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Figure 1: Cody used to extend qualitative coding to unseen data. (a) The user makes an annotation in a text document. (b)
The user revises a rule suggestion to define the created code. (c) Cody searches text for other occurrences (red), and trains a
supervised machine learning model to extend manual coding to seen and unseen data (blue).

ABSTRACT
Qualitative research can produce a rich understanding of a phe-
nomenon but requires an essential and strenuous data annota-
tion process known as coding. Coding can be repetitive and time-
consuming, particularly for large datasets. Existing AI-based ap-
proaches for partially automating coding, like supervised machine
learning (ML) or explicit knowledge represented in code rules, re-
quire high technical literacy and lack transparency. Further, little
is known about the interaction of researchers with AI-based cod-
ing assistance. We introduce Cody, an AI-based system that semi-
automates coding through code rules and supervised ML. Cody
supports researchers with interactively (re)defining code rules and
uses ML to extend coding to unseen data. In two studies with quali-
tative researchers, we found that (1) code rules provide structure
and transparency, (2) explanations are commonly desired but rarely
used, (3) suggestions benefit coding quality rather than coding
speed, increasing the intercoder reliability, calculated with Krip-
pendorff’s Alpha, from 0.085 (MAXQDA) to 0.33 (Cody).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445591

CCS CONCEPTS
• Computing methodologies → Supervised learning by classifi-
cation; • Human-centered computing → User interface design; •
Information systems → Clustering and classification; Struc-
tured text search.

KEYWORDS
Qualitative research; Qualitative coding; Rule-based coding; Super-
vised machine learning; User-centered design; Artifact design
ACM Reference Format:
Tim Rietz and Alexander Maedche. 2021. Cody: An AI-Based System to Semi-
Automate Coding for Qualitative Research. In CHI Conference on Human
Factors in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3411764.3445591

1 INTRODUCTION
Qualitative research is valued not only in the human-computer
interaction (HCI) community to produce detailed descriptions and
rounded understandings, allowing researchers to answer what is,
how, andwhy questions [38]. It relies heavily on primary data in the
form of unstructured text, transcribed from sources such as record-
ings from interviews or focus groups. The annotation of transcripts
with descriptive or inferential labels, referred to as coding, is an
essential step for making sense of the text to drive the development
of concepts or theory [7]. Within qualitative data analysis (QDA),
coding is iterative. It goes from identifying initial categories in data
during first-pass coding to assigning and revising labels to identify
categories and themes. While qualitative researchers cherish good
coding as a mix of science and art [38], detailed and extensive texts
make coding highly time-consuming and error-prone. Much of the
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process can be painstaking and repetitive [46]. This challenge is
further aggravated with access to more massive datasets with new
possibilities for scalable data collection [36, 42], causing coding to
lose reliability and become intractable [1, 6].

QDA systems (QDAS) aim to support researchers during qualita-
tive coding and analysis, with MAXQDA, Nvivo, Atlas.ti, Dedoose,
WebQDA, and QDAMiner being commonly used [16]. Some of these
systems incorporate machine learning (ML) to accelerate qualitative
coding based on human annotations [12, 31, 48]. However, recent
user studies demonstrated two critical shortcomings that impede
the utility of available systems for enabling qualitative coding at
scale [7, 13, 26]: (i) QDAS do not integrate ML as an interactive
process that involves refining automated suggestions. The system
mostly restricts the interaction between the user and the ML model
to accepting and rejecting codes without insight into underlying
coding rules. (ii) Therefore, code suggestions lack transparency,
causing qualitative researchers the be reluctant to adopt ML-based
support for qualitative coding.

This paper addresses these gaps by designing and evaluating a
novel interactive AI-based ML system to support qualitative coding.
Building on the recent work of the HCI and the interactive machine
learning (IML) communities, we present Cody, a user-facing system
for semi-automating coding. We present the results of two evalua-
tions: Firstly, a formative evaluation to understand how qualitative
researchers interact with and whether they would trust an IML system
to support coding? Secondly, a summative evaluation, investigating
how qualitative researchers use Cody compared to the commercial
and well-established QDAS MAXQDA?

Our novel contributions include the following: We explain the
design of the AI-based system Cody, which allows end-users to
define and apply code rules (Figure 1b) while training a supervised
ML model to extend coding to seen and unseen data (Figure 1c).
Therein, we propose ideas for tackling challenges such as gener-
ating suggestions for code rules and cold start training of the ML
model. Through interviews with qualitative researchers, after hav-
ing used Cody for one week, we found that compared to MAXQDA,
automated suggestions increased coding quality rather than coding
speed. Further, while working with suggestions introduces an extra
step to coding, this step is beneficial for researchers to get a better
overview of the documents and to reduce the workload in the long
run. Additionally, researchers desired explanations, particularly for
ML-based suggestions, but rarely worked with them during the cod-
ing process. Finally, we discuss gains in intercoder reliability when
using Cody; implications for designing suggestions to be less pre-
cise but more engaging; meta-issues around automated suggestions
for qualitative research; and suggestions for future work.

2 RELATEDWORK
2.1 Coding in Qualitative Data Analysis
Multiple disciplinary origins, such as sociology, psychology, and
anthropology, shape the research traditions of qualitative research
[33], including Ethnography, Phenomenology, and Critical theory,
each with distinct aims. Approaches to analyzing qualitative data,
such as content analysis or grounded theory, differ between tradi-
tions in terms of the main focus and aims of the analytical process
[38]. While a comprehensive review of traditions and approaches

is out-of-scope for this paper, we refer to Ritchie & Lewis [38] for
in-depth information about qualitative research practices.

What unites many approaches to qualitative analysis is that
they involve some sort of coding, where researchers aggregate in-
formation about the content of data by assigning short labels or
codes – typically single words, sentences, or paragraphs [3, 14, 17–
19, 24, 26, 35, 45]. Depending on the epistemological assumptions,
researchers take two approaches to coding: deductive (codes are
derived a priori from scientific theories) or inductive (codes emerge
from the analytical process). Oftentimes, coding involves both de-
duction and induction at different stages of the research process
[33, 38]. Codes themselves can constitute various levels of informa-
tion depending on the researcher’s needs but are commonly created
either in a descriptive fashion, explaining higher-level concepts, or
in-vivo, were responses are used directly to create codes and high-
light themes. Coding allows researchers to make sense of the vast
amounts of data typically created through interviews, field notes,
and other qualitative data collection approaches.

The iterative, creative, and human-centered nature of coding
[6, 35] makes it a time-consuming and error-prone task [7, 26, 46].
Code development and application takes hours of concentrated
work, which is hard to perform reliably at scale [10], even for mod-
erately sized datasets. With access to larger datasets and advances
in computer-supported analysis, the adoption of qualitative data
analysis systems (QDAS) has increased substantially [14, 16].

2.2 Qualitative Data Analysis Systems
QDAS offer a magnitude of features for organizing, structuring,
coding, and analyzing texts and other digital data types such as
audio or video to improve upon the traditional paper-based coding
procedures [14]. Often, the institutional environment determines
which systems researchers use, due to funding and access to training
and support. Prominent examples of QDAS are Nvivo, Atlas.ti, and
MAXQDA, with a similar feature set1.

Despite the importance of coding for the entirety of data analysis,
support to accelerate qualitative coding with automated procedures
is limited [26]. With recent builds, Nvivo, Atlas.ti, and MAXQDA
allow users to search for keywords and auto-code all occurrences
[20, 27, 31]. Nvivo additionally includes an experimental feature
that uses machine learning to automatically assign codes using
existing coding patterns. The past five years have also seen the rise
of various open-source QDAS. INCEpTION [21] and, more recently,
TEXTANNOTATOR [2] provide web-based systems specializing in
semantic annotation coding. Both systems aim to speed up semantic
annotation by integrating active learning from human code exam-
ples (INCEpTION) or by providing automated pre-processing of
data through named entity recognition, sentiment scores, and topic
models (TEXTANNOTATOR). Tietz et al. [43] specifically evaluate
the user interface of their semantic annotation system refer which
combines manual and automated annotations in documents to im-
prove coding quality. They find that a combination of manual and
automated annotations achieves the most complete and accurate
results [43]. As above, the evaluation of user-facing systems so
far has focused on enabling users to annotate large-scale datasets
for a range of NLP tasks without systematic attention to HCI and
1For a detailed overview of systems and capabilities, see, e.g., [12, 16]
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qualitative data analysis [6, 26]. Focusing on qualitative coding,
Aeonium uses ML not to speed up coding, but to draw the attention
of collaborating qualitative coders to potentially ambiguous data
[13].

Overall, features to accelerate coding in established tools are
still at an experimental state and lack transparency, making them
hard or sometimes impossible to validate [18]. With a user-centered
inquiry, Marathe and Toyama [26] demonstrate that available QDAS
remain “electronic filing cabinets” due to insufficient catering to
qualitative researchers’ needs. Issues with the quality of and trust in
automated code suggestions and a lack of integration in the coding
process have led to reluctance in adopting ML-based features [26].
Simultaneously, the focus of technologically advanced coding tools
lies in supporting corpora creation for NLP tasks. Available systems
are not designed to build trust in suggestions through an interactive
coding workflow that combines manual and automated annotations
[6, 26].

2.3 AI-based Qualitative Coding
Two approaches in the context of artificial intelligence (AI) are
prevalent for accelerating qualitative coding: Natural Language
Processing (NLP) and Machine Learning (ML). Crowston, Liu, and
Allen [11] gave a prime example of both approaches by comparing
human-created NLP rules against rules inferred with supervised
ML. While both approaches offer promise for coding, manual de-
velopment of NLP rules requires an expert, while ML-based rule
development needs many examples. Crowston, Allen, and Heckman
[10] extended their work focusing on rule-based coding support for
content analysis and achieved commendable recall and precision
of 74% and 75%, respectively, for some codes. However, creating
NLP rules was time-consuming and difficult for rich codes, even for
experts that defined rules ex-post from a coded dataset. Meanwhile,
the open-source text analysis software Cassandre allowed users to
define (multiple) single word rules by highlighting markers in a
text [23], which could be grouped under one single label, forming a
register. Cassandre then gathers all passages that include the marker.
Lejeune [23] referred to the process of iteratively revising markers
to improve registers as the bounce technique. Shortly after, scholars
turned to supervised ML as one way to circumvent the definition
of explicit NLP rules and have systems learn directly from manual
coding [18, 24]. Yan et al. [47] developed a system for content anal-
ysis using a support vector machine and active learning principles
for the multi-label classification of emails. While training multiple
individual models for each label, they achieved a mean recall of 87%
at the expense of precision (7%). At the same time, users lacked the
technical skills to improve ML models through feature selection
and required interactive and adaptive interfaces to understand ML
outputs [47]. Along these lines, Chen et al. [7] called for research
on interactive ML approaches, reimagining the use of ML in coding
to make ML human-understandable. With Aeonium, Drouhard et al.
[13] answered the call by giving an example of interactive ML with
a system that does not utilize ML to suggest codes but to identify
ambiguities. Finally, Marathe and Toyama [26] reported from an
inquiry with qualitative researchers that while researchers desire
automation, automation needs to be transparent and part of the

coding process. They propose a novel spin at NLP rules by follow-
ing a search-style querying approach that achieved a commendable
88% precision and 82% recall on average. Compared to the NLP
rules used by Crowston, Allen, and Heckman [10], search-style
rules are more accessible and might force researchers to develop
coherent definitions for labels [18]. However, previous work on
code rules had experts define rules ex-post, rather than following
an interactive approach that enabled end-users to define rules as
part of the coding process.

Overall, this short review indicates interest and promise in apply-
ing code rules andML to support qualitative coding. Social scientists
and HCI researchers alike (e.g. [6, 25, 26]) have called for research
on designing interactive AI-based systems that integrate rule defi-
nition and ML model training into the process of qualitative coding
while providing trustworthy suggestions. This paper presents an
interactive AI-based system to bridge this gap and demonstrates
results from two evaluations with qualitative researchers.

3 CODY
Cody emphasizes an interactive AI-supported coding process. Users
can specify their desired unit-of-analysis, add annotations and
codes, define coding rules, react to suggestions, and access a rudi-
mentary statistics page. Figure 2 shows the interface of Cody during
the coding process. This section details the requirements for Cody
to support the coding process successfully.

3.1 System Requirements
We defined six requirements to build an assistive tool for qualitative
coding that pays attention to the HCI and AI challenges posed by
qualitative data analysis [45]. The requirements are inspired by the
excellent user-centered study presented by Marathe and Toyama
[26] and other related work [37]. By satisfying the following re-
quirements, we build a system that may act as a stepping-stone
towards Wiedermann’s vision for qualitative research: “In combi-
nation with pattern-based approaches, powerful visualizations and
user-friendly browsers, [machine-learning algorithms] are capable to
extend traditional qualitative research designs and open them up to
large document collections.” [45]

• R1 Unit-of-analysis. The unit-of-analysis (UoA) defines the
level at which annotations aremade to the text (e.g. flexible or
sentence-level). The system should allow users to set a UoA
for a document to improve consistency between multiple
coders [10, 26].

• R2 (Re)Define code rules. Code rules can urge coders to com-
bine keywords to form precise coding instructions [17].
Thereby, researchers might increase their understanding of
the data [18]. During the coding process, coders encounter
unexpected responses that effect previously defined code
rules. As such, the system should enable coders to define and
iteratively adjust code rules, applying the bounce technique
[32] (Figure 3d).

• R3 Seamless training of ML model. Qualitative researchers’
primary goal is not to train an ML model but to identify
meaningful instances in data [6]. The system should require
the user to be responsible for reviewing ML suggestions
while hiding model and training complexity [3] (Figure 3f).
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Figure 2: Final User Interface of Cody. (a) main annotation view, (b) codebook sortable via drag-and-drop, (c) Code suggestion
with confidence and accept/reject buttons. Below, Cody highlights multiple alternative suggestions for a section, (d) Number
of rule- and ML-based suggestions
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Figure 3: Coding workflowwith Cody. Usersmake an new annotation and define a new code (a) which opens the codemenu (b).
Users may add codes to or delete codes from an annotation, or edit a code (c). Cody suggests a possible code rule that users can
edit (d). When clicking on suggestions to open the label menu, Cody shows explanations (e). Code rules are applied on saving
to create suggestions and can be accepted/rejected by clicking the respective icons (g). The number of available suggestions
is shown in the menu bar (f), where users can trigger ML model retraining (refresh icon) or delete all ML-based suggestions
(trashcan icon).
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• R4 Iterative suggestions based on manual annotations. As re-
searchers value coding parts of their data to familiarize them-
selves with the material while desiring recommendations
to reduce repetitiveness, the system needs to incorporate
manual annotations and update accordingly [26].

• R5 Foster reflection. In qualitative coding, imprecise codes be-
come apparent as data is re-coded by a second coder, trigger-
ing an iterative code revision process [35]. Code suggestions
might act as a proxy for a second coder, as immature code
rules help coders identify potential coding errors and enforce
coding rigor [7, 26]. The system needs to enable researchers
to spot potential issues to reflect and iterate on coding rules
(Figure 2c).

• R6 Include explanations. Suggestions need to be easily under-
standable to enable coders to predict how changes affect sug-
gestions, without requiring technical literacy [6, 8]. Without
understanding the source of suggestions, coders not trained
in ML techniques might reject suggestions altogether, while
novice coders might accept suggestions too easily. The sys-
tem should explain suggestions by referencing code rules or
highlighting relevant keywords and providing a certainty
factor (Figure 3e).

3.2 Coding Process with Cody
We developed Cody as a web-based system running on Vue.js (front
end) and Flask (back end). Cody asks users to choose a UoA once
a document is uploaded, which determines whether Cody auto-
matically adjusts annotations to encompass an entire sentence (R1,
Figure 2a). When applying a label to a selection, the user can use
the label menu to review and adjust code rules by editing the rule in
the text area (R2, Figure 3d). Upon saving changes to rules, the new
rule is applied to the entire document to create new suggestions.
Users can review suggestions by clicking on either the label or the
annotation, e.g., to revise conflicting code rules (R2, R5, Figure 2c)
or to view explanations for suggestions (R6, Figure 3e). ML-based
suggestions are updated automatically after ten manual changes to
annotations (adding, editing, deleting) or whenever the user clicks
the refresh button (R3, R4, Figure 3f).

3.3 Suggesting Labels with Code Rules
When a user creates a new code, the system generates an initial
code rule suggestion. Therefore, the system compares the new code
with the words of the respective annotation using similarity scores
(SiS) and Levenshtein distance2 (LD). We use spaCy, a Python library
for natural language processing (NLP), to calculate SiS. Initially,
we remove stopwords3, spaces, and punctuations from the anno-
tation. Depending on the text’s language, the system then uses a
pre-trained model in German or English. It compares the context-
sensitive tensors of each word in the code with the lemmatized
remaining words in the annotation to identify potential synonyms
for codes that exceed an arbitrary cut-off value (similarity > 0.45).
2The Levenshtein distance can informally be defined as the minimum number of single-
character edits (insertions, deletions or substitutions) that are required to change one
word into the other.
3Stopwords are words that occur with a high frequency independent of textual genre,
e.g., ‘the’ in English [26].

We use the LD to additionally include words in the rule that have
a close enough match (relative LD > 0.3)4 to the given code. Rule
suggestions are lower cased and no word can be contained twice.
Initial code rule suggestions have the following form:

𝑟𝑢𝑙𝑒 → 𝑙𝑒𝑚𝑚𝑎𝑡𝑖𝑧𝑒𝑑 (𝐿𝐷 1) ∗ 𝐴𝑁𝐷 𝑙𝑒𝑚𝑚𝑎𝑡𝑖𝑧𝑒𝑑 (𝐿𝐷 𝑛)∗
𝐴𝑁𝐷 [ 𝑙𝑒𝑚𝑚𝑎𝑡𝑖𝑧𝑒𝑑 (𝑆𝐼𝑆 1) ∗ 𝑂𝑅 𝑙𝑒𝑚𝑚𝑎𝑡𝑖𝑧𝑒𝑑 (𝑆𝐼𝑆 𝑛)∗ ]

Whenever Cody generates a new rule, or when a user changes
a rule, Cody applies it to the entire document upon saving (Fig-
ure 4). We use the Python library whoosh [5] to search documents
and identify occurrences [26]. We structure every document in
sections to make code suggestions. In a typical interview transcript,
each sentence will form one section. When a rule changes, whoosh
parses the code rule into a search query and applies it to the indexed
document, returning the IDs of matching sections. Cody relies on
section IDs to update (add & remove) annotation suggestions on the
front end. Thus, the systemmakes suggestions on the sentence level.
Currently, code rules will not automatically account for syntax or
spelling errors in the underlying data (e.g., interview transcripts).
Users may include wildcards in code rules which allow for softer
matches to handle noise. Further, Cody highlights matching key-
words for a suggestion in the label menu, below the rule input text
area. For rule-based suggestions, Cody highlights matched words
in an excerpt from the current annotation (R6).

3.4 Suggesting Labels with Supervised ML
One crucial challenge to making code suggestions through super-
vised ML is the availability of labeled examples (cold start problem).
Cody utilizes both manual annotations and rule-based suggestions
to kick-start training the ML model (R4). As supervised ML al-
gorithm, Cody trains a logistic regression with stochastic gradient
descent (SGD) learning5 to classify unseen data based on the avail-
able annotations (positive examples) using scikit-learn [34] (Figure
4). We use the words in annotations as features for training while
removing language-depended stopwords. For preprocessing, we
used most of the default settings of the TfidfVectorizer6 from scikit-
learn to create a learnable matrix of TF-IDF7 features. In coding,
researchers usually work with more than two labels, making the
classification of sections a multiclass problem. In the multiclass
case, we deal with a low number of positives for each label and lack
explicit negative examples (annotations indicating the absence of a
label). Cody creates artificial negative examples to increase training
data by treating unlabeled sections of text above the last manual
4We determined cut-off values for similarity scores and Levenshtein distance through
iterative testing of labels, annotations, and resulting rules suggestions. As such, the
cut-off values are arbitrary, and other values will result in a different balance of words
in the suggestions.
5We compared various techniques for supervised learning according to precision, recall,
f1-Score, and training and prediction time to select the most promising algorithm for
our scenario. SGD fitting a logistic regression outperformed other algorithms (SVC,
MNB, Random Forest, Logistic Regression, SGD with linear SVMs, Neural Network
with LBFGS solver) with an f1-Score of 0.48. With hyperparameter tuning, we could
achieve a label accuracy of .677 and an overall accuracy of .734, using a logarithmic
loss function, balanced class weights, and the elasticnet penalty. While these values
might seem unimpressive at first, the scores were achieved with a training set of 90
positive examples from eight different labels for predicting 721 unlabeled sections.
6Adjusted settings were sublinear_tf = True, min_df = 2, encoding = latin-1,
ngram_range = (1,2)
7TF-IDF, short for ‘term frequency – inverse document frequency’, is a numerical
statistic intended to reflect the importance of a word in a document or a collection of
documents.
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Figure 4: System Architecture. (1) User makes an annotation, (2) code rule engine generates rule suggestion, (3) new rule is
displayed for user review, (4) save triggers suggestion generator to search indexed document for occurrences, (4) and sends
update to suggestions in the database. (5) Machine learning engine retrains model and makes suggestions, (6) displayed for
user review in the front end.

annotation as negatives, assuming that the user makes annotations
from top to bottom. Introducing artificial negatives (greygoo labels)
also enables the algorithm to mark a section as “not relevant” if
the predicted label is greygoo. Furthermore, we draw inspiration
from the S-EM algorithm for PU learning8 to create a threshold for
inaccurate suggestions [39]. We sample spies (S) from the labeled
training data (L) through a test-training split, so that |S| = 0.1 × |L|.
After training the model with the available training data for all
codes (C), we predict labels for every spy (s). Cody will only display
ML-based suggestions for codes (c) for that all spies were predicted
correctly, thereby prioritizing precision over recall, i.e.,

𝑐 = { 𝑐 𝜖 𝐶 : ∀𝑠 𝜖 𝑆 : 𝑞(𝑠 |𝑐) = 𝑠 |𝑐 }
with q(s|c) being the predicted spy-code combination for spy s and
s|c being the correct spy-code combination. When the model fails
to correctly predict spies for each of the available codes, we deleted
all existing ML suggestions.

Our strategy of continuous real-time retraining of the ML model
as the labeled data changes impacts the selection of an appropriate
ML-model, as low average training times are crucial. In our experi-
ments, model training only took milliseconds, depending heavily
on the amount of labeled training data. We expect frequent model
retraining to be useful when the prediction model is less stable,
which is the case with a low amount of training data – resulting
in fast model retraining. As the amount of labeled data grows, the
model should become more stable and would not need (re)training
after every change.

For ML-based annotations, Cody displays counterfactual expla-
nations in the form of indicative words for a suggestion to both
help users understand the words of a sentence that the algorithm
learned while potentially providing them with ideas for revising
code rules (R6). The calculation of counterfactual explanations is
comparable to the calculation of Shapley Values, which explain a
prediction by highlighting the impact of individual features. Cody
calculates the impact of a feature (each word of a sentence) by
8S-EM: Spy expectation-maximization, PU: Learning from labeled and unlabeled
examples.

predicting a label while removing one word (or combinations of
words) from a sentence (R6) (heuristic approach, c.f. [25]). Due to
the computational costs of the pairwise comparison, Cody stops
after iterating through all one- and two-word combinations.

4 EVALUATION
During development, we conducted a formative evaluation to un-
derstand how researchers interact with our prototype(s), followed
by a summative evaluation to compare the interaction with Cody
against MAXQDA.

4.1 Formative
Formative evaluations aim at collecting information to improve an
artifact [38]. Following the call-for-research for building and evalu-
ating a user-facing interface [26], we firstly focused on evaluating
how Cody’s design, combining rule-based with ML-based sugges-
tions, was perceived by qualitative researchers and determined
necessary changes.

4.1.1 Method. We recruited participants following criterion-based
sampling via a graduate university mailing list. Participants needed
to be PhDs or PhD students with prior training in qualitative re-
search who personally performed qualitative coding for at least one
study in the last year. Additionally, participants should have coding
experience with a QDAS. Six PhD students agreed to participate,
whom we invited for two subsequent iterations over two weeks.

We used contextual inquiry to guide the data collection [4]. Each
session for both iterations consisted of three parts: (1) Introduction
to Cody (5 mins), (2) in-situ evaluation with the think-aloud-method
(25 mins), (3) Semi-structured interview on user experience (30
mins). We provided participants with a task description to follow
while sharing their thoughts, ideas, and problems following the
think-aloud-method [15]. In the task description, we asked partici-
pants to perform three tasks: (1) Load their document into Cody.
Participants gave us access to data from own projects, which we
converted to a file type that Cody could process. (2) Switch to the
coding view, and (3) Perform qualitative coding on the document
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by recreating the coding process applied when originally analyz-
ing the data. While participants used Cody to code their dataset,
we took notes while observing their progress on a second screen.
Each session concluded with a semi-structured interview, during
which we asked participants for the features they most liked and
disliked; perception of code rules; perception of interface and cod-
ing efficiency; trust in suggestions; differences to their usual coding
process and perceived usefulness; and willingness to use Cody to
partially automate coding.

We transcribed the audio recordings of each session. The first au-
thor conducted inductive coding on both transcripts and field notes,
followed by discussions with both authors to iteratively refine emer-
gent themes. We summarized findings on a per-participant level
by comparing observations and aggregated findings to identify re-
quired and future improvements. Our goal was to understand user’s
work practices with Cody, to improve the user-facing interface. We
use pseudonyms for anonymity and present slightly edited quotes
for readability.

4.1.2 Findings: First Iteration. We started with a prototype run-
ning locally on a laptop. While already having the final artifact’s
functionality, this prototype of Cody aimed to minimize the actions
users would have to take to code a document. Code rules were saved
automatically and applied with every change. Cody would retrain
the ML model whenever users added or edited an annotation, or
when a code rule was applied. Due to the relatively small number
of labeled data available for model training, the processing time
for retraining was in the range of milliseconds. Further, the Cody
prototype did not indicate how many suggestions it created so far.

Participants could use Cody with their data and coding scheme,
if only for a short period of time. Tom, who commonly works with
grounded theory, found Cody useful for initial coding as part of
open coding: "I think it would help me with a certain number of
interviews to be faster with initial coding. I always have to identify
[security requirements from qualitative interviews with experts], that
takes time but has only limited benefit." Participants found rules par-
ticularly relevant for studies with many similar interviews, where
they can learn from an initial sample and use rules to reduce repeti-
tiveness. Lana explains: "I’ve roughly 81 interview pieces – it became
very boring and repetitive. Because they are only short statements, no
in-depth interviews [. . . ], but until then, I learned enough to be able
to define rules for the remaining pieces." Interestingly, participants
felt responsible for incorrect suggestions, having defined the un-
derlying rule themselves: "it misused customer service, but because I
made a mistake" (Cora). Further, we did not know how participants
would think about the quality of suggestions for code rules. The
quality did not matter much, as participants required suggestions
for rules primarily as examples to learn about the rules’ syntax: "not
every researcher is familiar with code rules, that’s why it’s important
that this tool suggests rules and also shows how they should work.
Otherwise I think this wouldn’t be used" (Cora).

The first prototype iteration convinced us that automated sugges-
tions are perceived as beneficial when applied correctly. However,
participants reported that they desired more control over the gen-
eration of suggestions, a better way to accept/reject them, and to

see the number of generated suggestions. We adjusted the proto-
type accordingly and deployed it to a server to enable a remote
evaluation.

4.1.3 Findings: Second Iteration. The second prototype was ac-
cessible on the web. Compared to iteration one, we changed the
interface to be more intuitive at the cost of requiring more user
actions. As such, users now had to save code rules manually, trigger-
ing their application. Cody retrains the ML model once every ten
changes to annotations rather than after every change. We made
this change to reduce the frequency with which we confront users
with new suggestions. Further, users can manually request model
retraining and the deletion of all ML suggestions. The menu bar
now shows the number of existing rule and ML suggestions. Users
can accept or reject individual suggestions directly via button-click.
We added user profiles to allow for multiple users working with
Cody simultaneously.

Overall, participants perceived the second prototype as helpful
primarily to structure documents better and faster. Josh explains:
"what you can do much better with this tool than with MAXQDA
or other tools is to explicitly deal with a topic. I could go back now
and look at everything related to customers, and then I could look at
everything related to platforms and so on. I don’t have that in the other
[tools], I would work through the document linearly, jumping back and
forth between topic blocks. And that’s why this can improve the coding
because I can focus much more." Eric thought Cody to help more
by reducing workload rather than improving coding quality: "of
course, there would be fewer errors, but it would not directly improve
the quality. I would expect myself to work correctly; it would rather
make it easier for me."

However, participants also had concerns about using Cody: One,
Seth was afraid of "missing certain things" mainly when using AND
operators in rules. Second, Eric had prejudices towards ML and
ignored ML suggestions, feeling that they "cannot work with that
little amount data." However, he would feel better once he had
labeled "three to four documents," which would also help him to
define code rules: "to create good code rules, not only do I need coding
experience, but I also need to know the text." Adding to this, Sven
said: "I think it makes a lot of sense if you let theory guide you and
what you want to find in an interview. If I use in-vivo coding, then
code rules are of no use to me. But if I want to have some kind of
structure, and want to break something down, then it makes sense."
Participants felt that the usefulness of code rules lies in giving
structure and that rules are best defined once they had familiarized
with the text. Eventually, automated suggestions would help to
"perceive the text as a whole" (Josh), as it requires researchers to
also re-read individual sections to review suggestions.

To summarize, participants perceived the automated suggestions
of the second prototype to be most helpful for "getting an overview
faster," (Eric) "having a speed advantage," (Seth) and building the
codebook "better, more stringent" (Josh). Despite these benefits,
Seth also noted that it would be a "higher initial effort," leading to
coding "becoming much easier." However, the interaction with the
prototype was too short for participants to observe these effects for
themselves. Josh explains: "I can’t judge this conclusively, you would
have to do it with 20, 30, 40 codes to be able to say that."
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Figure 5: Screenshots of theUser Interface of (a) Cody and (b)
MAXQDA. Both screens demonstrate what participants in
their respective treatment saw during the summative evalu-
ation.

4.2 Summative
A summative evaluation of an intervention or artifact is concerned
with its impact on the effectiveness and resulting outcomes [38].
As such, we evaluated Cody’s effectiveness compared to MAXQDA,
one of the most well-known QDAS [16]. For the summative eval-
uation, we used the second version of Cody (see Figures 2 and
5a).

4.2.1 Method. We invited participants from a pool of 3.500 uni-
versity students using criterion-based sampling [38]: (I) Bachelor’s
degree, (II) performed at least one qualitative study, (III) experience
with qualitative coding for at least one qualitative study, and (IV)
excellent English skills. We selected these criteria to ensure that
participants are experienced in qualitative analysis. Eleven people
ultimately agreed to participate. Table 1 presents a summary of
participant characteristics both for formative and the summative
evaluation as well as statistics of participants’ interactions with
their respective coding tools. We tasked participants with coding
a dataset over one week in a between-subject design: one group
using MAXQDA, the other Cody. Figure 5 shows screenshots of the
interface of (a) Cody and (b) MAXQDA. We used a public dataset
of interview transcripts on reflective practice in higher education
[19]. By evaluating Cody with a public dataset, we want to enable
other researchers to evaluate future tools against the same dataset,
as coding depends heavily on the underlying data. Furthermore,

the dataset comes with a student guide for participants on how to
code, steps to follow, and a complete codebook. Through the student
guide, participants can evaluate the transcripts with a concrete goal:
to identify feelings about reflective practice and how it was put into
practice [19]. Thus, we evaluated coding assistance with first-pass
coding with a pre-developed codebook, as suggested by Marathe
and Toyama [26]. However, participants were free to add new la-
bels should they need to. At the beginning of the week, we invited
participants to a 1-hour online workshop to introduce them to the
task using the student guide, including a 15 minutes introduction
to their respective QDAS. We conducted individual 30 minutes long
semi-structured interviews with all participants after they finished
the task. During the interview sessions, we asked participants about
their coding experience with the QDAS compared to tools they are
familiar with; perception and usefulness of automated suggestions;
explanations and effect on trust; and if they would use tools that
semi-automate coding. None of our participants in any study had
prior experience with rule-based coding of qualitative data. We
compensated participants with €90 for their time and expertise.

We transcribed the audio recordings of all interviews. The first
author conducted inductive coding on the transcripts, followed by
iterative discussions with both authors to refine emergent themes.
While we could collect usage data from Cody, for MAXQDA, we
partly rely on self-reported data from participants, such as the
duration of coding. From participants MAXQDA project files, we
extracted the number of annotations made and the labels partici-
pants used. For Cody, we measured various parts of the interaction,
such as the time taken to code, the number of manual or automated
annotations, and how often code rules were adjusted. Based on the
coded documents, we calculate Krippendorff’s Alpha as a measure
of intercoder reliability for both treatments [22]. The calculation of
Krippendorff’s Alpha required some preprocessing: We corrected
spelling mistakes in codes and differences in the usage of symbols (-
and –), which impact the calculation. For MAXQDA data, we trans-
formed the data to match the export structure from Cody, to use the
same calculation. We once again use pseudonyms for anonymity
and present slightly edited quotes for readability.

We detail two types of findings: (1) Impact of Automated Sug-
gestions on Coding highlights how rule- and ML-based suggestions
influenced participants’ coding. (2) Implications for Designing AI-
based Coding Support presents three recommendations for auto-
mated QDA assistants.

4.2.2 Findings: Impact of Automated Suggestions on Coding.

Code rules increase coding quality. An imprecise rule, when ap-
plied to an interview, creates multiple wrong suggestions. While
participants needed some time to understand how to define rules at
an appropriate scope, the process of iterating rules engaged them
to think about their coding. Ella explains: "it helped in the sense
that I thought about: ’what does it have to contain to fit?’." Further,
users tend to work with many overlapping labels. More precise
definitions help to reduce overlap: "as the codebook grows, I’m not
even sure which code matches which text correctly. There are overlaps,
that’s why it’s difficult if you haven’t defined the codes correctly [. . . ]
I think it helps a lot to structure it much, much better from the begin-
ning using exactly these keywords as search criteria." (Ena). Overall,
participants reported having a better understanding of the coding
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Table 1: Summary of participant characteristics and statistics. Participants are pseudonymized. We use ’Disc’ for discipline,
’Meth’ for methodology, ’STS’ for sociotechnical studies, ’HCI’ for human computer interaction, ’IS’ for information systems,
’GT’ for grounded theory, ’MQ’ for MAXQDA. For statistics, we use ’Ann’ for annotations, ’Acc’ for accepted suggestions, ’R
chg’ for number of changes to rules, ’ML ref’ for number of manual ML refreshs, time in hh:mm, ’Pre’ for precision, ’Rec’ for
recall, and ’GG’ for including greygoo examples for training. Precision and recall are taken from the final model retraining.

Formative
I1 Disc Meth QDAS I2 Disc Meth QDAS

Cora IS Iterativ Miro Eric IS Deductiv MQ
Lana HCI Inductiv MQ Josh HCI Iterativ MQ
Tom STS GT Miro Seth HCI Iterativ MQ

Summative
Name Tool Codes Ann Acc R chg ML ref time Pre (GG) Rec (GG) Pre Rec
Ella Cody 40 207 16 50 16 05:06 0.76 0.78 0.20 0.13
Ena Cody 37 383 139 31 23 08:26 0.61 0.56 0.58 0.36
Kelly Cody 52 119 3 51 9 04:56 0.83 0.81 0.00 0.00
May Cody 27 85 2 9 8 03:10 0.92 0.89 0.08 0.17
Nas Cody 36 173 48 20 10 06:47 0.82 0.81 0.50 0.38
Paul MQ 42 162 - - - 08:00 - - - -
Sana MQ 40 114 - - - 05:30 - - - -
Stev Cody 36 126 7 5 11 03:55 0.79 0.77 0.31 0.15
Tabi MQ 62 135 - - - 05:00 - - - -
Vic MQ 23 101 - - - 05:15 - - - -
Zoe MQ 27 152 - - - 03:30 - - - -

scheme. As May puts it: "we commonly work with definitions, but you
don’t see, it’s mostly concepts, but not what words are relevant. Using
[Cody], we have it clear and systematized." We were interested in see-
ing if the alleged understanding of the coding scheme translated to
increased intercoder reliability (ICR), and calculated Krippendorff’s
Alpha. We selected Krippendorff’s Alpha as a measure for ICR due
to its applicability with six individual coders. In their insightful
discussion of the value of calculating ICR, McDonald et al. (2019)
argue that ICR can be a useful measure when applying a codebook
to data [29]. For MAXQDA, five unique coders with an average of
132 annotations/coder had an Alpha of 0.085. For Cody, six unique
coders with an average of 182 annotations/coder had an Alpha of
0.332. Also, rules are useful for understanding the work of other
coders, mainly when code definitions are not discussed: "It will be
easier for third parties to understand. What was done, which rules
were used to code the document (Sana)."

However, the characteristics of the data and the aim of the an-
alytical process determine the usefulness of code rules. The more
structured the data, the easier it is to define rules that result in
precise suggestions. Particularly with data from (semi)-structured
interviews, rules can be fine-tuned to code specific sections of in-
terviews (e.g., age and demographics) or responses to questions
reoccurring across interviews (e.g., why did you decide to enter
higher education?). Ella states: "it depends on the questions and how
standardized the whole thing is done. I could imagine if you have a lot
of yes-no questions, it can help quite well." Luckily, interviews with
a structure that suffices for rule creation also tend to be repetitive
and time-consuming with little analytical reward. With interviews
where meaning is hidden in context, code rules fail to provide useful
suggestions as they discard dynamic semantics. Ella said: "I revised
[rules], often [. . . ] if you think to general, you suddenly have 120

suggestions, then I changed it and had one. It’s hard to balance, the
answers can be the same but still so different, that the rule fails to find
it." Further, code rules work best with an established codebook, e.g.,
when applying deductive coding. Lana states: "If I don’t have a code-
book that I want to apply, I just try to see what is in [the document],
without defining rules. But I think it makes a lot of sense if theory
guides your coding and you want to find something from theory in
an interview."

Despite the drawbacks of rules in dealing with context to make
precise suggestions, participants also found rules to help structure
data. Thereby, rules enable the scanning of documents for particular
topics of interest. As Stev puts it: "[Cody] definitely is a good support
in the sense that, for example, I want to code everything related to
motivation, then it takes work off my shoulders. Normally I would do
this by hand using Ctrl+F and the mark relevant sections. This helps
me not to overlook things."

To summarize, participants enjoyed working with code rules
and used them not only to generate suggestions but also to re-
think their coding. While they were not convinced that they could
appropriately formulate rules for every type of code or data, they
valued the feature for structuring interviews and increasing their
understanding, especially for unfamiliar data. Participants using
Cody had a higher intercoder reliability, compared to participants
using MAXQDA.

ML suggestions should prioritize precision over recall. Cody’s de-
sign purposefully hid the complexity of ML suggestions from the
user.While some participants could barely tell whether theyworked
with ML suggestions, they valued not having to deal with rejecting
multiple unhelpful suggestions. As such, systems should prioritize
precision over recall when training ML models. Zoe explains: "if I
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can only accept one of many suggestions, then it’s a waste of time, be-
cause I have to check every time [. . . ] So I’d rather have [suggestions]
less often and more precise."

Particularly the low number of positive examples for each label is
challenging for model training, reinforcing the notion that a system
should be careful not to distract the user with premature ML-based
suggestions. Despite the low number of positive examples, Kelly had
a positive experience with ML-based suggestions: "those suggestions,
that appeared without me changing [a code rule], this was something I
didn’t have before. And for some sections, where it made sense, it really
reduced your workload." Further, participants were not distracted by
having to reject wrong suggestions, given that wrong suggestions
are not perceived as prevalent. "A few times it really helped, but
often I had to delete suggestions. Yes, I think it was ok. It’s useful that
the possibility exists at all", Nas said.

Thus, ML-based suggestions are a double-edged sword. While
they help to not miss exciting phenomena in the data, they lack qual-
ity when the number of positive examples is limited, and require
strict thresholds. In combination with code rules, ML suggestions
are useful to extend suggestions to some of the false negatives of
rules, supporting users in improving rules by highlighting instances
that existing rules are missing. Hence, ML suggestions can sup-
port users if they focus on precision over recall, providing limited
support while minimizing distractions. The coders’ desire to work
through their entire dataset additionally reduces the risk of missing
relevant sections due to a low recall.

Checking suggestions is a beneficial extra step. Earlier user in-
quiries reported that researchers fear that automation would be
adding one more step to coding, having to check not only what code
the researcher would use, but also what the computer said [26]. All
six participants working with Cody confirmed that while the coding
process with Cody did not require them to change their general
process, it took time to (re)define rules, and navigate the docu-
ment, to accept and reject suggestions. Two participants quickly
discarded checking seen data for new suggestions for a comprehen-
sive check-up once they finished coding: "towards the end, I didn’t
bother because I noticed that new [suggestions] would pop up any-
time anyways. But especially in the beginning, I searched for them"
(Nas), "maybe what was different than if I had done it with another
software is that at the end I searched the whole interview for sugges-
tions and either accepted or deleted them" (Stev). An assistive system
should make it easy for users to review suggestions, particularly
those added to seen data. Ella and Nas suggest assisting users with
reviewing new suggestions, thus reducing the disruption of the
coding process. In Ella’s words: "When there are suggestions, I want
to be able to go there and return to the position where I left." Further,
reviewing suggestions for seen data had participants reexamine
manual annotations, and sometimes revealed sections that had been
overlooked. Overall, participants on average took similarly long
to code the data between treatments (5:22 h with Cody to 5:20
h with MAXQDA). While we cannot draw conclusions regarding
coding time due to the lack of internal validity, participants were
convinced that using code rules can accelerate their coding process.
However, they said that the number of interviews was too low to
make appropriate use of rule-based suggestions.

Thus, reviewing automated suggestions, when provided not only
for unseen but also for seen data, introduces an additional step
to coding. While participants desired support on the interface-
level to quickly review suggestions, they did not perceive Cody’s
suggestions to impact the coding procedure negatively. On the
contrary, Stev and Ena said that they used suggestions to double-
check codes in a second-pass and get a better overview of the
data as a whole: "[. . . ] you were brought to look more often and
without this help, you would have overlooked one or the other thing
especially in the first run, you would have had to go through more
often" (Stev). Ena voiced the following when asked whether the
automated suggestions helped: "Yes, definitely. In the beginning, it
was quite time consuming to create all of them and to think about
it. But it was cool when I had a page where five or six [annotations]
were suggested, and I just had to read through and check ’do they fit,
yes, no’ [. . . ] I really had the feeling that the work was easier."

4.2.3 Findings: Implications for Designing AI-based Coding Support.

Provide suggestions at an appropriate level of detail. Especially
participants using MAXQDA imagined suggestions not at a one-
code level of detail visible in the text, but as assistance to reduce the
choice of codes for an annotation. Tabi explains: "It would be nice
if I had some suggestions [. . . ] Maybe so that I only have to choose
between five codes, so I don’t have to look through all 30 codes, when
I make a selection in the text. Like three to five options." Further, Paul
suggests to only highlight interesting sections without making a
code suggestions, highlighting potential sections of interest: "the
algorithm says, ’something could be here,’ but you have to think for
yourself if you want to do something with it, it would enhance you
own process." Participants using Cody, on the other hand, showed
little interest in simple highlights instead of suggestions. However,
they were interested in multi-label suggestions. Kelly explains:
"you might lose the overview and accept [the suggestion] if only one
code is suggested. But when you have several, then you can think
about it again – which one fits best?" There were two reasons for
this preference. First, having three codes suggested strengthened
users’ confidence that the algorithm had considered all options.
While the algorithm considered all choices for any decision, Sana
felt that the algorithm might have missed something: "With only
one code suggested you think ’has it really seen everything?’ And
with three, I would know that there is a higher probability that it
selected the ones that fit." Second, participants felt at risk of accepting
suggestions too quickly, particularly when being tired. Having
multi-label suggestions requires users to make an active choice.
Eventually, participants felt that this choice would help them trust
the algorithm more. Sana explains: "it remains transparent. Even
when you have selected one out of three, you may still be able to see
these three later. If you take your time to look at it again and see ’ah
there it suggested these three, looking at it again, it still makes sense
for me.’"

To summarize, participants welcomed the idea of having sug-
gestions not only provide one but three to five potential codes,
increasing the involvement in decisions at the cost of additional
work. It is primarily essential that a human is the last instance
for reviewing suggestions, not allowing the system to "auto-code
(Paul)."
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Explanations are desired but get ignored. When asked about trust
in and transparency of automated suggestions, participants using
MAXQDA regarded explanations as elemental to understanding
suggestions and working with an assistive system. While partici-
pants using Cody partly voice requiring explanations, they pay no
attention to the explanations provided by Cody: "There was some-
thing, but I probably didn’t look at it very closely" (Nas), "generally,
if they [suggestions] make sense, they make sense [. . . ] I don’t know if
it’s important that I see or don’t see the specific rule" (May), "I verify
that for myself and think about whether it can make sense" (Ella).
Primarily, participants are convinced by helpful suggestions. Sana
explains: "I would check it myself a few times in the beginning and
when I realize that it suggests the right thing, I would not doubt that
in the future. I don’t know if it needs a direct explanation." Hence,
explanations should be provided, particularly on user request, but
the perceived quality of suggestions decides the user’s trust. Tabi
explains that reading explanations is a trade-off, requiring time
that could otherwise be used for coding. In Tabi’s words: "it would
be nice, but takes time. The more explanations you have to read, the
longer the process will take". Eventually, the initial impressions are
crucial for users’ decision to adopt automated suggestions or ig-
nore them (or turn them off). Further, users saw little value in the
confidence scores we showed, saying that "it would not strengthen
my trust [. . . ] having no idea how it was calculated" (Sana).

Automation should encourage and support experimentation. De-
spite all users of Cody describing using code rules as "new" (Ella),
"exciting" (Kelly), and "interesting" (Vic), they rarely started the task
by trying to learn how to use them. Only Stev began coding by
"figuring out how to add a code, how to rename it, how do these rules
look like, so I wrote an example with an asterisk to see if it automati-
cally highlight the next line, which had such a keyword in it." Most
participants took some time to figure out how to write code rules
in a granularity that worked for their coding. Kelly explains: "In
the beginning, I may have formulated code rules a bit imprecisely,
and it came up with suggestions which didn’t fit at all. Then I always
had to adapt by trial and error. But if you did it a couple of times,
then it worked, then you learned how to formulate them in a way
that gets you the results you want. And then [the suggestions] helped,
because that’s when you got suggestions that really fit." Participants
did not actively look for more information or familiarize with the
tool before starting the task. Rather, they wanted to familiarize
themselves with the functions and possibilities as they go. Ella
explains: "it’s a learning-by-doing kind of process. The general intro-
duction was enough. The rest you have to work out by yourself." None
of the participants coded the entire dataset in one go, thus valuing
on-demand introductions to certain features of a tool: "I want to be
able to say: ’Hey, now I want an introduction to the function.’ Instead
of being overwhelmed on my first use, why can’t the tool remind me
like ’Hey, how about trying the automation now? ’" (May).

To summarize, participants follow a learning-by-doing approach
in working with code rules. An assistive tool should encourage
experimentation and provide some guidance or on-demand assis-
tance while ensuring that users can test without fear. "I would adjust
rules and would work with it because I see the benefit. [. . . ] What is
important is that I know that no other labels disappear, that I lose
nothing," Tom urged.

5 DISCUSSION
5.1 Working with Automated Suggestions
With our study, we pursue the goal of designing, building, and eval-
uating a user-facing system that integrates both prevalent strategies
for (semi)-automating coding: code rules [9–11, 18, 26] and (super-
vised) machine learning [2, 21, 28, 43, 47, 49]. Prior work on code
rules has focused on evaluating rules defined by experts against gold
standard datasets [10, 11, 26], while Cody focuses on enabling and
supporting end-users in defining and reworking rules during cod-
ing. Through the formative evaluation with qualitative researchers,
we identified the importance of rule suggestions to educate and
encourage users to work with rules. While we drew some inspi-
ration for automatically creating rule suggestions from literature
on text mining [30], information extraction [40], and classification
[41], prior work at large did not focus on creating rules that are
easy for users to read and edit. From our summative evaluation, we
learned that while users had to change the suggested rules, as we
intended them to, they valued the support and did not refrain from
working with rules. Further, the final rules that users created were
quite heterogeneous, some creating short (Limitations to RP – time:
time* AND [limit* OR less OR hard*]) and some creating complex
rules (Mechanism – watching the teaching of colleagues: teaching*
AND [colleagues OR others] AND ["learn* from" OR people* OR tech-
nique*]). We also saw examples of generic rules, which could only
be used to navigate through a document, rather than provide accu-
rate suggestions (Motivation – to be good at job: good* AND job*).
While none of our participants were experienced with rule-based
coding of qualitative data, it would be interesting to evaluate the
impact of such experience on the interaction with code rules. Better
initial results might create a positive reinforcement loop, reducing
barriers for engaging with rule-based suggestions while fostering a
positive perception of the tool. Overall, users were able to define
rules that helped them to structure and, to some extend, speed-up
certain parts of the coding process. Thus, this paper extends prior
work by demonstrating how users interact with code rules as cod-
ing support. With our work, we deliver new design implications
for systems that integrate code rules and rule suggestions.

Regarding ML suggestions, we had to work around the cold start
problem. Previous work required a minimum of 100 positive ex-
amples for each code [47], while participants in our evaluation,
on average, only created 133 (MAXQDA) or 182 (Cody) positive
examples overall. Our participant Kelly reported the most inter-
action with ML suggestions9, while others barely noticed them.
We believe that the barriers we set for Cody to providing ML sug-
gestions, namely defining cut-off values for prediction confidence
and requiring labels to be predicted correctly for all test instances,
helped filter out many wrong suggestions. In the summative eval-
uation, Cody trained the first ML model after participants made
ten annotations and triggered model retraining after every ten sub-
sequent changes. Further, artificial negatives allowed the model
to determine a section to be neutral and to refrain from making a
9For Kelly, the metrics of the last retraining of the model were: (Precision) 0.82, (Recall)
0.81, (F1-Score) 0.81, when including artificial ’greygoo’ negative examples. Without
them, metrics were: (Precision) 0.50, (Recall) 0.38, (F1-Score) 0.42. For training, 144 pos-
itive examples and 751 artificial negative examples were used. This training/prediction
cycle resulted in 13 new suggestions for 4 labels that exceeded the cut-off.
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suggestion. Participants perceived suggestions based on code rules
as more helpful than ML suggestions. The strict quality criteria
resulted in users interacting with only a low number of ML sug-
gestions due to the number of positive examples necessary for the
algorithm to make appropriate suggestions. Our results and Cody’s
ability to extend coding more frequently to sections that do not
match a code rule could be improved by harnessing strategies for
tuning the ML model during usage. For example, Cody could allow
the user to adjust cut-off value(s) for rule-based andML suggestions.
Overall, we expect ML suggestions to assist coders with improving
code rules by identifying false negatives – sections that are not
yet covered by a rule despite belonging to the underlying label.
Enabling users to define perfect rules would eliminate the need
for ML suggestions altogether (but might not be feasible given the
costs involved in and practicality of defining ideal rules for certain
qualitative research methods and data structure [10]).

We calculated Krippendorff’s Alpha to evaluate the coding con-
sistency between our users, both for MAXQDA (0.085) and for Cody
(0.332). As for the interpretation of an Alpha of 0.33, Kirppendorff
suggests discounting conclusions from coding with an Alpha < 0.67
[22]. Depending on the type of qualitative research, an Alpha of 0.33
can indicate that researchers/coders should discuss and improve the
codebook in use. In the context of our study, using Cody resulted
in an increased Alpha compared to MAXQDA despite including
an additional coder in the calculation. While our experiment setup
does not allow us to determine the cause of the difference in Krip-
pendorff’s Alpha, the result may provide a quantitative indication
that supports our qualitative findings. We believe the difference to
have two causes. One, as participants engaged with code rules and
ML suggestions, they spend more time reflecting on their coding
and going back and forth in the document to review suggestions,
potentially also revising previous annotations. Two, Cody makes
suggestions at the sentence level, which might have influenced the
unit of analysis that participants used for annotations. While with
MAXQDA, participants applied codes at various units (individual
words – multiple paragraphs), participants using Cody quite fre-
quently applied their codes on the sentence level, too. Thus, the
way a system provides suggestions may influence how users code.

5.2 Researcher Agency and Reporting
While automated suggestions may serve as proxies for the second
coder, they can impact researchers’ agency. Especially participants
with MAXQDA stated concerns whether automated suggestions
could impact coding quality, as coders would be tempted to accept
suggestions to reduce their workload. As Cody’s users told us that
they rarely interacted with explanations, they are at risk of not
realizing when a decision by the algorithm bases on incorrect or
shallow assumptions (e.g., higher being an indicative word for the
code higher education). However, participants felt responsible for
the quality of their coding, and it was vital for them to get results
that they can reliably use for subsequent analysis. One path to
reduce the risk of carelessly accepting suggestions is to reduce
the precision of suggestions by either: one, suggest not one but
multiple labels, and have the coder pick the most appropriate one.
However, this approach would increase the time it takes to review
suggestions. Two, suggest labels only when an annotation is made,

rather than preemptively annotating sections in the text (e.g., in
the context of semantic annotations, see [43]).

Regarding trust and agency, it also needs to be discussed where
calculations are performed, be it for applying rules to documents
or training an ML model on data. Qualitative data may contain
sensitive information, and researchers might not always anonymize
their data prior to coding. Thus, the user of an assistive system
must have control over where data is processed and stored, and
can ideally run the system on their device or environment. Finally,
researchers will only use systems for their projects that are accepted
by their respective communities. Participants told us that they
would not risk their work being rejected due to reviewers not
being familiar with a new QDAS, particularly when authors would
have to explain the tool’s suggestion algorithm. While researchers
would have to take responsibility for the suggestions they accept
during coding, we believe that defining code rules can increase
transparency in qualitative research projects, both for co-coders,
as for reviewers and other researchers. While code rules may not
communicate all information that determines the application of a
code, they can serve as an indication towards coding and allow, to
some extent, the replication of results.

5.3 Limitations and Future Work
This work can be improved in several ways. First, participants in the
summative evaluation worked with data they had never seen before.
Additionally, we told them that coding would take approximately 8
hours. Therefore, the evaluation results regarding coding time can
serve only as an indication of the effects of interacting with sug-
gestions. Secondly, participants did not use their coding after the
experiment, giving them little incentive to code to the best of their
ability. However, we ensured that they did not know whether they
would be asked questions about the content or their coding during
the final face-to-face interview. The interviews used for coding had
roughly 18.600 words, which some participants perceived as too
little to make use of automation appropriately. It would be interest-
ing to test Cody in the field with the researchers’ projects, where
researchers deal with more data without an estimation of how long
coding will take. A field evaluation can also help us address other
limitations of the current study: We explicitly encouraged partic-
ipants to add their codes to the provided codebook if necessary.
While instructions and codebook provided participants with a com-
mon coding goal, it may have restricted participants in applying
their coding style. Further, the presented results on intercoder reli-
ability are illustrative only for the codebook research method. A
field evaluation would allow us to evaluate Cody’s impact on other
kinds of qualitative research – we expect that the utility of code
suggestions might shift towards assisting in uncovering ideas and
themes during codebook development. For some coding strategies
(e.g., in-vivo coding, as Sven mentioned), the utility of code sug-
gestions may be limited. Thirdly, our strategy to creating artificial
negatives assumes that users code linearly from top to bottom, and
rarely miss important sections during coding. Further, when using
rule suggestions for model training, imprecise or wrong rules can
cause errors to propagate, resulting in wrong ML suggestions. In
the end, the amount of available training data limits the quality of
ML-based suggestions. Participants with Cody made, on average,
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182 annotations for 38 labels, resulting in a very spare training
set. While we improved our ML model(s) through greygoo labels
and one-versus-rest training, the quality of ML-based suggestions
during our evaluation was limited. However, our aim was not to
improve model training in a cold start case but to understand how
participants interacted with ML suggestions. Our results indicate
that with artificial negatives, learning from rule suggestions, and
careful filtering, ML-based suggestions can be used even in a cold
start case with sparse training data. An avenue for future work is
to evaluate different data collection strategies for cold start model
training. Integrating other technologies to recognize sections that
coders intentionally did not annotate, such as eye tracking, could be
an exciting research opportunity [44]. Further, participants coded
the same documents predominantly using the same codebook, yet
we trained the ML model individually for each user. Training a
shared model on the examples from multiple coders could increase
the quality of ML-based suggestions. Finally, this study focused on
each coder working on an individual copy of the data. Integrating
and evaluating mechanics for multiple coders to collaborate in cod-
ing documents could extend this work. It would be interesting to
observe whether formulating rules can help multiple coders discuss
their interpretation of labels and how coders work with suggestions
based on their co-coder’s code rules.

6 CONCLUSION
Inspired by previous work concerning AI-based qualitative coding,
we set out to understand how real users interact with automated
suggestions during coding. We designed and developed Cody, an
interactive AI-based system supporting researchers with rule- and
ML-based suggestions. We worked with qualitative researchers to
iterate our designs, finding that given the right assistance and in-
terface, end-users would (re)define rules, convinced that it would
help to improve their understanding, build stringent codebooks,
and accelerate their coding. Based on our findings, we conducted a
one-week experiment, comparing the coding process of qualitative
researchers with MAXQDA and Cody when coding a public dataset
of interviews. We found that code rules provide both structure and
transparency, particularly when coding new data. Explanations
for suggestions are commonly desired but rarely used, and per-
ceived quality rather than confidence scores convince users. Finally,
working with Cody (for now) benefits coding quality rather than
coding speed, increasing the intercoder reliability, calculated with
Krippendorff’s Alpha, from 0.085 (MAXQDA) to 0.33 (Cody).
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