KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards a Greener and Scalable Synthesis of Na$_{2}$Ti$_{6}$O$_{13}$ Nanorods and Their Application as Anodes in Batteries for Grid-Level Energy Storage

De Carolis, D. M.; Vrankovic, D.; Kiefer, S. A.; Bruder, E.; Dürrschnabel, Michael Thomas ORCID iD icon 1; Molina-Luna, L.; Graczyk-Zajac, M.; Riedel, R.
1 Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP), Karlsruher Institut für Technologie (KIT)


Grid applications require high power density (for frequency regulation, load leveling, and renewable energy integration), achievable by combining multiple batteries in a system without strict high capacity requirements. For these applications however, safety, cost efficiency, and the lifespan of electrode materials are crucial. Titanates, safe and longevous anode materials providing much lower energy density than graphite, are excellent candidates for this application. The innovative molten salt synthesis approach proposed in this work provides exceptionally pure Na$_{2}$Ti$_{6}$O$_{13}$ nanorods generated at 900–1100 °C in a yield ≥80 wt%. It is fast, cost‐efficient, and suitable for industrial upscaling. Electrochemical tests reveal stable performance providing capacities of ≈100 mA h g$^{-1}$ (Li) and 40 mA h g$^{-1}$ (Na). Increasing the synthesis temperature to 1100 °C leads to a capacity decrease, most likely resulting from 1) the morphology/volume change with the synthesis temperature and 2) distortion of the Na$_{2}$Ti$_{6}$O$_{13}$ tunnel structure indicated by electron energy‐loss and Raman spectroscopy. The suitability of pristine Na$_{2}$Ti$_{6}$O$_{13}$ as the anode for grid‐level energy storage systems has been proven a priori, without any performance‐boosting treatment, indicating considerable application potential especially due to the high yield and low cost of the synthesis route.

Verlagsausgabe §
DOI: 10.5445/IR/1000128378
Veröffentlicht am 12.01.2021
DOI: 10.1002/ente.202000856
Zitationen: 4
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2194-4288, 2194-4296
KITopen-ID: 1000128378
HGF-Programm 37.01.02 (POF III, LK 01) Components and Cells
Erschienen in Energy technology
Verlag Wiley-VCH Verlag
Band 9
Seiten Art.-Nr.: 2000856
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page