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Abstract

Identifying and characterizing vascular plants in time and space
is required in various disciplines, e.g. in forestry, conservation and
agriculture. Remote sensing emerged as a key technology revealing
both spatial and temporal vegetation patterns. Harnessing the ever
growing streams of remote sensing data for the increasing demands on
vegetation assessments and monitoring requires efficient, accurate and
flexible methods for data analysis. In this respect, the use of deep
learning methods is trend-setting, enabling high predictive accuracy,
while learning the relevant data features independently in an end-to-
end fashion. Very recently, a series of studies have demonstrated that
the deep learning method of Convolutional Neural Networks (CNN) is
very effective to represent spatial patterns enabling to extract a wide
array of vegetation properties from remote sensing imagery. This re-
view introduces the principles of CNN and distils why they are particu-
larly suitable for vegetation remote sensing. The main part synthesizes
current trends and developments, including considerations about spec-
tral resolution, spatial grain, different sensors types, modes of reference
data generation, sources of existing reference data, as well as CNN ap-
proaches and architectures. The literature review showed that CNN
can be applied to various problems, including the detection of individ-
ual plants or the pixel-wise segmentation of vegetation classes, while
numerous studies have evinced that CNN outperform shallow machine
learning methods. Several studies suggest that the ability of CNN to
exploit spatial patterns particularly facilitates the value of very high
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spatial resolution data. The modularity in the common deep learn-
ing frameworks allows a high flexibility for the adaptation of architec-
tures, whereby especially multi-modal or multi-temporal applications
can benefit. An increasing availability of techniques for visualizing
features learned by CNNs will not only contribute to interpret but to
learn from such models and improve our understanding of remotely
sensed signals of vegetation. Although CNN has not been around for
long, it seems obvious that they will usher in a new era of vegetation
remote sensing.

Keywords— Convolutional Neural Networks (CNN), Deep Learning, Vegeta-
tion, Plants, Remote Sensing, Earth Observation

Contents

1 Introduction 3

2 Principles of CNNs and relevance for vegetation remote sensing 5
2.1 Basic functioning and structure of CNNs . . . . . . . . . . . . . . . . 5
2.2 Why CNN for vegetation remote sensing? . . . . . . . . . . . . . . . 7
2.3 The training process . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Implementation, libraries and frameworks . . . . . . . . . . . . . . . 10

3 Literature review on CNN-based vegetation remote sensing 11
3.1 Reference data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Reference Data Sources . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Reference data quantity . . . . . . . . . . . . . . . . . . . . . 14

3.2 Common CNN approaches and architectures . . . . . . . . . . . . . . 16
3.2.1 Training strategies . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Approaches and architectures . . . . . . . . . . . . . . . . . . 21

3.3 Geographic and thematic areas of CNN application . . . . . . . . . . 25
3.4 Remote sensing platforms . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Sensors, spatial and spectral resolution . . . . . . . . . . . . . . . . . 27

3.5.1 Passive optical and SAR data analysis . . . . . . . . . . . . . 28
3.5.2 LiDAR-based point cloud analysis . . . . . . . . . . . . . . . 30
3.5.3 Sensor and data fusion . . . . . . . . . . . . . . . . . . . . . . 31
3.5.4 Multi-temporal analysis . . . . . . . . . . . . . . . . . . . . . 33

3.6 CNN model assessment, understanding, and interpretation . . . . . . 35
3.6.1 Numeric evaluation of the predictive performance . . . . . . . 35
3.6.2 Understanding and interpretation: Opening the black box . . 36

4 Concluding remarks and future perspectives 38

5 Additional resources on CNN theory, implementation and data
sources 40

2



1 Introduction1

Locating and characterizing vascular plants in time and space is key to various2

tasks: For instance, nature conservation in the context of global change and biodi-3

versity decline can only be successfully implemented and supervised with accurate4

spatial representations of the state, structure and functioning of ecosystems and5

its flora (Nagendra et al. 2013; Pettorelli et al. 2017; Turner et al. 2003). Forestry6

requires regular and extensive information on forest stands, including their struc-7

ture, timber volume, species composition, and forest damage (Fassnacht et al. 2016;8

McRoberts et al. 2007; White et al. 2016). In agriculture, there is a growing demand9

for geoinformation that facilitates resource efficiency and a reduction of environ-10

mental impacts (cf. precision farming), including fine-scale predictions of yield,11

weed infestations, and plant vigor (Atzberger et al. 2013; Mulla 2013). Concerning12

all of these tasks and requirements remote sensing continuously establishes as a key13

technology.14

In the last decades, various technological advances resulted in growing avail-15

ability of remote sensing data revealing vegetation patterns on both spatial and16

temporal domains (Colomina et al. 2014; Toth et al. 2016). Novel remote sensing17

platforms, such as swarms of microsatellites, or unmanned aerial vehicles (UAV),18

facilitate a bird’s eye view on vegetation canopies with increasing spatial detail.19

Synthetic-aperture radar (SAR), and terrestrial or airborne lasers-scanning enable20

to capture the three-dimensional structure of multilayered canopies. Additionally,21

there is an ongoing trend of data sharing and open access (cf. OpenAerialMap,22

NEON programme of the US National Science Foundation, EU’s and ESA’s Coper-23

nicus Open Access Hub).24

These growing opportunities for vegetation remote sensing come hand in hand25

with several challenges, including increased data volumes and computational loads26

as well as more diverse data structures with increasing dimensions (spatial, tem-27

poral, spectral) often featuring complex relationships. Moreover, the various veg-28

etation related tasks and applications fields can differ greatly in their inherent29

processes and requirements. Hence, harnessing remote sensing data for vegeta-30

tion assessments and monitoring requires efficient, accurate, and flexible analytical31

methods.32

In the context of image analysis and computer vision, deep learning is currently33

paving new avenues for remote sensing analysis (Chollet 2017; Hoeser et al. 2020;34

Huang et al. 2018; Ronneberger et al. 2015; L. Zhang et al. 2019; Zhu et al. 2017).35

In contrast to the previous shallow neural network approaches that have been36

under investigation for decades, deep learning is characterized by a significantly37

increased number of successively connected neural layers. This increased amount38

of layers and transformations can reveal higher-level features and more abstract39

concepts uncovering more complex and hierarchical relationships. A series of stud-40

ies has demonstrated that this increased depth can indeed enhance the retrieval of41

vegetation-related information contained in remote sensing data (cf. section 3.6).42

At the same time, increasing transformations and, thus, deeper levels of complex-43

ity commonly require more training data and computational loads. Nevertheless,44

deep learning became very popular due to several, corresponding technical devel-45

opments, including efficient data processing techniques (e.g. data augmentation or46

non-linear activation functions, see section 2.3 and 3.2), high-performance graphic47

cards, cloud-computing, as well as open data initiatives providing annotated data.48
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These developments enable an efficient calculation of countless non-linear trans-49

formations of the respective input data and, thus, form the core for the essential50

strength of deep learning - namely the ability of end-to-end-learning. Previous51

data analysis methods in remote sensing usually require feature engineering, which52

is the heuristic selection of appropriate transformations and hand-crafting latent53

variables from the input data prior to modelling. Examples in the field of vege-54

tation remote sensing are spectral indices (Adam et al. 2010) or texture metrics55

(Haralick 1979), whereas the numerous ways to derive such variables make it often56

impossible and inefficient to derive the most effective set of predictors. Moreover,57

defining the most appropriate predictors for vegetation analysis can be challenging,58

as this may not only require knowledge on the biochemical and structural plant59

properties but also on how these interact with the electromagnetic signal measured60

by the sensor. By contrast, with deep learning, the neural network itself can learn61

the data transformations that are best to solve the problem at hand.62

The class of deep learning algorithms most commonly used for spatial pattern63

analysis are convolutional neural networks (CNNs or ConvNets). CNNs are de-64

signed to learn the spatial features, e.g. edges, corners, textures, or more abstract65

shapes, that best describe the target class or quantity. The core for learning these66

features are manifold and successive transformations of the input data (convolu-67

tions) on different spatial scales (by pooling operations). This facilitates identifying68

and combining both low-level features and high-level concepts. The functioning of69

a CNN can, hence, be regarded as a mimicry of the animal cortex (Angermueller70

et al. 2016; Cadieu et al. 2014), where analogously numerous visual stimuli at vary-71

ing scales are perceived in the field of vision (counterpart of an image) and the72

contained spatial features and their spatial context serves to identify objects. For73

example, the shape of a leaf does not necessarily indicate the corresponding vegeta-74

tion type, but its close proximity to branches and the tall and bulky canopy suggest75

that it belongs to a tree and not to a herb. The effectiveness of deep learning and76

particularly CNNs undoubtedly revolutionized our possibilities to analyse spatial77

patterns in Earth observation data. Reference is made here to previous and valu-78

able comments and reviews, including a review by Zhu et al. (2017) on the general79

principles and potentials of deep learning in remote sensing, Hoeser et al. (2020)80

summarizing common frameworks and an in depth overview on architectures for81

Earth observation data analysis, a comment by Brodrick et al. (2019) highlighting82

potentials of CNN for segmentation tasks in ecology and Reichstein et al. (2019)83

providing perspectives on how deep learning in general can advance earth system84

science.85

The remote sensing of vegetation is characterized by special requirements and86

challenges, such as the often complex acquisition of reference data or the under-87

standing of the vegetation specific radiative transfer, the resulting sensor-specific88

electromagnetic signals and their dynamics across the phenology. The present re-89

view therefore concentrates specifically on CNN applications in the field of vegeta-90

tion remote sensing. A series of recent studies have demonstrated that CNNs enable91

to reveal accurate spatial representations of vegetation properties, such as detecting92

individual plant organs or individuals, classifying species and communities or quan-93

tifying plant traits, from all kinds of remote sensing sensors and platforms. Still,94

CNN-based vegetation remote sensing is a very topical but young field of research.95

People with a background in remote sensing or vegetation science may require96

procedural knowledge on the working principles of CNNs and the anticipated po-97
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tentials for vegetation mapping. In contrast, people from computer sciences may98

require declarative knowledge on application tasks in vegetation science, on types99

and availability of remote sensing data suitable for vegetation analysis, or on the100

relationship between remotely sensed signals and vegetation properties. Thus, the101

overall aim of this review is to link procedural and declarative knowledge and pro-102

vide an introduction and synthesis on the current state of the art on the utility of103

CNNs for vegetation remote sensing.104

The present review is organized into three main sections: Chapter 2 briefly in-105

troduces the basic principles and the general functioning of CNNs and deduces why106

it is such a promising method for remote sensing of vegetation. Chapter 3 provides107

a summary and meta-analysis on the corresponding literature and synthesizes the108

current state of the art and challenges, including:109

• common CNN approaches, architectures and strategies for the retrieval of110

vegetation properties,111

• an overview of common applications tasks and demonstrated potentials in112

the context of agriculture, forestry and conservation,113

• challenges and corresponding solutions regarding reference data quantity and114

quality of continuous and discrete vegetation variables,115

• a consideration of spatial and spectral resolution for CNN-based vegetation116

remote sensing and considerations towards different sensors, platforms and117

combinations thereof.118

Lastly, chapter 4 gives concluding remarks and discusses possible future direc-119

tions and developments.120

2 Principles of CNNs and relevance for vegetation121

remote sensing122

This chapter introduces the basic principles of CNN, including the functioning of123

convolutions, features that make convolutions suitable for vegetation analysis, and124

how a CNN is commonly trained and implemented.125

2.1 Basic functioning and structure of CNNs126

As any typical neural network-type model, CNNs are based on neurons that are127

organized in layers and can, hence, learn hierarchical representations. The neurons128

between layers are connected through weights and biases. The initial layer is the129

input layer, e.g. remote sensing data, and the last layer is the output, such as a130

predicted classification into plant species. In between are hidden layers trans-131

forming the feature space of the input in a way that it matches the output. CNNs132

include at least one convolutional layer as a hidden layer to exploit patterns (in the133

context of this review predominantly spatial patterns).134

It can also include other non-convolutional layers. Convolutional layers include135

multiple optimizable filters (Fig. 1) that transform the input or preceding hidden136

layers. The number of filters defines the depth of a convolutional layer. The137

resulting transformations are aimed to reveal patterns that are decisive for the138
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problem at hand. The decisive patterns are iteratively learned through convolving,139

which is essentially the sliding of the filter over the layer and the calculation of the140

dot-product of the filter and the layer’s values. The result is a new layer of dot-141

products for each filter, also called a feature map (Fig. 1). The early feature maps142

in a CNN may include simple and fine scaled patterns, such as corners, circles, or143

edges. The derived feature maps then serve as input for the next layer, e.g. another144

convolutional layer or a final layer that predicts an outcome based on the detected145

features. In deeper layers of a network, convolving usually reveals more abstract146

patterns and higher-level concepts, such as leaf forms, branching patterns or habit.147

During model training, randomly initialized filters will be iteratively optimized to148

detect the relevant image features (the training procedure is described in Section149

2.3). The combination of several successive convolutional layers with their numerous150

filters, hence, enables the network to learn and combine even subtle image features,151

revealing if a class is present in an image or not (see Fig. 1 for a tree-species-specific152

activation of the network, more details on class activation mapping in Section 3.6.2)153

Figure 1: Scheme of a CNN composed of four convolutional layers and sub-
sequent pooling operations trained for tree species classification. The visual-
ization of convolutional filters (top) indicate characteristic patterns the CNN
is looking for and were derived by gradient ascent; a technique revealing arti-
ficial images maximizing each filter’s activation. The feature maps (center)
are the dot-product of the preceding layer and individual filters. Feature
attribution maps (bottom) can reveal individual pixels that were decisive
for the tree species assignment (details on feature attributions 3.6.2).

Between sequences of multiple convolutional layers, the feature maps are com-154

monly spatially down-sampled using spatial pooling operations (see Fig. 1).155

Pooling describes the transformation of multiple cells into one cell, similar to re-156

sampling an image to a coarser spatial resolution. Pooling has several advantages:157

It reduces the data size while preserving discriminant information, which in turn de-158
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creases the number of model parameters, thus computational load and the chance159

of overfitting; and it enables detecting more abstract features as well as spatial160

context across scales and thereby condenses semantic information. Pooling is de-161

fined by a filter size, stride (the distance between consecutive pooling operations),162

and a reduction operation. The most typical pooling operation is max-pooling.163

The idea of max-pooling (instead of, for instance, average pooling) is that strong164

activations (e.g. edge or line features) are conserved within the network and not165

averaged out. A typical max-pooling operation with 2-by-2 filter size and a stride166

of 2 reduces the size of the input feature map by a factor of 4, whereas the output167

cells contain the maximum value of the 4 input cells within the 2-by-2 filter.168

The layers of CNNs, e.g. convolutional or pooling layers, can be combined in169

very different ways - commonly described as the CNN architecture. CNNs can,170

hence, have very different architectures, which are basically defined by the task. The171

task can be the classification of images, the segmentation of multiple classes, or the172

localization of individual objects within a scene (presented in more depth in chapter173

3.2.2). The suitability of a CNN architecture largely depends on the complexity174

of the task: A more complex problem usually requires a deeper and more sophis-175

ticated network. In contrast, limited availability of training data constrains model176

complexity due to an increased risk of overfitting. The complexity and general per-177

formance of a CNN architecture further depends on the hyper-parameters, which178

define amongst others the number and characteristics of hidden layers, pooling op-179

erations, regularization techniques, or cost-functions. Accordingly, there exists a180

wide array of options to implement a CNN towards the specific use case as well181

as predefined and established architectures. Examples are given in the literature182

review in chapter 3.2. Comprehensive overview of different architectures is given in183

Hoeser et al. (2020) and Zhu et al. (2017).184

2.2 Why CNN for vegetation remote sensing?185

The physiology and morphology of vascular plant canopies is primarily optimized186

towards the absorption of solar energy using the photosynthetic machinery and the187

corresponding assimilation of carbon for maintenance, further growth, and repro-188

duction. Despite these common goals among vascular plants, plant life can differ189

greatly on multiple scales, ranging from various morphological features of the in-190

dividual, including leaf tissue properties, leaf form, branching patterns, canopy191

structure, and the general habitus, to large-scale patterns of vegetation communi-192

ties. Furthermore, anthropogenic land use can determine spatial vegetation pat-193

terns, either through indirect influences on floral vitality and species composition194

or directly through economic activities. Examples include dendritic or fish bone-195

like deforestation structures in rain forests, crop rows on plantations, or directed196

changes in species composition as a result of gradual nutrient inputs from agricul-197

tural land.198

Remote sensing offers several sensors and acquisitions techniques that are sen-199

sitive to physiological and morphological properties of vegetation and, hence, allow200

for spatial representations of vegetation patterns at the scale from plant organs201

to entire landscapes. This includes close-range observations from terrestrial plat-202

forms (e.g., farming robots), fine-resolution data from airborne platforms (UAV or203

airplanes) as well as more coarser-resolution satellite-based acquisitions that are204

usually focused on large-scale applications.205
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So why are CNNs suitable for vegetation analysis with such remote sensing206

data? CNNs are indeed a revolutionary technique but they do not do magic, mean-207

ing that they cannot reveal more information than is contained in the data. The208

crucial advancement of CNNs is how they can extract information from spatial209

data. Previous parametric or machine learning methods applied in vegetation re-210

mote sensing usually required feature engineering, i.e. the careful screening of211

redundancies in the input data and the extraction of latent variables that best de-212

scribe the response variable. Simply put, the model needs to be taught how to see213

the relevant features before it can start solving the problem. Feature engineering214

is, hence, based on an understanding of a system and its processes. This enables to215

control the model with pre-knowledge but is certainly limited in case of unknown216

systems that potentially inherit many dimensions and complex interactions. Espe-217

cially for the analysis of 2D or 3D patterns, there are a plethora of transformations218

that can be applied to extract spatial features and textures. Examples are Grey219

Level Co-Occurrence Matrices (Haralick 1979), Fourier Transformations (Bone et220

al. 1986), or 3D multi-scale metrics derived from point clouds (Brodu et al. 2012;221

Weinmann et al. 2015). These numerous types of transformations can moreover be222

applied with different hyper-parameters (e.g., kernel function or size). The poten-223

tial amount of latent variables extracted this way explodes, considering that one224

can extract latent variables with such transformations based on different input data225

available, e.g., different wavelengths of a multispectral sensors or snapshots from226

a time series. Thus, identifying the best combination of possible predictors on a227

heuristically basis is often a very inefficient task and often hardly possible.228

In contrast, a CNN itself learns the ability to see by iteratively optimizing the229

transformations, i.e., the convolutional layers, during the training process. This230

end-to-end learning principle can make feature engineering obsolete and, thus, pro-231

viding the raw data (e.g. spectral bands or the point cloud) can be already sufficient.232

Additional feature engineering, e.g., transformations like vegetation indices or pre-233

processing such as speckle reduction, may even introduce an information loss and234

decrease the model accuracy (Geng et al. 2017; Hartling et al. 2019; Sothe et al.235

2020). In contrast to statistical modeling or machine learning, deep learning, hence,236

shifts the focus from what a model should learn to how a model should learn. The237

latter is primarily defined by the model architecture and the optimization of its238

hyper-parameters as discussed in the following sections.239

2.3 The training process240

Training a CNN model for vegetation mapping requires the remote sensing data241

and matching reference annotations, also called labels or targets. While machine242

learning algorithms, such as random forests or support vector machines, require rel-243

atively simple array-type data structures, CNN-based training is performed using244

more sophisticated data structures called tensors. Tensors are essentially stacked245

arrays that typically have 4 dimensions, including the individual samples, the spa-246

tial dimensions (x, y), a feature dimension (z, e.g. intensity or reflectance), and a247

layer dimension (e.g. the corresponding wavelength).248

During training, the CNN weights are optimized for a certain task, e.g., de-249

tecting a certain plant species. This detection is realized by transforming the input250

data through convolutional and other hidden layers while being propagated through251

the network. The neurons between layers are connected through activation func-252
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tions determining if a neuron is active – also referred to as firing - or not (ReLU,253

the most frequently used activation function, is described in chapter 3.2.1.1). If254

activated, the intensity of a neuron’s output is determined by its weights and bi-255

ases. The weights and biases are usually optimized using the gradient descent256

algorithm, which can briefly be described as follows: The term gradient descent257

implies the progressing minimization (descent) of errors along a slope (gradient).258

Gradient descent is performed in iterations, in which predictions of a model with259

momentary parameterization are compared to the annotations of the training data260

using a loss function. The gradients are derived using the backpropagation261

algorithm. Given a neural network with an input layer (a tensor), an output layer262

(prediction) and n hidden layers in-between (e.g. convolutional layers), the back263

propagation algorithm calculates the gradient of the loss function with respect to264

the weights and biases between the hidden layers. This gradient is then used to265

evaluate and update the model weights and biases through gradient descent, i.e.266

trying to find a global minimum in the high-dimensional feature space. The gradi-267

ent descent procedure is performed for multiple samples, followed by averaging the268

calculated weights and biases of the hidden layers.269

Training a CNN is usually computationally very intensive as the explanatory270

variables, e.g. image data or point cloud representations, are rich in dimensions271

(geolocation + layers) resulting in a myriad of feature maps that depict different272

spatial features and context at varying scales. This obviously results in excessive273

amounts of data to be processed during CNN training – especially considering that274

model training may require many samples to memorize the decisive features of the275

target class. These data volumes may, thus, not fit the memory of our system276

at once. To overcome this, training is often performed sequentially in batches277

comprising only a share of the entire dataset. The model weights and biases are278

updated based on one average gradient for the entire batch. Separating the dataset279

into batches enables to train the model iteratively until it has seen all samples,280

which is called an epoch. The number of iterations to finish an epoch is, thus, the281

total number of observations divided by the batch size.282

Generally, it is unlikely that a CNN trained in a single epoch already reaches283

maximum performance. For instance, observations (in form of batches) that were284

shown to the model at the beginning of the training phase may be again useful to285

extract more features at a later stage of the training process. Moreover, multiple286

steps in the training procedure described above feature stochasticity: The convo-287

lutions are based on randomly initialized filters, the assignment of observations288

into batches is random, and the gradient descent has a random nature (hence, also289

referred to as stochastic gradient descent). For this very reason, CNNs are com-290

monly optimized within a series of subsequent epochs until the model performance291

stops to advance (the model converges) or even decreases (the model overfits). The292

number of epochs eventually depends on the complexity of the problem and model293

structure.294

The fact that gradient descent is an iterative algorithm opens several interesting295

avenues for CNN-based modelling: Firstly, models can be updated with unseen data296

at any time without training the model again from scratch substantially saving297

computation loads and processing time. Secondly, models that have seen a lot298

of data, e.g. from generic image databases such as ImageNet, can be shared and299

optimized for a specific problem (further discussed in Section 3.2.1.2). The third300

and probably most future-oriented avenue is federated learning, which is the301
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training of local models with local data on distributed clients and the simultaneous302

sharing of weights coordinated by a central server (Bonawitz et al. 2019). The303

server thereby merges the locally derived gradients without ever seeing the data.304

Federated Learning follows, thus, the principle of bringing the code to the data,305

instead of the data to the code, which will be inevitable in the geosciences due306

to constantly growing data streams. Besides reducing communications costs, this307

approach avoids problems related to data access rights, security, or privacy.308

2.4 Implementation, libraries and frameworks309

Most deep learning frameworks can be used on standard operating system (Linux-310

based, Windows, macOS) and provide bindings for different programming lan-311

guages. Currently, Python is the most common language in DL research. Training312

and inference of deep learning models consist of millions of simple computations,313

i.e. multiplications and additions. Thus, it is helpful to use graphics processing314

units (GPU) rather than central processing units (CPU). In contrast to CPUs,315

GPUs have rather simple cores but thousands of them, which are optimized to316

handle thousands of concurrent operations, leading to a drastic reduction of time317

for training and inference. Mostly NVIDIA GPU are used, as these feature the318

CUDA Deep Neural Network (cuDNN) library, which is utilized by common DL319

frameworks. The cuDNN library provides highly performant primitives for convo-320

lutions, pooling operations, normalization and activation functions. Furthermore,321

AMD provides different tools for deep learning on Linux-based platforms with the322

Radeon Open Compute Platform. In case of missing hardware it is nowadays pos-323

sible, to use (partially free) cloud platforms with GPU support, such as Alibaba324

Cloud, Amazon Web Services, Microsoft Azure or Google Cloud Platforms such as325

Google Earth Engine. These platforms have completely configured containers for326

many frameworks. Google Colab https://colab.research.google.com even provides327

free access to (limited) computing resources including GPUs with no setup.328

CNNs can be implemented through different frameworks. Overviews of for-329

mer and current frameworks are given in Hoeser et al. (2020), Nguyen et al.330

(2019) and on the corresponding Wikipedia page (https://en.wikipedia.org/wiki/331

Comparison of deep-learning software). The currently most prominent deep learn-332

ing frameworks are PyTorch and Tensorflow (Nguyen et al. 2019). Both provide333

high-level APIs (e.g. Keras) and various tools for training, data augmentation,334

and visualization (e.g. Tensorboard). Furthermore, many vintage and modern DL335

architectures can be used directly and with pretrained weights. Extensive documen-336

tations, many tutorials, and Jupyter notebooks allow an easy start with both open-337

source frameworks. Additionally, the Open Neural Network Exchange (ONNX)338

format allows interoperability between many frameworks such as Pytorch, Ten-339

sorflow, Keras, mxnet, scikit-learn, Matlab, SAS, and many more. Thus, already340

implemented and trained models can be transferred to a favored framework. In341

Section 5 links to various tools, models and quick start tutorials are provided.342
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3 Literature review on CNN-based vegetation re-343

mote sensing344

The literature review was based on a survey on Google Scholar and the search terms345

CNN, convolutional neural networks, vegetation, plants, forestry, agriculture, land346

cover, conservation, mapping, Remote Sensing, RGB multispectral, LiDAR TLS,347

ALS, SAR, RADAR, airborne, satellite, UAV. The search results were first filtered348

by the title, by the abstract and then by the content. We only considered primary349

research articles that underwent a peer-review process. This resulted in a total of350

101 research studies considered in the literature review. All studies were published351

after 2016 and more than 75 % of the studies were published in 2019 or later (see352

Fig. 2), underlining that CNN-based vegetation remote sensing is a very young but353

rapidly developing field.354

2017 2018 2019 2020
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Figure 2: Number of yearly publications based on the literature search in-
dicating a steep increase of studies applying CNNs for vegetation remote
sensing. Counts for 2020 were extrapolated based on the number of publi-
cations until November.

The resulting literature is very heterogeneous in terms of application areas,355

vegetation types, target variables, CNN implementations, and remote sensing data356

(compare Fig. 3). Accordingly, several criteria were defined to structure the litera-357

ture and identify general trends, including the underlying CNN architecture, remote358

sensing platform, sensor, spatial resolution of the remote sensing data, mode of ref-359

erence data acquisition (in-situ or by visual interpretation), number of training and360

test observations, response type (e.g., object detection or semantic segmentation),361

geographic location of the study area, accuracy metrics, area of application (agri-362

culture, forestry, conservation or miscellaneous) and specific task (e.g, detecting363

weed infestation or tree cover mapping). A corresponding spreadsheet including all364

assessed criteria and studies is available in the Appendix. For the accuracy met-365

rics, we constrained our analysis on the most frequently reported metrics (overall366

accuracy, precision, recall, F-score and intercept over union). Whenever a study367

reported multiple accuracy metrics, e.g. when comparing multiple methods, we368

recorded the best result. The geographic locations of the study areas were derived369
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from place-names using the Google Geocoding API, unless the manuscripts explicitly370

included the longitude and latitude of the study area.371

3.1 Reference data372

3.1.1 Reference Data Sources373

As with any supervised modelling approach, training and validating a CNN re-374

quires reference observations, also referred to as annotations, labels, or targets.375

The large number of parameters in CNNs and the corresponding ability to detect376

even subtle patterns are associated with the risk in training a model that is based377

on overly-specific details and does not generalize well - it is overfitting. Accordingly,378

independent validation of CNNs prior to model deployment is of great importance379

to evaluate its robustness and transferability. Ideally, such validation should not380

solely involve iteratively shuffling training and validation data, as frequently done381

in remote sensing studies (e.g., as with a cross-validation or bootstrapping), but be382

based on entirely independent data that the model has never seen before. There-383

fore, most CNN-related studies split their reference data in a 1) training data set,384

which commonly is split again in training and validation data during the model385

training process, and 2) a testing data set used to independently evaluate the386

eventual predictive performance of the final model. Typically, a share of 20 to 30387

% of the reference data is used for independent testing (median 21 %).388

In the field of remote sensing of vegetation, reference data was most commonly389

acquired in ground-based surveys in the form of in-situ plot or point observations390

(Fassnacht et al. 2016). The quantity of reference data of ground-based surveys is391

generally limited as these involve high logistic efforts and costs for transportation,392

equipment, and personnel. In particular for studies in natural environments, lim-393

ited accessibility can also greatly hamper the sampling frequency. The effectiveness394

of ground-based surveys for CNN modelling may, hence, be limited as the latter395

often requires ample reference data. In particular for complex tasks, such as the396

differentiation of classes that only differ in subtle features, the quantity of avail-397

able reference data can be the critical factor for a successful model training and398

convergence. Moreover, tasks as object detection or the segmentation of individ-399

ual crown components (3.2.2) require reference data that is spatially explicit and400

in exact correspondence with the remote sensing data. Especially for analysis of401

very high spatial resolution remote sensing data at centimetre scale, GNSS-coded402

reference data acquired in the field is often not directly applicable for two main403

reasons: Firstly, geolocation errors of GNSS-measurement typically exceed 0.1-1m;404

particularly under dense vegetation canopies (Branson et al. 2018; Kaartinen et al.405

2015; Valbuena et al. 2013). Secondly, for practical reasons, field data is usually406

measured in form of point observations (e.g., stem position of a tree) or using circu-407

lar or rectangular plots, which does commonly not allow for a spatially explicit link408

with remote sensing data (Anderson 2018; Kattenborn et al. 2019d; Leitão et al.409

2018). Correspondingly, only 14 % of the studies reviewed here used in-situ data410

as exclusive reference input.411

Instead of using in-situ observations, reference data is most often (62 %) di-412

rectly acquired in the primary or secondary (e.g., higher resolution) remote sensing413

data using visual interpretation. In contrast to common in-situ point or plot ob-414

servations, reference data acquired by visual interpretation is commonly spatially415
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explicit as it is directly derived from the imagery or point cloud. Furthermore,416

there is no position error, as long as the same input data is used for the CNN and417

visual interpretation. If secondary data (e.g. higher resolution) is used for visual418

interpretation, the geolocation error is relative to the spatial agreement of primary419

and secondary data. Visual interpretation provides a very efficient mode of gen-420

erating reference data, given that the variable of interest is clearly identifiable in421

the imagery. Accordingly, this mode of reference data acquisition is in particular422

applicable for discrete classes (e.g. species, plant communities, crop or vegetation423

types, individuals). The term visual interpretation implies a rather imprecise cap-424

ture of the target metric, but it should be noted that in-situ observations do not425

necessarily represent (ground) truth: As with visual image interpretation, mapping426

species in the field is commonly based on visual interpretation and, hence, can also427

be prone to errors and bias (Lepš et al. 1992; Lunetta et al. 1991).428

Annotations from visual interpretation are often derived by delineating tar-429

get classes in a GIS environment. This includes the identification of individuals430

by points, as often performed for image-based object detection in agricultural en-431

vironments (Csillik et al. 2018; Freudenberg et al. 2019), or by delineating the432

vegetation components (e.g. in form of polygons) for semantic or instance segmen-433

tation (Flood et al. 2019; Kattenborn et al. 2019a). Many studies have also used434

special interfaces for an efficient labeling such as RectLabel, LabelMe, Labelbox or435

LableImg (Russell et al. 2008). Instead of manually labeling the spatial extent of436

target classes, a semi-automatic approach using a prior segmentation may be used.437

For instance, dos Santos Ferreira et al. (2017) automatically segmented canopy438

components in RGB imagery of soybean fields using SLIC (Simple Linear Iterative439

Clustering) superpixels (Achanta et al. 2012), and assigned each segment to weeds440

or crops by visual interpretation. Natesan et al. (2019) labeled segments derived441

from a watershed-based segmentation using a Digital Surface model. In particular,442

for LiDAR-based point cloud data, region growing algorithms may be used to effi-443

ciently segment points belonging to individual plants (Wang et al. 2019) or plant444

components (e.g. stems, branches or foliage; Z. Xi et al. 2018).445

Despite the above-mentioned advantages, obtaining reference data by visual446

interpretation does not rule out misinterpretation. Yet, at the example of mapping447

plant species, it has been shown that CNNs can to some extent compensate flawed448

or noisy labels (Hamdi et al. 2019; Kattenborn et al. 2020).449

Although in-situ data may not be the ideal for training and validating CNNs, it450

may be an essential requirement in case the target class (e.g. species) is not readily451

identifiable in the remote sensing data by means of visual interpretation alone.452

According to our review, 22 % of the studies that acquired reference data by visual453

interpretation also incorporated in-situ data for training or validation. 84 % of454

these studies were either related to forestry or conservation tasks and thus to rather455

complex environments, in which visual interpretation alone may not be sufficient.456

For instance, Schiefer et al. (2020) and Kattenborn et al. (2019a) used ground-based457

full inventory data as a basis to annotate tree species in UAV imagery in temperate458

forests forests in Germany, and in highly heterogeneous and complex natural forests459

in Waitutu, New Zealand, respectively. Similarly, Sun et al. (2019) used in-situ data460

on tree species to map the species diversity in tropical wetlands. Field data may461

also provide an independent source to validate CNN-based predictions (Flood et462

al. 2019). Especially in cases when a bias by visual interpretation is assumed, a463

validation using in-situ reference data is highly recommended.464
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Visual interpretation may be more efficient for data annotation than using465

in-situ data alone, but even human labeling through visual interpretation can be466

very tedious, especially for large datasets or complex vegetation canopies that re-467

quire very detailed annotations. The effort of annotating data may be reduced by468

specific training strategies, such as weakly- or semi-supervised learning (see469

section 3.2.1.3), that compensate for few or coarse annotations. Alternatively, if470

no knowledge of a vegetation expert is required, crowdsourcing can be used for471

labeling. Commercial services are now also available for this purpose. For exam-472

ple, Branson et al. (2018) used the service Amazon Mechanical Turk TMto locate473

individual trees in Google Street View imagery.474

Although visual interpretation is an effective labeling approach to many tasks,475

it should be noted that there are many vegetation-related applications where it is476

not applicable. Particularly, for continuous quantities, such as crop yield or forest477

biomass (Ayrey et al. 2018; Castro et al. 2020; Yang et al. 2019), reference data478

acquisition is conceptually more difficult as these are often not directly measurable479

from the remote sensing data. Here, in-situ measurements or other physically-based480

retrieval procedures may often present the only applicable solution. A physically-481

based retrieval of reference data was presented by Du et al. (2020), who aimed at482

mapping wetland inundation extent in forests on large spatial scales with satel-483

lite data (WorldView-2). For parts of their study area, LiDAR data was avail-484

able enabling accurate detection of surface waters due to its strong absorption in485

near-infrared wavelengths. Reference data acquisition on yield or biomass in an486

agricultural context may be automatized by integrating measurement devices on487

harvesting machines. For instance, Nevavuori et al. (2019) trained a CNN to pre-488

dict wheat and malting barley yield from UAV imagery using training data derived489

from a yield measurement device (John Deere Greenstar 1 ) that was coupled with490

a GNSS receiver and mounted on a harvester.491

Concerning biochemical and structural plant traits, an interesting approach is to492

train CNNs with simulated data derived from physically-based models. Such hybrid493

approaches, i.e. coupling statistical and process-based models, may not only provide494

data for training but also enable including priors and realistic constrains in model495

training (Reichstein et al. 2019). For instance, Annala et al. (2020) trained a 1D-496

CNN with reflectance spectra simulated with the radiative transfer model (RTM)497

SLOP (Maier et al. 1999). Although SLOP is a relatively simple leaf reflectance498

model, Annala et al. (2020) demonstrated promising tests of this hybrid inversion499

method for UAV hyperspectral acquisitions of forest canopies. More sophisticated500

RTMs may allow to produce more robust models, e.g. PROSAIL (Jacquemoud et501

al. 2009) enabling to account for bidirectional reflectance effects in plant canopies,502

whereas 3D-RTMs such as FLIGHT (North 1996) or DART (Gastellu-Etchegorry503

et al. 1996) may provide interesting sources for generating synthetic training data504

for 2D-CNNs (see Section 3.2 for details on 1D-, 2D- and 3D-CNNs).505

3.1.2 Reference data quantity506

The quantity of reference data required for the convergence of a CNN depends par-507

ticularly on the complexity of the algorithm and most importantly on the contrast508

of the features that are decisive for the vegetation property of interest. Fewer refer-509

ence data may be required if the vegetation property of interest is easily identifiable510

in the remote sensing data (e.g., due to a distinct canopy structure or contrasting511

14



flowers). Subtle differences and complex relationships in turn require more com-512

plex algorithms and more samples to identify the relevant features. Accordingly,513

the effects of varying the training data size cannot be generalized. The results of514

Weinstein et al. (2020) suggest that the accuracy first increases rapidly with in-515

creasing the reference data quantity and then stagnates. In the context of tree516

species mapping in urban environments, Hartling et al. (2019) showed that using517

10 % of their available training samples decreased the overall accuracy from 82.58518

% to 70.77 %. Using 200-3940 samples and multiple CNN architectures, Fromm519

et al. (2019) showed that the reference data quantity can have a large influence on520

the overall accuracy for tree seedling mapping (up to 18 %). Using UAV data for521

segmenting growth forms in wetlands, T. Liu et al. (2018b) demonstrated that the522

effect of sample size (700-3500 samples) can greatly differ across different model523

architectures and complexities.524

Overall, the amount of reference data used in the reviewed studies differed525

greatly - most notably between studies using different remote sensing platforms.526

Studies based on terrestrial data acquisitions, e.g., terrestrial or mobile LiDAR527

scanning, used around 340 reference observations (median). UAV- or airborne-528

related studies used a median of 2795 reference observations and studies based on529

satellite observations 6001 observations. These large differences may be the result530

of two factors: Firstly, studies at the satellite-scale typically cover larger spatial531

extents and are, hence, more likely to benefit from previously acquired reference532

data sets (cf. Schmitt et al. (2020)), whereas, the coarser spatial resolutions also533

allow to incorporate reference data with higher geolocation errors. Secondly, data534

acquired at higher resolutions, often TLS or MLS LiDAR data, contains finer infor-535

mation on vegetation structures and may thus include more characteristic features.536

This may hence facilitate model convergence and decreases the amount of reference537

data required.538

A common training strategy that aims to compensate for few reference data539

is data augmentation, which inflates the number of reference data by introduc-540

ing small manipulations to the existing data or creating synthetic data (see details541

section 3.2.1.1). Instead of collecting new reference data, it may be more efficient542

to use existing reference data, e.g. from previous research projects or authorities543

(e.g. environmental agencies, forestry offices). Accordingly, the establishment of544

open access databases incorporating labeled remote sensing data is increasingly545

demanded but still lacking (Zhu et al. 2017). Such databases would not only fa-546

cilitate the efficiency of model training due to ample training data, but would also547

allow to assess and improve the extrapolation and transferability of these models548

to new domains. This is particularly important as geoscientific models are often549

under-constrained due to limited representatives of the training data (Reichstein550

et al. 2019). Accordingly, databases can enable to test and improve the model551

transferability towards new domains, such as different remote sensing acquisitions552

(daytime or sensors), vegetation types, or growth stages. Moreover, databases of553

sufficient size could also play an important role to develop backbones that are specif-554

ically oriented to vegetation remote sensing (further discussed in Section 3.2.1.2).555

Freely accessible databases can also facilitate more comprehensive and universal556

comparisons of algorithms and the identification of improvement opportunities.557

Despite the described benefits, there exist still only a few databases providing558

labeled remote sensing data, which may be explained by the novelty of the scien-559

tific field (cf. Fig., 2), associated costs for data storing and sharing (especially in560
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regard to high-resolution data), various fields of application with individual anno-561

tation requirements, and lastly the diversity in remote sensing sensors, acquisition562

and processing modes. A prime example is the voluntarily organized ImageCLEF563

initiative (imageclef.org). The latter hosts an evaluation platform and mostly an-564

nually recurring competitions for cross-language annotation of images (Kelly et al.565

2019). The first competition was hosted in 2003 and aimed at classifications of566

generic photograph datasets, whereas in 2011 the first vegetation-specific competi-567

tion followed, which was centered on plant species identification from ordinary pho-568

tographs. Since 2017, ImageCLEF also hosts the GeoCLEF competitions, which569

focus on plant species identification by means of environmental and remote sensing570

data, including high-resolution remote sensing imagery and respective land cover571

products. Another example is the NSF NEON database (Kampe et al. 2010; Kao et572

al. 2012; Marconi et al. 2019) including a wide array of (partly multitemporal) refer-573

ence and remote sensing data (most importantly from RGB, LiDAR, hyperspectral574

airborne campaigns) on natural and semi-natural ecosystems. This database has575

already been proven to be of immense value to train and validate models across576

ecosystems and remote sensing acquisitions (Ayrey et al. 2018; Weinstein et al.577

2020). For instance, Weinstein et al. (2020) tested cross flight performance of a578

CNN for tree crown segmentation in different environments. Their results under-579

lined the value of large databases for model training, as the model generalization580

with additional datasets greatly improved - even when the target class was not581

present in all datasets. Example centered on developing and benchmarking deep582

learning towards vegetation types and land-cover mapping with Sentinel-2 imagery583

are the SEN12MS (Schmitt et al. 2019), BigEarthNet (Sumbul et al. 2019) and EU-584

ROSAT (Helber et al. 2019) datasets. In the agricultural context, the Global Wheat585

Dataset (global-wheat.com) includes standardized images on weeds (1024 × 1024586

pixels) with subcentimetre resolution, providing the basis for public challenges, such587

as the 2020 challenge to count wheat ears (David et al. 2020).588

An alternative approach could also be the use of databases that only refer589

to vegetation information but can be linked to existing remote sensing data in590

other ways, e.g. by taxonomic identities or geo-coordinates. Valuable resources in591

this context are the TRY database (try-db.org, kattge2020try), which contains a592

wealth of morphological, physiological and phenological plant traits, the opentrees593

database (opentrees.org, providing species and location information of individual594

trees in urban areas, or GBIF (gbif.org, providing several huge datasets on citizen-595

science-based plant photographs together with species names and geo-coordinates,596

including the popular iNaturlist dataset.597

3.2 Common CNN approaches and architectures598

3.2.1 Training strategies599

Training a CNN can be challenging due to a restricted amount of labeled obser-600

vations, computation load required for model convergence, and model overfitting.601

This chapter lists the most common strategies and methods applied during training602

to alleviate these challenges.603
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3.2.1.1 Normalization and regularization techniques604

A famous problem in training artificial neural networks with gradient-based learn-605

ing is the vanishing or exploding gradient problem (Hochreiter 1991, 1998).606

During backpropagation, the weights of each node are updated proportionally to607

its gradient in respect to the loss. The gradients are derived by calculating the608

derivative of an activation function. For a common sigmoid function, this deriva-609

tive becomes increasingly small for very low or high values. The derivative of a610

layer is calculated by the chain rule and so gradients and corresponding updates of611

weights in earlier layers of the network can approach zero (vanish). The opposite612

effect, i.e. exploding gradients, can occur for large derivatives. This imbalance in613

the network ultimately impairs the network’s ability to find the ideal updates for614

the weights.615

A common counter-measure is batch normalization, which is applied in 26616

% of the reviewed studies, particularly in networks with many parameters such617

as for semantic segmentations (Kattenborn et al. 2019a; Ronneberger et al. 2015;618

F. Wagner et al. 2019). Batch normalization normalizes the output of activation619

functions to zero-mean and unit variance and thereby prevents the network from620

becoming imbalanced due to excessively high or low activations. This smooths the621

optimization problem of the gradient descent function and allows for larger ranges622

of learning rates and hence facilitates network convergence.623

The vanishing gradient problem can also be greatly reduced by using the Rec-624

tified Linear Unit (ReLU) activation function. The output weight of the ReLU625

function equals the weighted sum of the inputs as long as this sum is > 0 (values626

< 0 are ignored). For > 0, ReLU is a simple linear function such that the deriva-627

tive is always 1, hence, preventing the vanishing gradient problem. The probably628

more important characteristics of ReLU are its non-linearity and its regulariza-629

tion function of the network. The large amount of parameters in deep networks630

makes them prone to overfitting and, therefore, regularization aims to facilitate631

a network’s ability to generalize. ReLU regularizes the network by reducing the632

parameters of the model as it ignores values < 0 - these values are in theory not633

activated anyway. The reduction of parameters also greatly decreases the com-634

puting time in contrast to conventional hyperbolic tangent functions (Krizhevsky635

et al. 2012). Only few studies reported that they used other activation functions636

suggesting that in fact most of the studies used ReLU.637

One of the most common and effective regularization technique is Dropout(Srivastava638

et al. 2014) (used in at least 31 % of the reviewed studies), and stands for randomly639

removing a fraction (typically 50 %) of a layer’s output features during the training640

process (these output features are set to zero). The core idea of dropout is to ar-641

tificially introduce stochasticity to the training process preventing the model from642

learning statistical noise in the data.643

Still, overfitting does not only depend on the number of parameters in the644

model, but also on the representatives of the sampling. Particularly in the context645

of vegetation mapping, samples are often taken under limited conditions, while a646

model is deployed to further, foreign conditions. The associated risk is therefore647

an over-fitting of the model to the situation with limited conditions and repre-648

sentatives (e.g, with regard to scene illumination or local vegetation properties).649

An obvious solution is a larger amount of training data or covered variation, re-650

spectively. To reduce the costs of creating labeled observations, a commonly ap-651

plied procedure is to synthetically increase the sample quantity and diversity using652

17



data augmentation procedures (Chatfield et al. 2014; Krizhevsky et al. 2012).653

Data augmentation is the process of producing more samples from existing data654

by introducing manipulations them (Shorten et al. 2019). These changes may in-655

clude randomly changing the spatial extent of the imagery, e.g., to make a model656

more robust for detecting individuals of a plant species with varied sizes. Random657

transformations, such as flipping, rotating or translating the imagery, can increase658

the generality towards varying sun-azimuth angles and corresponding cast-shadows659

(also described as rotational invariance). Random spectral shifts may compensate660

for variation in illuminations caused by topography or atmospheric conditions and661

may further alleviate data calibration issues or sensor-specific differences. In most662

CNN-related studies using LiDAR data, the detection process is not based on the663

point cloud, but 2D projections derived from the point cloud (cf. Section 3.5.2).664

Here, data augmentation can be performed by varying the viewing geometry prior665

to generating the 2D image – also referred to as multi-view-data generation (Jin666

et al. 2018; Ko et al. 2018; Su et al. 2015; Zou et al. 2017). The overall effectiveness667

of data augmentation is highlighted by the fact that 47 % of the studies used data668

augmentation. Fromm et al. (2019) and Safonova et al. (2019) explicitly tested the669

effect of data augmentation and found significant improvements for the detection670

of tree seedlings and bark beetle-infected trees, respectively.671

Data augmentation may also be performed by not introducing minor manip-672

ulations, but creating new, synthetic observations from the existing data. Gao et673

al. (2020) presented an automated procedure for the creation of synthetic images674

and labels from original images for detecting weed infestation (Calystegia sepium)675

in sugar beet fields. Their approach involved the creation of masks for individual676

plants from the original images used for cropping and transferring the corresponding677

RGB information to other base images. Adding data created from this (very simply678

said copy & paste) approach to the original training data indeed increased the pre-679

cision from 0.75 to 0.83. For training a CNN for detecting individual tree crowns,680

Braga et al. (2020) used the same principle and created synthetic Worldview-3681

observations by randomly placing manually-delineated tree crowns on background682

tiles.683

Probably the most elegant framework for generating synthetic data is Genera-684

tive Adversarial Networks (GANs). Inspired by game theory, GANs are driven by685

the competition of a generator module, creating synthetic data (e.g., images) and686

a discriminator module aiming to disambiguate between synthetic and real data687

Frid-Adar et al. (2018) and Goodfellow et al. (2014). During training, a GAN,688

hence, simultaneously improves on how to synthesize observations from noise and689

how to classify them (synthetic vs real data or further classes). At the example of690

segmenting weed infestation in crop fields in UAV imagery, Kerdegari et al. (2019)691

demonstrated a GAN architecture, composed of a generator and the discriminator692

modules with four convolutional layers each. The proposed GAN produced realistic693

synthetic visual and near-infrared scenes. Moreover, it was demonstrated that using694

the discriminator module for semantic segmentation of unknown images resulted in695

comparable accuracy to a pure CNN - even when using only 50 % of the available696

labels. The fact that the discriminator was originally trained to detect another697

problem, i.e. differentiating synthetic from real data, suggest that applying this698

trained discriminator to real world problems could also be considered as a form of699

transfer learning - an approach discussed in more detailed in the next chapter.700
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3.2.1.2 Transfer learning and backbones701

As described earlier, training data for vegetation attributes is often limited as its ac-702

quisition is commonly costly and limited by accessibility. Furthermore, the training703

itself is often associated with high computing costs.704

A common practice to alleviate this problem is to apply transfer learning705

during CNN model training. Transfer learning includes pre-training of the CNN706

model on other, presumably very large and heterogeneous datasets. Such datasets707

do not necessarily have to include the target metric or class (e.g. a certain plant708

species) and can, for instance, be derived from public and generic databases. Popu-709

lar examples are the image databases MSCOCO or ImageNet, which contain thou-710

sands of images from various objects, such as cars, buildings, or people. A very711

elegant approach of transfer learning is to built on pre-trained models directly, com-712

monly referred to as pre-trained backbone, which can potentially reduce data713

storage and processing costs.714

The principle of transfer learning can be transcribed as the process where very715

generic images, not necessarily belonging to vegetation-related situations, are used716

to teach the CNN the ability to see in a general sense. The subsequent step of717

adjusting the network can be understood as teaching the CNN how to apply the718

ability to see to a very specific problem, such as the differentiation of certain plant719

species.720

There exist various transfer learning approaches (Pires de Lima et al. 2020;721

Too et al. 2019; Tuia et al. 2016), which can be roughly grouped into two primary722

strategies: The shallow strategy adopts very general, lower-level image features such723

as edge detectors from the pre-trained backbone or the generic training dataset.724

Only the last layers of the CNN are then fine-tuned for higher level and task-725

specific features using imagery corresponding to the specific problem (e.g. plant726

species detection). The deep strategy, in contrast, involves fine-tuning the entire727

network, i.e. start back-propagation with all layers on the pre-trained network.728

The use of pre-trained backbones is restricted to available architectures. Yet,729

backbones can be customized with output layers (e.g. to apply it on regression730

or classification problems), cost functions, and other components or integrated in731

existing CNNs. There exist a variety of backbones for popular CNN architectures732

(cf. Section 3.2.2), such as VGG, ResNet or Inception. It should be noted that the733

popular backbones are usually trained on 3-channel (RGB) data, whereas remote734

sensing information often provides more predictors, such as multiple bands, time735

steps, or sensor types. In this case, band selection or feature reduction algorithms736

provide a promising avenue (Rezaee et al. 2018).737

According to our review, 30.5 % used pre-trained backbones (e.g., Brahimi et al.738

(2018), Branson et al. (2018), Fromm et al. (2019), Gao et al. (2020), Mahdianpari739

et al. (2018), and Rezaee et al. (2018)). Mehdipour Ghazi et al. (2017) compared740

the utility of three backbones based on GoogLeNet, AlexNet, VGGNet, to identify741

plant species in photographs. Brahimi et al. (2018) assessed the value of pre-742

training for plant disease recognition based on RGB imagery and multiple CNN743

architectures. They showed deep pre-training strategy, i.e. back-propagation on all744

layers of the pre-trained model, delivered the highest accuracy. The shallow strategy745

was usually worse than training a model from scratch. Fromm et al. (2019) showed746

that pre-training not always significantly improved the detection of tree seedlings747

and that the value of pre-training depends on the network’s complexity, while more748

shallow architectures are less likely to benefit from pre-training. Mahdianpari et al.749
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(2018) report that full training resulted in better accuracy than fine-tuning existing750

backbones trained on ImageNet. This suggests that the detection of vegetation751

patterns may not necessarily benefit from features learned on generic datasets.752

This also agrees with recent research by He et al. (2018) suggesting that transfer753

learning may indeed be useful if training data is scarce and computation power754

limited, but otherwise an exhaustive training on task-specific data will result in755

higher accuracy than using generic datasets.756

3.2.1.3 Weakly- and semi-supervised learning757

Besides a lack of reference data, it may occur that reference data already exist,758

but do not meet the ideal requirements for the intended application. Accordingly,759

several concepts and strategies have evolved to compensate for limited availability760

or conceptual incompatibilities of reference data.761

The aim of Weakly supervised learning is to decrease costs for human la-762

beling or to make use of existing, lower quality reference data. This concept is763

particularly interesting for semantic segmentation tasks, where usually an annota-764

tion for each sample (point or pixel) is required. Weakly supervised-learning can,765

for instance, involve annotations at an image level instead of at a pixel level, or766

sparsely annotated data at a pixel level, such as bounding boxes, lines, or points.767

Adhikari et al. (2019) applied weakly supervised learning using the principle of768

semantic graphics to map crop rows and individual weed plants in rice paddies.769

Semantic graphics defines target objects or concepts through abstract forms. Ac-770

cordingly, Adhikari et al. (2019) defined crop rows as line features and weeds as771

solid circles and showed that an encoder-decoder CNN is capable of accurately772

learning and mapping these concepts. Their findings are particularly interesting773

because plant rows are rather fuzzy and not clearly delimitable. The higher-level774

concept of a row, however, is clearly definable for humans by abstracting the spatial775

context of the individual plants and obviously also reproducible by CNNs. The con-776

cept of weakly supervised learning is also applicable when explicit ‘ground truth’777

is scarce but frequent datasets from other studies exist that come with their own778

errors or lower spatial resolutions. Promising results of this approach were pre-779

sented by Schmitt et al. (2020), who predicted vegetation types with Sentinel data780

and used training data derived from MODIS land cover maps at 500m resolution781

(this dataset is freely available; SEN12MS, Schmitt et al. (2019)). Using a high782

resolution imagery, they demonstrated that the Sentinel-based predictions reached783

even higher accuracy than the datasets used for training. Another variant of weakly784

supervised learning for semantic segmentation is based on saliency maps. The basis785

for this approach is a CNN trained for image classification, which can be analyzed786

through class activation mapping (cf. Section 3.6.2 and Fig. 1 showing an example787

for tree species) to identify those pixels that are decisive for assigning an imagej788

to a classi) These pixels are then used to segment the target classi based on the789

assumption that these pixels highlight the components of the respective class in the790

imagej (e.g., the canopy of a tree species). Although no study has been published791

to date that has applied this approach to vegetation remote sensing, the potential792

has been demonstrated several times in other disciplines (Lee et al. 2019; K. Li793

et al. 2018). This approach could, hence, provide a promising way for an efficient794

and automatic segmentation (e.g., of plant species) based on large image databases795

without spatially explicit labels, such as the iNaturalist data.796
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Semi-supervised learning describes the training of a model with only a small797

number of reference data and, hence, can be located between supervised and unsu-798

pervised learning. Weinstein et al. (2019) applied semi-supervised learning frame-799

work for detecting single tree crowns in airborne imagery using a two-step approach:800

The first step, which can be considered as unsupervised or weakly-supervised learn-801

ing, involved training a CNN with labels (bounding boxes, n = 435,551) derived802

automatically from LiDAR data and a tree crown segmentation algorithm (Roussel803

et al. 2017). In the second step, the CNN was optimized using a few hand-annotated804

samples derived from the airborne imagery (n = 2,848). Thereby, Weinstein et al.805

(2019) demonstrated that only few high-quality samples may be required for train-806

ing a robust CNN.807

However, the number of samples required for a specific task is difficult to es-808

timate in advance. In this regard, Active learning, which can be considered as809

a special case of supervised learning, can be an efficient solution. Active Learning810

describes the iterative optimization of a model by repeatedly adding new reference811

data until the predictive accuracy saturates or reaches a desired threshold. Ghosal812

et al. (2019) exemplified an active learning approach for sorghum head detection813

in UAV imagery. Starting point was a single image together bounding boxes of814

sorghum heads to train a CNN, which was then applied to another random image.815

The image and predictions were afterward fed into an annotation app in which a816

human interpreter corrected the predictions before they were added to the training817

dataset. The initial model was then optimized using the enlarged training dataset818

and the entire procedure was repeated in multiple iterations. In their case study,819

the model accuracy already converged between 5-10 iterations, highlighting the ef-820

ficiency of active learning for finding the right balance between costs of human821

labeling and model performance.822

3.2.2 Approaches and architectures823

Depending on the components and architecture, CNNs can be implemented in many824

different ways, which in turn enables a wide range of different applications in the825

field of vegetation remote sensing. CNNs can initially be grouped into 1D-, 2D-826

and 3D-CNNs, where the number refers to the dimensions of the kernel. 1D-827

CNNs are less often used (8 % of the reviewed studies) since they do not explicitly828

consider spatial context and are, hence, primarily applied to analyze optical spectra829

or multitemporal data (Annala et al. 2020; Guidici et al. 2017; Kussul et al. 2017;830

Liao et al. 2020; Y. Xi et al. 2019; Zhong et al. 2019). Most studies applied 2D-CNNs831

(88 %), as these readily exploit spatial patterns in common imagery (e.g., RGB or832

multispectral imagery, cf. Fromm et al. (2019), Kattenborn et al. (2020), Milioto833

et al. (2017), Neupane et al. (2019), F. H. Wagner et al. (2020), and Weinstein834

et al. (2019). The added value of spatial patterns, i.e. of 2D versus 1D-CNNs, was835

even demonstrated with relatively coarse-resolution Landsat data (Kussul et al.836

2017). 3D-CNNs are rarely used (4 %), but are the means of choice when successive837

layers have a directional relationship to be considered (e.g. canopy height profiles,838

hyperspectral reflectance, or time-series data, e.g., Ayrey et al. (2018), Barbosa839

et al. (2020), Jin et al. (2019), Liao et al. (2020), Lottes et al. (2018), Nezami et al.840

(2020), and Zhong et al. (2019)). 2D- and 3D-CNNs can be applied to solve different841

problems, including assigning values or classes to entire images, detecting individual842

objects within images, segmenting the extent of classes, or simultaneously detecting843

21



individual objects and segmenting their extent (Fig. 10b). The major differences,844

including the required structure of labels and resulting outputs, are described in845

the following sections:846

3.2.2.1 Image classification / regression847

Image classification is the assignment of a class to an entire image (Fig. 9a).848

For example, an image may be assigned to the class shrub if at least a fraction849

is covered with Ulex europaeus or Sambucus nigra. Training image classification850

or regression-based CNNs requires comparably simple annotations in the form of851

class correspondences or continuous values, respectively, for each image. Typical852

CNN-architectures for image classification and regression include VGG, ResNet,853

Inception or EfficientNet. VGG uses blocks of consecutive convolutions and non-854

linear activations. Between those building-blocks max-pooling with stride of 2855

reduces the resolution of the layers. The filter size of the convolution is restricted856

to 3x3, leading to less parameters and thus more possible layers. The small filter857

size is still common in more recent networks. Finally, some fully connected layers858

are added for classifying the output of the building-blocks (Fig. 4). ResNet also859

consists of building-blocks with consecutive convolutions and activations (Fig. 5)860

but with some major difference: First, the depth of the layers is drastically reduced861

before the 3x3 convolution with a bottleneck 1x1 convolution. Thus, the number862

of parameters is much lower compared to VGG, even so ResNet has up to 10 times863

more layers. Second, to compensate for the vanishing gradient problem (cf. Section864

3.2.1.1) with such a high number of layers (e.g. 152), skip connection with identity865

or convolution shortcuts are introduced. Such skip connections are still used in866

the current design, allowing very deep networks. Third, ResNet only uses one max867

pooling layer. Instead, convolution with stride 2 are used for resolution reduction.868

Most modern architectures such as EfficientNet also dismiss max-pooling operation869

to reduce possible information loss during pooling.870

A typical procedure to map vegetation patterns in remote sensing imagery with871

CNN-based image classification or regression is to subset the original imagery into872

regular tiles (e.g., 128 x 128 pixels) on which the model is subsequently applied873

(details see Section 3.5.1). This procedure was for instance applied to LiDAR and874

airborne imagery to map tree species (Sun et al. 2019) or the detection of forest875

types using a combination of high-resolution satellite imagery and LiDAR data (C.876

Sothe et al. 2020). Image classification or regression may also be applied to segments877

derived from previously applied unsupervised image segmentation methods (dos878

Santos Ferreira et al. 2017; Hartling et al. 2019; Ko et al. 2018; T. Liu et al.879

2018a). Image regression is used when a continuous quantity is assigned to an880

entire tile. For example, (Kattenborn et al. 2020) predicted continuous cover values881

[%] of plant species and communities in UAV-based tiles (2-5m) along smooth882

vegetation gradients. Yang et al. (2019) and Castro et al. (2020) estimated rice883

grain yield and forage biomass in pastures, respectively, from UAV-based tiles.884

Barbosa et al. (2020) mapped continuous crop yield on coarser scales based on885

satellite data. Ayrey et al. (2018) used regression on airborne LiDAR data to886

predict forest biomass and tree density.887
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3.2.2.2 Object detection888

Object detection aims at locating individual occurrences of a class (e.g. trees)889

within an image (Fig. 9b). The detection typically includes the localization of890

the object center and an approximation of its extent using a simple rectangular891

bounding box.892

Widely applied architectures for object detection are region-based CNNs (R-893

CNN, Girshick et al. (2014)), which involve a two-step approach; region proposals894

of the object’s location and extent followed by a classification. R-CNN was followed895

by two successors, i.e. Fast R-CNN (Girshick 2015) and the most widely applied896

and efficient Faster R-CNN (Ren et al. 2017). The more recent Faster-R-CNN897

forwards feature maps (often derived using a VGG-type backbone) to a region898

proposal branch that performs an initial prediction on potential object locations899

(also referred to as anchors). These rather rough region proposals are then used900

to crop areas of the feature maps as input for a fine-scaled object localization and901

classification (Fig. 6).902

Object detection is suitable for countable things with definable spatial extent903

within the field of view. Such conditions are often found in agricultural settings904

and accordingly 45 % of the studies related to agriculture apply object detection905

techniques, such as locating and counting palm or tree individuals in plantations906

(Csillik et al. 2018; Freudenberg et al. 2019), individual maize plants in TLS-point-907

clouds of crop fields (Jin et al. 2018) or individual strawberry fruits and flowers908

in sub-centimeter UAV-imagery (Chen et al. 2019). The application of object de-909

tection in natural environments is less frequent, which can be explained by the910

presence of continuous gradients and smooth transitions in species cover, traits,911

and communities. In forestry or conservation, only 14 % and 10 % of the studies912

used object detection. Examples include the localization of fir trees infested by bark913

beetle (Safonova et al. 2019), the mapping of individual tree crowns across several914

ecosystems (Weinstein et al. 2020) or the detection of Cactae (López-Jiménez et al.915

2019).916

Object detection-based CNNs are typically trained using bounding boxes of de-917

sired classes as labels. Several tools exists for a fast annotation of bounding boxes918

(see Section 3.1.1). However, a problem with bounding boxes in vegetation analysis919

is that they often do not explicitly define vegetation boundaries (vegetation is not920

rectangular). This in turn can make validation difficult, as inaccurate reference921

data do not allow a final assessment of the prediction (Weinstein et al. 2020, 2019).922

From this point of view semantic (Section 3.2.2.3) or instance segmentation (Sec-923

tion 3.2.2.4) may be more spatially explicit, but also require more sophisticated924

annotations.925

3.2.2.3 Semantic segmentation926

While image classification and object detection aim to detect the presence or lo-927

cation of an object, semantic segmentation aims to delineate the explicit spatial928

extent of the target class within the image (Fig. 9c). In contrast to object detec-929

tion, semantic segmentation assigns all pixels in an image to a class. It is especially930

suited to segment uncountable and amorphous stuff (frequently used term to il-931

lustrate the contrast to countable things (cf. Kirillov et al. (2019)). The training932

process is typically based on labels in the form of spatially explicit masks to provide933

a class assignment for each single pixel (e.g., absence or presence or species a, b, c).934
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The challenge with semantic segmentation is that CNNs usually include mul-935

tiple pooling operations to reveal spatial context in the feature maps derived from936

the convolutions and, thereby, spatial reference and detail is initially lost. One937

solution often referred to as patch-based, is to perform a semantic segmentation938

by predicting only values for the center pixel of the input image and iteratively939

slide the field of view over the image data until every pixel received a label (Baeta940

et al. 2017; Fricker et al. 2019; Kussul et al. 2017; Mahdianpari et al. 2018; Rezaee941

et al. 2018; M. Zhang et al. 2018). However, this method requires an individual942

prediction for each pixel and is rather inefficient considering that the CNN analy-943

ses the neighbouring pixels at the same time anyway. A more elegant and effective944

way is to build a semantic segmentation on fully convolutional networks (FCN)945

as first demonstrated by Long et al. (2015). FCN conserve the spatial reference,946

by memorizing the pixels that caused activations in earlier stages of the network947

and forwarding it to an output segmentation map (see Fig. 7). This way, FCN948

do not only allow detecting the presence of a target class within an image (e.g.,949

a species) but also the individual pixels that correspond to the target class. A950

more recent and frequently applied architecture for semantic segmentation is the951

U-Net (named after its ’U’-like shape, Ronneberger et al. (2015)). U-Net features952

encoder-decoder structure, while the spatial scale is subsequently reduced after con-953

secutive pooling operations and again increased in a contracting path (see Fig. 8).954

The activations from the contracting path are forwarded using skip connections to955

the expanding path to reconstruct the spatial identity. Further commonly applied956

CNN-architectures for semantic segmentation are SegNet (Badrinarayanan et al.957

2017) or FC-DenseNet (Jégou et al. 2017). Semantic segmentation is widely used958

in several contexts, ranging from mapping of plant species (Fricker et al. 2019) and959

plant communities (Kattenborn et al. 2019a; F. Wagner et al. 2019), to mapping960

deadwood (Fricker et al. 2019; Jiang et al. 2019). Torres et al. (2020) compared961

amongst other architectures U-Net, SegNet, FC-DenseNet for mapping Dipteryx962

alata trees in an urban context. Their results suggest that the segmentation ac-963

curacy of the three latter algorithms was quite similar, whereas it was found that964

more simpler architectures (e.g., U-net) require less effort for model training.965

3.2.2.4 Instance segmentation966

Instance segmentation aims at detecting individual things, such as individual plants967

or plant elements, and segmenting their spatial extent. Instance segmentation may,968

hence, be considered as a combination of object detection and semantic segmenta-969

tion (Fig. 9d). A few studies used CNN-based object detection and subsequently970

applied segmentation techniques, such as region growing in the case of point cloud971

data, to detect individuals (Wang et al. 2019). However, here we define instance972

segmentation as an end-to-end, CNN-based segmentation of individuals. One of973

the most popular algorithms for instance segmentation is Mask-R-CNN (He et al.974

2017); a derivative from R-CNN described in section 3.2.2.4. Alike Faster-RCNN,975

it comprises a two-step approach, including an initial region proposal followed by976

the localization and classification of the feature maps, while in the case of Mask-977

R-CNN, the proposed region is subject to a segmentation branch (Fig. 6). Similar978

to semantic segmentation, fully connected layers are used to create masks at the979

original resolution of the input imagery. Despite the potential utility of instance980

segmentation, the literature search only comprised few respective studies; Jin et al.981
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(2019) used instance segmentation to map individual leaves and stems in maize982

plants, Braga et al. (2020) delineated individual tree crowns in tropical forests and983

Chiang et al. (2020) detected individual dead trees. The rare use of instance seg-984

mentation could be explained by the more sophisticated collection of reference data,985

which involves both the identification of individuals and delineating their explicit986

spatial extent. In an agricultural context, the identification of instances of multiple987

classes may often not be necessary, as most tasks are situated in mono-cultures.988

Instance segmentation in a forestry or conservation context may often not be ap-989

plicable because natural canopies often feature smooth transitions or overlapping990

crowns.991

3.3 Geographic and thematic areas of CNN application992

CNN-based vegetation remote sensing has already been applied in many countries993

(see Fig. 11), whereas a large amount of studies were carried out in Europe, USA,994

Brazil, and China. The pattern suggests that CNN applications are found in many995

of the World’s biomes and are hence applicable for a wide range of vegetation types996

and applications.997

Our literature survey revealed that CNN-based vegetation remote sensing is998

applied to a wide spectrum of thematic categories (Fig. 12). A classification of999

the studies into broad categories showed that 44 % of the studies are related to1000

agriculture, 26 % of the studies have relevance for both conservation and forestry.1001

8 % and 22 % exclusively tackled research questions for forestry and conservation,1002

respectively. Within these broad categories, the specific tasks are very diverse (the1003

interested reader can find the explicit references of each task in the appendix):1004

Examples in the context of agriculture include the mapping of individual crop1005

fields at regional scales using medium and high-resolution satellite data, e.g. coffee1006

crop fields (Baeta et al. 2017), rice paddies (M. Zhang et al. 2018), safflower, corn,1007

alfalfa, tomatoes, and vineyards (Zhong et al. 2019). Several studies used high-1008

resolution imagery from airborne and satellite platforms to map individual plants in1009

plantations, e.g. citrus trees, palm trees or bananas (Csillik et al. 2018; Freudenberg1010

et al. 2019; W. Li et al. 2017; Mubin et al. 2019; Neupane et al. 2019). Besides1011

detecting individual citrus trees, Ampatzidis et al. (2019) quantified their crown1012

diameter, health status (NDVI-based), and respective canopy gaps in plantation1013

rows. A large share of the studies used imagery with milli- or centimeter pixel size1014

acquired terrestrially or from UAVs. A prime example of such detailed input data is1015

the detection of weed infestations, e.g., in soybean (dos Santos Ferreira et al. 2017)1016

or sugar beet fields (Gao et al. 2020; Milioto et al. 2017; Sa et al. 2018)). Lottes1017

et al. (2018) presented an automatic approach for mapping weed infestation in1018

imagery acquired by a farming robot equipped with a mechanical actuator that can1019

stamp detected weeds into the ground. Adhikari et al. (2019) used subcentimeter1020

imagery to map crop lines of rice plants in paddy fields to aid navigation of weeding1021

robots for the eradication of weeds (Panicum miliaceum). Jin et al. (2018) tested1022

the detection and height estimation of individual maize plants. Other studies used1023

high-resolution imagery for yield estimation, e.g., based on counting individual1024

flowers at sub-centimeter resolution as a proxy for strawberries yield (Chen et al.1025

2019), segmenting sorghum panicles (Malambo et al. 2019) or applying CNN-based1026

regression for rice grain yield estimation (Yang et al. 2019).1027

In the forestry context, most studies use high-resolution data from UAV or1028
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airborne platforms. Ayrey et al. (2018) used airborne LiDAR data to map forest1029

biomass and tree density in temperate forests. Weinstein et al. (2020) tested the1030

localization of individual tree crowns (object detection) across ecosystems using1031

airborne data. Braga et al. (2020) used very high-resolution satellite data to de-1032

lineate individual tree crowns (instance segmentation) in tropical forests. A series1033

of studies dealt with the mapping of tree species or genera in forests (Fricker et al.1034

2019; Kattenborn et al. 2020; Natesan et al. 2019; Nezami et al. 2020; Pinheiro1035

et al. 2020; Schiefer et al. 2020; Trier et al. 2018; Zou et al. 2017) and urban areas1036

(dos Santos et al. 2019; Hartling et al. 2019; Torres et al. 2020). Fromm et al.1037

(2019) tested the detection of individual conifer seedlings in high resolutions air-1038

borne imagery for monitoring of tree regeneration. A substantial interest exists1039

towards assessments of forest damage, e.g., caused by wind throw (Hamdi et al.1040

2019; Korznikov 2020) or bark beetle infestations (Safonova et al. 2019).1041

Examples in conservation with medium resolution data include the mapping1042

of wetland types at regional scales with multispectral Landsat and polarimetric1043

RADARSAT-2 data (Mahdianpari et al. 2018; Mohammadimanesh et al. 2019;1044

Pouliot et al. 2019). de Bem et al. (2020) mapped deforestation in the Amazon us-1045

ing stacked pairs of Landsat imagery from consecutive years. In the context of dry-1046

land mapping program by FAO (Food and Agriculture Organization of the United1047

Nations), (Guirado et al. 2020) mapped tree cover (%) using airborne orthoimagery1048

and exemplified that CNN-based mapping outperformed previous assessments by1049

FAO based on photo-interpretation. Examples for mapping at high spatial reso-1050

lution include the mapping of rainforest types and disturbance (F. Wagner et al.1051

2019), plant succession stages in a glacier-related chronosequence (Kattenborn et1052

al. 2019a), herbaceous and woody invasive species species in several environments1053

(Kattenborn et al. 2019a; T. Liu et al. 2018c; Qian et al. 2020), shrub cover (Guirado1054

et al. 2017), ecosystem structure-relevant plant communities in the Arctic tundra1055

(Langford et al. 2019) or the rehabilitation of native tussock grass (Lomandra longi-1056

folia) after weed eradication campaigns (Hamylton et al. 2020).1057

3.4 Remote sensing platforms1058

Approximately, 17 % of the studies acquired data from the ground or terrestrial1059

platforms, including stationary photography (Ma et al. 2019), mobile mapping data1060

from Google Street View (Barbierato et al. 2020; Branson et al. 2018), farming1061

robots (Lottes et al. 2018), and terrestrial laser scanning (e.g., Bingxiao et al. (2020)1062

and Wang et al. (2019)). The major part of studies using terrestrial platforms took1063

place in an agriculture context with a focus on precision farming.1064

With 36 %, the largest share of studies assessed in this review used data cap-1065

tured from UAV. This can be explained as UAV feature two important features;1066

they enable to autonomously acquire spatially continuous data with automated1067

georeferencing - a feature that recently revolutionized possibilities for fast, flex-1068

ible, repeated, and cost efficient remote sensing data acquisition for vegetation1069

analysis. At the same time, UAV can be operated at low altitudes capturing veg-1070

etation canopies with high spatial detail. High-resolution data acquired by UAV1071

and CNN-based pattern analysis provide powerful synergies for spatially continu-1072

ous vegetation analysis. Due to the inevitable trade-off of spatial resolution and1073

image footprint, a drawback of any high-resolution remote sensing is the limited1074

area coverage decreasing the efficiency for vegetation assessments on large scales.1075
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One approach to overcome this limitation is the spatial up-scaling of UAV-based1076

vegetation maps with satellite data (Kattenborn et al. 2019b), where UAV-based1077

maps are used as a reference for coarse-resolution but large-scale satellite-based1078

predictions.1079

Depending on the spatial scale of the vegetation analysis and the size of the de-1080

cisive spatial features, airplanes may feature a more efficient compromise between1081

area coverage and resolution. 11 % of the studies in this review used airborne sen-1082

sors. In addition to increased spatial coverage, an advantage of airplane platforms1083

is their increased potential payload supporting more sophisticated and high-quality1084

sensors. Accordingly, a large proportion of airplane-related studies used LiDAR or1085

hyperspectral data or a combination of both.1086

Aerial data from UAV and airplanes are often generated by matching single1087

frames from imaging sensors in concert with photogrammetric processing tech-1088

niques. Due to the relatively low height of both platforms, the single image frames1089

usually feature a substantial variation in viewing geometry and bidirectional re-1090

flectance effects. At first sight, this may challenge the retrieval of vegetation char-1091

acteristics, but as T. Liu et al. (2018a,c) have shown, this variation can also be1092

a valuable source for increasing the amount of training data and generating more1093

robust models. In a case study on mapping vegetation types in UAV imagery,1094

they demonstrated increasing model performance when using a multi-view approach1095

that combined tiles from orthoimagery and the spatially corresponding single image1096

frames.1097

In total 35 % of the studies used data acquired from satellites. The poten-1098

tial of CNN-based pattern recognition combined with the unprecedented amount1099

of high-resolution satellite data was demonstrated by Brandt et al. (2020) who1100

mapped more than 1.8 billion trees across the Sahara and Sahel zone with a mosaic1101

of 11,128 satellite scenes (GeoEye-1, WorldView-2, WorldView-3 and QuickBird-1102

2). This pioneering study suggest how high resolution data from small satellites1103

(weight < 500 kg) and microsatellites (weight < 100 kg) will offer ground braking1104

opportunities for CNN-based vegetation analysis. Examples are the Planet Labs1105

constellation of PlanetScope data, which image the entire Earth Surface on a daily1106

basis at 3.7 m resolution or SkySat, which enable to image targeted areas at 0.721107

m resolution. These satellite constellations may provide sufficient spatial detail for1108

various large-scale CNN-based vegetation assessments.1109

3.5 Sensors, spatial and spectral resolution1110

CNN are most frequently applied on passive optical sensors (RGB, multispectral,1111

or hyperspectral). Only a few studies (7 %) used products from SAR systems.1112

Passive optical and SAR data are commonly analyzed with raster-based methods1113

and, hence, discussed together in Section 3.5.1. The second-largest share of studies1114

(10 %), incorporated LiDAR data, whereas 3 % used terrestrial LiDAR data, and1115

7 % used airborne LiDAR. The common methods for the analysis of LiDAR-based1116

point clouds are presented in Section 3.5.2. The fusion of multiple sensor types is1117

discussed in Section 3.5.3.1118
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3.5.1 Passive optical and SAR data analysis1119

CNNs involve numerous transformations of the input data and the available (mostly1120

GPU-based) memory may, hence, limit the maximum size of the input data. How-1121

ever, raster data, such as airborne or spaceborne acquisitions from passive optical or1122

SAR-sensors, usually feature multiple layers (e.g., bands of different wavelengths or1123

multitemporal data) and can, thus, occupy large data volumes. Moreover, for some1124

CNN approaches, e.g. image classification, it would not be meaningful to make1125

a single prediction for an entire raster, but, instead, make multiple smaller-scaled1126

predictions to reveal the spatial variation within the area covered by the raster.1127

For these reasons, CNN training and inference is not performed on entire rasters1128

but instead on equally sized tiles extracted from a raster. The trained CNN can1129

then be used to create spatial maps using a sliding window principle. Thereby,1130

the CNN is applied to regularly extracted tiles that have the same size as the tiles1131

used for training.1132

The most efficient approach is the seamless extraction of tiles without overlap,1133

whereas combining the results of multiple, overlapping tiles may be useful to in-1134

crease redundancy and compensate for edge effects (Brandt et al. 2020; Du et al.1135

2020). Similarly, Neupane et al. (2019) showed that combining the tiling results1136

from different orthophotos acquired at multiple resolutions enhances the detection1137

of palm trees. Generally, the tile sized should be maximized as determined by1138

memory capacities, as larger sizes increase the CNN’s field of view and, hence, am-1139

plifies the available spatial context and thus accuracy of the model. This effect was1140

demonstrated in (Kattenborn et al. 2020), where the accuracy in estimating the1141

cover of plant species and communities from UAV imagery increased considerably1142

from smaller (2m) to larger tile sizes (5m). Likewise, at the example of predicting1143

crop yield from UAV imagery, Nevavuori et al. (2019) demonstrated that larger1144

tile sizes (10, 20, 40m) resulted in more accurate predictions. Especially for very1145

high-resolution data, it should also be considered that increasing the tile size can1146

furthermore decrease the effect spatially inaccurate reference data (e.g., geolocation1147

errors of in-situ data or inaccurately delineated masks or bounding boxes). How-1148

ever, in the case of image regression or classification (Section 3.2.2.1), which results1149

in a single prediction per tile, increasing the tile size decreases the spatial grain of1150

the mapping output (Kattenborn et al. 2020). For segmentation approaches (Sec-1151

tion 3.2.2.3), the spatial extent of the input tiles will have no effect on the output1152

resolution. The processing speed of the sliding window approach can be enhanced1153

by first pre-filtering areas of the target raster using a region proposal. For instance,1154

in the context of shrub cover segmentation in arid areas, Guirado et al. (2017) used1155

brightness thresholds and edge-detectors, as these are already a good indicator to1156

show the general occurrence of shrubs.1157

In addition to the spatial context or tile size, the spatial resolution is a de-1158

cisive factor. The spatial resolution most strongly varies with the remote sensing1159

platform (Fig. 13) and additionally depends on operating altitude and sensor prop-1160

erties. Although CNN applications are designed for pattern analysis, the highest1161

possible resolution will not ultimately be the most operational solution, as higher1162

resolution comes with increased storage and computation loads. In addition, data1163

acquisition at higher spatial resolution leads to smaller area coverage. The ideal1164

spatial resolution is determined by the spatial scale at which the characteristic pat-1165

terns of the target class or quantity occur. For instance in the context of tree species1166

mapping, Schiefer et al. (2020) showed decreasing the spatial resolution from 2 to 81167
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cm decreases the accuracy (F-score) by at least 25 %. Fromm et al. (2019) showed1168

that the detection accuracy for tree seedlings based on different UAV-image reso-1169

lutions (0.3-6.3 cm) can vary up to 20 %. Similarly, Neupane et al. (2019) found1170

a 17% decrease in 17 detection accuracy for banana palms in plantations when1171

decreasing the pixel size from 40 cm to 60 cm. Weinstein et al. (2020) assessed1172

the relationship between object size and spatial resolution the other way around.1173

They did not change the spatial resolution of the remote sensing data, but ana-1174

lyzed different ecosystems with characteristic tree sizes and concluded that treetop1175

detection for small trees (in alpine forests) was the least accurate.1176

Regarding spectral resolution of passive optical sensors, the literature search1177

revealed that with 52 % the largest share of studies used RGB imagery, whereas1178

only 31 % used multispectral (defined as RGB and at least one additional band)1179

and only 9 % used hyperspectral data (defined here as > 20 spectral bands). The1180

fact that multispectral, and hyperspectral data are less frequently used is not a1181

surprise; multispectral and hyperspectral sensors feature larger pixel sizes as nar-1182

rower spectral bands receive less radiation and given that the amount of radiation1183

received by the sensor must clearly surpass its signal to noise ratio. Accordingly,1184

everything else being equal, multispectral and hyperspecral sensors have a lower1185

spatial resolution than RGB data. As CNNs are particularly designed for pattern1186

analysis RGB data may often be preferred.1187

Accordingly, the results of several studies suggest, that for many tasks no high-1188

spectral-resolution information may be needed: For instance, Osco et al. (2020)1189

found that counting citrus trees did not clearly improve when combining multi-1190

spectral with RGB data. Zhao et al. (2019) found no improvement in using mul-1191

tispectral over RGB data for rice damage assessments (rice lodging). Yang et al.1192

(2019) showed that the added value of multispectral on top of RGB information1193

only slightly improved the estimation accuracy of rice grain yield. In the context of1194

tree species classification, Nezami et al. (2020) did not report clear improvements1195

in using UAV-based hyperspectral data over RGB data. Similarly, Kattenborn et1196

al. (2019a) showed that CNN-based species identification is more accurate than a1197

pixel-based hyperspectral classification of plant species (Kattenborn et al. 2019c;1198

Lopatin et al. 2019).1199

Yet, for several fields of application spectral data may be absolutely necessary.1200

For instance, analysis related to chemical constituents in plant tissue, e.g. as a1201

proxy for plant health status or plant diseases (Zarco-Tejada et al. 2019, 2018) may1202

not be possible without sufficient spectral information as biochemistry particularly1203

changes absorption properties and not patterns.1204

Finally, it should be noted that high spectral and spatial resolution can also be1205

combined. For example, pan-sharpening algorithms, such as local-mean variance1206

matching or Gramm-Schmidt spectral sharpening, can be used to sharpen coarser1207

multi-spectral bands with spatially high-resolution imagery. Such pan-sharpening1208

algorithms are often applied to imagery from very high-resolution satellite sen-1209

sors that feature a panchromatic band, as for instance WorldView, QuickBird, or1210

Pleiades (cf. Braga et al. (2020), Hartling et al. (2019), Korznikov (2020), and W.1211

Li et al. (2017)). Recently, more sophisticated pan-sharpening algorithms based on1212

CNNs were proposed (Masi et al. (2016) and Yuan et al. (2018), see also Section1213

3.5.3).1214

SAR backscatter is known to be particularly sensitive to vegetation 3D-structure1215

and therefore has a great potential for differentiating vegetation types and growth1216
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forms. The fact that microwaves penetrate clouds makes it especially suitable for1217

extracting continuous temporal features and large scale assessments and. Accord-1218

ingly, SAR data was most frequently used as input for CNN for land cover and1219

vegetation type mapping “Comparing Deep Learning and Shallow Learning for1220

Large-Scale Wetland Classification in Alberta, Canada” (2019), Liao et al. (2020),1221

and Mohammadimanesh et al. (2019). Although SAR data have been used overall1222

relatively rarely so far in combination with CNNs, it can be assumed that CNNs1223

are excellently suited to unravel the relatively complex SAR signals and will thus1224

play a major role in Earth observation in the long term (see Zhu et al. (2020) for a1225

review on analyzing SAR data with deep learning).1226

3.5.2 LiDAR-based point cloud analysis1227

The analysis of spatial point clouds is basically more computationally intensive than1228

for raster data since there is no spatial discretization (and thus no normalization)1229

in cells, which often results in larger data sets and more complex spatial repre-1230

sentations. A strategy to increase the processing speed is to run the analysis on1231

subsets of point clouds, for instance, by detecting key features of the target plant,1232

which are then used as seeds to apply region growing algorithms. This approach1233

was for instance applied for detecting individual maize plants Zea parviglumis (Jin1234

et al. 2018) and rubber plants Hevea brasiliensis (Wang et al. 2019). The most1235

frequently applied strategy to handle point clouds (mostly terrestrial LiDAR) is1236

the conversion to simpler and discrete feature representations prior to the CNN1237

analysis, including 3D voxels or 2D projections (e.g. depth maps) (Jin et al. 2018;1238

Ko et al. 2018; Windrim et al. 2020; Zou et al. 2017).1239

Voxels are volumetric representations of the point cloud that are defined by1240

regular and non-overlapping 3D cube-like cells. During the conversion of point1241

clouds to voxel datasets, a voxel is created in a delimitable area (x,y,z) if it contains1242

one or a minimum number of points. Voxels can be analyzed in a similar way1243

as multi-layered rasters, where a layer corresponds to an elevation section of the1244

original point cloud. Jin et al. (2019) used a 0.4 cm voxel space with terrestrial1245

LiDAR data to separate leaves and stems from individual maize plants. Ayrey et al.1246

(2018) used 25×25×33cm voxels created from airborne LiDAR-based point clouds1247

to map forest properties, whereas each voxel was assigned the number of points it1248

included.1249

Projections are 2D representations of the point cloud from a certain position1250

(x,y,z) and viewing angle (azimuth, zenith). The projections can be created by1251

different spatial or spectral criteria, e.g. as depth maps, prior extracted 3D-metrics1252

describing the local neighbourhood, intensity, or color information (Jin et al. 2018;1253

Ko et al. 2018; Zou et al. 2017). For airborne LiDAR data, projections are com-1254

monly created using nadir view, for instance, to extract digital height models or to1255

extract height percentiles. For terrestrial LiDAR, projections are typically created1256

using oblique viewing angles. The transformation from TLS-based point clouds to1257

depth images (2D) is usually applied multiple times using different viewing geome-1258

tries, which can be considered as a form of data augmentation (see section 3.2.1.1).1259

For instance, to train a CNN for detecting individual maize plants in TLS point1260

clouds, Jin et al. (2018) created 32 2D-projections with varying oblique angles.1261

Despite such possibilities to decrease computation load, it has to be considered1262

that projections or voxel representations of the point cloud will result in a loss of1263
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the original spatial detail. Therefore, it may be desirable to use end-to-end learn-1264

ing directly with the raw point cloud data as input. Using the raw point clouds1265

instead of voxel or projections may be more computationally demanding but it can1266

be assumed that ongoing developments in processing and algorithms will advance1267

capabilities to harness point clouds directly. Another challenge is that point clouds1268

are unordered sets of vectors (in contrast to elements in raster layers) and their1269

analysis requires a spatial invariance with respect to rotations and translations. A1270

well-known CNN architecture that considers these challenges is PointNet, which,1271

hence, enables efficient end-to-end learning on point clouds. The foundation of1272

PointNet are symmetric functions to ensure permutation invariance with regard1273

to the unordered input and transforms the data into a canonical feature space to1274

ensure spatial invariance. Even though PointNet or similar algorithms have been1275

used comparatively rarely so far, the results are very promising: Jin et al. (2020)1276

applied PointNet to detect ground points under dense forest canopies and found1277

greater accuracy than for traditional non-deep learning methods. Briechle et al.1278

(2020) tested PointNet to classify temperate tree species in UAV LiDAR data and1279

reported an overall accuracy of up to 90 %. Bingxiao et al. (2020) and Windrim1280

et al. (2020) used modified versions of PointNet, which besides point coordinates1281

also considers the LiDAR return intensity, and demonstrated high accuracy in dif-1282

ferentiating woody elements and foliage for multiple coniferous and deciduous tree1283

species (up to 93-96 % overall accuracy). The results of the aforementioned studies1284

are especially remarkable, considering that this approach performs a classification1285

at the highest possible detail, i.e. at the level of individual points.1286

3.5.3 Sensor and data fusion1287

Multimodal remote sensing analysis or data fusion is the combination of acquisitions1288

of different sensors types (LiDAR, SAR, passive optical). The different character-1289

istics of the sensor types result in different sensitivities towards plant properties:1290

Passive optical data is largely shaped by absorption and scattering properties at1291

the top of the canopy. SAR signals are composed of directional scattering processes1292

originating in a few centimeters or even meters depth in the canopy (depending on1293

the wavelength). LiDAR measures backscattered radiation of commonly very small1294

footprints enabling to look deep into plant canopies. These different sensing modes1295

can hence reveal different plant characteristics and their synergistic use can be used1296

to harness complementary information.1297

A conceptually rather simple fusion approach is to merge the resulting pre-1298

dictions of multiple, dataset-specific CNNs. This can, for instance, be done by1299

majority voting (Baeta et al. 2017) or by probabilistic approaches, such as Condi-1300

tional Random Fields (Branson et al. 2018). However, this way only the output1301

space is combined, but not the features contained in the different data sources so1302

that their synergies cannot be directly integrated and exploited. Therefore it is1303

usually more expedient to simultaneously integrate the different data sources in a1304

single neural network - also known as feature level fusion. Feature level fusion1305

requires either preprocessing of the data or an adaption of the CNN architectures1306

to comply with different data structures (e.g. point cloud vs. raster data), sensing1307

modalities such (e.g., viewing angles from oblique SAR vs. nadir passive optical1308

acquisitions).1309

A frequently used approach for feature level fusion is converting and normalizing1310
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the spatial dimensions of the different sensor products and a subsequent stacking1311

to a common tensor. Based on this tensor, a CNN can be applied to simultane-1312

ously extract features from both data sources. This approach is easy to implement1313

and most frequently applied. For instance, Trier et al. (2018) stacked hyperspec-1314

tral data with normalized Digital Surface Models (also referred to as canopy height1315

model) for classifying tree species. Hartling et al. (2019) stacked LiDAR intensities,1316

hyperspectral and panchromatic bands for tree species classification in urban ar-1317

eas. Prior to applying the CNN, they also used the LiDAR data extract tree crown1318

segments by height. In the context of large scale mapping of vegetation types in1319

the arctic, Langford et al. (2019) stacked multiple satellite products, including high1320

spatial resolution SPOT data, high spectral resolution EO1-Hyperion data and a1321

height model derived from SAR-interferometry. In the context of mapping crop1322

cover types, Liao et al. (2020) stacked multi-temporal polarimetric RADARSAT-21323

SAR data with VENµS multispectral data using a 1D-CNN. While multispectral1324

was superior to SAR data, combining multi-temporal SAR data with multispectral1325

data increased the model performance. Kattenborn et al. (2019a, 2020), Nezami et1326

al. (2020), and Sothe et al. (2020) used UAV imagery for mapping plant species and1327

stacked RGB orthoimagery and canopy height models (CHM) derived from pho-1328

togrammetric processing pipelines. Interestingly, Nezami et al. (2020) found minor1329

improvements when using CHM information for UAV-based tree species classifica-1330

tion. (Kattenborn et al. 2020; Sothe et al. 2020) found that CHM information does1331

not significantly improve the accuracy, whereas Kattenborn et al. (2020) suggested1332

that at these high spatial resolutions the information represented by the CHM is1333

already indirectly visible in the orthoimagery itself through shadows and illumina-1334

tion differences. In contrast, at the example of coarser-resolution satellite imagery1335

and forest type classification, C. Sothe et al. (2020) reported that stacking LiDAR-1336

derived canopy height information with pan-sharpened Worldview-2 contributed1337

important information.1338

Overall, these studies demonstrated that merging the different data sources into1339

a single tensor can potentially facilitate the extraction of complementary signals1340

through convolutions. This approach is easy to implement as it does not require1341

manipulating common CNN structures. However, stacking datasets may not be1342

ideal as the normalization to a common tensor may introduce a critical loss of the1343

original the information, e.g., by converting point clouds to coarse voxels or depth1344

maps (cf. Section 3.5.2), or the viewing geometries and acquisitions modes may1345

not be directly compatible, e.g., oblique SAR vs. nadir optical data. Instead of1346

fusing datasets through a common tensor, it may, therefore, be more advantageous1347

to process the different data sources in parallel branches and perform a feature1348

concatenation at a later stage in the network; that is linking the activations or1349

feature maps derived from multiple, sensor- or data-specific CNN. These networks1350

are also referred to as multi-stream networks. At the example of mapping1351

rice grain yield from UAV imagery, (Yang et al. 2019) applied a concatenation1352

of feature maps resulting from two CNN branches, namely RGB imagery with1353

high and multispectral imagery with low spatial resolution, respectively. A prime1354

example on how feature concatenation enables to integrate different data types and1355

structures was presented by Branson et al. (2018), who classified tree species in an1356

urban environment by concatenating a branch fed with nadir airborne RGB imagery1357

and a branch fed with multiple Google Street View scenes extracted with varying1358

viewing angles and zoom levels. Lottes et al. (2018) used feature concatenations for1359
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detecting crop plants and weed infestations in image sequences taken by a farming1360

robot. Their approach takes into account that planting patterns in agricultural1361

fields (e.g. row structures) provide additional spatial information for differentiating1362

crops from weeds. Accordingly, their approach included the parallel segmentation of1363

successive image frames using encoder-decoder CNN structures and the subsequent1364

concatenation of the resulting feature maps.1365

Barbosa et al. (2020) compared data fusion based on both stacking datasets and1366

feature concatenation for crop yield mapping based on heterogeneous input data,1367

including remote sensing reflectance and elevation data and in-situ maps on nitro-1368

gen, seed rate, and soil electroconductivity. They tested multi-stream approaches1369

with branches being concatenated at an early stage and a later stage in the network,1370

that is before and after applying fully connected layers, respectively. The best per-1371

formance was achieved with a concatenation after fully connected layers, followed1372

by a feature concatenation at an earlier stage in the network. The worst perfor-1373

mance was found when stacking all predictors before applying the CNN, which was1374

attributed to a sometimes complex relationship among different input datasets.1375

Another noteworthy application of multi-stream networks is CNN-based pan-1376

sharpening, i.e. the process of fusing high spectral information from the coarser-1377

resolution bands with high spatial resolution information. Pan-sharpening is fre-1378

quently applied to data from very high-resolution satellites as these are often1379

equipped with pan-chromatic bands that have wider spectral bandwidths enabling1380

an increased sensitivity for incoming radiance and thus higher spatial resolution1381

than the other bands with narrower bandwidths. The fusion of spatial and spectral1382

information requires the representation of highly complex and non-linear relation-1383

ships - an application for which CNN are ideally suited (C. Dong et al. 2016; Yuan1384

et al. 2018). A case study on this seminal technique was presented by Brook et al.1385

(2020), who used a multi-scale pan-sharpening algorithm (Yuan et al. 2018) to fuse1386

both multispectral and -temporal information from Sentinel-2 satellite data with1387

the high spatial information from UAV-imagery at the centimetre scale. The cor-1388

responding case study demonstrated that this approach can reveal the temporal1389

variation of leaf biochemical status of individual vineyard rows.1390

It should be noted that multitemporal analysis (e.g., change detection, time1391

series analysis) can also be considered as feature level fusion. As discussed in more1392

detail in Section 3.5.4, multitemporal analysis can be performed using both of the1393

above presented modes, that is stacking multidate inputs (de Bem et al. 2020)1394

or concatenating them in multiple CNN branches operating in parallel (Branson1395

et al. 2018; Mazzia et al. 2019).1396

3.5.4 Multi-temporal analysis1397

Almost all plant life is subject to seasonal variation as a consequence of reoccurring1398

changes of abiotic factors, such as radiation driving photosynthesis, temperature1399

controlling its efficiency or water input providing the primary oxidation source.1400

The seasonal phases or dynamics, also known as phenology, of plants is expressed1401

through biochemical and structural properties which in turn determine how plants1402

are represented in remote sensing data. This implies that temporal variation in1403

plant traits can limit the transferability of our models through time. At the same1404

time, temporal dynamics can also provide essential information for plant character-1405

ization, e.g. phenological features such as flowers revealing the taxonomic identity1406
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and or the length of the growing season as an essential factor for productivity and1407

yield.1408

A few studies assessed model performances based on comparing or combining1409

multitemporal datasets. For instance, Ma et al. (2019) assessed the biomass esti-1410

mation with subcentrimetre imagery in wheat crops across 17 acquisition dates and1411

found a strong variation in accuracy (R2 0.60-0.89) highlighting that timing can1412

play an important role. Rezaee et al. (2018) successfully tested the transferability1413

of a CNN for wetland segmentation on a RapidEye scene that was not included in1414

the training process. Yang et al. (2019) tested the transferability of CNN models1415

across time for rice grain yield estimation, in terms of how good a CNN trained on1416

one or multiple phenological phases is applicable to a phenological phase it has not1417

seen before. As expected, the models became better the more times were consid-1418

ered in the training process. Similarly, M. Zhang et al. (2018) showed that stacking1419

multidate Landsat scenes increased the accuracy of segmenting rice paddies.1420

In the context of satellite-based land cover classification, (Mazzia et al. 2019)1421

incorporated spatial patterns of temporal dynamics by concatenating the pixel-wise1422

branches of recurrent neural networks (RNNs), followed by the subsequent1423

application of a CNN. RNNs are a type of deep learning approach to analyse recur-1424

ring patterns and are therefore perfectly suitable for multitemporal remote sensing1425

analysis (Zhong et al. 2019; Zhu et al. 2017). A primary strength of RNNs is their1426

ability to resemble temporal patterns despite the presence of data gaps introduced1427

by missing scenes, cloud cover, snow, or artefacts. Similar to CNN for spatial pat-1428

terns, RNNs allow for end-to-end analysis of temporal signals and therefore makes1429

a heuristic definition and engineering of temporal or phenological metrics obsolete.1430

Thus, combining CNNs with RNNs enables an end-to-end processing scheme in1431

both the spatial and temporal domain. It can, hence, be assumed that the com-1432

bination of RNNs and CNNs will be a milestone for vegetation analysis with time1433

series data as for instance derived from satellite constellations (Reichstein et al.1434

2019).1435

In contrast to recurring phases, natural disturbances or anthropogenic impacts1436

can also cause acute or gradual, directed changes. Such anomalies in temporal veg-1437

etation dynamics may be tracked with change detection of remote sensing data.1438

de Bem et al. (2020) stacked pairs of Landsat imagery to track deforestation in the1439

Amazon rainforest. Compared to earlier change detection approaches, which were1440

mostly based on metrics for temporal comparison (e.g., NDVI), the approach used1441

here is simple and flexible as it does not require sophisticated pre-processing, such1442

as the radiometric cross-calibration of the raw data. A disadvantage is the require-1443

ment of training data, such as binary classification of changed and stable areas.1444

However, the required number of reference data is not very high as deforestation1445

is typically clearly visible in remote sensing imagery, and often institutional data1446

can be accessed. de Bem et al. (2020). Another change detection approach was1447

presented by Branson et al. (2018), who used multi-date Google Street View im-1448

agery to detect changes of urban trees. As the viewing geometries are not steady in1449

street view imagery, a pixel exact stacking is not possible and accordingly, they con-1450

catenated Siamese CNNs fed with images from the different time steps. Siamese1451

CNNs include identical CNNs that operate in parallel branches (Daudt et al. 2018).1452

During training, the weights are shared between the branches, which reduces the1453

number of learnable parameters but most importantly secures that both branches1454

have the same statistics so that their outputs are comparable. The outputs are1455
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then concatenated into fully connected layers to classify similarity.1456

3.6 CNN model assessment, understanding, and interpreta-1457

tion1458

3.6.1 Numeric evaluation of the predictive performance1459

The performance of a CNN model can be determined by different metrics that1460

are primarily determined by the model approach (cf. 3.2.2): For CNN-based re-1461

gressions, the coefficient of determination (R2) and the Root Mean Squared1462

Error (RMSE) are the means of choice to quantify the correspondence between pre-1463

dictions and reference observations. The majority (91 %) of the studies reviewed1464

here performed classification tasks, which can be evaluated with several metrics1465

(see Tab.1 for the most ones). The most used and intuitive metric is the overall1466

accuracy (used in 71 % of the reviewed studies), which quantifies the proportion1467

of correct predictions.1468

However, the overall accuracy is prone to bias introduced by class imbalance1469

and in such case an accuracy assessment based on precision, indicates the perfor-1470

mance regarding false positives, and recall, sensitive to false negatives, should be1471

preferred. The F-score is the harmonic mean of precision and recall and provides1472

a single metric for the overall model performance that is robust for unsymmetrical1473

datasets.1474

For object detection and instance segmentation, the question is not how well1475

is the average agreement of all predicted pixels, but how accurately are individual1476

objects or segments detected. Here, an F-score may be strongly biased by object1477

size. A metric that is robust against size variation of objects is the Intersect1478

over Union (IoU), which is the ratio of correctly classified pixels and the total1479

amount of pixels per segment. Note that recall is also known as producer’s accuracy1480

or sensitivity, precision as user’s accuracy, F-score as dice coefficient, and IoU as1481

Jaccard-index.1482

Despite the standardization of accuracy measures, there are several issues that1483

constrain a direct comparison between studies. Firstly, it is hard to compare the1484

different approaches, i.e. object detection, semantic segmentation, and instance1485

segmentation, as these differ in dimensions and thematic complexity. Secondly, the1486

mode of reference data acquisition and quality may greatly constrain the informa-1487

tive value of accuracy assessments (cf. in-situ vs. visual interpretation in Section1488

3.2.2). Thirdly, the remote sensing data and the site characteristics may differ con-1489

siderably among studies. For instance, (Weinstein et al. 2020) demonstrated with1490

multiple datasets from the NEON project that the detection accuracy of individual1491

tree crowns in airborne imagery greatly depends on the site conditions, such as tree1492

species composition or crown size distribution. Lastly, albeit a common application1493

task (e.g. tree species classification), the definition of the classification problem1494

and presence of classes among studies may differ, which in turn greatly limits com-1495

parison of different mapping methods. For example, the present literature search1496

comprises nine studies on tree species classification, none of which examined the1497

same composition of tree species. Clearly, these challenges for comparing different1498

studies, e.g., in terms of CNN architectures, highlights the need for free accessible1499

datasets for comparative studies (cf. section 4).1500

Despite the challenges related to comparing the different studies, the literature1501
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review revealed unprecedented predictive accuracy of CNN-based vegetation remote1502

sensing approaches (see Fig. 14). For instance, studies that targeted the classifica-1503

tion of tree species reported at average an overall accuracy of 89 %. In comparison,1504

a review on tree species classification with a focus on shallower machine learning1505

methods (e.g, Random Forest or Support Vector Machines) by Fassnacht et al.1506

(2016) reported an overall accuracy of 83.5 %. This is particularly interesting, as1507

the reviewed studies in Fassnacht et al. (2016) primarily used sophisticated sensors1508

(e.g., hyperspectral or LiDAR data or their combination), while a large share (431509

%) of the CNN-based studies assessed here used merely RGB data. The overall1510

superior performance of CNNs compared to shallower machine learning algorithms1511

was demonstrated in several studies and applications tasks (Ayrey et al. 2018; Bar-1512

bosa et al. 2020; Briechle et al. 2020; de Bem et al. 2020; L. Dong et al. 2020; dos1513

Santos Ferreira et al. 2017; Guidici et al. 2017; Hartling et al. 2019; Knauer et al.1514

2019; Liao et al. 2020; T. Liu et al. 2018a,b; Mazzia et al. 2019; Mohammadimanesh1515

et al. 2019; Rezaee et al. 2018; Y. Xi et al. 2019; M. Zhang et al. 2018; Zhong et al.1516

2019)1517

3.6.2 Understanding and interpretation: Opening the black box1518

Assessing the functioning of a model is important to compare and improve algo-1519

rithms, to test causal or physical consistency as well as to trust in and learn from1520

models. Transferred to CNNs, this may involve the identification and visualization1521

of individual pixels, patterns, or even higher-level concepts that contribute to the1522

decision-making process. It is often claimed that deep learning and especially CNN1523

models are a black box and it is difficult to grasp the basis on which a CNN makes a1524

decision (Reichstein et al. 2019). This can be explained as on one hand, many peo-1525

ple are not yet familiar with the principle of the still quite new CNN algorithms and1526

on the other hand by the incomparable depth and number of parameters of these1527

models. However, most CNNs have a linear and clear structure (mostly consecutive1528

sequences of repetitive structures) and the basic operations, such as pooling or acti-1529

vation functions, are relatively simple. Despite the abundance of parameters, these1530

properties facilitate a converting of abstract vectors into interpretable information1531

and understanding of CNN internal processes. CNN interpretation can be grouped1532

into two branches, i.e. feature visualisation and feature attribution. Feature vi-1533

sualization is centered on the model and aims to reveal what the network or parts1534

of it are looking for by simulating synthetic outputs. Feature attribution is cen-1535

tered on input data and aims to identify which features in the data activate the1536

network in a particular way.1537

An example of feature visualization for tree species mapping is given in Fig-1538

ure 1, where the functioning of individual convolutions was visualized using gradient1539

ascent-based approach. This technique starts by manipulating a blank image (or1540

any other input format) using the gradient ascent, a function that identifies local1541

maxima so that the values assigned to the output pixels maximizes the activation1542

of the network or a particular layer. The resulting layers, therefore, reflect the pat-1543

terns that the network has learned as decisive patterns in the training process (see1544

also Schiefer et al. 2020). Feature visualization can hence inform about the general1545

behaviour of the model, whereas this branch of understanding CNNs already offers1546

a variety of different approaches (cf. Olah et al. (2017) for a comprehensive and1547

interactive summary on feature visualization techniques).1548
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A limitation of feature visualization is that the synthetic outputs are often1549

unnatural and abstract and it can be very challenging to link these outputs to real-1550

world features such as plant organs or canopy forms as seen in remote sensing data.1551

Moreover, feature visualization primarily focuses to reveal the general behaviour1552

model of a model, e.g., what are relevant patterns for separating tree species?, but a1553

question at hand could be much more specific, such as On the basis of which plant1554

characteristics visible in the image, did the model distinguish the fir tree from the1555

surrounding spruce trees?1556

In this regard, feature attribution may enable to analyze CNN models in a1557

more intuitive and traceable way as it is directly based on the input data.1558

The common products of feature attribution are so-called activation maps,1559

also known as sensitivity, saliency, or pixel attribution maps, which typically rep-1560

resent how the input data activates individual feature layers within the network in1561

form of heatmaps (see Fig. 1). Activation maps are obtained by forward propa-1562

gating individual input images (e.g. through a trained CNN (similar procedures1563

are also applied for point cloud data, cf. (B. Zhang et al. 2019)). Mohammadi-1564

manesh et al. (2019) for instance derived activation maps of a CNN for classifying1565

wetland types in order to visualize characteristic backscatter features of different1566

SAR polarization. Moreover, they applied the Uniform Manifold Approximation1567

and Projection (UMAP, McInnes et al. (2018)) algorithm, a non-linear dimension1568

reduction technique, on the activation maps derived from the last layers of multi-1569

ple CNN architectures to compare their ability to discriminate the wetland types.1570

Despite their demonstrated value, activation maps in their simplest form are only1571

input-specific and not output-specific, so they do not inform how an activation1572

contributes to a decision (e.g. predicting a class affiliation).1573

An output-specific procedure is given by gradient weighted class activation1574

mapping (Grad-CAM), which distils class-specific gradients to coarsely localizes1575

the spatial regions of the last convolutional layer that are discriminative towards1576

the network output (Selvaraju et al. 2019). However, tracing class activations to1577

input features can be limited, since common CNNs usually involve several pooling1578

operations so that the last convolutional layer of a network and corresponding1579

activation maps have a much lower spatial resolution than the original input data. A1580

fine-grained representation of decisive image features can be obtained by combining1581

Grad-CAM with guided backpropagation, known as guided Grad-CAM in case1582

of classifications (Selvaraju et al. 2019), which allows tracing the activation of the1583

last convolutional layer to the individual pixels of the input image (see Fig. 1 for an1584

example on tree species). The feature attribution at the pixel-level can be further1585

enhanced by averaging multiple activation maps generated with stochastic noise, as1586

proposed in the SmoothGrad approach (Smilkov et al. 2017). Most approaches1587

for feature attributions target on classification problems, but similar principles were1588

also tested for regression problems, such as regression activation mapping (RAM,1589

Z. Wang et al. (2017)).1590

Although the above-mentioned methods for CNN interpretation are already es-1591

tablished in other scientific fields, their application in vegetation remote sensing1592

seems to be still in its infancy (but see Castro et al. 2020; Schiefer et al. 2020).1593

Nevertheless, according to the demonstrated potential in other disciplines, it can be1594

assumed that feature attribution will play an important role in the future: Feature1595

attribution can be harnessed to test for model shortcomings, such as non-causal1596

relationships and artifacts and as a basis for optimizing CNN architectures and1597
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training processes. Moreover, feature attribution provides an interesting avenue1598

for weakly-supervised learning (cf. Section 3.2.1.3), where class activation maps1599

derived from a CNN trained with coarse training data (e.g., presence and absence1600

instead of detailed masks) can be used as a proxy to segment classes at the pixel1601

level (Lee et al. 2019; K. Li et al. 2018). Lastly, it stands to reason that the1602

extraction and preparation of insights from artificial intelligence will increase our1603

knowledge and capabilities towards technical aspects ranging from sensor develop-1604

ment and data acquisition, biophysical and ecological understanding, as well as the1605

interrelationship of remote sensing signals and vegetation properties.1606

4 Concluding remarks and future perspectives1607

The primary findings of the present review can be summarised as follows:1608

• The reviewed literature revealed that CNN can greatly advance our capabili-1609

ties for remote sensing-based vegetation mapping in conservation, agriculture,1610

and forestry sectors. A series of studies reported an increased performance1611

of CNNs over shallower machine learning methods. In addition to high ac-1612

curacy, CNNs are readily implemented as they support end-to-end learning,1613

enabling immediate use of raw data and, hence, making feature engineer-1614

ing and pre-processing in many cases obsolete. This will greatly facilitate1615

vegetation mapping in the era of Big Data, as the self-learning capabilities1616

will allow to more effectively harness the ever growing data streams across1617

temporal and spatial scales.1618

• CNNs can be customized for various mapping operations, such as image-1619

or tile-based regression and classification (e.g, yield estimation or absence or1620

presence of a class), segmenting classes (e.g., a plant species or communities),1621

or identifying individual objects and their extents (e.g., single tree of a specific1622

species). Due to phenology and the biochemical and structural diversity1623

of plant life, remote sensing of vegetation benefits from multitemporal and1624

multimodal remote sensing like no other land cover. Combining multiple1625

sensors, perspectives or acquisition dates has often been a technical challenge,1626

whereas the modularity of deep learning frameworks facilitates to combine1627

data with varying dimensions and will, hence, enable to further exploit the1628

diversity of earth observation data.1629

• The challenges of machine learning were in particular focused on feature en-1630

gineering (what should a model see). The new challenge is to design the1631

learning procedure (how should a model learn to see). Designing and imple-1632

menting an effective CNN architecture requires both technical knowledge on1633

deep learning principles in concert with process-understanding of the system1634

- here, the remotely sensed vegetation signal.1635

• The core of deep learning, gradient descent is an iterative optimization algo-1636

rithm and thereby opens efficient, sustainable and elegant ways for model1637

training and exchange, including the subsequent optimization of existing1638

models with new samples instead of training a new model from scratch, the1639

use of backbones to incorporate and channel big data, or federated learn-1640

ing, i.e. the distributed training on multiple clients, to combine computing1641
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resources and minimize communication costs (bringing the code to the data,1642

instead of the data to the code).1643

• Exposing CNNs to representative and ample reference data is often a bottle-1644

neck for achieving high predictive accuracy and generalization. For reasons of1645

efficiency and data compatibility, ground-based reference data is rarely used,1646

whereas most studies use visual interpretation or the combination of both.1647

Various tools and concepts have been developed to efficiently label remote1648

sensing data using visual interpretation or ancillary data, while concepts1649

such data augmentation, generation of synthetic training data or semi- and1650

weakly supervised learning enable to harness even small quantities or inaccu-1651

rate training data. It seems obvious that the success of further capturing the1652

seemingly infinite variation of the plant world using deep learning and specif-1653

ically CNN techniques will be stimulated by free access to remote sensing1654

and reference data and the establishment of corresponding open databases.1655

Pooling ressources in joint databases will foster a sustainable and effective1656

benchmarking of CNN algorithms and building transferable and accurate1657

models.1658

• Most studies reviewed here were related to classification problems, such as1659

mapping taxonomic identities, land cover types or functional groups. How-1660

ever, many vegetation-related properties are of a continuous nature, for which1661

reference data acquisition is usually quite expensive (e.g., biochemical or1662

structural plant traits). For many tasks, effective CNN-based vegetation re-1663

mote sensing will require creative approaches that go beyond traditional su-1664

pervised modelling procedures, including weakly- and semi-supervised learn-1665

ing approaches that link remote sensing observations with non-remote sensing1666

databases (e.g., plant trait observations or forestry variables), with process-1667

based models (e.g., radiative transfer models or forest growth simulators) or1668

incorporate citizen science data (e.g., plant photographs).1669

• For several vegetation-related applications fields, CNN’s strength in exploit-1670

ing spatial patterns could foster paradigm shifts in the utility of remote sens-1671

ing sensors and platforms. A series of studies reported success in locating1672

and identifying plant species or individuals by means of simple RGB informa-1673

tion and, therefore, highlighted that for a variety of vegetation assessments,1674

where previously expensive and complex sensors seemed necessary (e.g. hy-1675

perspectral data), more easily available data can now be sufficient. CNN1676

techniques are, hence, likely to facilitate the realization of cost-efficient and1677

powerful remote sensing solutions for a wide range of users. At the same1678

time, the hunger of CNN for spatial detail is likely to catalyse the utility1679

of high-resolution remote sensing data, in particular microsatellites, off-the-1680

shelf rotary or fixed-wing UAVs as well as terrestrial and airborne LiDAR1681

data.1682

• Contrary to common preconceptions that CNN models are a black box, multi-1683

ple approaches enable a representation and visualization of a trained model,1684

including its behaviour and the key patterns that contribute to decision mak-1685

ing process. The respective feature visualization and attribution methods are1686

essential to understand CNN models and trust them. The greatest chance of1687

these methods, however, lies in distilling new knowledge with regard to the1688
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interaction of vegetation and its relationship with remote sensing signals, but1689

particularly towards the diversity of plant form and function.1690

5 Additional resources on CNN theory, implemen-1691

tation and data sources1692

Acquire new reference data1693

• with geocoding in a GIS-environment: QGIS (open source, https://qgis.org/) or1694

ArcGIS (commercial). ArcGIS supports advanced feature for creating polygons,1695

such as easy tablet and styles support and autocompletion functions.1696

• without geocoding using annotation tools: LabelMe (http://labelme.csail.mit.1697

edu/Release3.0/), LabelImg (https://github.com/tzutalin/labelImg), Labelbox (https:1698

//github.com/labelbox/labelbox)1699

• cleanlab: Machine learning-oriented Python package for identifying erroneous la-1700

bels in datasets and learning with noisy labels (https://github.com/cgnorthcutt/1701

cleanlab)1702

Use existing reference data1703

• NEON : Partly multitemporal airborne LiDAR, RGB, multi- and hyperspectral1704

acquisitions with in-situ reference data on various ecosystems in the US (https:1705

//data.neonscience.org/).1706

• EuroSat : Image patches (64x64 @ 10m resolution) from Sentinel-2 radiance data1707

labelled with vegetation types and land cover classes (https://github.com/phelber/1708

eurosat).1709

• BigEarth: Atmospherically corrected Sentinel-2 patches (120x120 @ 10 m resolu-1710

tion) labelled with CORINE land-cover information (http://bigearth.net/).1711

• SEN12MS : Sentinel-1 and -2 data (256x256 @ 10m resolution) labelled with1712

MODIS-based land-cover information (https://dataserv.ub.tum.de/s/m1474000).1713

• Awesome Public Datasets: List of topic-centric public data sources from the1714

fields of biology, earth sciences, agriculture. https://github.com/awesomedata/1715

awesome-public-datasets1716

Compensate for few reference data or missing computational1717

ressources1718

• Use pre-trained backbones: Many predefined architectures with trained weights1719

(e.g., derived from ImageNet, MSCOCO) can be loaded directly. A tutorial for using1720

pre-trained backbones with Keras can be found at https://keras.io/guides/transfer1721

learning/ and for PyTorch at https://pytorch.org/tutorials/beginner/transfer learning1722

tutorial.html1723

• Weakly supervised learning using self organizing maps (SOM, Riese et al. 2020,1724

https://doi.org/10.3390/rs12010007 and code: https://doi.org/10.5281/zenodo.2609130).1725

• Semi-supervised learning with partially unlabelled datasets presented by Facebook1726

AI in a Pytorch tutorial: https://pytorch.org/hub/facebookresearch semi-supervised-ImageNet1K-models1727

resnext/1728
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First steps to CNN implementation1729

• FastAI : Initiative aiming at introducing AI principles to a wide audience (slogan:1730

’Making neural nets uncool again’) by maintaining a own Python-based library1731

designed for easy implementation and a wide range of material, courses and tutorials1732

(https://www.fast.ai)1733

• Keras Developer Guides, including help and tutorials on the Keras API and1734

getting started with CNN (https://keras.io/guides/).1735

• The textbooks Deep Learning with R and Deep Learning with Python by F.1736

Chollet and J.J. Allaire offer a didactically high-quality, catchy and application-1737

oriented introduction to Keras, including many hands-on sections and sample codes1738

(ISBN: 9781617295546 and 9781617294433).1739

• Deep Learning with Pytorch: Introduction to the Pytorch framework including a1740

CNN-based image classification example (https://pytorch.org/tutorials/beginner/1741

deep learning 60min blitz.html)1742

• Documentation on CNN-based land-cover classification of Sentinel-2 satellite data,1743

including different training strategies such as fine-tuning and pre-trained networks:1744

https://github.com/jensleitloff/CNN-Sentinel1745

Discover CNN architectures1746

• Model Zoo: Documentation and tutorials on various CNN implementations for1747

various frameworks (https://modelzoo.co).1748

• Papers With Code: Database on scientific publications together with correspond-1749

ing data and executable code (https://paperswithcode.com/).1750

• Keras examples for CNN: https://keras.io/examples/vision/1751

• Segmentation Models library : High-level Python API including multiple seg-1752

mentation model architectures and backbones for Keras and Tensorflow (https:1753

//github.com/qubvel/segmentation models/).1754

• Awesome Semantic Segmentation: Links list for the most frequently used segmen-1755

tation (e.g. U-net) and instance segmentation models (e.g. Mask-R-CNN) for var-1756

ious frameworks. The linklist also includes several annotations tools, datasets and1757

additional resources (https://github.com/mrgloom/awesome-semantic-segmentation/).1758

• PyTorch Hub: Out-of-box models with pretrained weights for PyTorch (https:1759

//pytorch.org/hub/).1760

• PyTorch Ecosystem Tools: Tools, libraries, and more for PyTorch, such as fast.ai1761

or Detectron2 (https://pytorch.org/ecosystem/).1762

• TensorFlow Hub (https://tfhub.dev/) and TensorFlow Model Garden (https:1763

//github.com/tensorflow/models) with hundreds of different (pretrained) models1764

.1765

Feature visualization and attribution (What did the CNN1766

learn?)1767

• Comprehensive and interactive resource on principles and approaches for CNN1768

feature visualizations of imagery https://distill.pub/2017/feature-visualization/1769

• Interpretable Machine Learning (Molnar 2019): Constantly updated online book1770

providing background and guides for making machine learning decisions inter-1771

pretable, including a chapter on CNN-based feature visualization (https://christophm.1772

github.io/interpretable-ml-book/).1773
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• Tutorial on visualizing activation maps with Keras: https://keras.io/examples/1774

vision/visualizing what convnets learn/1775

• Tutorial on creating saliency maps with the Grad-CAM approach: https://keras.1776

io/examples/vision/grad cam/1777

• Uniform Manifold Approximation and Projection (UMAP): A dimension reduc-1778

tion technique useful for deriving abstract representations of feature maps of a CNN1779

to visualize the input data structure or exploring classification and regression per-1780

formance. https://umap-learn.readthedocs.io/en/latest/1781

• The What-If Tool (WIT): Provides an plugins and web interfaces for expanding1782

understanding of a machine learning models allowing the interactive manipula-1783

tion of labels and models and comparing resulting outcomes (https://github.com/1784

pair-code/what-if-tool).1785
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Appendix1789

Methodology of the cluster analysis of terms found in the1790

review literature using VOSviewer1791

The cluster analysis was performed using VOSviewer (Van Eck et al. (2010), ver-1792

sion 1.6.14) and based on the frequency of terms contained in title and abstracts.1793

Terms similar in content, synonyms and generic terms to be excluded that are not1794

specifically related to the topic were defined in a thesaurus file. The remaining1795

terms were included in the cluster analysis if they occurred at least five times. As1796

normalization method the LinLog modularity was used. The minimum cluster size1797

was set to 10.1798

Data on the reviewed literature1799

The data extracted from the reviewed literature is available as spreadsheet under1800

the following URL:1801

https://tinyurl.com/kattenborn-cnn-meta1802

(link to Google Drive; the host/URL will be changed in case of acceptance)1803

Commonly used accuracy metrics for classification and object1804

detection purposes.1805

Information on the inception module1806
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Table 1: Overview and brief introduction of the most frequently used accu-
racy metrics for classification and object detection purposes.

Metric Unit Description / formula

Overall Accu-
racy (OA)

[0 − 1] The overall accuracy is the ratio of true predictions (positive
and negative) and the total number of observations

OA =
TP + TN

TP + TN + FP + FN

Precision (also
known as user’s
accuracy)

[0 − 1] Ratio of true presences classified correctly and the number of
all positive predictions. Precision assesses how many of the
predicted presences are actually true.

precisioni =
TPi

TPi + FPi

Recall (also
known as pro-
ducer’s accuracy or
sensitivity)

[0 − 1] Ratio of true presences classified correctly as i and the total
number of instances belonging to class i (true positive and false
negative). Recall assess how many of the actual presences were
classified as true.

recalli =
TPi

TPi + FNi

F-score (also
known as Sørensen-
Dice coefficient or
Dice similarity
coefficient)

[0 − 1] The F-score is the harmonic mean of recall and precision and,
thus, provides a balanced accuracy metric that is sensitive to
both under- and overestimation.

Fi = 2 ×
precisioni × recalli

precisioni + recalli

Intersection over
Union (IoU, also
known as Jaccard
Index)

[0 − 1] IoU is closely related to the F-score. IoU measures the rel-
ative spatial agreement between reference and predicted sur-
faces (e.g. a segment or bounding box). The intersect is the
area shared among both surfaces (Reference AND prediction),
whereas the union is the combined area (Reference OR pre-
diction).

IoUk =
TPk

TPk + FNk + FPk
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T., Holopainen, M., & Hyyppä, H. (2015). Accuracy of kinematic2137

positioning using global satellite navigation systems under forest2138

canopies. Forests. https://doi.org/10.3390/f6093218 (cit. on p. 12)2139

Kampe, T. U., Johnson, B. R., Kuester, M. A., & Keller, M. (2010). Neon:2140

The first continental-scale ecological observatory with airborne re-2141

mote sensing of vegetation canopy biochemistry and structure. Jour-2142

nal of Applied Remote Sensing, 4 (1), 043510 (cit. on p. 16).2143

Kao, R. H., Gibson, C. M., Gallery, R. E., Meier, C. L., Barnett, D. T.,2144

Docherty, K. M., Blevins, K. K., Travers, P. D., Azuaje, E., Springer,2145

Y. P. Et al. (2012). Neon terrestrial field observations: Design-2146

ing continental-scale, standardized sampling. Ecosphere, 3 (12), 1–2147

17 (cit. on p. 16).2148

Kattenborn, T., Eichel, J., & Fassnacht, F. E. (2019a). Convolutional Neural2149

Networks enable efficient, accurate and fine-grained segmentation of2150

plant species and communities from high-resolution UAV imagery.2151

Scientific Reports, 9 (1), 17656. https://doi.org/10.1038/s41598-2152

019-53797-9 (cit. on pp. 13, 17, 24, 26, 29, 32)2153

Kattenborn, T., Eichel, J., Schmidtlein, S., Wiser, S., Burrows, L., & Fass-2154

nacht, F. E. (2020). Convolutional Neural Networks accurately pre-2155

dict cover fractions of plant species and communities in Unmanned2156

51

https://doi.org/10.5194/isprs-archives-xlii-2-w16-127-2019
https://doi.org/10.5194/isprs-archives-xlii-2-w16-127-2019
https://doi.org/10.5194/isprs-archives-xlii-2-w16-127-2019
https://doi.org/10.1109/JSTARS.2020.3008477
https://doi.org/10.3389/fpls.2018.00866
https://doi.org/10.1109/tgrs.2019.2953092
https://doi.org/10.1109/tgrs.2019.2953092
https://doi.org/10.1109/tgrs.2019.2953092
https://doi.org/10.3390/f6093218
https://doi.org/10.1038/s41598-019-53797-9
https://doi.org/10.1038/s41598-019-53797-9
https://doi.org/10.1038/s41598-019-53797-9


Aerial Vehicle imagery. Remote Sensing in Ecology and Conserva-2157

tion, 1–15. https://doi.org/10.1002/rse2.146 (cit. on pp. 13, 21, 22,2158

26, 28, 32)2159

Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C., & Fassnacht, F. E.2160

(2019b). UAV data as alternative to field sampling to map woody2161

invasive species based on combined Sentinel-1 and Sentinel-2 data.2162

Remote Sensing of Environment, 227, 61–73. https://doi.org/10.2163

1016/j.rse.2019.03.025 (cit. on p. 27)2164

Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C., & Fassnacht, F. E.2165

(2019c). UAV data as alternative to field sampling to map woody2166

invasive species based on combined Sentinel-1 and Sentinel-2 data.2167

Remote Sensing of Environment, 227 (January), 61–73. https://doi.2168

org/10.1016/j.rse.2019.03.025 (cit. on p. 29)2169

Kattenborn, T., & Schmidtlein, S. (2019d). Radiative transfer modelling2170

reveals why canopy reflectance follows function. Scientific Reports,2171

9 (1), 6541. https://doi.org/10.1038/s41598-019-43011-1 (cit. on2172

p. 12)2173

Kelly, L., Suominen, H., Goeuriot, L., Neves, M., Kanoulas, E., Li, D.,2174

Azzopardi, L., Spijker, R., Zuccon, G., Scells, H. Et al. (2019).2175

Overview of the clef ehealth evaluation lab 2019, In International2176

conference of the cross-language evaluation forum for european lan-2177

guages. Springer. (Cit. on p. 16).2178

Kerdegari, H., Razaak, M., Argyriou, V., & Remagnino, P. (2019). Smart2179

Monitoring of Crops Using Generative Adversarial Networks. Lecture2180

Notes in Computer Science (including subseries Lecture Notes in2181

Artificial Intelligence and Lecture Notes in Bioinformatics), 116782182

LNCS, 554–563. https://doi.org/10.1007/978-3- 030- 29888- 3 452183

(cit. on p. 18)2184

Kirillov, A., He, K., Girshick, R., Rother, C., & Dollar, P. (2019). Panoptic2185

segmentation. Proceedings of the IEEE Computer Society Confer-2186

ence on Computer Vision and Pattern Recognition, 2019-JunearXiv2187

1801.00868, 9396–9405. https://doi.org/10.1109/CVPR.2019.009632188

(cit. on p. 23)2189

Knauer, U., von Rekowski, C. S., Stecklina, M., Krokotsch, T., Pham Minh,2190

T., Hauffe, V., Kilias, D., Ehrhardt, I., Sagischewski, H., Chmara,2191

S., & Seiffert, U. (2019). Tree Species Classification Based on Hybrid2192

Ensembles of a Convolutional Neural Network (CNN) and Random2193

Forest Classifiers. Remote Sensing, 11 (23), 2788. https://doi.org/2194

10.3390/rs11232788 (cit. on p. 36)2195

Ko, C., Kang, J., & Sohn, G. (2018). DEEP MULTI-TASK LEARNING2196

for TREE GENERA CLASSIFICATION. ISPRS Annals of the Pho-2197

togrammetry, Remote Sensing and Spatial Information Sciences, 4 (2),2198

153–159. https://doi.org/10.5194/isprs-annals-IV-2-153-2018 (cit.2199

on pp. 18, 22, 30)2200

52

https://doi.org/10.1002/rse2.146
https://doi.org/10.1016/j.rse.2019.03.025
https://doi.org/10.1016/j.rse.2019.03.025
https://doi.org/10.1016/j.rse.2019.03.025
https://doi.org/10.1016/j.rse.2019.03.025
https://doi.org/10.1016/j.rse.2019.03.025
https://doi.org/10.1016/j.rse.2019.03.025
https://doi.org/10.1038/s41598-019-43011-1
https://doi.org/10.1007/978-3-030-29888-3_45
https://doi.org/10.1109/CVPR.2019.00963
https://doi.org/10.3390/rs11232788
https://doi.org/10.3390/rs11232788
https://doi.org/10.3390/rs11232788
https://doi.org/10.5194/isprs-annals-IV-2-153-2018


Korznikov, K. (2020). Automatic Windthrow Detection Using Very-High-2201

Resolution Satellite Imagery and Deep Learning. Remote Sensing,2202

12 (April), 1145. https://doi.org/10.3390/rs12071145 (cit. on pp. 26,2203

29)2204

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classi-2205

fication with deep convolutional neural networks, In Advances in2206

neural information processing systems. https://doi .org/10.1201/2207

9781420010749. (Cit. on pp. 17, 18)2208

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning2209

classification of land cover and crop types using remote sensing data.2210

IEEE Geoscience and Remote Sensing Letters, 14 (5), 778–782 (cit.2211

on pp. 21, 24).2212

Langford, Z. L., Kumar, J., Hoffman, F. M., Breen, A. L., & Iversen, C. M.2213

(2019). Arctic vegetation mapping using unsupervised training datasets2214

and convolutional neural networks. Remote Sensing, 11 (1), 1–23.2215

https://doi.org/10.3390/rs11010069 (cit. on pp. 26, 32)2216

Lee, J., Kim, E., Lee, S., Lee, J., & Yoon, S. (2019). Ficklenet: Weakly2217

and semi-supervised semantic image segmentation using stochastic2218

inference, In Proceedings of the ieee conference on computer vision2219

and pattern recognition. (Cit. on pp. 20, 38).2220

Leitão, P. J., Schwieder, M., Pötzschner, F., Pinto, J. R. R., Teixeira, A. M. C.,2221

Pedroni, F., Sanchez, M., Rogass, C., van der Linden, S., Busta-2222

mante, M. M. C., & Hostert, P. (2018). From sample to pixel: multi-2223

scale remote sensing data for upscaling aboveground carbon data in2224

heterogeneous landscapes. Ecosphere, 9 (8), e02298. https://doi.org/2225

10.1002/ecs2.2298 (cit. on p. 12)2226
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Figure 3: Network analysis on terms contained in title and abstracts of
the reviewed studies. The frequency of the terms is represent by their size
and their color represents statistically derived clusters (determined using
the node-repulsion LinLog method, Noack (2007)). The analysis was per-
formed using VOSviewer (Van Eck et al. 2010). A detailed description of
the corresponding workflow is given in the Appendix.
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Figure 4: Schematic diagram of the VGG-16 architecture. The 16 stands for
the number of convolutional and dense layers. Frequently used alternatives
are VGG-8 and VGG-19.

Figure 5: Schematic diagram of a residual building block used in repeated
sequence in common ResNet architectures.

Figure 6: Faster-R-CNN and Mask-RCNN, respectively.
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Figure 7: Schematic diagram of the FCN architecture as proposed by Long
et al. (2015). Predictions (also referred to as ’scores’) within the network
are forwarded to deeper layers to relate respective activations to the original
spatial resolution.

Figure 8: Schematic diagram of the U-Net architecture depicting its encoder-
decoder structure using an contracting and expanding path.

b4

a4

b

a4

b5

a1

a3

a2

a

a

b

b

a3

b2
b3

b1

a) Image classification b) Object detection c) Semantic segmentation d) Instance segmentation

Figure 9: Schemes illustrating the conceptual differences between different
CNN approaches, including a) image classification, where the entire image
is assigned to a class; b) object detection, where individual occurrences
are localized and their extent estimated with bounding boxes; c) semantic
segmentation, which assigns each pixel of the input image to the target
classes; and d) instance segmentation, where individuals belonging to a class
are mapped.
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Figure 10: Barplots characterizing the reviewed literature in terms of fre-
quency of a) different architectures, including direct implementations as well
as modifications of the original architecture and b) different approaches

Longitude

La
tit

ud
e

−180 −120 −60 0 60 120 180

−
90

−
30

30
90

Figure 11: Study areas of the reviewed studies
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Figure 13: Frequency distribution of spatial resolutions by different remote
sensing platforms among the reviewed studies (only raster products consid-
ered).

●

●

●

●

●

● ●

●

●

O
A

P
re

c.

R
ec

.

F
1

Io
U

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n = 62 n = 38 n = 34 n = 23 n = 19

Figure 14: Validation results of the CNN-based predictions derived from
the reviewed studies. The studies used different metrics (frequency = n),
including Overall Accuracy (OA), Precision (Prec.), Recall (Rec.), F-score
(F) and IoU (Intersect over Union).

Figure 15: A schematic representation of an Inception-module
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