kespe, Michael; Nirschl, Hermann

Abstract:
A spatially resolved electrochemical model is applied to single porous lithium–nickel–manganese–cobalt‐oxide (NMC) particles to evaluate the effect of particle porosity on the half‐cell performance. The arrangement of the primary particles within the investigated secondary particles is computer‐generated by means of the Fibonacci lattice method and is therefore identical. By varying the thickness of the sintering bridges between the primary particles, the different particle porosities are obtained. The numerical results reveal that transport limitations decrease with increasing particle porosity. This becomes evident in lower local overpotentials and more homogeneous lithium concentrations in the solid, leading to higher utilizable capacities. To find optimum particle porosities for different load conditions, a utility value analysis of two assessment approaches is performed. The volume‐based evaluation shows that nonporous particles are most suitable for high‐energy applications ≪1 C, whereas for medium to high‐power applications (1 to 10 C), particles with porosities between 10% and 20% perform best. Interestingly, the latter show even higher utilizable energy densities compared with the nonporous and the highly porous particles. ... mehr

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000128373
Veröffentlicht am 12.01.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2194-4288, 2194-4296
KITopen-ID: 1000128373
Erschienen in Energy technology
Verlag Wiley-VCH Verlag
Seiten Art.-Nr.: 2000676
Vorab online veröffentlicht am 18.10.2020
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page