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Abstract: The analysis of microscopic images from cell cul-
tures plays an important role in the development of drugs. The
segmentation of such images is a basic step to extract the vi-
able information on which further evaluation steps are build.
Classical image processing pipelines often fail under heteroge-
neous conditions. In the recent years deep neuronal networks
gained attention due to their great potentials in image segmen-
tation. One main pitfall of deep learning is often seen in the
amount of labeled data required for training such models. Es-
pecially for 3D images the process to generate such data is
tedious and time consuming and thus seen as a possible rea-
son for the lack of establishment of deep learning models for
3D data. Efforts have been made to minimize the time needed
to create labeled training data or to reduce the amount of la-
bels needed for training. In this paper we present a new semi-
supervised training method for image segmentation of micro-
scopic cell recordings based on an iterative approach utilizing
unlabeled data during training. This method helps to further
reduce the amount of labels required to effectively train deep
learning models for image segmentation. By labeling less than
one percent of the training data, a performance of 90% com-
pared to a full annotation with 342 nuclei can be achieved.
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1 Introduction

Cell cultures can be used to examine the effectiveness and se-
lectivity of an anti-cancer drug without the need to sacrifice
animals. A large part of such studies relies on the evaluation
of microscopic images, since they offer a wealth of informa-
tion. From basic matters like the proliferation of cells up to
more advanced aspects like the state of individual cells, a lot
of questions can be answered on cell imaging.
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To extract this information in a quantitative and objective
manner algorithms are needed. The segmentation of nuclei in
microscopic images is a fundamental step on which further ac-
tions like cell counting or co-localization of other fluorescent
markers depend on. Algorithms like built-in FIJI plugins [13],
CellProfiler [9], Mathematica pipelines [14], TWANG [15]
and XPIWIT [1] are well established for this task. Typically,
these pipelines require properties such as object size and shape
and therefore have to be reparameterized for different record-
ing conditions or cell lines. In extreme cases, such as the seg-
mentation of apoptotic cells, parameterization is not sufficient
and special algorithms need to be designed [8].

In the recent years deep learning models like the U-
Net [11] gained attention in the biological field due to their
great modeling power: U-Nets can outperform classical seg-
mentation methods [3], but therefore they need rich training
data sets.

Newly emerging 3D cell cultures represent the living or-
ganism more closely than 2D cultures. Data sets are given
as stacked image series. Furthermore, new difficulties such
as decreasing brightness along the z-axis arise. Classical ap-
proaches, robust against intensity fluctuations exist, but suffer
from parameterization [15]. Deep learning methods like the U-
Net can also be used for 3D data [12], but they lack in estab-
lishment due to the effort to create 3D training data sets. The
process of generating training data for 3D images is time con-
suming and burdensome: Since the visualization is effectively
limited to 2D slices it is hard to conceive the object dimen-
sions which often leads to a loss of overview. In a full manual
approach, each plane in the 3D image has to be labeled indi-
vidually. It is also challenging to achieve consistent segment
boarders over consecutive planes [6].

As an example, to label a single 1282x128x32px image
patch containing 200 nuclei with the help of an interactive la-
beling method [16], a time of 7.5k was needed. To create a
training data set with only ten image patches a time of 75h
would be needed.

Thus, many methods were developed to reduce the 3D-
labeling effort which can be divided in three major approaches:
Interactive labeling [5, 16], weakly supervised learning [19]
and artificial training data [2, 7, 17]. The goal of interactive
labeling is to accelerate the annotation process by support-
ing the user in a semi-automatic manner. Weakly supervised
learning uses different annotations like point or scribble an-
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notations which are easier to generate. Artificial training data
with known labels can be created from simulations or through
unpaired image-to-image translations.

A relatively new approach called semi-supervised learn-
ing is emerging utilizing labeled and unlabeled data during
training. Mittal et al. [10] proposed a two branch approach for
semantic segmentation consisting of a GAN-based segmenta-
tion branch and a classification branch both utilizing labeled
and unlabeled data during training. Xie et al. [18] utilized a
student teacher approach to incorporate unlabeled images in
their training routine.

In this paper we introduce a new method for semi-
supervised learning which utilizes iterative training in combi-
nation with a new approach to extract labels based on the three
class approach used for sparse labeling in [6]. The potential of
the introduced method is analyzed on 2D microscopic record-
ings of cell nuclei. We compare and investigate the influence
of the number of initial labels in relation to a fully labeled data
set, evaluate the progress over successive iterations and show
typical errors that occur during training.

2 Methods and Data

The deep learning model used for this method is a modified
U-Net [12] with a filter size of 32 in the first block, since it is
proven that U-Nets work with sparsely annotated data [6]. The
model is trained to minimize a weighted binary cross entropy
to avoid negative effects resulting from class imbalances.

Figure 1 shows the concept of the iterative training. For
the initialization of the method a sparsely annotated data set
is required. Since the goal is to minimize the labeling effort,
the user annotates only a few objects representative for the data
set including also their surrounding background. To further de-
crease the annotation effort, interactive labeling methods can
be used for this in the future.

The resulting labels then contain three classes: "ignored",
"background" and "foreground". The ignored class indicates
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Fig. 1: Concept of the iterative training. First, sparsely labeled
data is used to train a U-Net which is then used to segment the
unlabeled data. After a post-processing step new labels are ex-
tracted from the segmented image which are then used in the next
training step.
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pixels for which no labels are provided and which training
weights are therefore set to zero [6].

After training, the U-net is used to segment the unlabeled
data and a post-processing step consisting of a morphological
closing using a 3 x 3 square structuring element is performed to
remove noise and to smooth the boundaries. Afterwards each
segmented object is analyzed and if the mean confidence of the
raw prediction is greater than a threshold ¢t = 0.8, it is added
to the training data or otherwise discarded and thus labeled
as ignored. All of the segmented background is assigned to the
label class background, regardless of confidence. In contrast to
labels from previous iterations, the initial user defined labels
will not be overwritten. The training data for the next iteration
thus contains the user labels and the newly extracted labels. A
new U-Net is then trained with the updated training data and
new labels can be extracted to continue the loop.

During training, the data is randomly augmented includ-
ing random noise, scale and contrast to enable the network to
segment objects slightly different from the labeled ones [18].
To avoid overfitting to the training data, 25% of the objects are
withheld from training to serve as validation data. The train-
ing of each iteration is continued until the performance on the
validation set is not further increasing.

To evaluate the performance of the iterative training
method for varying amounts of initially labeled nuclei and dif-
fering areas of nearby included background a subset of the
publicly available data set BBBCO039v1 [4] is used. Gaussian
noise with ¢ = 0.01 was applied to the images to slightly in-
crease the difficulty. The data set used is small, but sufficient
to discuss effects based on a few representative examples.

The training was performed on three images shown in Fig-
ure 2 in which different amounts of nuclei ranging from 1 to
100 are labeled. The nuclei where randomly selected for each
experiment. The nearby background of the selected nuclei is
also labeled. Two sizes defined by 10 and 20 successive mor-
phological dilation operations with a 3 x 3 square structuring
element were tested. These two sizes get referred to narrow
and broad background in the following. For validation, a sepa-
rate image with a 25% lower number of labeled nuclei is used.

The performance of the trained models is measured using
the average Intersection over Union (IoU) of ten repetitions on
a test set consisting of 15 completely labeled images. The IoU
score was normalized to the mean IoU achieved on the test set
by training with a completely labeled train and validation set.

3 Results

By labeling 3,30 and 100 nuclei including the broad back-
ground a normalized IoU of 90.2%, 97% and 100% compared
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Fig. 2: Three images used for training of the models.

Fig. 3: Results with one initially labeled nucleus and narrow back-
ground. It shows the initial/extracted labels (a-c) and binarized
predictions (d-f) of the iteration 0, 1 and 3. (a-c): black, gray and
white pixel represent the classes ignored, background and fore-
ground. (d-f): green and red indicate false positive and false nega-
tive pixel errors. The original image can be seen in Figure 2 (c).

to a full annotation with 342 nuclei is achieved after three
training steps. The performance for the narrow background is
worse as only a normalized IoU of 77.8%, 81% and 79.1% is
obtained.

Figure 3 shows results for a training with a single labeled
nucleus and narrow background. While the segmentation af-
ter the initial training with one labeled nucleus suffers from
large areas with wrongly segmented background (d), the next
models can recover and correctly segment these areas after the
fourth iteration (f). The image also shows that errors can ag-
gregate over subsequent iterations, as is the case for the elon-
gated nucleus at the top right of the image, where the segmen-
tation is shrinking.

To see whether this trend is common across all numbers
of initial labeled nuclei, the mean percentage of false posi-
tive and false negative pixels on the training images from ten
repetitions was measured over the iterations and visualized in
Figure 4.

As can be seen, large quantities of false positive pixels
are common to all amounts of labeled nuclei, whereas it can
be greatly reduced over subsequent iterations. With the broad
background the amount of false positive pixels can be reduced
and an increase in the amount of labeled nuclei can further de-
crease the error. The figure also shows that the amount of false
positive pixels is slightly increasing over the iterations. Label-
ing of only few nuclei reduces the amount of false positives,
but increases the amount of false negatives.

— 3

4 Discussion

The results show that the proposed method can increase the
performance on a sparsely labeled data set. By labeling less
than 1% of the training data (3 nuclei), a performance of 90%
can be achieved compared to a full annotation with 342 nuclei.

Large background areas in which no nuclei are located
seem to be a problem of sparse labeling when only regions
nearby nuclei are labeled. Since these areas can make up a
large part of the images, results are greatly influenced by them.
The problem can be reduced by annotating a greater region
around the labeled nuclei (broad background). Specific anno-
tation of few of such regions could possibly solve this prob-
lem completely. Nonetheless the iterative training method can
recover from such mistakes and thus greatly improve the seg-
mentation performance. This can be beneficial for 3D data as
it is hard to label big volumes of background regions due to
the limitation of 2D visualization.

The results show that the method can reduce the number
of false positive pixels, while also leading to a slow increase
of false negative pixels over subsequent iterations. The main
reason for this effect seems to be the vanishing nuclei. Mis-
classified parts of a nucleus are used as a background labels in
the next iteration, which results in a further increase of false
negative pixels for that nucleus.

The enlargement of ignored regions to avoid the use of
false negative pixels as labels did not improve the situation
as it leads to an increase in size of all segmented nuclei and
thus to an increase of false positive pixels. Attempts can be
made to specifically enlarge only the ignored regions for nuclei
which do show a low confidence. Moreover an advanced post-
processing strategy can be implemented, like an active contour
method to revise the segmentation. We also can think of a user
intervention after a few iterations to select good segmented
nuclei.

At the current state the method seems to be most use-
ful when only labeling a few nuclei including as much back-
ground as can be quickly annotated. An optimal stop-criterion
is still to be found, but a possible criterion could be vanishing
changes in the percentage of ignored labeled pixels.

This workflow will also be adapted for 3D images in fu-
ture work. There the user would sparsely label 2D slices of
different orientations or complete nuclei including their nearby
background while the extraction of labels can be performed in
the same way just on 2D slices. An extraction based on vol-
umes may also be used, but the confidence of complete nuclei
could be too low.
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Fig. 4: Percentage of false positive (a,b) and false negative (c,d) pixels on the training set for three train steps and different amounts of
labeled nuclei including the narrow (a,c) or broad (b,d) background. The percentage values are shown on a logarithmic scale.

Ministry of Education and Research (BMBF) as part of the In-
novation Partnership M2Aind, project M2OGA (03FHS8I02IA)
within the framework Starke Fachhochschulen—Impuls fiir die
Region (FH-Impuls). Conflict of interest: Authors state no
conflict of interest. Informed consent: Informed consent has
been obtained from all individuals included in this study. Eth-

ical approval: The conducted research is not related to either

human or animal use.

References

(1]

(2]

(3]

4

(3]

(6]

(7]

(8]

Bartschat A, Hibner E, Reischl M, Mikut R, Stegmaier J.
XPIWIT—an XML pipeline wrapper for the insight toolkit.
Bioinformatics 2015;32:315-317.

Bohland M, Scherr T, Bartschat A, Mikut R, Reischl M. In-
fluence of synthetic label image object properties on GAN
supported segmentation pipelines. In: Proc., 29. Workshop
Computational Intelligence, Dortmund. 2019, 289-309.
Caicedo JC, Goodman A, Karhohs KW, Cimini BA, Ackerman
J, Haghighi M, et al. Nucleus segmentation across imaging
experiments: the 2018 data science bowl. Nature Methods
2019;16:1247-1253.

Caicedo JC, Roth J, Goodman A, Becker T, Karhohs KW,
Broisin M, et al. Evaluation of deep learning strategies for
nucleus segmentation in fluorescence images. Cytometry
Part A 2019;95:952—965.

Chen J, Ding L, Viana MP, Hendershott MC, Yang R, Mueller
IA, et al. The Allen Cell Structure Segmenter: a new open
source toolkit for segmenting 3D intracellular structures in
fluorescence microscopy images. bioRxiv 2018;:491035.
Gigek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger
O. 3D u-net: Learning dense volumetric segmentation
from sparse annotation. In: Medical Image Computing and
Computer-Assisted Intervention — MICCAI Springer Interna-
tional Publishing 2016, 424—432.

Dunn KW, Fu C, Ho DJ, Lee S, Han S, Salama P, et al.
DeepSynth: Three-dimensional nuclear segmentation of bi-
ological images using neural networks trained with synthetic
data. Scientific Reports 2019;9.

Khan AuM, Weiss C, Schweitzer B, Hansjosten |, Mikut R,
Reischl M. Multimodal image segmentation of cellular frag-
mentation using edge detector and morphological opera-

9]

[10]

1]

(2]

[13]

[14]

[18]

[16]

7]

(8]

[19]

tors. Biomedizinische Technik/Biomedical Engineering 2014;
59:518-521.

McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini
BA, Karhohs KW, et al. CellProfiler 3.0: Next-generation
image processing for biology. PLOS Biology 2018;16:1—17.
Mittal S, Tatarchenko M, Brox T. Semi-supervised semantic
segmentation with high- and low-level consistency. IEEE
Transactions on Pattern Analysis and Machine Intelligence
2019;:1-1.

Ronneberger O, Fischer P, Brox T. U-net: Convolutional
networks for biomedical image segmentation. In: Lecture
Notes in Computer Science Springer International Publishing
2015, 234-241.

Scherr T, Bartschat A, Reischl M, Stegmaier J, Mikut R.
Best practices in deep learning-based segmentation of mi-
croscopy images. In: Proc., 28. Workshop Computational
Intelligence, Dortmund. 2018, 175-195.

Schindelin J, Arganda-Carreras |, Frise E, Kaynig V, Lon-
gair M, Pietzsch T, et al. Fiji: an open-source platform for
biological-image analysis. Nature Methods 2012;9:676—682.
Schmitz A, Fischer SC, Mattheyer C, Pampaloni F, Stelzer
EHK. Multiscale image analysis reveals structural hetero-
geneity of the cell microenvironment in homotypic spheroids.
Scientific Reports 2017;7:1-13.

Stegmaier J, Otte JC, Kobitski A, Bartschat A, Garcia A,
Nienhaus GU, et al. Fast segmentation of stained nuclei in
terabyte-scale, time resolved 3d microscopy image stacks.
PLoS ONE 2014;9:e90036.

Tasnadi EA, Toth T, Kovacs M, Diosdi A, Pampaloni F, Molnar
J, et al. 3D-cell-annotator: an open-source active surface
tool for single cell segmentation in 3D microscopy images.
bioRxiv 2019;:677294.

Wiesner D, Svoboda D, Maska M, Kozubek M. CytoPacq: a
web-interface for simulating multi-dimensional cell imaging.
Bioinformatics 2019;35:4531-4533.

Xie Q, Hovy E, Luong MT, Le QV. Self-training with noisy
student improves ImageNet classification. arXiv preprint
arXiv:191104252 2019.

Yoo I, Yoo D, Paeng K. Pseudoedgenet: Nuclei segmentation
only with point annotations. arXiv preprint arXiv:190602924
2019.



