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No Man is an Iland, intire of it selfe;
every man is a peece of the Continent, a part of the maine;
if a Clod bee washed away by the Sea, Europe is the lesse,
as well as if a Promontorie were,
as well as if a Mannor of thy friends, or of thine owne were;
Any Man’s death diminishes me, because I am involved in Mankinde;
And therefore never send to know for whom the bell tolls;
It tolls for thee.!

From: 17th Meditation by John Donne, see page 299 in [Muell5].
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Introduction

The Maxwell equations play an essential role in physics. Among other effects,
they in particular describe the propagation of electromagnetic waves in media.
Combining the Maxwell equations furthermore with the Lorentz force equation
and Newton’s second law of motion, all classical electromagnetic phenomena can
be explained, see page 239 in [Jack99] for instance. Understanding and solving
the Maxwell equations is also important to simulate and to design optical devices,
such as wave guides or masks for photolithography, see Sections 8.2-8.4 in [Jack99],
Chapter 8 in [SaTe07], and Chapter 3 in [Vett19].

As there is no general solution formula for the Maxwell equations at hand, nu-
merical approximations to solutions play an important role. The computation of
approximations is, however, in general expensive. This is due to the complicated
structure of the Maxwell equations as a six-dimensional coupled system of partial
differential equations on a three-dimensional domain. One possible way to compute
approximations efficiently, is to split the Maxwell system into two smaller subprob-
lems, which are easier to handle. Both subproblems are then solved separately,
and the resulting solutions are afterwards combined to obtain an approximate so-
lution of the original problem. This line of thought leads to splitting schemes, see
[McQu02] (in particular Section 1 therein) for instance.

To obtain a splitting scheme, it is natural to ask, how the Maxwell system is
actually split up into two parts. In this thesis, we follow the path of a class of
dimension splitting schemes, which are favorable for the time integration of linear
isotropic Maxwell equations on cuboidal domains. The spatial differential operator
of the original problem is here split up into two new differential operators, so that
only derivatives with respect to a single coordinate direction arise in each line of
the new subproblems. In other words, the complicated spatial differential operator
is split up according to the spatial dimensions, along which it differentiates. The
two new spatial differential operators give rise to subproblems that are integrated
separately. The idea of alternating direction implicit (ADI) schemes is then to
apply alternatingly an explicit and an implicit time integrator to both subproblems,
see [PeRab5].

An ADI method is first proposed by Peaceman and Rachford in [PeRa55] for a
two-dimensional heat equation. In [Nami00, ZhCZ00], this idea is transferred to
the three-dimensional linear isotropic Maxwell equations on cuboids. We call the
resulting integrator Peaceman-Rachford ADI scheme. The implicit steps in the



mentioned ADI schemes lead to unconditional stability. In contrast to many other
implicit time integrators, these schemes furthermore have the linear complexity of
explicit methods. Indeed, the arising implicit steps can be formulated in a way, in
which the degrees of freedom essentially decouple. Important for us are also two
ADI schemes from [ChLL10] that conserve energy under appropriate assumptions.
A detailed presentation of selected results about ADI schemes for Maxwell equa-
tions is contained in Section 1.3. Note that dimension splitting schemes are also
analyzed in a more general framework in [HaOs08].

Throughout this thesis, we focus on the analytical study of time-discrete ap-
proximations to linear isotropic Maxwell equations on a cuboid with perfectly
conducting boundary. The approximations hereby result from different ADI split-
ting schemes. In particular, we do not discretize in space, so that we deal with
abstract evolution equations in infinite-dimensional spaces. As our error analy-
sis treats all arising spatial differential operators as unbounded mappings, it is
however likely that the techniques and error results can be transferred to a full-
discrete setting. Note also that full-discrete ADI splitting schemes are analyzed in
[Nami00, ZhCZ00, ChLL10, HoK619, K6hl18, HoK620)].

To reproduce the decay result from the first part of this thesis on a full-discrete
level, we expect that special attention has to be paid to the spatial discretization
method. This is for instance done in Section 4 of [ErZu09] for a one-dimensional
damped wave equation, which is discretized in space by means of a mixed finite
element method.

We next present the two main parts of this thesis. The first part on uniformly
exponentially stable ADI schemes is a slightly extended version of the already
published paper [Zeru20] by the author of this thesis. It appeared in the December
2020 issue number 492 of the Journal of Mathematical Analysis and Applications.

A uniformly exponentially stable ADI scheme

We first consider the Maxwell equations on a conductive cuboidal domain without
external electric currents. Here the solutions are known to decay exponentially in
time, see [Phun00, NiPi05, Elle19] and Section 1.2. The exponential decay rate
is hereby uniform with respect to the initial data, and the system is said to be
exponentially stable. In this respect, the physical law of the absence of magnetic
monopoles plays an important role. It is part of the Maxwell system, and prescribes
that the magnetic field is divergence-free. This is crucial for the decay behavior of
the electromagnetic field, as the damping in the Maxwell system effects only the
divergence-free parts of the magnetic field.

Our goal are time-discrete approximations to the exponentially stable Maxwell
equations that preserve the uniform decay behavior. More precisely, the L?-norm
of the numerical approximations is supposed to satisfy an exponential decay es-



timate in time. The exponential decay rate has to be independent of the chosen
starting value and the time step size. We then call the numerical scheme uniformly
exponentially stable.

Note that the ADI schemes from [ZhCZ00, ChLL10] do not preserve the impor-
tant divergence constraint on the magnetic field, see Section 7 in [ChLL10] and
Section 6.4 in [GaZh13]. It is furthermore not clear how to uniformly control the
divergence errors on large time scales. Recalling that the damping in the contin-
uous Maxwell system only has an effect on divergence-free parts of the magnetic
field, we do hence not expect that the schemes from [ZhCZ00, ChLL10] preserve
the exponential decay rate uniformly with respect to the time step size.

For other wave equations, it is well known that space or time discretization
can destroy exponential stability, see Section 1.2 for more details and references.
In the discrete systems, the former uniform decay then typically depends on the
discretization. One possible remedy is to incorporate artificial (viscous) damping
into the discretization to restore the uniform exponential stability of the discrete
system, see [ANVW13, ErZu09, RaTT07, TeZu03].

Compared to the setting in [ANVW13, ErZu09, RaTT07, TeZu03], the above
mentioned failure of the divergence constraint causes additional difficulties. To
solve them already on the continuous level, we extend the original Maxwell system
by one equation, see (3.1), with the help of a mixed hyperbolic divergence cleaning
technique from [DKKMO02]. The rough idea is to shift spurious curl-free parts from
the magnetic field to an artificial variable that receives additional damping.

We then construct the uniformly exponentially stable ADI scheme, see (3.24),
as an integrator for the extended Maxwell system (3.1). To be more precise, the
new spatial differential operator from the extended Maxwell system is split into six
operators, to ensure that the spatial dimensions decouple in each subproblem. The
desired scheme is then obtained by integrating the split system similar to [ChLL10]
in time, and by incorporating additional damping from [ErZu09]. In contrast to
[ErZu09], we include the artificial damping into the numerical approximation of
almost every subproblem in the split system (except the part that corresponds
to the damping terms in the continuous Maxwell system). Each of the artificial
damping operators then involves only the current splitting operator. Altogether,
we obtain a scheme that is still unconditionally stable, see Proposition 3.9. Fur-
thermore, the implicit steps only require the solution of one-dimensional elliptic
problems, see Remark 3.19.

The main result in this part is the uniform exponential stability of the new
scheme, see Theorem 3.10. The proof is inspired by the proof of Theorem 1.1
in [TeZu03]. In particular, a discrete observability estimate is derived by means
of a discrete multiplier technique. This technique is also applied in Section 4 of
[Nica08]. It allows us to transfer arguments from the continuous setting in [NiPi05]



to the time-discrete one.

In case of physically reasonable initial data, the exponentially stable ADI scheme
(3.24) converges with order one to the solution of the original Maxwell system, see
Theorem 6.5. We do not expect a better convergence rate, as the Maxwell sys-
tem is split into six subproblems which are subsequently integrated in time. In
the error analysis, we employ techniques from [EiJS19]. It is worth noting that
our error statement makes only assumptions on the parameters of the continuous
problem as well as on the initial data, but none on the unknown solution of the
continuous problem. This is achieved by means of a rigorous regularity analysis.
To the best of our knowledge, our error analysis is the first one that provides pre-
cise convergence rates for an exponentially stable scheme with artificial damping.
Also the complexity of exponentially stable schemes is usually not addressed, see
[ANVW13, ErZu09, RaTT07, TeZu03] for instance.

Error analysis of the Peaceman-Rachford ADI scheme for inhomogeneous
Maxwell equations in heterogeneous media

In many applications, the considered medium for the Maxwell equations is not ho-
mogeneous. Instead, the material is heterogeneous. This means that it consists of
several adjacent submedia with different material properties. Such a setting can be
modeled by considering discontinuous material parameters in the Maxwell equa-
tions. The discontinuities are hereby located at the interfaces between different
submedia. An example are Bragg-grating waveguides, see Section 1.1.

Despite the relevance of this problem, a rigorous error analysis that makes
assumptions only on the model and the initial data, seems to be missing for
ADI schemes in this setting. Note that [HoJS15, Eilil7, EiSc18, EiSc17, EiJS19]
deal with material parameters that are at least Lipschitz continuous, and that
[K6hl18, HoK620] impose a regularity assumption on the solution of the continu-
ous Maxwell system.

It is likely that the actual convergence rate is lower in the case of heterogeneous
media, compared to the setting of inhomogeneous media with regular material
parameters. Indeed, a numerical example in [HoJS15] indicates that ADI schemes
suffer from a loss of convergence order in the case of discontinuous material coef-
ficients.

Here, we are concerned with linear isotropic Maxwell equations involving cur-
rents and charges on a heterogeneous cuboid. The domain consists of two homo-
geneous subcuboids, representing two different media. In particular, the material
parameters are allowed to have a discontinuity at the interface between the two
different submedia. The Maxwell system is here integrated in time by means of
the Peaceman-Rachford ADI scheme from [Eilil7, EiSc18, EiSc17].

In Theorem 10.7, we provide a rigorous error bound of order 3/2 for the L?-error



of the time-discrete approximations. This means a loss of order 1/2, compared
to the regular setting in [HoJS15, Eilil7, EiSc17, K6hl18, HoK620]. The crucial
ingredient of our error analysis is an estimate for certain interface integrals. The
inequality is derived by means of a trace method from interpolation theory. Note
that the interface integrals are only present in the case of discontinuous coefficients,
and that they cause the loss of convergence order. During the error analysis, we
also make use of the techniques from [HoJS15, EiScl17, EiSc18§].

Another important feature of our error estimate in Theorem 10.7 are the re-
quired preconditions. Similar to our findings in the first part of this thesis, we
make assumptions only on the model problem and the initial data, but none on
the unknown solution of the continuous Maxwell system. To achieve this goal,
we do a detailed regularity analysis of the Maxwell equations in our setting. In
Corollary 9.24, we establish piecewise H?2-regularity for the solutions of the con-
sidered Maxwell system (assuming appropriate initial data). Such a regularity
result seems not to be proved in the literature so far. The results in [CoDN99|
for instance state piecewise H2? %-regularity, § > 0 arbitrary small, for the electric
field, see Example (iii) after Theorem 7.1 therein. Note that this paper deals with
the time-harmonic Maxwell equations without conductivity.

Our regularity analysis employs techniques from [HoJS15, EiSc17, Lemr78, Kell71].
The key issues are in particular regularity statements for elliptic transmission prob-
lems. Also interpolation theory plays an essential role in our arguments. Among

other instances, it enters the description of a transmission condition for the electric
field.

There is also some preliminary work on a more complicated material configu-
ration that is not included in this thesis. In the more involved setting, each of
the above subcuboids contains several other cuboids. The latter are called small
subcuboids, and are not allowed to touch each other. It is furthermore assumed
that the values of the material parameters do not change too much at the tran-
sition from the small subcuboids to the surrounding medium, roughly speaking.
Given appropriate initial data, preliminary calculations then indicate that the
L?-error of the time-discrete approximations from the Peaceman-Rachford ADI
scheme has the order 3/2 — . Here 0 € (0,1/2) is a number that depends only
on the material parameters. It increases as the jumps of the material parameters
become stronger. A detailed regularity analysis is also in this setting necessary.
The preliminary work suggests here piecewise H? ’-regularity of the solutions to
the Maxwell equations. The number 6 is positive, and depends only on the ma-
terial parameters. Similar to 6, the constant 6 has to be chosen larger when the
coefficients in the Maxwell equations vary stronger at the material interfaces. In
case the material parameters do not change their values too strongly, this desired
statement could improve the results in [CoDN99]. Note, however, that the setting



in the latter publication is more general. It in particular allows complicated con-
figurations involving arbitrary Lipschitz polyhedra. We also remark that for every
positive number s, one can find a Maxwell transmission problem on a polyhedral
domain, which has a solution that is not H*-regular, see Section 7.1 in [CoDN99).

Organization

In Chapter 1, we proceed with an introduction to the Maxwell equations, the
concepts of exponential stability and observability, as well as an outline of previous
results on ADI schemes for Maxwell equations.

The first main part of this thesis is concerned with the analysis of a uniformly
exponentially stable ADI scheme. This part is structured into the Chapters 2—6.

Chapter 2 serves as an introductory part, as it presents the considered damped
Maxwell system, fixes the assumptions on the model, and recalls the basic concepts
from the analysis of linear Maxwell equations.

Chapter 3 is devoted to the new exponentially stable ADI scheme. To formu-
late the method, the above mentioned extended Maxwell system is introduced. We
then study the extended Maxwell system. In particular, we show its wellposedness,
and demonstrate that the corresponding solutions also solve the original Maxwell
system for appropriate initial data, roughly speaking. Afterwards, the new ex-
ponentially stable ADI scheme (3.24) is constructed. Also an energy-conserving
variant is presented here, see (3.23). We close the chapter with a detailed regularity
analysis of the proposed numerical methods.

In Chapter 4, we prove a uniform observability estimate for the energy conserving
scheme (3.23) from Chapter 3, see Theorem 4.2. To prove the inequality, the
curl-free and the divergence-free parts of the magnetic field approximations are
estimated separately.

The desired uniform exponential stability of the damped scheme (3.24) is con-
cluded in Chapter 5. One of the major tools is here the uniform observability
estimate from Chapter 4.

A rigorous error result for the damped scheme (3.24) is demonstrated in Chap-
ter 6. The main steps of the analysis are a stability estimate in an auxiliary space
of H'-regular functions, a bound on the local error, and an investigation of the
error propagation.

The second main part of this thesis deals with an error analysis of the Peaceman-
Rachford ADI scheme for linear Maxwell equations in heterogeneous cuboids.
Chapters 7-10 deal with this topic.

The model problem as well as the main assumptions are first presented in Chap-
ter 7. Auxiliary analytical statements are also shown here, and important function
spaces are introduced.



Chapter 8 is concerned with a detailed study of selected transmission problems
for the Laplacian on a cuboid. The main results yield piecewise H2-regularity for
the solutions of the transmission problems with homogeneous Dirichlet, homoge-
neous Neumann, or mixed boundary conditions.

In Chapter 9, our findings from Chapter 8 allow us to derive embeddings for
the abstract function spaces from Chapter 7 into spaces of piecewise H'- and H?-
regularity. We can then furthermore show that the latter spaces are state spaces
for the Maxwell equations. This finally leads to the desired piecewise H>2-regularity
statement for the solution of the Maxwell system in Corollary 9.24.

The Peaceman-Rachford ADI scheme is recalled in Chapter 10. The desired error
estimate for the resulting time-discrete approximations is given in Theorem 10.7.
In the proof, our regularity results from Chapter 9 come into play.

For the convenience of the reader, we also add an appendix at the end of this
thesis. It contains useful formulas that we employ during coordinate transforma-
tions in Chapter 8. A subsequent glossary finally lists the most important objects,
such as operators, functions, and spaces.



1. Background information on
central topics

This chapter has an introductory character. It first explains the Maxwell equa-
tions, and describes the main assumptions in the model problems of this thesis.
Furthermore, we provide results on exponential stability and observability for our
Maxwell system. These statements also give a motivation for the first part of
this thesis. Finally, we present an overview of selected literature on ADI splitting
schemes for Maxwell equations.

1.1. Maxwell equations and model problem

Let ©Q be a Lipschitz domain in R3. We study the Maxwell equations in their
macroscopic formulation

0,D(x,t) = curl H(x,t) — Jx(x,1),

0:B(z,t) = —curl E(z, 1), (1.1)
divD(z,t) = p(z, 1), ‘
divB(z,t) =0,

for positive times ¢ > 0 on €, see equation (I.1a) in [Jack99]. This system of
differential equations involves the electric displacement D, the magnetizing field
H, the macroscopic current density Jys, the magnetic field B, the electric field E,
and the free charge density p.

The first line in (1.1) is Ampere’s law, stating that time-varying electric fields
and electric currents induce magnetic curls, see Section 6.1 in [Jack99]. Faraday’s
law is given in the second line of (1.1). It describes that time-varying magnetic
fields induce electric curls, see Section 5.15 in [Jack99]. As a result, the first two
lines explain the interaction of electric and magnetic fields. The divergence formula
for the electric displacement field is called Coulomb’s law. This equation means
that the electric charge density is the source of the electric displacement. The
last identity in (1.1) corresponds to the physical law of the absence of magnetic
monopoles, see Section 2.1 in [KaKI119] and Section 6.11 in [Jack99].



1.1. Maxwell equations and model problem

In a given medium, the electric displacement D is defined in terms of the electric
field E, and the electric polarization P via the formula

D = ¢E + P, (1.2)

see equation (4.21) in [Grif13]. Here, g¢ is the constant vacuum permittivity. The
magnetizing field H is moreover given by the identity

He LB_M, (1.3)
Ho
with the magnetization M and the vacuum permeability 1, see formula (6.18) in
[Grif13]. Note that also pg is constant. The combination of (1.2) and (1.3) is called
constitutive relations. Note that (1.2) and (1.3) allow for complicated connections
of E,H, P, and M. These relations are simplified in the following.

We first point out that we do not consider electro-magnetic coupling in this
thesis. In other words, the electric polarization P only depends on the electric
field E, while the magnetization M is only a function of the magnetizing field
H. Furthermore, the medium is assumed to be linear, isotropic, and to respond
instantaneously to the applied fields. The relation between P and E, as well as M
and H also have to be local in space, meaning that E(z, ) and H(z,-) only effect
polarization and magnetization at the position xz. These assumptions bring (1.2)
and (1.3) into the form

1 1
D = ¢E + ggx.E =: cE, H=—B-yx,H= —-B. (1.4)
Ho 2
Hereby we use the electric and magnetic susceptibilities x. and x,,, the electric
permittivity €, and the magnetic permeability u, see Section 1.4 in [Jack99], as
well as Sections 4.4.1 and 6.4.1 in [Grif13]. The above assumptions imply that the
latter four quantities are scalar, space dependent, and constant in time.

Note that the above presumption of linear material laws is justified for weak
fields, see Sections 4.4.1 and 6.4.1 in [Grifl3]. Furthermore, the proportionality
between the electric polarization P and the electric field E, as well as the magneti-
zation M and the magnetizing field H, is usually local in space for electromagnetic
waves with frequencies in the range of visible light and beyond, see Section 1.4 of
[Jack99] for instance. Finally, the response of a medium to the present fields is
instantaneous for a polychromatic wave with narrow frequency width, for instance.
Here the permittivity and permeability are considered to be only space dependent,
see Section 5.3 of [SaTe07].

It now remains to make the dependence of the electric current Js. on the electric
field E more precise. The function Jy, can be written as the sum of two currents
J. and J. The first one is called conduction current, and it is given by the identity



1. Background information on central topics

J. = oE with the conductivity ¢ > 0. This is a form of Ohm’s law, see Section 1.1
in [BoWo09]. The latter function J = J(x,t) is an external current, which is in
our setting assumed to be known.

Denote by v the exterior normal vector at the boundary 0f2 of Q2. We finally
equip (1.1) with perfectly conducting boundary conditions and initial conditions,
see Subsection 1.4.2.4.3 in [DaLi90]. Altogether, system (1.1) possesses the new
representation

1 1
GE=-corlH—ZE—-J onQ, t >0,
19

€ €
1
OH = ——curl E on (2, t>0,
1
div(eE) = p on 2, t >0, (1.5)
div(pH) =0 on , t >0,
Exv=0 ptH-v=0 on 0f), t >0,

E(O) = Eo, H(O) = HO on Q,

as an initial boundary value problem on §2.

Both parts of this thesis are concerned with the analysis of time discrete ap-
proximations to (1.5). Throughout our studies, {2 is a cuboid. Due to the strong
connection between the mappings H and B, we call also H magnetic field.

The properties of the material parameters ¢, u, and ¢ influence the behavior
of solutions of the Maxwell system (1.5) in a crucial way. In case of a positive
conductivity ¢ and a vanishing external current J, the solutions of (1.5) decay
exponentially in time, see Section 1.2. The first part of this thesis is devoted to
the reproduction of this physical phenomenon in numerical approximations, see
Chapters 2—-6.

Note that the material parameters €, u, and ¢ are not assumed to be continu-
ous in (1.5). Indeed, we also deal with discontinuous coefficients. The following
configuration serves as a simplified model for Bragg-grating waveguides. We here
follow the presentation in Section 8.4 in [SaTe(07], see in particular Figure 8.4-1
therein. The model configuration is obtained by dividing the cuboid €2 into a chain
of several cuboidal layers. Each of the layers consists of a homogeneous dielectric
medium, such as Silica. This means in particular that the material parameters
e, i, and o are constant in every layer, but change their values across an interface
between two adjacent media. In the case of a Bragg-grating waveguide, one of
the layers in the middle serves as a waveguide. The remaining ones consist of two
alternating materials.

The rough principle of this device is as follows. An incoming wave with a certain
range of angles of incidence, and a given frequency is reflected at the upper and
lower boundary faces of the middle waveguide layer. The wave is reflected, as it

10



1.2. Exponential stability of a linear damped Maxwell system

cannot propagate into the cuboids that are adjacent to the waveguide layer. (More
precisely, it has a low penetration depth into the adjacent layers.) This leads to
a reflectivity of approximately unity, and a tight confinement of the wave to the
waveguide. As a result, the electromagnetic wave propagates inside the waveguide
into the desired direction.

The second part of this thesis analyzes the Maxwell system (1.5), as well as
corresponding time discrete approximations in a similar setting. Indeed, the major
difficulties in the above problem arise at the interfaces between the subcuboids.
The arguments are thus of a local nature, and it suffices to focus on the case of
only two adjacent cuboids. The latter configuration is studied in Chapters 7-10.

1.2. Exponential stability of a linear damped
Maxwell system

We follow here in parts Section 1 in [Zeru20]. Let the external current J be zero
in (1.5). We are interested in the long-time evolution of the energy

E(t) = ;/Q((eE(a:,t)) ‘E(x,t) + (uH(2,1)) - H(z,t)) dw,  £>0,  (L16)

of the Maxwell system (1.5). In case system (1.5) is considered on a C'*°-smooth
domain in R3, ¢ and p are positive numbers, and o € L™ is uniformly positive,
the energy & is known to decay in a uniform exponential way, see Théoreme 5.1
in [Phun00]. This means that there are positive numbers C' and  with

E(t) < CeP&(0),  t>0,

for appropriate initial data (Eq, Hy). This property is called exponential stability.
It is essential that C' and  do not depend on the data (Eq,Hy). The same
decay statement is true on a C*-domain with Cl-regular scalar coefficients ¢, p,
and ¢ that are uniformly positive, see Lemma 3.1 and Theorem 4.1 in [NiPi05].
Eller considers (1.5) on a connected and bounded Lipschitz domain with uniformly
positive definite L*>-coefficients ¢, i, and o. Eller also allows symmetric matrix-
valued material parameters. In this setting, he also demonstrates the exponential
stability of (1.5), see [Elle19].

The exponential stability of (1.5) is due to the conduction current —cE. Via
the coupling of the differential equations in the first two lines of (1.5), this current
has a damping effect on the electric and magnetic field. Note, however, that the
differential equation for the time derivative of H only contains the curl of E. As a
result, the damping effect acts solely on the divergence-free parts of the magnetic
field. The divergence constraint div(¢H) = 0 in (1.5) is thus crucial for the

11



1. Background information on central topics

exponential stability. If there were gradient parts of the magnetic field present in
(1.5), these would be conserved over time. This aspect causes difficulties for the
numerical approximations from ADI schemes to (1.5), as these numerical schemes
are known to violate the divergence constraint on the magnetic field, see Section 7
in [ChLL10] and Section 6.4 in [GaZh13]. To deal with this issue, we introduce an
extended Maxwell system in Section 3.1.

Exponential stability is often concluded by means of observability estimates, see
the proof of Theorem 4.1 in [NiPi05], Theorem 2.2 in [AmTu01], and the proof
of Proposition 7.4.5 in [TuWe09] for instance. We present here an observability
estimate for (1.5) in the case of a C*-domain €.

Fix a time 7' > 0. By Lemma 3.1 in [NiPi05], there is a positive number C' > 0
with

T
/Q(E|E0|2 4 ulH|?) dz < c/ /Q|EC|2dxdt (1.7)
0
for all initial data (Eq, Hy) € Hy(curl, Q) x H(curl, Q) with
div(eEg) = div(uHp) =0 and pHp-v =0 on OS2

(The space H(curl, ) is recalled in Section 2.2.) The field (E., H.) denotes here
the solution of the Maxwell system (1.5) without damping (meaning o = 0). As
above, it is important that the involved constants C', and T" do not depend on the
given initial data. Inequality (1.7) is called internal observability estimate for the
undamped system (1.5), and the latter system is said to be exactly observable in
time 7', see Definition 6.1.1 in [TuWe09].

The name observability estimate reflects the following meaning of (1.7). The
electric field E, is assumed to be observable or measurable over the observation
time [0,7]. Then (1.7) implies that the knowledge of E. determines the solution
(E.,H.) of (1.5) uniquely. This is the concept of observability, see Section 1 in
[Zuaz05]. To verify the latter claim, let (E}, H}) and (E?, H?) be two solutions of
(1.5) with the same observation E! = E? on [0,T]. The difference (0, H} — H?)
then still solves (1.5) for the initial data (0, H!(0) — H2(0)). Applying (1.7) to
this difference, we infer that the initial data H!(0) and H?(0) have to coincide.
As (1.5) is wellposed, see Theorem 2.2 in [NiPi05], this shows that both solutions
(El,H!) and (E? H?) are equal.

There are different techniques to establish observability estimates. Among them
are microlocal analysis and a multiplier method, see [Bal.LR92, Elle19, Phun00,
Komo94, Zhan00, NiPi05] for instance.

There arise, however, difficulties when observable or exponentially stable sys-
tems are discretized in space or time. In [ZhZZ09], an observable wave equation
is discretized in time with a numerically stable scheme, and the resulting time-
discrete approximations do not satisfy a uniform observability estimate. Finite
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1.3. Genesis and analysis of ADI schemes for Maxwell equations

difference and finite element space discretizations of an observable one-dimensional
wave equation are studied in [InZu99]. Also here, the discrete systems do not sat-
isfy uniform observability estimates. The lack of uniform observability is here
explained by means of non-physical high-frequency modes in the discrete systems.
These numerical artifacts are not present in the original continuous system. The
modes in the discrete systems are calculated in Sections 2.1 and 3.2 of [InZu99).
At high frequencies, the distance between the roots of consecutive eigenvalues of
the discrete problem shrinks as the spatial grid becomes finer. This is in contrast
to the continuous problem, where the gap between the roots of two consecutive
eigenvalues is independent of the frequency. This phenomenon is crucial for the
blow up of discrete observability estimates. In a similar way, Tébou and Zuazua
explain the loss of uniform observability respectively exponential stability for finite
difference space discretizations of two one-dimensional wave equations in [TeZu03].
A survey on observability of discrete approximations to wave equations, spurious
oscillations, and possible cures is given in [Zuaz05].

For space semidiscretizations of linear Maxwell equations on a Yee grid from
[Yee66], a similar phenomenon is known, see [Nica08]. For the continuous setting,
Komornik proves a uniform observability estimate in [Komo94]. Nevertheless,
Nicaise demonstrates that the observability inequality from the continous system
is not uniformly valid for the spatial-discrete one.

1.3. Genesis and analysis of ADI schemes for
Maxwell equations

In this thesis, we study the Maxwell system (1.5) on a cuboid, as well as time-
discrete approximations from alternating direction implicit (ADI) schemes. To
our knowledge, the first ADI scheme is proposed in [PeRa55] to solve the two-
dimensional heat equation dyu = 9>u + 8514 on a square numerically. Peaceman
and Rachford develop here the idea to approximate the solution by splitting the
arising spatial differential operator according to the spatial dimensions, and to
integrate both split problems separately in an alternating manner. This leads to
a dimension splitting.

The resulting scheme is formulated in two steps, and both splitting operators 92
and 85 are discretized by means of central second order finite difference quotients.
In the first half step of the scheme, the discrete counterpart of 9? is applied to the
unknown next iterate, while the discrete version of 8; is applied to the already
known current iterate. The second half step of the scheme interchanges the roles
of 97 and 9;. Altogether, the method alternates the spatial direction that is
integrated implicitly in time. The above way, in which the splitting system is
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1. Background information on central topics

integrated in time, is also called Peaceman-Rachford scheme. The paper [PeRa55]
also provides a stability and efficiency analysis.

To approximate the solution of linear isotropic Maxwell equations on cuboids
with perfectly conducting boundary conditions, Yee presents a finite-difference
time-domain (FDTD) method in [Yee66]. Being an explicit time integrator, how-
ever, it suffers from a Courant-Friedrichs-Levy (CFL) condition on the time step
size, see Section 4.7 in [TaHa05]. In other words, the time step size has to be
chosen sufficiently small to ensure numerical stability.

In [Nami99], Namiki combines the above ADI operator splitting idea from Peace-
man and Rachford for time integration with a finite difference space discretiza-
tion on the Yee cell from [Yee66]. This leads to a scheme with the name ADI-
FDTD. It is used to solve the Maxwell equations for a two-dimensional transverse
magnetic wave numerically. The scheme is also shown to be numerically sta-
ble, without restriction on the time step size. Afterwards, ADI splitting schemes
for the linear three-dimensional Maxwell equations on cuboids are introduced in
[Nami00, ZhCZ00]. The Maxwell system is here again spatially discretized by
means of finite differences on a Yee grid. Both papers arrive at essentially the
same operator splitting, and the split system is integrated in time in the Peaceman-
Rachford way. It is furthermore shown that the schemes have linear complexity. In
[LeFo03], the operator splitting from [Nami00, ZhCZ00] is furthermore integrated
in time by several other higher order methods. We also note that the mentioned
methods only deal with the homogeneous Maxwell equations. The efficiency of
the Peaceman-Rachford ADI schemes from [NamiO0, ZhCZ00] can moreover be
enhanced by transforming the methods into fundamental implicit schemes, see
[Tan08, Tan20]. By means of supplementary vectors, the explicit steps of the
Peaceman-Rachford ADI scheme can here be simplified to involve only sums and
differences of vectors. Several other implicit splitting schemes can also be imple-
mented as fundamental implicit schemes, see [Tan08, Tan20].

If the electric current Jy is zero, the energy & in (1.6) of the Maxwell sys-
tem is conserved, see Proposition 3.5 in [HoJS15]. It is then reasonable to use
also an energy-conserving time-integrator for (1.5). Indeed, two energy-conserving
ADI-FDTD schemes are presented in [ChLL10], employing again the operator
splitting from [Nami00, ZhCZ00]. Both schemes are unconditionally stable. The
L?-convergence rate of the schemes is also analyzed, assuming that the solution of
(1.5) is C3-regular in space and time. The paper [GaL.C13] further studies one of
the schemes from [ChLL10], providing an error and stability analysis in discrete
H'-norms. Here, it is however required that the unknown solution of the Maxwell
problem (1.5) is at least C*-regular in space and C®-regular in time. In the first
part of this thesis, a scheme is constructed that is inspired by the first scheme of
[ChLL10], see Section 3.3.
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1.3. Genesis and analysis of ADI schemes for Maxwell equations

The first rigorous error analysis for an ADI scheme is provided in [HoJS15].
Hochbruck, Jahnke, and Schnaubelt study here the Maxwell system (1.5) with
positive coefficients £ and p in WH°NW?23. The current Jy, is set to zero, and (1.5)
is considered on the entire space R3, and on a cuboid with perfectly conducting
boundary. Here, the Peaceman-Rachford ADI scheme from [ZhCZ00] is used to
discretize in time, but no space discretization is analyzed. Based on a regularity
analysis of (1.5), they derive an L?-error estimate of order two in time. It is crucial
that the error result only depends on the data but not on the unknown solution.
The case of a nontrivial current Jy is then analyzed in [Eilil7, EiScl8, EiScl7]
by generalizing the scheme of [ZhCZ00] to inhomogeneous systems. In the first
two publications, Eilinghoff and Schnaubelt provide a regularity analysis for (1.5),
and show that the new scheme converges weakly with order two in a space that
is similar to H~!. We employ their scheme in the second part of this thesis. In
[Eilil7, EiSc17], more regular material parameters, inhomogeneities, as well as
initial data are analyzed that ensure H2-regularity of the solutions to (1.5). The
new scheme from [Eili17, EiSc18] is shown to converge with order two in L? in the
time-discrete setting. The second scheme from [ChLL10] is afterwards modified
in [EiJS19] to allow also for inhomogeneities in the Maxwell system (1.5). Under
appropriate regularity assumptions on the material parameters ¢, y, and o, as well
as the inhomogeneity J, Eilinghoff, Jahnke, and Schnaubelt prove that their new
scheme converges weakly with order two in a space that is similar to H .

Recall that the above mentioned publications only analyze time-discrete prob-
lems (meaning that space is not discretized), or they discretize in space by means of
finite differences. For applications with discontinuous material parameters, see Sec-
tion 1.1 for instance, discrete ansatz spaces from discontinuous Galerkin (dG) space
discretization schemes are however interesting. In [HoK619, Koéhl18, HoKo620],
Hochbruck and Kohler investigate full discretizations of (1.5) on a cuboid (respec-
tively more general domain in [HoK620]), where the Maxwell equations are spa-
tially discretized with a central-flux dG method. The spatial discrete counterpart
to the Maxwell operator is again split in the ADI manner, and the time integra-
tion is performed by means of the Peaceman-Rachford method. The resulting full
discrete scheme is shown to be of linear complexity, see [HoK619, Kohl18]. This is
achieved by ordering the degrees of freedom in the matrices of the implicit steps,
so that only linear systems with a tridiagonal structure have to be solved implic-
itly. Furthermore, the bandwidth only depends on the polynomial degree of the
dG ansatz space, and not on the width of the spatial mesh. In [K6hl18, HoK620],
Kohler and Hochbruck also establish rigorous error estimates for the Peaceman-
Rachford ADI-dG full discretization of (1.5). These results bound the difference
between the exact solution and the numerical approximation. They furthermore
estimate the error between time respectively space discrete derivatives of the ap-
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1. Background information on central topics

proximations and time respectively space derivatives of the solution. Actually, the
results in [HoK619, K6hl18, HoK620] do not only cover full discretizations of the
linear Maxwell system (1.5), but also of more general wave-type problems (with
appropriate properties).
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Part |.

A uniformly exponentially stable
ADI scheme
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2. Uniformly exponentially stable
Maxwell equations and analytical
preliminaries

In this chapter, we first introduce our model problem as well as the main assump-
tions. Afterwards, useful analytical concepts for the analysis of linear Maxwell
equations are repeated. The arising spaces and notation are used throughout the
thesis. Some of the constructions are further refined in Sections 7.2-7.3.

2.1. Damped Maxwell equations

In the first part of this thesis, we study the linear isotropic Maxwell system with
Ohm’s law

1
OE = —curlH — 6E in @ x [0, 00),
£
1
OH = ——curl E in @ x [0, 00),
p (2.1)
div(uH) =0 in @ x [0, 00),

Exv=0, pH-v=0  on 0dQ x [0,00),
E(O) = ]307 H(O) = HO in Q,

on a cuboid

Q= (af,af) X (a;,a;) X (ag,a;f)

with perfectly conducting boundary 0¢). This system will be referred to as the
original damped Mazwell system, as we later also introduce an extended Maxwell
system, see (3.1). Here, the vector E(x,t) € R? denotes the electric field, H(z,t) €
R3 the magnetic field, e(x) > 0 the electric permittivity, and pu(x) > 0 the magnetic
permeability. For notational convenience, we use the symbol & for the fraction
o/e throughout this part of the thesis. The function o(z) > 0 stands for the
conductivity. Furthermore, the vector ¥ € R3 denotes the unit exterior normal
vector at 0Q).
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2.1. Damped Maxwell equations

Certain properties are crucial for the behavior of solutions of (2.1). We here
assume

e,6 €EWH(Q), pneW(Q)NW>(Q),

2.2
g, 1,0 >0 >0, ((,zfj:Oon@Q, (22)

with a positive number §. Note that the requirements for p are slightly stronger,
due to technical reasons. More precisely, we consider an extended Maxwell system
(3.1) with an additional damping term. In the latter system, we incorporate more
derivatives of p than of the other parameters, see the proof of Lemma 3.14. Let
us also comment on the assumptions for 6. In view of the relation ¢ = e, the
assumptions in (2.2) on & are satisfied if and only if they are valid for o. (The
number 0 may have to be replaced by another positive number in the version of
(2.2) for o.)

To ensure wellposedness of (2.1), requirements on the initial data (Eq, Hy) are
also essential. These are assumed to belong to the space Hy(curl, Q) x H(curl, Q)
with

div(eEy) € L*(Q), div(uHp) =00on Q, uHp- v =0 on 9Q.

The space H(curl, Q) hereby consists of functions in L*(Q)® whose curl exists in
L*(Q)3, and Hy(curl, Q) contains all functions that have additionally a vanishing
tangential trace, see Section 2.2. In view of (2.1), these conditions are natural
to make the posed differential equations meaningful. In this setting, the Maxwell
equations (2.1) have a unique classical solution, see Proposition 2.3 in [EiSc18§].
More precisely, the system is wellposed in the sense of evolution equations.

Recall also from the Introduction and Section 1.2 that (2.1) is exponentially
stable. This means that the energy

£ =5 [ B OP +ulHE o dr, 120,

2Jo°
satisfies the exponential decay requirement
E(t) < Ce&(0), t>0, (2.3)

see [NiPi05, Phun00, Elle19]. Tt is crucial that C' and 8 are two positive numbers,
independent of the initial data. Due to the positivity and boundedness assumptions
in (2.2) on ¢ and py, the energy & is equivalent to the standard L*-norm on Q.

Our target are time discrete approximations to (2.1) that preserve the decay
property (2.3) uniformly with respect to the step size.
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2. Uniformly exponentially stable Maxwell equations and analytical preliminaries

2.2. Basic analytical framework and notation

In this section we mainly repeat analytic concepts and spaces that are important for
our arguments, such as the Helmholtz decomposition and the associated domains
of the curl and divergence operator.

First, we subdivide the boundary 9@ of the open cuboid () into the three parts

Ly :={zcdQ|xz; €{aj,a]}}, Jj€{1,2,3},

and introduce the corresponding trace maps trr, := tr|r; that we need for the
definition of the splitting operators.

In this respect, we also want to assign traces to functions which have weak
derivatives in only one direction. Hereby we keep to Section 2 of [EiSc18]. Suppose

a function v € L?(Q) possesses a weak derivative v € L*(Q)). Then, v has a

unique representative 9 in H* ((al_, ai), L*((ay,a3) x (a3, a}f))), as a consequence

of the fundamental theorem for Sobolev functions. Additionally, the H!-norm of
 is bounded by a uniform constant times the L?-norm of v and 9;v. This leads to
a well-defined continuous extension of the trace operator trr, = tr|p, from H(Q)
to all functions in the space {f € L*(Q) | 0.f € L*(Q)}. We will simply write
v=0on I'y if trp, v = 0, and proceed similar for the remaining faces of Q.

We continue with the domains of the curl and divergence operators that have
already been considered in Section 2.1. Define the Banach spaces

H(curl, Q) :={¢p € L*(Q)? | curlp € LQ(Q)3}, H(pngrl = Hg@Hiz + ||Cur1g0\|12 ,
H(div,Q) == {v € L*(Q)* | divv € L*(@Q)},  |[v|% = l|vll72 + [[div ol .

The subspaces Hy(curl, Q) and Hy(div, Q) are also essential, being the completion
of the space of test functions C°(Q)? with respect to the norms |||, and ||[|4.
respectively. In this setting, Theorems 1.2.4-1.2.6 in [GiRa86] provide the following
fact. The space C*°(Q)? is dense in H(div,Q), and the normal trace operator
Yo U v V|ag extends from C*°(Q)? in a linear and continuous way to the
space H(div,Q), now mapping into H~'/2(dQ). In the following, we will simply
write v - v instead of v, (v) for v € H(div, Q). As a consequence of the density and
extension result, one may transfer Green’s formula to H(div, (), stating

/Qv -Vodzr + /Q(div v)pdr = (V- V, 0) g-1/2(0)x H1/2(50)

for functions v € H(div,Q) and ¢ € H'(Q). Moreover, the subspace Hy(div, Q)
coincides with the kernel of ~,, on H(div, Q).
Regarding the curl operator, Theorems 1.2.10-1.2.12 in [GiRa86] establish similar

results. The space C*°(Q)? is also dense in H(curl, @), and the tangential trace
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operator v; : v — v X V|pg has a unique linear and continuous extension 7; :
H(curl,Q) — H~'2(0Q) with kernel Hy(curl, Q). Again, we write only v x v
instead of v(v) for v € H(curl, Q)). Here, Green’s formula reads

/Q(curlv) cpdr — /Qv ceurlpdz = (v X v, 0) g-1/2(00)x H1/2(00)

for mappings v € H(curl,Q) and ¢ € H*(Q)3. Throughout, we will simply call
the application of both Green’s formulas integration by parts.
The above domains of the curl and divergence operators contain rather irregular
functions, e.g., all compactly supported gradients and curl-fields in L?, respectively.
Fortunately, one obtains subspaces of H! if one intersects some of the above
spaces. We first define the tangential space

Hy(curl, div, Q) := {H € L*(Q)* | curlH € L*(Q)?, divH € L*(Q),
H-v=0o0n0Q}.

This space coincides with Hy(div, Q) N H(curl, @), and we equip it with the norm
2 2 . 2 :
[H][3, = l[carl H|[72 g + [|div H[72 () , H € Hy(curl, div, Q).

In fact, Hy(curl,div,Q) is continuously embedded into H'(Q)?, which means
that there is a constant Cr > 0 with

[ gy < Or 1[Iz, = Cr(llewrl H 72 gy + [|div H[[72 ) (2.4)

for all H € Hyp(curl,div, @), see for example Lemma 1.3.6 and Theorem 1.3.9 in
[GiRa86]. For the analysis of the electric field E, the normal space

Hy(curl, div, Q) := {E € L*(Q)? | curlE € L*(Q)?, divE € L*(Q),
E xv=0o0n0dQ}

is useful. It is equal to the intersection H(div, Q) N Hy(curl, Q). Thus, the space
Hy (curl,div, Q) is complete with respect to the natural norm

||E||12L1N = ||CUF1E||?;2(Q)3 + ||div E||2LQ(Q) , E € Hy(curl, div, Q).

As for the tangential space, the normal space is continuously embedded into
H'(Q)3, and the analogous estimate

IEll7 gy < On 1l = On(llcwrl Bl 72 gy + 1divEl72g) (2.5)

is satisfied by all vectors E € Hy(curl,div, Q) with a uniform constant Cy > 0,
see Lemma 1.3.4 and Theorem 1.3.7 in [GiRa86]. In Section 9.1 we derive extended
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2. Uniformly exponentially stable Maxwell equations and analytical preliminaries

versions of the just mentioned embeddings of Hy(curl, div, Q) and Hy(curl, div, Q)
into H'(Q)3.

The proof of an observability estimate will heavily make use of appropriate
Helmholtz decompositions. One is provided by Theorem 1.3.6 and Corollary 1.3.4
of [GiRa86].

Theorem 2.1 (Helmholtz decomposition). Each function g € L*(Q)* may be
orthogonally decomposed into the sum

g = curl ¢ + Vg, (2.6)

where ¢ € HY(Q) is unique up to a constant, and ¢ € HY(Q)? satisfies div ¢ = 0,
curlp € Hy(div, Q) and ¢ x v =0 on 0Q).

Remark 2.2. We denote the resulting orthogonal projection onto the curl-free
part of each vector according to the Helmholtz decomposition by py. By peun we
mean the projection onto the divergence-free part. In particular, the boundary
condition

(pcurl g) v=0 on aQ:
for g € L*(Q)3, will be used several times for integration by parts. O

Since operator theory accompanies us throughout our arguments, we shortly
introduce the main notation as well as the concepts of extrapolation theory. Let
(E,||-]|) be a normed vector space. The symbol Z(FE) stands for the space of
bounded linear operators on E, and the corresponding operator norm is [|[| 5.
Let A be a linear operator on E with domain D(A). The graph norm of A is given
by 2ll3 ) = llo]> + [ Ax]? for = € D(A).

Another important term is the part of an operator with respect to a linear
subspace. Let Y C F be a linear subspace. The part of A in Y is denoted by Ay,
has the domain

D(Ay) ={yeY |yeD(A), Ay e Y},

and is defined via Ayy := Ay for y € D(Ay). In this context, the notation A}
refers to the domain of the power of Ay, being defined on the domain

D(AY) ={y e D(AY") | Ay"'y € D(Ay)}

for £ € N>,.

For the error analysis of the arising ADI schemes, we need classical extrapolation
spaces of first order. These are introduced in the following, keeping to Section V.1.3
in [Aman95] and Section 2.10 in [TuWe09]. For this purpose, let (£, ||-||) be addi-
tionally a Banach space, and let A be densely defined and closed with nonempty
resolvent set p(A). Take A € p(A), and define the norm [|-||_; , := [|[(A — A)~'-]]
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on E, as well as the completion E/, of E with respect to the new norm. We call
E4, the first order extrapolation space of E with respect to A. By construction,
the operator A : (D(A),||-]]) = (E,||-||_;) is bounded, and it may be extended in
a unique continuous manner to an extrapolation operator A_; : F — E_;. Ad-
ditionally we define F; := D(A), and we equip it with the standard graph norm.
Then E} is again a Banach space, and the part of A in F; is denoted by A;. These
constructions may be iterated, yielding higher order extrapolation spaces. It is
essential that the definition of the above extrapolation spaces does not depend on
the chosen resolvent value .

As a special class of extrapolation spaces, we also use fractional extrapolation
spaces in some regularity proofs. They can be defined in the following way, see
Section V.1.3-1.4 in [Aman95]. Assume additionally that (£,|||) is a Hilbert
space, and that A is self-adjoint and positive definite on E. Then, the fractional
powers A® are for a € R well-defined, and we put

Ej = (D(A%), | A]))

for @ > 0, being again a Banach space. Moreover, we call the part of A in E4 by A,.
Now, let o € (0, 1]. The completion of E with respect to the norm ||-||__, := ||A™*||
is denoted by (E4,, ||| _,), and the closure of A in B4, is A_,. We call E4,
fractional extrapolation space of E with respect to A. Then Theorem V.1.4.12
in [Aman95] states that the dual space (E2)* is isometrically isomorphic to E4 .
For o # 0 being an integer, the fractional extrapolation space coincides with the
above classical extrapolation space.

To avoid misunderstandings about the interplay of differential operators and
products, we fix the following convention. The application of a differential operator
to a product of two functions without parenthesis always implies that the product
rule is employed. This means for instance 0, fg = 0.(fg) = (0.f)g + (0.9) [ for
functions f,g € H'(R).
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3. Construction of a uniformly
exponentially stable ADI scheme

As announced in the introduction, we do not only add damping to the numerical
time integrator to obtain uniformly exponentially stable approximations to (2.1).
Instead, we also couple the Maxwell system with a damped one-dimensional dif-
ferential equation by means of a new artificial variable. The new system is called
extended Maxwell system. To keep consistency, we show in Section 3.1 that certain
solutions of the new extended system also solve the original Maxwell equations.
Afterwards, we derive the desired exponentially stable ADI scheme as a time in-
tegrator for the extended system. The actual stability result is then provided in
Theorem 3.10.

As the proof of Theorem 3.10 and the error analysis for the new scheme demand
for a detailed regularity analysis, we study the splitting operators in detail in
Section 3.4.

3.1. An extended Maxwell system

Inspired by the mixed hyperbolic divergence cleaning technique from [DKKMO02],
we study the system

1

@E:gcurlH—&E in @ x [0, 00),

1 1 .
8tH:—cur1E—V<CI>> in @ x [0, 00),

7 7

1 _ (3.1)
0P = o div(pH) — n® in @ x [0, 00),

Exv=0 puH-v=0 on 0Q x [0, 00),

E(0) =E, H(0)=H, &)=, in Q.

We call it extended or enlarged Mazwell system. As for the original Maxwell system
(2.1), we assume that the parameters ¢, p, and & satisfy (2.2).

One of the major differences between the extended Maxwell system and the
original one is the absence of the Gauss law div(zH) = 0. This is an important
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3.1. An extended Maxwell system

point for our analysis. On the one hand, numerical approximations for (2.1) usually
do not preserve the condition div(uH) = 0, see [EiScl8]. On the other hand,
the divergence constraint is essential for the exponential stability of (2.1). To
overcome the issue of nonvanishing divergence, the new variable ® = ®(z,¢) € R
is incorporated in (3.1). It is mainly used to couple the differential equation for
the magnetic field in the second line with the damped differential equation in the
third one. This leads to a damping of the divergence of the magnetic field, see
[DKKMO02]. We motivate this effect by means of a formal argument.

Assume that p and 7 are constant, and that (E, H, ®) is a solution of (3.1) which
is regular enough to do the following calculations. We first take the divergence of
the second line in (3.1), and differentiate once with respect to time. This leads to
the identity

0 div(uH) = —A0,®. (3.2)
Inserting now the third line in (3.1) as an equation for 9,®, we infer the formula
0F div(uH) = #—EA div(pH) + nAd.

The last summand on the right hand side is next substituted by means of the
relation 0, div(uH) = —A®. (The latter equation is obtained by applying the
divergence operator to the second line in (3.1).) As a result, the divergence of the
magnetic field satisfies the damped wave equation

07 div(pH) = ﬁA div(pH) — no, div(pH).

In our analysis, the vector V(i@) is crucial to establish the observability of
time-discrete approximations to (3.1), see the proof of Lemma 4.8 for instance.

The damping in (3.1) is caused by the terms —6E and —n®. To ensure that the
damping is strong enough, and that the solution of (3.1) is sufficiently regular, we
assume in the following that

n € Wh=(Q) with n > 4. (3.3)

It is furthermore intuitive to require the initial data (Eq, Hy, ®o) to belong to the
space

Hy (curl, div, Q) x Hp(curl, div, Q) x H'(Q),

to make all differential expressions in (3.1) meaningful.

Although the above reasoning suggests that the solutions of (2.1) and (3.1) are
entirely different, this is in general not true. Indeed, Remark 3.6 explains that
the extended system reduces to the original one for physically reasonable settings.
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3. Construction of a uniformly exponentially stable ADI scheme

(Otherwise, a time integrator for (3.1) would be of no use for our purposes, as we
aim for approximations to (2.1).)

To derive a wellposedness and regularity statement for system (3.1), we write it
as an evolution equation on appropriate state spaces. First, we study (3.1) on the
space Xe = L*(Q)". This space is equipped with the weighted inner product

E'\ (E’
H |, |2 :z/(gEl-E2+uH1-H2+u¢>1<D2) de
CI)l @2 Q
that induces the norm ||-|| on Xex. In view of (2.2), this norm is equivalent to

the standard L?-norm on Q. In line with the reasoning in Section 2.1, the squared
norm ||-||” is also called energy. To system (3.1) we associate the extended Maxwell
operator

E %curlH —oE
Moo |H| == | =, catlE= V(@) |, (3.4)
o —ﬁ div(uH) — nd

D(Mey) := Hy(curl, Q) x Hp(curl, div, Q) x H*(Q).

Observe that the definition of M,y incorporates derivatives of the products of
pH and i@, while the domain of D(M,y) prescribes only regularity conditions on
the functions H and ® alone. This issue is addressed in the next remark. Note
that the statement is given in Remark 3.3 of [HoJS15].

Remark 3.1. Combining assumption (2.2) with the product rule div(zH) =
(Vu) - H + pdivH, the function div(uH) is an element of L?(Q) if and only
if divH is. In a similar way, the function iq) belongs to H'(Q) if and only if ®
does. Analogous statements apply to the boundary conditions of H, as well as to
the functions ¢E and E. These facts will be used later on, without further notice.{

On Xy, the extended system (3.1) can be written as the Cauchy problem

4 (E E E(0) E,
2| H| = Mo [H|, 120, H(0)| = [Hy | € D(Mow).  (3.5)
® ® ®(0) @,

In the following, we focus on the analysis of (3.1).

To derive the wellposedness of (3.5), we will make use of the following density
result. The latter is important for us because it enables us to approximate func-
tions in H (curl, Q) by H'-regular functions that vanish in normal direction on the
boundary 0Q. Although well known to experts, we give a proof for the sake of a
self-contained presentation.
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3.1. An extended Maxwell system

Lemma 3.2. The space Hy(curl,div, Q) is a dense subspace of H(curl, Q).

Proof. By Theorem 2.10 in Section 1.2 of [GiRa86], the space C*(Q)? is dense
in H(curl,@). It consequently suffices to approximate an arbitrary element ¢ of
C>(Q)? by means of a sequence (¢, ), of smooth functions with ¢, - v = 0 on 9Q.

Fori € {1,2,3} and n € N, let \? : [a;,a;] — [0,1] be a smooth cut-off function
with compact support in [a; + 3=, — 5], and with x’, =1 on [a; + L, af — 1],
We denote the i-th component of ¢ by ¢'. Consider then the mapping

2n? n’ ot n

pu() = (G (2)e' (@), 2= (21, 20,23) € Q.
By construction, ¢,, is smooth, and satisfies the boundary condition ¢,, - v = 0 on
Q). By Lebesgue’s dominated convergence theorem, the sequence (,,), tends to
¢ and the vectors
2
3

Xo 029 — X205
curlp,, = | x5, 050" — X201
X2010% — X 02

converge to curl  in L*(Q)3 as n — co. O

We can next deduce the wellposedness of the Cauchy problem (3.5) in X. Note
that we hereby employ arguments from the proof for Proposition 3.1 in [HoJS15].
Although the extended system is designed to incorporate strong damping on the
electromagnetic field (E, H), it is also interesting to study the undamped setting
d = n = 0. Under this conditions, the energy of (2.1) is conserved, which is
in line with the behavior of the original undamped Maxwell system (2.1), see
Proposition 3.5 in [HoJS15].

Proposition 3.3. Let ¢, and p satisfy (2.2). The following statements are true.

a) In the undamped case 6 = n = 0, the operator My is skewadjoint. It
consequently generates a strongly continuous group of isometries on Xeyy.

b) Let 6,1 > 0 be contained in WH*(Q). Here M. is the generator of a
contractive strongly continuous semigroup on Xy

In both cases, the Cauchy problem (3.5) has a unique classical solution (E, H, ®)
in the space C([0,00), D(Mey)) N CH([0,00), Xext)-

Proof. 1t suffices to show the skewadjointness of M., in the case 6 = n = 0 to
establish item a). Indeed, Stone’s Theorem then provides the remainder of part
a). In view of the identity

E %CurlH cE E
M, [H| = —i curl E — V(ifb) —10 |, H| € D(Mew),
P —ﬁ div(pH) nd ®
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3. Construction of a uniformly exponentially stable ADI scheme

perturbation theory for generators of semigroups, see Theorem I11.2.7 in [EnNa00],
implies part b). The final wellposedness statement is a consequence of standard
semigroup theory. So, let ¢ =n = 0.

1) We first split the extended Maxwell operator into the two parts

E %curlH 0 E E
Moo |[H| = | —pcwlE— VO | 4| (V)@ | =My |H|+P|H
i — . divH —(Vu)-H d i

for
(B,H,®) € D(M oxt) := D(Mex) = Ho(curl, Q) x Hyp(curl, div, Q) x H'(Q).

The operator P is defined on the entire space D(P) := Xey. The regularity and
positivity assumption (2.2) implies that P is bounded and skewadjoint. With
perturbation theory for selfadjoint operators, we only have to show that My is
skewadjoint, see Theorem V.4.3 in [Kato95].

2) As the space of test functions C2°(Q)" is contained in the domain of My,
the space D(]\Zfext) is dense in Xex. The operator My is also closed. To verify

this claim, let ((E", H", ®")),, be a sequence in D(M) with
(E",H",®") — (E,H,®) and M. (E",H",®") - (E,H, ), (3.6)

as n — oo, for vectors (E,H,®) and (E,H,®) in X.. We now take into ac-
count that the operators div and curl are closed on their domains H (div, ()) and
H(curl, @), respectively. Recall also that the normal trace operator is bounded
from H(div, Q) into H~/2(dQ). As the requirement (3.6) implies the convergence
of (curl H"), to ¢E and of (—divH"), to u®, we consequently infer that the
functions curl H and div H belong to L?, and that the relations
H-v =0 on00Q, %curlH:E and —idivH:é

are valid.

It remains to consider the second component of M (E™, H", ®"). The assump-
tion (2.2) then implies that the sequence (— curl E" — V®"),, converges in L*(Q).
The boundary condition E x v = 0 on 0@ further yields that the vectors curl E"
and V®" are orthogonal to each other in L?. We hence conclude that both se-
quences (curl E"),, and (V®"),, converge in L*(Q)3. As the spaces Hy(curl, Q) and
H'(Q) are complete, the facts E € Hy(curl, Q) and ® € H'(Q) follow. This rea-
soning also yields the formula —i curl E — ivq> = H. As a result, M.y is closed
in Xex.
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3.1. An extended Maxwell system

3) We next show that M,y is skewsymmetric. To that end, let (E', H', ®'), and
(E?, H?, ®?) in D(M.y). Applying the boundary conditions E' x v = E* x v = (
and H' - v = H*. v = 0 on 0Q in an integration by parts, the identities

(= fi) ()

(curl H') - E? — (curl EY) - H? — (V®') - H? — (div H1)<I>2) dz

I
S—

_ / (H' cwlE? — E' cwlH® + &' divH? + H' - V&?) da
Q

E! E?
= - Hl y Mext H2
d! d2

are obtained. This shows that M, is skewsymmetric.

4) It now suffices to demonst{ate that I + M.,, has dense range in Xg to
conclude the skewadjointness of M. We therefore show that the space C>(Q)”
is contained in the range of I + M. Let (E,H,$) € C>®(Q)". The desired
identity (I &+ M) (E, H,®) = (E,H, ®) is then equivalent to the system

1 v
E+ -—curlH=E, (3.7)
£
]— ]_ N
HT - cwlEF -V = H, (3.8)
M u
1 v
O+ - divH = &. (3.9)
0

Our target is to find a solution (E,H, ®) of (3.7)—(3.9), which belongs to the

domain D(Mex). We therefore insert the first and third line into the second, and
arrive at the formula

1 1 . . .
pH +curl —curlH - V—divH = yH £ cwrl E£ VO
€ M
= h e W' (Q)*NC.(Q)>. (3.10)
It is now convenient to look at the associated weak formulation

/ pH v+ L(curlH) - (curlv) + i(div H)(dive)dz = / hv dz, (3.11)
Q Q

for v € Hp(curl,div,Q) = H(curl,@Q) N Hy(div,Q). Note now that the left
hand side of (3.11) defines a bounded coercive bilinear form on the Banach space
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3. Construction of a uniformly exponentially stable ADI scheme

Hrp(curl,div, @), while the right hand side is a bounded linear form. Hence, the
Lax-Milgram Lemma provides a unique function H € Hyp(curl, div, @), satisfying
(3.11) for all mappings v € Hr(curl,div, Q). In the next two steps, we deduce that
H is also a strong solution of (3.10).

4.i) In a first step, we demonstrate that the function i div H belongs to H*(Q).
To that end, we modify the proof of Theorem 1.1 in [CoDN99]. Let ¢ be a function

in H?(Q) with homogeneous Neumann boundary conditions on Q. We choose
v :=V( in (3.11), and obtain the formula

/Q L(divH)(A() da /Q (div h — div(gH))¢ da.
Subtracting the term i(div H)( on both sides, the identity
/Q L(divH)(AQ) — (divH)C dr = — /Q(divh — div(uH) + 1 divH)¢dr (3.12)

follows. To apply elliptic regularity theory, we consider the associated boundary
value problem

1
—Al 4 4 =divh — div(uH) + — divH in Q,
I
gz =0 on 0Q),

for the Neumann Laplacian on ). By Theorem 3.2.1.3 in [Gris85], this system has
a unique solution @ € H?*(Q), satisfying the formula

/QaAg _aCdr = — /Q(div h — div(uH) + L divH)C de, (3.13)

after integrating by parts twice. We now subtract (3.12) from (3.13) to conclude
the fact

(6 — & divH, AC — ()2 = 0.

Since the operator A — [ is invertible on L?(Q) with domain {® € H*(Q) | %

0 on 0Q}, see Theorem 3.2.1.3 in [Gris85], the statements idiVH =0 € HZIZ
and %(i divH) = 0 on Q) are valid.

4.ii) We next prove that the vector L curlH is an element of Hy(curl, Q). To
do so, we subtract the first and the last summand on the left hand side of (3.11).
Part 4.i) shows that idivH is H2-regular, whence an integration by parts argu-
ment leads to the relations

L

/ L(curl H) - (curlv) dz = / (h — pH)v — i(div H) divodz
Q Q
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3.2. Connection between the original and the damped Maxwell systems

:/Q<h—pH+V(:LdivH)) vda (3.14)

for all vectors v € Hyp(curl,div,Q). This implies that %curlH is contained in
H(curl, Q). By Lemma 3.2, the space Hp(curl,div, Q) is dense in H(curl, @), so
that the relation is even valid in H(curl, Q). Lemma 2.4 in Section I of [GiRa86]
now yields that the vector écurlH belongs to Hy(curl, @). Integrating now the
left hand side of (3.14) by parts, the identity

curl L curlH) - vdz = [ (h— pH + V(2 divH)) -vde
€ p
Q Q

follows by density for all functions v € L?(Q)?. Altogether, H solves (3.10) in
strong form. 5
4.iii) Put E:=EF I curlH € Hy(curl, Q) and ¢ := & + idivH € H(Q). The

results of part 4.ii) then imply that the vector (E, H, ®) belongs to D(M.y), and
that it solves (3.7)—(3.9). O

3.2. Connection between the original and the
damped Maxwell systems

Let (E, H, ®) be a solution of the extended Maxwell system (3.1). As the extended
system involves the new variable ®, the solution components (E, H) do in general
not solve the original system (2.1). In view of our plan to approximate the solution
of (2.1) by means of time-discrete approximations to (3.1), this is not satisfactory.
In this Section, we thus determine a subset of initial data (Eq, Hg, ®g), for which we
can guarantee the following: If (E, H, ®) solves (3.1) with initial data (Eg, Hy, ®y),
then (E, H) satisfies (2.1). We reach this target by means of subspace theory for
semigroups.
Define the space

Xaiw = {(E,H,®) € X | div(uH) =0, H-v =0 on 0Q,
divE € L*(Q), ® = 0}.

It is essential for the below reasoning that the definition of this space contains
again the Gauss law of the absence of magnetic monopoles. A similar space is
defined in equation (2.4) of [EiSc18]. To ensure that a solution (E,H,®) of the
extended system (3.1) indeed satisfies this divergence constraint, we study the
evolution equation (3.5) on the subspace Xgiy of Xey. This leads to the definition
of

Xext,l = D<Mext) N Xdiva (315)
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3. Construction of a uniformly exponentially stable ADI scheme

with the norm

E\ | E\ |
H =||H + ||div(eE)|[7, .
@ Xext,l @ D(Mext)

In view of the initial conditions for the original Maxwell system (2.1), it is
physically reasonable to choose initial data for the extended Maxwell system (3.1)
within the space Xy 1.

Let us also mention that the space Xex 1 is complete. To verify this claim, let
v, = (E",H", ®") be a Cauchy sequence in Xy 1. We recall that the extended
Maxwell operator M.y is closed on its domain D(Mey), and that the divergence
operator is closed on Hy(div, Q). As a result, the domain D(M.y) is complete
with respect to the graph norm of M. This implies that (v,), converges in
D(M.y) to a vector v = (E,H, ®). In particular, (v,), tends in L?(Q)" to v. By
construction of Xy, we also infer that (v,), is a Cauchy sequence in the space
V = H(div,Q) x Hy(div, Q) x {0}. Since the latter space is complete, embeds
into Xex, and limits are unique, we infer that (v,), converges in V' to v. This
reasoning shows that v is the limit of (vy,), in Xex 1.

In the remainder of this Section, we analyze the extended Maxwell system (3.1)
on the space Xy 1. As a first step, the following Lemma states that functions in
the space Xex 1 are H Lregular. This fact is used for the regularity analysis of the
solutions of the extended Maxwell system.

Lemma 3.4. Let ¢, i, and & satisfy (2.2). The space Xexi1 embeds continuously
into H'(Q)".

Proof. We first deal with the desired relation X1 € HY(Q)7. Let (E,H,®) €
Xext.1- In view of the definition of D(Mey) in (3.4), as well as the embedding of
the spaces Hy(curl, div, Q) and Hp(curl,div, Q) into H*(Q)3, see (2.4) and (2.5),
it remains to verify that divE is an element of L?(Q). This, however, is a direct
consequence of the reasoning in Remark 3.1 and the precondition div(¢E) € L*(Q).
Altogether, the space Xex 1 is a subspace of H'(Q).

We now deal with the asserted embedding property. Note that (2.2) is in the
following applied without further notice. The product rule for the divergence
operator and the Gauss law lead to the formulas

1
divH = —;(V[L) -H, div(eE) = edivE + (Ve) - E.
With Young’s inequality we then conclude the relations
0 = v E 2 — (V) - F2 > Jaiv i — IV e, (316
= || div |7, {15 (Va) - Hze 2 ||divH|[;. — === [[H][}., (3.16)
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3.2. Connection between the original and the damped Maxwell systems

[div(E) [ = [l= div B[ + 2(= div E, (V=) - B)gs + |(Ve) - Bl
1
> lledivElz: — 2 Vel 17 (3.17)
Inequalities (3.16) and (3.17) imply that we can control the L*-norm of divE and

divH by means of the norm of (E,H,®) in Xy 1. With the fact & = 0, we
furthermore infer the relations

2

E
Moyt I; > ||% curl H — 51/zE||2, + ||ﬁcurlE||%2
e Y2 — 31512 el Bl + e leur B2
Z Sl * Tl

Altogether, we can hence estimate the norms of E in Hy(curl, div, @) and of H
in Hy(curl,div, Q) by the norm of (E,H, ®) in X 1. Taking now (2.4) and (2.5)
into account, we infer the desired statement. O

To employ subspace theory for semigroups on Xy 1, we deal with the part of
Moy in Xexi 1, denoted by My 1. Parts of operators on subspaces are introduced
in Section 2.2. The domain D(Mey. 1) then satisfies the equation

D(Mexi1) = D(M?

ext

) N Xext,1~

Indeed, the definition of Xy 1 justifies the inclusion from left to right. For
the reverse inclusion, let (E,H,®) € D(M2,) N Xew1, and set (B, H, &) =
M (E,H, ®). We next combine the identity Xext1 = D(Mext) N Xaiy With the
fact that (E, H, ®) is an element of D(M,y). Consequently, we only need to show
that the vector (E, ﬁ, i)) is an element of Xg;,. For this purpose, we apply the

product rule for the divergence operator. It provides the identity
divE = div($ curl H — GE)
1
= —;(Vs) -curlH — (Vo) -E -6 divE,

so that div E is contained in L2(Q). The function H further satisfies the Gauss law
div(uﬁ) = 0, since ® = 0. The boundary condition pH-v = 0 on dQ is valid, as the
vector (E, H, ®) is contained in D(My). The identity & = ﬁ div(pH) —n® =0
is finally true because (E,H, ®) is an element of Xe 1. Altogether, (E,H, ) is
an element of Xy 1, and (E, H, ®) is contained in D(Mext 1)-

Employing arguments from the proof of Proposition 2.3 in [EiSc18], we next
deduce the wellposedness of (3.5) as an evolution equation on Xey ;. This has two
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3. Construction of a uniformly exponentially stable ADI scheme

crucial consequences for our subsequent analysis, provided that the initial data for
(3.5) is chosen in Xy 1.

The first consequence is the H'-regularity for the solutions to the extended
Maxwell system, see Lemma 3.4. The second one is a direct relationship between
the solutions of the Maxwell systems (2.1) and (3.1), see Remark 3.6.

Proposition 3.5. Let €, 1,0, and n satisfy (2.2) and (3.3). The part Me 1 of
Moyt is the generator of a Cy-semigroup (etMe“»l)tZO on Xext,1- This operator family
is the restriction of (e™Mext),5o to Xexw1, and it obeys the bound

||et]wext’1 H&?(Xexm) < C1staLb,1<1 + t)7 t >0,
with a positive number Cgap 1.

Proof. 1) We restrict the family (e'Met1),54 to the space Xey.1, and demonstrate
that it is a Cp-semigroup on X 1. Note first that the semigroup property is
immediate by construction. It hence suffices to show that (etMext’l)tZO leaves Xex,1
invariant, and that it is strongly continuous on Xexs ;.

Let (Eo, Ho, ®0) € D(Mex1). We consider the extended Maxwell system (3.1),
and denote the solution of the original system (2.1) for initial data (Eg, Hy) by
(E,H). The divergence constraint in (2.1) implies the fact div(uH(t)) = 0 for all
t > 0, whence (E,H,0) is the unique classical solution of the extended system
(3.1). Proposition 3.3 then yields the identity (E(¢), H(t),0) = eMext(Eq, Hy, &)
for t > 0. By Proposition 2.3 of [EiSc18| and Remark 3.1, the mapping div(E(?))
is contained in L*(Q) for t > 0. As a result, (E(t), H(¢),0) is an element of Xy 1,
and the family (e"Mext),5, leaves X,y invariant.

To show the desired strong continuity in Xe. 1, we note that (E(t), H(t),0)
tends to (Eg, Hy, @) as t — 0 in the topology of D(Me), see Proposition 3.3.
The statements of Proposition 2.3 in [EiSc18] moreover establish the convergence
of div(eE(t)) to div(eEg) as t — 0 in L*(Q). Altogether, the vector (E(t), H(t),0)
tends to (Eg, Ho, @) in X1 as t — 0. Combining the above results, we conclude
that the family (e"Me|y_ )50 is a Co-semigroup on Xex 1, which is generated by
Mext 1, see Subsection I1.2.3 of [EnNa00].

2) To control the norm of the operator etMext,1 op Xext,1, We use the statements
of Proposition 2.3 in [EiSc18] together with the contractivity of (e"ext),~o on Xey.
In this way, we derive the estimates

|div (B 2 < div(Eo)] s + Ct (B, Ho, 02
H (E(t), H(t), @0) H%(Mcxt) prmng ”<on HO, @O)HQ + HetMeXtMeXt(E07 HO) ®0)H2
S "(EO,H(])@O)H%(Mext) )

involving a uniform constant C' > 0. This shows the desired linear growth restric-
tion. O
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3.3. Two splitting schemes for the extended Maxwell system

The following remark is crucial for the error analysis of the desired exponentially
stable ADI scheme. It shows that the extended Maxwell system (3.1) reduces to
the original system (2.1) for initial data (Eq, Ho, ®g) in Xext 1.

Remark 3.6. A direct consequence of Proposition 3.5 is the following wellposed-
ness result. Let (Eg,Ho, @) € D(Mext1). System (3.1) has a unique clas-
sical solution (E,H,®) that is an element of the space C([0,00), D(Mex1)) N
C([0,00), Xext.1)- By Lemma 3.4, the vector (E(t), H(t), ®(¢)) is then an element
of HY(Q)" for t > 0. Moreover, the reasoning in part 1) of the proof for Propo-
sition 3.5 demonstrates that the mapping (E,H) is the classical solution of the
Maxwell system (2.1). O

3.3. Two splitting schemes for the extended
Maxwell system

We now construct two splitting schemes for the time integration of the extended
Maxwell system (3.1). Hereby, we follow the procedure in Section 2.2 of [HoJS15]
to deal with the common parts in (2.1) and (3.1). We first split the curl-operator
into the difference

0 —03 O
curl = | O3 0 =0 =% —%,
—0y O 0

employing the two first-order differential operators

0 0 0, 0 03 O
%1 = 83 0 0 and Soﬂz = 0 0 81
0 0, 0 d 0 0

on their maximal domains
D(€) = {uec LX(Q)° | Gue LXQ)°),  je{l2).
For later symmetry considerations, the integration by parts rule
(Gou,v)p2 = —(u, €10) 12 (3.18)

is important. Tt is valid for functions u = (u;)3_; € D(%,) and v = (v;)?_, € D(%6))
with

(tI‘F2U1)(tI‘F203) =0= (tI‘F3U2)(tI'F31}1) = (trp1u3)(trplvg),
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3. Construction of a uniformly exponentially stable ADI scheme

see Section 4.3 of [HoJS15]. The arising trace condition is meaningful, since both
functions u and v have the required partial regularity by definition of D(%)) and
D(%3), see also the considerations in Section 2.2.

The part associated to the original Maxwell system (2.1) with 6 = 0 is then
treated in the sum

0 %Curl 0
—pcurl 0 0| =A+B,
0 0 0
with the two splitting operators
0 %%1 0 0 _%%2 0
A=[.% 0 0 and B:=|—3% 0 0. (3.19)
0 0 0 0 0 0

These are defined on the domains

D(A) = {(E,H, (I)) € Xext | (Cng,%ﬂgE, (I)) € Xext, E1 =0o0n Fg, E; =0 on I's,

E3 =0 on Fl},
D(B) = {(E,H, (I)) € Xext ‘ (%QH,%lE, (I)) € Xext7 El =0 on Fg, E2 =0 on Fla
E3 = (0 on FQ}

By construction of the domains D(A) and D(B), only the boundary condition for
the electric field is incorporated. Moreover, this boundary condition is distributed
onto both domains. The imposed partial regularity hereby ensures that all arising
traces are well-defined, see Section 2.2. Note that the boundary condition for the
magnetic field is treated below.

We furthermore stress that the operators A and B essentially coincide with their
counterparts in [HoJS15]. (In our case, we only add zero entries in the operator
matrix to account for an additional variable in the extended space Xo = L*(Q)".)
Consequently Lemma 4.3 from [HoJS15] yields the following statement, which is
crucial for the unconditional stability of the schemes in the first part of this thesis.

Lemma 3.7. Let € and p satisfy (2.2). The operators A and B are skewadjoint
on Xexi. This implies that the inverse (I — TL)™! is a contraction, and that the
Cayley-Transform

SH(L) =T+ FL)(I — L)t

2

is an isometry on Xeq for all >0 and L € {A, B}.
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3.3. Two splitting schemes for the extended Maxwell system

Let i € {1,2,3}, and let e; € R® be the i-th standard unit vector. So far, we
only take the parts of the extended Maxwell system (3.1) into account that also
arise in the original Maxwell system (2.1). To deal with the ingredients concerning
the new artificial variable ®, the operator

E 0
D; |H| := —@‘G(P)ei (3.20)
P —20i(uH;)

with domain

D(D;) = L*(Q)° x {H € L*(Q)* | &;H, € L*(Q), H; =0 on I';}
x {® e L*Q) | 0;® € L*(Q)}

is introduced. Now, the boundary condition for the magnetic field is incorporated.
Similar to the definition of the domains D(A) and D(B), this boundary condition
is distributed onto the domains of the operators Dy, Dy, and Ds.

With the above splitting operators, the extended Maxwell operator My from
(3.4) is split into the sum

—0 écurl 0 -5 0 0
0 —ﬁ div(p-) —n 0 0 —n

on the intersection
D(A)ND(B)ND(D;) N D(Dy) N D(D3) € D(Mexs)-

To formulate the below time integration schemes, we demonstrate in the next
result that certain resolvent operators of the splitting operators D; are well-defined.
Furthermore, we provide here the basis for our stability analysis in Section 6.1.
The statement is central, and it will frequently be used in our arguments.

Lemma 3.8. Let i € {1,2,3}, and let € and p satisfy (2.2). The operator D;
is skewadjoint on Xexy. This implies that the Cayley-Transform S.(D;) = (I +
D)1 — %Di)_l is well-defined and an isometry on Xe for 7 > 0.

Proof. 1) We only consider the case i = 1. All others are covered by similar
arguments. Since the domain D(D;) contains the space C>°(Q)", the operator D,
is densely defined on Xy.

The operator D is furthermore closed. To verify this claim, let ((E", H", ")),
be a sequence in D(D;) with

(E", H",®") — (E,H,®), and D;(E",H",d") - (E,H,d), n — oo,
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3. Construction of a uniformly exponentially stable ADI scheme

for two vectors (E,H, ) and (ELI:I,@) in Xex. By definition of D; in (3.20),
the relations E = 0 and Hy, = H3z = 0 are valid. With the product rule, we
furthermore infer the convergence statements

1 .
HY - H,, and —0(pHY) —» —®, n — oo.
0

Assumption (2.2) on g now implies that also the sequence (0yHY), converges in
L?*(Q). As the partial derivative 0; is closed in L?(Q) with its domain

Do(h) = {¢ € L*(Q) | o € L*(Q), ¢ =0 on Ty},
we conclude that H; is an element of Dy(d;). This reasoning also shows that
%81 (uH;) = —®. Similar arguments lead to the facts 9,® € L*(Q) and —(91(i<I>) =
H;. This means that D; is closed.
2) We next show that D; is skewsymmetric. Let (E', H', ®') and (E? H?, ®?)
be elements of D(D;). Using the zero boundary condition H; = H: = 0 on I'; in
an integration by parts, we arrive at the identities

E! E’
D |H || B :—/Q(ual(;cbl)H%Jr;al(uH})qﬂ)dx
o) \o

= [ (h20u () + pH{OL (7)) do

E' E’
=—||H"]|,D [H?
P! P2

As a result, Dy is skewsymmetric, and thus also dissipative.

3) To show the skewadjointness relation D = —D;, it is now sufficient to
demonstrate that the adjoint operator D7 is extended by —D;. Let (E,H,®) e
D(D3), and abbreviate (B, H, ) := D:(E,H, ®). Since D} is the adjoint operator
of D1, the formula

H|,|a||=|D|H]|,|H
o) \d o) \d
= - /Q(ual(ifb)ﬂl + L0, (pH,)®) d (3.21)

is true for every vector (E,H, ®) in D(D;). In the following, we want to deduce
that (E, H, ®) is also contained in the domain of D;. Therefore, we first consider
the case E = H = 0. Equation (3.21) then takes the form

—/ 0y (2 ®)H, dx:/ p®d da
Q F Q
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3.3. Two splitting schemes for the extended Maxwell system

for every function ® € L?(Q) with 9,® € L?(Q). (The last condition is equivalent
to the property (0,0, ®) € D(D;).) As a result, the function 0;(xH;) belongs to
L*(Q), and the relations ;71281 (uHy) = & as well as pH; = 0 on I'y are valid.

So, it remains to show that ® fulfills the conditions for the statement (E, H, ) €
D(D;). We hence consider the vector (E,H,®) € D(D;) with & =0, E =0, and
H,; = H; = 0in (3.21). This time, the equation

QY Q

follows for all H; € L*(Q) with 0,H; € L*(Q) and H; = 0 on I'y. We thus

deduce that 81&&)) is contained in L?(Q), and that H; = al(iCD). The regularity
and positivity assumption (2.2) on p finally yields that (E, H, ®) is an element of
D(D,). Altogether, D; is skewadjoint. O

As a consequence of Lemmas 3.7-3.8, the right complex half plane is contained
in the resolvent sets of the splitting operators A, B, Dy, Do, and D3. This enables
us to introduce operators that cause an artificial damping effect in our time inte-
gration scheme. The damping effect is called artificial, because it is not present in
the continuous problem (3.1).

We incorporate the damping in our time integration scheme by means of an
operator from Section 2.3 of [ErZu09]. For 7 > 0 and L € {A, B, Dy, Dy, D3},
consider the operator I — TZBL2(I - §L2)_1. The arising inverse operator is well-
defined, since the squared operator L? is negative selfadjoint by Lemmas 3.7-3.8.
Taking also the identity [ — 77 L2(I — T L?)~" = (I — T4 [2)(] — 2 [?)~" into
account, the same results further imply that the inverse

3 2 -1 2 2.3 -1
V(L) = (1 . TZLQ (1~ TZLQ) 1) — ([ - T4L2> (1 T ZT L2> (3.22)

is a bounded mapping on Xy.
2
The notation V;(L) here stems from the interpretation of the mapping Z-L*(I —

7 [2)~! as a viscosity operator in Section 2.3 of [ErZu09]. (The setting in [ErZu09)]
is different from the current one. There, the operator L is additionally assumed
to have a compact resolvent. This makes it possible to work with an orthonormal
basis of eigenfunctions.) Note that the operator V(L) is obtained by applying
the implicit Euler scheme with step size 7 > 0 to the evolution equation w’' =
LA — T L) Mw, posed on X, We deduce in Section 5.1, see formula (5.3),
that V(L) is indeed a damping operator, meaning that its application reduces
energy.

The above preparations allow to formulate the following two schemes for the
approximation of the extended Maxwell system (3.1). Let n € Ny, and let 7 > 0
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3. Construction of a uniformly exponentially stable ADI scheme

denote the fixed time step size. Focus first on the case without damping, where
g = n = 0 and the energy of system (3.1) is conserved. It is then natural to
approximate the solution of (3.1) by a scheme that also conserves energy. Starting
with initial data (E, H?, ®%), the solution (E(t), H(t), ®(¢)) of (3.1) at time t =
(n + 1)7 is approximated by

Et E!
H*' | = S.(Ds)S-(D2)S-(D1)S-(B)S,(A) | HE |- (3.23)
(I)?—H (I)ZL

Recall that S;(L) denotes the Cayley-Transform for L € {A, B, Dy, Dy, D3}. We
use here the subscript ¢ to stress that the conservative undamped problem is con-
sidered. This method is inspired by an energy conserving ADI scheme in [ChLL10].
Scheme (3.23) is in this thesis only employed to derive that the below scheme (3.24)
provides uniformly exponentially stable iterates. Applying Lemmas 3.7-3.8 to each
Cayley-Transform in (3.23), we immediately conclude that the scheme conserves
energy. In particular, the scheme is unconditionally stable on X = L*(Q)".
Consider now the extended Maxwell system (3.1) with damping. In other
words, ¢ and n are assumed to satisfy the strict positivity and regularity assump-
tions (2.2) and (3.3). We denote the initial data by (E° H° ®°). The solution
(E(t),H(t), ®(t)) of (3.1) at time ¢ = (n 4 1)7 is approximated via the method

En+1 efT& 0 0 3
= 0 1 o H(ST(Di)VT(Di)>
q)n-i-l 0 O e_T77 =1
En
SAB)VAB)S,(AV,(4) (B (3.29)
@TL

The product sign means here that the arising operators are concatenated such that
their indices decrease from left to right. During the error analysis in Chapter 6, we
assume that the initial data are chosen exactly. This means that the start values
of (3.24) and (3.1) coincide. Note, however, that this restriction on the starting
values is not necessary for our first main Theorem 3.10.

The spectral properties of the splitting operators imply that also the scheme
(3.24) is unconditionally stable.

Proposition 3.9. Let €,u,6, and n satisfy (2.2) and (3.3). Then the scheme
(3.24) is unconditionally stable on Xq = L*(Q)".

Proof. Let L € {A, B, Dy, Dy, D3}, 7 > 0, and n € N. By Lemmas 3.7-3.8, the
operator S,.(L) is contractive on Xey. We next deal with the damping operator
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3.3. Two splitting schemes for the extended Maxwell system

V-(L), and use that L is skewadpmt see Lemmas 3.7-3.8. Let y € Xqy, and set
r:=V(Ly= (- 74 LA(I — 74 L?)~1)~ly. A computation reveals the relations

2

,7_3 ,7_2 B
e = (1= G- )

ol - D (2 - Do)+ T e - T
T 17 )T e 1

T T 1 T Al 2 ’
= —(L({+ <L) "2, L({ + =L —LI——L
ol + 5 (L + S0 e, L+ 20y ) + 1| 120 = L)

> [l|* = [IVZ(L)yll*.

This means that also V, (L) is contractive.
As the functions ¢ and n are positive, the operator matrix

e 0 0
0 I 0
0 0 e ™

has norm one. The above statements now imply that the scheme (3.24) is stable,
independent of the step size 7 > 0. n

We next present the main result of the first part of this thesis. It states that
the time-discrete approximations from (3.24) are uniformly exponentially stable.
The statement uses the number

Vel + 21Vl (1 + Sl
B 242

(0% ules + IV LI |12 = 0. (3.25)

+Cs 63

Here, C's > 0 is the Sobolev constant of the embedding H'(Q) — L%(Q), the

symbol 9y denotes the Hessian of p, and § > 0 is the number from (2.2) and
(3.3).

Theorem 3.10. Let ¢, 1,5, and n satisfy (2.2) and (3.3). Let further ¢ € (0,1) be
fized, and let (E", H",®") be the iterates of (3.24) for initial data (E°, H’, ®°) €
L*(Q)". There are numbers K and w > 0 with
EO 2
Ke™| | H , n €N,
(I)O

for all step sizes 7 € (0, - mln{f 3. The numbers K and w depend only on
€,1,0,1,C, and Q.
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3. Construction of a uniformly exponentially stable ADI scheme

Theorem 3.10 is proved in Chapter 5. The main ingredient of the demonstration
is an observability inequality for the conserving scheme (3.23). The observability
estimate is derived in Chapter 4. Concerning the statement of Theorem 3.10, two
remarks are in order.

Remark 3.11. 1) Let the starting value (E°, H°, ®°) be contained in KNext1-
The error result in Theorem 6.5 yields that the iterates (E", H", ™) of scheme
(3.24) approximate the solution (E,H,0) of the extended Maxwell system (3.1)
with initial data (Eq, Ho, ®) = (E°, H?, ®°). Additionally, Remark 3.6 implies
that the first two components (E,H) solve the original Maxwell system (2.1).
Theorem 3.10 moreover yields in this situation that the energy of the iterates
(E",H") decays in a uniform exponential way. As a result, Theorem 3.10 repre-
sents the time-discrete counterpart to the exponential stability result for (2.1), see
[NiPi05, Phun00, Elle19).

2) The upper restriction on the time step size in Theorem 3.10 is due to technical
difficulties. The first condition 7 < ;/—E arises when we consider the splitting scheme
in a subspace Y of H'(Q)", see Section 3.4. The second upper bound on 7 is used
to control boundary terms in a discrete analogue of integration by parts. This
technique is applied in Chapter 4 during the proof of the observability estimate
for the energy conserving scheme (3.23). O

3.4. Regularity theory for the splitting operators

One of the main steps in the demonstration of Theorem 3.10 is an observability
estimate for the energy conserving scheme (3.23). The corresponding proof requires
H'-regularity of the iterates of scheme (3.23). To that end, we analyze the splitting
operators A, B, Dy, Dy, and D3 in a subspace of H!'-regular functions. The latter
functionspace is used as a state space for (3.23).

Following [EiSc18], the space

Y ={(EH® cH(Q) |Exv=0, H-v =0 on 0Q} (3.26)

is introduced, together with the weighted inner product

E]f: E}E:
H|, |H =|[H]|, | &
) ) ) 1)

Y
3
£ [ (OB) - OB+ u(OH) - (0,H) + 4(0,2)(0,)) d.
j=1
The latter bilinear form induces the norm ||-||,, on Y. The space Y incorporates

the perfectly conducting boundary conditions from systems (2.1) and (3.1). It is
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3.4. Regularity theory for the splitting operators

important that X1 is a subspace of Y because Proposition 3.5 then provides
solutions of the extended Maxwell system (3.1), which remain in Y. To use Y
also as a state space for the numerical schemes (3.23) and (3.24), it is moreover
essential that Y is contained in the domains of all splitting operators, see (3.19)
and (3.20).

In order to show that the numerical schemes (3.23) and (3.24) indeed provide
iterates in Y, we study the parts of the splitting operators in Y. The latter are
denoted by Ay, By, and D,y for i € {1,2,3}. For the definition of the part of an
operator, see Section 2.2. Combining (3.19) and (3.20), the identities

D(Ay) = {(E,H,®) €Y | 6\H, %E € H'(Q)?, (©1H) x v =0,
(62E) - v =0 o0n 0Q},
D(By) = {(E,H,®) €Y | $,H,6.E € H'(Q)?, (6:H) x v =0,
(6\E) - v =0 o0n 0Q},
D(D;y) = {(E,H,®) €Y | OH; € H(Q), 0, € H'(Q),
0;®=0onT;}

(3.27)

immediately follow. Note that we can neglect € and p in the above representations,
as the parameters satisfy the regularity and positivity assumptions (2.2).

Recall that the operators A and B are obtained by adding zeros into the operator
matrix of the respective mappings in [EiSc18]. A similar statement is true for the
space Y and the domains D(Ay) and D(By). Consequently, Proposition 3.6 from
[EiSc18] provides the following useful result. The statement uses the number xy
from (3.25).

Lemma 3.12. Let € and p satisfy (2.2), and let L € {£A,£B}. The following
statements are valid for the part Ly of L in'Y .

a) The interval (ky, 00) is contained in the resolvent set of Ly, and the restricted
resolvent operator (I — 7L)7Yy coincides with (I — 7Ly)~'. Furthermore, the
inequality

1
BY) 1—7’/€y’

|1 =rLy)™!

7€ (0,1/Ry),

is valid.
b) The operator Ly is the generator of a strongly continuous semigroup on'Y .
c¢) There is a constant Ty € (0, ﬁ), depending only on Ky, with

HST(LY)H%(y) < e3HYT, T € (0, 7'0].

Here, S;(Ly) = (I + 5Ly)(I — ZLy)™" denotes the Cayley-Transform of Ly-.
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3. Construction of a uniformly exponentially stable ADI scheme

As the schemes (3.23) and (3.24) also involve the splitting operators Dy, Dy, and
D3, it is important for our purposes to have an analogous result for the remaining
three operators. To that end, we transfer in the next three lemmas the proofs of
Lemmas 3.3-3.5 in [EiSc18] to our operators D;.

Lemma 3.13. Let € and p satisfy (2.2), and let i € {1,2,3}. The operator D,y
is closed and densely defined in'Y .

Proof. Because D,y is the part of the closed operator D; on Y, it is closed. To
show that the domain D(D; y) is a dense subset of Y, it remains to approximate
a fixed vector (E,H, ®) € Y by a sequence in D(D;y ). We first look for functions
H! in HY(Q) with ;H! € H'(Q) and H = 0 on T, that converge to H; in
H'(Q). The existence of such functions follows from the reasoning in part 2 of the
proof for Lemma 3.3 in [EiSc18]. Adapting part 3 of the same proof, we receive
mappings ®" in H'(Q) with 9,0 € HY(Q), 9;9" = 0 on I[';, and ®* — @ in
H'(Q). In view of formula (3.27), we finally choose H} := H; and E" := E for
n € Nand j € {1,2,3} \ {i}. Taking (2.2) into account, (E", H", ®"), is the
desired approximating sequence in D(D;y ). H

The assumption (2.2) for u is also crucial for our reasoning in the next lemma.
The precondition (2.2) here enables us to bound terms involving second derivatives
of i, so that we can derive dissipativity of a perturbation of D;y. Recall for the
statement the number ky from (3.25).

Lemma 3.14. Let ¢ and p satisfy (2.2), and let i € {1,2,3}. The operator
+£D;y — kyl is dissipative in Y .

Proof. We only consider the operator D;y (the mapping —D;y can be treated
similarly). Let (E,H,®) € D(D;y). We first derive an auxiliary equation. Com-
bining the boundary condition H; = 0 on I'; with Lemma 2.1 in [EiSc18], the fact
O;H; = 0 on I'; for j # i follows. Taking now additionally the boundary condition
0;® = 0 on I'; in an integration by parts into account, we obtain the identities

=0 (3.28)

for j € {1,2,3}. Recall now that D; is skewadjoint on Xy, see Lemma 3.8. This
gives rise to the formula

E E 3
DB B = =37 [ (1u(0,00)0 i+ u(0 1x0,0H,)0,)
0] d J=1
Y
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3.4. Regularity theory for the splitting operators
3
= Z / ((0,0:9)0,H; + (9,0,H,)9;®) dx (3.29)

+Z/ “(9,8)0H, + % (9;H,)0,®) du

- Z/Q (1(9;0,2) 20, H; + (9,
j=1

Identity (3.28) implies that the first integral on the right hand side of (3.29) is
zero. Assumption (2.2) on p moreover enables us to bound the second integral and
the last expression in the third integral by the norm of (E,H,®) in Y. We next
focus on the two remaining terms in the third integral. Here, Sobolev’s embedding
HY Q) — L5(Q), and Holder’s inequality are useful. They lead to the relations

s(;z

L

3

2 1/2
+ F VA ) Nl L2 VAV s ]

2

E
2 1/2
+ 2Vl ) el | (B
2/l
Here, C's > 0 denotes the constant from the applied Sobolev embedding. Recall
now that 9%y denotes the Hessian of . Due to the structural similarity, the

integral expression 37_; [, u(aj%)Hﬁﬂ) dz can be handled with the same tools.
In view of the choice of Ky in (3.25), we have derived the desired relation

2

E E E
D;|H|,|H <ky||H
d )/ /1,
This means that the difference D;y — ky I is dissipative on Y. O

Lemma 3.15. Let € and u satisfy (2.2), and let i € {1,2,3}. The range of the
operator (1 4+ ky)I + D,y is dense in Y.

Proof. 1) Due to symmetry, it suffices to focus on the operator (1+xy)I—D; y. By
Lemma 3.13, it is furthermore enough to demonstrate that the domain D(D; y)
is contained in the range of the latter mapping. In the following, we use the
representation (3.27) for D(Dyy). Let (E,H,®) € D(Dyy). We first assume
that there is a function (E,H,®) € D(D;y) with (1 + sy)I — D1y )(E,H,®) =
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3. Construction of a uniformly exponentially stable ADI scheme

(E, H, CTD) It is convenient to write the last relation in detail as the system

(1+ ky)E =E,
(14+ky)H; =H,;  for j € {2,3},
(1+ ky)Hy + al(iq)) =H,, (3.30)

1 .
(1 + /iy)q) + E(?l(le) = q),

see (3.20). The remainder of the proof is concerned with the analysis of (3.30).
We derive the existence of a solution, and study its regularity.
To obtain a better formulation, we formally plug the fourth line into the third,
obtaining the formula
1 1 1

- 1 — _
(1+/<y)281</*301’uH1) 1—|—/<JYH1 (1—|—Iiy)281(

) =:hy,  (3.31)

_ 1
1 7

being equivalent to the relation

1 1 .

“H, - ——0° H =hy. 3.32
1 ! (14 ky)2 b ! ! ( )
Here, the vector H; := #H;, and the operator 8iu =0 ﬁal are employed. The
latter is considered on the domain

D(0;,) == {u e L*Q) | du,dfu € L*(Q), u=0onI'i}. (3.33)

In view of the definition of hy in (3.31), the precondition (E,H, ®) e D(D;y),
and the regularity assumption (2.2) on p, the function h; is an element of H'(Q).
The domain

D(0,) = {u € L*(Q) | du € L*(Q), u=0on I}

will also be employed.
2) Starting from (3.32), we next determine the solution (E, H, ®) of (3.30). We
therefore associate the left hand side of (3.32) with the operator
1 1 9 9
Llw = ﬁw — m&l’#w, w € ’D(al#) =: D(L1> (334)
Following the proof of Lemma 4.3 in [HoJS15], the Lax-Milgram Lemma provides
a unique function w € D(L;) with Lyw = hy. Define then
| 1 1

o 1 «
E= E, H, = —H, = —w, H,=—H: for j € {2, 3},
1+ Ky ! 1 ! pr J 1+ Ky j ot {2.3}
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3.4. Regularity theory for the splitting operators

P = (@ — 01 (uHy)). (3.35)

In parts 3)— 6) we demonstrate that the vector (E, H, ®) indeed belongs to D(Dy y ).
This means that 9;H; and 9;® have to be elements of H'(Q), and that 9, has
to be zero on I'y. The validity of the third line in (3.30) is finally concluded in
part 7). The main idea is to differentiate the formula Liw = h; with respect to
the x5 and x3 variable, to deduce regularity statements for w. This will then lead
to the desired results for H; and ®.

3) Let k € {2,3}, and let p € H3(Q) = CgO(Q)”'HHQ. For the following reasoning,
we note the next facts. The function 97w belongs to L*(Q) by assumption (2.2).
As aresult, 97 0w = Op0F w — 01(Dy5)01w is an element of H~'(Q). Because
w is contained in D(L), the distribution 9;9,w is also an element of H~'(Q). The
relation Liw = h; and an integration by parts then lead to the equations

(30w — e O WO, @) 2z = —/ (w0 (1) + iz (O1w) 04 (5 D1p) ) d
= — | (e + iy @%MWW+WW%4WHH(&W@(3MD
= —/ h 8k90 + 1+ (81w)(81g0)8k 7 + ww@k )dilj'

:/Q (Okh1)e — ( )wSOdIJr 1+n (81((31@%)31?0)7@)D(al)*xp(al)-

To conclude the same identity in the dual space D(0;)* of D(0;), we use that
the space HZ(Q) is dense in D(d;). (Indeed, the space HZ(Q) contains the space
of test functions C2°(Q), and the domain D(0,) is the closure of the same space
of test functions with respect to the graph norm of the derivative 0;.) By density,
we arrive at the formula

1 1

1
W T T )

(1 + /"iy>2
=: x(h1) (3.36)

aiuakw = akhl — (Bki)w + a1(akl%3)alzu

in D(@l)*

4) To show that the distribution 9;9,w belongs to L*(Q), we approximate w by
regularized functions in part 5).! To apply mollifier arguments with respect to the
2o and x3 variables, we extend the arising functions in the following to the set

v

Q= [alval]XRz

!The following arguments close a gap in the proof of Lemma 3.5 in [EiSc18].
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3. Construction of a uniformly exponentially stable ADI scheme

The mappings hy and p are extended to functions hy; € HY(Q) and i € Wh>(Q)
by means of Stein’s extension operator. Also the operator L from (3.34) is trans-
ferred to functions on () by

1
(14 Ky)?
geD(Ly) ={ueLl*Q )|81u0u€L2(Q), uw="0on {af} x R?}.

= 1 1
Lyg = ﬁg - 31738197

The Lax-Milgram Lemma now provides a unique map w € D(L,), satisfying the
relation L;w = hy on the extended domain (). As the restriction of @ to Q also
belongs to the domain D(L;) and fulfills the formula Liw|g = hy, we conclude
that w|g and w coincide. The mapping @ is an extension of w that is used to

construct regularized approximations to w. To obtain an analogue of (3.36) on Q,
we define the weak derivatives 0; and 0, on the domains

D(d) = {u e L}Q) | dyu € L*(Q), u=0on {ai} x R?},
D(Oy) :={ue L*Q) | due L(Q)},  ke{23}.
Similar calculations as in part 3) now give rise to the formula

1 - 1 1 ~ 7 _ l 7 #
O (1+ HY)QalﬂSalakw = O (akﬂ)w i (1+ ry)?

— x(7) (3.37)

O (O )0

in D(0y)*.

5) We next construct regularized functions that approximate w. This is done
by mollifying @ with respect to the zj-variable. Let pf : R — [0,1] be the
smooth standard mollifier with support in [—% f] that acts on x;. We denote
the corresponding convolution operator by M for n € N. It is given by MFf :=
pk s f for f e L2(Q). To extend MF* to the dual space D(8;)*, we also employ
the convolution operator with respect to pf(—-), which is called M* . Fubini’s
Theorem then implies the relation

(Myy f,9)payy xp@y = (Fr M0y pa, e xpidn f.0 € D(0y),

between MF and M* . As M* is the convolution operator for the kernel p¥(—-)
with respect to the zj-variable, the inclusion M* (D(d;)) € D(d;) is furthermore
valid. This reasoning implies that the operator M* can be extended in a continuous
way to the space D(d;)* via the definition

(M)F, <P> *xD(dy) = (f, M*, 0)p s D(1)*xD(d1)> f€D()", ¢ € D).
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3.4. Regularity theory for the splitting operators

The extension obeys the bound | M} fllps,) < Il fllpa,- for f € D(0,)*, compare
the proof of Lemma 4.1 in [Spit18]. Standard mollifier theory further establishes
the convergence statement

‘(Mkf f @) D@0y xp(6y)

for ¢ € D(dy). In other words, M*f converges weakly* in D(0,)* to f for f €
D(0h)*.

Define now @, := M*@ for n € N. Employing that MF¥ is the convolution
operator with respect to the mollifier p* for the z-variable, the mappings w,, and
O, are contained in D(fq). Mollifier theory further shows that w, tends to w
in L2(Q) as n — oo.

6) We will next show that (dy0,), has a weak limit in D(d;), that coincides
with dyw. This will establish that 9;0,w belongs to L*(Q). We first calculate

‘<f M*, o — 90>D(81) xp@y| =0, n— 00, (3.38)

81 8kM 8111}

Fooon 1o ke
L0, w,, = ﬁﬁanw 1%

_ (%akM% - Mk(fakw)) + M (Logd — 301 501050
+ ey O (M (L 0k0nD) — L0 M (1) )
= €1n + €2.n + €3,n- (339)

The summands e, ,, and e3,, converge to zero in D(él)* asn — oo by Theorem C.14
in [BeSe07]. In consideration of (3.37) and (3.38), the second summand e, ,, tends
weakly® in D(d1)* to x(hy). Altogether, L0, converges weakly* to x(hy) in
D(01)*. )

To deduce a convergence statement for Oy, from the one for Li0yw,, we ex-
trapolate Li. To that end, we use that the operator Ly is selfadjoint and positive
definite on L2(Q). To see this claim, we consider the bilinear form

- 1
DO R, (wr,w) = (i w)sg) + ez (O, D)

(1—|—/€y

This mapping is closed, symmetric, positive definite and densely defined on LQ(Q)Q,
so that the claim follows from Theorem VI.2.7 in [Kato95]. Theorem VI.2.23 in
[Kato95] also provides the relation D(d;) = D(E/ %).

We then denote the fractional extrapolation space of L2(Q) with respect to Ly
by L*(Q), for ¢ € Q\ {0}, see Section 2.2. On L*(Q), the operator L; extends

to the extrapolation operator (Ll) : L*(Q)) — L*(Q)_;. The bounded inverse of
the operator (L;)_; is called (L;)~1. The relations

D()* = D(LY?)* = LX(Q)-1 )2,
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3. Construction of a uniformly exponentially stable ADI scheme

see Theorem 1.4.12 in [Aman95], then imply that (L)1 : D(d,)* — D(d,) is
bounded.

Recall now that the functions L0, tend weakly* to X(ﬁl) in D(él)*. As
(L)~} is bounded, the mappings O, = (L)~} L1940, converge weakly in D(0;)
to (L1)~ix(h1) =: v. Together with the embedding of D(d;) into D(d)*, this
implies weak convergence of Oy, in D(ék)* By definition of w,,, however, (Oxwy, ),
also has the weak limit djw in D(J))*. By uniqueness, Oy coincides with v and
belongs to D(;). In other words, & is an element of H'(Q).

Recalling the choice H; = iw = (iu?)|Q, both functions H; and 0,H; are

contained in H'(Q), and the boundary condition H; = 0 is valid on T';.

7) Note that & is H'-regular, as (E, H, ®) belongs to D(Dyy). The results of
step 6) consequently show that the mapping ® = 5 ;RY (<i> — ﬁ@l (uH;)) belongs
to H'(Q). We next derive the validity of line 3 in system (3.30). Dividing the
defining formula for ® in (3.35) by p and differentiating with respect to x;, we

conclude the relation

B 1
_1+/€y

on(+

m

D) (On( ‘i)) - al(ﬁﬁl(MHl)))-

1
m

Due to the choice of Hy, identity (3.31) is true. We thus arrive at the desired
equation

O1(10) = Hy — (1+ ky)H, € HY(Q).

As the right hand side vanishes on I';, also the boundary condition 81(%@[)) =0is
satisfied on I'y. Altogether, the vector (E, H, ®) is an element of D(D; y), and it
satisfies the formula ((1+ ky)I — Dyy)(E, H,®) = (E, H, d). O

By means of Lemmas 3.13-3.15, we can now deduce the desired analogue of
Lemma 3.12 for the operator D;y. This statement is used to deduce regularity
results for the iterates of the schemes (3.23) and (3.24). It is moreover important
for the demonstration of the stability of (3.24) in Y, see Section 6.1. Recall for
the statement the number ky from (3.25).

Corollary 3.16. Let € and p satisfy (2.2), and let i € {1,2,3}. The following
items are true.

a) The operator I £ 7D,y : D(D;y) — Y has a bounded inverse. The latter is
equal to the restriction of (I +7D;)™! to Y, and it satisfies the estimate

1
1—71kry

(I £7D;y) oy <

for € (0,L).

7HY
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3.4. Regularity theory for the splitting operators

b) The Cayley-Transform S-(D;y) = (I + 5D,y )(I — %Di7y)_1 fulfills the in-
equality
HST(Di,Y)H,%(Y) < T
for T € (0,79). Here, 19 is a constant in (0, i)
Proof. Combining Lemmas 3.13-3.15 with the reasoning in the proof for Proposi-
tion 3.6 in [EiScl8], the asserted statements are obtained. O

To simplify our arguments, we throughout choose the same constant 7, for
Lemma 3.12 and Corollary 3.16 (this is possible by taking the minimum of the
numbers in both statements).

Recall now that we want to deduce that the iterates of (3.24) remain in Y for
a starting value in Y. As Y is a subspace of H'(Q)", this especially provides
H'-regularity for the numerical approximations. To that end, we next analyze the
damping operators from (3.22).

Lemma 3.17. Let € and p satisfy (2.2), let T € (0, min{1, ;/—E}) for the number ky
in (3.25), and let L € {A, B, D1, Dy, D3}. The operator V(L) leaves Y invariant.

Proof. 1t suffices to consider the case L = A, since the other splitting operators
can be treated similarly. Combining the identities

Vo A) = (T = 541 = A3 = (1 - A (] — 242 42)7

= (T4 5+ A (15— A (3.40)
on Xex, with Lemma 3.12; the inclusion V,(A)(Y) C Y directly follows. O

The above reasoning now leads to the desired regularity statements for the
iterates of the schemes (3.23) and (3.24).

Corollary 3.18. Let ¢ and u satisfy (2.2), and let 7 € (0, min{1, H‘/—f}) be the step
size of (3.23) and (3.24). The following statements are valid.

a) Let the initial data (E°, H°, ®°) for (3.23) belong to Y. Then all iterates
(E., H., @), n € N, are elements of Y.

b) Let additionally & and n satisfy (2.2) and (3.3), and let the starting value
(E°, H°, ®°) for (3.24) be contained inY . For everyn € N, the iterate (E", H", ®")
then belongs to Y .

Proof. The statements of Lemma 3.12 and Corollary 3.16 imply a). For b), we note

that the operator matrix (e_ow 70 ) leaves Y invariant. (This is a consequence
0 0e™ 7"

of (2.2) and (3.3).) Using also Lemmas 3.12 and 3.17 as well as Corollary 3.16, we

derive b). O
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3. Construction of a uniformly exponentially stable ADI scheme

Recall that the implicit parts of other ADI schemes for Maxwell equations re-
quire only the solution of one-dimensional elliptic problems, see [Nami00, ZhCZ00,
HoJS15, EiSc18, EiJS19, HoK619]. We next show a similar statement for the
scheme (3.24).

Remark 3.19. Let ¢, u,6, and 7 satisfy (2.2) and (3.3). We here deduce that
the implicit parts of scheme (3.24) can be formulated in a way, in which only one-
dimensional elliptic problems have to be solved. Transferring identity (3.40) to all
splitting operators, we infer the representation

E"t! e 0 0\ 3
e = | o 10 |I[((+ 50020+ YEED) (T - Yy
I+ 5B)X(I + YT B) TN (I — Y BT (I 4+ FA)X(] + Y A) !
G En
(I =YL HY |, neN,
@TL

of scheme (3.24). The main effort in the evaluation of (3.24) results from the
implicit steps. Since it is well known that the application of the resolvents of A
and B corresponds to the solution of essentially one-dimensional elliptic problems,
see [Nami00, ZhCZ00, HoJS15, EiSc18], we only deal with the operator (I+AD;)~!
for A € (—i, i) The resolvent operators for Dy and Ds are covered by the same
arguments.

Similar to [EiSc18], we choose the initial data (E°, H°,®°) in Y to apply the
above regularity statements. Indeed, Lemmas 3.12 and 3.17, and Corollaries 3.16
and 3.18 yield the following fact. Every iterate (E", H", ™) of (3.24) is an element
of Y, and it suffices to analyze the case where the resolvent operator (I + AD;)™!
is applied to a vector (E,H,®) € Y. Let (E,H,®) := (I + AD;)"'(E,H,®) ¢
D(D,y). By definition of Dy, this relation is equivalent to the system

E=E,
H,=H; forjec {23},
H, — \0,(1®) = H, (3.41)
17

)
-\ -

In other words, the application of the resolvent operator (I + AD;)~! amounts
to the task to solve the above system (3.41) of partial differential equations. To
insert the last identity in (3.41) into the third, we recall that (E, H, ®) is contained

52



3.4. Regularity theory for the splitting operators

in D(D;y), see (3.27). In this way, the formula
1:11 — )\281($81(MI:11)) = H1 + )\al(ifb)

follows. As a result, a one-dimensional elliptic problem has to be solved for the
application of (I + AD;)~!. All other computations to solve (3.41) can then be
done explicit. O

The reasoning in Remark 3.19 also shows that the implicit steps in scheme (3.23)
only require the solution of one-dimensional elliptic problems.
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4. A uniform observability inequality

In this chapter, we derive an internal observability estimate for the energy con-
serving scheme (3.23), see Theorem 4.2. The observability estimate is the central
tool in the proof of the desired exponential stability result in Theorem 3.10.

To reach this goal, we transfer ideas in [NiPi05] from the continuous setting to
the time-discrete one. This is done with a discrete version of the multiplier method,
proposed in [Komo94] for boundary controllability of the continuous Maxwell equa-
tions.

We start by introducing a substep formalism for (3.23), and we derive useful
difference equations. The latter formulas correspond to perturbed discrete ver-
sions of the extended Maxwell system (3.1) with 6 = n = 0. The proof of the
observability estimate is distributed onto Sections 4.2—4.4.

4.1. Difference equations for the conserving scheme

Recall the assumptions (2.2) for € and u. Let n € Ny, ¢ € {1,2,3}, and fix a time
step size T € (0, min{3, g}) for the energy conserving scheme (3.23). The number
Ky is given in (3.25). Throughout this chapter, we assume that the initial data
(E2, H?, ®%) for (3.23) belong to the space Y from (3.26). This assumption allows
to apply our findings from Section 3.4.

We first introduce a substep formalism for (3.23) by

E" E; E? E}!

HYY | = (1 54) 7 | HY ) HY? | o= (T4 34) | HEY

o o7 o s

En,3 En,2 En,4 En,3

H? | :=(I-7B)""|HY|; H* | =(I+3B)[H?|; (41

o3 o2 P o3
342 Ere2+2i EroAt2i Fr3+2i
HZL,3+2’£ — ([ . %Di)fl HZL,2+2’L’ : HZL,4+2’£ — ([ + gD’J H?,3+27L

n,3+2i n,2+2i n,4+2i n,3+2i
o7 o o 03

We note that the last substep (E™'°, H™'? ®™:1%) coincides with the next iterate
(ErH1 HIH @7*1). The substeps are useful for regularity considerations and rela-
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4.1. Difference equations for the conserving scheme

tions between the iterates (E”, H”, ®") and (E*' H"™ &7*1). The next remark
lists important regularity statements for the above substeps of (3.23).

Remark 4.1. Recall that Lemma 3.12 and Corollaries 3.16 and 3.18 imply that
all intermediate steps and the next iterate of (3.23) belong to Y. The substeps
with odd superscript are even elements of the respective domains D(Ay ), D(By),
or D(D;y) from (3.27) for i € {1, 2,3}, respectively. O

The facts in the above remark are useful for integration by parts arguments
in the proof of the observability inequality for (3.23), see Sections 4.2-4.3. The
regularity statements also justify the following derivation of difference equations
for (3.23).

In the following, the symbol HZf”LQi stands for the [-th component of the vector
H™32 while e; denotes the [-th standard unit vector. For the next identities,
we apply (I — ZA) to the left equation in the first line of (4.1). Taking also the
formula on the right hand side of the first line of (4.1) into account, we derive the
identities

By + By By AG

H™ + HY | = (I +5A) [HM |+ (- 3A4) [HM | =2 (HM |,

2+ 7 ap! ap! ap!

E}* - E} E; E; L HY

HY2 —H | = (T4 5A) | HPY | = (1= 54) [ HY | =7 | JGE | (42)

o2 — Pl Pl 0

Employing similar arguments for two remaining lines in (4.1), we moreover infer
the relations

3
B 4 B2 E B} - B LGH)
1 ,3
Y P | =2 |HPP |, | HM -2 | = o [ LGE | (43)
(I)n,4 + (I)n,Q (I)n,?) (I)n,4 _ (I)n,Q 0
c c c ¢ ¢
n,442i n,2+21 n,3+2i
EC4 2'+EC2 21 EC 21
H?’ +2i + HZL, 2| — 9 H?,3+ i 7 (4.4)
(DZL,4+2@ + (I)g,2+2z (I)g,3+21
E?’4+21 _ E?,2+21 0
) . 1 §n,3+2i
H-2 {2 | = &(;Cbg e | . (4.5)
. . 3424
(I)qcm,4+21 _ (1)2,24-22 ﬁal(IUHZ; + z)

Formulas (4.1)-(4.5) and E"™' = E™* then give rise to the difference equations

H(EST - EY) = 2B - EYY) + H(BN - EY) = —16HD + (G H
= L GHY + 6 CEY + LOH? — 16 GEY,  (4.6)
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4. A uniform observability inequality

LHT - HY) = J(HY - HPY) o+ HP - HP?) 4 L(H? - HY)

1&n,5
oy 3 1
= — | 02,207 | = LAE}® + LGE (4.7)
8;;%@??9
alicbf}’f’
= — | 02,207 | - LEED? + LG LGH]
agiq)?’g
+ L GE — T G H) (4.8)

For the arithmetic mean of two succeeding iterates of (3.23), we infer with (4.1)—
(4.5) and E!'*! = E* the representations

%(EZ'H + E?) _ %(E?A + EZL’Z) - %(E?’Z _ E?) — E?Q _ é%H?ﬁ _ iCKleJ,
VEPT 4 HY) = (DT - ) 4 L(H 4+ ) — L(HD? - H))
O, P
=5 |8, 007 | + HL? — ZGE — ZGED. (4.9)
L
" Cc

We next interpret the formulas in (4.9) as representations for E»* and H™?. In
other words, we consider the identity

E!? = JEM +EP) + é%H?’?’ + 21€§€1HZ’1

for E™?, and proceed similarly for H™?. These representations are then inserted

into (4.6) and (4.8). In view of the splitting relation curl = %} — %», we obtain the
fundamental difference equations

81i<1>2’5
LEM —E!) = 5 curll(H} + HY) + - curl | 955,07
83#1)?’9
— LG LGEN + L LGE, (4.10)
HHI -HY) = 5 cwll(BYT + EY) + 5 Gl GH - J6IOH )
8%@’375
— | Bay@rT | (4.11)
8;;%@279

Relations (4.10) and (4.11) can be interpreted as perturbed time-discrete versions
of the differential equations for E and H in (3.1) without damping. In this respect,
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4.1. Difference equations for the conserving scheme

the last term on the right hand side of (4.11) is the discrete substitute of the
gradient of iq) in (3.1). To have a gradient also in the discrete setting, we study

the last term in (4.11). The last components of (4.4) and (4.5) provide the auxiliary
relations

2(1)71,5 (I)n6+q)n4 2(I)n6+ 51NHc1>
2(1)”7 (I)n8+q)n6_2q)n6 ‘1'82MH027
207 = P 4 1 = 201 — LoyuHLy = 2010 — 2.L0uHLy — HOspHLY

We can hence conclude the representation

31i<13?’5 O 331MH
aziq)?j = V(i@?’ﬁ) + % —82 382,MH . (412)
83iq>?’9 —205 382,UH — 03 353MH

This means that the vector on the left hand side is indeed the gradient of a function,
up to a higher order error term. Formula (4.12) is important to derive separate
difference equations for the curl- and the divergence-free parts of the magnetic
field approximations.

We finally deduce a difference equation for ®7. To that end, we first note that
(4.5) implies the identities

HZ—IH Hcla Hc2 _Hc27 HC3 —HZ’;
From (4.2)—(4.5) we then obtain the supplementary relations

2Hcl = Hnl + Hcl = HZJfl +H7, + H Hglg) + (H?f - H,)

—~

= HZYl + Hc,l — ;(%1]3?’3)1 + i(cggE? 1)1,
2Hy = HIE' + HY, — Z(GEN)y + Z(GE),,
2H;3 = Hif' + H; — T(GE!)s + L(GE!)s. (4.13)

Moreover, formula (4.5) leads to the equation
H@pH - oY) =~ Loy(uHY) — %@(MHZ&?) - ;1233(MHZ’3?)~
Plugging (4.13) into this formula, we hence conclude the difference equation
@ =) = — 5 div(u(HT + HY)) + 55 div G E — o7 div GED.

This identity represents a perturbed discrete version of the differential equation
for @ in (3.1). It is further equivalent to the crucial divergence identity

b div(u(HI 4 HY)) = = H@0 - 87) + o7, div G E]?
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4. A uniform observability inequality

— 5z div GED (4.14)

We next state the uniform interior observability inequality for (3.23) in terms
of the substeps from (4.1). To that end, we recall the corresponding observability
inequality from the continuous case, see Section 1.2. Let 7" > 0. There is a
constant C' > 0 with

2 2 T 2
(e [Bof® + p|Ho|*) da < C IE.|* dz dt
Q 0 Q

for all initial data (1) € L*(Q)° with divEy = divHy = 0 and Hy- v = 0 on
09, see Lemma 3.1 in [NiPi05]. The field (EC) denotes here the solution of the
undamped Maxwell equations (2.1) on a C?-domain 2 C R3. Tt is important that
the constants C' and T' do not depend on the given data.

Since we do not expect the same estimate to hold uniformly in the time discrete
setting due to spurious highly oscillating modes, see [InZu99, ZhZZ709, Zuaz05|, we
add artificial terms on the right hand side of our discrete observability inequality
(4.15) below. A similar procedure is also done in [Nica08] for the Maxwell equations
on a cube. Here the boundary observability estimate from the continuous case is
stabilized, so that it also holds uniformly in the spatial discrete setting.

The next statement also uses the constant ky from (3.25), as well as the space
Y from (3.26).

Theorem 4.2. Let € and p satisfy (2.2), and let 7 € (0, mm{n ,31) be a fized

number. Denote the iterates of scheme (3.23) for initial data (EO, H 3% cY
and step size T € (0,7] by (EX, H*, ®*). The observability estimate

N

/Q(sUE*“I2 + p|H)? + | @°P) dz < COTZ/Q(IE’ZI2 + | PF%) da (4.15)

k=1

N1 Ekg 2 Ekl 2
+C,m > | ||B H“ + |4 H*gl

k=0 0 0

No1 3 Hkg 2 ?

. 3421
z:: Z: ‘ (I)lg,3+2i

is valid with a uniform constant C, = C,(e, u, 7,Q) > 0. We also employ here the
number N := max{m € N | mr < 97}.

We proceed in three steps for the proof of Theorem 4.2. In Sections 4.2 and 4.3,
we derive estimates for the divergence-free and the curl-free parts of the magnetic
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4.1. Difference equations for the conserving scheme

field approximations. Finally, we put the foregoing steps in Section 4.4 together.
Here we use that the scheme (3.23) is energy-conserving to conclude Theorem 4.2.

For the below arguments, it is crucial to have appropriate Helmholtz decompo-
sitions for the electric and magnetic fields. According to the decomposition (2.6),
the latter can be represented by the formula

pHE = curl ¥ + vk, k €N, (4.16)

with ¢* € H'(Q), and J* € H'(Q)? satisfying divJ* =0, J* x v = 0 on 0Q, and
curl J¥ € Hy(div,Q). This decomposition of the magnetic field approximations
allows to employ Green’s rule of integration by parts with a vanishing boundary
term for the curl part.

However, we also want to integrate by parts without boundary integral for the
gradient part of the electric field. In other words, the first decomposition provides
special boundary conditions for the curl part, whereas the desired second decom-
position for the electric field should impose boundary conditions on the gradient
part. In the next lemma, we establish the latter decomposition. The proof is
inspired by the reasoning for Lemma 3.1 in [NiPi05].

Lemma 4.3. Let ¢ satisfy (2.2), and let k € N. There is a unique function
Yk € Hy(curl, div, Q) with divy* € HHQ), curl y* € Hy(curl, div, Q) C HY(Q)3,

and
eEff = curl curl 9% — V div .

Proof. First, we consider the bilinear form
a(p, ) = / (curly) - (curly) + (div ) (dive)) dx, ¢, € Hy(curl, div, Q).
Q

It is bounded and coercive on Hy(curl, div, @), due to estimate (2.5). The Lax-
Milgram Lemma then yields a unique function ¢* € Hy(curl,div, Q) that solves
the equation

a(w*,9) = [ By da
Q
for all ¢ € Hy(curl,div, Q). (The right hand side of this identity defines a bounded
linear form on Hy/(curl, div, @).)

Theorem 1.1 in [CoDN99] then implies that the function div* belongs to
H}(Q). Integrating by parts, we derive the identity

/Q (curl9*) - (curl ¥) da = /Q (¢EF + V divyt) - ¢ da.
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4. A uniform observability inequality

Taking ¢ € H}(Q)? in the last formula, we obtain that the function curl¢* is
contained in H (curl, Q), and that the asserted formula is true. Since curl ¢¥*-v = 0
on 9Q by Remark 2.5 in Section I of [GiRa86], the vector curly* belongs to
Hrp(curl, div, Q) C H(Q)3. O

Remark 4.4. The above decomposition of the electric field is again orthogonal in
the L?-sense. Indeed, we employ integration by parts to deduce the identities

(curl curl ¥, V div 9)¥) 12 (g)s = —(div curl curl %, div %) 12(g) = 0

for all £ € N. Note that we do not have to consider any boundary integrals, since
div* has zero trace. O

4.2. An estimate for the divergence-free part of the
magnetic field approximations

Let € and p satisfy (2.2), and let 7 € (0, mln{ 1) be fixed with sy from (3.25).
We fix for the remaining a smooth function a: [O 97] — [0, 1], that is supported
in [27,277], and that is equal to 1 on [37,67]. Note that o and in particular its

derivative are independent of the discretization parameter 7 > 0. Let us also recall
the number N = max{m € N | m7 < 97} from the statement of Theorem 4.2.
The assumptions on « then imply the identities

a(0) = a((N = 1)7) = a(N7) =0 (4.17)

for all 7 € (0, 7].

This section is devoted to the following inequality for the divergence-free part
of the magnetic field approximation. It will be complemented by a corresponding
estimate for the curl-free part in the next section. In the statement arises the
projection pey1, that is associated to the Helmholtz decomposition (2.6). Recall
that it maps each function in L? onto its divergence-free part. We also use the
related vector J* from (4.16), as well as the space Y from (3.26).

Lemma 4.5. Let € and p satisfy (2.2), 7 € (0,7], and let (E°, H,®°) € Y be the
initial data for scheme (3.23). There is a constant C. = C.(g, u, 7,Q) > 0 with

N
Z kT /H-k pcurl :qu)
k=0

1 N1 k2
< T ];||cur1ﬁ||L2+ k; (EAER
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4.2. An estimate for the divergence-free part of the magnetic field approximations

N1 Elcc’l 2 Elz’g 2 . 0 2
+ 00,7_2 Z ( A le,l +\|B HICC,S + Z DZ H']Cc,3+2i ) )
0

—1 k,3+2i
0 i o

For the sake of a clear presentation, we divide the proof of Lemma 4.5 into two
pieces. The first one is given by the next supplementary lemma.

Lemma 4.6. Let ¢ and p satisfy (2.2), 7 € (0,7], and let (E°, H°,®°) € Y be
the initial data for scheme (3.23). Let also v > 0 be a fized number. There is a
number C7 > 0 with

N-1
S [ 2B Ha(kn)F* — a((k - D)) da
k=19
N-1 c 2
= (T!IcurlJ’“HQLQ + (1% el + Co)ll Exll7
k=1

+ S (IGH |5 + |6 H )

3
+ Ot SO [ + 1|92 )
i=1

Note that C depends only on e, 1, 7, and Q.

Proof. A simple algebraic manipulation leads to the formula
N-1
3 /Q eBF - L(a(kr) T —a((k — 1)7)3*1) da
k=1

_ kz_ /QEE'; L(alkr) — a((k — 1)7))T* da

N-1
+ 3 / eEF - L(JF = I Y)a((k — 1)) de. (4.18)
k=179
(i) We start with the first sum on the right hand side of (4.18), and incorporate
here the number v > 0. Recall that J* belongs to Hy (curl, div, Q) with div JE =0,
see (4.16). As a result, inequality (2.5) is used to bound J*. Employing also
Young’s inequality, we infer the estimates

Nz:l/QgEls ‘ alkt) —a((k — 1)7’)Jk da
k=1

N-1

2 2
< S (IR + & 12 el IEE 2
k=1

T

-1

N
2
< Y (G flewr 3B + £ oI Nl B Z:). (4.19)

2y
k=1
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4. A uniform observability inequality

(ii) We next focus on the second sum on the right hand side of (4.18). Here we
combine the difference equation (4.11) with the Helmholtz decomposition of pHF
in (4.16). In this way, the formula

%curl(Jk - J’f—l) + %V(qk . qkq)
all(pk—l,B
woc
= —gewl(B + BT — p | 0, @071 | - SQIGHTY + S 16 H,
83lq)k:—1,9
j7 C

follows. To this identity we apply the orthogonal projection peu1, see Remark 2.2.
This results in the equation

allq)kflé
173 C
Leurl(J* = I = =L cwrl(EY + EY) — peanpe | 02, @67
agl@k—l,g
I (&
- %pcurl(cglicngléil’l - %2%%21‘1];71’3). (420)

Theorem 2.1 allows us to choose vectors ¢! and @5~ in Hy(curl, div, Q) sat-
isfying

curl ()blfil = pcuﬂ(%lécnglz_l’l — ng%(ggH?_l’?’),
1 §k—
(91;(1)0 1,5

curl G571 = peunipe | Oay, LT | (4.21)
631@’67179
7 C

Inserting the formulas from (4.21) into (4.20) and using Theorem 2.9 in Section I
of [GiRa86], there is a function n*~! € H(Q) with

TIP3 = (BB - 5T =gy -Vt (4.22)

Solving this equation for the vector Vn*~!, we conclude that Vn*~! belongs to
HY(Q)3 with VnF~1 x v =0 on 9Q. As a result, Vn*~! is orthogonal to the space
curl(H (curl, Q)).

We next insert the decomposition e’—:E’CC = curl curl Y* — V div ¢* from Lemma 4.3
into the last sum on the right hand side of (4.18). This leads to the identity

- ko1(gk _ k-1
k—1 E--(J"=J""")d
3 al(k—1)7) [, <BE- )da
N—1
= a((k— 1)7‘)[/ curlcurl¢” - L(J* — J* 1) da
k=1
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4.2. An estimate for the divergence-free part of the magnetic field approximations

—/ Vdivet - L(IE - 35 de .
Q

The last integral vanishes, as div* belongs to H}(Q) and divy* = 0. Equation
(4.22) then implies the formula

Sl Bt
_ Z_: a((k — 1)r)</cg(curlcurlwk) .

k=1

(Ef + EF 1) dz

N =

+ 3 / (curl curl %) - pF~t dw
Q
+ / (curl curl %) - gE dx). (4.23)
Q

The three expressions on the right hand side of (4.23) are treated separately in
the next three steps.

(ii.a) We consider the first summand on the right hand side of (4.23), using that
the decomposition of eEF from Lemma 4.3 is orthogonal. Young’s inequality and
the bound 0 < a < 1 yield

N-1

S a((k - 1)7) /Q (curl curl ¥) - L(BF + BF 1) da (4.24)
= N-—1 1
< kZ:jZ 5 Jeurteurt®| | (||EF] , + [EE)|,.)
N—-1 1 N—-1 9
< 3 5 el [ (] o [ a) < el 32 ]

(ii.b) The second expression on the right hand side of (4.23) is next integrated
by parts. Using the boundary condition ¢§~' x v = 0 on 0Q and identity (4.21),
we calculate

N-1

2y a((k—1)7) /Cg(curl curl %) - pF1da (4.25)
k=1

N-1
=I> of(k—1)7) /Q(curlwk) - (curl 1) da

k=1

N-1
— 23 o((k—1)7) /Q curl ¥ - (GLEH — GLGH) de

k=1

—1
-3 Z a((k—1)7) /Q curl wk -pv(‘ﬁlécﬁlH'jfl’l - %Q%CKQHIE*I’?’) dz.

k=1
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4. A uniform observability inequality

The last term on the right hand side of (4.25) is zero. This can be shown by
combining an integration by parts with the boundary condition ¥* x v = 0 on 9Q),
see Lemma 4.3. For the first summand on the right hand side of (4.25), we employ
the integration by parts rule (3.18) for %) and %,. To that end, we recall that
the vectors (14 HL M, i%QEiC_LI,O) and (16HE?, i‘éElj_l’g‘,O) belong to Y
by Remark 4.1. As a result,

%‘51Hl§*1’1 XV = %%QHIS*LB x v =0 on 0Q.

We then arrive at the identities

N-1
5 alk— 1)7')/ (curl curl %) - gF=' dx
k=1
N-1
=z a((k=1)7) / (curly)®) - (651%5511{]5_1’1— %%%H’;_L?’) dz
k=1
N-1
=5 X allk = 17) | ((pewl ) - LGHE - (G enl o) - LGHE) do.
k=1

By Lemma 4.3, the vector curl* is H'-regular on @, and it satisfies the estimate
(2.4). With Remark 4.4, we consequently obtain the estimate

al(k—1)T) /Q<CM1 curl %) - pF1da

< 5% Z chrlwk‘

o (IGHE |+ | H ) 2)

_
Il
—_

2 72 - T2 -4
< 37 (255 llell B + FIEHE 5. + FIGH Y 5.).  (4.26)
=2

Eod

(ii.c) The third term on the right hand side of (4.23) is treated similarly, now

using the boundary condition g5~ x v = 0 on 9Q, (4.21), and (4.12). In this way,
we arrive at the relations

kz_la((/{: —1)7) /Q(curl curl P*) - ph~t da
= 2 al(k—1)1) /Cz(curl¢k) - (curl @51 da
= k_l a((k —1)7) ( /Q(Ctlrl V) - (v, @e ) do (4.27)
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4.2. An estimate for the divergence-free part of the magnetic field approximations

D1 Oy pHg
5 feurlut) - RSN < (ol de
—283 82,qu L7 83 83/LHk 1.9

alﬁcb’g L5
—/curlw.pw Oy L 8h1T | |
Q 83;@k—1,9
w C

The last integral on the right hand side of (4.27) vanishes after integrating by
parts, since ¥ x v = 0 on 9Q.

To estimate the remaining two expressions on the right hand side of (4.27), we
recall the boundary condition curl ¥ -v = 0 on 0Q, see Lemma 4.3, as well as the

relations a(0) = 0 and ®+~16 = k-1 al,qu Y5 from (4.17) and (4.2)-(4.5).
An integration by parts and (2.4) now yleld the inequalities

N-1

> a((k—1)7) / (curl curl %) - g5~ dw
k=1 Q
N-1
S Z a((k —1)7) ( ‘/ (curl ") - i(vlu)(blg—l,ﬁ dx‘
k=2 Q
OtpHe
+3 /(Cur1¢k) LQ —3§qu 1,7 du
@ —23382qu 1,7 82 Hk 1,9
(81H)G1NH’£I
—1—377 /Q(CUrlwk) . (%u)anqu 1,7 de )

(7“)(92MHk a (aj’f)awﬂigl’g

MZ

Vil llells V,u - 72|Vt oo _
k=2
T aluH’;’l?;
I ACTCR b —OyyHLS" da

—282MHk 1,7 83 H/Ci‘319

+9chrlwk”%2+ 2|| /J““oo ZHa Hk 13+21HL2)

N-1
A Vil oo —1,342i
< (Crlt + VA gtz s G S o ), )
k=2 =1

65



4. A uniform observability inequality

employing the two positive numbers

ST 2 (IValls Vi3
CT.—CTH5H< 5 +ﬁ+8 5 +9>,

LIVl
o6

= [IVu Hoo( —% )L

(iii) Summing up, (4.23)-(4.26) and (4.28) bound the second expression on the
right hand side of (4.18) by the inequality

N-1

S al(k - 1)7) /QgE’g (IR = I Y da

k=1

N-1
<> (CT”Ek”LQ + S (IGHE |5 + [GHE )

Ot S opHE G + T3, (29

=1

with Cr = |||, + 2% lell”, + Cp. Combining (4.18), (4.19) and (4.29), the
asserted estimate

N-1
> / eEF - L(a(kr)I*F — a((k — 1)r)T*) da
k=1 7@
N—1 , ~
< (C}Mllcurlellia + (55212 llellZ, + Cr) 12
k=1
%ﬁ(II%Hk Y7e + [ 6 HE Y T2)
SO+ T ) (430)
i=1
follows. [

By means of Lemma 4.6, we can now derive Lemma 4.5.

Proof of Lemma 4.5. (i) Using the boundary condition J¥ x v = 0 on 0Q and
(4.17) in an integration by parts, we obtain the identities

N
Za(lm’)/ H . curl J* da
k=0 Q

N—1
=Y a(kT)(/ Teurl(H! + HIMY) - JF da — / Leurl(HI — HE) - J* dx).
Q Q

k=0
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4.2. An estimate for the divergence-free part of the magnetic field approximations

Now we plug in (4.10)—(4.11), and use the integration by parts rule (3.18) for
%, and €. The latter is applicable due to the boundary condition J* x v = 0 on
0Q. With this reasoning the formula

N
Za(/m’)/ H . curl J* dz
k=0 Q

a (I)k5

N-1 N—
=3 afkr) /Q S(EM B Jhde - Z /chrl agﬂcb’” L T*da
k=0 k=0 05 Lpk9
'LL C
- k k k
+ % ]g:o Oz(k’T) /Q(%Q;%QECJ — Cgli(glEc’g) JVdx
N—
- a(kT) / Leurl(HI — HE) - J*da
k=0 Q
N-1 aliq)lf’g)
_ a(kr)</ S(ES BN It e — 3 [ | 0| cwl M da
k=0 Q

@ 83l<1>’j’9
o
- / Teurl(HI — HE) - JF da

~5 [ HGEL - (64 - HEEE) - (63" da )

follows. Summation by parts and the choice of «a yield

N
> a(kr) /Q H . curl J* dz (4.31)
k=0
N-—1
--y / cEf - L(a(kn)T* — a((k — 1)) I ) da
= /e
N-1
N akr) | Lewrl(HF —HY) . JFda
2 c c
k=0 Q
N1 a Mq)k5
-z a(/w)/ 0y <I>k7 -curl J¥ dz
N-1
—5 > alkr) /Q ﬁ(%E?l) (63— LGES) - (63" da
k=0

The first sum on the right hand side is already estimated in Lemma 4.6. The
remaining three are studied in the next two steps.
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4. A uniform observability inequality

(ii)) We now deal with the second summand on the right hand side of (4.31).
Also here, we incorporate the number v > 0, that is used in Lemma 4.6. Recall
the difference equation (4.7)

81l<I>k’5
W C
LHET —H)) = — | 0,007 | = LGQEY + LGEN. (4.32)
0;:}@’“9 : g
" C
Employing the boundary condition J* x v = 0 on JQ in an integration by parts,
as well as formula (4.32), the relations

N-1

> (k:T)/ Tewrl(HIM' - HE) - JF de
k=1 Q
N-1
=21 o / (HF — HY) - curl J* dz
k=1
N-1 31?1)%5
T 7 Lo wkl _ 1cp k3 k
=32 ];O‘ /Q{_ 22%229 +;<52EC —;(51Ec ]-curlJ dz
N-1 . |
<&MwﬂJHm+¢M§]W Lof,
k=1

+ Za(IGE | + IGER)) (1.3

are derived.
(iii) To bound the two remaining terms on the right hand side of (4.31), we

apply (2.5) for J*. (Here we employ that J* is contained in Hy(curl,div, Q).) We
consequently arrive at the inequality

N1 8 ;q)kE)
21> alkr) 32 OET | curl J¥ dz
k—1 Q a (I)k9
P N-—1
+ 2|3 alkn) /Q LGEN) - (613%) - LGE) - (63%) da
k=1

N—-1
SZCMZW¢”WW+W+%WMﬁ%
k=1

+ S (IGE 3 + IGERES)). (1.3

The desired estimate is now a consequence of (4.31), Lemma 4.6, (4.33)—(4.34),
and the choice v < (16(2Cr + 4)]| ]| o0) . O
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4.3. An inequality concerning the gradient part of the magnetic field approximations

4.3. An inequality concerning the gradient part of
the magnetic field approximations

In this Section we establish a bound for the artificial gradient parts of the magnetic
field approximations from (3.23). In the related papers [Phun00, NiPi05, Elle19],
these components are not present as the magnetic field is divergence-free in the
continuous setting. In our case, we exploit the presence of the new variable ® in
the extended Maxwell system (3.1).

As a preparation, we first prove a slight modification of a result in [Gris85],
which is of auxiliary character for our purposes. The lemma is used here for a
representation of the gradient part of the magnetic field approximations. Note
that the statement is well-known to experts in the field.

Lemma 4.7. Let ¢ € L*(Q) with Joqdx = 0. The constrained boundary value
problem

Aw =gq in Q,
a—w =0 on 0Q)
o ) (4.35)
/ wdx =0,
Q

has a unique solution w € H*(Q) with ||w| 2 < Cq llqll;2. Here, Cq > 0 is a
constant depending only on Q).

Proof. The mean of a map v € H'(Q) over Q is denoted by [v]. We use the Hilbert
space V := {w € H(Q) | [w] = 0}, equipped with the standard H'-norm. The
Lax-Milgram Lemma provides us with a unique function w € V satisfying

/Q(Vw) (Vo)de = —/qu dx

for all v € V. (By the generalized Poincaré inequality, the left hand side of this
identity defines a coercive bilinear form on V'.) Since ¢ has by assumption vanishing
mean over (), we can compute

/Q(Vw) (Vo) de = /é(Vw) V(v —[o])de = —/Qq(v —[o])de = _/Q qvda

for every v € H'(Q). As a result, w is the unique solution of (4.35). Theo-
rem 3.2.1.3 in [Gris85] then shows that w belongs to H%(Q).

We next prove the asserted estimate. Hereby we use arguments from the proofs
for Theorems 3.1.2.1 and 3.2.1.3 in [Gris85]. Let m € N. Let @Q,, C R? be a convex
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4. A uniform observability inequality

set with a C?-boundary 9Q,,. The set Q,, is supposed to contain @, and to satisfy
dist(0Q, 0Q) < % Such approximating sets exist, see Lemma 2.3.2 in [Hoer94]
for instance.
The function v := w also solves the boundary value problem
. v
—Av+v=—qg+w=:f inQ, a—:O on 0Q).
v
This problem is again uniquely solvable due to Theorem 3.2.1.3 in [Gris85]. Let
further f denote the trivial extension of f to R3. We consider for m € N the
problem
OV,

— AU+ U = f i Q. 6—:0 on 0Q,,
v

possessing a unique solution v,, € H*(Q,,) with
[l 2@y < VI Fllz2(@m) = VOI fllz2@), (4.36)

see Theorem 3.1.2.3 in [Gris85]. The proof of Theorem 3.2.1.3 in [Gris85] moreover
yields a subsequence (we denote it by (v, ). again) satisfying v,,|g — v = w weakly
in H%(Q) as m — oo. With (4.36), we now derive the estimates

\/6||f||L2(Q) 2 %HgiofévambHH?(Q) 2 ||w||H2(Q) : (4.37)

Using the properties of w in an integration by parts, we also obtain the relations
/Q|wa2 dz = —/Q(Aw)wd:c - —/qu dz < llallye 1wl 2 - (4.38)

The asserted estimate is now a consequence of (4.37), (4.38) and the generalized
Poincaré inequality. O]

We now estimate the curl-free part of the magnetic field approximations from
(3.23). As introduced in Remark 2.2, we denote by py the projection to the curl-
free part in the Helmholtz-decomposition from Theorem 2.1. The statement also
uses the fixed maximal time step size 7 € (O,min{;/—f,% ) for (3.23) (the number
Ky is defined in (3.25)). Important is also the cut-oft function « from Section 4.2.
The initial data (E?, H?, ®°) are chosen within the space Y from (3.26).

Lemma 4.8. Let ¢ and p satisfy (2.2), and let the initial data (E°, H, ®°) for
(3.23) belong to Y. The estimate

N

S akr) /Q HE - po(pH) dz

k=0
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4.3. An inequality concerning the gradient part of the magnetic field approximations

N-1

5 N—
<1 Z lpw (HD)|[72 + Oy Y- (961122 + || EElI7:)
k=1 k=1
N1 EICC’I 2 E]CC’3 2 ) O | 2
+CvT2 A H-lcc,l + B H—lcc,?; +Z Dz H'lcc,3+21
0 0 i=1 q)10<:73+2z‘

is valid for all 7 € (0, 7] with a uniform constant Cy = Cy(e, u, 7,Q) > 0.

Proof. (i) Relation (4.17) for o will again be employed several times without fur-
ther notice. We apply the Helmholtz decomposition from Theorem 2.1 to have the
representation

HF = curl ¥ + A7l (4.39)

of the magnetic field approximations for ¥ € N. Without loss of generality, §* €
H'(Q) is chosen to have vanishing mean [, ¢* dz = 0. Lemma 4.7 then provides
us with a function w* € H*(Q), satisfying

Awk = §* in Q,

ow*
2, = on 0Q, (4.40)
/ wkdz = 0.
Q

Recall from Theorem 2.1, that the vector i belongs to H'(Q)? with div 7 = 0,
curl I € Hy(div, @) and 3 xv=0o0n 0Q).

(ii) The orthogonality of the Helmholtz decomposition from Theorem 2.1 first
implies the identities

B po (L) do = [ po(HE) - po(uHE) dz = | ppo(HE) - HE do.

We then use the boundary condition H* - v = 0 on 9Q in an integration by
parts. In this way we calculate
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4. A uniform observability inequality
+0z(N7')/ pHY -V do
Q

N-1
=—->Y (a(lm’)/ %div(,u(chC +HMY)) G da
k=0 Q
+ a(kr) /Q &(HM - HE) . v dx).
The important divergence identity (4.14) and the difference equation (4.7) further

yield the representation

N

> a(k) /QH'z - pe(uHY) dz

N-1
=S <a(k‘7‘) / L2 (@R — M)gh da — Za(kr) / div(GER — GERY G do
k=0 Q Q

alld)kf’
e )
+ Za(kr) / p| 02, @07 | - VG dw + Fa(kT) / (CLEF? — 6,ERY) - viF dx).
Q a3lq)k,9 Q

poe

To integrate the second term on the right hand side by parts, we note that the vec-
tors (L6 HY, i‘@Elj’l, 0) and (16HE?, i(ﬁlE’j’?’, 0) belong to Y, see Remark 4.1.
In particular, the boundary conditions GEM! - v = G1E® . v = 0 on 0Q are valid.
This reasoning consequently leads to the equation

N

> a(kr) [ HE- po(uHE) do
k=0 Q@
N-1 31lq)lcc,5
2 -~ ;1L k.7 ~k
=S (a(lw)/ (@8 — 8¢ do+ Salk) [ | 90| Vgt do
k=0 Q Q agiq)lcg,g
+ ra(kr) /Q (GE — GEM) . Vi d:c). (4.41)

In the next two steps, we deal with the terms on the right hand side of (4.41).
(iii) For the first term on the right hand side of (4.41), summation by parts and
(4.17) give rise to the formula

Salkn) [ (84— #h)q" do
_ —NZ_I /QuQ(I),;[Oz(kT) —a((k— 1)7)qk+ a(k — 1)T)cj’“—Tq~’“_1 dz. (4.42)
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4.3. An inequality concerning the gradient part of the magnetic field approximations

(iii.a) As in the proof of Lemma 4.5, we fix a number v > 0 that we determine
later. To bound the first term on the right hand side of (4.42), we combine Young’s
inequality with the generalized Poincaré inequality for §* with a Poincaré constant
Cp > 0 (the function ¢* is assumed to have zero mean). In this way, we derive the
estimates

[ eapelin) —olm1m)
k=1"@ T
S P g 2 S ) == DR |
<7 / g de+ L / o[ dz
_2:1 Q'u’q‘ 27];162 7‘2 ‘
N-1
< 3 (3O ILI T + A I ). (1.43)
k=1

(iii.b) We next deal with the second summand on the right hand side of (4.42).
First, we need a convenient representation of the difference quotient in the last
expression. To that end, we recall the crucial difference equation (4.11)

J(H -HY) = —5, curtl(EY +EY) + S0 GH — S 6 1 HY
81l<I>Z’5
y2
— 82i¢>277
831@?’9
1

We then apply the orthogonal projection py from Remark 2.2 to this identity. By
(4.39), the relation pyHY = V@ is valid. Inserting also (4.12), we obtain the
formula

8%@’575
V(@ = ") = —pv | 02,907 | —py(z; curl(EFT + EY))
Dy L@k '
+ %pvi(%ﬁ%@}l??’ - Cglé(lelg’l)
0150 pHE
H G
= —V(i¢’§’6) — 3bv —%ﬁ@me’g (4.44)

—203 55 0opHe'y — O35 s He3
— pv (g, cwtl(ET + EY) + Fpv (5 (61 6GH — G laH)).

We next use Lemma 4.7 to obtain a unique function n* € H?(Q) satisfying

(4.35) with right hand side q := p?®* — ﬁ Jo 1?®% dx. To reformulate the second

summand on the right hand side of (4.42), we use (4.40) and the function n*. In
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this way, we arrive at the equations

N-1 ~k _ k-1

al(k—1)r) [ et =T gy
Salth=1y7) [ ekt
N-1
= al(k — 1)7’)/ IRkl (Awk Awk_1> dz
k=1
N-1
— S (k- 1)7)/62 (,ﬂcp’g _ @/Q;ﬁcp’; dy> L(Auwk - Awt) de
k=1
N—-1 ~k ~k—1
=3 a((k -1 Ay =L g 4.45
3 allk =) [ () (4.45)

We next integrate the right hand side of (4.45) by parts, and we hereby use the
boundary condition aaiyk = 0 on 0Q. Inserting furthermore the formula (4.44), the

equations
N-1 qk _ q*kfl
> a((k - 1)7’)/ proP 2 dg
k=1 Q
=~ Y al(k—1)7) [ V- HVE —VE ) da

= 3 (altk =) [ () (V5RE) do

O 5O pH
+Za((k — 1)7) /Q (Vi) - —32 N0 E Losll do
283 (%qu L7 83 383[LHk 1.9

+a((k—1)7) /Q(Vnk) . ﬂ curl(EF + Ef 1) da
— Za((k —1)7) /Q;(vnk) (GleHTY - gl HTY d:zc) (4.46)

follow. All terms on the right hand side are next integrated by parts. For the
first three integrals, we hereby employ the boundary conditions aaiyk = 0 and
E’ x v = 0 on 0Q. Formula (3.18) for the operators %, and %, is applied to
the fourth integral. (The function (1€ HP') x v vanishes on 9Q, as the vec-
tor (16 HY', 1%2Ek’1,0) = A(EF H5' @81 belongs to Y, see Remark 4.1.
Similarly, the relation (Z L&H?) x v = 0 on 0Q is valid.) Using the identity

Pr16 = @h-1 7 81 (qu %) from (4.5), we eventually arrive at the inequality

N—-1 q‘k _ q~k—1
> a((k - 1)7‘)/ preF it dg
k=1 Q T
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N-1
<3 2 IEEIE + > Cull@ellze + lIn*l52) (4.47)
k k=1
N—1

+ ¥ (G ZH(MH’“ P + F(1GHE s + [GHE ) ),

N

where C), = C,(11) > 0 is a constant. For (4.47) we also apply the inequality

Il < Ca [ < 20|l ek

2k _ @/ L dy

see Lemma 4.7. Taking then also (4.42) and (4.43) into account, the estimate

N-1 ,
k=0 Q
N—1 - k
PR > ) || @F
<y (;cpuuuoouw I+ (1o + Cll0b 1) + 3 5 NBEIE:
— k=1
N—1

+Y (G rzznauHWnp + R (IGH s + [GH L)) (1.4

is obtained. Here, éu = C’u(p, Q) is a positive number. We have thus estimated
the first term on the right hand side of (4.41).

(iv) We now deal with the two remaining expressions in (4.41). To that end,
we also incorporate the positive number v > 0 from part (iii.a). Applying then
Young’s inequality as well as the relation a(0) = 0, see (4.17), the inequality

a 1@]@5
N-—1 /J
S Tatn)( [ n| oot | Voo [ (@B - gEE) vt ar)
o 2 Q@ s q)kQ Q

= k(|2 |l < k,342i
< X (l9a I + g ool
k=1
7_2
+ (GBS + 6B ) (4.49)

is derived. We choose now v < §(16(“2||u[|% +5)) !, and combine identity (4.41)
with our estimates (4.48) and (4.49). In this way, we conclude the asserted in-
equality

+ e

N
> alkr) [ HE-pe(uHE) do
k=0 Q@

N-1 9 Nl 2
< 1% > HPV(HIS) 2 +Cv Z(Hq)ls L2
k=1 k=1
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4. A uniform observability inequality

+ | ems iz

)

N-1 9
+Cv7'2 ];) H(ngl;,l 2

N-1

+ CV7'2 Z HcglEk 3 HCKQ:E]~C ! )
k=0
R k,3+2i|2 k,3+2i
) ? +21
+ CvT Z( : 12 #(I)C L2>
k=1 i=1
with a constant C'y > 0 that is independent of the step size 7. m

4.4. Demonstration of the uniform observability
inequality

The results from Lemmas 4.5 and 4.8 at hand, we can now conclude the desired
uniform interior observability estimate in Theorem 4.2. The important property of
scheme (3.23) is the conservation of energy. This will be exploited in the following
proof.

Proof of Theorem 4.2. We first take the sum of the estimates from Lemmas 4.5
and 4.8. The positivity assumption g > § in (2.2) then implies the relation

N
Zoz(lm’)/ p|HE? da
k=0 Q
IS k R k
< U [ an s k0o X OB + 19k
k=1 k=1

N Ek’l Ek’,3 3 0
+77y ( A{HM | + (B |HE || +> | D [HYH )) (4.50)
0 0 i=1 (I)lcf,:%—i-Zi

We now employ that « is equal to 1 on [37, 67|, see the choice of « in Section 4.2.

Taking also into account that the scheme (3.23) is energy conserving, we deduce
the relations

N
S [ (WHEP + <[BEE + pl k) da
k=1"7¢
a
<4 3 [ (uEEP +2|BEP 4 k) da

5] ™
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4.4. Demonstration of the uniform observability inequality

N
Z( (k7) /M|H“dx+/ 5]Ek]2+u]<bk\2dx) (4.51)

Inserting (4.50) into (4.51) and subtracting the term 137! fQu|H'§|2dx, we
obtain the result

N
3 /Q (u[HE P+ [BE2 4 | @8 [2) do
=1

N N
<8(Ce + Cy + llelloo) DoIEENT:+ 8(Cet-Cr+lull) DoNI0E 72 (4.52)
k=1 -
N-1 E&! 2 EM? 2 s 0 2
8(Ce+Cy)m Y | |A|HE || +|B|HM ||| +>||D; [ B '
k=0 0 0 i=1 Ph3+2i

Since scheme (3.23) is energy conserving, the identity
2 2 2 1 & k|2 k|2 k|2
J (P B @) dr = 57 [ I+ c[BEP + @) da
k=1

is valid. By definition of N in the statement of Theorem 4.2, we have N7 > 87, and
we deduce from last equation and (4.52) the desired interior observability estimate
(4.15). O
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5. Exponential stability of the
damped scheme

In this chapter, we prove the uniform exponential stability of the damped scheme
(3.24), see Theorem 3.10. We hereby proceed in three steps. First, an energy
identity is derived for the iterates of the scheme (3.24). This equation describes
the decay of the energy between two subsequent iterates of (3.24). To apply our
findings from Chapter 4 also for scheme (3.24), we afterwards compare appropri-
ate substeps of the methods (3.23) and (3.24) in Section 5.2. Finally, the desired
exponential stability result is concluded in Section 5.3. We here combine the
observability inequality for the undamped scheme (3.23) with the results in Sec-
tions 5.1 and 5.2. Our reasoning is here inspired by the strategy in [TeZu03]. This
paper deals with discretizations of a one-dimensional wave equation.

5.1. An energy identity for the damped ADI scheme

We start by introducing a substep formalism for the damped scheme (3.24). Sim-
ilar reasoning is used in (4.1). We recall our permanent assumption that the
parameters ¢, i, &, and 7 satisfy (2.2) and (3.3). Also important is here the num-
ber Ky from (3.25), and the space Y from (3.26). The arising splitting operators
A, B, Dy, Dy, and Dj are introduced in (3.19) and (3.20). The associated damping
operators V,(-) are defined in (3.22).

Let n € Ny, i € {1,2,3}, and fix a number 7 € (O,min{%,g—f}). Choose the
time step size 7 € (0,7] for the damped scheme (3.24), as well as initial data
(E°,H", ®°) € Y. Define then the substeps

E™! E" E™? E™!
H"!' | .= V.(A) [H"[; H"? | = (I-ZA)" [H" |;
ot o o2 o1
E™3 En2 Er4 E™3

H"? | = (I + TA) H"? |; H"* | .=V (B) |H"? [;

(I)n,3 (I)n,2 CI)”A q)n,3
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5.1. An energy identity for the damped ADI scheme

En,5 En,4
Hn,5 e ([ o IB>71 Hn,4 .
: o) ;
q)n,i’) (I)n,4
Fond+3i Fon3+3i
H™49 | =V, (Dy) [ H* |
(I)n,4+3i cbn,3+3i
En76+3i En,5+3i
Hn,6+3i — ([ + %Dz) Hn,5+3i
Pro6+3i Pr5+3i
Note also the relation
En+1
Hn+l —_
(I)n+1

En,ﬁ ETL,S
H" | :=(I+1B) [H" |;
(I)n,ﬁ q)n,5

Fn5+3i i3

— (I . ZDi)il Hn,4+3i :

n,5+3i
H 5
Prid+3i

(I)n,5+31'

(5.1)

e—7'6'E71,15

Hn,15
efrnq)n,lf)

The regularity results in Lemmas 3.12 and 3.17, as well as Corollary 3.16 imply
that the above substeps and the next iterate of (3.24) remain in Y. This ob-
servation is crucial at the end of the proof for the exponential stability result in
Theorem 3.10.

The desired energy identity (5.4) is derived by means of relations between the
substeps in (5.1). The last substep satisfies the formula

eTc}En+1 En,15
Hn+1 — Hn,15
eTncI)nJrl q)n,15

This equation represents the damping effect of the terms —6E and —n® in the
extended Maxwell system (3.1). As the Cayley-Transform S;(L) = (I + FL)(I —
ZL)7!is an isometry for L € {A, B, Dy, Dy, D3}, we furthermore infer the identity

En,3k En,3k—2
H™3" H™ 2 [ ke {1,2,3,4,5}.
q)n,Bk’ (I)n,Bk—Q
We next employ the supplementary vectors
. n,l Enl E"A Er4
v 1,1l = (I _ %AZ)—l Hn,l ’ v n,4 _ ([ _ %BQ)_l Hn,4 ’
(i)nyl (I)n,l (i)n74 (I)n,4
En,4+3i En74+3i
qet | = (- D) | HE (5.2)
HroA+si Pprdtai
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5. Exponential stability of the damped scheme

Now the skewadjointness of the operator D; comes into play, see Lemma 3.8. Also
the identity

7'2 - T - T -
DI —2-D})' = Dy(I+3D;) 'Dy(I —ZD;)""
is applied. We then obtain the relations

En,3+3z En,4+3z 7_3 En,4+32 En,4+3z
) ) . 2 B .
Hn,3+32 — Hn,4+31 —_9__ Hn,4+3z 7D12( - %Df) 1 Hn,4+31
(I)n,3+3i (I)n,4+3i 4 (I)n,4+3i (I)n,4+3i
v n, 4430\ |2
E
6
7’ .
2 v n,4431
+ =D [H" (5.3)
6] “ |~
(I)n74+3i
. . ~ n,4+31
n,4431 2 n,5+31 2 s
E S| (B 6 B
— Hn,4+3i + —|D. Hn,5+3i + D2 I\_/In,4+31
; 2 ' ; 6] " |~
(I)n,4+3z (I)n,5+3z <I>”14+3i

This identity demonstrates the damping effect of the operator V,(D;). The same
arguments also provide the formulas

En,3 2 En’4 2 5 En75 2 ) En’4 2
Hn,S — Hn,4 + L B Hn,5 + L B2 I:In,4
Pm3 Pt 2 Hns 16 (i)n74
E" 2 En,l 2 5 En’2 2 . v n,l 2
H" = H™! + T A | Hv2 + % A2 I:In,l
on (Dn,l (I)n’Q (i)n,l
Altogether, we then conclude the important energy identity
En+1 2 En 2
Hn+1 . 12 K
= (@7 = DIVEE™ [ — (@ = Dl Ve s (5.4
n543iN (12 v 14430\ |12
3 7-3 E ;543 ' 7_6 E |
— Z 5 D, H5+3 + ﬁ Diz I\_/In,4+3z
i=1 Proo+3i i
En,5 2 En,Q 2 EnA 2 Eml 2
3 6
—72( B|H" || +|A|H"? ) —16( B g™t ||| + |14 a™ )
(I)n,S (I)n,Q cIv)n 4 én,l
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5.2. Comparison of the damped and undamped schemes

for the damped scheme (3.24). Dividing by 7, this formula is the discrete coun-
terpart to the time derivative of the energy of the extended Maxwell system (3.1).
For the remaining reasoning in this chapter, it is essential that the expressions on
the right hand side of (5.4) and of the observability inequality (4.15) have a strong
similarity.

5.2. Comparison of the damped and undamped
schemes

Recall that we want to use the interior observability estimate from Theorem 4.2 to
prove Theorem 3.10. The observability estimate, however, depends on the iterates
and intermediate steps of the energy-conserving scheme (3.23). We thus want to
replace the right hand side of the observability estimate by means of terms that
only rely on the iterates of the damped scheme (3.24). Thereby, we follow the
strategy of the proof of Theorem 1.1 in [TeZu03].

Throughout, we assume that ¢, 4, &, and 7 satisfy (2.2) and (3.3). We employ
the number ky from (3.25), and fix a number 7 € (0, min{3, ;/—3}) Moreover, we
choose the same fixed time step size 7 € (0, 7], as well as the same initial data
(E°, H°, ®°) € Y for both schemes (3.23) and (3.24).

Combining the observability estimate (4.15) for the undamped scheme (3.23)
with the triangle inequality and Young inequality, we first derive the relations

(IO 2 [BOP @) d

N
<2003 (I3 + 104 32 + IB* — B[ + & — 04[3:)

k=1
N1 k2 2 EF2 _ EIZ,1 2 k5 2
+2C,7 > | |A|HR? || +||A|HM? —HM || + B | HF
k=0 (I)k,Q (I)k,Q o q)lcc,l (I)k’5
Ek,5 . Ek,3 2
+ B [ - Eh
(I)k,S o (I)k,B
N1 3 Ek5+3i 2 k5430 _ El;:,3+2i 2
+2C,7° Y S| |[D: [ HF | 4+ | Dy | HFOTY - HEA , (5.5)
k=0 i=1 Pko+3i Prd+3i _ pki3+2i

where N = max{k € N | N7 < 97} is the number from the statement of Theo-
rem 3.10. The goal of this Section is to control the arising difference expressions
on the right hand side by means of terms in the energy identity (5.4).
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5. Exponential stability of the damped scheme

We abbreviate

Ek,A Ek o Ek
g | = (B - H
(I)k,A (I)k _ (I)kc

for £ € N, and proceed in the following manner. The difference terms in (5.5),
that involve only substeps of (3.23) and (3.24) (but not the iterates), are first
estimated by means of expressions from (5.4) and the energy of (EF2 HM2 @k4),
Next, also the energy of the latter mentioned difference vector is bounded by terms
from (5.4). This is achieved with a discrete Gronwall argument.

The following statement uses the supplementary vectors from (5.2). For a com-
pact notation, we also put D_; := A and Dy := B.

Lemma 5.1. Let ¢ and p satisfy the assumptions (2.2). Let k € Ng, i € {0,...,3},
and T € (0,7]. For the intermediate difference terms between the damped and
undamped schemes (3.23) and (3.24), the estimates

2 1\ )12 ST N
E* — E° -6 E E"
(I+34) | B —H | < || A2 | gt ||+ A | B
Ph? — i ol I Ph:2
ESA |
+(1+47) H:’i , (5.6)
@ b
o+ _ phat2iy |12 . A 2 5 |12
(I+1Dy) HPH8 st < T D? Iv_{k,4+3i + 72|\ D, | gFovsi
(I)k:,5+3i _ (I)lé:,3+2i 16 Ci)k’4+3i q)k,5+3i

ER2t3 k42 2

+ (1 +7)|(I+5Diy) HE2S R (5.7)
Ph-2+3i _ phi142i

are valid.

Proof. Since the proofs of both inequalities follow essentially the same lines, we
only prove the first one. Taking the difference between definitions (5.1) and (4.1),
we on the one hand obtain the formula

Ek,? o Ek’,l Ek’ Ek
A2 HE | (15 (- T - ) ) | (- ga) (e
q)k,Q o (I)Icc,l q)k CI)I;
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5.2. Comparison of the damped and undamped schemes

Ek’l
— (I _ %A)—1§A2(] _ %2142)_1 Hk‘,l
(I)k’l
Ek,A
+(I-z4)" H”:i : (5.8)
[O%3

On the other hand, the skewadjointness of A, see Lemma 3.7, gives rise to the
relation

4

Ek‘,l Ek:,A
(7;5142(] . L2A2)_1 Hk;,l , Hk,A )

(I)k:,l q)k,A
Ek’l Ek,A
:_(73/%(1—;%1)—1 O | ZRAG - ) R ) (9
(I)k%l (I)k,A

We now multiply equation (5.8) from the left by (I 4+ 5A). Furthermore, the
isometry of the Cayley-Transform of A, and (5.9) come into play. Using the sup-
plementary vectors from (5.2), we arrive at the estimates

Ek,Z . Ek,l 2 6 Ek’l 2 Ek‘,2 2
(1+34) | H2 —mp || < (g™ || 40 A | e
Oh2 — Pl Hh1 k2
Ek,A 2 Ek,A 2
T _ -t | ks kA
+ 16 TAI - 3A) |H +|[|H
(I)lc,A (I)k,A

For the third term on the right hand side, we additionally take the identity
TA(I — %A)*1 =2((1 — %A)*1 - 1),

as well as the contractivity of (I — ZA)~! into account. This in particular implies

2
the relation
2

Ek,A Ek,A
l TA([ o %A)il Hk,A S T Hk,A ’
16 (-I)k,A (I)k,A
and we conclude the desired estimate. O

It will be useful to have a slightly weaker version of the inequalities from
Lemma 5.1.
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5. Exponential stability of the damped scheme

Remark 5.2. By Lemmas 3.7 and 3.8, the splitting operators A, B and D; are
skewadjoint on X,. Consequently, we can weaken the first estimate in Lemma 5.1
to the form

2

5 Ek,Q o Elcf,l
L A Hk,Z o Hk,l
4 (I)k,Q _ (I)kc,l
6 B! 2 ER2\ |2 ERAN |12
S L A2 I:Ik;,l + 7_3 A Hk’,? + (1 + 7_) Hk,A
16 0 P2 PN

Analogous modifications are true for the second estimate in Lemma 5.1. We will
use these modifications for the proof of Theorem 3.10. O

We note that the upper bounds in Lemma 5.1 still involve the difference vector
(Ek’A, HMA, ®*2). In a next step, we estimate the energy of the latter vectors in
terms of a discrete integral over the difference equation (5.4).

Lemma 5.3. Let e, 1,5, and n satisfy (2.2) and (3.3). There is a constant Ca > 0

with
ELAY |2 P\ | /B |
Hk-i—l,A < CA€6(k+1)T HO . H'k+1
(I)k:-&-l,A (I)O (I)k+1

forall =1 <k < N —1 and 7 € (0,7]. The number Ca depends only on €, u, 7,
and 1.

Proof. Recall our assumption, that both schemes (3.23) and (3.24) have the same
starting value. This implies that the asserted statement is true for kK = —1. Assume
hence that k£ > 0. Using the definition of the substeps in (4.1) and (5.1), we derive
the equations

Ek+l,A e—q—& -1 0 0 Ek,14
H A | = 0 0 0 |(I+%Ds)|HM
(I)k+1,A 0 0 e 7™ —1 (I)k,14
Ek,14 . Ek,9
+ (I +1IDs) |HM —H?
(I)k,14 _ CI)kvg
e —1 0 0 e 0 0 EFH!
= 0 0 0 0 I 0 H!
0 0 e™—1 0 0 e/ \@kt!
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5.2. Comparison of the damped and undamped schemes

Ek,14 o Ek,g
+ (I +3Ds) |HM' —H?
(I)k,lél o (I)k:,9

Set Cs, := max{||d||, |Inll..}- We next combine the inequality |le™™ — 1| <
T||€]|sos € € {F,7n}, with the Cauchy-Schwarz and the Young inequalities. In this
way, the relations

EFHLAN |12 (6770 — 1)e™EF! 2
H’C+1,A — 0
(I)k+1,A (67717 o 1)ernq)k+1
(e — 1)e™EM! E —E}Y
+ 2 0 ,(I +3Ds) [HM — HE?
(e—T’r] o 1>eT77q)k+1 (I)k,14 _ (I)lcc,Q
Ek14 _ gko 2
+ (I +ZD;) | H*'" — HF?
(I)k,14 o (I)k,9
Ek-{—l 2 Ek,14 o Ek79 2
< 2rCZ e ||| 0 + (1+7)||(I +5Ds) | B — HF?
(I)k:-H (I)k’M o q)k:,9

are obtained. With Lemma 5.1 and the assumption 7 < 1, we then infer the
estimates

Ek+1,A 2 Ek+1 2
HMA | <2702 e ||| 0
cI)k-l-l,A (I)k'H
Lk A+3iN |2 iNo112
3 24717_6 . . Ek75+3 .
+ Z T Df IV_Ik,4+32 4 24—17_3 Dz Hk,5+32
i=1 i)k’4+3i (bk,5+3i
EkA 2 Ek75 2 Ek’,l 2
T 7_6 B2 I:Ik,él + 167’3 B Hk’5 T 27_6 AQ ﬁk,l
P oko il
Ek,2 2 Ek,A 2
+327° || A [H? ||| + (147)° | [ H>
(I)k,2 q)k,A
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5. Exponential stability of the damped scheme

After comparing the right hand side with the energy identity (5.4), we conclude
EFt1A 2 EF 2 Ek+1 2 ERA 2
Hk—i—l,A < CA Hk o Hk’—‘rl + eGT Hk:,A
PrtLA N d* PF+1 kA

with a constant Ca = Ca(e, i, ,1) > 0 being independent of k < N—1and 7 > 0.

In presence of the initial choice (EO’A, HA, ®%4) = 0, we derive by induction the
inequality

2 2

EFtLA 2 . E/ Eit!
Hk:-i—l,A < CAet‘)(kJrl)‘r Z Hj _ Hj+1 )
(I)k+1,A =0 PJ Pit!
This leads to the asserted statement. OJ

5.3. Demonstration of the exponential stability
result for the damped scheme

In this Section, we prove the desired uniform exponential decay of the iterates of the
damped scheme (3.24). To that end, we combine the internal observability estimate
from Theorem 4.2, the energy identity (5.4) and the estimates from Lemmas 5.1
and 5.3.

Proof of Theorem 3.10. Set
* = (- max{3, ;/—f}, and N :=max{k € N | kT <97},

involving the fixed number ¢ from the statement of Theorem 3.10. The step size
7 is then an element of (0,7]. We first assume the starting value (E°, H°, ®°) for
scheme (3.24) to belong to Y.

The proof mainly consists in estimating all terms on the right hand side of (5.5).
It is important that our results from Sections 4.1 and 4.2 only require, that the
initial data for schemes (3.23) and (3.24) have to be chosen within Y, and that
they have to coincide. The regularity results in Lemmas 3.12 and 3.17, as well as
Corollary 3.16 then imply that all iterates of the damped and undamped schemes
stay within Y. This is essential, when we want to iterate our argument. (This
means, that we want to take the N-th iterate (EV, HY, ®V) € Y as a new initial
value.)

In the following, C' > 0 denotes a constant that is allowed to change from line
to line. It depends, however, solely on ¢, i, 5,7, and (). Only the last summand
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5.3. Demonstration of the exponential stability result for the damped scheme

on the right hand side of (5.5) is considered. All other difference expressions can
be handled similar, but with less effort. We first modify inequality (5.7) for ¢ =3
in the spirit of Remark 5.2, and insert then recursively all other estimates from
Lemma 5.1 into each other. As 7 < 1, we infer the inequalities

2

Ek,14 _ Ek,g
|| Dy | HM — HF (5.10)
(Dk,14 _ (I)k,9
gk 2 ER1aY |2 ERLL R |12
S CY 7_7 Dg I:Ik:,13 + 7_4 D3 Hk’14 47 (] + %DQ) Hk’ll . ng,?
(i)k,13 Pk-14 Pkl _ kT
vk, A+3i\ ()2 g v kAN |2
3 E Ek,5+3z E
< C Z (77 Dz'2 Iv{k,4+3z‘ e D, k53 ) + 77 B2 ﬁk’4
5 |2 B! EF2\ |2 ERAY |2
+ 7B H || A g | AR | (HR ]
q)k,B Ci)kvl (I)k’2 (I)k,A

A similar argument also bounds the remaining difference terms on the right
hand side of (5.5) by means of the right hand side of (5.10) (after appropriately
modifying the number C'). Then, all expressions on the right hand side of (5.10)
appear also in the difference equation (5.4), except the last one. Lemma 5.3,
however, also bounds the last summand. With N7 < 97, we consequently obtain
the relations

N ERA 2 N1 EF2 _ E]Ci’,l 2 EFS _ EICc,S 2
Ty ((EA |+ [ |A|H? -8B +|B|HY —HY?
k=1 ch,A k=0 (I)k72 _ (I)Ig,l (I)k:,5 o (I)I;:,S
EF5+3i _ k342 2
+ D, Hk,5+3i o Hck,3+2i
(I)k,5+3i _ (I)lg,S—&—Qi
N Ek 2 Ek-i—l 2 i N1 EO 2 Ek+1 2
S Cr Hk . Hk+1 + 07_8547' Z HO o Hk+1
k=0 q)k (I)k:—',—l k=1 (1)0 (I)k:-i-l
E%\ | EV\ |I?
< CN’Te54T< H || —|[HY ) (5.11)
o0 oN
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5. Exponential stability of the damped scheme

We now use estimate (5.11) for the difference terms on the right hand side of
(5.5). For the remaining terms in (5.5), we proceed as above. In this way, we
arrive at the inequalities

EO N Ek: 2 Ek-i—l 2
HO < Cf Z Hk _ Hk+1
(I)O k=0 q)k (I)k—H
) EO 2 EN 2
+ o [HY ) — | [ HY )
o0 N
EO 2 EN 2
< (Zif-ew( HO || —||HY )
o0 N
This is equivalent to
EV\ |I? . E%\ |I?
HY ||| < (1 — 4°> H ||| . (5.12)
@N 07—65 T (PO

As mentioned above, we can now iterate our argument. As a result, we infer
with the same constant C' as in (5.12) the estimate

2 2

E™N E° E° 2
1 m .

HmN < (1 _ ~O) HO — g—wmf HO 7

PN Creddt PO PO

with w := 1 = In( C(:;ef:”l) > 0 for all m € N, compare the proof for Theorem 3.3

in [Nica03]. In particular, w is independent of 7 and the initial data. For starting
values in Y, the asserted decay estimate can now be concluded.

Let k € N be fixed. We choose m € Ny and r € {0,..., N—1} with k = mN +r.
As the energy of the iterates (E", H", ®") is decreasing, we conclude the relations

2 2 2

[\

Ek’ EmN EO EO
Hk < HmN < efwmi' HO < ew‘i"efwlﬁ' HO
D I\ N PO N PO
~ EY 2
G — 0
)
Choosing M := C?gfffil > 0, we have derived the desired exponential stability
estimate.
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5.3. Demonstration of the exponential stability result for the damped scheme

As the space Y is dense in Xo = L*(Q)" and the damped scheme defines
a bounded mapping on X, the same inequality is valid for all initial data in

Xext . D
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6. Error analysis for the damped
scheme

We show in this Chapter, that the iterates of the damped scheme (3.24) converge
in the dual space Y* of Y with order one to the solution of the original Maxwell
system (2.1), see Theorem 6.5. The space Y is defined in (3.26). For this state-
ment, we need to assume that the initial data of the scheme and of the original
Maxwell system are chosen sufficiently regular and compatible, roughly speaking.
To demonstrate Theorem 6.5, we furthermore modify arguments from Section 4 of
[EiJS19]. Our analysis proceeds in the following way.

We first show that the damped scheme (3.24) is stable in Y. Here, we apply the
regularity statements from Chapter 3. In Section 6.2, we define supplementary
operators. Among other, the A-operators from [HaOs08, HoJS15, EiSc18, EiJS19]
are introduced here. The final error result is then obtained in Section 6.3 by
estimating the local error in Lemma 6.4 and controlling the error propagation in
the proof of Theorem 6.5.

6.1. Stability of the damped scheme

To control the error propagation, we need the stability of the damped scheme
(3.24) in Y. Therefore, each operator is estimated separately, that corresponds to
one substep in (5.1).

Throughout this Chapter, we assume that ¢, y, &, and 7 satisfy (2.2) and (3.3).
In the following, we use the parts of the splitting operators from (3.27), as well as
the number xy from (3.25). Let L € {Ay, By, D1y, Day, D3y }. Lemma 3.12 and
Corollary 3.16 already bound the Cayley-Transform S-(L) = (I + ZL)(I — ZL)™!
by

1S-(D)ll gy < ™7, 7€ (0,7, (6.1)

where 79 > 0 is a constant depending only on ky. The regularity assumption on
¢ and 7 implies the relation

e 0 0 )
0 I 0 < @70, >0, (6.2)
0O 0 e ™
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6.1. Stability of the damped scheme

with a uniform constant Cs = Cs(5,1) > 0. This operator matrix is associated
with the last intermediate step in (3.24).

The next lemma also bounds the operator V(L) from (3.22) in Y. The state-
ments will furthermore be used to estimate the local error of (3.24).

Lemma 6.1. Lete, p, 7, andn satisfy (2.2) and (3.3). Let also L € {Ay, By, D1y,
Dsy,Dsy}. The operator V.(L) is well-defined in Y for all 7 € (0, i) The
estimates

1
BY) S 37 ”VT(L)H%‘(Y) S E

7.2 7.2 _
ILQ([_ ZLQ) 1

are valid for all 7 € (0,7) with a uniform constant 7y € (0, min{g, i ).

Proof. Lemma 3.12 respectively Corollary 3.16 imply that the inverse (I—72L?)~1 =
(I —7L)"Y(I +7L)~" is well-defined for 7 € (0,1/ky). The results also provide

the bound
H([_TQLQ)A 1

< | -r0)7 20) = (1= rry 2

[ | +72)7]

A(Y)
for 7 € (0, i) As a result, there is a number 7y = 7 € (0, min{3, }) with
H([ ) <2 for all 7 € (0, 7).

With the formula %LQ(I - %LQ)*1 =—I+(I—- §L2)*1, we further infer the
T2 T2 — : ~ 1
LI - T-L?) 1H%(Y> < 3. Since 7y < g,
the operator V(L) is well-defined on Y. It is moreover bounded, according to the
relations

VoDl gy = | (7 = 2L (1 = FL) ™)

estimate our arguments show that

1

72 2 _
LI - ZL2)!

B(Y)

for all 7 € (0,7). O

By means of the above considerations, we can now provide the desired stability
result for the damped scheme (3.24) in Y.

Proposition 6.2. Let ¢, 1,6, and n satisfy (2.2) and (3.83), and let T > 0. The
stability estimate

E" E°
Hn S ecstabT HO
o Y (I)O Y

is valid for all (E°, H*,®°) € Y, 7 € (0,%), and n € N with nt < T. Here, the
numbers Cgan, and Ty are positive, and depend only on e, u,5,n, and Q.
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6. Error analysis for the damped scheme

Proof. Set %o := min{7o, 7o} € (0, §) with 7o from Lemma 3.12 and Corollary 3.16,
and 7y from Lemma 6.1. The number 7y then only depends on the coefficients
e, i, , and n from the extended Maxwell system (3.1). We also use the number
N := max{k € N | kr < T}. The arguments before this proposition now imply
the bound

E® ~ ] N EO
H" < (eTCS_5€15KYT> HO , T E (O, 7\/'0)
o (]. 37’) (I)O

Y Y

Combining the estimate ﬁ <l C = 1_?;)%0 >0, 7 € (0,7), with the relation

N7t < T, the asserted inequality follows with Cip, 1= Cs + 5C + 15ky. O

6.2. Supplementary framework

In this Section, we introduce some auxiliary operators for the analysis of the local
error. They come into play, when we expand the iterates of scheme (3.24). Let
L e{Ay,By,Diy,Dsy,Dsy}, and 7 € (0,7y) with 7, from Proposition 6.2. We
first deal with the operator V(L) from (3.22). We have the representation

o0

V(L) = (1 = FIA( = 1)) = S (LA = L))"
n=0
7.3 7.2 _
=T+VIOL) =T+ L1 - 1)+ VA(L). (6.3)
Here, we use the operators
i = 73 72 —1\n .
VT( )(L> = Z(ZLZ([ - ILZ) 1) ) (S {17 2}7

which can be estimated by means of Lemma 6.1 and 7 < 1/6 to

VD) vy = | Do (F 2T =TT S{—g 1267
n=1 BY) 7

VD) |y = | S (LTI — = T3~ < —1-37 <1872 (6.4)
n=2 @) 79T

To write the expansions in (6.3) in a convenient form, we define the mappings
V-(L) if j =k=0,
FY(j,k, L) :== < V(L) if j =k >0, (6.5)
TILA(I - L) i j <k,

4
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6.2. Supplementary framework

for j <k € {0,1,2}. We then obtain the formula

k
FV(0,0, L) Z (j,k, L),  ke{0,1,2}.

We follow now the preparatory concepts from Section 4.1 in [EiJS19] to derive
analogous representations for the Cayley-Transforms S; (L) = (I+ZL)(I —ZL)™*
as well as for the semigroup (e'ext1),5o. The latter is introduced in Proposi-
tion 3.5.

With the relation (I — ZL)™' =T+ ZL(I — ZL)™", the identities

SA(L) = (I +5L)I +5L(I - 3L)7)
=1+ SL(I +S-(L)), (6.6)
=T+ 7L+ T L*(I + S, (L))
follow. While the first two equations are true on D(L), the last one holds on
D(L?). To obtain the third identity, we recursively insert the second equation for

Sr(L). As above, we aim for a compact representation of (6.6) and (6.7). To that
end, we put

S-(L) if j=k=0,
F(j,k,L) == { oo(I + S(L))L* if j =k >0, (6.8)
%Lj if j <k,

for 5 <k € {0,1,2}. We then arrive at the formula

k
F(0,0,L) Z (j, k, L).

For the semigroup (e'Mext1),54 from Proposition 3.5, we employ operators that
are also used in [HaOs08, HoJS15, EiSc18, EiSc17, EiJS19]. These operators will
again play a crucial role in the error analysis in the second part of this thesis, see
Chapter 10.

Let L be the generator of a strongly continuous semigroup (ef )t>0 on the space
Xext,1 from Section 3.1. We define the mappings

1 v . , )
Mo = ooy [, e s, GEN Ay =

By construction, these operators are bounded on Xex; 1, and the vector A, ;(7)z
belongs to D(ﬂ) for j € N, z € Xexi 1. Furthermore, the recursion formula

- 1 .
TLA o 1(7) = Ay (7) — ﬁ]’ J € No, (6.9)
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6. Error analysis for the damped scheme

follows with integration by parts. Choose now L= Mexi,1, where My 1 is the
part of the extended Maxwell operator Mey, in Xex 1, see Section 3.1. The linear
growth bound from Proposition 3.5 gives rise to the estimate

< 2Ctstab,l '

HA.j,Mext,l (T> B(Xext1) — ]' (610)
We finally choose
) —a 0 0
L=Ky:=|10 0 O
0 0 —n
Applying identity (6.9) twice, we here infer the representation
eTHe — T 4 TKyM g, (T) = T+ 7K+ 7 K3Ay (7). (6.11)
Using the supplementary mappings
e ifj=k=0,
Fo(, k) == I KIA g, (1) if 5=k >0, (6.12)
TjKé if j <k,

for 7 < k € {0, 1,2}, the two identities in (6.11) have the form

k
F7(0,0) =Y F°(j, k), k€ {0,1,2}.
j=0

6.3. Convergence result for the damped ADI scheme

The above preparations at hand, we can now show that the damped scheme (3.24)
converges with order one in Y*. To that end, we proceed in two steps. First,
we demonstrate that the local error is of order two, see Lemma 6.4. Then, we
conclude the global error result with Lady Windermere’s fan. In this second step,
we apply our stability result and the bound for the semigroup (e‘Mext1),54. The
arguments are here oriented towards the proof of Theorem 4.1 in [EiJS19].

During the proof of the local error bound, we need some facts regarding the
extrapolation of operators from the space Y, see (3.26), to the space X = L*(Q)".
Based on the preliminaries in Section 2.2, we list the important facts in the next
remark.
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6.3. Convergence result for the damped ADI scheme

Remark 6.3. 1) Let XZ, | be the extrapolation space of X with respect to
the operator L € {Mey, A, B, D1, Dy, D3}. Proposition 2.10.2 in [TuWe09] then
provides the identification XX, |, = D(L*)*, so that the inclusion of Y in D(L) =
D(L*) implies XL, , C Y™

2) It will be useful to have a concrete relation between the extrapolation operator
L_y of L, and its bidual (L*)*. As the operator L* : D(L*) — Xy is continuous,
we infer that (L*)* is continuous from Xy to D(L*)* = XL, . We moreover note
that the identity

(L*)'x,y)yexy = (v, L'y) = (Lx,y)

is true for all y € Y, and € D(L). As a result, the operator (L*)* is the unique
continuous extension of L to an operator on X, that now maps into XX, |, see
Proposition 2.10.3 in [TuWe09]. These considerations give rise to the important

formula

<L71xay>Y*><Y = <<L*)*may>Y*><Y = (.1', L*y)7 T e Xexta Yy € Y

3) We also need to extend bounded linear operators from Xy to Y*. Let P be
a bounded linear operator on X with an adjoint P*, leaving Y invariant. The
operator P can then be extended in a unique continuous manner to P € Z(Y*)
via P := (P*|y)*. This argument leads to the identity

<I~Dzay>Y*><Y = <27P*y>Y*><Y> S Y*> Y € Y7

see Proposition 2.9.3 in [TuWe09]. The regularity results from Lemmas 3.12 and
3.17, as well as Corollary 3.16 yield that this extension procedure is reasonable for
the arising Cayley-Transforms, as well as the operators FV (j,k, L) and F?(j, k)
for j <k € {1,2} from (6.5) and (6.12). O

The next statement provides a bound of order two for the local error of the
damped scheme (3.24) in Y*. In the proof, we transfer arguments from the proof of
Theorem 4.1 in [EiJS19] to our setting. To have a compact notation, we abbreviate
the solution of the extended Maxwell system (3.1) with initial datum (Eq, Hy, ®o)
at time ¢ > 0 by v(¢). The approximation from scheme (3.24) with the same
starting value is given by v™ at time n7. Recall also that 7 > 0 is the time step
size of (3.24). The statement also uses the space Xex 1 from (3.15) for the initial
data.

Lemma 6.4. Let ¢, u, 6, and n satisfy the assumptions (2.2) and (3.3). The local
error of scheme (3.24) is bounded by

(0! = v(7), )| < Cloe™[[0(0)]

Xext,l HyHY

for ally € Y, initial data v(0) = v° € Xxi1 and 7 € (0,%). The constants Cioc
and Ty depend only on €, u, 7,1, and Q).

95



6. Error analysis for the damped scheme

Proof. 1) For convenience, we allow the constant C' to change from line to line.
Let 7 € (0,79) with 7y from Proposition 6.2. We also describe one iteration of
scheme (3.24) with step size 7 by the application of an operator S(7). This gives
rise to the formula

e 0 0

so=| 0 1 o E(SADWT(D@-))

. S-(B)V-(B)S-(A)Vi(A). (6.13)
The local error then possesses the representation
v — (1) = (S(1) — e™ext1 )0, (6.14)

Our next goal is to write the local error in a different form, by means of the
expansions from Section 6.2 and the identity

M, 0 0 0
e et iyt = 07 4 T Meyg 1 A1 Mo 1 (T)V

0 0 2
=v + TMextU +7 Mext—lMext,1A2,M

ext, 1

(7)0°.

(Note that the last formula follows by iterating (6.9).) The operator Mey—1 is
here the extrapolation of M. to Xe, see Section 3.1. Inserting this identity for
e™Mext19)0 into (6.14), we obtain the expansion

Ul - U(T> - (S(T) — I — TMexy — T2Mext—1Mext,1A2,Mext71 (T))UO- (615)

As we are only interested in the first two terms on the right hand side of (6.15),
we use (6.10) to estimate the remainder term to

= (7 Moss Ao pre, ()07, M)
< C72 0| X 0y (6.16)

’ <T2Mext—1Mext,1A2,Mext’1 (T)UO, y>Y* XY

2) It is immediate by construction that the operators F'(j, k,1), F(j,k), and
FV(j, k,1) from Section 6.2 are useful to expand the damped scheme (3.24). This
is, however, also possible for the first two terms on the right hand side of (6.15).
To be more precise, we arrive at the formula

V0 4 T Moy 0° (6.17)
1 ~ 5 3 I+1
=> > FUs2-> )]l (F(j2+172_2ji;Dl)FV(0,2, Dz))
k=0 j1++jo=k i=1 =1 i=1

- F(j3,2 — 51, B)FY (0,2, B)F (51,2, A)FY (0,2, A)v°.
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6.3. Convergence result for the damped ADI scheme

As usual, the product sign means here that the arising operators are concatenated,
so that their indices decrease from left to right.

In order to compare the solution v of the extended Maxwell system (3.1) with
the approximate numerical solution, we also aim for an analogous representation
of the numerical solution by means of the expansions from Section 6.2. To that
end, we insert the latter expansions for the splitting steps in (6.13), and obtain
the identities

S(r)° = F7(0,0) f[( F(0,0,D,)FY(0,0,D1)) F(0,0, B)FY (0,0, B)F(0,0, A)

- FY(0,0, A
= i 22: F7(0,0) : (F(0,0,D))F" (0,0, D)) F(0,0, B)F" (0,0, B)

§1=071=0

F(j,2,A)F (7‘1,2 A’

= Z_: i > i F7(0,0) H (F(O,O,DZ)FV(O,O,Dl)>F(j2,2—jl,B)

0r1=07r2=0

V<7n27 Tla )F(]1727A)FV(T1727A)UO

Y Y Y Y Py —gm

k=0 j1++je=k s=0Tr1+--+1r5=5

3 I+1 1+1
H(F(j2+l72 Z]th T2+l7 Zrlle ) ]272_j17B)
=1 =1

. FV<7"2,2 — Ty, B)F(]l, Z,A)FV(T'l, Z,A)/U

in Y*. For summands with £ = 2 in the last equation, we implicitly assume that
one of the splitting operators is extrapolated to Xy, if necessary. The succeeding
operators in the concatenation (which are automatically bounded on Xe) are
then extrapolated to Y*. A comparison between the last expansion and (6.17)
now leads to the formula

(S(7) = I — T My )0°

:( Y LY Y Y Y )F%G,z—iz;ji)

Jite4ie=2 k=0 ji+-+je=k s=1 1t trs=s

r1+-+r5=0

3 +1 +1
11 < (Jos1,2 Z]z;Dl V(o2 ZTZ,DJ >
-1

'F(]Q,Q—th)FV(TQ,Q—Tl,B) (j1,2,A) (7“1,2,A)vo (6.18)
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6. Error analysis for the damped scheme

on Y*. The expression consisting of five summation symbols in (6.18) indicates
that both summation procedures are done separately and that the results are added
afterwards. The desired bound on the local error will be concluded by estimating
all summands on the right hand side of (6.18) in Y*. We categorize the summands
in the following eight groups, according to their index tuple (ji,...,J6,71,---,75)-

(i) Let X6 _jm = 2, and 3% _,r,, = 0. Prescribe additionally that exactly
one of the numbers ji,...,j¢ is different from zero. We first consider the case
j6 = 2. The associated summand in (6.18) is F7(2,2)v° = 72 K3 A, k., (7)v°, because
F(0,2,L) = FY(0,2,L) = I by (6.5) and (6.8). Combining definition (6.12) with
the assumptions (2.2) and (3.3) for & and 7, the relations

[(F7(2,2)0° y)ye ey

= |(F7(2,2)0°,y)| < P13 Az ke, ()| [lw]] < C72 () 1y

2 0
<or o] llly

follow. Consider now the case j; = 2. The corresponding summand is
F?(0,0)F (2,2, D3)v° = ™ 4(Dy) _y Ds(I + S, (D3))°,

as all other operators, appearing in the product, are equal to the identity, see (6.5)
and (6.8). (Recall that (D3)_; denotes the extrapolation of D3 to Xex.) Since the
Cayley-Transform S, (D3) is isometric on Xy and Xey, 1 embeds into H(Q)", we
conclude the inequality

2
i
= (T + S-(Ds)) D3v®, Dse™ )|
< O7?|| D3 ||| Dse™ 4y

< OV e €™yl
< C7*||’]

‘<F&(07 0)F(2,2, D3)UO, Y)yexy

Xext,l HyHY °

The remaining summands on the right hand side of (6.18), that match this cat-
egory, can be treated in a similar way. Here, one uses that the Cayley-Transforms
of the other splitting operators are also isometric on X.

(ii) Let 35 _; j = 2 and 32 _, 7, = 0, such that exactly two indices j;, and j;,
are equal to one (all others are then zero). Let us at first consider the case js5 =
jo = 1, resulting in the term F°(1,1)F (1,2, D3)v° (as above, all other operators in
this product are equal to the identity operator). Definitions (6.8) and (6.12) then
lead to the formula

Fo(1,1)F(1,2, D3)v° = 7 K4\ k., (7) D30,
so that we derive the inequality

(F7(1,1)F (1,2, D)’ y)y- v

= 72 |(Kahs i, (1) Dn®, y)
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< C7| Ay i, (1) D3’ Iy
< CT[D"| Iyl < C7* )10

Xext,l ||y||Y :

We also study the second option j; = j5 = 1. This choice gives rise to the
vector F7(0,0)F(1,1, D3)F(1,2, Dy)v®. Definitions (6.8) and (6.12) now imply
the equation

F?(0,0)F(1,1, D3)F(1,2, Do)v® = Te™4(Dy) (I + S, (D3)) Dyr”.

We now use that the Cayley-Transform S;(D3) is isometric on Xex, that Xex
embeds into H'(Q)", and that & and 7 satisfy (2.2) and (3.3). In this way, we
conclude the estimates

2
.
=5 (T + S-(D3)) Dav®, Dse™ )|

< OV e 9lly -

[(F7(0,0)F(1,1, Ds) F(1,2, Do)’ y)yexy

All other index configurations in this group are tackled in the same way, us-
ing now that arising Cayley-Transforms are bounded on Y, see Lemma 3.12 and
Corollary 3.16.

(iii) Assume that 3% _ 4, = 0 and 32 _, r,, = 1. Due to symmetry, we only
consider the representative summand FV (1,2, D3)v°, being associated to the case
r5 = 1. Definition (6.5) yields here the relation

FY(1,2, D3)o" = ZD3(I — 2 D3)~ 1"

Using now identity

IDs(I —ID3) ' =—1+ (I — D) (6.19)

2
together with the skewadjointness of D3, see Lemma 3.8, the inequalities

2

T |(EDs(I — 5D3) "%, (I — §D3)_1D3y)‘
< PN = 5D5) " Dsyll < O7*[[0° e [ Dy
< C7|1”

[(FY (1,2, Dy)o®, y)y-xy

Xext,l ||y||y

are derived.

(iv) Let 325 _, jm = 0and -2 _, r,,, = 2. Here, only the supplementary operators
FY(.,-,L), L € {A, B, Dy, Dy, D3} are to be considered. Combining Lemma 6.1
with definition (6.5), it is sufficient to deal with the two configurations ry = r5 = 1,
and r5 = 2. The first one leads to the summand

FV(17 ]-a D3>FV(]‘727 DQ)UO = TZSV;(I)(D?))Dg(I - %Dg)_lvo‘
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We now use (6.19), as well as Lemma 6.1. Because the resolvents of the splitting
operators are contractive on X and uniformly bounded on Y, see Lemma 3.8
and Corollary 3.16, the estimate

‘<FV(17 L, D3)FV(17 2, D2)7107 Y)yexy
S |(3Da(I = 5D2) 0%, Dy(1 — 5D2) 7'V, (Ds)"y)|

< 0 [[ Do — 5D2) = VI (D) 'y

< OV Xt 11 = 3Do) "'V (D3)*yly
< O | ot IV (D3)*y Iy
< OV X 1Yl

is valid. If r5 = 2, the corresponding summand is given by the vector FV (2,2, D3)v® =
V. (D3)v°. Inequality (6.4) yields the relations

’(FV(ZQ, Da)o°, y)yexy

= |(V2(Ds)", )| < CIV2 (D3 v [lylly

< O [0 X lWlly < CT 0% e Nl

(v) The case 36 _, j,u =1 =3° _, 7, can be treated like the first part of (iv).
The major tools are again Lemmas 3.7, 3.8, 3.12 and 6.1, as well as Corollary 3.16.
The resulting bound has the same form as in parts (i)—(iv).

(vi) Let 3% _, j,, =1 and 32° _, 7, = 2. Due to structural similarities, we only
need to deal with the choice j5 = 1 and r5 = 2, or the case j5 = 1 and r4 =
r5 = 1. The first configuration encodes the expression F(1,2, D3)F" (2,2, D3)v° =
D3V (D3)0°. Inequality (6.4) leads here to the estimate

(F(1,2, D3)FY (2,2, Dy’ yhy-y

= 7|(DsV2 (D), )|
< 7| DV (D3)0”) |1y
< Cr| V2 (Dy)e" | lylly
< CTSHUOHXext,l Hy“Y :

Second, let 7y = r5 = 1. With definitions (6.5) and (6.8), we arrive here at the
summand

F(1,2, D3)F" (1,1, D5)F" (1,2, Dy)o” = T DsVIV(Ds) D(I — 7 D3) ™'
With Lemma 6.1 and estimate (6.4), we arrive here at the estimate

72 (DsVI (D) D3I = 7 D3) ™00, y) vy
< C7?| D5V (D) D3I — 7DF) | lyly
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< Or| V(D)5 D — D)l [yl
T2 7.2 _

< OrYZ D3 - 53yl

< or

cht,l ||y||Y :

(vii) For the case 30 _; j,, = 2 and 32 _, r,, = 1, we distinguish between the
subclass of summands where exactly one summation index j; is equal to 2, and
the subclass where two indices 7;, and j;, are equal to 1. The two configurations
(je = 2,75 = 1) and (js = 2,75 = 1) are representative for the first subclass, and
correspond to the expressions

520 0
F7(2,2)FV(1,2,D3)0° =7° [ 0 0 0 | Ay, (1) 5 D3(I — T D271,
0 0 n?
F?(0,0)F(2,2,D3)FY (1,2, D3)v°
e 0 0
=2 0 0 0 |(Ds)1(I+S,(Ds))DsZ D3I — = DZ)~°.
0 0 e ™

The first one can be handled by combining the reasoning for the term F7(2,2)v°
in part (i) with Lemma 6.1. For the second term, we apply the arguments for
F7(0,0)F (2,2, D3)v° from (i), as well as Lemma 6.1. This leads to inequalities
that have the same form as in parts (i)—(iv).

If exactly tow indices j;; and j;» are equal to 1, we obtain with Lemma 3.12
and Corollary 3.16 that it is enough to deal with the two combinations j5 = jg =
1 =15, and j4 = j5 = 1 = r5. The associated summand for the first choice is the
vector F?(1,1)F (1,2, D3)FY (1,2, D3)v°. Lemma 6.1 implies that the operator
FY (1,2, D3) is uniformly bounded on Y. Taking now also the reasoning in part
(i) into account, we obtain a uniform estimate of order 72 in Y* for this vector.

The second choice j; = j5 = 1 = r5 leads to the summand

F?(0,0)F(1,1,D3)FY (1,2, D3)F(1,2, Dy)0°.

This term can be handled by combining the reasoning in part (ii) with the bound-
edness result from Lemma 6.1. We again arrive at a uniform estimate of order two
in 7.

(viii) Let 36 _,jm = 2 = 32 _ 7. The treatise of the summands in this
category reduces to the parts (i) and (ii), by applying Lemma 6.1 and (6.4). We
thus derive also here an estimate of order 72 in Y.

3) The case distinction (i)—(viii) and the assumption 7 < 1 lead to the bound

((S(r) = I = Mo, )| < O2[10”|

cht,l ||y||Y ‘ (620)
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We finally conclude that the local error is of order 72 in Y* by combining identity
(6.15) with the estimates (6.16) and (6.20). O

We now combine the above bound on the local error of the damped ADI scheme
(3.24) with the stability results for scheme (3.24) and for the extended Maxwell
system (3.1). This enables us to derive the desired global error result. To control
the error propagation, we use the principle of Lady Windermere’s fan. This stan-
dard technique has also been used in [EiJS19]. The formulation of the statement
incorporates the spaces Xex 1 and Y from (3.15) and (3.26).

Theorem 6.5. Let ¢, u, 5, and n satisfy (2.2) and (3.3). Let further T > 0. There
are constants C, Cgap, and T such that the error estimate

(0" = v(n7),y)| < CT(1+T)Te™=" o(0)lx, ., llvly, €Y.

is valid for the iterates v™ of (3.24) with initial data v(0) = v° € Xexe1, T € (0,7%),
and n € N with nt < T. The numbers C, Cgtan, 7o > 0 depend only on €, u,a,n,
and Q.

Proof. Let T € (0,7y) with 7y from Proposition 6.2. Let also n € N with nt < T.
Recall the operator S(7) from (6.13). Its application describes one iteration of the
damped scheme (3.24). We denote the error at time nt by

n,0

€n ‘= 'Un — U(TLT) = S(T) ) nTMext,1,,0

e v,

The principle of Lady Windermere’s fan yields the formula
n—1
en = Z S(T)m(8(7_> . e’TMext,l)e(n—l—m)q—MeXt’l/UO.
m=0

The stability result from Proposition 6.2 ensures that the operator S(7) is bounded
on Xe. From the above representation of the error, we then infer the identity

n—1

CRIEDS ((S(T) — erten)elnmimmriny 0, (S(T)m)*y>-
m=0

The regularity results from Section 3.4 apply also to the adjoint S(7)* of S(7),
since all arising splitting operators are skewadjoint on X. As a result, also
S(7)* leaves Y invariant. This means that (S(7)™)*y belongs to Y for every m €
{0,...,n — 1}. Taking also into account that the family (e/Mext1),54 is a strongly
continuous semigroup on Xey 1, see Proposition 3.5, we furthermore deduce that
the vector e~ 1=m) Mext140 i5 contained in Xext,1- We can hence apply our local
error result from Lemma 6.4, to conclude the inequality

(en )| < Cuer® |etrtmmmMeea®f| (S (™)l
m=0

Xext,l
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6.3. Convergence result for the damped ADI scheme

with a constant Cloe = Cloc(e, 1, ,m,Q) > 0. We finally employ the stability
results from Propositions 3.5 and 6.2, as well as the relation n7 < T'. In this way,
we arrive at the desired estimates

n—1

|(€na y)| < OstabJC’IOCTZQOStabT(1 + T) Z ||UO||Xext,1 ||y||y

m=0

S Cstab,lclocTT(l + T)eCStabT“UO“Xext,l ”yHY 9
with Cstab,1, Cstab being the stability constants from Propositions 3.5 and 6.2. [

Let v = (E, H, ®) be a solution of the extended Maxwell system (3.1) for initial
data v(0) = v = (Eg, Hy, @) € Xext1- Although v is a solution of the extended
Maxwell system (3.1), Theorem 6.5 still measures the difference between the iter-
ates (E", H", ®") of (3.24) and the solution of the original Maxwell system (2.1).
Indeed, the choice of the initial data in Theorem 6.5 ensures that the tuple (E, H)
is the unique solution of (2.1) for initial data (Eg, Hy), see Remark 3.6. We now
take functions y within the subspace Y := {(E,H,®) € Y | ® = 0} of Y as test
functions for the error estimate. In this way, we arrive at the desired estimate of
order one for the difference between the iterate (E", H") and the unique solution
(E,H) of the original Maxwell system (2.1). This error is measured in the dual
space of Y.
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Error analysis of the
Peaceman-Rachford ADI scheme for
inhomogeneous Maxwell equations

in heterogeneous media
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7. Maxwell equations in
heterogeneous media and refined
framework

We introduce here the Maxwell system analyzed in this part of the thesis, together
with some notation concerning jumps at interfaces. Moreover, certain auxiliary
results are cited or proved here, that will frequently be used throughout without
further notice. The functional analytical framework is further specialized to our
purposes in Section 7.3.

7.1. Maxwell system with discontinuous coefficients
We consider the Maxwell equations on a cuboid
Q = (a7, af) x (ay,af) x (az,a3) SR,

which is divided into two smaller subcuboids @ = @Q; U @5, corresponding to two
different media. For convenience, we assume a; < 0 < af, and set

Q1= (al_ao) X (agva;) X (agvag_)v

QQ = (0,(1?) X (a;,ag) X (a;,ag).

We investigate only this partition of (). Other partitions into two subcuboids may
be handled with analogous arguments, using appropriate coordinate transforma-
tions. The interface between ()7 and @5 is denoted by %, and the unit normal
vector vg, , at Fiy is chosen to point from @) to Q2. We furthermore use the
symbol trg, , for the trace operator on Fiy.

Since we deal with discontinuous material parameters, restrictions to the cuboids
Q;, as well as jumps at the interface .%;,; play a crucial role throughout our ar-
guments. Besides the cuboid @), we also consider other partitioned domains like
spheres or discs, whence we make the following definitions more general. Let
O C R" n € {2,3}, be an open domain, partitioned into two open subdomains
O; and O,, and an interface Oy, C O. The restriction of a function f € L?*(O) to
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7. Maxwell equations in heterogeneous media and refined framework

O; will be denoted by f® for i € {1,2}. Moreover, we define the jump

Hfﬂoint = tI‘()int f(z) - troint f(l)

for every function f € L?(0), whose restrictions £ have well defined traces tro,,,
on Oy for i € {1,2}.

On @ we then consider the inhomogeneous, linear and isotropic Maxwell equa-
tions

1 1
OE = gcurlH — E(O'E—i- J) in @ x[0,00),

1
OH = ——curlE in @ x [0, 00),
o
div(e"E®) = p® in Q; x [0,00), i €{1,2}, (7.1)
div(uH) =0 in @ x [0, 00),
eE xv =0, uH-v =0 on 0Q x [0, 00),

E(O) = Eo, H(O) = H(] in Q,

with a perfectly conducting boundary, see Section 1.1 for an introduction. Here,
E(z,t) € R? is the electric field, H(z,t) € R® the magnetic field, e(z) > 0 de-
notes the electric permittivity, p(z) > 0 the magnetic permeability, o(x) > 0 the
conductivity, and v € R3 the outer unit normal vector at the boundary Q. Fur-
thermore, J(z,t) € R? represents the current density, and p(z,t) € R is the charge
density.

The material parameters €, 4 and o are supposed to be constant on each sub-
cuboid Q);, and the first two parameters should additionally be strictly positive.
This means

e¥, ul € (6,00), o' €0,00) (7.2)

on Q;, i € {1,2}, with a positive number .

In our setting, we furthermore include a charge density pg_ , on the interface
Fint, but no free surface current on the interface. The charge density p#, , depends
on an initial charge density pz_,(0), as well as on the evolution of the sum cE+ J,
see Corollary 9.24. A consequence of the Maxwell equations are the transmission

relations
[[E X Vg int]]rﬂozint =0= HH X Vﬂint]]'gzint7
[[5E : Vﬂinc]]fim = PFint> [[:U'H : Vﬂint]]fgint =0,

see Section 1.4.2.2.3 in [Dali90] and Sections 7.3.6, 9.4.2 in [Grifl3].
The open faces of () are denoted by

(7.3)

7 ={xedQ|x;c{a},me(a af)forl#;}, T;:=TFuUTl;, je{1,2,3},

7
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7.2. Analytical preparations

and the open exterior faces of the smaller cuboids by

W =rn0Q;, 7Y =7 =17% 17 .=11n00,
F9=rfnoQ;, TV :=T;n0Q; je{2,3}, ie{1,2}.

J J

For convenience, we also introduce the function d;¢ on the set @ \ Ziy by

(9;9)]0, = 0;(g'"), i€ {1,2},5€{1,2,3},

for every function g € L2(Q) such that 9;(g®) exists in L?(Q;). Note that this
definition coincides with the usual one for any function g, possessing a weak deriva-
tive 9;¢ in L*(Q). Similarly, we extend other differential operators like the Laplace
operator A to piecewise sufficiently regular functions.

Closely related are the spaces of partial regularity. Let ¢ € N, and let I'* be
a union of some faces of (). The space of piecewise HY functions, relative to the
partition Q = Q1 U Q, is given by

PHYQ) :={f € L*Q) | [ € H'(Q). i € {1,2}}.
Particularly important is also the subspace
PHE(Q) :={f € PHYQ) | fP =0o0n 0Q; NI'™* for i € {1,2}}

of functions with zero trace on I'*. Finally, the natural norm on PH?((Q) is defined
via

fe PHYQ).

2
HYQ;)’

2
||f||2qu(Q) = ; Hf(i)

Note that the spaces PH?(Q)) and PHE.(Q) are complete with respect to the

norm ||'||PHq(Q)-

7.2. Analytical preparations

In our analysis, we often deal with jumps (or discontinuities) at the interface .Fiy.
The following extension of Lemma 2.1 in [EiSc18] is very useful in this context.

Lemma 7.1. Let f € HY(Q,) and g € H(Q3) be two functions with the following
properties. The mapping 01 f belongs to H'(Q1), 019 is an element of H'(Q3), and
trg,, f —trz, 9=0. Then trg,, Opf — tra, Okg =0 for k € {2,3}.

int
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7. Maxwell equations in heterogeneous media and refined framework

Proof. Let k € {2,3}. In view of the reasoning in Section 2.2, a well-defined trace
can be assigned to Ji f on the interface .Z;,, as the function 0,0y f = 0,0; f belongs
to L?(Q1). An analogous statement is true for dyg.

We next employ next a smooth cut-off function y,, : [a;,0] — [0,1] that is
equal to one on [ay, —-=], that has its support within [a;, —5-|, and that satisfies
Xl < Cm for m € N with m > my. Here, C is a uniform positive constant.
We then put

h(z) = f(r) - 9(%%,962,%3)» Jm(2) = Xm(21)R(7) + g(%ﬂflﬂ?z,iﬁs)

for z = (x1, 9, z3) € Q1 and m > my. By construction, f,, and 0, f,, are contained
in H(Q,), and f,,(z) = g(%l’l,fg,l’g) for z € [—5=,0] X [ay, a3 ] X [az, a3 ]. Asa
result, the traces of O f,, and Jpg on %, coincide for m > mg. The precondition
tre,, f = trg,, g implies that h has a vanishing trace on .%;,;. Hence, we can
conclude as in the proof of Lemma 2.1 in [EiScl8], that the sequence (x/,0ch)m
converges to zero in L?(Q;). By means of Lebesgue’s dominated convergence
theorem, we thus infer the statements O, f,, — Ok f and 910 fr, — 010k f in L*(Q1)
as m — oo. Employing the continuity of the restricted trace operator trz , with
respect to the graph norm of 0; on ()1 and @), the assertion follows. n

Remark 7.2. The procedure of reflecting a function at the interface %, relies
strongly on the special geometric structure of our problem. It is used again in our
regularity analysis. O

In the setting of discontinuous material parameters, it is useful to have a repre-
sentation of the spaces H(curl, Q) and H(div, Q) from Section 2.2, that involves
continuity requirements at the interface .#;,. Using the density of smooth func-
tions in H(curl, @) and H(div, @), see Theorems 2.4 and 2.10 in Chapter I of
[GiRa86], one can deduce the identities

H(curl, Q) = {0 e L*(Q)? | curl oV € L*(Q,)3, i € {1,2},
[[Soxyyint]]yint :O}7

H(div, Q) = {9 € L*(Q)*|div o' € L*(Qy), i € {1,2},
IIQO ) V«%nt]]ymt :O}v

(7.4)

compare (1.3) and (1.4) in [CoDN99]. These relations play an important role
throughout our arguments concerning regularity theory.

One of the most important tools in this part of the thesis is interpolation theory.
It is essential both for the regularity analysis, and the error analysis. Through-
out, we only employ real interpolation on Hilbert spaces. The resulting interpo-
lation spaces can be constructed by several (equivalent) techniques, such as the
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K-method, a trace method, and via fractional powers of selfadjoint positive op-
erators. We sketch the latter method, as it fits best to many of our arguments.
The K-method is presented in Section 1.1 in [Lunal8], and the trace approach is
treated in Section 1.2 in [Lunal8| as well as Sections 3—4 in Chapter 1 of [LiMa72].

Let (X, ||-]|x) and (Y, ||-|ly) be two separable Hilbert spaces, where the space Y’
is a dense subspace of X with a continuous embedding. Section 124 in [RiNa73],
and Section 2.1 in Chapter 1 of [LiMa72] show that there is a positive selfadjoint
operator A on X, whose domain coincides with Y, and whose graph norm is
equivalent to the norm in Y. We can then define fractional powers of A. In terms
of the powers, we introduce the interpolation space

(X,Y)e2:=D(A?), 0€]0,1],
which is equipped with the graph norm in D(A%), i.e.,
lzllg, = llzllx + [A°%: 2 € (X,Y)oa,

compare with Definition 2.1 in Chapter 1 of [LiMa72]. Remark 2.3 in Chapter 1
of [LiMaT72] further states that the definition of the space (X,Y )y is independent
of the particular choice of A.

Attention should also be paid to the order of the spaces X and Y. Lions and
Magenes denote the above interpolation spaces with reversed order of X and Y,
see Section 2.1 in Chapter 1 of [LiMa72].

In order to treat the non-vanishing charge density p as well as the jump of the
electric field at Ziy, see (7.3), we generalize certain spaces from [EiScl7]. Let
i € {1,2}, I'" be a face of Q;, j € {2,3}, and Hp (Fin) := {v € H(Fim) | v =

0 on ITJ N Zint }. We then introduce the interpolation spaces

HYH(Fiwe) = (L(Fiw), HE(Fim))
Hy*(I") = (L*(I"), Hy(I"))

12,2 (7.5)

1/2,2°

The first space consists of functions on %, that vanish on Zp, N FT in a gen-
eralized sense, and the second one is the set of functions on I with general-
ized zero trace on the boundary of I within 0@, see Theorem 11.7 in Chap-
ter 1 of [LiMa72]. Note that one cannot assign well-defined traces to functions
in HY2(Fi) = (L*(Fim), H (Fin))1/2.2, as the space of test functions C2°(Fy)
is dense in the latter interpolation space, see Theorem 1.4.2.4 in [Gris85]. In
particular, Hé/Z(%nt) is not the closure of C%°(Fiy) in HY?(Fin).

We further define H},(Q;) as the space of all functions g € H'(Q;), whose trace
try g belongs to the interpolation space Hé/Q(f) for all faces T of Q; and i € {1, 2}.
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7. Maxwell equations in heterogeneous media and refined framework

In other words, functions in HJy(Q;) vanish on all edges of Q; in a generalized
sense. Finally, we also employ an interpolation space of higher order, namely

HY* (Fias) = (L (Fiws), H(Fiws) 0 H(Fiar)) (7.6)

3/4,2°

There is a useful interpretation of this interpolation space, resulting from the
above construction of interpolation spaces. Consider the Dirichlet Laplacian —Ap
on the rectangle Z;,; with domain D(—Ap) = H?*(Fiu) VH (Fins). This operator
is positive definite and selfadjoint on L?(.%;y), so that one can define fractional
powers (—Ap)? for v > 0. The above interpolation space HS’ / 2(%nt) then coincides
with the domain of the fractional power (—Ap)%/4.

The interpolation spaces on %, are crucial for several extension arguments. In
particular, the space from (7.5) are used to extend traces of Neumann derivatives,
while (7.6) is helpful to deal with Dirichlet traces.

We start with two properties of these spaces. The first one will be employed
several times to deduce that appropriate functions have a trace on %, in one of

the above interpolation spaces.

Lemma 7.3. Let j € {2,3} and i € {1,2}. The space tryim(H%j (Q;)) is contained
n H%J/_Q(L%nt), and trz,, (HL(Q;)) with T* =Ty UT3 is a subspace of Hé/z(%nt).
A similar statement holds true for V.= H*(Q;) N HL.(Q;), i.e., the operator trz,,
maps V' into HS/Q(%M).

Proof. 1) Let j = 3,41 =2, and g € H}, (Q2). All other choices for j and i can be
treated with similar arguments, due to the symmetry of the cuboids. Moreover,
we write for convenience § = ¢(?, use the rectangle R := (a3 ,a3) x (a3, a3), and
put I := (0, 00).

First, we extend § by means of Stein’s extension operator to a function in
H'(R?), and restrict the extended function to I x R. We denote the extension
to R? and the latter restriction again by g, and obtain

30§ € L*(I x R) = L* (I, L*(R)).

As a result, g belongs to H'(I, L?(R)). We employ also a smooth cut-off function
X : I — [0,1] that is equal to 1 on [0, 2a), and that is supported within [0, a]).
The choice of ¥ then implies that xg is an element of H'(I, L*(R)).

2) Analogously to the interface Fy, the space Hf, (R) consists of all H'-regular
functions on R, that vanish on the intersection of I'3 with OR. The next goal is to
show that the product xg also belongs to L*(I, Ht,(R)). This is achieved with an
approximation argument. Let y, : R — [0, 1] be a smooth cut-off function that is
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supported on (a3 + =, a3 — 1), that is equal to 1 on (a3 + 2,af — 2), and that

satisfies || x} ||, < Cn for n > ny in N with a uniform constant C' > 0. We put

() = xn(x3)X(21)G(2), x = (21,29, 23) € R®, n > ny.
Since §|g, has a vanishing trace on F:(f), one can adapt the arguments from the
proof of Lemma 2.1 in [EiSc18] to the current setting. An additional application
of Lebesgue’s theorem of dominated convergence thus yields the convergence

Let € > 0. In presence of the convergence statement (7.7), there is a number
n. € N with r,_ < e. Let p/, be the standard smooth mollifier with respect to the
j-th variable for m € N and j € {1,2,3}. We define

gm::p}n*pfn*piz*vns’ m € N.

By construction, g, is smooth, belongs to H'(R?), and vanishes near 1":(32) for
m sufficiently large. Consequently, the restriction g,,|;xr is contained in the
space L*(I, H}, (R)). Furthermore, (gm)m tends to v,, in H'(R?) and thus also
in L*(I, H'(R)). The function v,, hence belongs to L*(I, H},(R)), because the
latter space is closed in L?(I, H'(R)). As e > 0 is chosen arbitrary and the limit
statement (7.7) is valid, the product xg belongs to L*(I, Hf, (R)).

Taking also into account that xg belongs to H'(I, L?(R)), Corollary 1.14 from
[Lunal8] yields that trg,  (Yg) = tre,, g is contained in the desired interpolation
space (L*(R), H},(R))1/2,2-

3) The addendum for H}. (Qs) is proved by similar methods, employing now also
cut-off functions with respect to the second variable x5. The arguments, however,
remain essentially the same.

4) Let g now belong to H*(Q2) N HE.(Q2). We repeat the extension procedure
from part 1), obtaining that § is contained in H?(I,L?(R)). Moreover, as in
part 3), we infer that yg belongs to L*(I, H}(R)). Employing again the mollifier
technique from part 2), we define

Jm 7= D * P % P % (XG),  meN.

The function §,, is smooth, belongs to H?(R?), and its restriction §,,|7xx is thus
an element of L?(I, H*(R)). Due to classical mollifier theory, (), converges to
Xg in H?(R3), implying convergence in L?(I, H*(R)). As a result, Yg is contained
in L*(I, H*(R)). Altogether, Xg|ixr is an element of L*(I, H*(R) N H}(R)) N
H?*(I, L*(R)). Theorem 3.2 in Chapter 1 of [LiMa72] now yields that trz_, (Yg) =
tr,, § belongs to (L2(R), H*(R) N HY(R))s/a2 = Hy'*(Fins). O
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7. Maxwell equations in heterogeneous media and refined framework

We deduce next a trace inequality for functions in PH%J_ (Q), 7 € {2,3}, and for

functions in PH?*(Q) N PHp, p,(Q). The estimates become crucial, when we prove
piecewise H2-regularity for the solutions of the Maxwell system.

Lemma 7.4. Leti € {1,2}, g € PH} (Q) with j € {2,3}, and let f € PH*(Q) N
PH}, p,(Q). There is a constant Ciye > 0, depending only on Q, with

g% (7.8)

f(i)

S Cint

Jtr50 9

H%;Q(-?int) HY(Qi)’

< Cint (7.9)

[tz 1]

HY?(Fint) H2(Q))

Proof. 1) We first focus on (7.8). Due to symmetry, it suffices to consider only the
restriction g® on @y and the case j = 3. The rectangle R = (ay,a3) x (a3, a3)
from the previous proof is again employed.

As in the proof of Lemma 7.3, we extend g to a function in H'(R?) by means
of Stein’s extension operator, and we denote the extended function again by ¢®.
Since the extension operator is bounded, there is a uniform constant Cint > 0 with

6], < Con

HY(R?) —

We also employ the smooth cut-off function x from part 1) of the proof for
Lemma 7.3. By the reasoning of this proof, the function yg® |(0,00)x R 18 contained
in the space H'((0,00), L*(R)) N L*((0, 00), Hp, (R)).

Theorem 3.1 in Chapter 1 of [LiMa72] shows the continuity of the trace mapping

9(2)|Q2 (710)

HY(Q2)

H'((0,00), L*(R)) N L*((0,00), H} (R)) = HY(R), uis trgz,, u,

implying the estimates

<0

<2C |xg®)|

|tr. (kg®)] o e®)

LQ((O,oo),Hllj (R LQ((0700)><R)>

H'((0,00)xR) <2C H)NCHWLOO(Opo) Hg(Q)‘

1/2
HFj (R

H(Q2)

with a uniform constant C' > 0. Since trz,_, Yg® = trz,, ¢, we have thus arrived
at (7.8).

2) In order to show the remaining estimate (7.9), we argue in a similar way. The
arguments from part 4) of the proof of Lemma 7.3 yield that the product yf® is
an element of L%((0,00), H*(R) N H}(R)) N H?*((0,00), L*(R)). Employing again
Theorem 3.1 in Chapter 1 of [LiMa72], we infer in an analogous way the relations

Jtr, (2] I e gepery S € MWlsocioen 7]

<C

H§/2(R) >

H2(Q2)

with a uniform constant C' > 0. OJ
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Remark 7.5. The statement of the previous lemma is stronger than the trace
inequality for functions in H'(Q) with respect to H/?(.%,). This is because the
topology in H%J/,Z(%nt) is strictly finer than the one in H'Y?(%y) for j € {2,3},
see for instance Theorem 11.7 in Chapter 1 of [LiMaT72].

Furthermore, similar arguments as in part 1) of the proof for Lemma 7.4 show
that the analogous estimate
(i)

< C;
Hé”@%nt) = Vint

Htli%m g(i)’ g

HY(Q:)

is valid for all functions g € PH}, ,(Q), after a possible modification of the
constant Ciye > 0. O

We close this section by recalling that the Sobolev space W' ((a,b), H) embeds
continuously into C([a,b], H) for real numbers a < b, and a Banach space H.
Although this result is well known, we prove the embedding statement again,
since we are interested in the precise form of the embedding constant. The lemma
will be employed to control the error propagation during the error analysis for the
Peaceman-Rachford ADI scheme in Chapter 10.

Lemma 7.6. Let H be a Banach space, a < b be real numbers, and let f €
Whi((a,b), H). The function f has a continuous representative on |a, b], satisfying

1o,z < max{, 223 1 o oy,

Proof. The argument is essentially contained in the proof of Lemma 4.24 in [AdFo03].
Let t € [a,b], and denote the norm on H by ||-|| ;. The fundamental theorem of cal-
culus for Sobolev functions already implies that f has a continuous representative
on [a, b], fulfilling the identity

() :f(r)+/rt fls)ds,  relab.

We can thus estimate

5Ol < 170+ [ 176y ds

Integrating both sides of the inequality with respect to r from a to b, we infer

£ Ol < 555 [ 150Ny et [C17O)ly ds

< max{ 1, g2} 1 F i oy -
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7.3. Refined framework for the Maxwell system

Recall our assumption (7.2) on the parameters €, p, and 0. We consider the
Maxwell equations (7.1) as an evolution equation on the space X := L*(Q)%. For
our problem, it is convenient to equip this space with the weighted inner product

<<I]i> | <EI>> = [ (BB do (ﬁ) , (g) ex, (11

inducing the norm ||| on X. Note that the assumptions on € and p imply that ||-|
is equivalent to the usual L?>-norm on (). On X we consider the Maxwell operator

—c 1 1
M::( : e%”) (7.12)

—L curl
o

with domain
D(M) := Hy(curl, Q) x H(curl, Q).
The identities (7.4) imply here the useful representation
D(M)={(E,H)c L*(Q)® | curl E® curl HY € L*(Q;)?, [E X v, ] 7., = 0,
Hxve, ]z, =0 Exv=00n0Q, i € {1,2}}, (7.13)

involving transmission conditions in tangential direction at the interface .%;,;. The
latter conditions are given by the formulas

) 2 _ ) 2 _ ;

on Fint.

Employing the interpolation spaces from Section 7.2, we can now also incorpo-
rate the boundary conditions for the magnetic field, as well as the divergence and
the remaining transmission conditions in (7.3). This is done by studying the space

Xo = {(B,H) € L2(Q)° | div(c"EY) € L(Q.), div(uH) = 0,uH - v = 0 on 9Q.

[[gE : Vyint]]yint e Hé/Q(L%nt)}?

which generalizes the space Xg;, from Section 2 in [EiScl8|. Again, we employ
(7.4) to deduce the identity

Xo={(E,H) € L*(Q)® | div(eYEY) e L*(Q,), div(xWH®) =0 on Q;,
[€E - v, )70 € Hy* (i), [WH - v5, )50, = 0,
pH-v=00n00Q, i € {1,2}}. (7.15)
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7.3. Refined framework for the Maxwell system

The new assumption on the normal component of functions in X, at %, is given

by

trz, (eVEY) — tr s, (€PEP) € Hy*(F),
tr 7, (nVH) =tz (nPHP) = 0.

The space X is complete with respect to the norm

I(E, H)|ly, := [|(E, H) H+ZHdw (e EY)

L2(Qy)

+ I[eE - v ] 7 (7.16)

|H1/2 ant) .
To show this claim, let (E", H"),, be a Cauchy-sequence in Xj. There is an element
(E,H) in X = L*Q)®, such that (E",H"),, converges to (E,H) with respect to
the norm ||-]|. Since also the sequence (div(pH")), = (0), converges in L*(Q),
we infer div(pH) = 0 and pgH - v = 0 on 9@ by using the continuity of the
normal trace operator, see Section 2.2. Regarding the electric field, we observe
that also the sequence (¢E" lo,)n converges with respect to the graph norm of
the divergence operator on @);. Consequently, div(e )E(i)) is an element of L*(Q;).
Employing now the continuity of the normal trace operator at %, we conclude
that ([eE" - v7,,] 7., )n converges in H~Y2(F) to [eE - vz, ] #.,.. By definition
of the norm in X, (and the uniqueness of limits), the function [¢E - vz ], is
thus contained in Hy/*(F (Fint)- Altogether, (E, H) is an element of Xj.

We further denote the restriction of the Maxwell operator to Xy by M, and we
consider it on the space

which is equipped with the norm

AL Gen o

This space is complete. (The claim is a consequence of the closedness of the
Maxwell operator, see Prop051t10n 7.8, and the completeness of Xj.) The part of
M in X, is denoted by M, and it is shown in Proposition 9.22 that M; generates
a strongly continuous semigroup on X;. In particular, the Maxwell system (7.1) is
then wellposed on X;. We also prove that X; embeds into the space of piecewise
H'-regular functions on Q; U Qs, see Proposition 9.8. This reasoning then results
in an H'-regularity statement for the solutions of (7.1). The latter result is in
particular important for growth bounds on the semigroup during our error analysis
in Chapter 10.
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7. Maxwell equations in heterogeneous media and refined framework

While the space X is useful to analyze system (7.1) for piecewise H!-solutions,
we employ still another space to achieve H2-regularity. We generalize the corre-
sponding construction from Section 3 in [EiSc17] by defining the subspace

X, = {(E,H) ¢ D(M*)N X, | div(ePEY) € H}\(Q;) for i € {1,2},
[€E - vz ] € Hy*(Fiut)} (7.19)

of the domain D(M¢g). This space is equipped with the norm

ICEH) | x, = (B, H)llpae) + [[EE - vaJanll o2 5, (7.20)
2
(@O ) IR (R nIC)
+ ; < Hle(E E )’ HUQ) + y fagzon. Hdlv(€ E )’ Hé/z(r/))

Similar to Xp, the space X, is also complete with respect to the norm ||| y, .
Analogously to the operator M;, we denote the part of M in Xy by M,. We
compute the domain of M, in Lemma 9.21, and show that it also generates a
strongly continuous semigroup on Xs5. As a consequence, the Maxwell system
(7.1) is also wellposed in X3, and it possesses solutions of piecewise H?2-regularity.

Remark 7.7. In the definition of the spaces X, and X5, the jump condition for the
electric field means essentially, that the flow of information through the interface
is regular enough to ensure piecewise regularity of the fields. After establishing
that the spaces X; and X, embed into PH'(Q)® respectively PH?(Q)®, we observe
that the definitions of X; and X, are invariant under appropriate changes of the
coefficient function inside the jump condition for the electric field, see Remarks 9.9
and 9.18. This is crucial for the wellposedness of the Maxwell system (7.1) in X
and Xs. O

The following result states the generator property of the Maxwell operator,
corresponding to the Maxwell system (7.1) on X. The statement is essentially
contained and proved in Proposition 2.3 of [EiSc18].

Proposition 7.8. Let e, u, and o satisfy (7.2). The Mazwell operator M generates
a contractive Cy-semigroup (e™);>q on X.

Proof. The arguments in part 1) of the proof for Proposition 2.3 in [EiSc18] work
also in the current setting of discontinuous coefficients. They yield the generator
property, as well as the contractivity. O
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8. Elliptic transmission problems

This chapter provides supplementary results for the regularity analysis in Chap-
ter 9. These are namely fundamental regularity results for transmission problems
involving the Laplacian on the cuboid Q.

In Section 8.1, we study transmission problems concerning functions with con-
tinuous normal derivative across the interface .%;,;. We apply the results in the
study of the first component of the magnetic field. Section 8.2 then allows also
functions with a discontinuous Neumann derivative at .%;,;. The conclusions of this
Section are valuable for the analysis of the remaining components of the electric
and magnetic fields.

8.1. Elliptic problems with homogeneous
transmission conditions

The goal of this section is to transfer parts of Lemma 3.6 in [HoJS15] to our setting
of discontinuous coefficients. We first consider elliptic problems with discontinuous
coefficients, that are related to the first component of the electric and magnetic
fields. Let n > 0 be a function on @), that is piecewise constant on ¢); and ()5. For
later reference, we formulate this assumption in compact form as

0, € (0,00) for i € {1,2}. (8.1)

n

The map 7 is used as a representative for the parameters ¢ and p from the Maxwell
system (7.1).

Let I'* be a union of opposite faces of (). Throughout, I'* represents the part of
the boundary, on which homogeneous Dirichlet boundary conditions are imposed.
The case I'* = () will be referred to as the Neumann case, I'* = 0@ as the Dirichlet
case, and all remaining ones as the mixed case.

We then define the space

W = {ue PHQ) | [l s, = 0 = [Oyul 5, =0 on T,
Jyu=0on0Q\I"}, (8.2)

that serves as a domain of regular functions for the Laplacian on ). In view of

the boundedness of the trace operator, # is complete if equipped with the norm
in PH*(Q).
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8. Elliptic transmission problems

The next proposition states that an appropriately scaled version of the Laplace
operator is an isomorphism from ¥# onto L?*(Q). In the proof, we focus on the
more involved cases I'* = ) or I'* = I'y, where Neumann boundary conditions are
prescribed close to the interface .%;,;. The case of homogeneous Dirichlet boundary
conditions is covered by Theorem 5.3 of [Lemr78] and Theorem 5.1 of [Kell71].

Proposition 8.1. Let I'* be nonempty, let n satisfy (8.1), and let f € L*(Q).
There is a unique function u € Vi := {v € PHL.(Q) | [nv] £, = 0}, satisfying the
formula

ﬁ:/‘n(i)(vu(i)) . (vgp(i))daj — /Qf@dm (8.3)

for all functions @ € Vi. Furthermore, u belongs to # , and there is a constant

When proving that the magnetic field components of a vector in the space X;
from (7.17) are piecewise regular of first order, we also consider the Neumann case
I'* = (). The latter is treated in the next proposition.

Proposition 8.2. Let T'* be empty, let n satisfy (8.1), f € L*(Q), and define
Vo ={ve PH Q) | [nv]#, = 0}. The variational problem

2
3 /Q u@p® 4 7@ (Vu®) . (Vo) dz = /Q fodz,  peW,
=1 i

has a unique solution uw € V. The mapping u belongs to W', and it satisfies the
inequality ||ull ppzgy < Cllull2g) + i HAM“HL A)) with a uniform constant

C=C(Q,n) > 0.

2@

The remainder of this section is concerned with the derivation of Proposi-
tions 8.1 and 8.2. The general structure of the argument is inspired by the papers
[Kell71, Lemr78], which treat a Poisson problem with discontinuous coefficients
and homogeneous Dirichlet boundary conditions. There are, however, significant
differences between our proofs and those papers. The changes are necessary to
treat the case of Neumann boundary conditions. In particular, the spectral the-
ory for the considered Laplace-Beltrami operator with discontinuous coefficients
on the lower hemisphere is much more involved in our setting: To obtain appro-
priate lower bounds for the smallest positive eigenvalue, we need to analyze a
two-dimensional eigenvalue problem for a precise control on the eigenfunctions,
see Lemmas 8.6 and 8.9. In the homogeneous Dirichlet case of [Kell71, Lemr78],
however, it is sufficient to deal with an easier one-dimensional eigenvalue problem.
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8.1. Elliptic problems with homogeneous transmission conditions

8.1.1. Energy estimates for the Laplacian on the cube

Within the next two lemmas, we derive an energy estimate for the Laplace operator
on # in the spirit of Grisvard, see Section 2 in [Gris75]. We thereby use ideas
from the proof of Theorem 2.1 in [Lemr78§].

Lemma 8.3. Let n satisfy (8.1). The identity

> 10 (o
1

=

+ H82

+ H‘92

+2 Halﬁgu

L3(Q:) L2(Qq) L2(Qi)

+ 2 H@lﬁgu Auy®

,+2 Hazagu )

) = Zn’)

L2(Q: L2(Q))

is valid foru € W .

Proof. 1) We only treat the case ' = I'y. The remaining cases are proved similarly
with appropriate modifications. A simple calculation leads to the equation

2

HAU@ i?(@» - Hafu(i) 12(Q)) +H82 y T H d5u £2(Q)) (84)
+2/Q(afu<i>) dx+2/ (&2 (02 ) da:+2/ (62u9)(92u) de

for i € {1,2}. To show the desired identity, it remains to consider the three terms
on the right hand side.

2) Let i € {1,2}. We first employ the boundary condition d,u = 0 on I'y U T3,
and apply the reasoning in the proof for Lemma 3.3 in [EiSc18] to the functions
Dyu™ and 63u(i). Consequently, there are sequences (), and (¢,), in C*(Q;)
with gpn — O5u?, 9, — Ohu® in H'(Q;), n — 0o, and ¢, = 0 on Fg U =0
on Iy for n € N. Lemma 2.1 in [EiSc18] then implies that Oy, = 0 on r{. and
031, = 0 on Fg). Integrating by parts leads to the identities

| @spn) @) da = = [ (@ohpuin e = | (Gap) (D)
Taking limits, we infer the formula
/Q (3u) (@3u) dx = /Q (@20 d (8.5)

for the third term on the right hand side of (8.4).

3) Lemma 7.1 implies that [ndu]z, = 0, and Lemma 2.1 in [EiSc18] yields
Ostt = 0 on I';. Introduce then two functions g; and g, on @ by ggi) = Oyu®
and 92 := n0u'. By definition of # and the above transmission conditions, we
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8. Elliptic transmission problems

infer that g; and g, belong to H'(Q). The reasoning in the proof of Lemma 3.3
in [EiSc18] now provides functions ¢, and Uy in C*(Q) with $n = g1, U = Go
in H'(Q), n — oo, and ¥, = 0 on T'; UT,. We then put ¢, := *wn This implies
that the transmission conditions [p,]#,, = 0 = [7¥n] %, are true. Lemma 2.1
in [EiSc18] and Lemma 7.1 now further show that d9,() = 0 on N Y =0
on T, and [02¢n] 7., = 0. Integrating by parts twice, we hence arrive at the
identities

Zn)/ (039 (00 dw = — Zn [ @908 s

_277)/ (0265 (010) dae

As above, the limit n — oo gives rise to

Zn )/ (02uD)(92u) dx—Zn /Q (10,uD)? dz. (8.6)

An analogous reasoning also implies the equation

277 )/ (?u D) (02u) dx—Zn /Q (105uD)? dz. (8.7)

Inserting (8.5)—(8.7) into (8.4), we arrive at the desired formula. O
Lemma 8.4. Let u € #', and let n satisfy (8.1).
a) Let I'* be nonempty. Then, the estimate

Au®

&0
=1

2
<C Z n(i)
=1

H2(Qi) L2(Qq)

is valid with a uniform constant C = C(n, Q).
b) Let I'* be empty. There is a constant C' = C(n, Q) with

C’ZH( — 7D Au

H2(Q) L2(Qi)

22: 0 [
=1

Proof. a) In view of the interface and boundary conditions in #, see (8.2), an
integration by parts leads to the relations

2 2
3 / o r=-% [ 5D(Au®)u dz
=17 =17 Qi
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8.1. Elliptic problems with homogeneous transmission conditions

7 || Ay

3 u
The Poincare inequality in Theorem 13.6.9 of [TuWe09], and Lemma 8.3 now imply

the first assertion.
b) If I'* is empty, the reasoning from part a) gives rise to the formula

> [,

so that part b) now follows from Lemma 8.3. O

L2 Qz L2(Qi)

2

-3 / 7 (Au®)u® de,

i=1 i

('L

8.1.2. Geometric constructions

Lemma 8.4 shows that the ranges of nA and I —nA from ¥ into L?(Q) are closed.
To show the bijectivity of these operators, it is thus sufficient to demonstrate that
the orthogonal complement

o {(nmwm if I 0,

(I—nA)(#)L ifI* =0, (8.8)

is empty. Note here that the orthogonal complements are taken in L*(Q) with
respect to the standard unweighted inner product. Employing Weyl’s Lemma, see
Section IV.4.2 in [Hell60], we conclude the relation

N C{ve LX(Q) | AvY =0, i € {1,2}} N Hp(Q1) N Hiyo(Q2)
if I is nonempty, and
N C{oe XQ) | (I =AW =0, i€ {1,2}} N HR(Q1) N Hio(Q2)

if I'* is empty. In the following, we investigate the behavior of functions in .4 near
the boundary of the interface .%,;. Indeed, we want to demonstrate that functions
in .4 are piecewise H2-regular.

Let A4 € 0%, be for the time being no vertex, and let B(.#, R) be a ball
of radius R > 0, such that B(.Z,R) contains no vertex of 0.%,:. We next
introduce spherical domains, representing the regions where 7 is constant. Set
G; = 0B(A#,R)NQ; for i € {1,2}. After scaling, shifting and rotating, we can
assume the representation

G1 = {(cospsinf,sinpsinfd, cosd) | ¢ € I1, 0 € (5,m)},
Gy = {(cospsinf,sinpsind, cost) | p € I, 0 € (3,

L=(33m, L=(-3%.
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8. Elliptic transmission problems

We denote the common arc of dG; and 0G5 by S, set G := G; UGy U S, and
define the coefficient function n accordingly. Note that the interface .#;,; is now
represented by S. Throughout, the tuple (¢, #) denotes spherical coordinates. We
then consider the Laplace-Beltrami operator

1 0% cosd O .
(Lle: = (Sin290g02 YT 8¢92>¢|G“ redl2h (8.10)

Y e D(L) = {v € L*(G) | v € H¥(G,), 9,4 =0 0n G, \ S if G Z T*,
Y =0o0n dG; \ S if 0G C T,
[[771/1]]5 =0= [[ausd}]]S}

on the lower half sphere GG. To simplify the analysis on G, we next use the stere-
ographic projection with respect to the north pole (0,0,1), see (A.1) in the Ap-
pendix. This leads to the identification of G with the unit disc D := {(z1,z5) | 23+
22 < 1}, of G; with D;, and of S with S, where

Dy :={(z1,29) € D | 21 <0}, Dy:={(x1,22) € D | x; > 0},
S:=Dn{x, =0}

We next denote the function on D, which results from concatenating n with
the inverse stereographic projection, again by 7. The assumption (8.1) is then
formulated in the following way:

The function n is positive, and piecewise constant on G respectively D.

It is now crucial that the above projection procedure transforms the above
Laplace-Beltrami operator on G into the standard 2D-Laplacian (up to a smooth
factor), see (A.3) in the Appendix. We hence analyze the 2D-Laplacian

Lplp, = A9, e {12}, (8.11)
¢ e D(L) = {¢ e L*D) | vV € H¥(D;), 8,4 =0 on dD; \ S if G € T*,
YD =0o0ndD;\ S if 0G C T*,
[7¢]s =0 =[0,,¥]s}

on D. During our arguments, the latter operator is easier to handle than the
Laplace-Beltrami operator L.

8.1.3. Analysis of a Laplace operator on the unit disc

By providing an energy estimate, the next lemma yields that the two-dimensional
Laplacian L from (8.11) is closed. Note that a similar estimate is contained in
Lemma 2.2 of [Kell71] for the Dirichlet case. As the proof in [Kell71] is, however,
not entirely comprehensible to the author, we provide a different one.
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8.1. Elliptic problems with homogeneous transmission conditions

Lemma 8.5. Let n be positive and piecewise constant on Dy U Dy. There is a
constant C = C(n, D) > 0 with

2 .
S
i=1

H?(D;) < O

for all ¢ € D(L).

Proof. 1) We only treat the Neumann case 0G & I'*. The remaining Dirichlet
case can then be obtained in the same way. Let u € H*(D) with d,u = 0 on dD.
Green’s formula, and the Cauchy Schwarz inequality yield the relations

[19uf de == [ (Awpude < 2 (18ulp, + lulam,)

In combination with Proposition 7.2 in Chapter 5 of [Tayl11], we hence obtain the
bound

2 2 2 2 2
[ullgrzpy < CU[AUl L2y + Ul (p) < 201 AUll72py + [ullz2p)  (8:12)

with a uniform constant C' = C(D) > 0.
2) Let ¢ € D(L). Denote by ¢ the reflection of ¢ at the line {z; = 0} for
¢ € L*(D), and define functions f and g on D; U Dy via

— —

FO = My — @ 53). F@ = @y _ 0G0
g = 0 4 @) 9@ = g0 4 @

In consideration of the construction of f, g and the transmission relations for 1,
we derive the identities

—

f(l) — 0= f(2), 81f(1) — n(l)aﬂ/j(l) (2) 0@ = —7] le (2)311/1(2) = alf(2)7
gt =¢@  9gM =9 — 9@ =0 = —811/1 + 0@ = a19(2)

on the interface S from Section 8.1.2. Lemma 7.1 then implies the equations
Oof D = 9, f@ and 9,9V = 9,9 on S, since ¥ belongs by definition of D(L) to
PH?*(D). We then conclude that f and g are elements of H?(D). A similar reason-
ing also shows that f and g satisfy homogeneous Neumann boundary conditions
on 0D. Estimate (8.12) now yields the inequality

161720y < 20191172y + 1861721

for ¢ € {f,g}. Combining the estimates for f and g, we arrive at the relations

g @Y\ (PO 2
o ) ()

H2(Dy)
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8. Elliptic transmission problems

2 2 2 2
< 20( ||f||L2(D) + ”9||L2(D) + HAJCHLQ(D) + ||Ag||L2(D)>

2 2
—e(|(v ) )L, 10 ) R
1 1 e L(Dy) 1 1 Ay
Observe that the matrix (77(11) _771<2) ) is bounded and invertible as an operator on
L?*(D;)? and on H?*(D;)?. We thus obtain the asserted estimate. O

)

2(Dy)

To find a spectral decomposition of L in Section 8.1.4, we first deal with its
relative L. Recall the intervals I; = (2,%8) and I, = (-5, 2) from (8.9). We then
use on I; U Iy our notation for the restriction of a function in the same way as
before. Note also that the coefficient function 1 depends only on the angle ¢ in
polar coordinates, and it can thus be interpreted as a piecewise constant positive
function on I; U I5.

We then consider the discontinuous Sturm-Liouville problem

W) = —k*pD(p)  for p € I, i € {1,2},
DM (1) = n@y@(z), gy (En) =yl (—1), (8.13)
WOY(Z) = @), @WYE) = @®)(-2).

Employing Lemma 4.2 and statement (3.23) in [Kell74], we infer after scaling
that (8.13) has a countable set of eigenvalues 0 = k3 < k? < -+ — 00, and asso-
ciated piecewise smooth eigenfunctions g, 11, ..., forming an orthonormal basis
of L*(—2,3%) = L2(0,2m). The latter space is here equipped with the weighted
inner product

2

(f,9)n = ; nfgde.

The first eigenfunction v is then piecewise constant, and the eigenvalues x2 and

k3 are equal to 1. We further denote for v > 0 by J, the Bessel function

00 ( )y+2j
Z t>0,
oy JIT(v+ji+1)

which is smooth on (0, 00), see for example the Theorem in Section 5.5.1 in [Trie92].
Here, I'(+) denotes the Gamma-function. In the following, the positive zeros of the
derivative J/, are important. These are denoted by 0 < uﬁ”) < uéy) - — 00.
The above tools at hand, we are now in the position to state the following cru-
cial spectral properties of the 2D-Laplacian L in the Neumann case, see (8.11).
It is essential to have a precise knowledge of the eigenvalues and corresponding
eigenfunctions of L to find a lower bound for eigenvalues of the scaled Laplace Bel-

trami operator L, see the proof of Lemma 8.9. For the next proof we employ ideas
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8.1. Elliptic problems with homogeneous transmission conditions

from the proofs of the following statements in [Trie92]. These are the Theorem in
Section 5.5.3, Lemma 2 in Section 6.4.2, and Theorem 2 in Section 6.4.2.

Lemma 8.6. Let n be positive and piecewise constant on D1UDs, and let 0G € T'*.
The following statements are true.
a) Let Ny == (p '”)) for Lk € N, Mg =0, and Ao = (uk 1)? for k € Ns,.

The functions

\I/kJ(’I“, QO) = Jﬁl(\/Ahl’l“)@Ul(gO), re (0, 1), p e (—g ?ﬂ) k € N, l e Ng,

form a complete orthogonal system in L*(D) with respect to the weighted inner
product

(f.90np = [ nfgdw.  f.g€ (D).

b) Each basis function Wy, belongs to the domain D(L), and satisfies the eigen-
value relation

LU, = X%,  keN, leN,.

c¢) The operator L is selfadjoint on L*(D).

Proof. a) The asserted orthogonality follows from the choice of the functions
{1y | I € Ny}, and the Theorem in Section 5.5.3 in [Trie92]. The completeness
of the system {VU;; | k € N, | € Ny} can be concluded in the same manner as
in the proof of Lemma 2 in Section 6.4.2 in [Trie92] In our case, we employ the
completeness of the family {¢y | k € No} in L2(—5, 37) = L?(0, 2m).

b) We show first that Wy, belongs to D(L). In view of the choice of 1 as an

cigenfunction of (8.13) and /Ay, = /L,(:l) as a zero of J!

»,» it suffices to show that

\If,(f)l belongs to H*(D;). As ‘lf% is constant on D;, it is clearly an element of
H?(D;). We further remark that the function

(0)

alr ) = liihret) = 51 (252 B,

— Jl!

k€ N>y, 7€ (0,1), ¢ € (-7, %W), is smooth on each halfdisc D;, and thus an
element of PH?(D).
Let now [ € N with x; = 1. Since 1), solves (8.13), it has the representation

wli)(@) = a;; cos(p) + by sin(yp), xs (_g, %m?
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8. Elliptic transmission problems

with real numbers a;; and b;;. Switching to cartesian coordinates, we then consider
the function

e (1) r\2
% 1 r\4)
WL 9) = grianseos(ie) + hasin(e) -1 (M5 )

- I(j+1)!
00 (1) 2j (ZitT3Vj
1 2\ ( )? i
- 2(“"’”“+bi’ﬂ2)jzo(_1y< 21) G ).

for (z1,x9) € D;. As a result of the uniform convergence of the series and its
derivatives, we conclude that ®@ is smooth on D;. This means that ®, and
consequently also Wy ;, are elements of PH?(D).

It remains to consider the case [ € N with x; > 1. The map Wj; then has the
representation

= (5)%
Wi(r ) = %wl z:: JI0(ky+j+1)

Employing the uniform convergence of the series and its derivatives, and the piece-
wise smoothness of 1, we then infer the estimate
1 1 2
~ |, wy)
INAGE

1 12 D12
+ﬁ\a¢\11,§} + 2w +

L)oo 0)
o5 |02

2)dgpdr< 00.

This shows that Wy, belongs to PH?(D), see Section A in the Appendix for a
representation of partial derivatives of second order in polar coordinates.

Let now k € N, [ € Ny and 7 € {1,2}. Applying the Theorem in Section 5.5.3 in
[Trie92] together with the choice of ¢, in (8.13), we arrive at the desired relations

(L04) (1, 0) = AU 0) = - 5 (2 (e (0)
1< 0 @)y hear)
(’1“387“( 59 In (ki) = Sl ar) )0

= At (0 (y Aar) = =Aea U, ).
¢) In view of the energy estimate from Lemma 8.5, the operator L is closed. It

remains to show that L is symmetric. With the statements in a) and b), we can
then conclude that L is selfadjoint, see for instance the Theorem in Section 4.5.4 in

126



8.1. Elliptic problems with homogeneous transmission conditions

[Trie92]. To that end, let ¢ and ¥ be two elements ofv the domain of L. Combining

the boundary and transmission conditions from D(L) in an integration by parts,
we infer the desired relations

2 2
(L), d)yp = Z/ nD (AP pD dz = — Z/ NIV . Vo dz
i=1"Di = JD;
2
=3 [ nO00(ag0) dr = (4, L)yp.
i=1"7Di
Choosing here in particular 1) = v, we also conclude that —L is positive. O

8.1.4. Spectral analysis of the Laplace-Beltrami operator

The results of Lemma 8.6 for the 2D-Laplacian L from (8.11) hand, we now de-
rive spectral properties for its counterpart L on the half sphere within the next
two lemmas. Recall that L is defined in (8.10). The statements correspond to
Theorem 4.1 and Proposition 4.2 in [Lemr78].

Lemma 8.7. Let n be positive and piecewise constant on G1 U Gy. The operator
I — L:D(L) — L*(Q) is an isomorphism.

Proof. 1) We again only consider the Neumann case G Z I'*. For the Dirichlet
case, consult Theorem 4.1 in [Lemr78]. Let f € L*(G). We seek for a function
u € D(L) with (I — L)u = f. Therefore, the lower half sphere G is transformed
into the disc D via the stereographic projection with respect to the north pole
(0,0,1), see (A.1) in the Appendix. For a function w € L*(G) the transformed
function on D is then denoted by w. To derive an appropriate weak formulation of
the identity (I — L)u = f, we use certain facts about the stereographic projection,
see Section A in the Appendix.

Assume first that there is a function u € D(L) with (I — L)u = f. The stere-
ographic projection being a C'*°-smooth diffeomorphism, the function @ is again
piecewise H2-regular on D, and na belongs to H'(D). This means that @ satisfies
the zero order transmission condition in D(L). Similar reasoning also shows that
@ fulfills the first order transmission conditions. To conclude that @ is an element
of the domain of L, it hence remains to consider the Neumann boundary condi-
tions. Denoting in the following calculation polar coordinates on D by (r, ) and
spherical coordinates on G by (0, ¢), the stereographic projection is given by the

mapping property

sin 6

"= 1 —cos@’

» =,
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8. Elliptic transmission problems

see (A.4) in the Appendix. The first identity implies the formula

ow, _.Or 1

89“’(97 90) = E(Ta @)% = 87"'{1(7“7 95)

cosf —1
Choosing 6 = 7/2, we conclude that @ satisfies homogeneous Neumann boundary
conditions on dD. Altogether, @ is an element of the domain of L, see (8.11).

2) Recall now the volume factor from (A.2) in the Appendix, and the represen-
tation of the Laplace-Beltrami operator by means of the 2D Laplacian on the disc,
see (A.3) in the Appendix. Combining the boundary and interface conditions in
an integration by parts, we first infer the equations

[on((r = Ly Udg—z e Y G050 0 (AGOY0 d(a, a0)

1+x1+x2)

_ 050 4+ L T(n0a) . D50
Z/ 1+x1—i—:r:) v +,r](z) (nat) - V(o) d(z1, z2),
veV ={v e PH'G) | [no]s = 0.

Taking the fact (I — L)u = f into account, we hence infer the weak formulation

~(1),,,(4) I (pDaD) . V(nDw®)) d
Z/ 1 +x1 +x2) 0w + 77(1) (n*a'"y - V(n'w )) (w1, x9)

/ i +x1 fw d(zy, z2), (8.14)
weV ={¢e PH (D ) ! [[W]]g =0}

of the identity (I — L)u = f. We hereby tacitly use that the spaces V and V
are transformed into each other by means of the stereographic projection, see our
reasoning in part 1).

3) We now prove the existence of the desired function u. Thanks to the Lax-
Milgram Lemma, (8.14) has a unique weak solution @ € V. It satisfies

2
i)~ (i), (i 1 i)~ (i i), (i
Z/p (n“’u()v“vLWV(n”u())-V(n( )Uo)) d(z1, 2)
i=17Di
= /Dngv d(zq, x2), (8.15)
for all v € V, with g(zy,z,) = m(f — a)(x1,x2) + U(xy,22). We may
consider @ as a fixed function on the right hand side, so that (8.15) is the weak
formulation of the identity (I — L)a = g. By Lemma 8.6, @ thus belongs to D(L).

Repeating the reasoning in parts 1) and 2) in reverse order, the resulting function
w is an element of D(L), and it satisfies (I — L)u = f.
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8.1. Elliptic problems with homogeneous transmission conditions

We finally note that a similar reasoning shows that L is also closed, implying
that I — L is invertible. O

Lemma 8.8. Let n be positive and piecewise constant on G1 U Gy. The spectrum
of —L consists of a countable set of eigenvalues 0 < \g < Ay < -+ — 00, and
there is a complete associated family of eigenvectors {®y, | k € No}, satisfying the
orthonormality relations

/Gn@kéz ds = o, k,l € Ny.

Proof. We again only focus on the Neumann case 0G & I'*. The Dirichlet setting
0G C I'* is covered by Proposition 4.2 in [Lemr78]. We show first that L is
selfadjoint with respect to the weighted inner product

(9, [nc :Z/Gngfdc, g9, f € L*(G).

Let ¢,¢ € D(L). We employ here the reasoning from parts 1) and 2) of the
proof for Lemma 8.7. This means that G is projected onto the unit disc D by
means of the stereographic projection. The transformed functions are denoted by
¢ and ¢. The latter mappings are then elements of the domain of L. Combining
the symmetry of L, see Lemma 8.6, with the arguments in part 2) of the proof for
Lemma 8.7, we arrive at the crucial formula

(L@ = [ n(Ed)dde = [ nilode = (0. Lo)o.  (816)

As a result, L is symmetric with respect to the inner product (-,-),c. By
Lemma 8.7, the operator I — L is invertible, implying that L is selfadjoint on
L*(G). Since the domain D(L) is embedded into . - H'(G), the embedding of
D(L) into L*(G) is compact. As —L is further nonnegative, the spectral theorem
for selfadjoint operators with compact resolvent implies the statements about the
structure of the spectrum of —L, and the associated eigenbasis of — L. O

In the Neumann case G & I'*, we choose the first eigenvector of L to be
piecewise constant, meaning o, := %, with o € R a normalizing factor. The next
lemma provides us with a lower bound for the first nonzero eigenvalue of —L,
which turns out to be crucial for the regularity of functions in the space .4 from
(8.8).

Lemma 8.9. Let n be positive and piecewise constant on G1 U Gy. In case of
Neumann boundary conditions 0G € I'*, the eigenvalue \y of —L satisfies Ay > %.
For Dirichlet boundary conditions 0G C I'*, the estimate Ao > 1 is valid.
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8. Elliptic transmission problems

Proof. We consider only the Neumann case. The other asserted inequality may be
obtained with the same arguments as in the proof of Proposition 4.3 in [Lemr78§].

Let V be a two-dimensional subspace of D(L). For ¢ € V, we denote by 4 the
function on D, obtained by projecting G onto D via the stereographic projection.
The latter projection is introduced in Section A in the Appendix. Then the space

‘N/::{g|g:1/~zwith1/)€‘/}

is contained in D(L), and it is also two-dimensional, see part 1) of the proof of
Lemma 8.7. We recall the inner products (-, ), ¢ and (-, ), on G respectively D,
which induce norms ||-||, ; and [|-[|,. The latter are equivalent to the standard
L?-norms on G and D, respectively. In view of (A.2) in the Appendix and (8.16),
we obtain the inequality

(~Le e _ (=Ld, ), (=L gy,
Wlhe  Jo oz P Al m) ~ 4 02

Since V' is an arbitrary two-dimensional subspace of D(L), we infer the relations

L —Lap,

IS 0 NERS S 0 Y
ven\ o} Y2 ¢ 4gevvior (|92
veD(L weV\{O} HwH . 4V§ D(L), Jen0) 1112
dim V= K dim V=2 K

The Courant-Fischer Theorem now yields the estimate
1
Ay 2 min ({Meo | k=25 U {h | k1€ N}).
In consideration of the formula

2 = —Ji(t), t >0,

estimate (1) in [Lorc93] provides the lower bound M.y > 12 for £ > 2. Being
related to zeros of the derivatives of certain Bessel functions in Lemma 8.6, the

remaining relevant eigenvalues satisfy A\;; > 3 for k,{ € N, see Section 15.3 in
[Wats66]. This shows the asserted estimate. O
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8.1. Elliptic problems with homogeneous transmission conditions

8.1.5. Conclusion of the elliptic regularity statements

To demonstrate the desired regularity statements in Propositions 8.1 and 8.2, we
show that the space .4 from (8.8) is trivial. A major step in this direction is the
result that all functions in .4~ are piecewise H?-regular on (.

By means of the above preparations, we first deduce H?-regularity for functions
in .4 in a neighborhood of the intersection of the interface .%;,; with the boundary
Q). We denote this intersection by 0.%;, in the next statement (because it is the
boundary of Zi, in R?). Although the associated proof follows essentially by
combining the arguments of the proofs for Theorems 2.1 and 5.1 in [Kell71], and
the proof for Proposition 5.2 in [Lemr78] with our results in Lemmas 8.7-8.9, we
include the proof for the sake of a self-contained presentation. Note that the ideas
of the proof are also employed by Grisvard in Lemma 2.4 of [Gris75].

Lemma 8.10. Let n satisfy (8.1). Let further v € N, and M € 0F be no
vertex. Then, v belongs to H*(Q; N B(A# , p)) for some p > 0.

Proof. 1) We again only treat the Neumann case .# ¢ I'*, since the Dirichlet
case follows in an analogous way. Let § > 0 be chosen such that the ball B(.Z, )
contains no vertex of 0.%;,;. After shifting and rotating, we can assume the formula

B(//l,(S)ﬂQi:{rs | TE(O,(S), SEGZ'}.

We employ here the spherical domains G; from (8.9). The assumption .# ¢ I'*
then corresponds to the Neumann setting 0G ¢ I'*.

2) In view of Fubini’s Theorem, the function o, : G — R, s — v(rs), is L*-
integrable for almost all € (0,d). Employing the eigenbasis {®, | k € N} of the
Laplace-Beltrami operator L on the lower hemisphere GG, see Lemma 8.8, 0, has
the representation

0, = Iiak(r)@k, ag(r) == /GUU(TS)(I)k(S) ds, r e (0,9).

Since
[ [metrsn@asar < a2 [7o( [ oo ds) ([ ol as)ar
0 G 0 o -
< Il ol

we conclude by Fubini’s Theorem that the function (0,0) — R, r — ag(r), is
measurable. We further obtain with Parseval’s identity the relations

0o 5 § ©0 1)
Z/ r2|ak(r)|2d7“:/ Zr2|ak|2dr:/ /r2n|v(rs)|2dsdr
k=0"0 0 120 0 Ja
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8. Elliptic transmission problems

< [Inllo HU“2L2(G) < 0. (8.17)

In particular, a4 is integrable on every subinterval [a, §] for a > 0.
3) Take a test function x € C2°(0,4), and set

ug(rs) == {X(T)(I)k(s) if r € (0,6),

0 else,

for s € G. Since ®; € D(L), the function uy belongs to PH?(Q), and it satisfies
the relations [nug]#,, = [O1uk] 7., = 0, Oyur = 0 on I'y UT'3, and u, = 0 on T'y.
This means that wuy, is an element of #, see (8.2). By definition of .4 in (8.8), the
identities

2.6 , .
0= (v,nAuy) L2 = Z/ / nu® (TS)AU,(;)(T‘S)TQ dsdr (8.18)
=170 JGi

follow. We next rewrite the Laplacian A in three-dimensional polar coordinates,
see Section A in the Appendix. The definitions of L in (8.10) and uy, as well as
the eigenvector relation for ®; from Lemma 8.8 yield

% 1 7 . %
A (r,0.60) = 50,(0,u (r, 0, 0)) + ———p(sin 004 (1, .6)

1
r2sin @

2, (1)
r2 SiIl2 ‘gaapuk (7”, 2 8)
1 3 1 [
= 5070, (r,0.0)) + 5X(r) L2 (0.0)
1 ! " 7
= 52} (1) + X (1) = Aex(r) 21 (0. 6).

So (8.18) leads to the formula

5
0= / / n(2rx (r) + 2" (r) — Xex (1)) ®Pr(s)v(rs) ds dr
0o Ja
5
= / (X" (r) 4+ 2rX'(r) — Mex (7)) (r) dr. (8.19)
0
4) Weyl’s Lemma, see Section 1V.4.2 in [Hell60], now implies that ay can be
identified with a twice continuously differentiable function, up to a set of measure
zero. We can thus assume that y belongs to C?(0,d). Integrating by parts, we
hence infer from (8.19) the identity

(r*aj) — Ao = 0 (8.20)
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8.1. Elliptic problems with homogeneous transmission conditions

n (0,9), since y € C(0,9) is chosen arbitrarily. Interpreting (8.20) as an end-
point respectively initial value problem on (0,d/2] and [6/2,d) with final respec-
tively initial values «(d/2),a/(6/2) € R, the theory of ordinary differential equa-
tions shows that the space of solutions of (8.20) is two-dimensional. We can thus
write

(1) = aprStr + bprz*, (8.21)
for k € N, and for the exponents

=1+ (1+4M)12 =1 — (1 +4M)12
9 ) CQJC = 9 )

where ay, by € R are chosen such that ay(r) = [;nv(rs)®i(s) ds. Recall also that

/7]|v (rs) 2 ds = Z|ak
G

5) We next deduce that b, = 0 for & € Ny, and start with £ = 0. As in the proof
of Theorem 2.1 in [Kell71], we choose a smooth function x € C*°(0,0) with y =1
on [0,0/4], and x = 0 on [30/4,6]. Define then

to(rs) = {;z(r)@o(s) if r € (0,9),
0 else,

for s € G. Since @ is piecewise constant, iy belongs to #, see (8.2). As in (8.19),
we infer the identity

G =

Let now k € N. On the one hand, Lemma 8.9 implies (5 < —§ On the other
hand, (8.17) and (8.21) yield the relations

45 )
00 > Z/ 72|y (r)|* dr = Z/ (|a;€]2r2+2§17’c + 2aybpr? TCuRtCr ]bk|2r2+2@v’€) dr.
k=170 k=170

This shows that b, = 0 for all £ € N, and leads to the estimate

§3+2C1k

0 > Z/ g |22 %0k 4 = Z|ak|23+% (8.22)
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8. Elliptic transmission problems

6) It now suffices to deduce that the series > 72 ; @) converges on G; x (0, p) in
the H?2-sense in polar coordinates for p = §/2. We first note that the convergence
in L? follows already from (8.17). Let [ > m in N. We compute

Z// <|(‘320zk |2 2|@Tak(r)|2>|‘I>k(8)|27“2dsdr

B
k=m

! 2
Gr—1)°+1 _
- S e

Lemma 8.8 and (8.21) imply that ({3 x)x is @ monotonically increasing divergent
sequence. Consequently, there are uniform positive constants C' and K with

—1)? 2¢1 k-1

C12k 2k — 1 = 3+2C1,k’ k> K.
Estimate (8.22) consequently yields the inequalities
Z AR GG S 10han () ) [ (s) P2 ds dr < 2C z 2 X
3+ 20k
<C

for all I, m > K with a uniform constant C > 0. Denote next by i)k the function
being obtained from ®; by projecting GG onto D via a stereographic projection, see
Section A in the Appendix. Applying then Lemmas 8.5 and 8.9, we also derive
the estimates

)

HCI)’C“PH?(G) < él HékaHz(D) = OQ(HékHLQ(D) + HACE)’“
< 4éz(||q)k|‘L2(G) + ||L(I)kHL2(G))
= 4Cy(1 4+ N\y) < 12C5N,, k€N,

L2(D)

with uniform constants C;,Cy > 0. Using also (8.22), we arrive at the remaining
inequalities

1 i
+ S92 g, dr)

l
ot

< 144C2 Z Mar(Ce + 1)

k=m

HY(G;)
p2<1,k_1
2G—1
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8.1. Elliptic problems with homogeneous transmission conditions

é Z 63+2<1’k .

S 1 a S 2

= 34+ 2C1k

for I, m > K with uniform positive constants Cy and Cs. O

In the next result, we analyze functions in .4 in a neighborhood of the corners
of Fi. Recall for the proof that I'* is the set of faces on (Q, on which Dirichlet
boundary conditions are prescribed in the definition of the space #, see (8.2).

Lemma 8.11. Let n satisfy (8.1). Let further v € A, i € {1,2}, and A €
Fin N 0Q. Then, v belongs to H*(Q; N B(# , p)) for a constant p > 0.

Proof. In view of Lemma 8.10, it remains to consider the case of .# being a corner
of Fin. In the following, we adapt previous constructions from Section 8.1.2 to
the current setting. Note also that we consider first only the cases I'" = I'y or
I'* = (). Both options correspond to Neumann boundary conditions on the faces
of @ that touch .#.

1) For sufficiently small R > 0, the sets B(.#,R) N Q;, i € {1,2}, can be
represented as

B(#,R)NQ; ={rs|re(0,R), s € Gi.},
G1,. = {(cospsinf,sinpsinb,cosd) | ¢ € (5,7), 0 € (
Ga. = {(cospsinf,sin psind, cosb) | p € (0,7), 0 € (

(after rotation and translation). Analogous to the sets G and S in Section 8.1.2,
we define the interface and spherical domain

S, = Gilc N Gig,c, Ge:=G1 UGy US,.

The Laplace-Beltrami operator L from (8.10) is then adapted to an operator L,
on G.. More precisely, we set

1 0*> cosf O 0? .
(Lele. = (sin290902 + sin 6 00 * 802>¢|Gi’c’ e il2h
w € D(LC) = {¢ € LQ(GC) | w(l) € HQ(GZ',C)’ azﬂ,D(Z) = 0 on aGi,C \ Sc
[nY]s. = 0 = [0vs ¥]s. }-

2) We next show that the operator I — L. : D(L.) — L*(G,) is an isomorphism.
Let f € L?(G.). Denote the reflection of a function w € L?(G.) at the plane {zy =
0} by w, and define a function @ on G by W|z,<0} := W and W|z,>0y := w. Note
that @ belongs to L*(G). Lemma 8.7 then provides a unique function u € D(L)
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with (I — L)u = f and lull prregay < C| fllzz@) = 2C [flz2(G.)- Consider now the
function

1
(@, 2, x3) = = (u(x1, 22, ¥3) + u(w1, —29, T3)), (x1, 29, 23) € G,
2

belonging to D(L.) by construction. The choice of u and f then gives rise to the
formula (I — L)@ = f, as well as to the estimate [|i| py2(q.) < 2C || f[|12(q,)- This
establishes that I — L. is an isomorphism.

3) Arguing analogously to the proof of Lemma 8.8, we conclude that the spec-
trum of —L,. consists of eigenvalues 0 = A\j < A{ < --- — 0o, and that there is an
associated orthonormal basis of eigenvectors {®f | k£ € No}. The latter family is
orthonormal with respect to the L?-inner product on G, with weight 7.

4) We again use the notation from part 2). In view of the vanishing outer normal
derivative at G, N 0Q, we infer that the system {®f | k € Ny} is contained
in D(L). By construction, the cigenvalue relations —L®§ = M\®§ are further
satisfied. We consequently infer the estimate A\{ > A\; > %, employing Lemma 8.9.

5) We finally conclude the asserted statement by employing the results of parts 3)
and 4), and adapting the arguments in the proof of Lemma 8.10 to the current
setting.

6) Consider now the case of different boundary conditions on the faces of ) that
touch Fn, meaning I'* & {0Q,'1}. We then assume without loss of generality
that the Neumann boundary part of G. coincides with 0G. N {xs = 0}. (This can
be obtained after rotating.) The operator L. is now studied on the domain

D(L.) = {¢ € L*(G,) | vV € H*(G;.), 0,4 =0 on G, . N {xy =0} \ S,,
Y@ =0 on 0G;.N{xs =0} \ S,
[[mﬂb =0= [[ausc 1/’]]56}

The reasoning in parts 2)-5) applies again, and we can conclude the asserted
statement.

7) It finally remains to deal with the case of homogeneous Dirichlet boundary
conditions on the faces next to .%#;,;. Here we argue essentially in the same way.
The operator L. is defined as in part 6), except that we now assume homogeneous
Dirichlet boundary conditions on dG,.. In this setting, we extend functions w €
L*(G.) by

w(xy, T, x3) if (21,29, 23) € G,
—w(wy, —x9,23) if (21,70,23) € G\ G,

U~}(ZE17 T, l’g) = {

to G. For f € L?*(G.), Lemma 8.7 provides a unique function v € D(L) with
(I = L)u = f, and with ||u||pa2c) < C||f]|22(c.)- Choose now the map

. 1
w(xy, xg, r3) = §(U($17$2,$3) — u(xy, —$2,$3)), (@1, 22, 23) € G..
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8.1. Elliptic problems with homogeneous transmission conditions

By construction, this mapping is an element of D(L.), and it satisfies the identity
(I = Le)t = f, as well as the inequality |4l pr2c,) < C| fll2c.)- We conclude
that I — L. is an isomorphism. The arguments in parts 3)-5) yield also in the
current setting the asserted statement. O]

The above statements at hand, we are now in the position to deduce that the
Laplace operator maps the space # from (8.2) isomorphically onto L*(Q).

Proposition 8.12. Let n satisfy (8.1). IfT'* is nonempty, the operator nA : W —
L?(Q) is an isomorphism. In the contrary case I'* = (), the operator [ —nA : W —
L3(Q) is an isomorphism.

Proof. We only consider the case I'* = I'y here, since all other cases can be treated
by analogous arguments. In view of Lemma 8.4, it remains to show that the
orthogonal complement .4 from (8.8) is trivial. Let v € A".

la) We first deduce that v is piecewise H2-regular on Q. Standard elliptic
regularity theory shows that v is contained in H2 (Q;) for i € {1,2}, see Weyl’s
Lemma in Section IV.4.2 of [Hell60]. Employing the compactness of 0.%;,; and
Lemma 8.11, there is a union .7 of open tubes of inner radius § > 0 around 0.%,
such that v is contained in PH?(.7), relative to the partition Q = Q; U Q.

Let U C @ be an open superset of

(=6/2:8/2) x (a5 + 30,05 = 30) x (a5 + 30, — 30)

with the following properties: U has a smooth boundary, does not touch 9@, and
is symmetric with respect to the plane {z; = 0}. We denote U; := U N Q; for
i € {1,2}. Let further x; : (a7,ay") — [0,1] and x; : (aj,a;) — [0,1] be smooth
cut-off functions with x; = 1 on (—46/8,6/8), suppx1 C (—6/4,5/4), as well as
x; = lon (a; 4+ 120,af — 20) and suppx; C (a; + 56,a] — £6) for j € {2,3}.
Define

X(T1, T2, 73) 1= X1(71)X2(72) X3(73), (71,72, 73) € Q.

For a function v € L%(U), denote in the following the reflection of v at the

plane {x; = 0} by ), Similarly to the proof of Lemma 8.5, we construct functions
f,g € L*(U) via

O = WMy — @y 22 @ = @@ @ — M Wy,
gV = Dy 4 @), 9@ = Dy 4 @y

Take w € H*(U) N H}(U). We first note that the function 1, given by

POl = XD =), 5y, = P (® - w),
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Y] (@ =0,

belongs to #, see (8.2). Simple algebraic manipulations then lead to the identities

/\

(f,Aw) 2wy = (XD = n@x@o®, Aw) 2,
4@y @@ 0 NG ) AW 2
— (xWp® OA WD — 2wy + @v®@ @A — @)))Lm)
= (v (l)an(l)A(X(l)( W — (2)))>L2(U1) + < ﬂ? 2)A(><(2)( @ — ( )))>L2(U2)
<U (AX( ))( W — ( ))>L2(U) < ,77 (AX )( w(l))>L2(Uz)

2(1)(1) 1) (VX(U) V(w(l) _ w(Q))>L2(U1)
— 2@, (V@) . V(w® — 7v;(\l)»LQ(UZ).

By construction of y, the support of Vy is a compact subset of the union
J U U, UU, Combining the fact that v(® is contained in H?(.7 N Q;) and in
H}.(Q;) with the smoothness of x, we conclude that the product vV is an element
of PH*(Z UU,UU,)3. As v is by definition of .4 in (8.8) orthogonal to the image
nA(#), an integration by parts establishes the formulas

—

<f7Aw>L2(U) — —<77(1)(AX(1))U(1), w® _ w(2)>L2(U1)
- <n<2><Ax<2>> @ w® — w) 2y + 2(div(n e TXD), 0 —w®) g2

+ 2<le( 2)), w(z) — w(1)>L2(U2)
= (2 le( W VX ) =2 (div(p®P e Vx®)) "= M (A W)™

( ( ) ) w(1)>L2(U1)
+ (2div(n 2y, ) — 2(div(n(1)v(1)VX(l))) ~_ 77(2)(AX(2))U(2)

(77 (AX )U )Aaw(2)>L2(U2)
= (P, w) 2.

The above reasoning implies that ®; belongs to L*(U). Employing Proposition 1.1
and Theorem 1.3 in Chapter 5 of [Tayl11], there is a unique function feH*U)N
H)(U) with Af = ®,. Asaresult, f— f is orthogonal to the image of the Laplacian
A on H*(U)N H{(U), being LQ(U). We conclude f = f € H*(U) N HL(U).

Similar arguments are now applied to g. Consider first the function ¥ on @,
given by

()

Vo,uq.\v = 0.
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Using the definition of the cut-off function y, the mapping W is an element of #,
see (8.2). Analogous calculations as for f lead to the relations

—

(9, Aw) 2y = <X(1)U(1) + XPv®, Aw) 120,y + (XD + Y Po®, Aw) r2(1)

1 — 1
— <X(1)U(1)>?7(1)Am(w(l) + wm)))m(m) + <X( ) ,U(Q)A (w(l) + )))LQ(UQ)

Y — —

= (f 777(1)A(n D (w® + w(2)>>>L2(U1) + (v¥, 77(2)A<>T§((;)(w(1) + w(2))>>L2(U2)
Sk < >< w®) gy = (0, (AXP) D 4wy (823)
=20, (VW) - ( D+ w®)) 2wy = 20@, (VxP) - V(@O +w®)) 12,
Note that the sum of the first two terms on the right-hand side of (8.23) vanish as

v is an element of .4". Using again the properties of y in an integration by parts,
we obtain the relations

(g, Aw) 2wy = — (AP, wD + @) oy — (AXP )0, wD + w®) oy
+ 2(div(OVy ™), w® + w®) 2y + 2(div(E@ VYD), 0O + w®) 2

= (2div(eVxW) + 2(div(e® Vx?)) "= (AxD)e — ((AX(2))U(2)) Swt) 2wy
+(2div(e®Vx®) + 2(div(v PV V) = (AxP)e® — ((AX(I))U(I)) S w®) 2wy
= <(I)27w>L2(U)7

with @, € L?*(U). As above, we conclude that g belongs to H*(U)N H}(U). Since
n(l) _77(2)
1 1

element of PH?(U).

1b) Let now X : [a;,0] — [0,1] be a smooth cut-off function with ¥ = 1 on
la7,—<3], and suppX C [a;,—1]. Part la) then shows that ¥'(z1)v()) belongs
to H2(Q1) Let further w € H?*(Q,) with u = 0 on 'y U Zy, and d,u = 0 on
F(l) ury (). Clearly, X(z1)u is an element of % after trivial extension to @, see
(8.2). Integrating by parts, we thus obtain the identities

/Q1 X(z1)v(x)Au(x) de = /Ql vA(xu) de — / (U(A)Z)u + 20(Vx) - (Vu)) dz

1

_ / A ( lxu) dz — / (0(AT) — & (%)) dz

1

= / — O (vY'))udz.

Setting @3 := xv + vAY — 91 (vY') € L*(Q1), we have derived the identity

the matrix is an isomorphism on H?*(U), we infer that xv is an

<XU u — Au> 2(Qq) = <(P3, >L2(Q1)~
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8. Elliptic transmission problems

By Lemma 3.6 in [HoJS15], the operator

I—A:{ue H* Q) NH. Q1) | Ou=00onTH UTVY = L2(Qy)

F Ut/mt
is bijective, so that the same reasoning as in part la) implies that yv is an element
of H*(Q1). Adapting the construction to @, and combining with the results of
part la), we then deduce that v belongs to PH*(Q).

2) It now suffices to show that v is a strong solution of the transmission problem

Av® =0 on Q;, i€ {1,2},
v=20 on I'y, (8.24)
o0 =0 on 'y U T, '

[[nv]]ﬁint = [[alv]]ylnt - O

Since this problem has a unique weak solution, we can then conclude v = 0.

To that end, we use the fact that v is contained in PH?(Q), and that v satisfies
the identity 0 = (v, nAw) () for w € # by definition of .4 in (8.8). Choosing
a smooth test function w that has compact support in one of the subcuboids ()4
and @, we infer that Av® =0 on Q; for i € {1,2}.

Since the boundary conditions in (8.24) can be treated in the same way as
the transmission conditions, we focus on the latter. Let ¢p € C°(F mt) and Y :
[ai,af] — [0,1] be a smooth cut-off function with ¥ = 1 on [ay /4, af /4], and
supp X C [3a; /4, 3ai /4]. We then consider the function

ﬁf{(iﬁl)w(%,ﬂ?z) for (z1, 2, x3) € @1,
U)l(fﬂl,l‘g,xi;) = 1 ~
WX($1)¢($2,$3) for (51317$2,903) € Qs.

By construction, w; is an element of #, see (8.2). Integrating by parts, we hence
conclude

2 .
0= (.ndwn)izg = =3 [ 9OV Vufdr — [ [ls, (@00 ds
i=1 7 7’int

=Z/ (ool ot [ [ s, 1w ds

- [[81/0]] /mﬂﬂ dg

Fi int

As the space C2°(Fiy) is dense in L*(Fy ), we conclude that v satisfies the first
order transmission conditions in (8.24).
To check the zero order transmission conditions, we employ the function

wa(x1, Ta, x3) = x1X (1) (22, x3), (21,22, 73) € Q.
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8.2. Elliptic transmission problems with prescribed discontinuities

This mapping is also an element of #, and as above we infer the relations

2 .
0= (v nduz)iag = =3 [ 9900 Vuldr = [ o]z, ds
=1 % Z'int

= Z / Juwy) de — /¢ ()t = [010] 5, mz1x0) ds
= - /J@ [0l 5,00 ds.

Using again the density of C2°(.Z) in L?(Fiy), we conclude that [nv] z,, is zero.
Altogether, v is the strong solution of (8.24). O

The proofs of Propositions 8.1 and 8.2 are now mere applications of Proposi-
tion 8.12.

Proof of Proposition 8.1. We first note that the left hand side of (8.3) defines
an inner product on the space Vi, and that V; is complete with respect to the
induced norm. As the right hand side of (8.3) is a bounded linear form on Vj, the
Lax-Milgram Lemma consequently yields that there is a unique function v € Vi,
satisfying (8.3) for all ¢ € ;.

By Proposition 8.12, the Poisson problem

7D Ap® = _ fO on Q;, i € {1,2},
dv=0 on 0Q \ I'",
v=0 on I'*,

[[nv]]g[int = 0 = [[al/v]]ﬂinﬂ

has a unique solution v € # . In particular, v satisfies the identity

Z/ Vv() (V) dx—/fcpdx p eV,

which means that « and v coincide. The asserted estimate is now a direct conse-
quence of Lemma 8.4. O

Proof of Proposition 8.2. An appropriate modification of the proof for Proposi-
tion 8.1 shows the asserted statement. O

8.2. Elliptic transmission problems with prescribed
discontinuities

One main step in the proof of the desired piecewise H2-regularity of solutions to
the Maxwell system (7.1) is the embedding of the space X, into PH?*(Q)®, see
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8. Elliptic transmission problems

Chapter 9. To achieve the latter goal, we still need to draw two conclusions from
Propositions 8.1 and 8.2.

The first lemma in this section deals with an elliptic transmission problem for
functions which are continuous but have a discontinuous normal derivative across
the interface .%;,. It is employed to analyze the second and third component of
the vectors in X5. To demonstrate the statement, we employ ideas and techniques
from the proof of Lemma 3.1 in [EiSc17]. The main idea of our proof is to distribute
the jump of the normal derivative in a symmetric way onto the subcuboids )1 and
(2. By means of interpolation theory, we can then separately extend the normal
derivatives to both cuboids @)1 and Q5. Altogether, we arrive at the desired solution
of the transmission problem.

For the statement, recall the faces I';' and Fli’(i) of @ and @; from Section 7.1
for i € {1,2}, and [ € {2,3}. The I-th component of the exterior unit normal
vector for the cuboid @Q; is moreover denoted by (v);.

Lemma 8.13. Let j,l € {2,3}, [ # j, I :=T, or I'" :=T1UT;. Let additionally
fel*Q) and g € H%J/Q(c%nt). Let h € L*T}f UT)) be a function with h® €
Hé/2(l“l+’(i) U Ff’(i)), i€ {1,2}. IfT*NTy =0, we set h = 0. Then there is a
unique function u € HE. (Q) with Au® € L2(Q;), solving

2
L) (Voydr= [ fodr— [ godst 3 [ nOeO0ds (325)
int =1 1

for all functions p € H-(Q). Moreover, u belongs even to PH?*(Q) with du® =
hD on TV Finally, the estimate

2 2
HU||PH2(Q) <C <ZHAU,(Z)||L2(Q'L') + HQHH;@(%M) + Z”h(l)”Hé/?(F;r’(i)UFl’(i>)>
J i=1

i=1
is valid with a constant C' > 0 being independent of u.

Proof. 1) Let j = 3 and [ = 2. This corresponds to the two settings I'* = I's or
I = I'y UTl's. The remaining cases are treated in the same way, employing the
symmetry structure of the domain. We first observe that the Lax-Milgram Lemma
yields a unique function u € Ht p, (Q) solving (8.25). In order to deduce more
about its regularity, we write it as the sum of more regular functions.

Let Ry := (a7,0) x (a3,a3) and Ry := (a3,a3) X (az,a3). On L*(R;), we
consider the Laplacian Ag, with homogeneous Dirichlet boundary conditions. On
L?*(Ry), the Laplacian Ap, with mixed boundary conditions is studied, meaning

D(APq) = HZ(Rl) N H3<R1>7
D(Ag,) := {v € H*(R,) | v(,a3) =v(-,a3) =0, dw(ay,-) = dw(ag, ) =0}
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8.2. Elliptic transmission problems with prescribed discontinuities

The operator Apg, is also considered with an analogous domain on the faces
{xs} x Ry, and Ag, is analyzed on {z1} X Ry for x; € (a7 ,a]) and x5 € (a3, a3 ).
These operators have the same qualitative properties as on Ry and R,, respectively.

Let k € {1,2}. Using the closed symmetric bilinear forms

(@, v) == /R (21)(9rv) + (050) (D0) dor

(8.26)
as(t,v) = /R2 (0211)(Oav) + (O51)(O5v) d,

defined on the spaces

D(ay) := Hy(Ry),
D(az) := Hy,(Ra) = {a € H'(Ry) | (-, a5) = (-, ag) = 0},

one can show that the operator —Ap, is self-adjoint on L?(Ry), k € {1, 2}, thanks
to Theorem VI.2.6 in [Kato95]. Moreover, both operators —Apg, are positive
definite, what is a consequence of the Poincaré inequality, see Theorem 1.1.1 in
[Nec¢al2] in the case k = 1, and Theorem 13.6.9 in [TuWe09] for k£ = 2. In particu-
lar, one can define positive definite and self-adjoint fractional powers (—Ag, )? for
~v > 0 by means of functional calculus.

The fractional powers (—Apg,)? generate analytic semigroups (e!"2%)");5¢ on
L2(Ry,). Theorem VI.2.23 in [Kato95] moreover yields the identity D((—Ag, )/?) =
D(ag), so that we obtain the relations

Hy*(Ry) = (L(R), D((=2r)), -
H{ (Fiw) = (L (Fims), D((—AR,)'?))

1/2,2°
see (7.5). We abbreviate these spaces in the following by V; = HS/ *(Ry) and
Vo = Hi[2(Fi).

Let T' > 0. Proposition 6.2 from [Lunal8] implies the estimate

T 2
AL V2ot D R )2
/0 |(=an) e an) Ty L2(Ry)

dt < Cl|vlf3, (8:27)

for all ¢ € Vi, and k € {1, 2}, with a uniform constant C' = C(T) > 0.

2) In order to represent u, we choose a smooth cut-off function y» : [ay,a3] —
[0,1], which is equal to 1 on [a;,3a; + 2a3], and which is supported within
lay , 3a5 +7a;]. We further note that the maps p\ = p ]F;,(i) and hY) := h(0 |F;,(i)
belong to V; by assumption. By means of these functions, we define the mapping

U1 (21, T2, 3) 1= Xa(T2) ((—ARl)_l/Qem_a?_)(_ARl)I/thl)) (71, 73)
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8. Elliptic transmission problems

+ (xa(2) = 1) ((—Ap,) el e Cam R DY (3, 1)
=: Uy1 (21, T2, T3) + U1 2(1, To, T3)
on ;. We thus have the boundary conditions

Uy (-, 29,03 ) = (-, w2,a3 ) =0 on (aj,0),
al(al_ax% ) = al(()?x?? ) =0 on (CLS_ CL;)

Since the semigroup (et(_ARl)l/Q)tZO is analytic, the function @, (-, zs, -) furthermore
belongs to the space H%(R;) for all x5 € (a5, a3 ).
Let (x1,x2,23) € Q1. We calculate

Doty 1 (21, T2, 23) = Xo(x2) ((—ARI)_l/ze(”_% J=Ar)2p )) (21, 23)
T o) (2D AR R0 (g, ), (8.28)
i1 (w1, 02, 73) = X5 (wa) (= Ap,) " Zelr2m D) CAR) R (2 )
T 2x)(2) (el 2R DY (g )
+ Xa(2) ((—Ag, )220 CAm) PR () ). (8.29)

Similar formulas hold for ;5. Again, the analyticity of (e!(=4#1) /2)t20 implies
that dat(-, 22, ) belongs to Hl(Rl) for any x5 € (a3, a3).
We next employ certain norm equivalences. First, the norms ||| ;1 g, and

1/2

[[lp(_ap yi/2 are equivalent on D(—Ag,)"*, since the operator —Ap, is associ-
1

ated to the bilinear form a;(-,-) from (8.26). Second, the norms ||| 2, and
Illpap,) are equivalent on D(Ag,). (The domain D(Ag,) = H?*(Ry) N H{(Ry)
is complete with respect to both norms, and the identity mapping is bounded
from (D(Ar, ), ||l ,(r,)) into (D(Ag,), ||-HD(AR1)). The equivalence is thus a con-

sequence of the open mapping theorem.) From (8.27)—(8.29), we can hence deduce
the inequalities

195t 1132,y < C HW

2(Ry)’

Hajﬁl,ﬂ\; ) < C/ 11,2 ( 2, ) p 172 A2 < CHh

L2(Ry)’
2~
Ha 11 L2(Q1) < CHh ‘ HY?(Ry)’
L2 2 . 2 |2
195021112, < C/% |92tis (22, V(s e A2 < C [V

+
.2 2 2
Z ||3j3ku1,1||L2(Q1) < /G— ||u1,1("x27'>||H2(R1) dz
2

J:ke{1,3}
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8.2. Elliptic transmission problems with prescribed discontinuities

ay 9

< O/{f 1,1 (-, 22, ')HD(ARl) dz,
2

2

Hé/2(R1) 9 (830)

<ol

for j € {1,3}, with a constant C' > 0 being independent of hﬁ”, and thus indepen-
dent of @; ;. The other summand ; o is treated in the same way. As a result, i,
is contained in H?*(Q,), and it satisfies the estimate

il < € A yorarg,

with a uniform constant C; > 0.
3) Identity (8.28) also implies the relations

a2ﬁ1('7x27 ')(VFQ_’(I)>2’:D2:(I2_ = _h§1)7

Oty (-, 12, ')(Vr;<1))2|12:a2+ = h§1)7

on Rl.

Repeating all arguments on the rectangle (0,a) x (a3,a3), we obtain also
a function % on @y that belongs to H?*(Q,), and that satisfies the following
properties. It vanishes on the faces Ff’@) and F?(z) , is bounded in norm by
2] g2,y < Co Hh(Q)HHé/Q(F(;)) for some uniform constant Cy > 0, and has the

Neumann traces

82222('7.1'2, ')(Vr_v(Q))2’x2:a; = _hg_2)7

82a2(-,x27 -)(VF;,(Q))Q‘I2:(1; = h2 ,

on (0,af) x (a3, a3 ). Altogether, the function

U=« .
Uz On Q27

{'Lvlfl on Qlu

belongs to PH?*(Q) N HY r, (Q), vanishes on Fy, and satisfies the estimate

(8.31)

2
Y ()
HUHPHQ(Q) < (Cl + 02) ; Hh Hé/2(1“g>) .

In particular, the jump v := [V - vz, ]2, is contained in H%i (i)
4) Although the function % extends the Neumann trace of u on I'y in the desired
way, its behavior on the interface needs to be improved. For that purpose, we
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8. Elliptic transmission problems

choose a second smooth cut-off function y; : [a1 ,ai] — [0,1] that is equal to 1 on
[3ar, 2af], and that is supported within [2a;, 2a;]. We then define the mapping

% - —x1(— /
(1, o, 13) = %Xl(%) (—Ap,) /2eoi( AR,y)! 2(9—1})) (9. 23) on Oy,
1, sy 3) ~ B o1 (— s
(1) (—Ag) V26 08m) (g — ) (g, 25)  on Q.

In view of the analyticity of (e/(-272)"*),~  the function @(z1,-,-) belongs to
the space H%(Rs), and it satisfies the boundary conditions

w(ry,-,a3) = (ry,,a3) =0 on (ay,ay),

Doy, a5 ,+) = Ovti(xy,aq,-) =0 on (az,a3),

for all 71 € (ay,af)\ {0}. Note that @ is continuous in z; at Fy, and that @ = 0
on I'y by construction. We hence conclude that @ is an element of Hp p,(Q).
Employing that g and v belong to Hp. Y/ 2( Fint), similar arguments as in part 2)
show that @ is also an element of PH 2(Q) and that it can be bounded according

to

sy < Callg = vl pragzy (8.32)

with some uniform constant C3 > 0. The norm equivalences of ||-[| g1 p,) With
||-||D(_AR2)1/2, and of |- 2(g,) with H'HD(AR2)7 respectively, are analogously verified
to part 2).

A straightforward calculation yields the Neumann traces

1

81@(1)<x1, ° ')(VF+,(1))1|:E1=0 = _7(9 - U)’
1 2
) 1
81u(2)(fﬂ17 ) ')(VF*’@))l’xl:O - _7(9 - U)’
1 2
3111(1)@1; "y ')’x1:a1_ =0= ala@)(xl’ K >|$1 CL1+7

on Ry. The first line denotes here the interface trace with respect to 1, the second
line with respect to ()s.

5) Define now two functions ¢ and ¢ in L*(Q) via v® = f@ — ¢® and ¢

~A@D + a®) for i € {1,2}. Proposition 8.1 applies Wlth n =1, and pr0V1des
us with a unique function @ € PH?*(Q) N Hp, p,(Q), satisfying (8.3) for f = 1.
Consequently u := a+i+0 € PH*(Q)NH}, r,(Q) is the unique solution of (8.25).
Note that the boundary integral [ (Vi - v)@ds vanishes for ¢ € Hp p, (Q) due
to the assumptions on A, It hence remains to show the asserted estimate.

Lemma 7.4 and the definition of v yield the relations

ol = 9 bl sy < C IVl ) < C il
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8.2. Elliptic transmission problems with prescribed discontinuities

with a uniform constant C' > 0. In view of Proposition 8.1 for @, (8.31) for @, and
(8.32) for @, we arrive at the inequalities

[ull ) < 1@l e + ||ﬁ||pH2(Q + il prre )

< Culllg = ol + Z |aa®

£2(0; "’ ||u||PH2(Q))

L2(Qq) )7

where C; and C5 are tow positive constants that depend only on (). This shows
the asserted estimate since u = @ + u + 4. m

© ~(1) 4 () 4 5()
s05(||g||H;¢(,m+;Hh H;ﬂ(rw;HAw T

To analyze the first component of vectors in the space X5, we still need another
conclusion from Proposition 8.1.

Lemma 8.14. Let n be a positive function that is piecewise constant on the cuboids
Q1 and Qs, and let T* := Ty UTs. Moreover, let f € L*(Q), g Hl/z( Fint), and
h e Hl/z(Fl). There is a unique functionu € V :={v € PHl*( Q) | [nv] 2., =0},
satisfying the formula

2
Z/ n(i)(vu(i)) . (Vgo(i)) der = /(wa dx +/F hvypds — / g dg (8.33)
i=1"i 1 Fint

for all functions ¢ € V. The mapping u belongs to PH?*(Q) with Bg—s) = h on
'y NOQ; fori € {1,2}. Finally, the estimate

+ 2]l 12

el ey < ZHAu oy 19l )

L2
is true with some uniform constant C' > 0, depending only on Q) and .

Proof. The proof mainly modifies arguments from the proof of Lemma 8.13. In
particular, concepts from the proof for Lemma 3.1 in [EiSc17] are again employed.
Due to the strong similarities with Lemma 8.13, we only focus on the differences.

As before, the Lax-Milgram Lemma shows the existence of a unique function u €
V, satisfying (8.33). We again employ the rectangle R := (a5, a3) x (a3, a3 ). This
time, we consider the Dirichlet Laplacian Ag on R, i.e., D(Ag) := H}(R)NH*(R).
Following the arguments for Ag, in part 1) of the proof of Lemma 8.13, the
operator —Ap is self-adjoint, and positive definite on L?(R). The same statement
is true for the well-defined fractional powers (—Ag)” for v > 0. Consequently,
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8. Elliptic transmission problems

(—AR)Y2 generates an analytic semigroup (eC-2®)"*), on L2(R). Recall that
D((~Ag)'?) = Hy(R), and

Hy*(R) = (L*(R), D(~AR)"?)1)22.

Let x : [ar,af] — [0,1] be a smooth cut-off function that is equal to 1 on
[3ay,2af], and that is supported within [2a7, 2ai]. Denote hy := hlr . and
hy = h|r+ 2. In order to extend h and g, we consider the function , Wthh is

defined via its restrictions to ()1 and (), as

gy
+ X(ml) ((_AR)_UQ _xl(_AR’)l/Qg) (g, x3),

. —(z ot —a /

u(z)@l’x%x?’) — _11;%7“(’)1) ((—AR) 1/24(af —21)(-AR)" 2h2) (22, 23)

+ 3 ((—AR)2en TR ) (0, 23).

By construction, n@ is continuous in x; across %;. We next use that the
functions hq, ho, and g belong to H, \/ 2(R). As a result, a modification of the
arguments in part 2) of the proof of Lemma 8.13 shows that @ is contained in
PH?*(Q) N PHL.(Q), and that its norm satisfies the estimate

il a0y < € (bl gagesy + 1912 ) (8.34)

with a uniform positive constant C', depending only on ) and . The Neumann
traces of @ at the faces I'y and %, are given as

oV (zy, -, ')<VF1"“))1|$FGI - 77“ i,

i (@1, ) (V@ )il gy —ap = b2
i (@, ) (V)i ln=0 = =59,
o, (21, -, -)(VF; @ )1|z1=0 = 277%9’

on R.

Finally, we introduce two functions ¢ and 1 in L?(Q) by ¢ := —p@A#® and
Y@ = f0 — ¢ Proposition 8.1 then yields a function & € PH*(Q) NV that
solves (8.3) for f =1. Asaresult, u:= a+a € PH*(Q)NV is the unique solution
of (8.33). Proposition 8.1 and (8.34) also provide the desired estimate

LQ(Qi))

2
lull ey < € (nhnHé/z(m 9l gz, + 2 |20
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8.2. Elliptic transmission problems with prescribed discontinuities

2
~ ~(0) | ~()
< 0(2 ||h||Hé/2(F1) + 2 ||g||Hé/2(fint) + ; HA(U() +u )

L2(Qq) >7

with a constant C' > 0 that depends only on 7 and Q. m
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9. Regularity analysis for the
Maxwell equations

The main goal of this chapter is to show that the Maxwell equations (7.1) have
solutions with piecewise H'- and H?-regularity, provided that the initial data are
chosen appropriately. These results play a crucial role in our error analysis for the
Peaceman-Rachford ADI scheme in Chapter 10. To reach this goal, we proceed in
the following steps.

In Sections 9.1 and 9.2, we demonstrate that the spaces X; and X, from (7.17)
and (7.19) embed into the spaces PH'(Q)® and PH?*(Q)®, respectively. We then
show that the spaces X; and X5 are state spaces for the Maxwell equations, see
Section 9.3. In other words, the Maxwell equations are wellposed on X; and Xo.

9.1. First order regularity for the space X;

In this section, we extend the well-known regularity statements for the spaces
Hy(curl,div, Q) and Hp(curl,div, @), see Section 2.2, to the case of piecewise
constant coefficients. Therefore, we transfer arguments from the continuous setting
in [GiRa86] to the discontinuous one.

Throughout, we make the assumption (7.2) for the parameters e, u, and o. The
corresponding spaces for our problem are

Hypo(curl,dive, Q) := {E € Hy(curl, Q) | div(eE) = 0},

Hyo(curl,dive, Q) := {E € Hy(curl, Q) | div(eE) € L*(Q)},
Hrpo(curl,divp, Q) := {H € H(curl, Q) | div(pH) =0, puH-v =0 on 0Q}.

While the first and last spaces are already complete with respect to the norm
in H(curl, @), the second one is complete with respect to the norm

||E||qu0 = ||E||iQ(Q) + ||cur1E||iQ(Q) + ||div(5E)||iz(Q), E € Hy(curl, dive, Q).

Our first goal are embeddings of the first and third space into the space of piece-
wise H'-regular functions. In a next step, we then derive the desired embedding
of X; into PHY(Q)®. These embeddings are on the one hand useful for our pur-
poses, since they yield piecewise H'-regularity for functions in the space X;. On
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9.1. First order regularity for the space X;

the other hand, these embeddings are valuable for other applications like certain
Helmholtz decompositions, see Section 2.2.

As we could neither detect the statements nor the proofs in the literature, we
here deduce the desired embeddings in a sequence of several lemmas and proposi-
tions. Our plan is to transfer some of the arguments from the Sections 1.3.3-1.3.5
in [GiRa86] to our setting of a transmission problem.

We start with the embedding of Hy g(curl,dive, Q) into PH'(Q)?, and we first
prove the injectivity of the curl-operator on the former space. The statement
generalizes Remark 1.3.9 in [GiRa86].

Lemma 9.1. Let € satisfy (7.2), and let E € Hy o(curl,dive, Q) with curl E = 0.
Then E = 0.

Proof. Theorem 1.3.4 in [GiRa86] implies the existence of a vector ® € H'(Q)3
with E = écurl ®, and div® = 0 on (). Integrating by parts, we obtain the result

/elE\Q dx:/(curlfb)-de:/ ¢ - curlEdx = 0. O
Q Q Q

In order to determine the image of the curl-operator, we define the space
He :={E € L*(Q)’ | div(¢éE) =0, (E-v =0 on 9Q}

for ¢ € {&,u}. Note that H is a closed subspace of L?(Q)3. This claim can be
verified by combining the closedness of the divergence operator on H (div, Q) with
the boundedness of the normal trace operator from H(div, Q) into H~Y/2(9Q), see
Section 2.2.

The following statement characterizes the image of the curl-operator on the
space Hy go(curl,dive, @). It corresponds to Theorem 1.3.6 in [GiRa86], and it
extends Lemma 6.3 in [BoHL99] to our setting of a cuboid. We use ideas from
the proof of the latter statement. But as we cannot follow its arguments, we give
more details.

Lemma 9.2. Let ¢ satisfy (7.2). Each function E € H. has the representation

1
E=—curl®
€

for a unique function ® € Hy o(curl,dive, Q). Moreover, ® belongs to the space
PHY(QF.

Proof. 1) Lemma 9.1 already implies that there is at most one function ® with the
required properties. Consequently, it remains to show the existence of the desired
vector @, as well as its regularity.
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9. Regularity analysis for the Maxwell equations

_ 2) Employing Theorem 1.3.6 from [GiRa86] to the cuboid @, we obtain a vector
® € Hy(curl,div,Q) — H'(Q)? that satisfies the identities I curl® = E, and

div® = 0 on Q. Since the function ¢ is constant on Q; and Q,, this implies the
formula

div(cDd®) =0 on Q;

fori € {1, 2}; We cannot, however, expect ® to satisfy the additional transmission
condition [e® - vz, ] 7, = 0. We thus seek for a function ¢ € PH*(Q) N H(Q),
solving the elliptic transmission problem

AP =0 on Q; fori € {1,2},
=0 on 00,
v @ (9.1)
H¢H§inc = 07
[[galw]]fzint = [[g(bl]]tg‘\im'
The weak formulation of (9.1) is given by the formula
Leve) - (Vodr=— [ [blaed.  eeH@. (02

Since the left hand side of (9.2) defines a bounded and coercive symmetric
bilinear form on H}(Q), and the right hand side is a bounded linear form, the
Lax-Milgram Lemma provides a unique solution ¢ € H}(Q) of (9.2).

3) We show next that the weak solution 1 belongs indeed to PH?(Q), and that
it satisfies (9.1). To that end, we proceed similar to the proof of Lemma 8.13. Let
R := (a3 ,a3) % (a3 ,a3), and consider in L?(R) the Dirichlet Laplacian Ap on its
domain

D(Ap) := H*(R)N Hy(R).

Then, —Ap is self-adjoint and positive definite on L?*(R). Consequently, we can
define fractional powers (—Ap)? for v > 0 by means of functional calculus for
selfadjoint operators. The powers are self-adjoint and positive definite as well. As
a result, the fractional powers (—Ap)? generate analytic semigroups (e!=20)"),5,
on L?(R). Recall that D((—Ap)'/?) = HL(R).

Next, we define an auxiliary function whose Neumann derivative has the required
jump being specified in (9.1). Let x : [a;,a] — [0, 1] be a smooth cut-off function
that equals 1 on [%aj, %aﬂ, and that is supported within [%al’, %aﬂ. Abbreviate
furthermore g := [¢®,] #,,. We define the mapping

T

x(z1) <_AD)71/2875(%) (AD)1/29> (x9,x3) for xz € Qq,

x(x1) (—AD)_l/Qes%)(_AD)l/Qg) (x9,23) for x € Qs.

W(xy, 0, 3) 1=

NI= N
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9.1. First order regularity for the space X;

Taking into account that @, is an element of PH}, (@), Lemma 7.3 implies
that g belongs to Hy'*(R) := (L2(R), H} (R))1/2,2- Thus, the arguments from the
proof of Lemma 8.13 and the smoothness of y imply that the function ¢ belongs
to PH?(Q), see also the proof for Lemma 3.1 in [EiSc17]. It moreover satisfies the
boundary and transmission conditions specified in (9.1).

4) Because the function ¢ will in general not satisfy the Poisson equation A¢)(®) =
0 on @);, we also need to consider another elliptic transmission problem, namely

APD = —Ap® on Q; for i € {1,2},

A

=0 on 9Q, (9-3)
[I:Qﬁ]]fgint - Hgalzﬁ]]gmt - 0
Proposition 8.1 provides a function u € PH*(Q)NPHJ(Q), satisfying (8.3) with
n=1/cand f® = Ay® for i € {1,2}. Choose then 1) := u/e. Using the interface
conditions [u/e] #,, = [01u]#,, = 0, we conclude that v is the desired solution of
(9.3).
Setting 1) := ¢ + ¢ € PH*(Q) N Hé(@), we have thus constructed the unique

solution of (9.1). Altogether, ® := ® — V¢ € PH'(Q)? is the desired vector
field. O

The next proposition summarizes the results of the last two lemmas, and the
proof follows the lines of the proofs for Lemma 1.3.4 and Theorem 1.3.7 in [GiRa86].

Proposition 9.3. Let € satisfy (7.2). The space Hy oo(curl,dive, Q) embeds into
PHY(Q)

Proof. Lemma 9.2 yields that the mapping écurl . Hyoo(curl,dive, Q) — H. is
bijective. Since it is also bounded and both mentioned spaces are complete, we
infer by the open mapping principle that icurl is an isomorphism between these
spaces. Lemma 9.2 further shows the identities

1 1
B curl (HN,OO(curl, dive, Q)) =H, = B curl (HN,OO(curl, dive, Q)N PHI(Q)‘q’) .

Since %curl is an isomorphism, this means that Hy o(curl,dive, @)) is a subspace
of PH*(Q)? with a continuous embedding. O

In order to deduce the embedding property of the space X; into PH'(Q)®, we
transfer the statement of Lemma 1.3.4 in [GiRa86] to our setting. Hereby, we
employ ideas from its proof.

Lemma 9.4. Let € satisfy (7.2). The estimate
1Bl 2y < Cnoll[curl B 2 ) + [|div(e E)| 12 () (9.4)

is valid for all vectors E € Hy o(curl,dive, Q) with a uniform constant Cno > 0.
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9. Regularity analysis for the Maxwell equations

Proof. 1) We first deduce the asserted estimate for the space Hy go(curl, dive, Q).
Let E € Hygo(curl,dive, Q). Recall that the mapping écurl is an isomorphism
from Hpy go(curl,dive, Q) to H.. Hence we infer the inequality

(2 curl)_IH

% curl E

E <
1] rcur,g) < 2@’

yielding the asserted estimate for E.

2) Let E € Hy(curl, dive, Q). The main tool is an appropriate decomposition
of E into a field we can apply part 1) to, and a remainder. To that end, we consider
the elliptic transmission problem

Ap® = divE? on Q; for i € {1,2},
¢=0 on 0Q, (9.5)
[[qb]]yint = Healgb]]yint - 0

As in part 4) of the proof for Lemma 9.2, this problem has a unique solution
¢ € PH*(Q) N H}(Q). Employing the homogeneous Dirichlet boundary condi-
tions, we obtain V¢ x v = 0 on 0Q), see Lemma 2.1 in [EiSc18]. The first order
transmission condition further implies that V¢ is an element of Hy (curl, dive, Q).
Consequently ¢ := V¢ — E belongs to Hy go(curl,dive, @), and it thus satisfies
(9.4) without the divergence term, see part 1). We obtain in this way the relations

1E[ 12q) < ¥l 12y + VOl L2q) < Coo llewrl ¥| o) + (VO 12(q)
= Coo [[cwl El| p2q) + IVl 12(g) »

where Cyg is the uniform positive constant from the desired inequality in the
space Hy go(curl,dive, Q). In view of the weak formulation of system (9.5) and
Poincaré’s inequality, we infer

2
2 i I3 . : .
||5V¢HL2(Q) = _;/@ e@pt divEY dr < ||¢||L2(Q) Hd1V<5E)HL2(Q)
<Cp ||v¢||L2(Q) ||diV(5E)||L2(Q) )
employing the Poincaré constant C'p > 0. This yields the assertion. [

We continue by proving that the space Hr oo(curl, div p, Q) embeds continuously
into PH'(Q)3. This implies that the magnetic field component of a vector in X,
is piecewise H'-regular. For that purpose, we first deduce the injectivity of the
curl-operator on Hr g(curl, div i, ), compare Remark 1.2.2 in [GiRa86].

Lemma 9.5. Let u satisfy (7.2). The operator curl is injective on the space
Hgo(curl, div 1, Q).
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9.1. First order regularity for the space X;

Proof. Let H € Hrgo(curl, div g, Q) with carl H = 0. Theorem 1.2.9 in [GiRa86]
then yields a function ¢ € H'(Q) with H = Vq. Since uH - v = 0 on 9Q, an
integration by parts implies the identities

V2 g = (HL 1H) 120y = (Y, 1) 12y = (g, div(5HD)) 2 ) = 0.
As p is positive, we infer that H = 0. n

The next statement transfers Theorem 1.3.5 from [GiRa86] to our current setting.
It is proved in a similar way as Lemma 9.2. More precisely, we establish again the
bijectivity of the curl-operator, being now defined on Hr go(curl, div i, Q).

Lemma 9.6. Let pu satisfy (7.2), and let H € H,. There is a unique function
® € Hrygo(curl, div i, Q) with

H = l(:u1r1<I).
I

The mapping ® belongs to PH(Q)3.

Proof. 1) Lemma 9.5 shows that there exists at most one function ® in the space
Hrpgo(curl,div p, Q) with H = icurl ®. In the following, we deduce the existence
of such a function.

2) Theorem 1.3.5 in [GiRa86] shows that there is a vector ® € Hyp(curl, div, Q),
satisfying

1 . .
H=—-curl®, divd=0 onQ.
L

(Note that ® belongs also to H'(Q)?, see Section 2.2.) It follows
div(pPd®) =0 on Q;,

for i € {1,2}, because pu is piecewise constant. As above, the vector ® does,
however, in general not satisfy the transmission condition [u® - vz, ]z, = 0.

Since ® € H'(Q)?, the function g := [u® - v ] 7., is an element of H/?(Fyy).
To extend ¢ to the cuboid (), we now consider the Neumann Laplacian Ay on the
rectangle R := [a;,a5] X [a3,a3] with domain

D(Ay) :={u € H*(R) | dyu(ai,-) =0 on (az,ay), dsu(-,a3) =0 on (ag,a3)}.

Theorems 3.2.1.3 and 4.3.1.4 in [Gris85] imply that —Ay is non-negative and
self-adjoint on L?(R). In particular, its fractional powers (I —Axy)7, v > 0, are well
defined, and positive definite. As the operator I — Ay is given by the symmetric
form [p(uv+Vu-Vo)dz, we further conclude the identity D((I—Ax)'?) = H'(R).
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9. Regularity analysis for the Maxwell equations

Let x : [a7,af] — [0,1] be a smooth cut-off function that is equal to 1 on

[ay /2, a7 /2], and that is supported within [3a; /4, 3a] /4]. Define then the map-
ping
L S 1/2
N x(x1) <([ — Ay)72%e n® (I=An) g) (w9, 23) for x € Qy,

¢(x17$27$3) = RN 1/2
() (7= 2) 260 ) 3. 00) - for € Qa

For ¢ we employ appropriate modifications of the arguments from the proof for
Lemma 8.13, which uses itself ideas from the proof of Lemma 3.1 in [EiSc17]. In this
way, we can conclude that ¢ belongs to PH?(Q), and that it satisfies homogeneous
Neumann boundary conditions on 9(Q). A straightforward calculation further yields
the transmission conditions

[P170 =0, [u01¢] 2., = g. (9.6)
It then remains to treat the elliptic transmission problem
APD = A on Q; for i € {1,2},
d,h =0 on 0Q, (9.7)
[V] 7 = [1O1¥] 5, =0,
being equivalent to the system

1
G

Au = —A®) on Q; fori € {1,2},
o,u=0 on 0Q), (9:8)

[[iu]]yint = Hﬁlu]]'gzim = 07

by choosing ¢ := iu We analyze in the following (9.8).
We next denote the mean of a function v € L*(Q) on @Q by [v]g, and equip the
space

Vi={we PHY(Q) | [julg =0, [u]z, =0}

with the weighted norm HiH m1(Q)- Note that V is then complete. Combining the
Lax-Milgram Lemma with the generalized Poincaré inequality, there is a unique
function u € V' with

1 u) - w ZL':2 ~(Z)wm w .
/QH<V><V )d ;/@(Aw)d, ev
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9.1. First order regularity for the space X;

For the next argument, we note that the mapping v — u[iv]Q belongs to V for
every functionv € V := {¢ € PH'(Q) | [[iﬁb]]%m = 0}. We additionally employ the

homogeneous Neumann boundary conditions of ¢ and the transmission conditions
(9.6) in an integration by parts. The formula

/Q (o + L(Vu) - (Vo)) de (9.9)

2
=3 [ (w+ 5 (Tul) - VO — ko)) dr
i=1 g

— ;/Qi(uv + (AP (0 = nDLo]g)) da = ; /Qi(“ + AP dz

then follows for v € V. Applying now also Proposition 8.2, we finally conclude
that u belongs to PH?(Q), and that it satisfies the boundary and transmission
conditions in (9.8). Choosing test functions in C°(Q1) U C(Qs) for v in (9.9),
we additionally conclude that w is the strong solution of (9.8). By defining

©:=d—V(+1) € PH(Q)* N H,,
we have altogether constructed the desired function. O

The next result is a counterpart to Proposition 9.3. It summarizes the last two
lemmas, and yields that the magnetic field component H is piecewise H'-regular
for all vectors (E, H) in Xj.

Proposition 9.7. Let u satisfy (7.2). The space Hroo(curl,div p, Q) embeds into
PHYQ)*

Proof. The proof basically follows the lines of the proof for Proposition 9.3 (and
employs in particular the arguments from the proofs for Lemma 1.3.4 and Theo-
rem 1.3.7 in [GiRa86]). Instead of Lemma 9.2, the just established Lemma 9.6 is
used, however. Furthermore, the parameter ¢ is replaced by pu. O

We now deduce the desired piecewise H!-regularity of functions in the space X;.
Recall in this respect the spaces

D(M) := Hy(curl, Q) x H(curl, @),
Xoi= {(B.H) € L(Q)° | div(e"EY) € L3(@,), div(utD) = 0,
pH-v=00n0Q, [cE vz, ]z, € Hol/Q(c%nt)}v
X; :=D(M) N Xo.

The associated norms are defined in (7.16) and (7.18). In view of Propositions 9.3
and 9.7, it remains to generalize our findings in this section to the case of non-
vanishing electric charges.
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9. Regularity analysis for the Maxwell equations

Proposition 9.8. Let € and p satisfy (7.2). The space X1 embeds continuously
into PH'(Q)S.

Proof. 1) Let (E,H) € X; = D(M)NX,. We start to show the asserted regularity
of the vector (E, H), and need to deal only with the electric field E. (The magnetic
field component H is an element of Hr go(curl div u, Q). So Proposition 9.7 provides
the desired regularity statement for H.) Our goal is to reformulate our problem
in such a way, that we can apply Proposition 9.3. Our arguments follow here
essentially the proof of Lemma 9.2.

We search for a function v € PH?*(Q) N Hy(Q), that solves the elliptic trans-
mission problem

Ay = divE® on Q; fori € {1,2},
=0 on 0Q),
4 @ (9.10)
[I:w]]tg[int = 07

[[galz/jﬂfﬁq:int = [I:E:E ’ Vtﬁozint]]igint e H3/2<’%nt>

As in part 2) of the proof for Lemma 9.2, system (9.10) has a unique weak
solution ¢ € H}(Q). Employing our arguments from part 3) of the same proof,
we can construct a function 1 belonging to PH?(Q) N HY(Q) and satisfying the
transmission conditions required in (9.10). (Here we use the fact [eE vz, ], €

Hé/z(%nt) for (E,H) € X,.) The mapping can be estimated in norm via

H’l/;HPHQ(Q) S Cl H[I:gE ’ Vﬁirltﬂtgirxt (911)

HY? (Fi)

see for instance the arguments in part 2) from the proof of Lemma 8.13. Similar to
part 4) of the proof for Lemma 9.2, there is a unique function ¢y € PH?*(Q)NH}(Q)
that fulfills the system

AP = —A¢pD 4 div ED) on Q; for i € {1,2},

b=0 on 90, (9.12)
[[&]Lgint = [[galqﬁﬂfgzint = 0
Altogether, the function ¢ = ¢ + ¢ € PH2(Q) N H}(Q) solves (9.10) in strong
form. Consequently, E — Vi is an element of Hy go(curl,dive, Q) € PHY(Q)?,
meaning that E is contained in PH(Q)?.

2) It remains to show the asserted embedding property. To that end, we first
treat the electric field component E. Applying Proposition 9.3, the relations

“E”PHl(Q) < |E- V@/J“Pm(Q) + ||V¢||PH1(Q) < Coo ||CUT1E||L2(Q) + ||V1/’||PH1(Q)
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9.1. First order regularity for the space X;

< Cuolilo [ (5)| + ¥+ 19 9013

follow, where the uniform constant Cyg > 0 stems from the embedding in Propo-
sition 9.3. The boundary and transmission conditions in (9.12) imply that the
potential V@/A) is also an element of Hyg(curl,dive, @), so that we can apply
Lemma 9.4 to the last term on the right hand side of (9.13). By means of the
identity A = —Ag® + divE® and inequality (9.11), we then conclude the
desired estimates

~ 2 . A
Bl iy < Gl |31 ()| + 19 + O 2o [020

- COOHMHOOHM (g)” (U o) (U el 9]

2
v (2R @)
+ Cno ; Hle(é? E"Y) 200

E
< Collll [ ()] + 0+ Cxo) 0+ 1L B - .1,

|H3/2(9in:)

2
v (eOR@)
+ Chno ; Hle(é? E"Y) 200

i

with a uniform constant C3 = C3(g, Q) > 0.

3) Concerning the magnetic field H, we apply Proposition 9.7. Here we arrive
at the estimates

< Cj

X1

I ppr1 ) < CallIHI| 2 + llewrl Hl 12)
< Cal &5 IV 2 g + 2] Nl | VEE]

o1
+ llello [|VE(—2E + Ll )|, )
e+ 1l | ()

RIEWI(t4]

where Cy > 0 is the uniform constant from Proposition 9.7. O]

g
€

< Cu(l+ g5 +

g
5

<Cy(1+ 4 (1+

g
€

)
X1

The following remark makes an observation, which turns out to be crucial for
the regularity analysis of the Maxwell system (7.1). Roughly speaking, it says that
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9. Regularity analysis for the Maxwell equations

the definition of X; is independent of the actual coefficient function in the jump
condition for the electric field.

Remark 9.9. Let & be a positive function on @), that is piecewise constant on the
cuboids 1 and )5. We consider the modification

Xo = {(E,H) € L*Q)° | div(c"EY) e L*(Q;), div(zH) = 0, zH - v = 0 on 0Q,
[EE - v, ] 50 € Ho'*(Fim)}

of Xy, as well as the space

W :=D(M)nN X,.

We claim the identity W = D(M) N Xy = X;. To show this statement, let
(E,H) € W. Since ¢ is piecewise constant on the subcuboids, we infer that
div(E®) is also contained in L?(Q;) for i € {1,2}. In particular, div(EWE®) is
an element of L?(Q;). Replacing ¢ by & for Proposition 9.8, we infer that E is an
element of PH(Q)3. The boundary conditions for E; now imply that E; belongs
to PHY, r,(Q), and we infer that [¢E - vz, ]2, is contained in Hy* (P, see
Lemma 7.3. Altogether, (E,H) is an element of X; = D(M) N Xy. A similar
reasoning yields the reverse inclusion. O

An analogous statement is true for the space X5, see Remark 9.18.

9.2. Piecewise H’-regularity for the space X,

Based on the results of the above sections, we are now in the position to deduce
the desired piecewise H?-regularity for functions in the space

X, = {(E,H) € DIM*) N X, | div(cPED) € HL(Q,) for i € {1,2},
[cE vz, )5 € HY* (i)},
see (7.19). By interpreting X, as a state space for the Maxwell system (7.1) in
Section 9.3.

To demonstrate the embedding statement for the space X5, we first conclude
that each vector in X, is piecewise H?-regular in the interior of Q; and Q,.

Lemma 9.10. Let €, u, and o satisfy (7.2). Let also (E, H) € X5, and i € {1,2}.
The functions AEY and AH® belong to L3(Q;)3.
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9.2. Piecewise H?-regularity for the space X

Proof. Since the coefficients € and p are piecewise constant, the definition of X5 im-
plies that the function div E®) belongs to Hl,(Q;), and that the vector curl curl E®)
is contained in L?(Q;)3. We calculate

curl curl EY = —AE®Y 4 V div E® (9.14)

in H(Q;). As a result, AE® belongs to L?(Q;)?. For the magnetic field H, one

employs that div(xH) = 0, and that the functions E®) and — o ((?) E® 4+ E%) curl H®

belong to H (curl, @;). The latter statement implies that also curl curl HY =
—AHY is an element of L?(Q;)%. O

Remark 9.11. The interior regularity inside the cuboids )y and Q)5 follows for
vectors (E,H) € X, from Lemma 9.10 by means of elliptic regularity results,
see Theorem 1 in Section 6.3.1 in [Evanl5] for instance. Our error analysis in
Chapter 10, however, demands for HZ2-regularity on each subcuboid up to the
boundary. O

In the next four lemmas, we apply the general elliptic regularity results from
Chapter 8. Hereby we proceed in the following way.

For both the electric E and the magnetic field H components of a vector (E, H) €
Xy, we start with the first components E; and Hy, and consider then the two other
components. The functions E; and H; are more convenient to treat, since we can
gain here regularity by means of the divergence constraints. We derive the result
by means of ideas and techniques from Lemma 3.7 in [HoJS15], and Proposition 3.2
in [EiSc17].

Lemma 9.12. Lete, i, and o satisfy (7.2), and let (E, H) € X,. Then E; belongs
to PH?(Q), and the estimate

2@ + “div(&?(i)E(i))

2
(i)
HEIHPHz(Q) < CE,I ; <HAE1 HS/Q(FY‘))

+ ||div (=D ED)|

+ [l Er] 7,

Hy'*(Fint) ) ‘HS’/ *(Fint)
is valid with some uniform constant Cg 1 > 0 being independent of (E, H).

Proof. 1) We start with a density result, that is inspired by the third part of the
proof of Lemma 3.3 in [EiSc18|. Let I'* := 'y UT'3, and put

V= {90 € PHI* (Q) | [[E(,D]]gzim - 0}7
W= {p € V | o is smooth on Qs supp(g) C [araf] x (a3 af) x (a7.a%)}.

The first goal is to show that W is dense in V' with respect to the norm in
PHY(Q). To verify the claim, let ¢ € V. For j € {2,3}, let x,; : [a;,a]] — [0,1]

J 7
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9. Regularity analysis for the Maxwell equations

be a smooth cut-off function which is equal to 1 on [a; + n, j — ﬁ], which is
supported within [a; + 5-,a) — 5-], and which satisfies the estimate ‘ H <Cn

with some uniform constant C' > 0 for all n > ng. The product ep belongs to
H'(Q) by definition of V', and thus the function

gn($1,$27$3) = Xn,2($2)Xn,3($3)5($)%0($)a T = ($1,902,$3) €@, n>ny,

can be extended by means of Stein’s extension operator to a function in H'(R?).
The resulting map is again called g,,.

Let k > 0. Since ¢ vanishes on I'*, the sequence (g,|q), tends to ep in H(Q),
see the proof of Lemma 2.1 in [EiSc18] for instance. Consequently, there is a
number n, > ng with

1gn. = €@l (g) < A (9.15)

Let pp,, be the standard mollifier, acting on the I-th coordinate for | € {1,2, 3}
and m > ng. We define the function

1
pm =~ (Pma % P2 % pma* Gn) s m €N,

It is piecewise smooth, satisfies the transmission condition [e,,] ., = 0, and is
supported within [a7 , ai]x (a5, a3 )% (a3 , a3 ) for m sufficiently large. In particular,
©m is an element of TW. Because the restriction g, |o is contained in H*(Q), we
obtain by standard mollifier theory that the sequence (£¢,,)., tends in H(Q) to
Gn,.- As a result, (o), converges to Lg, in PH'(Q). The choice of g,, in (9.15)
implies that W is dense in V.

2) Let (E,H) € X,. We proceed in two steps. First, we extend the normal
jump of the electric field component E; across the interface %, in such a way,
that we obtain a piecewise H2-regular function . In the second step, we apply
Lemma 8.14 to the difference E; — 1 to deduce the desired regularity for E;.

By definition of X5 in (7.19), the normal jump ¢ := [¢E - vz ]2, = [eE1] 2.,
is an element of HS’/ 2(3th)- In order to extend ¢ to ), we use arguments from the
proof of Lemma 8.13, see also the proof of Lemma 3.1 in [EiSc17]. We consider
again the rectangle R = (a3, ad) % (a3, a3 ), as well as the Dirichlet Laplacian Ag
on L*(R) with the domain

D(AR) := H*(R) N Hy(R).

As in the proof of Lemma 8.13, we can define positive definite and self-adjoint
fractional powers (—Ag)? for v > 0. These generate analytic semigroups on L*(R).
Theorem 4.36 from [Lunal8] shows that § belongs to the domain D((—Ag)*4),

and thus ¢ := (—Ag)Y2§ is an element of the domain

D((—~Ar)"") = (L*(R), D((=Ar) )12z = Hy*(R).
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9.2. Piecewise H?-regularity for the space X

Finally, we also employ a smooth cut-off function x : [a;,ai] — [0,1] that is
supported within [2ay, 2a{], and that is equal to 1 on [3a7, 3af]. We can then

define the desired funct10n

pora oy o | TEH(AR) e ) (00 on @,
1,42,43) -— T — x1(—
);i(;)) ((_AR) 1/2e 1( AR)1/2g> (;L‘27 ZL’3) on QQ.

Modifying the arguments in part 2) of the proof for Lemma 8.13, we infer that
¥ belongs to PH?(Q) N PHL.(Q) with T* = 'y UT3, and that it satisfies the trans-
mission condition [ev] 2., = [€E1]#,.. We further obtain the extension property

trz,, O = 26“) g. Recall that the latter function is contained in HO/ (Finy) for

i € {1,2}. Additionally, the relations

1l paaay < Collgl oy < Co MR Ll vz (9.16)

are valid with uniform positive constants C, and Cy.
3) We consider now the difference E; — ¢. It fulfills the transmission condition
[e(Ey — ¥)]#,, = 0 by construction of ¢. Consequently, it belongs to the space
V. We want to apply Lemma 8.14 to deduce the desired regularity for E;, and use
concepts from the proof of Lemma 3.7 in [HoJS15]. First we take a test function
p € W, and define for sufficiently large n € N the open subcuboids
Quu = (ar + 5, =3) X (ay + a5 — ) X (a5 + 5,0 — 3),

n’ n’ n n’ n

9.17
Qnn = (Lt = 1) x (a5 + L af — 1) x (a5 + 1, af — 1), (6-17)

The corresponding faces of these cub01ds are denoted analogously to the faces
of @1 and @)y, i.e., Q;, has the faces F " for j€{1,2,3} and i € {1,2}.

Proposition 9.8 shows that E is an element of PH 1(Q) Moreover, Lemma 9.10
and Remark 9.11 yield that AE? belongs to L*(Q;), and that Egi) is contained
in H*(Q;,) for j € {1,2,3}, i € {1,2}, and sufficiently large n. By construction
of ¢, the function u := E; — 1 satisfies the transmission condition [eu]z,, = 0.
Integrating by parts, we hence obtain

Z/ (V@) dz = lim Z/ D(Vu?) - (Vo) de (9.18)

n—oo

—_ 1 1) l) (Z (i) @ . @y,

Q’Ln

The boundary integrals on the right hand side reduce to integrals over the
faces [T n ) for sufﬁmently large n, since ¢ has compact support within [a], a]] x
(as, ag) X (a3 ,a3). We write in the following div E and div(¢E) for convenience,
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9. Regularity analysis for the Maxwell equations

meaning the functions that are defined piecewise on ()1 and Q2. Plugging in the
divergence of ¢E, integration by parts thus implies the identities

2
: OLvRORIC (OAWNO)
fim 3 /an(g VO ds = i 37 [ @O0

n—oo

= 3 [ (@) = 000 — OB ()

e </1r<l>urr<2> OO [(div(ED) - ) + BY o) + B0y s
+/+(1) —.(2) g(i)( ) [(dlv( ) a1¢ ) +E2)82<p z)—i-E( (93@ ] )
Ly vy,

where all boundary integrals over 8F1i7;§i) vanish for sufficiently large n, due to the

location of the support of ¢. Combining the facts [ep]#, = 0 and p € PH?*(Q)
with Lemma 7.1, we infer that [¢0:¢] 2, = [e03¢] 2, = 0. Recalling also the
boundary and transmission conditions

E;,=E;=01Yv=00onTly, and [Es]z, =[Es]z., =0

Y

we thus arrive at the formula
1 / CRATIYONPOR
n:f&Z o OV 060 g
= [ divEBmpds+ [ [0 — div(E)] 5,V de.

1—‘1 Fint

Altogether, we infer from (9.18) the identity

Z/ O (vu®) - (Vo) dz

= Z/ @ (Au®)p® dx—l—/ div(eE)vo ds
+ /y_ [0 — div(E)] 5, eV de. (9.19)

Since ¢ € W is chosen arbitrarily, part 1) implies that (9.19) holds in fact for
all p € V. Now, Lemma 8.14 applies for n = . It yields the asserted regular-
ity for E; by construction of 1. Since 1) belongs to PH*(Q) N PH}, r,(Q), its
derivative 919 is an element of HY, ., (Q;) for i € {1,2}. Remark 7.5 and (9.16)
consequently imply the inequalities

10| £l0) g0

S Cint

< CnCo® B L e

Hy*(Fint) H2(Q) — (Fine) *
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9.2. Piecewise H?-regularity for the space X
Employing again (9.16) and Lemma 8.14, we thus infer the desired estimates

Eall ey < G 3 ([

+ div(eE®)

P L2(Qi) HY 2

n Halgu')w(i) _ div(eDE®)

Hy* (Fint) )

2
% (O (D)
<Oy 2 {HA o) + Hle({S EY) )
+ |div(e® \ gy + i+ DO B n s, |
where él > 0 is a uniform constant from Lemma 8.14. O

The next statement treats the remaining components of the electric field. We
here use the already established piecewise regularity of curl E and E;, see Propo-
sition 9.7 and Lemma 9.12. The proof furthermore transfers ideas from the proofs
of Lemma 3.7 in [HoJS15], and Proposition 3.2 in [EiSc17]. Among other changes
with respect to [HoJS15, EiSc17], an additional integral over the interface . is
present in our analysis. To control this term, we combine the above regularity
statements for curl E and E; with our findings in Section 8.2.

Lemma 9.13. Let e, i, and o satisfy (7.2), and let (E, H) € X5. The components
E5 and E5 belong to PHQ(Q). Furthermore, there is a constant Cg o > 0 such that
the estimate

(Qq) + Hal Egi)

+ Hdiv(gE(i))‘

2 )
HEJ‘HPH2(Q) < CE? ; ( HAEy) L2 HY(Q;)

PRETE) )

is valid for j € {2,3}. The number Cga depends only on €, i, 0, and Q.

Proof. 1) We consider only the function E;. The remaining component Ej is
treated by similar arguments. Let I'* := 1Ty U '3, and put

V :={p € PHL.(Q) | [¢]#. =0},
W= {p eV | " is smooth on Q;, supp(y) C (ay,a]) x [ay,a3] x (az,a3)}.

Similar to part 1) of the proof of Lemma 9.12, one can show that W is dense in
V' with respect to the norm in H'(Q).

We employ also the cuboids Q;,, for i € {1,2} and n > ng, being defined in
(9.17). Their faces are again denoted by F ) for j € {1,2,3}.

2) Lemma 9.12 shows that the functlon E1 belongs to PH 2(Q), and Proposi-
tion 9.7 implies that curl E is contained in PH'(Q)3. Consequently, the function
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9. Regularity analysis for the Maxwell equations

HEY = (curlED)y + 8EY is an element of HY(Q;) for i € {1,2}. Moreover,
81E§i) vanishes on the exterior face Féi), due to E; = 0 on I's and Lemma 2.1
from [EiSc18]. Lemma 7.3 now shows that tr ym(alEg“) is contained in the trace
space Hréz( F). Finally, EY belongs to H(Q;) N H2.(Q;) for i € {1,2}, sce
Proposition 9.8 and Remark 9.11.

We next transfer our problem into the form of (8.25). Let ¢ € W. Integrating
by parts, we obtain the relations

Z / VEY) - (Vo) dz = lim Z / (VEY) - (VD) da (9.20)
1 _ @y, ,(3)
_J%(;/@m( AEY), dx+;/a% (VE . ) dg)

In the following, we deal with the boundary integrals on the right hand side.
First, we note that all integrals over the faces Fgé " vanish for sufﬁ01ent1y large n,

due to the location of the support of ¢. Employing the divergence of E® . we thus
obtain

1 / (VES) . 1)) g
ngr.ﬂoZ o )@ ds

JH&Z/F OB 013 [ OB ds
=1 2,n

2

= lim (Z/i“ (01 E())(V(i))lgo(i) d¢
r

n—o0 \ 4
=1 1,n

2

" Z/im [div(E®) — 0,E{ — 05B{| (1), d§>.
i=1""2n

T

Since ¢ vanishes in a neighborhood of the exterior faces I'; and I's, the boundary
integrals over '’ (2 and I'| n( ) are zero for sufficiently large n. Due to the same
reason, we can mtegrate the second term on the rlght hand 81de by parts in x; and
x3 with vanishing boundary integrals over GFQ - Since 81E2 belongs to H(Q;),
we arrive at the identities

I / (VES - @) g
nE&Z b0 2 V)t dg
= - /ﬂ_ [( 31E2)%0]]%m d¢

’I’L‘)OO

166



9.2. Piecewise H?-regularity for the space X

2
- /g [[alEﬂ]%ntSDdg + Z/Fi,(i) diV(]gg(Z))SO(Z)(,/(Z))2 de,
it =1 2

where we employ for the last relation that ¢ is continuous across %, and that
E, and E3 vanish on I';. Together with (9.20) we have derived the formula

2 ) ]
> [ (VEY) - (V) da
=1 i
2
; / AE2 D de — /e%m [01Es] 7., ¢ ds

+ Z/i o div(ED)p® (010), dg (9.21)

for all functions ¢ € V', since W is a dense subspace of V' with respect to the norm
in H'(Q). Because the trace of 81E2 on Fi, belongs to Hp 1/2 L (Fine) for i € {1,2},
Lemmas 7.4 and 8.13 yield the asserted estimate. O]

In the next three lemmas, we deal with the magnetic field component H of a
vector (E,H) € X,. To tackle arising face integrals, we first derive an auxiliary
result.

Lemma 9.14. Let u satisfy (7.2). Let further ®1,®, € H(Q) with ®; = 0 on 'y
and ®5 =0 on I's. The formula

Z o) - curl | 0 dx:O:Z/ P (Vo) - curl | 0 | da
gp(z) =1 Qi 0

is true for all ¢ € PHE (Q) with [ue]z,, =0

Proof. We only treat the function ®;. The remaining case can be handled with
similar arguments. The vector V®; is an element of H(curl, )), and an integration
by parts leads to the identity

0
Z/ V@() -curl| 0 | dz

SO(Z)
2 , (0
= Z(VCI)Y’) X v, #(Z) O() >H—1/2(8Qi)xH1/2(8Qi)' (922)
=1 ¢
¥

We next proceed similar to the proof of Lemma 7.1. Let y,, : R — [0,1] be
a smooth cut-off function that is equal to 1 on [a; + 1/m,a3 — 1/m], that has
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9. Regularity analysis for the Maxwell equations

its support within [a; + 1/(2m) — 1/(2m)], and that satisfies ||x,||., < Cm
for m € N with m > mg := [ J and a uniform constant C' > 0. Let further
(g —ay

pn : [0, 1> = R be the standard smooth mollifier with support in the ball B(0,1/n)
for n € N.

Since ®; belongs to H'(Q), it can be extended by means of Stein’s extension
operator to a function in H'(R3). The extension is again denoted by ®;. We then
define the maps

B (21, 22, 23) = Xm(22)P1 (21, 22, 3), (21,29, 73) € R?,

Immn ‘= Pn * hm, m,n € N.

Let k > 0. Since ®,|g has a vanishing trace on I'y, the proof of Lemma 2.1 in
[EiSc18] shows that there is a number m, € N with

P, — P11 @) < K-

By construction of g, n, the function is smooth on R?, vanishes near I'y for suf-
ficiently large n, and the sequence (g, n)n converges to hp, in HY(Q). As a
result, (Vg$) ), converges in H(curl,@;) to VA{) , and the estimate ||[Vh,,, —
V@ mcur,0,) < & is valid. The continuity of the tangential trace operator conse-
quently implies the statements

Vo) . xv— VhY) xvin H'*(0Q;), n— oo,

9.23
||thn XV — V@l X V“H—l/Q(aQi) S OFL, ( )

with a uniform constant C' > 0. Employing the smoothness of g, », as well as
the transmission and boundary conditions for ¢, we next calculate

2 0
Z<Vg7(7?n7n X I/"u(l) OA >H71/2(3Q1)XH1/2(8Q1‘)
i=1 (p(Z)

gp(l)

M TM)e

0
/ (Vgl) o xv)-p® | 0 | ds
0Q; ’ ;

/ Org%) iVt d + / o gl e )d<>
1

. (9.24)

I
O ~.

Since k > 0 is arbitrary, the results (9.22)—(9.24) imply the desired formula. [

Similar to the considerations for the electric field, we first investigate the regu-
larity of the first component H;. Thereby we apply techniques from the proof of
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9.2. Piecewise H?-regularity for the space X

Lemma 3.7 in [HoJS15]. To cover our setting of discontinuous material parame-
ters, we combine the divergence constraint div(gH) = 0 with Lemma 9.14. In this
way, we can control arising interface integrals.

Lemma 9.15. Let e, u, and o satisfy (7.2), and let (E, H) € X5. The function H;
is contained in PH?(Q), and it satisfies the transmission relation [0, Hy]#,, = 0.
Moreover, the estimate

2
i)
HHl”PH2(Q) < CHJ ; HAH<1 L2(Q;)

is true with a constant Cyy > 0, being independent of (E, H).

Proof. 1) We proceed similar to the above proofs, and define the spaces

V= {90 S PHIll (Q) | [[:UJQO]]L%M = 0}7
W= {p eV | ¢ is smooth on Q;, supp(p) C (ay,af) x [ay,a3] X [az,af]}.

Arguing analogously to part 1) from the proof of Lemma 9.12, W is dense in
V' with respect to the norm in PH'(Q). The smaller subcuboids Q; ,, from (9.17)

are again employed for sufficiently large n € N. These have the faces Ff,fi) for
i€{1,2} and j € {1,2,3}.

2) Remark 9.11 and Proposition 9.7 state that H® belongs to H'(Q;)*NHZ.(Q;)%.
We next deduce that the vector curl H is contained in PH'(Q)3. In fact, the
function H := L curl H — 2E is contained in Hy(curl, Q) as (E,H) € D(M?). Ad-
ditionally, div(s® I:I(Z)) —div(e®@E®) is an element of L*(Q;), and the jump
[eH-vz ]z, = —[0E vz ]z, belongs to HY* (7 (Zint) by Lemma 7.3, and Lem-
mas 9.12-9.13. (For the last identity we use the fact cwrlH € H (dlv, Q), a
well as Green’s formulas.) Consequently, the vector (H,0) is contained in X7, so
that Proposition 9.8 implies the piecewise H'-regularity of H. Knowing that E is
piecewise H?2-regular, we conclude that curl H is an element of PH'(Q)3.

Since H and E are elements of H, (curl, @), also the tangential boundary condi-
tion curl HY x v = 0 on 8Q; \ Zine 1s valid.

3) The desired statement will be a consequence of Proposition 8.1. To apply the
latter result, we derive a variational problem of the form (8.3). Let ¢ € W. An
integration by parts leads to the identities

2 ) ]
Z / HO(VHD) - (Vo) dr = lim Z / O(vHY) - (V) de
— lim Z < / (AHD) W d + / H(VHD . )0 d§>. (9.25)
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9. Regularity analysis for the Maxwell equations

In the next steps we show that the boundary integral term on the right hand
81de converges to zero as n — 0o. Note that the integrals over the exterior faces
F1 n ) and o ) vanish for sufficiently large n, since these faces are disjoint from
the support of . Inserting £0,HY, £0,HY and the identity div(uH) = 0, we
thus obtain the formula

lim E / H(z ) go(i)d

’I’L—)l o BC?ln ) g
lim E )0 10) 15 1% + O H cp(i) d
=1 i() V1 ( pRR D) 3413 ) S

- /:l:,(z‘) “(Z)Vé )(Curl H)30® d¢ + /t(i) M(i)yg(i) (curl H?),0® dg

+/i()u ) (9 HD) o dg+/i()u 0(0,HY)p <i>dg). (9.26)

Because the trace of the vector curl H is tangential to the normal vector on the
exterior faces, see part 2), the second and third summand on the right hand side
of (9.26) tend to zero. By means of Green’s formula for curl, we next calculate

2

Z(/i()—,u Vl (QQH +03H§) dg—l—/i(),u (alH ) @) dc¢

i=1
+/i<z) K (31H ) dg)

2 4 0 0
— Z (/ (VH&) % y(i)) . /L(i) 0 dg—/a (VH3 w )) lu(i) QD(i) dg)
' Z) Qz n

=1 aQi’" 90( O
= / p(VHD) ccurl | 0 | = p@(VH) - curl [ @ | da.
i=17Qin o) 0

Passing to the limit n — oo and using Lemma 9.14, we arrive at the identity
2

2 </Fi @ —u (0,8 + 0sH )l ds + /pi,(m PO (0 HY ) dg
2,n

=1
37L

Altogether, (9.25) now has the representation

> [ nOVHY) - (Vo) de = 3 [ —p(AH)p e
i=1" i i=1"%i
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9.2. Piecewise H?-regularity for the space X

By density, the same formula holds also for all functions ¢ € V. Finally, we employ
Proposition 8.1 with n = p and I'* = I'; to conclude the asserted statement. [

Similar to our studies of the electric field components E, and E3 in Lemma 9.13,
we combine techniques from the proof for Lemma 3.7 in [HoJS15] with the state-
ments of Lemmas 8.13 and 9.15 to treat the remaining two components of the
magnetic field.

Lemma 9.16. Let ¢, i, and o satisfy (7.2), and let (E, H) € X5. The components
H, and Hy are then contained in PH?(Q), and they satisfy the estimates

2
HH2||PH2(Q) < Cha < ) £2(0)) + ”(CurlH)Zi”PHl(Q) + ||a2H1”PH1(Q)> J
i=1 !

2
| Hll i) < Cina (Z) i, T curl Eall s ) + ||63H1HPH1(Q)) ,
1=1

with a constant Cgr o > 0, that is independent of (E, H).

Proof. 1) Again, we only treat the second component Hy of the magnetic field.
The third one can be handled in a similar way. We define the spaces

V:={p e PHL(Q) | [¢]#, =0},
W:={peV| ¢ is smooth on Q;, supp(p) C [ay,af] X (ay,a3) x [az,aF]}.

Similar to part 1) from the proof of Lemma 9.12, W is a dense subspace of V'
with respect to the H'-norm on Q. As above, we use the subcuboids Q;,, from

(9.17), which have the faces I'>? for i € {1,2} and j € {1,2, 3}.

gn

2) The interior regularity of H( is already established. Remark 9.11 in par-
ticular shows that HY belongs to H2.(Q;). Recall also from part 2) of the proof
for Lemma 9.15 that the vector curl H belongs to PH'(Q)3, and that it fulfills
the boundary condition curl HY x v = 0 on 0Q; \ Fin. Taking additionally the
regularity result for H; from Lemma 9.15 into account, we deduce that 9,H, is
an element of PH'(Q). The boundary condition Hy = 0 on 'y, and Lemma 2.1
from [EiSc18] further imply that 9y Hy = 0 on I'y. Combining these facts with the
boundary condition of curl H, we conclude that 0,H; = 0 on I';. This means that
trg,, OoH; is contained in H%é 2(%110, see Lemma 7.3.

3) Let ¢ € W. Integrating by parts, we obtain the relations

Z/ (VHY) Vgp’)dx—hmZ/ (VHY) - (VD) da

2

=t > (

Hg))@(i) dw + /BQ (VHS) )0 dg). (9.27)

i,n
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9. Regularity analysis for the Maxwell equations

Since the faces FQi’;Ei) are disjoint from the support of ¢ for sufficiently large n,

all boundary integrals on the right hand side of (9.27) with respect to these faces
vanish. Employing the vector curl H, we then derive the formula

1 / )™ g
ng&Z o, (VI /)¢ de
=T}£&Z</i<> (OnH")e (“d”/m (o) )

— (DY, p® (@)
_,}LHQOZ</M> (curl HY )39 dg—l—/i() (0.H)p dg
—/i() (curl HD), o dg—i—/i() D (0,HY ) o dg). (9.28)

In a next step, we integrate the fourth summand on the right hand 81de by parts.
Hereby, we notice that the corresponding boundary integrals over 8F3n g vanish,
due to the location of the support of ¢. Also the boundary conditions H; = 0 on
I'1, and H3 = 0 on I'3 come into play. The first one in particular implies d,H; = 0
on I'y, see Lemma 2.1 in [EiSc18]. Using additionally the transmission condition
[¢]#.. =0, we thus obtain the identities

nlglgoz(/i() (0.HY dg*‘/i() (9.HY ) (i)dg)
”hjroloz (/i WY 82H ) v de — /r;(i) V?()i)Héi)a%O(i) d§)

= [[52H1]]ymt @ ds.

L/mt

The boundary conditions for the vector curl H further imply that the third
summand in (9.28) tends to zero as n — oo. The same is true for the boundary

integrals in the first summand in (9.28) with respect to I';, M and F+( . From
(9.27) we altogether derive the formula

Z/ VHQ (Ve Z))d

—-> [ @AH O dr = [ ([(eurl Hyls, + [ L5 )pds. (929
i—1 Qi Fint

Since W is dense in V, (9.29) holds also for all functions ¢ € V. The asserted
statement is now concluded by combining Lemmas 7.4 and 8.13. O]
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9.2. Piecewise H?-regularity for the space X

The next theorem summarizes the last results. It states the desired piecewise
H?2-regularity of functions in the space X, from (7.19).

Theorem 9.17. Let e, u, and o satisfy (7.2). The space Xo embeds continuously
into PH*(Q)S.

Proof. Lemmas 9.12-9.13, and 9.15-9.16 already show that X, is a subspace of
PH?*(Q)%. Tt consequently only remains to show the embedding property.

1) Let (E,H) € X,. We consider first the electric field. Lemmas 9.12-9.13 yield
the estimates

_ —|— HalEg)

+ HalEi(;)

HY(Q:)

2
HE”PHQ(Q) < CE:L?(; ( HAE(Z) L2(Q HY(Q:)

+ Hle TEY) HY(Fn) "‘ZHdW YE 5/2(r;t’<i)))
B - VLo s )
< (Cos +1)CE,1,2<§2:(HAE(“ gy BN

=1

+ Z Hle E(l

é/Q(ch,(i)) )

+ ||Cur]-E||PH1(Q) + ||[[€E : Vyint]]yint

|Hg/2(f[int) )’ <930)

with a constant Cg ;9 > 0, depending only on the constants Cg; and Cg o from
Lemmas 9.12-9.13. As a result, it is enough to estimate the norm of curl E in
PH'(Q)?, as well as the norm of AE® in L2(Q;), i € {1,2}.

2) We put f := curl E; and define

) f(w, g, w3) i (21,12, 23) € Qo
g(1, 22, 3) 1= .
f(=zy, 29, 23) if (z1,29,23) € Q1.

As E is piecewise H%-regular, g belongs to H'(Q)3. Taking also the fact (E,H) €
D(M) N Xy into account, we conclude that g - v = 0 on 0Q), see Remark 2.5 in
Chapter I of [GiRa86]. Altogether, g is also an element of H (curl, Q)N Hy(div, Q).
Doing a similar procedure for f(!) instead of f(?), (2.4) and the properties of y in
(7.2) imply the relations

2
[curl Ef| pj ) < Or ; chrl curl E® 1200
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9. Regularity analysis for the Maxwell equations

< Cr e Zucur

. 31
L2(Qq) (9 ? )

3) We continue by estimating the L?-norm of the vector curl ( ) curl E® on Q;.
Since the injection D(M?) < D(M) is bounded (this can be seen with the closed

graph theorem), the inequalities
E@ curl Z) curl EO
}1) curl (1” curl H®

cwrl zty curl Y < (lelly + llll)
g
curl 1) curlH® - > Hloo

12(Q:) #Q)
< el + ) 2] ( )
LQ(Q)
n (gj E® — % curl H® <> curl E )
1 U() () (@)
m curl( E "‘ (7, curl H ) L2(Q;)
i E
< (lell + o) +]|2] H( ) +HM2 (n)H)
D(M)
<c (IE{> (9.32)
D(M?)

follow for i € {1, 2} with a uniform constant 03 Cs(e, u,0,Q) > 0. Furthermore,
the formula curlcurl E¥ = —AE® + vV div E® implies the estimate

|AaE® 1|div(OB®)

< gl oo chrl o curl E@

(9.33)

L2(Qi) L2(Qi ) ’ HY(Qi)

In view of (9.30)—(9.33), we arrive at the desired inequality

("

with a uniform constant Cy = Cy(e, u,0,Q) > 0, see (7.20) for the definition of
the norm in Xs.
4) Concerning the magnetic field, Lemmas 9.15 and 9.16 imply the relation

||E||PH2(Q) < (4

Xa

[15 ([P <CH12<ZHAH ooy Tl Hl o )

with a uniform constant Cp 1 2, that depends only on the constants Cy; and Cp o
from Lemmas 9.15 and 9.16. Employing the constraint div(xH) = 0, similar
arguments as in parts 2)-3) yield the corresponding uniform estimate

5

after a uniform modification of the constant Cl. O

”HHPHQ(Q) <Cy ) (9.34)

X2
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9.3. Wellposedness of the Maxwell equations in piecewise regular spaces

Similar to the space X; = D(M) N X,, we observe in the next remark that the
definition of X5 is in a certain sense independent of the coefficient function arising
in the jump condition for the electric field. This means that only qualitatively
regular information flow through the interface is needed to ensure regularity. This
remark becomes crucial for the wellposedness of the Maxwell system (7.1) in Xo.

Remark 9.18. Let € and ¢ be two positive functions on @, that are piecewise
constant on the cuboids ;1 and (). Define the space

X, = {(E,H) e D(M*)N X, | div(eVEY) € HL,(Q;) for i € {1,2},
[EE - v3,. ] 5 € Ho'*(Fin)},

compare the definition of X5 in (7.19). We claim that X, = X,. The proof of this
identity is analogous to the one in Remark 9.9.

Let (E,H) € X,. Since ¢ and € are piecewise positive constants, we infer that the
function div(EDE®) belongs to Hiy(Q;) for i € {1,2}. In view of Remark 9.9 and
Proposition 9.7, the vectors E and curl E then belong to PH'(Q)?. Since both
coefficient functions satisfy the same assumptions, the proofs of Lemmas 9.12-
9.13 still work. This means that the vector E is an element of PH?(Q)3. The
boundary condition for E then implies that E; belongs to PH?*(Q) N PHY, p,(Q).
Employing additionally Lemma 7.3, we deduce that the jump [¢E-v4, ] %, belongs
to HY/ *(Fim). Altogether, (E,H) is an element of X,. Similar arguments show
the reverse inclusion Xy C Xo. O

9.3. Wellposedness of the Maxwell equations in
piecewise regular spaces

The main result of Section 9.2 shows piecewise H?-regularity for the space X», see
Theorem 9.17. So far, however, we have not deduced whether the solutions of the
Maxwell system (7.1) stay within X, for sufficiently regular initial data. In other
words, it is not clear yet whether the Maxwell equations are wellposed on X5. In
fact, we deduce the wellposedness of (7.1) in X, by means of semigroup theory in
this section.

For the error analysis in Chapter 10, the wellposedness of (7.1) in a subspace of
PH'(Q)%, namely X1, is also an important issue. In fact, we employ this property
to control the error propagation. It moreover turns out that the arguments for the
H'- and the H?-regularity are similar.

As a starting point, we show that the operator M is not only the restriction of
M to Xq, but also its part in this space. The statement corresponds to relation
(2.5) in [EiSc18]. Recall here the spaces Xy and X; from (7.15) and (7.17).
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9. Regularity analysis for the Maxwell equations

Lemma 9.19. Let €, u, and o satisfy (7.2). The following items are true.

a) The identity D(MF) = D(M*) N Xy is valid for all k € N, and My(D(My))
is a subset of Xo. In particular, My is the part of M in X,.

b) The graph norm of My defines an equivalent norm on Xj.

Proof. a) Employing our H'-regularity results, we transfer the arguments from
the proof of (2.5) in [EiSc18] to our current setting.

We first note that the identity D(My) = D(M)N X, is true by definition (7.17).
To show that My is the part of M in X, we demonstrate that M (D(My)) is a
subspace of Xj. Recall to that end (7.15) for the definition of Xy. Let (E,H) €
D(M) N Xo. Then, (M(E,H)); = —2E + % curl H, and thus

div(e"M(E, H){) = — 27 div(c"ED) € L*(Q;)

for i € {1,2}. Combining the boundary condition E; = 0 on I'y U 'y with
Proposition 9.8 and Lemma 7.3, we infer that the jump [oE - vz, ], belongs to
the trace space HS/ 2(3—%0- As the vector curl H is contained in the divergence
space H(div,Q), we furthermore obtain the identity [curlH - vz ]z, = 0 by
means of the divergence formula. Consequently, the divergence and the trans-
mission conditions in X, are satisfied for M(E,H);. The remaining magnetic
conditions in Xy are also satisfied for M (E, H), because the curl-operator maps
Ho(curl, Q) into Hy(div, @), see Remark 2.5 in Section 1.2 of [GiRa86]. Alto-
gether, the space M (D(M)NXy) = M(D(M,)) is contained in Xy. Induction over
k € N now implies the identity D(M{}) = D(M*) N Xy. (In fact, the inclusion
D(MF™) € D(M*1)N X, is clear, as M is the restriction of M to X,. To show
the reverse relation, let u € D(M*™) N X,. Then, y := M* 'y is by induction
hypothesis an element of X;. Our above reasoning now shows that My = M*u is
contained in Xo. As M*u belongs also to D(M), we conclude u € D(MF).)
b) Let (u,v) € X; = D(M) N Xy. We estimate

> Hdiv(g@M (2)4y

2
ey = ; Hdiv(a(l)u(l))

Employing that curlv is contained in H(div, @), we infer [curlv - vz ]z, =0,
and with Lemma 7.4 and Proposition 9.8 we derive the relations

Ie(M (5))1 - V] 2

|Hé/2(gint) = HIIUU’ : Vfint]]g\int |Hé/2(yint)
< Cine [lo| o (2] PHY(Q)

< CeCimi [loll o 1G5 x, »

176



9.3. Wellposedness of the Maxwell equations in piecewise regular spaces

where Cj,; and C, denote uniform constants from Lemma 7.4 and Proposition 9.8.
The definition of the norms [|-[, and |||, in (7.16) and (7.18) now shows the
desired inequality

1M pamy = 10 1y + 1M ()l < NI, + (1= + CeClallorll, ) 101, -

The reverse inequality is immediate. Altogether, the desired norm equivalence
is established. O]

Remark 9.20. If X is equipped with the norm
2

T R A S

which is equivalent to the norm |[-[|, due to Lemma 9.19, it becomes a Hilbert
space. O

The next lemma transfers a part of Proposition 3.2 in [EiScl7] to our setting.
Similar to the proof of Lemma 9.19, the regularity result for the space X5 plays
an important role.

Lemma 9.21. Let ¢,u, and o satisfy (7.2). The operator My has the domain
D(My) = D(M3) N Xy = D(ME) N X,.

Proof. Having Lemma 9.19 in mind, it suffices to check the first identity. Fur-

thermore, the definition of X, immediately implies that D(M;) is a subset of

D(M3) N X,. Consequently, it is enough to show the inclusion D(M3) N X, C
Let (E,H) € D(M?) N X,. We set

U ", E\ —%E+%cur1H
v] H) —icurlE :

By definition, the vector (u, v) is an element of the domain D(M?). We compute
div(eDu®) = ¢ div(EW) € HE(Q,), div(pPv®) = 0,

for ¢ € {1,2}. By definition of D(M), E is continuous in tangential direction

across Zi,. Lemma 7.1 then implies the identities

[[/w : Vﬁinc]]zo/\int = _(aQEi(’)Q) - 83E§2)) Fint + (GQEgl) - 83E§1))|3‘\im =0. (935>

Similarly, the boundary conditions of E yield pyv - v = —curl E - v = 0 on 0Q).
As a result, v satisfies all required magnetic conditions.
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9. Regularity analysis for the Maxwell equations

Concerning the remaining transmission conditions for u, we note that the same
arguments as in (9.35) show that also the field curl H is continuous in normal
direction at the interface .Z,;. Employing that E; belongs to the space PH?(Q)N
PHY, 1, (Q), we can thus conclude that [eu - vz, ]z, = [-0E - vz, ]z, is an
element of HS/ 2(5‘}m), see Lemma 7.3. Altogether, (u,v) belongs to X, implying
that (E, H) is contained in D(Ms). O

The next proposition yields the classical wellposedness of the Maxwell system
(7.1) in X;. The main tool is here semigroup theory. During the proof, we trans-
fer parts of the proof for Proposition 2.3 from [EiScl18] to our current setting of
discontinuous coefficients. Due to the discontinuous behavior of the conductivity
o, our proof is, however, more involved. We in particular have to control the jump
of the first component of the electric field in normal direction across the interface.
Among other things, we therefore use the Yosida approximation techniques from
the proof of the Hille-Yosida Theorem I1.3.5 in [EnNa00]. To show the crucial
bounds for the resolvent of the Maxwell operator M, we then apply a scaling tech-
nique, which eventually leads to the exponential growth factor in the final bound
of the semigroup (e"1);5.

Proposition 9.22. Let ¢, u, and o satisfy (7.2). The part My of M generates a
Co-semigroup (€™1);5o on Xy. The family (e™);>¢ is the restriction of (€™ )i
to X1, and it satisfies the growth bound

t My < ecg,1t7 t > 07
L(xy) = =

e

with a constant Cy1 > 0 that depends only on €, i, 0, and Q.

Proof. 1) Employing the theory of subspace semigroups, see Paragraph 11.2.3 in
[EnNa00] for instance, all desired statements (except the estimate) follow by show-
ing that the family (e"™);5( restricts to a strongly continuous semigroup on X;.
This is here concluded by considering the scaled family (e!™~«)),5, for a fixed
number w > 0, that is determined later. While we consider w > 0 to obtain the
desired generator property for M;, the asserted estimate follows by considering the
special choice w = 0, see part 6).

We show first that the semigroup (e/™~)| x,);>o restricts to a family of operators
on X;. As a consequence of semigroup theory, the inclusion e!™~=“)(D(M)) C
D(M) is valid for ¢ > 0. Concerning the conditions for the magnetic field, the
arguments in the proof of Proposition 2.3 in [EiSc18] further show that the space

Xinag = {(u,v) € X | div(pv) =0, pv-v =0 on 0Q}

is invariant under the resolvent maps R(A, M —w) for A > 0. The same is true for
the family (e/™=)),5,.
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9.3. Wellposedness of the Maxwell equations in piecewise regular spaces

2) Next, we treat the remaining conditions for the electric field. For that purpose,
we employ that the semigroup (e _w))tzo can be approximated by means of the
resolvents of M — w. Consequently, we show first that the resolvent operator
R(A\, M — w) leaves X; for A > 0 invariant.

Let (@,v) € X1, A > 0, and put (u,v) := R(A\, M — w)(@,?). The definition of
M in (7.12) then implies the relation

i=A+w+ Z)u— Lcurly (9.36)
on ). Taking first the divergence of this identity, we infer the formula
div(eWa) = (()\ + w)e® + a“‘)) div(u®) (9.37)

in H='(Q;). This means that the function div(e®u) is an element of L?*(Q;),
compare to the proof of Proposition 2.3 in [EiSc18]. Using (9.36), we also obtain
the identity

[[5’& : Vﬁzim]]«%m = [[((A + w)g + U)u ’ szint]]ﬁint - [[curlv ’ ye%nt]]:?‘\int (938>

on the interface Z,. Since the vector curlv is contained in H(div, (@), the
divergence-theorem shows that [curlv - vz, ]2, = 0. As a result, we have de-
rived that the jump [((A + w)e + o)u - vz, ] #,, is contained in the trace space
Hé/z(%nt). Since A is positive and (u, v) belongs to D(M), Remark 9.9 yields that
the function [eu - v ] 7., belongs to Hy / ().

Altogether, (u,v) is an element of D(M?) N Xy = D(MZ). In particular, the
resolvent R(\, M — w) leaves X invariant.

3) Let ¢ > 0 be fixed. To approximate the semigroup (! *”))gzo, we show that
the family of operators {(}R(%, M —w))" | n € N} is uniformly bounded on X;.
Recall to this end that ('™ )i>o is contractive on X by Proposition 7.8.

Let again (@, ) € X1, and put (u,v) := 2R(}, M —w)(@, 7). We have just seen
that (u,v) belongs to D(MZ). Employing the resolvent bounds for generators of
rescaled semigroups, we infer the relations

(2

oo ]

0]

Similar to (9.37), we obtain the equation

(s 01 -0 (1)
)-|6)

%div(e(i)ﬁ(i)) = (% +w+ g((;)) div(e@u®)

D(M)

(9.39)

D(M)
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9. Regularity analysis for the Maxwell equations

on Q; for i € {1,2}, resulting in the relations

[div(e@utdy oy = ’Z+Z§f;+w [ div(eDa) o)
< oL Hdiv(g@')a(i)) oy (9.40)
Arguing as in part 2), we also derive the formula
[Fet-va, ]z, = (3 +w)e+o)u- vz, ]z,
being equivalent to
let - ve, ]z, = [(1+wt+ é)su V7| Fi - (9.41)

By means of the triangle inequality and the trace estimate from Lemma 7.4, we
infer the relations

(142 [Mew - v ] 7

|H01/2(«?int) S |||]:6ﬁ' : I/--g.intj[ltg.int |Hé/2(yint)

2
llollot (4)
+ n Z u ’ Vﬂint
=1

HY? (Fiar)

~ t
< ||[[€U ’ Vyint]]f/\int |Hé/2(yim) + %Cint Hul”le(Q) .

The embedding of X; = D(M,) into PH'(Q)® from Proposition 9.8 yields now
the inequalities

A+ <) et vl < N 225l
u
v

where C is a uniform constant from the embedding in Proposition 9.8. Altogether,
estimates (9.39), (9.40), and (9.42) imply the relation

+ et o, , (9.42)

X1

U U U
sror-o) ()| <ot |(5)] +sencar-w (3]
t N\ i), =+ I\ N\ )|,
being equivalent to
nR(m M — w) (“) ! ‘ (“) (9.43)
! v v X1 N (1_ Cﬁt)(l‘f’%t) v X1’
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9.3. Wellposedness of the Maxwell equations in piecewise regular spaces

with the uniform constant Cy := ||o|, CeCine > 0. The latter number does in
particular not depend on w. As a result, we arrive at the uniform bound

ez 21 )|, < Gy <o 40

for all n € N, ¢t > 0 with n/t > Cy. Taking w := 2Cy and ¢t = 1 in (9.43), we

moreover derive the estimate
U
0
for n > w.

4) We deduce now by means of the results from parts 2) and 3), that the family
(e!™M=2)),-4 leaves X invariant. Recall that X is a Hilbert space with respect to
the equivalent norm in Remark 9.20. Since the sequence ((%R(%, M —w))" (%) )n
is bounded due to part 3), the Theorem of Banach-Alaoglu provides us with a
weakly converging subsequence. Let (#,?) be its limit in X;. Approximation
theory for semigroups implies also that the same subsequence tends to e!(™—«) ()
in X, see Corollary IIL.5.5 in [EnNa00]. Since the embedding of X; into X is
bounded, we infer hat (%) = '™~ () is an element of X, and that e/(*~)
leaves X invariant.

5) It remains to prove that the semigroup (e!™ )|y )5 is strongly continuous
on Xj. Let (:}Lg;) = efM=w) (@) for ¢ > 0. Since the vector (@, 7) belongs to
X, € D(M), we infer that the mapping (u,v) : [0, 00) — D(M) is continuous. For
the divergence of u, we argue similar to part 2) and the proof of Proposition 2.3
in [EiSc18]. Employing that (u,v) solves the Maxwell equations with J = 0 and
perturbation —w/, we obtain the formula

(9.45)

<

nR(n, M — w) (

:

X1 Xl

du(t) = Leurl(v(t)) — (£ + w)u(t), t>0. (9.46)

Taking the divergence of this equation, we arrive at the relation 9, div(s@u((t)) =
_(gg)) + w) div(e@Dul(t)), and thus

o)

0 (e =@ div(eDuD (1)) = 0

in L?(Q;). Integrating this formula yields the identity

div(eDu® () = e O ) Qiv(eWa®), >0, (9.47)

on Q;. As a result, the mapping [0,00) — L3(Q;), t — div(e@u®(t)), is smooth
for i € {1,2}. We further conclude that the function [0,00) — H(div,Q;), t —
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9. Regularity analysis for the Maxwell equations

gy ™ (t), is continuously differentiable. Due to the continuity of the normal trace
operator, we deduce from (9.46) the relation

8t[[6u<t) ’ Vyint]]gaint = [[curl(v(t)) ) fo;int]]yint - [[(U + &w)u(t) ’ Vﬂimﬂ%m? > 07

in H=Y2(F,). As before, the first summand on the right hand side vanishes, and
we obtain by integration

t
[I:E:U’<t) ’ Vﬂint]]rgaint = Hsﬂ ’ Vrgintﬂyint - /O [[(U + wg)u(s) ’ Vf?intﬂyint dS (948)

in HY2(Fin).

6) Let T" > 0. It suffices now to show that the function s — [(o + we)u(s) -
vz, ) 7., belongs to L*([0,T], o *(Fint)). Formula (9.48) will then imply that the
mapping [0,7] — Hy (Pe), t = [eut) - vz, ]z, is continuous. Our results

from above will furthermore show that the restriction of the family (e/™~)|,)i>0
is strongly continuous on Xj.
Define the linear operators
V(k) :=kR(k,M —w), My :=k(V(k)—1I), k eN, (9.49)

which are both bounded on X and on X;. Note that the sequence (M}); forms
the classical Yosida approximations of M — wl that converge on D(M) point-
wise to M — wl in the norm of X. Moreover, the single sequence elements M)
generate contractive semigroups (eM*);5q, denoted by ;. The latter tend to
(e!™=%)),-4 uniformly on compact time intervals, see the proof of the Hille-Yosida
Theorem I1.3.5 in [EnNa00]. In particular, the sequence (7 (%))x converges in
L2([0, 7], X) to (™) ()20

Since each operator My is also bounded on X7, it generates a strongly continuous
semigroup on Xi, which coincides with 74| x,. (This can be seen by means of the
exponential series representation for a semigroup generated by a bounded operator,
for instance.)

Let k € N with k£ > w = 2Cj. Employing (9.45), we estimate

tM —th || tkV (k) ik o~ () [ (RR(k,M—w)" |
He k Loy S e He HL(Xl) <e nZ::O - £(X1)
<e YU (9.50)
n=0

fort > 0. Asaresult, the sequence (% (%)) is uniformly bounded in L*([0, T, X1),
and the Theorem of Banach-Alaoglu yields a subsequence (7%, (%)), converging

weakly to a mapping 7 (2) in L*([0,77], X;). Due to the continuous embedding
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9.3. Wellposedness of the Maxwell equations in piecewise regular spaces

of X; into X, the same weak convergence statement is valid in L*([0, 7], X). The
above arguments, however, show that (7, (%)), converges already in norm to
(%) in L*([0,T], X). Consequently, 7 (%) = (%) is a function in L?([0,T7], X;).
Lemma 7.4 and Proposition 9.8 further imply that the trace-jump-mapping X; —
Hé/Q(%nt), (E,H) — [(0 + we)E - vz, ] .., is continuous. The function [(o +
we)u - vz |7, thus belongs to L2([0, 7], Hy'*(Fu)).

Altogether, we have derived that the family (e/™~)|x, )0 is also a strongly
continuous semigroup on Xi, being generated by M;. The asserted growth bound
follows from (9.43) by choosing w = 0, A = 2 > 0, and employing standard
generation theorems for semigroups, see Theorem I1.3.8 in [EnNa00] for instance.

O

In almost the same way, we obtain an associated result in the space X5 from

(7.19).

Proposition 9.23. Let €, i, and o satisfy (7.2). The restricted family (e |x, )i>o
orms a strongly continuous semigroup on Xo with generator My. We denote it by
f trongl ti ' Xo with tor My. We denote it b
(e"M2),54. The semigroup can be bounded in operatornorm by

HetMQ <ef, >0,

L(X2) —

with a positive constant Cy o, that depends only on €, 1,0, and Q.

Proof. Due to the strong similarity with the proof of Proposition 9.22, we only
sketch the common parts. The first two steps of this proof use again arguments
from the proof of Proposition 2.3 in [EiSc18]. As above, it suffices to show that
the family (e™|x,)i>0 leaves X, invariant, and that it is strongly continuous on
it. To that end, we consider another time the scaled family (e!~*)),5, for some
fixed w > 0.

1) The arguments from part 1) of the proof for Proposition 9.22 imply here that
the space D(M?) N Xppag is invariant under (e!™ =),y and R(\, M —w) for A > 0.

2) We show first that the resolvent operator R(A, M — w) leaves X, for A > 0
invariant. Let (%) € X5 and put (¥) := R(A\, M —w) (). Part 2) of the proof for
Proposition 9.22 states that (u,v) is contained in X;. In particular, (u,v) is an
element of Xj. Relation (9.37) now implies that the function div(e®u®) belongs
to Hay(Q;), and identity (9.38) means that the jump [(A\+w)e +o)u- vz, ] 7, is
an element of Hg/ 2 (Zint)- As a consequence of the arguments in Remark 9.18, also
the jump [eu - vz, ]5,. belongs to Hy'*(Fiu), and the vector (u,v) is contained
in X5. Thus, the resolvent operator R(A\, M — w) leaves X, invariant.

3) Lett > 0,n € N, and put () := 2R(%}, M —w) (%). Analogously to relations
(9.39) and (9.40), we conclude the estimates

(2

t t?

(S-S

+

BR(E, M — w) M (“)

()

(30 - )

D(M2)
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1 _
< (“) , (9.51)

L+ 5w I\ lipar

v (P, (0 v (e® @)
Hdlv(g u'’) . < T div(e™a'") H1(Q) (9.52)

v (e(®q, (@) v (e® @)
Hle(E u') Y3y < g div(e"a )’ RVIE (9.53)

where I is an arbitrary face of @);. Formula (9.41) is again valid, and together
with Lemma 7.4 and Theorem 9.17 it leads to the inequalities

(1 + %t) ||[[gu ’ Vﬂint]]e?int ’Hg/z(giim) < ||H81~L ’ Vﬁintﬂfint |H§/2(%nt)

|olloot

+ 522 O Jun || prz )

S H Hsa ’ Vﬂ\int]]<gint

|H§’/2(fim)
u
v

where C, denotes the uniform embedding constant from Theorem 9.17. Analo-

gously to (9.43)—(9.45), the relations (9.51)—(9.54) give rise to the estimates

+ et o, , (9.54)

Xo

|#RC M~ W>Hc<x2> = (1— Gby(1 1 by’ (9.55)
n n C
[3R(G M =), < e (9.56)
for all n € N, and ¢ > 0 with n/t > Cy. They also lead to the bound
[nR(n, M = 2Co) | g(x,) <1 (9.57)
for n > 2C,. Here Cy := ||o||, CcCine > 0 is a uniform constant, that is indepen-

dent of w. We choose in the following w = 2C}. In view of the above reasoning, the
arguments in part 4) from the proof of Proposition 9.22 remain for X, essentially
the same, and imply that e =) leaves X, invariant.

4) Let (Zg;) = M=w) (@) for + > 0. We only have to show that the mapping
(u,v) is continuous on Xs.

First, (u,v) : [0,00) — D(M?) is continuous, employing that (@, 0) is an element
of D(MZ). Formula (9.47) is also true in our current setting. It shows that the
mapping ¢ — div(e®u®(t)) is continuous with respect to the toplogies in H'(Q;)
and Hy/ ("), where I" is an arbitrary face of Q;.

Let T > 0. As above, we can deduce identity (9.48), and we aim this time
at proving that the function s — [(0 + we)u(s) - vg,, ]2, belongs to the space
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9.3. Wellposedness of the Maxwell equations in piecewise regular spaces

L2([0,T), HY*(Fn)). This results then in the continuity of the mapping [0, 7] —
HY (Pui), t = [eu(t) - vz, ]2, and in the strong continuity of the family
(€M) x, )10 on Xo.

We employ again the linear operators V' (k) and M; for £ € N from (9.49),
which are here bounded on X5 and X. Furthermore, we use the same notation as
in part 6) of the proof for Proposition 9.22. The operator M, then generates a
strongly continuous semigroup on Xs, coinciding with the restriction of the family
T to Xy, In view of (9.57), the estimate

<1

Heth <
L(X2)

follows for t > 0 and k& > w, see (9.50). The remaining arguments in the proof of

Proposition 9.22 now transfer immediately to X5, and we conclude the assertion.

The growth bound of (e"*2);5 is obtained from (9.55), after choosing w = 0 and

A=2>0. ]
t

By means of classical semigroup theory, we can deduce the wellposedness of the
Maxwell system (7.1) in the space X5. The statement transfers parts of Propo-
sition 3.3 from [EiSc17] to our setting of discontinuous coefficients. The formula
for the charge density p#,, on the interface is also contained in [ScSp18]. For the

statement, the inhomogeneity of (7.1) is supposed to be contained in the space

Wi = LY[0,T], D(Ms)) + Wh([0, T, X3),

lgllwiz = _inf — (lgilompon) + lg2lwiiqomn.x). g€ Wi,

glGLl ([07T]7D(M2))a
gQGWlJ([OuTLXQ)

for a fixed number T" > 0. Note that W, r is a Banach space.

Corollary 9.24. Let e, u, and o satisfy (7.2). Let moreover T > 0, and wy =
(Ey, Hy) be initial data for (7.1) from the space D(My) = D(M?) N X,. Let also
g = (%J, 0):[0,7T] — X5 be a weighted current density that is continuous, and an
element of Wi r. The following statements are true.

a) The Mazwell system (7.1) possesses a unique classical solution w = (E, H)

in C([0,T],D(Ms)) N CH[0,T], X5). It satisfies the bounds

lw®)lx, < e (Jwollx, + 19l 11 jo,4,x2))-
1Maw(t)]| ., < e (llwollpar,y + (7 + 3) lgllw, ,)-

fort € [0,T]. The constant C, 4 is taken from Proposition 9.23, and depends only
one,pu,o, and Q.
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9. Regularity analysis for the Maxwell equations

b) The charge densities p(i) on Q;, and pg,, on the interface Fin are given via
the formulas

PO () = div(e® B9 (¢)) = div(e® EY) / div(e® B9 (s) + JO(s)) ds
pdozint (t> = [[EE<t) ’ y=?intﬂt§it\t = [[8EO ' Vﬁintﬂ%nt - /0 [[(UE(S> + J(S)) ’ V-\gint]]f?int dS?

fort €[0,T], and i € {1,2}.

Proof. a) Proposition 9.23 shows that M, generates a strongly continuous semi-
group (etM2)t20 on X,. The classical wellposedness is thus a standard consequence
of semigroup theory, see Theorem 8.1.4 in [Vrab03] for instance. The corresponding
solution is given via Duhamel’s formula

t t
wit) = Moy + [ el g(s) ds = oMy L [ eI (3(5),0)ds
0 0

Employing the growth bound for (e'*2),5 from Proposition 9.23 in this identity,
we infer the relations

t
oD, < €5 fully, + [ ere=

+((1J,0)

ds

(£3(s),0)]

X2

< ! (J|wolly,

L1([0,T],X2) )

Let (1J,0) € Wip. Let additionally ¢ > 0, and J; € L'([0,T], D(M>)), I €
WLL([0,T], X,) with

(13,0) = Jy + Js,
1T, 0wy e = 131l qo.r,p0m)) + 132w o, x0) — €
Integrating by parts, we conclude from Duhamel’s formula the identities
Maw(t) = ™2 Mywy +/ Mo =9M2(J, (s) + Jy(s)) ds
t d
= ™ Myw, —l—/ eEIM VLT (5) ds —/ (—
0 0 ds
t
= ™2 VL, + / =MV 3 (5) ds — Jo(t) + e™2J5(0)
0

t
+ /0 elt=M231 (5) ds.

et=9M2) 3, (5) ds

By means of Lemma 7.6 and Proposition 9.23, we obtain the estimate

||M2w(t)||x2 < ng’2t< ||w0||D(M2) + ||J1||L1([0,T},D(M2)) + (% +3) ||J2||W171([0,T],X2))
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9.3. Wellposedness of the Maxwell equations in piecewise regular spaces

< %2 (wollpary + (2 +3) (12T, 00w, +©)).

As the solution w and all arising constants (except () are independent of the
partition (iJ ,0) = J; + Jo, we let ¢ tend to zero, and infer the second asserted
inequality.

b) The representation for the current density on ); may be obtained by appro-
priately modifying the arguments from Proposition 2.3 in [EiSc18], and part 5)
from the proof of Proposition 9.22. Since the mapping Xy — H(div, Q;), (u,v) —
div(u®), is bounded for i € {1,2}, the regularity of w implies that the charge
density p@ : [0,7] — L?(Q;) is continuously differentiable. Due to the same rea-
soning, the function [0, 7] — L*(Q;), s — div(J@(s)), is L'-integrable. By taking
the divergence in (7.1), we consequently infer the equation

9, div(eDED (1)) = —¢W div(ED (1)) — div(ID(t))

in L?(Q;). Integrating with respect to ¢ yields the first asserted formula. In a sim-

ilar way, we obtain from our arguments in part 5) of the proof for Proposition 9.22

also the asserted formula for pg, , in HS’/ 2(%nt). O

During the error analysis in Chapter 10, the following consequence of Corol-
lary 9.24 is crucial.

Remark 9.25. Let the assumptions of Corollary 9.24 be true. If g = (%J, 0) is
additionally an element of the space W'1(]0, T], X3), Corollary 9.24 implies the
estimate

|Maw(®)llx, < ¢ (lwollpam + (G +3) l9lwiagom x )

for ¢t € [0, 7. 9
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10. Error analysis for the
Peaceman-Rachford ADI
scheme

The goal of this chapter is an error result in L? for time-discrete approximations to
the Maxwell system (7.1), that are obtained by means of the Peaceman-Rachford
ADI scheme. The most important ingredients of our analysis are the regularity
results from Chapter 9. They enable us to estimate arising interface integrals
during the study of the local error, so that we lose only half an order in the
convergence result, compared to the continuous setting in [HoJS15, EiSc17, Eilil7,
Ko6hl18|.

We start by recalling the Peaceman-Rachford ADI splitting, and we state certain
useful properties of the splitting operators. The definition of the splitting operators
follows Section 2.2 of [HoJS15], and Section 3 of [EiSc18]. Note also that some of
the below operators already arise in the error analysis in Chapter 6. To have a
self-contained presentation in this chapter, we however repeat the common parts.

Recall our permanent assumption (7.2) for the parameters €, i1, and . The curl
operator is splitted into the difference

0 —035 0O
curl = 83 0 —81 = cgl — ng,
-0y O 0
employing the two operators
0 0 O 0 03 0
Cgl = 83 0 0 and ng = 0 0 81 s
0 o 0 d 0 0

endowed with their maximal domains

D(€;) ={u € LQ(Q)3 | Gu e LQ(Q)?’}
—{u € L*(Q)* | Cju' € L*(Q,)? for i € {1,2}, [ua]#,, =0if j =1,
or [us]z,, =0if j =2}
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for j € {1,2}. By means of these operators, we can now split the Maxwell operator
M from (7.12) into the sum M = A + B with the operators

—o] 1g —o] 1%,
- 2e € — 2€ €
A= (i(gQ 0 ) and B := (_1%1 0 .

We consider both operators on their corresponding domains

D(A) :={(E,H) € L*(Q)° | ({HY, %EY) € L*(Q:)°, [Es]#,, =0, (10.1)
[Hy]z, =0, E? =0on T, EY) =0 on I},
EY) =0on T\ for i € {1,2}},
={(E,H) € L*(Q)° | (61H,%E) € L*(Q)°, E; =0on Ty, E; =0 on I3,
E;=0o0nTI4},
D(B) :={(E,H) € L*(Q)° | (&:HY, ©/EY) € L*(Q:)°, [Es] .. =0,
[Hi]s, =0 EP’=00onT{, EY =0onT,
E{) =0on T for i € {1,2}}
={(E,H) € L*(Q)° | (6x:H,4.E) € L*(Q)°, E; =0o0on T3, E; =0on Iy,
E; =0 on I's},

We collect some observations in the next remark, concerning the domains of A
and B.

Remark 10.1. 1) The boundary condition for the electric field is distributed
onto the domains of both splitting operators. Note that all traces and interface
conditions are well-defined due to the imposed partial regularity, see Section 2.2.
The boundary conditions for the magnetic field are not included in the domains,
but will be incorporated by restricting the setting to the subspaces X; and Xs.
This reasoning is inspired by the arguments in [EiSc18, EiSc17].

2) Although we deal with piecewise regularity in Chapter 9 and consider dis-
continuous coefficients, we define both splitting operators in such a way that we
can apply the corresponding differential operator on the whole domain @). In
other words, we impose interface conditions in the domains of A and B. This is
crucial, since the current definition ensures that the intersection D(A) N D(B) is
contained in D(M), that A and B are skew-adjoint on X, and that the inverses
(I—7A)"! and (I —7B)~! exist. The latter resolvents are needed to formulate the
ADI scheme. Note that I — 7A and I — 7B would loose their injectivity if being
extended to domains without interface conditions. O

In terms of the operators A and B, we now formulate the considered Peaceman-
Rachford ADI scheme for the approximation of the inhomogeneous Maxwell system
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10. Error analysis for the Peaceman-Rachford ADI scheme

(7.1), see [ZhCZ00, HoJS15, EiSc18, EiSc17, Eilil7, Ko6hl18, HoK620]. Fix a step
size 7 > 0, and take initial data (E°,H°) € D(B). Then we approximate the
solution of (7.1) at time ¢ = n7 by

() = (s

= (=3B 4 5[0 = 5470 458 (o)

— Z(I((n - 1)7) +J(m-),0)] (10.2)

for n € N.

The following statement corresponds to Proposition 3.1 in [EiSc18]. It is crucial
for our analysis, as it shows that the scheme (10.2) is well-defined. The lemma is
furthermore essential for the subsequent unconditional stability of the scheme.

Lemma 10.2. Let €, u, and o satisfy (7.2). The following items are valid.
a) The adjoint operators of A and B on X are given as

and their domains are D(A) = D(A*) and D(B) = D(B*).

b) The operators A, A*, B, and B* are generators of contractive Cy-semigroups
on X. In particular, the operators (I — L)™' and S;(L) := (I + 7L)(I — L)™'
are contractive on X for L € {A, A*, B, B*} and 7 > 0.

Proof. The arguments from the proof of Proposition 3.1 in [EiSc18] yield also here
the assertions. O

The above lemma leads to the unconditional stability of the scheme (10.2). The
statement of this fact is formulated in Corollary 10.3. Note that the result is
already contained and proved in Corollary 4.12 of [K6hl18]. The same result is
also established in Theorem 4.2 of [EiSc18] for the case of regular coefficients.

Corollary 10.3. Let e, u, and o satisfy (7.2). Let further T >0, 7 € (0,1), and

(E°, H°) € D(B). Let the inhomogeneity (1J,0) be contained in C([0,T], D(A)),
and n € N with nt <T. The stability estimate

I(E", H")|| < C(|(E®, H)|lp(s) + T2, 0) | cqompay)

is valid with a uniform constant C' > 0.
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The error analysis in [HaOs08, HoJS15, EiSc17]| depends in a crucial way on
the embedding of the domain D(Ms) into D(AB). Recall here that M, denotes
the part of the Maxwell operator M in the space X, from (7.19). The useful
embedding is valid if the coefficients are sufficiently regular, i.e., if the parameters
belong at least to Wh*°(Q). For discontinous coefficients ¢, u, and o, however,
this embedding is in general not valid anymore, see Remark 10.5. The failure of
the embedding is the main reason, why our error analysis suffers from a loss of
convergence order. Nevertheless, we can at least state the following weaker result.

Lemma 10.4. Let ¢, u, and o satisfy (7.2). The embedding X, — PH(Q)* N
D(A)ND(B) is valid.

Proof. The embedding of X, into PH'(Q)® is already shown in Proposition 9.8. As
a result, it remains to check that all vectors in X satisfy the boundary and interface
conditions, imposed in the intersection D(A) ND(B). Taking the definition of the
domain of M in (7.12) into account, we can also conclude that the desired boundary
and interface conditions in D(A) and D(B) are valid for every vector in X;. [

Remark 10.5. Note that the result of Lemma 10.4 can in general not be improved
to yield the embedding of D(Ms) into D(AB). To see this claim, let , and u satisfy
(7.2), and let 0 = 0. Let also (E,H) € D(M,) C D(B). (The latter inclusion is
true, as D(Ms;) is a subset of the space Xy from (7.19), which itself is a subspace
of X;.) The definition of B then implies the identity

o(5),--tom

Since pH; is continuous across Zy,, by definition of X3 in (7.19), we infer from
Lemma 7.1 and Theorem 9.17 the relation [pu0sH;]#,, = 0. Unless the refractive
index e is continuous on (), the function %(%Hl = i@ng will thus have a
discontinuous trace at Z,. We consequently obtain that B (&) does not belong
to D(A). One can argue in a similar way to show that D(M,) does neither embed
into D(BA). Note that the continuity of the refractive index is an assumption,
that is too restrictive for composite materials. O

Let [ € {1,2}. In order to expand the semigroup (e'™);5, for positive times, we
employ the operators

1 t -
i — o ]—1 SMl — tMl
Aji(Hw - T /0 (t —s) e Mwds, Ao(t) :== e, (10.3)

for w € X;, t > 0, and j € N, see [HaOs08, HoJS15]. Note that the semigroup
(e'Mt), is introduced in Propositions 9.22 and 9.23, respectively. One can define
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10. Error analysis for the Peaceman-Rachford ADI scheme

the functions A;(t) in the same way on X, using the semigroup (e"™),>,. Proposi-
tions 9.22 and 9.23 also imply that A;;(¢) and A;(t)|x, coincide on X for all j € Ny
and ¢ > 0. For notational simplicity, we shall thus write A;(¢) instead of A;;(¢).

By means of standard semigroup theory and the growth bounds from Proposi-
tions 9.22 and 9.23, one can show the relations

1
IO leo < 57 18 Olleex,) < et kefl,2), (104)
1 :
tMlAj_H(t) = Aj(t) — ﬁl on D(Ml), J € Ng, (105)

No(t) = T +tMA(t) = I + My + S M7 + *MPAs(t) on D(MP),  (10.6)

for t > 0, see Section 4 in [HoJS15]. Furthermore, A;(¢) maps D(MF) into D(M})
for all 5,k € N and ¢t > 0. The statements remain true if we replace M; by M.

Those operators are also involved in the next statement. It deals with a term,
that is critical within our error analysis. This is the moment, where our regu-
larity results come into play, and we can gain half an order in the error result
by estimating arising interface integrals. As introduced in Section 2.2, we denote
the extrapolation of A onto L?*(Q)® by A_;. Moreover, we often abbreviate the
electromagnetic field (E, H) by w.

Lemma 10.6. Let €, i, and o satisfy (7.2), let w € D(Ms), and let 7 € (0, %]
The estimate

2

|(1 =347 AL BMa A (7)w

C
L2(Q) S 7-17/,32 ||w||D(M2)

holds with a uniform constant Cy, > 0, being independent of w and 7.

Proof. 1) Let v € X = L?(Q)%, and define the vectors

£) s (3)-a(3)

Theorem 9.17 and (10.4) imply that (g) belongs to the space Xo C PH?(Q)S,
and that the estimate
E
H

is valid with a uniformvconstant ki > 0. Lemma 10.4 and Theorem 9.17 further
show that the vector (f‘l) is an element of PH'(Q)°.

< [0l (10.7)
PH?(Q)
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We recall for the following calculations that (-, -) denotes the weighted L?-inner
product from (7.11). On X we also note the identities
(I-FA)TTAL =AI - ZA) ' =214+ 2(I - ZA)~". (10.8)

2 2 2

By means of Lemma 10.2, we then obtain the relations

- ((‘EI) LAY — ;A*)%) . (10.9)

Denoting (E, H) : — ZA*)" 1w, we compute with Green’s formula
<< ) >>: ., -%ﬁ+f{-%]§+g]§-]§)dx
_ i‘: / a9 i) B - o 5 -E“)) dz
/ [[Es]]%mH2 + Hﬁ2ﬂ91ntE3) ds. (10.10)

Note that all other boundary integrals from Green’s formula vanish, due to the
boundary conditions for (E,H) € X, and (E,H) € D(A), see (7.19) and (10.1).
For the interface integral, we exploit that H, and Eg are continuous across Fi,,
since (E, H) is contained in D(A).

2) We next deduce a trace inequality for the space H'/?(%y)*, which is the
dual space of

H'(Fia) = (L (Fint), H (Fis))1/2.2

with respect to the pivot space L?(.Zi). In this way, we want to estimate the
interface integral on the right hand side of (10.10). As usual, we identify .%;,; with
the rectangle R := (a5 ,a3) x (a3, ad).
By means of Theorem 6.2 in Chapter 1 of [LiMa72], we can express H'/?(Fy,)*
in terms of the formula
HY( ) = (LA(Fiwn), H (Fian))

1/2,2

= (H"(Fim)", L (Fine) )

1/2,2”

employing the dual H'(Z)* of H'(Z) with respect to the space L*(Fiy).
Remark 3.5 in Chapter 1 of [LiMa72] now yields the trace inequality

1/2 1/2
1620 £l ey < Ko I | ot0.00) 220 101 F I 0000 (1)) (10.11)
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10. Error analysis for the Peaceman-Rachford ADI scheme

for all functions f € H'((0,00), H'(R)*) N L?((0,00), L*(R)). Here, ky denotes a
positive uniform constant.

In order to apply (10.11) to our particular case, we employ a cut-off argument.
Let g € H*((0,a), LQ(R)), and let x : [0,af] — [0, 1] be a smooth function that
is equal to 1 on [0, sa{], and that is supported within [0, 3af]. The function

g('rlax2ax3> = X(xl)g<x17x27x3)7 (x17x27x3) S Q27

is then still contained in H'((0,ai), L*(R)). By defining g(xy,-) := 0 for z; >
af, we obtain a function in H'((0,00), L?(R)). Consequently, estimate (10.11)
is applicable to g. Taking also the properties of x as well as the embedding
L*(R) — H'(R)* into account, we infer the relations

[tr 7, 9||H1/2(ymt)* [1tr 7 g”qu/?(gzmt < ko ||9||L2(Q2 Halg||L2 (Q2)

1/2
< k2 lgll o, (HalgHm @+ Il 9l 220)

1/2 1 2
< ks N9l 25 ) 190 v 0y 220my (10.12)

with the uniform constant ks := ko(1 + Hx’HOO)l/2 > 0.

3) By means of the trace inequality (10.12), we are now in the position to
estimate the interface integral in (10.10). To that end, we employ that Hy and
E; belong to H'((0,a7), L*(R)), and that H, and E; are contained in PH'(Q).
Altogether, we arrive at the estimates

[ ([ n T+ L5, ) d] (10.13)
“‘int
< || —A— E Z
>~ H / (2)[[ 3]]:/1nt H/2(Fine) HY2(Finy)*
+ ‘ \/‘E(T[[H2]:|/mt H1/2 mt ‘ E3 H1/2(9‘int)*
. . @ ~ 1/2
SN [ e
= [ u@)[[ sl HY/2(Fin) : L2(Q2)
1/2
. w/,u(2)H2 H /,L(2 81H2 )
(H \/7 L2(Q2)
. 1/2
_1 . \ =(2)
+ ‘ m[[HQ]]Jint HY/2(Finy) ‘ 5( E3 L2(Q2)

. (H@Es

+ H\/_81E3

1/2
L2(Q2>) ] '

L2(Q2)

The definition of (E, H) yields the formulas

= (2) 1)

(E. o (2 L

(2) £
) = —tra, (5 0.H, <1>5’2H +zg<z>E3 2D

tl"y

int Y

~ (1)
)

- E, E,
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(2) (1) (2)
tr,%m(H H ) = —trz,,( <2>83E <1>83E )

We now combine these identities, the trace inequality for PH(Q), (10.9), (10.10),
and (10.13). It follows

(osnn ()

2 .
< CQE + ||0';|oo HE(Z) H(I o %A*)_IU ,
=1 ClH £2(Qy) L2(Qq) L2(@)
19 o 1 E
+ k3(1 mt <H 7 (*2 Y i 3E1HPH1 + H /—6 PH1(Q)+ % /—#(2) E3 le(Q)>

el () m;H(ﬁ?ﬁQ )

Here Cyy > 0 denotes the constant, resulting from the boundedness of the trace
mapping trz,, : PHY(Q) — H'Y?(Fy,). The definition of A, the assumptions on
e, and o in (7.2), Lemma 10.2 and (10.8) now imply the relations

HUH

< A
o 05 B, lel. 1/2
+ 55z (14 Cint) (H(éle)H o + |E Hle(Q)) Il

- 1/2
ol + VIl + e (1A (2] + 1o
H L2(Q)
(E)
H PH?(Q)

ol (@)
(Mol + lell oo + el o) [(2 + 1242 o] + 2

PH2(Q)
E
H

i 1/2
(1+ 54| ])
with positive uniform constants ky, and ks, since 7 < 1/2. We finally conclude the
asserted estimate by means of inequality (10.7). O

loll oo

< ky [o]] + 5392 (1 + Cia)(

< ks_

< % o]l

PH?*(Q)

We are now in the position to state, and to prove our error result for the
Peaceman-Rachford ADI scheme (10.2). Hereby we employ arguments from the
proof of Theorem 4.2 in [HoJS15], which uses itself an error formula from [HaOs08].
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10. Error analysis for the Peaceman-Rachford ADI scheme

Arguments from the proof of Theorem 5.1 in [EiSc18] are also applied. As a first
main difference to the mentioned literature, we cannot use an embedding of D(My)
into D(AB). We thus extrapolate A. Second, we can estimate the expression from
the statement of Lemma 10.6 only with a loss of convergence order.

For notational convenience, the solution of the Maxwell system (7.1) with initial
data (Eg, Hy) is denoted by w = (E, H). The approximate solution at time t,, = nr
from scheme (10.2) with starting value wy = (Eo, Hy) is called w,. In particular,
the scheme (10.2) is assumed to start with exact initial data. Let 7' > 0. For the
statement, the current density is supposed to belong to the space

War = WH([0,T], Xo) N W>([0,T], X1),
| fllwor = I fllwraqozxz) + 1 w2 o, x1)s J€Wsr,

which is a Banach space.

Theorem 10.7. Let ¢, u, and o satisfy (7.2), and let T > 1. Let T € (0,1/2) be a
fized step size, and let wy = (Eo, Hy) € D(Mz) be the initial data for the Mazwell
system (7.1) and the scheme (10.2). Moreover, let (£J,0) be contained in Wa .
There is a uniform constant Cey > 0 with

||wn - ’lU(TLT)“Lz S OerrTecerrT73/2(||w0||D(M2) + ||(%Jﬂ O>||W2T) (1014)

for alln € Ny with nt <T. The number Cy., depends only on €, u, o, and Q.

Proof. 1) We start by estimating the local error of the ADI scheme (10.2). Com-
bining the definition of X5 in (7.19) with Lemma 9.19, we infer that the operator
M?* maps D(M,) into D(M) N Xy = X;. Lemma 10.4 consequently implies that
the function M'A;(7)wy is contained in the intersection D(A_;B) N D(A)ND(B)
for I € {0,1,2}, and j € Ny.

The first goal is a convenient representation formula for the local error. We thus
expand the current density J in the formula

kT+s
LJ(kT +s) = 1I(k7) + 23 (k7) + (kT +s—7r)23"(r)dr (10.15)
kT
for s € [0,7]. Employing the A-operators from (10.3) in Duhamel’s formula, we
can now write the solution w((k + 1)7) of the Maxwell system (7.1) in the way
w((k+1)7) = e™w(kr) + / e(T_S)M(_éJ(kT +5),0)ds
0

= eMukr) + [ eI (=LI(kr) — £3'(k7),0) ds
0

+ /0 Telrom( /k e 4 s — ) (—137(r), 0) dr) ds

T
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with the remainder

Ri(r) = /0 Celrom( /k T e 4 s — ) (= 137(r), 0) dr) ds.

T

(Compare the proof of Theorem 5.1 in [EiScl8].) Applying (10.15) for the ADI
scheme (10.2), we obtain the analogous formula

Tow(kr) = (I = 5B)7 (0 +34)|(1 = 3A) (1 + §BJwlkr) + (=13 (kr),0)

_l’_
MH\;
N

|—=

“~
—

w

N
~

@)
S~—
+
MR

/k(kH)T((k +1)7 —7)(=13"(r),0) d?”}

T

=(I-1B)" [([ —3A)TH I+ FA ) + EB)w(kT)

+ (I + 5A)(r(=L3 (k7). 0) + 5 (— L3 (k7),0)
+1 (k+1)f((k + 1)1 — r)(—%.]”(r), 0) dr)]. (10.17)

Here we have to extrapolate A in the last identity, since Bw(k7) is in general
not contained in D(A). Subtracting both representations (10.16) and (10.17), we
arrive at the basic equation for the local error

Z(w(kr)) — w((k+1)7)
= (I=3B) (I =3A0) 7 (I +5A)(T+5B) = (I = A1) = 5B)e™|w(kr)
JAs(7)

1

+(I=5B) 7+ 34) = 7(I = 5B)A(7)| (= L3 (k). 0)
+ (1= 3B)7 5 (I + 5A4) = 72(I = §B)As(7) | (=1 (k7), 0)
(k+1)1
I —IB) Y1+ )/kT ((k +1)7 — r)(=L3"(r), 0) dr — Ry(r)
= 617]{(7') + 627]{(7') + 63’]6(7') + 647]@(7') — Rk(T) (1018)

Note that all arising expressions in (10.18) are well-defined, due to the inclusion
of Ay(7)(X7) and X; in D(A) N'D(B), as well as the assumed regularity of J. We
estimate in the sequel each summand on the right hand side of (10.18) separately.

1.a) We start by rewriting e; x(7) as

er(r) =(I = B) (I — FA)™
I+ gMQ + TALB — (I - IMy+ T A B)Ao()|w(kr).  (10.19)
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10. Error analysis for the Peaceman-Rachford ADI scheme

Employing (10.5) twice, the formulas

(I + Ao(7))w(kt) = (21 +7MA(T))w(kt) = (21 + 7M + 72 M*Ay(7))w(kT),
(I — Ao(7))w(kr) = =7 MA; (T)w(kT),

follow, while relation (10.6) yields
(I — Ao(r))w(kr) = (=M — 5 M? — T M3 Ay (7)) w(kT).
Altogether, we deduce from (10.19) the identities
eru(r) = (I = 5B) (I = A1) 7' [T = Ao(7) + Ma(I + Ao(7))
+ AL B(I = Ao(7))|w(k)
B) NI = A7 [ = 7™M = T M? = P MPAs(r) + TM + 5 M?
+ M As(7) = TA L BMA(7)]w(kr)
= (I = 5B) "I = 5A.0)7 [ = P*MPAs(r) + M3 As(7)
L1 BMA(7)]w(kr).

To estimate e x(7), we recall that the definition of the norm ||-||y, in (7.20)
yields the relations

[MPw(kr) | < [ Mw(kr)llpae < [1Mw(kr)]y,

and that the resolvent of the extrapolated operator A_; coincides with the one of
A on X. Formula (10.4) and Lemma 10.6 thus yield the bounds

lev(r)l < 7|1 = 3B)7 (H —34) *H H1A2 7) = As(7)|| | Mw (k)] ,
+ 3T = 3A) T AL BM A (r)w (k)|
< 7%+ mie) ||w(kT)IID(M2) ) (10.20)
where we also employ Lemma 10.2. Similarly, we obtain

|7+ 5B)era(n)| < (5 + 1%) Tkl pa, (10.21)

1.b) We next deal with the second summand on the right hand side of (10.18).
Due to the regularity of J, simple rearranging of operators immediately yields the
identities

(I —3A)' (I — ZB)AL(7)(—1J(kT),0)
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= (I —ZA) (I —TM+ FA)A(7)(—2J(kT),0)
= [T =347 = 3M) = I + (I = 3A) 7 | As(7) (=13 (k7), 0).
Inserting the last formula into the definition of e; x(7) and employing the formula
(I —ZA) "I+ FA)=—I+2(I—ZA)"", we thus arrive at the relations
ean(r) = 7(I = 3B) 7 [(I + 5A4) = (I = §B)As(7)| (=23 (k7), 0)
=7(1 = 5B)"' (I = $A)|(I = 54)7'(I + 34)
— (I = A (I = 3B)A(7)] (L3 (k
=7(I = 5By — 3A)[ = T+ Ay(7) +2(1 — 3A) (I - <»
+ 21 = ZA) T MA (7 )](—EJ(kJT),O).

Applying now (10.5) three times, the formula
ean(r) = T(I = 5B) (I = 3A) [TMAs(7) — 27(1 — FA) " MAy(7)
+ (I = 5A) M + (1 = 5A) T M2 Ay ()| (= L3 (kT), 0)
follows. In view of the relations

TMAs(T) =7(1 —

=71 —

AN -
A)_1

A)MAy(T)
) =TI — TA)TPAM Ao (T)

[CIE IR

As(7

on X, and (10.5), we have thus derived the useful representation

ean(r) = 7(I = 5B) 7M1 = 3A)[ = (I — 3A) " M(As(7) — 1)
+ (I = 3A) T BMAy(r)| (- 23 (k7),0)
=7(I = 3B)7'| = P M?As(7) + 5 BMAs(7)| (=13 (k7), 0).
Lemma 10.2, (10.4), as well as Theorem 9.17 yield the estimates

leas ()l < 7|1 = 3B)7Y (I1As(2)]| [|A2(= L3 (k7). 0)]

+ o [[Aa(m) (=13 (k7). 0>HPH2<Q))
<TG | (=230, 00+ G |( 0|,
= 735 + G | (- LI (k) 0)HX2 , (10.22)
(I + 5B)ean(r)| < 78(% + Greo2m) ||(— L3 (), 0)HX2 , (10.23)
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10. Error analysis for the Peaceman-Rachford ADI scheme

where Cy and () are two positive uniform constants, depending only on ¢, i, o
and Q.

1.c) Using (10.5), we can rewrite the third error term on the right hand side of
(10.18), obtaining

esi(r) = 72(1 = §B) [ + 5A4) — (I — 3B)Aso(7)|(— 213 (kT),0)
5B) 7! [TA = TMAs(7) + 5BAy(7)| (-1 (k7). 0).

Lemma 10.2, Proposition 9.8, and (10.4) now imply the bounds on the third
error term

les ()| < Cor®(% || (=213 (kr) o>HPH1<® + HA?,(T)(—ng(m,0)\\PH1(Q)
+ 3 [ Aa(r) (=13 (k7), 0) ‘pm(@))
< Gy (5 4 (§ + e ) | (=13 (k7), 0 (10.24)
(I + 5B)es(7)|| < Cor®( + e | (—23 (k7),0)| o (10.25)

with uniform constants Cy and Cy that depend only on &, 1,0, and Q.
1.d) The two remaining summands in (10.18) are directly estimated by means
of Lemma 10.2, Proposition 7.8, and Proposition 9.8, concluding the statements

- (k+1)7
lesa ()l + 1R < Calr [ ((k+1)r =) H<—§J"<r>,0>HPH1(Q) dr
+/ /ms kr+s—7) |[(=137(r),0)| drds)
kT
< Cy7*|(~13,0)| (10.26)

W21 ([kr,(k4+1)7],X1)

|7+ 3B)essm)| + (I + 5B)Ru(7)| < Cor? [ (-23,0)] (10.27)

W2 1([kr,(k+1)7],X1)
with constants Cy and Cj that depend only on ¢, 1, o, and Q.

Altogether, we have estimated the local error 7, (w(k7)) — w((k + 1)7), as well
as the difference (I + ZB)(Z;(w(k7)) — w((k 4+ 1)7)). The latter term is crucial
when controlling the error propagation.

2) To bound the global error, we now combine the unconditional stability of the
ADI sheme, see Corollary 10.3, with the bounds on the local error from part 1).
Using (10.16) and (10.18), we first derive the more convenient representation of
the global error

wy —w(nt) = (I = 5B) (I = 5A_0) 7 [(I + 3A)(I + 5B)was
— (I = 3A0)(I = 5B)e™w((n - 1)r)]
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+ (I = 3B) eI+ 54) = (I = 5B)A(7)| (=13 ((n — 1)7),0)
=3B [543 »~#u—gBmxﬂk—5%m—1w»m
+Z(I-IB)'(I+13 )/(::l)T(nT —7)(=13"(r),0)dr — Ry_1(7)

= (1= 3B) (I - 5A.) 7 [T+ 3A_)(I + 5B) (way — w((n — 1)7))
+((I+ 3A)I +5B) = (I = 3A_0)(I = 5B)e™ yw((n — 1)7)]

+ ; ein-1(7) = Rp_1(7).

This recursive formula can also be written in the explicit form

n—1

w, —wnt) = Y[ = 5B) I+ 3401 - 547 (T +38)]"

i[ I TAY - A1+ 2B)|"

- (;%(T) _ Rk(f))

Similar arguments are also employed in the proof of Theorem 9.3 in [Eilil7]. Recall
that S, (L) = (I + ZL)(I — L)™' denotes the Cayley-Transform of L € {A, B}.
Estimates (10.20)—(10.27), Lemma 10.2, and the assumption 7 < 1 now imply the

relations

Jin — w(n)| SZZZH(I— |, - z—ksT<A>H
Mu+w(zqk )H )

<ﬁz( MMMMMbW+<+%&ﬂ

+C’( 5ng1)

|(=L3(k7),0)|

Xo

|(=L3'(k7),0)]

X1

s
+T

_ 1
( EJu O) sz,l([kT,(k-f-l)T],Xl) ) .
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10. Error analysis for the Peaceman-Rachford ADI scheme

In view of Lemma 7.6 and Remark 9.25, we finally arrive at the desired estimate
(23.0)],,)-

Here C5 is a positive uniform constant, depending only on ¢, u, o, and (), while
Cy = max{C,1,Cy2}. Recall that C,; and Cy, are the constants from Proposi-
tions 9.22 and 9.23. O

lwn = w(n)| < CsTe T2 (Jlwollpiay +
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A. Differential expressions in
different coordinate systems

Here we list useful concepts from geometric analysis, that are employed in Part II
of this thesis. First, we recall plane polar coordinates (7, ). The representation
of cartesian coordinates by means of polar coordinates is given by

(z,y) = (rcosp,rsing),  r>0,0€0,27).

In the following, we tacitly assume that all arising expressions are well-defined.
To avoid an overloaded notation, we denote a function in different coordinate
systems by the same symbol. In other words, we write u(r, ¢) = u(r cos ¢, rsing)
for a function u on R?. (To be precise, the mapping on the left is a mapping in the
polar coordinate system, while the one on the right is a mapping in the cartesian
coordinate system.) The chain rule then gives rise to the formulas

ou  Ou Ou sin ¢
dr  Or
ou  Ou . Ou cos
67y_8r ngo—l—a(p r

Pu Pu 0%u sinpcosyp _Ousinpcosy  Ousin®p  Q*usin? @
a2 gz PP 287“(’%0 r 2% 72 o op? r2 7
Pu  P*u O?u sin p cos dusinpcosp  Oucos®p  0%ucos® p
— = —=sin“p+2 —2— — ,
oy Or? Orop r Op r? or r 0p? 12
Pu *u 0?u cos®p —sin?p  Qucos?p —sin? ¢
0xdy T o2 S pcosp Ordy r B % r2
Ousinpcosy  O%usincos
Cor r 0 2

see Section 1.5.4 in [Zeid13] for instance. The two-dimensional Laplacian has in
this coordinate system the representation

18(8)_'_182 32+18+182
= ——\Tr—" —_—— = — —_—— _———
ror: Or r20p?  Or?  rdr  r?2op?
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We next proceed to three-dimensional polar coordinates (r,6,¢). Note that
we also employ spherical coordinates to parametrize the unit sphere. The latter
coordinates are covered by setting r = 1, and by omitting the derivatives with
respect to r in the below formulas.

Cartesian coordinates (x,y, z) are represented in three-dimensional polar coor-
dinates by means of the identities

(x,y,2) = (rcosesinf, rsinpsinf,rcosf), r >0, €[0,2r),0 € [0,n].

Let u be now a H'-regular function on R3. By means of the chain rule we then
infer the identities

ou  Ou oul Ou 1sinp
%:ESIHHCOS@‘F%;COSQCOS@—%;m,
ou Ou . . oul , Ou 1 cos ¢
@:ESID@SHIQO—F%;COSHSIDQO‘F%;m,
ou Ou oul .
&:ECOSG—%;SIHG.

The three-dimensional Laplacian is in polar coordinates given by the formula

0> 20 1

N
or2 " ror | p2m

employing the Laplace-Beltrami operator

A — 1 82+C089g+i2
T Sin0002 | sinf o0 | 062

on the unit sphere S? C R3, see Examples 6.10 d) and e) in Section XI.6 of
[AmEs09] for instance.

To transfer the analysis from the lower hemisphere S2_ := S* N {z3 < 0} to
the unit disc D, the stereographic projection is a very useful tool for us. The
stereographic projection with respect to the north pole (0,0, 1) maps S2, onto the
unit disc D. It is given by the formula

flz,y,2) = ( a y ) =: (wy, wy), (z,y,2) € S, (A.1)

1—2"1—2

see Example 1 in Section 1.1 of [Jost17]. In particular, this transformation is a
C*-diffeomorphism. In the following, we denote the cartesian coordinates on D
by (wy,ws;). The associated metric (g;;) is then given by the matrix with entries

4 1)
1+ w? + w2’

gij(wwa) = ( Z?] S {172}7
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A. Differential expressions in different coordinate systems

employing the Kronecker delta d;;. This gives rise to the valume factor

\ g(wr,wy) 1= /det(g;5) (e EarE (A.2)

see Section 1.4 in [Jost17], in particular pages 32-33 therein. The inverse matrix
of (gij) is next denoted by (¢"). We can then represent the Laplace-Beltrami
operator on the lower hemisphere S2  in terms of the coordinates (wy,ws) on the
disc D. The corresponding formula is

;i 0 (1+wi4+wi)? S 0
R ol s S O S

see Section 3.1 in [Jost17], for instance.
As many of our computations are done in polar and spherical coordinates, it is
also convenient to have a representation of the stereographic projection in these

coordinates. Denoting polar coordinates on D by (r, ¢), and spherical coordinates
on SE, by (6,¢), (A.1) takes the form

cos @ sin 6 . . sinpsing
rsing =

7 CoS P =

1 —cosf’ 1 —cosf’

This in particular implies the formulas

r = cos? psin? sin? psin? 0 __ sin ¢
(1—cos 0)2 (1—cos )2 1= cosf’ (A 4)
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Glossary: Part |

® artificial variable in extended Maxwell system 25
n artificial damping parameter in extended Maxwell system 24
E" iterate of damped ADI scheme 40

E"™ substep of damped ADI scheme 79

E} iterate of conserving ADI scheme 40

E!" substep of conserving ADI scheme 54

E electric field 18

H magnetic field 18

(1 magnetic permeability 18

0 scaled conductivity 18

¢ electric permittivity 18

Function spaces
H(curl, Q) domain of curl-operator 20
H(div, Q) domain of div-operator 20

Hy(curl, @) domain of curl-operator with zero normal boundary conditions 20
Hy(div, Q) domain of div-operator with zero tangential boundary conditions 20

Hy (curl, div, Q) intersection of Hy(curl, @) and H(div, Q) 21
Hr(curl,div, Q) intersection of Hy(div, Q) and H(curl, Q) 21
Xext, H'-regular state space for extended Maxwell system 31
Y H'-regular state space for numerical schemes 42
Xext basic space for extended Maxwell system 26

Geometric domains
() cuboid 18
I'; boundary faces of ) 20

Inner products
(+,)y inner product on Y 42
(+,-) inner product on Xy 26

Norms
Il 7, norm in Hy(curl, div, @) 21
Il 7, norm in Hr(curl, div, Q) 21

|||l ey OPETator norm of curl-operator 20
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Glossary: Part I

||l 4;, operator norm of div-operator 20
||| norm on Xy 26

Operators
A, B, D; splitting operators for extended Maxwell system 36, 37
Ay, By, D,y parts of the splitting operators in Y 43
S;(L) Cayley-Transform w.r.t. an operator L 36
V. (L) artificial damping operator 39
My Maxwell operator for extended system 26
Mext,l part of Mext on Xext,l 33
%1 splitting operator for curl 35
Peurl Projection on curl part 22
pv projection on gradient part 22
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Glossary: Part Il

A point on boundary of interface 121

7, abbreviation for PR-ADI scheme 190

1 placeholder for ¢ and p 117

E" iterate of PR-ADI scheme 190

E electric field 106

H magnetic field 106

J external electric current 106

u§”) zero of the derivative of the Bessel function J, 124
(1 magnetic permeability 106

Vg, unit normal vector of interface .#,; 105
pz.., electric surface charge at F;,, 106

p electric charge density 106

o electric conductivity 106

¢ electric permittivity 106

Eigenfunctions

®; eigenfunction of Laplace-Beltrami operator on lower hemisphere 129

Uy, ; eigenfunction of Laplacian on disc 125

Yy eigenfunction of one-dimensional eigenvalue problem (8.13) 124
Eigenvalues

K} eigenvalue of one-dimensional eigenvalue problem (8.13) 124

A, eigenvalue of Laplacian on disc 125

A, eigenvalue of Laplace-Beltrami operator on lower hemisphere 129

Function spaces
(X,Y)p interpolation space between the spaces X,Y with parameter 6 109
PHY(Q) piecewise Sobolev space 107
Xy subspace of X with normal transmission and divergence conditions 114
X, H'-regular state space for Maxwell system 115
X, H?-regular state space for the Maxwell equations 116
X basic space X, coincides with L*(Q)° 114
A orthogonal complement of the image of the Laplacian on ) 121
W H>-regular space for elliptic transmission problem 117
Functions
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Glossary: Part I1

J, Bessel function with parameter v 124
[f]F jump of a function f at an interface F' 106
f@ restriction of a function f to the i-th subdomain of a partition 106

Geometric domains
D; part of unit disc, where 7 is constant 122
D unit disc 122
G, part of unit sphere, where 7 is constant 121
G lower hemisphere 122
I; subinterval of (0,27) to parametrize G; 121
(Q; subcuboid 105
() cuboid 105
S common arc of G; and Gy 122
Fine interface between Q1 and Qo 105

I union of some of the boundary faces of ) with zero Dirichlet b.c. 117

r+, 00 boundary faces of @) or Q; 107

Jjorrd
S interface on unit disc 122

Inner products
(*,*)n.p L*-inner product on disc D with weight n 125
(+,-)y L*-inner product on [0, 27] with weight n 124
(+,+) inner product on X 114

Norms
||| norm on X 114

Operators
A, B splitting operators for Maxwell system 189
L Laplace-Beltrami operator on G 122
My restriction of the Maxwell operator to Xg 115
M part of M in X7 115
M part of M in X, 116
M Maxwell operator 114
% splitting operator for curl 188
L Laplace operator on disc 122
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