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FCC key deliverables: prototypes by 2025
FCC-ee	complete	arc	half-cell	mock	up 
including	girder,	vacuum	system	with	antechamber	+	pumps,	
dipole,	quadrupole	+	sext.	magnets,	BPMs,	cooling	+	alignment	
systems,	technical	infrastructure	interfaces.

key	beam	diagnostics	elements 
bunch-by-bunch	turn-by-turn	longitudinal	charge	
density	profiles	based	on	electro-optical	spectral	
decoding	(beam	tests	at	KIT/KARA)	;			

ultra-low	emittance	measurement	(X-ray		
interferometer	tests	at	SuperKEKB,	ALBA)	;	  
beam-loss	monitors	(IJCLab/KEK?)	; 
beamstrahlung	monitor	(KEK);	 	
polarimeter	;	luminometer	→ M. Benedikt, FCCW 2020, 9. Nov. 2020
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Beam diagnostics for the FCC-ee
• A first conceptual design of the FCC-ee 

BI has been performed for the CDR 

• No feasibility issues 

• Long list of technological challenges 
ahead of us 

• Benefitting from the R&D for low-
emittance ring / linear colliders / FEL 
communities

✔

💪

🤝

✔

→ T. Lefevre, FCCW 2019, 27 June 2019, Brussels 
→ T. Lefevre, FCCW 2020, 12 November 2020
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FCC-ee Layout

Main Booster Ring (BR) 
C ≈ 97.8 km, 20-182.5GeV

Collider rings 
C ≈ 97.8 km

Pre-Booster Ring (PBR) 
C ≈ 6.9 km (SPS), 6 – 20 GeV

e+ Damping Ring (DR) 

C ≈ 97.8 km, 1.54 GeV

e+e- S-band Linac (2.8 GHz RF) 

L = 222 m, 6 GeV

e- RF Gun
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FCC-ee beam parameters 

parameter Z WW H (ZH) ttbar
beam energy [GeV] 45 80 120 182.5
beam current [mA] 1390 147 29 5.4
no. bunches/beam 16640 2000 393 48
bunch intensity  [1011] 1.7 1.5 1.5 2.3
horiz. geometric emittance [nm] 0.27 0.28 0.63 1.46
vert. geom. emittance [pm] 1.0 1.7 1.3 2.9
bunch length with SR / BS [mm] 3.5 / 12.1 3.0 / 6.0 3.3 / 5.3 2.0 / 2.5

• High beam intensity and large dynamic range
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FCC-ee beam parameters 

• High beam intensity and large dynamic range 

• Small Emittances

parameter Z WW H (ZH) ttbar
beam energy [GeV] 45 80 120 182.5
beam current [mA] 1390 147 29 5.4
no. bunches/beam 16640 2000 393 48
bunch intensity  [1011] 1.7 1.5 1.5 2.3
horiz. geometric emittance [nm] 0.27 0.28 0.63 1.46
vert. geom. emittance [pm] 1.0 1.7 1.3 2.9
bunch length with SR / BS [mm] 3.5 / 12.1 3.0 / 6.0 3.3 / 5.3 2.0 / 2.5



GRANT AGREEMENT NO 951754Anke-Susanne MüllerFCCW 2020 - 10 November 2020 !8

FCC-ee specifics 

• High luminosity regions 
• High radiation level close IP’s 

• High beam intensity 
• Wakefield effects inducing heat load 

• High SR power in the arcs would produce high X-ray dose requiring 
• Shielding (design dependent on beam energy, i.e. SR critical energy) 

• Radiation hard electronic design

+

BPM & BLM: radiation hard 
electronic design

— 6000 BPMs — 
up to 400 W dissipated 

➜ active cooling
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BEAM-LOSS MONITORING



GRANT AGREEMENT NO 951754Anke-Susanne MüllerFCCW 2020 - 10 November 2020 !10

Beam loss monitoring
• Large energy stored in both Main and Booster beams  

• BLM in the arcs should not be sensitive to X-ray 
• Identifying beam losses from all different beam lines may not be trivial 

• Main rings: Detectors sensitive to beam propagation 
• Main vs booster ring: Possibly having quadrupoles at different locations? 

• Optical BLM system based on Cherenkov fibres 
• High directivity 
• Only measures charged particles

Many experimental investigations initiated within Linear collider study 
• Crosstalk between beam losses from CLIC Drive and Main beams: M. Kastriotou et al, “BLM crosstalk studies on the 

CLIC two-beam module”, IBIC, Melbourne, Australia (2015) pp. 148 

• Position resolution of a distributed oBLM system : E. Nebot del busto et al, “Position resolution of optical fibre-based beam loss 
monitors using long electron pulses”, IBIC, Melbourne, Australia (2015) pp. 580 

• RF studies (Breakdown and Dark current): M. Kastriotou et al., “A versatile beam loss monitoring system for CLIC”, IPAC, Busan, 
Korea, 2016, pp. 286 
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A Fiber Beam Loss Monitor (FBLM)

Courtesy I. Chaikovska (IJCLab/IN2P3-CNRS)

e-

e-

Vacuum

Secondary electron

Chamber Wall

Upstream PMT Downstream PMTFiberCherenkov light

• Optical fiber attached to the vacuum chamber.  
• Electromagnetic shower generated when the main beam hits the 

vacuum chamber or any obstacle. 
• Cherenkov radiation produced in the optical fiber by the 

electromagnetic shower. 
• The fiber ends are coupled to the PMTs. 
• Cherenkov light converted to an electrical signal containing the 

information about the position and intensity of the beam losses.

Fibers @PHIL

TRANSVERSE BEAM EMITTANCE, SIZE 
AND POSITION MEASUREMENTS

In  2010,  three others  phosphorescent  YAG:Ce screen 
monitors will be installed on PHIL. The first one will be 
mounted  at  the  entrance  of  the  dipole.  It  will  give 
important informations on the beam behaviour just before 
the  dipole,  which  will  be  used  to  correctly  prepare  the 
beam for  mean and energy spread measurement  on the 
deviate  line.  It  will  also  be  used  for  2D  transverse 
emittance  measurement  using  Kapchinskij-Vladimirskij 
equations and/or slit and/or pepper pot technique. The two 
others  screens  will  be  placed  at  the  end  of  each  beam 
lines, just before the Faraday cups. The one located on the 
direct  beam  line  will  be  used  to  precisely  define  and 
control  the transverse beam size and position for futurs 
users. The one located on the deviated beam line will be 
place just after the variable slit and will be used for cross-
checked  the  mean and  dispersion  energy  measurements 
done with the Faraday cup.

Each  phosphorescent  screen  is  associated  with  a 
versatile optical system (made of one or more achromatic 
lens) and a Giga-ethernet CCD camera (2 with 1/3” sensor 
format  with  7.4  μm pixel  size  and  2  with  1/2”  sensor 
format  with 4.65  μm pixel  size).  The CCD dynamic is 
coded on 8 bit. In front of each camera a remote control 
optical density wheel is mounted in order to avoid pixel 
saturation during measurement.

CHARGE MEASUREMENT
For the charge measurement and the losses estimation, 

2  Integrating  Current  Transformer  (ICT)  along  the 

accelerator will be installed. One will be place at the exit 
of  the  photo-injector  in  order  to  characterise  the  beam 
charge at the beginning of the line, and one at the end of 
the direct beam line just before the BPM and the YAG:Ce 
screen. This will enable us to performed a beam charge, 
beam size and beam position measurement at  the same 
time and location for the same bunch.

ENERGY SPREAD MEASUREMENT 
The injector  TTF dipole is  a  60°1 sector  dipole  with 

face angle of 18.24°  [2]. The focal length LD computed 
with the  following formula 

LD=
∗ctan u1∗s

s−tan u1 tanu2∗c−tanu1∗tan u 2∗s
where

s=sin and c=cos 
with r=700 mm, a=60° and u1=u2=18.24° is  LD=1242.70 
mm. This distance is calculated from the center of the exit 
face dipole. A precise energy spread measurement require 
to  inject  -  in  the  dipole  -  a  beam  without  angular 
divergence and to monitor the horizontal beam size at a 
distance  LD after  the  dipole.  In  the  current  status,  the 
girder supporting the elements of the deviate beam line is 
too short to performe such measurement. Thus, in the first 
commissioning  part,  the  slit  and  the  YAG:Ce  screen 
monitor will be placed at a shorter distance, and energy 
spread  estimation  will  be  evaluated  by  comparison 
between  measurement  and  the  PARMELA  software 
simulations [3]. The accuracy level of the energy spread 
measurement  is  –  in  this  configuration  -  not  yet 
established, and more numerical analysis are required.

1 The deviation is performed in the horizontal plan.

Figure 3: current and some futurs diagnostics on PHIL.

Proceedings of BIW10, Santa Fe, New Mexico, US TUPSM100

Instrumentation
447

Requirements for the fibers: 
• High photon yield (large core fibers) 
• No scintillation in the fiber (long decay time 

=> worse BL position resolution) 
• High optical transmission 
• Radiation hardness.
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The FBLM system has been installed 
at PHIL and its functionality has been 
proven. 

The measured position accuracy allows 
resolving the beam losses occurring 
as close as 30 – 40 cm with the 25 m 
fiber along the vacuum chamber.

Courtesy I. Chaikovska (IJCLab/IN2P3-CNRS)

FBLM Test at PHIL
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ULTRA-LOW EMITTANCE 
MEASUREMENT

 transverse beam size and profile
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Beam Size: Prototype X-ray interferometer at KEK

15um

500um

15um

15um
30um

Design of double slit Single slit to study diffraction 

double slit for interferometer

Electron microscope image of slits

Single slit double slit

Vacuum Chamber and Linear Stage - received

Plan to install the full system on an X-ray beam 
line at SuperKEKB in next spring shutdown

T. Mitsuhashi (KEK)
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FCC-Collaboration between CERN, Univ. Of Milano and ALBA

Beam Size: Heterodyne Near Field Speckles 

Courtesy U. Iriso (ALBA)

GOAL:	Alternative	way	to	measure	the	beam	size	

• Procedure:	analyze	the	interference	of	the	photon	beam	with	
Silica	nanospheres	suspended	in	water	

• From	this	interfence	pattern	(called	speckles),	we	obtain	the	
photon	beam	coherence,	and	from	it,	we	derive	the	beam	size	

Water	and	Silica	capillaries

Speckle	pattern	with	water Speckle	pattern	with	colloids

M. Siano et al., Phys. Rev. Accel. Beams 20, 110702 (2017)
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Test of Heterodyne Near Field Speckles at ALBA

Oct 2018

Sept 2020

Raw Power Spectrum V profile

Courtesy U. Iriso (ALBA)

Many	lessons	learned,	setup	and	signal	visibly	improved	over	the	years
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LONGITUDINAL CHARGE DENSITY 
PROFILES

 bunch length, shape, and structures
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Bunch length: dielectric buttons at CLEAR
Detection performed at 30 and 
60 GHz using Schottky diodes

Beam

Dielectric button

Bunch by bunch  
resolution possible

Measured Bunch length using RF spectrometry

Curcio et al, “Non-invasive bunch length measurements exploiting Cherenkov 
diffraction radiation, Phys. Rev. Accel. Beams 23, 022802 (2020) 
Senes et al, “A dielectric beam position monitor for short bunches of charged 
particles”, to be submittedt (ns)

Temporal response of detector

Using Dielectric buttons producing Cherenkov 
Diffraction radiation as a source of radiation 
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Bunch-by-bunch longitudinal profiles

Stefan Funkner et al., Phys. Rev. Accel. Beams 22, 022801 (2019) 
Benjamin Kehrer et al., Phys. Rev. Accel. Beams 21, 102803 (2018)

longitudinal  bunch  profiles recorded  with 
the KALYPSO-based electro-optical 

spectral decoding setup

FCC-ee 
45.6 GeV

FCC-ee bunch profiles 
are strongly affected by  

beamstrahlung in collision 

high-throughput electro-optical 
single-shot diagnostics 

developed at KIT 

Dmitry Shatilov

setup to measure longitudinal charge density 
profiles of electron bunches at KARA 

S. Funkner et al.,    
https://arxiv.org/abs/1912.01323
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Near-field electro-optical spectral decoding

L. Rota et al., NIM A, 936, pp. 10-13, 2019 
Stefan Funker et al., Phys. Rev. Accel. Beams 22, 022801 (2019)

high-throughput electro-optical 
single-shot diagnostics with MHz rep. 

rates (EU XFEL, light sources) 
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Pulse diagnostics, e.g., for THz signals

40 ps

detector signal

KAPTURE working principle

Time

A
m

pl
it
ud

e 
(m

V
)

Rep. rate: from 550 ps to 5 ns

Real-time sampling

• KAPTURE readout electronics for fast sensors  
• Picosecond sampling system 
• Up to 1 GHz trigger rate 
• Up to 8 sampling points per detector pulse 
• Readout by PCIe up to 64 Gb/s continuously  
• Real-time data elaboration by GPUs 

M. Caselle et al., JINST 072P_1116 (2016) 
M. Brosi et al., Phys. Rev. Accel. Beams 19, 110701 (2016)

• Scalable, multi-purpose, e.g. 
• Modular setup 
• Simultaneous readout of multiple sensors 
• Online pulse-shape reconstruction 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The full picture…. at 2.7 MHz

KARA test facility 
• Circumference: 110.4 m 
• Energy range: 0.5 - 2.5 GeV 
• Revolution frequency: 2.715 MHz 
• RMS bunch length:  

45 ps (for 2.5 GeV) down to  
a few ps (for 1.3 GeV)

M. Brosi et al.,IPAC19,  
https://doi.org/10.18429/JACoW-IPAC2019-WEPTS015
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3SCIENTIFIC REPORTS |         (2019) 9:10391  | https://doi.org/10.1038/s41598-019-45024-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

designed photonic front-ends. In particular photonic time-stretch analog to digital converters35,36 opened the way 
to the realization of “single-shot terahertz oscilloscopes”30,35,37–39 providing up to tens of million traces per second.

The availability of new ultrafast measurement systems led to several milestones in these storage ring investi-
gations. Pioneer experiments using a streak camera could visualize microstructures in the several GHz range at 
the VUV ring40. More recently, electron bunch shapes have been indirectly characterized in single-shot by using 
new detectors based on thin films of superconducting YBCO41, and high repetition rate electro-optic sampling, 
using photonic time-stretch37. Although this progress enabled to record structures in single-shot up to the THz 
range, the obtained information concerned only the far-field (i.e., the synchrotron radiation) emitted by the 
microstructures37,39,40.

Figure 2. Global strategy of the experiment (a), and picture of the KARA storage ring (b). Interaction of 
a relativistic electron bunch with its own emitted coherent radiation leads to the so-called microbunching 
instability, and formation of a pattern with few millimeter period in the longitudinal direction. For monitoring 
the longitudinal electron bunch shape, we record the electric field evolution in its vicinity (at few millimeters), 
using a specially designed picosecond-speed photonic-time-stretch analog-to-digital converter. The digitization is 
made in two steps: (i) laser pulses are modulated by the electric field using an electro-optic crystal, and (ii) the 
modulated pulses are analyzed in single-shot, picosecond resolution, and multi-MHz acquisition rate. Note that 
the crystal is actually placed above the electron beam (the whole photonic time-stretch digitizer is detailed in 
Fig. 3). The electron bunch microstructure is also emitting intense coherent synchrotron radiation (CSR), which 
is simultaneously recorded. KARA photograph by Carina Franck (licensed under CC BY).

Figure 3. Photonic time-stretch analog-to-digital converter realized for recording the shape of electron 
bunches at high repetition rate. The electron bunch near-field is imprinted onto a chirped laser pulse, by using 
the Pockels effect in a gallium phosphide (GaP) crystal. The laser pulse is then further chirped in a long fiber, 
so that the modulation is slowed down to the nanosecond range, and can be recorded by an oscilloscope. 
Furthermore, an additional laser pulse which has not interacted with the electron bunch is used as “zero field” 
reference, and is subtracted from the signal by a balanced photodetector. Note that another reference laser pulse 
(not shown) is also recorded and used in the offline data processing (see Methods and Supplementary Material). 
Blue line: polarization-maintaining (PM) fiber, green lines: single-mode non- polarization maintaining (SM) 
fibers. YDFA: ytterbium-doped fiber amplifer, HWP: half-wave plate, QWP: quarter-wave plate, PBS: polarizing 
beam splitter. The GaP crystal is placed above the electron bunch trajectory. Only the free-space optics 
(along the dashed line) is located near/in the vacuum chamber, the rest (laser source, YDFA and downstream 
components) is located in a remote laboratory.

Photonic time-stretch recording of long. profile 

Serge Bielawski  et al., Scientific Reports, 9(1):10391, 2019
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Photonic time-stretch recording of long. profile 

Serge Bielawski  et al., Scientific Reports, 9(1):10391, 2019
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where f q p( , , )θ  is the distribution of the electrons at time θ in phase space (q, p). θ is a continuous and dimen-
sionless variable associated to the number of turns in the storage ring: f t2 sθ π= , where t is the time (in seconds) 
and fs is the synchrotron frequency (here in the tens of kilohertz range). The longitudinal position q and relative 
momentum p are the deviation from the so-called synchronous electron (with position z0 and energy E0). q and p 
are expressed in units of the equilibrium bunch length σz and energy spread Eσ  at zero current. I E f q( , )c wf  corre-
sponds to the field created by the whole bunch at the location q. We use here only shielded CSR impedance. 
Details are given in the Methods section.

In Fig. 5, we have represented the simulated evolution of the electron bunch shape versus number of turns 
in the storage ring. We can see that this type of representation can be used directly for performing in depth tests 
of theoretical model versus experimental data. In our case, we can see that the model can reproduce part of the 
spatio-temporal features, as e.g., structures moving towards the bunch head, and bunch tail. Evolution versus 
number of turns also reveals interesting discrepancies between model predictions and experimental data. These 
types of measurements should allow in due course to refine the models of the wakefields created by each electron 
(whose Fourier transform is known as the machine impedance).

In conclusion, we present a strategy enabling a simultaneous measurement of the “shape” of electron 
bunches in a non-destructive manner at each turn in a storage ring, by monitoring their electric fields. This 
new measurement possibility enables to directly observe the correlation, at each turn, between the charge 
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Figure 4. Simultaneous recording of the electron bunch shape at each turn and associated emission of 
coherent synchrotron radiation (CSR). (a) Single-shot recording of an electron bunch shape that passes near 
the detection electro-optic crystal (electric near-field recorded using time-stretch electro-optic sampling). Red: 
electro-optic signal (over the 0–250 GHz bandwidth). Green: high frequency part between 90 and 250 GHz. 
Blue: low frequency part below 80 GHz. (b,c,d) Single-shot bunch shapes versus turns in the storage ring: (b) 
Total electro-optic sampling signal (unfiltered), (c) and (d): high frequency part (90–250 GHz) revealing the 
microbunching structure [(c) is a zoom of (d)]. (e) Power spectrum of each bunch shape versus turn number 
(the colormap has been normalized with respect to the global maximum). (f) Emitted coherent synchrotron 
radiation recorded simultaneously at the KARA infrared beamline using a THz diode detector (the pulse 
height is represented at each turn). Note the correlation between the increase in coherent synchrotron radiation 
emission in (f) and the spontaneous formation of microstructures (d,e).

total signal

90–250 GHz  
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Phase space interpretation of bunch profile 
measurements

t phase space density

projection

𝚫 𝐄

𝚫𝐭

simulation

S. Funker et al., Phys. Rev. Accel. Beams 22, 022801 (2019) 
P. Schönfeldt et al., Phys. Rev. Accel. Beams 20 (3), 030704, (2017)
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Phase space interpretation of bunch profile 
measurements

t

S. Funker et al., Phys. Rev. Accel. Beams 22, 022801 (2019) 
P. Schönfeldt et al., Phys. Rev. Accel. Beams 20 (3), 030704, (2017)

short 
unstructured  
bunch

micro-structures appear + increase of bunch size 

micro-structures  
disappear 

INOVESA Simulation:
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Phase space reconstruction, …

S. Funker et al., https://arxiv.org/abs/1912.01323 (2020)

https://arxiv.org/abs/1912.01323
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…validation with simulations, …

S. Funker et al., https://arxiv.org/abs/1912.01323 (2020)

https://arxiv.org/abs/1912.01323
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…and application to beam measurements

S. Funker et al., https://arxiv.org/abs/1912.01323 (2020)

https://arxiv.org/abs/1912.01323
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Turn-by-turn dynamics during the microbunching 
instability

S. Funker et al., https://arxiv.org/abs/1912.01323 (2020)

Demonstration at KARA test facility 
• reconstruction time for complete phase 

space image: 61 µs 
• „Randon morphing“ between 

independent measurement

https://arxiv.org/abs/1912.01323
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AI: fast detection - fast feedback ?

Andrea Santamaria Garcia, et al. (KIT)

Detector

KAPTURE2

FPGA DAQ

BBB iGp*

BBB Cavity

(256x256x1)

(256x256x1)

(254x254x1)

(126x126x2)

(124x124x4)

(61x61x4)

(59x59x8)

(29x29x8)

(27x27x16)

(13x13x16)

(11x11x32)

(805x1)
(64x1)

(2x1)

subtract
mean

Conv (3x3)
+ leaky ReLU

MaxPool
(3x3)

Concatenate
(5x1)

Dense x4
(leaky ReLU)

Vision:  
Controlling instabilities in 
autonomous accelerators 
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Conclusion and next steps
• A first conceptual design of the FCC-ee BI has been performed 

for the CDR 

• No feasibility issues  

• Long list of technological challenges ahead of us 

• Benefitting from the R&D done in low-emittance ring / linear 
colliders / FEL communities. 

• Next step is to launch the FCC-ee specific R&D work to provide  
a realistic suite of beam diagnostic with a more precise cost 
estimation
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Thank you  
for your attention.
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