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Abstract  

This doctoral research saw the production of a large library of compounds which exhibit a wide 

range of structural motifs. The goal of this work was to produce novel compounds which may 

prove to be industrially relevant for incorporation into magnetic and optical devices. The work has 

been divided into three chapters each presenting a series of compounds which feature interesting 

magnetic and/or optical properties. 

Chapter 3 reports thirteen homometallic lanthanide complexes featuring multiple amino-

polyalcohol-based ligands. This consists of three distinct series of dinuclear complexes (1), (2-5), 

and (6-9) as well as a series of tetranuclear complexes (10-13). The complexes were synthesised 

aerobically and were crystallised by slow evaporation of the solvent. The crystal structures, optical 

and magnetic properties of these crystalline complexes were collected and analysed. Magnetic 

measurements were carried out on complexes 1, 5, 9 and 13 and all exhibited weak antiferromagnet 

interactions with complexes 1, 5 and 9, also showing slow relaxation. Investigations into the 

magnetocaloric effect were carried out on complex 3, whilst complexes 2 and 4 were studied for 

their potential to act as luminescent materials. 

Chapter 4 present thirty-three heterometallic iron-lanthanide (Fe-Ln) complexes which all utilise 

the ligand N-methyldiethanolamine (mdeaH2). These heterometallic complexes consist of a series 

of tetranuclear complexes (14-20) and three distinct hexanuclear complexes (21-29), (30-39) and 

(40-46). The crystal structures, optical and magnetic properties of these complexes were 

investigated and discussed in detail. Magnetic measurements were carried on compounds 20, 26, 

27, 32, 33 and 43. Complexes 20, 32 and 33 exhibit weak antiferromagnetic interactions, whilst 

26, 27 and 43 exhibit weak ferromagnetic interactions. The magnetic investigations revealed that 

complex 43 shows the slow relaxation typical of a single molecule magnetic. The magnetocaloric 

effect of complexes 25 and 31 was studied. Finally, complexes 24, 26 and 46 underwent an 

investigation into their luminescence properties to assess their potential as phosphorescent 

materials. 

Chapter 5 presents two homometallic copper complexes which both feature 2,2′-bipyridine and 

benzylphosphonic acid as ligands (47-48). The crystal structures and optical properties of these 

complexes were collected and analysed. Complexes 47 and 48 both absorb in the NIR range whilst 
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remaining largely optically transparent, these complexes also demonstrated thermal stability up to 

250 °C and 207 °C, respectively. Finally, thin films (up to 34 μm) of complexes 47 and 48 were 

prepared on a glass substrate and the optical properties were re-investigated and found to resemble 

that of the bulk crystalline material. 
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Zusammenfassung 

Diese Dissertation hat Verbindungen mit einem breiten Spektrum an strukturellen Motiven 

hervorgebracht. Das Ziel dieser Arbeit war es neuartige Verbindungen zu synthetisieren, welche 

mit industrieller Relevanz in magnetische und optische Instrumente integriert werden können. Die 

Arbeit ist in drei Kapitel unterteilt, welche jeweils unterschiedliche Gruppen von Verbindungen 

diskutieren welche interessante magnetische und/oder optische Eigenschaften besitzen. 

Kapitel 3 stellt dreizehn homometallische Lanthanidkomplexe basierend auf der Verwendung 

diverser Amino-Polyalkoholbasierter Liganden vor. Es besteht aus drei separaten Serien 

dinuklearer (1), (2-5) und (6-9), sowie einer Art tetranuklearer Komplexe (10-13). Die Synthese 

der Komplexe wurde unter aeroben Bedinungen durchgeführt, die Kirstallisation erfolgte durch 

das langsame Verdampfen einer Acetonitrillösung. Die Einkristallstrukturen sowie optische und 

magnetische Eigenschaften wurden gesammelt und analysiert. Messungen der magnetischen 

Eigenschaften wurde an den Komplexen 1, 5, 9 und 13 durchgeführt, alle diese Komplexe zeigten 

schwache antiferromagnetische Wechselwirkungen, wobei die Komplexe 1, 5 und 9 ebenfalls eine 

langsame Relaxation der Magnetisierung aufweisen. An Komplex 3 wurden Untersuchungen des 

magnetokalorischen Effekts durchgeführt, während Komplex 2 und 4 hinsichtlich potentieller 

Anwendungen als luminszierende Materialien untersucht wurden. 

Kapitel 4 führt dreiunddreißig heterometallische Eisen-Lanthanidkomplexe (Fe-Ln) ein, welche 

unter Verwendung von N-Methyldiethanolamin (mdeaH2) synthetisiert werden. Diese 

heterometallischen Komplexe bestehen aus einer Serie von tetranuklearen (14-20) und drei 

unterschiedlichen Serien von hexanuklearen Komplexen (21-29), (30-39) und (40-46). Die 

Einkristallstrukturen, optischen und magnetischen Eigenschaften dieser Komplexe wurden 

untersucht und im Detail diskutiert. Messungen der magnetischen Eigenschaften wurden für die 

Verbindungen 20, 26, 27, 32, 33 und 43 durchgeführt. Die Komplexe 20, 32 und 33 zeigen 

schwache antiferromagnetische Wechselwirkungen, während 26, 27 und 43 schwache 

ferromagnetische Wechselwirkungen aufweisen. Zusätzlich zeigten die magnetischen 

Untersuchungen, dass Komplex 43 eine langsame Relaxation der Magnetisierung aufweist, eine 

typische Eigenschaft für Einzelmolekülmagneten. An den Komplexen 25 und 31 wurde eine 

Untersuchung des magnetokalorischen Effekts durchgeführt. Abschließend wurden die 
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Lumineszenz der Komplexe 24, 26 und 46 im Hinblick auf deren Nutzen als phosphoreszierende 

Materialien untersucht. 

In Kapitel 5 werden zwei homometallische Kupferkomplexe präsentiert, welche beide unter 

Verwendung von 2,2‘-Bipyridin und Benzylphosphonsäure als Liganden synthetisiert werden (47-

48). Die Einkristallstrukturen und optischen Eigenschaften dieser Komplexe wurden untersucht. 

Beide Komplexe zeigen eine Absorption im NIR Bereich währenddessen sie weithin optisch 

transparent bleiben, außerdem weisen diese Komplexe eine thermische Stabilität bis zu 250°C und 

207°C auf. Zu guter Letzt wurden die Komplexe 47 und 48 als Dünnschicht (bis zu 34 μm) auf 

einer Glassoberfläche aufgetragen und die optischen Eigenschaften erneut untersucht, diese 

stimmten mit den für die kristallinen Phasen gefundenen Eigenschaften überein. 
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Chapter 1. Introduction 

In this chapter, a number of potential applications for the types of coordination clusters in this 

thesis are described. The scope for coordination compounds is vast and potential applications have 

been limited to those involving open-shell 4f and 3d/4f multinuclear compounds. 

This chapter represents a general introduction of chapter three and four of this thesis. 

1.1. Introduction to molecular magnetism 

1.1.1. History of magnetism 

Historically, magnetism was discovered in ancient times. Magnes in Crete discovered the 

intriguing phenomenon of magnetism around (900 B.C.) [1-5]. He noticed that the natural magnet 

lodestone (a form of magnetite, Fe3O4) attracted the iron nails from his sandals and metal tip of his 

staff while he walked over a deposit. This took place in a region later named Magnesia in Greece 
[1-4]. The Chinese used this phenomenon to create a floating compass [2]. 

In 1269, the French scientist Petrus Peregrinus de Maricourt identified that magnets have poles. 

He called them the North (N) and South (S) poles which are maintained even upon breaking the 

magnet. He noticed that the opposite poles are attracted to each other whilst the similar poles 

repelled each other [1-3]. 

In the 1800s, researchers began to explore the relationship between magnetism and electricity 

leading to rapid advancements. In 1819, the Danish physicist and chemist Hans Christian Oersted 

discovered that electric current in a wire could deflect a magnetised compass needle. In 1823, the 

English scientist Michael Faraday invented the electromagnet. He used magnets to build the first 

electric generator in order to produce low-cost electricity. In the 1860s, the Scottish physicist 

James Clerk Maxwell combined the fields of magnetism, electricity and optics to give the first 

unified theory of physics. In 1885, the German physicist Heinrich Rudolf Hertz showed that 

Maxwell’s theory of electromagnetism was correct and that heat and light are forms of 

electromagnetic radiation [1-4]. 

In 1907, the French physicist Pierre-Ernest Weiss developed the theory of ferromagnetism based 

on the presumption that the interaction between the magnetic molecules could be described 
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empirically considering an internal molecular field. In 1913, the Danish physicist Niels Bohr 

detailed the fundamental physics from which magnetism result, alluding to the spin associated 

with an unpaired electron [3, 6-9]. 

The spins on the magnetic centres interact with their neighbors in the 3D lattice of a conventional 

magnet. Their spontaneous magnetisation relies on the alignment of the very high number of spin 

centres in the bulk material [1-3]. 

In the absence of an applied field the magnetic moments in the bulk magnetic structure are canceled 

out because it is divided into many domains and although the spins are aligned in one domain the 

different domains have different alignments and the overall spin is canceled out. By applying an 

external field on the material, all magnetic moments in all domains can orient in the same direction 

of the externally applied field the magnetisation is retained after removal of the field, the material 

is a permanent magnet [1-3].  

In recent times, magnetism has been applied in various applications, ranging from electric motors 

and generators to communication devices such as televisions and telephones. It has important uses 

in data storage. Because the capacity of data storage is limited by the size of the domains in 

conventional magnets, there is a need to explore new materials. These materials may exhibit 

magnetic behaviour that could therefore allow significantly higher data storage density. 

In 1993, a major breakthrough in nanomagnetism was reported as the first metal complex, 

[MnIII8MnIV4O12(O2CMe)16(H2O)4] 2CH3CO2H 4H2O {abbreviated as Mn12} displaying SMM 

(i.e. molecule based) properties was identified [10-14]. Mn12 was prepared in 1980 by Lis while trying 

to oxidise MnII ions by using permanganate (MnO4)- in acetic acid [15]. Mn12 was reported many 

times to explore its properties [10-14]. Mn12 shows magnetisation hysteresis below a certain blocking 

temperature TB (below 2 K) and quantum tunneling of magnetisation (QTM)[15]. 

Over the last decades of research in the field of SMM, many metal complexes were synthesised 

and characterised. This includes inorganic, organic and organometallic coordination complexes in 

order to achieve a better understanding of the structural aspects which shows SMM behaviour 

through different synthetic approaches. The research target is to develop such systems with higher 

blocking temperature (TB). 
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SMMs are of global interest. It is advanced for the fundamental scientific and technological 

purpose. SMMs have potential applications due to magnetic bistability which resulting from 

energy barriers, such as information storage devices and could act as the smallest unit in magnetic 

memory [16]. 

There are many approaches to develop specific properties of the material such as the blocking 

temperature or high effective energy barrier. One of these approaches is to synthesise 

heterometallic complexes that hold metal centres together by bridging units which are commonly 

an oxygen atom. Oxygen can be derived from hydroxide, oxide, carboxylate and alkoxide. These 

compounds can have intrinsic properties of the magnetic units such as quantum effects, Ising type 

anisotropy and high spin state [17]. 

The chemical and physical properties of the metal complex are derived from the molecular 

composition and the bonding within the molecule and the lanthanides are useful for different 

applications. Typically, DyIII and TbIII (anisotropic) analogues exhibit SMM behaviour, TbIII and 

EuIII analogues exhibit luminescence while the GdIII (isotropic) analogue can be used as a 

molecular magnet refrigerant and is currently used as a contrast agent for MRI. 

1.1.2. Magnetic bulk behaviour classifications 

Magnetic properties depend on the orbital and spin motion of electron interaction. Some 

substances have very high magnetic interaction between the magnetic moments while some 

materials do not have collective interactions of atomic magnetic moments [6-9, 18, 19]. 

The various classes of magnetic behaviour are described in more detail in a number of test books. 

The main thing to note is that cooperative magnetic behaviour can arise when paramagnetic species 

are present in a material. In this sense, they are all special cases of paramagnetism and this can be 

conveniently summarised in one overview digram (Figure 1.1). 
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Figure 1.1. Spin interactions for common magnetic behaviours (a) paramagnetic (b) ferromagnetic 

(c) antiferromagnetic (image adapted from reference [19, 20]). 

As shown in Figure 1.1, the classifications of the magnetic behaviour of the materials are divided 

into three group: 

1-Ferromagnet 

Below the critical Curie temperature, TC, the domains align paralled and susceptibility (𝜒𝜒) 

increases for beyond the paramagnetic limit. Above TC the system is paramagnetic. 

2-Paramagnet 

No cooperative effects so 𝜒𝜒 decreases with increasing temperature with inverse proportionality. 

This follows the Curie law 

𝜒𝜒 α 1/T or 𝜒𝜒= C/T. Where C is the Curie-constant. 

3- Antiferromagnet 

Below the critical Neél temperature, TN, the domains align antiparallel and cames each other so 

that at 0 K the 𝜒𝜒 value is theoretically 0. Above TN the substance is only paramagnetic. 

Two further possibilities, which can be regarded as special cases of Antiferromagnet coupling, 

are: 
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1- Ferrimagnetism  

Spins with antiparallel orientation (AF coupling) but different magnitudes give rise to a residual 

magnetic moment and below the critical temperature the material acts in a similar way to a 

ferromagnet. The first and most famous example for such a ferrimagnet is provided by magnetite, 

Fe3O4 (Figure 1.2, a). 

2- Canted antiferromagnetism also called weak ferromagnetism 

The spins are oriented such that there is a competition between parallel alignments of spins with 

canted parallel aligned spins of opposite direction (Figure 1.2, b). 

 

Figure 1.2. Spin interactions for magnetic behaviours (a) Ferrimagnetism (b) Canted 

antiferromagnetism (weak ferromagnetism) (taken from reference [19, 20]). 

It turns out that all of these situations can be observed in molecular-based magnetic materials. For 

systems based on zero-dimensional materials (i.e on molecules) the most important spin 

arrangements are a) A molecular-based form of ferrimagnetisum as seen in Mn12 [10-14] and b) 

molecular-based ferromagnetism as seen in Co2Dy2 [21, 22]. Although compounds containing only 

one type of spin carrier can be overall AF coupled, competing coupling constants amongst the spin 

carriers has led to these being termed as ferromagnetic. 

1.1.3. Single-Molecule Magnet (SMM) behaviour 

So-called SMM behaviour can be observed when a zero-dimensional system (i.e. molecule) 

possesses a spin structure which creates a hindrance to the inversion of the total spin on the 

molecule. This is actually a simplification since the assumption is made that the molecule carries 

a “giant” spin, but it is helpful for describing some key parameters. Taking Mn12 as an example it 

eventually became clear that this molecule could be treated as having a giant spin of S=10. This 

arises from the central tetrahedral arrangement of 4x MnIV being ferromagnetically coupled to give 
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S=4x (3/2)=6, but then also being antiferromagnetically coupled to the surrounding ring of the 8 

ferromagnetically coupled MnIII with S=8x (4/2)=16. This leads to the total spin for the molecule 

of S=16-6=10. 

The arrangement of the 8x MnIII in an essentially planar ring allows the Jahn-Teller axes of all of 

these (arising from the d4 distorted octahedral geometry for the high spin ion) to a point in the 

same direction which gives the whole system a significant axial zero-field splitting parameter D 

of -0.4 cm-1. Once a relationship between anisotropy barrier height, D and S had been figured out 

as ∆E or Ueff =ӏDӏ S2, the barrier height of 40 cm-1 was firmly established. 

The basic requirements for this phenomenon (SMM): 

1- High spin bistable ground state (±S). 

2- High zero-field splitting/magnetic anisotropy. 

3- Negligible magnetic interaction between molecules. 

As a result of their molecular nature SMMs have long-term stability in air and are soluble in 

organic solvents and are excellent candidates for the different novel technological applications. 

Industrial applications such as high-density information storage data, electrical motors, ATM 

cards, information/telecommunications devices, generators, magnetic shielding [23], as optics [24], 

luminescence [25, 26], magnetic resonance [27], catalysis [28, 29], magnetic refrigeration [30-34], 

molecular magnetism [35], biomedical applications such as magnetic resonance imaging, 

production of frictionless bearings, medical implants, magnetic separators, acoustic devices and 

sensors [36-38] have all been suggested. 

Moreover, SMM consideres as ideal candidates for substances to function in many advanced 

applications such as quantum bits (qubits) in quantum computing [39-45] , spintronic devices [39, 40, 

46] and molecular electronics [47]. 

However, it is difficult to completely control all parameters during the synthesis of metal 

complexes. Likewise, this difficult extends to the magnetic properties of metal complexes and 

SMM behaviour [48].  
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Some factors that are difficult to control: 

(1) The arrangement of the metal ions in the complex. 

(2) The magnetic exchange interactions between the atoms. 

(3) The relative orientations of the single ion in the anisotropy axes. 

These factors have a profound effect on the magnetic properties: 

(1) The high effective energy barrier to spin re-orientation. 

(2) The splitting of a magnetic state. 

(3) The existence of Quantum Tunnelling of the Magnetisation (QTM). 

The review of the literature reveals that the coordination chemistry and the structural modification 

can tap into processing the magnetic properties of Ln complexes to achieve the maximum height 

energy barrier and minimising Quantum Tunnelling of the Magnetisation (QTM). 

In order to optimise the properties, many attempts are centralised on: 

(1) Increasing the nuclearity of the metal complex. 

(2) Increasing the high-energy barrier (Ueff). 

(3) The blocking temperature (TB). 

(4) The spin ground state. 

SMM behaviour can be identified through two methods on a modern SQUID: 

(1) Alternating-current (AC) is the magnetic susceptibility with an oscillating magnetic field. AC 

susceptibility magnetic data method can be separated into two components, the in-phase (χ') and 

out-of-phase (χ''), to detect and quantitatively examine the SMM behaviour. The effective energy 

barrier (Ueff) and pre-exponential factor (τ0) can be calculated by the help of the Arrhenius 

equation (Equation 1.1).  
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τ = τ0e�
Ueff
kBT

�                                                                                                                 Equation 1.1 

Where τ is the relaxation time for magnetisation, τ0 is a pre-exponential factor (the relaxation rate 

between attempts of thermal excitations over the energy barrier), Ueff is an effective energy 

barrier, T is the temperature in Kelvin and kB is the Boltzmann constant.  

The plot of temperature dependence between out of phase (χ'') versus temperature displays the 

maximum peak at the temperature where the switching of the magnetic field matches the 

relaxation rate 1/τ (Equation 1.2).  

τ = 1
2π𝜈𝜈

                                                                                                                         Equation 1.2 

When τ is relaxation time of magnetisation, ν is the frequency in the maximum peak for every 

temperature that has a peak.  

Moreover, when the switching frequency increases, the peak must shift to higher temperatures 

due to an increase in 1/τ with increasing temperature. 

The relaxation time of magnetisation can be extracted from the frequency dependence from the 

out-of-phase (χ'') diagram.  

Constructing a plot between ln(τ) versus the inverse of temperature (1/T) creates a linear fit. From 

the linear fitting of the Arrhenius plot, the slope of the data can be precisely Ueff /kB which means 

Ueff = slope kB and the intercept =ln(τ0) that means τ0=10- intercept s [49-53]. 

Various relaxation pathways dominate the diverse temperature regimes which may participate in 

the overall relaxation process which are characterised by a single Ueff and τ0 [49-53]. 

Beside Ueff and τ0 there is another parameter used to describe SMM behaviour. This is the 

blocking temperature (TB) which can be extracted from the magnetic data. In the plot between 

out-of-phase versus temperature, the maximum at a particular frequency is called blocking 

temperature (TB). The substance can act as an SMM below TB. 

(2) Direct-current (DC) is the magnetic susceptibility which studies the hysteresis loop. The 

hysteresis loop is the relationship between the magnetisations versus fields. Experimentally, the 
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hysteresis loop is characterised by micro-SQUID magnetometer performance at extremely low 

temperatures.  

The field dependence is the plot between the magnetisations and the field (M vs. H) Figure 1.3. 

The field (H) starts to increase from zero to reach the maximum magnetisation and value of +H 

which is equivalent to the saturated magnetisation. The magnetisation remains at a high level and 

requires an inverse field to reverse magnetisation. That means the cycle comes back from +H to –

H and again to +H [54]. The absence of a magnetic hysteresis loop means that the material does not 

exhibit SMM behaviour. The magnetic hysteresis is necessary for memory storage devices since 

it depends on the development of the magnetic hysteresis loop with perceived coercivity. 

Most of the time, using the commercial SQUID does not help to characterise the hysteresis loops. 

Due to the limited temperature that is in the range 1.8-400 K, the hysteresis loops are not noticable. 

Therefore, using the micro-SQUID apparatus is useful to measure the hysteresis loops because 

micro-SQUID can go to temperatures below 1.8 K and also measures oriented single crystals [55]. 

  

Figure 1.3. Hysteresis loops of magnetisations pattern (taken from reference [56-58]). 

Based on the hysteresis loops, there are two different types of magnets. The first one is a hard or 

permanent magnet; this is a material has a broad hysteresis loop and a large magnetisation. The 

material has magnetised in the presence of an applied field and retains a large portion of the 

saturation field a magnetisation for a long time after removing the applied field [59-61]. This is 

desirable for permanent magnets, magnetic recording and memory devices. 
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The second type is a soft magnet has a narrow hysteresis loop with small magnetisation, which is 

more responsive to changed applied fields. These are suitable to be used in transformers and motors 

where a quick response to a rapidly oscillating field is needed [59-61]. 

Another parameter that shows in the hysteresis loop is the blocking temperature (TB). It is the first 

temperature when a hysteresis loop is opened and the highest temperature when SMM can exhibit 

hysteresis loops. Below the blocking temperature (TB), the SMM retains the magnetisation for a 

while during the remove of the externally applied field and the SMM metal complexes act as 

nanomagnets. Above blocking temperature (TB), the material acts as paramagnetic material 

without retaining the magnetisation. 

1.1.3.1. Mn12 SMM 

The first complex that displayed SMM behaviour was [MnIII8MnIV4O12(O2CMe)16(H2O)4] 

2CH3CO2H 4H2O {abbreviated as Mn12} (Figure 1.4) reported in 1993 [10-14]. Mn12 was prepared 

in 1980 by Lis [15]. Mn12 has been reported later many times to explore the SMM properties [10-14]. 

Mn12 shows magnetisation hysteresis at lower temperatures and quantum tunnelling of 

magnetisation (QTM) (Figure 1.5).  

The spin ground state of the Mn12 structure equates S =10 and to schematised by eight spins 

pointing up (Mn3+) and four down (Mn4+).  
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Figure 1.4 Molecular structure of [MnIII8MnIV4O12(O2CMe)16(H2O)4]. Colour code: blue, green, 

red, gray and white represent Mn3+, Mn4+, O, C and H, respectively (left) (taken from reference 
[4]). Hysteresis loop of a Mn12 for single crystal at different temperatures with an axially applied 

magnetic field (right) (taken from reference [4]). The steps indicate the relative change in 

magnetisation upon tunnelling. 

1.1.4. Lanthanide complex SMM 

There are 14 4f elements. These together with Sc, Y and La make up the rare earth elements. The 

ionic radius of lanthanides decreases sharply from left to right in the series due to the poor shielding 

of the increasing nuclear charge by the f-orbitals. The effect of spin-orbital coupling increases as 

the atomic number increases, except for the 4f 7configuration which has no first-order angular 

momentum. The magnetic ground states of Ln3+are summarised in Table 1.1. 

Lanthanide ions mostly adopt a trivalent Ln3+ state although stable dipositive Eu2+ and Yb2+ are 

known as the tetravalent state for Ce4+ and Pr4+. The characteristics for trivalent Ln3+ ions are 

summarised in Figure 1.5 and Table 1.1. As a result of the poor shielding of the orbitals, the 

electronic and spin character of Ln complexes are affected more by spin-orbit coupling effects 

than by the ligand field, opposite to what is seen for 3d metal ions. The large spin-orbit coupling 

means that the anisotropy of a Ln3+, as can be defined by an anisotropy ellipsoid as shown in Figure 

1.5, plays a key role in steering magnetic and optical properties [62]. 
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Lanthanide tri-positive charge are divided into four classes (as shown in Figure 1.5) due to the 

quadrupole moment of their f electron cloud (electron density) [63]: 

1- Axially elongated (prolate) comprises Pm3+, Sm3+, Er3+, Tm3+ and Yb3+. 

2- Equatorially elongated (oblate) comprises Ce3+, Pr3+, Nd3+, Tb3+, Dy3+ and Ho3+. 

3- Spherical (isotropic) comprises Gd3+, Lu3+ and Y3+. 

4- For Eu3+ (J=0). 

 

Figure 1.5. Quadrupole approximations of the 4f-shell electron distribution for the trivalent state 

of lanthanides (taken from reference [63]). 

Lanthanide ions have a high coordination number in the range (7-12) with various coordination 

geometries due to their high ionic radius. Often, the coordination number is eight or nine. 

Lanthanides play a special role in magnetism. Especially, DyIII ions display the superiority in 

magnetism over transition metal (SMMs) [64] due to: 

1- High magnetic moment. 

2- High anisotropy of the spin-orbital coupled. 

3- The electron configurations have odd number 4f 9, thus insuring the kramers doublet ground 

state [65], a critical factor in the presence of typical SMM behaviour. 
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However, lanthanide complexes have a drawback. They present a very weak exchange interaction 

between lanthanide ions which result from the efficient shielding of the unpaired electrons in 4f 

orbitals [66, 67]. 

Table 1.1. Magnetic ground states of lanthanide tri-positive charge (Ln3+) (taken from reference 
[63]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lanthanide complexes govern the SMM behaviour via the interplay between ligand field effect, 

the strength of the magnetic interaction coupling between the lanthanide sitses and the coordination 

geometry [68].  

Based on the theory of (hard and soft acids and bases), lanthanide ions are high Lewis acids due 

to 5p66s2 orbital shielding the 4f orbitals [16]. So lanthanide ions prefer to bind with oxygen donors 

(neutral or /and negative charge) [69]. 

Ln3+ 4f Ground state gJ χT (cm3mol-1K) 

Ce f 1 2F5/2 6/7 0.80 

Pr f 2 3H4 4/5 1.6 

Nd f 3 4I9/2 8/11 1.64 

Pm f 4 5I4 3/5 0.90 

Sm f 5 6H5/2 2/7 0.09 

Eu f 6 7F0 - 0 

Gd f 7 8S7/2 2 7.87 

Tb f 8 7F6 3/2 11.82 

Dy f 9 6H15/2 4/3 14.17 

Ho f 10 5I8 5/4 14.07 

Er f 11 4I15/2 6/5 11.48 

Tm f 12 3H6 7/6 7.15 

Yb f 13 2F7/2 8/7 2.57 

Lu f 14 1S0 0 0 
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Figure 1.6, presents the geometry of the nuclearity of the lanthanide complex (less than six) which 

display SMM behaviour [70]. 

 

Figure 1.6. The basic structural motifs in Dy1-5 complexes (taken from reference [70]). 

1.1.4.1. Pc2Ln 

The first lanthanide complex displaying SMM properties was [Pc2Ln]- TBA+, as shown in Figure 

1.7 [71], where Pc is phthalocyanine and TBA+ is N(C4H9)4+. The presence of one (TBA+) cation 

implies that the mononuclear complex is a monovalent anion. Phthalocyanine double-decker of 

lanthanides [Pc2Ln] was prepared in 1965 [72] and the structure reported in 1979 [73]. Studies of the 

magnetic properties and an investigation into the SMM behaviour of [Pc2Ln] was carried out in 

2003 [71]. 

For Tb and Dy respectively, the magnetic measurements revealed that the effective energy barrier 

Ueff, was 230 and 28 cm-1 with pre-exponential factors (1/τ0) of 1.6 × 107 and 1.6 × 105 s-1 for Tb 

and Dy, respectively. 

The magnetic properties of lanthanide complexes are interesting because they show the slow 

relaxation of magnetisation and the behaviour is higher than the 3d complexes that show SMM 

behaviour. 
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Figure 1.7.  [Pc2Ln]- (Ln = Tb, Dy, Ho, Er, Tm or Yb) (taken from reference [71]). 

1.1.4.2. [Dy3(µ3-OH)2L3Cl(H2O)5]Cl3 4H2O 2MeOH 0.7 MeCN 

The Dy3 triangule was reported in 2006 [74]. Dy3 is synthesised by using o-vanillin (HL), as shown 

in Figure 1.8. The presence of three (Cl) anion implies that the trinuclear complex is a trivalent 

cation. Dy3 has antiferromagnetic interaction between the Dy atoms, as shown in Figure 1.9. Dy3 

with the toroidal moment arrangement of spins on the dysprosium sites has changed the chemistry 

of lanthanide complexes by presenting a new concept for magnetic memory without a net magnetic 

moment [74, 75]. It shows a disappearing susceptibility at low temperatures which is unexpected in 

systems having an odd number of unpaired electrons. The magnetic measurements of Dy3 display 

SMM behaviour and reveal that an effective energy barrier (Ueff) is 61.7 K at a relaxation time (τ0) 

of 2.2 × 10–8 s. 

 

Figure 1.8. Molecular structure of [Dy3]. Colour code: black, red, violet, green and white spheres 

represent C, O, Dy, Cl and H respectively. 
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Figure 1.9. Temperature dependence of the χT products (per trimeric unit) for 1 (&) and 2 (*). The 

solid line represents the calculated value for three uncorrelated DyIII ions. Inset: low-temperature 

susceptibility (taken from reference [74]). 

1.1.5. 3d-4f metal complex as SMM 

To begin with, researchers focused on homometallic 3d complexes and their nuclearity making 

modifications of the ligands to explore them further. Then research moved to the discovery of 

lanthanide complexes and their properties. Different approaches were taken to increase their 

nuclearity whilst also exploring their properties like SMM behaviour. After discovering 3d-4f 

combined complexes, different approaches to increase the nuclearity gave promising candidates 

that showed SMM behaviour. 

One of the ideas to improve the SMM behaviour of 4f and 3d separate systems is to construct 3d-

4f heterometallic complexes by combining 4f metal ions with 3d metal ions. The development of 

approaches and synthetic strategies towards high nuclearity 4f and 3d-4f metal complexes may 

show a better SMM behaviour. The first 3d-4f complex [Nd2(Co(CN)6)2·9H2O] was prepared by 

Cleve and Hoeglund in 1873 [76]. The reaction between a lanthanide chloride and potassium 

cobalticyanide that gave tetranuclear Co-Ln. The first 3d/4f SMM reported was Cu2Tb2 in 2004 
[77], while the first Fe-Ln SMM reported was Fe2Dy2 in 2006 [78]. 

Orbital degeneracy could be limited by mixing metals Fe and Ln because the coupling interactions 

between Fe-Ln are often antiferromagnetic or very weak [79], but regardless they are bigger than 

the homonuclear lanthanide complexes. 
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The ionic radius of LnIII is bigger than FeIII. Therefore, the volume of the complex occupied by 

LnIII ions will be bigger than FeIII ions. It is difficult to predict the magnetic characteristics of any 

compound based purely on the crystal structure. 

Contrary to lanthanide-transition metal alloys, SMMs are molecular superparamagnets and derive 

their properties from the combination of a high value of spin ground state (S) and a high magneto-

anisotropy (negative zero-field splitting parameter, D).  

The advantages of using 3d-4f together are: 

1- 4f metal ions can provide both high spin and molecular magnetic anisotropy. 

2- 3d metal ions can generate a high-spin ground states.  

3- 3d-4f can be synthesised by assisted self-assembly reactions since 3d clusters can provide 

donors with the ions acting as accepters. 

The 3d-4f metal complexes can exhibit a strong magnetic coupling. This may be through dipolar 

or superexchange between the 3d and 4f metal ions. 

The combination of iron and lanthanide metals gives rise to a significant energy barrier to 

magnetisation reversal and slow relaxation of the magnetisation which is observed at low 

temperature like in case of Fe7Dy3 with Ueff =33.40 K with pre-exponential relaxation time, τo 

=6.6×10-8 s [80]. 

There are two efficient approaches widely used to combine 3d and 4f ions into one aggregate. The 

first approach is to design and synthesise the ligand. This should provide two or more coordination 

pockets in order to accommodate the 3d and 4f ions. The second approach which is used in this 

work, is an assisted self-assembly approach by using co-ligands that connect the 3d and 4f ions. In 

addition, co-ligands are suitable to stabilise the complex by completing the coordination spheres. 

A review of the literature reveals that the source of Fe can be divided into commercially available 

salts such as: iron (chloride (anhydrous, 4H2O and 6H2O), nitrate, sulfate and tosylate) [4, 80-87]. 

Moreover, we can synthesise the Fe triangle [Fe3(μ3-O)(carboxylate)6(solvent)3]·carboxylate. 

Carboxylate is used as a bridging ligand to synthesise Fe-Ln for example with benzoate (PhCO2), 
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substituted benzoate in meta and para position with (CN, Cl, CH3, NO2), Pivalate (Piv) and acetate 

(OAc). A review of the literature reveals that various methods have been used to synthesise Fe-Ln 

metal complexes such as: stirring at room temperature, reflux, solvothermal, microwave 

irradiation, vapor and liquid diffusion [4, 80-89]. 

Fe-Ln metal complexes exist in different geometry topologies such as butterfly, wheel, S-shape, 

Z-shape, linear, planar cyclic, propeller alongside many others [4, 80-90]. Due to the promising results 

of the Fe-Ln metal complex, this work aims to construct and increase the family of Fe-Ln metal 

complexes and study their ability to be used in potential applications like quantum computing, 

magnetic refrigerant and luminescence.  

1.1.5.1. Cu2Tb2 SMM 

The first 3d-4f metal complex to display SMM properties was [CuIILTbIII(hfac)2]2, as shown in 

Figure 1.10, had been reported in 2004 [77]. A cyclic tetranuclear Cu2Tb2 was obtained, where H3L 

is 1-(2-hydroxybenzamido)-2-(2-hydroxy-3-methoxy-benzylideneamino) ethane and Hhfac = 

hexafluoroacetylacetone. Magnetic studies of Cu2Tb2 reveal the presence of ferromagnetic 

interaction coupling, as shown in Figure 1.11. Fitting the data to the Arrhenius equation reveals an 

effective energy barrier Ueff as 21 K with pre-exponential relaxation time and τ0 = 2.7 × 10-8 s. 

 

Figure 1.10. Molecular structure of [Cu2Tb2]. Colour code: black, red, blue, green, turquoise and 

violet spheres represent C, O, N, F, Cu and Dy, respectively. 
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Figure 1.11. Plots of χMT versus T for [CuIILTbIII(hfac)2]2. 

1.1.5.2. Fe2Ln2 

The first Fe-Ln complex displaying SMM properties was reported in 2006 [78]: [Fe2Ho2(μ3-

OH)2(teaH)2(PhCO2)4(NO3)2]·4(MeCN)·3(H2O) and [Fe2Dy2(OH)2(teaH)2(PhCO2)6] where 

teaH3= triethanolamine and PhCO2 = benzoate. Fe2Ln2 has butterfly geometry, as shown in Figure 

1.12.  

The difference between the Fe2Ho2 and Fe2Dy2 clusters is the replacement of the terminal chelating 

nitrate groups in the Fe2Ho2 to the benzoate group in the Fe2Dy2. Magnetic studies of both 

compounds reveal the presence of antiferromagnetic exchange interactions. 

These compounds are SMMs as shown by the observation of hysteresis loops at lower 

temperatures for Fe2Dy2 at 4K, 1.1 K and for Fe2Ho2 very small coercivity observed at 0.3 K. The 

presence of quantum tunnelling at zero-field gives a rapid decrease of the magnetisation and 

effective energy barrier Ueff values could not be extracted. 
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Figure 1.12. Molecular structure of [Fe2Ho2(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN. 

Colour code: black, red, blue, green, white and violet spheres represent C, O, N, Fe, H and Ho 

respectively. 

1.1.5.3. Binuclear FeIIIDyIII  

 The first Fe-Ln metal complex displaying SMM behaviour evaluated by AC- susceptibility was 

[Fe(bpca)(μ-bpca)Dy(NO3)4], is shown in Figure 1.13 was reported in 2006 [91], where Hbpca = 

bis(2-pyridylcarbonylamine). Magnetic studies of binuclear FeDy reveal the presence of 

antiferromagnetic interaction. The magnetic measurements reveal that the effective energy barrier 

Ueff is 8.98 cm-1 with pre-exponential factors (τ0) of 7.77 × 10-8 s. 

  

Figure 1.13. Molecular structure of [Fe(bpca)(μ-bpca)Dy(NO3)4]. Colour code black, red, blue, 

green and violet spheres represent C, O, N, Fe and Dy, respectively. 

1.1.5.4. Fe7Dy3 

[Fe7Dy3(µ4-O)2(µ3-OH)2(mdea)7(PhCO2)4(N3)6]∙7(MeOH)∙2(H2O) as shown in Figure 1.15, was 

reported in 2009 [79]. Where mdea is N- methyldiethanolamine (mdeaH2), PhCO2 is benzoate and 
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N3 is azide. Magnetic studies of Fe7Dy3 reveal the presence of antiferromagnetic interactions, as 

shown in Figure 1.14. Micro SQUID measurements observed below 1.8 K gave rise to a hysteresis 

loop at 0.035 T/s sweep rate. The magnetic measurements reveal that the effective energy barrier 

(Ueff) is 33.4 K at a relaxation time (τ0) of 6.6 × 10–8 s. For this reason, N- methyldiethanolamine 

(mdeaH2) has been used as the main ligand to synthesise 3d-4f aggregates in chapter four of this 

work.  

  

Figure 1.14. Molecular structure of [Fe7IIIDy3III(µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]. Colour 

code grey, red, blue, green and lavender spheres represent C, O, N, Fe and Dy, respectively (on 

the left) (taken from reference [79]). Magnetisation (M) versus applied DC field (H) hysteresis loops 

for single crystals of Fe7Dy3 at the indicated temperatures and a fixed sweep rate of 0.035 T/s (on 

the right) (taken from reference [79]). 

1.2. Optical properties of Ln ions 

The luminescence from lanthanide complexes was first studied in the 1940s [62]. Most of the 

lanthanide ions have luminescence properties. After exciting an electron from its ground state to a 

higher electronic state, it exhibits long-lived luminescence. This is noticeable from sharp lines that 

are related to f–f transitions of the LnIII ion. 

The 4f orbitals are shielded by 5p66s2 subshells so that the orbitals do not participate in the 

construction of coordination bonds significantly. So, the luminescent lanthanide bands originate 

from the electronic transitions which are located inside their valence 4f orbitals [92]. Therefore, the 

luminescence of the lanthanide ions appears as their atom-like sharp emission bands. In addition, 

the wavelengths are mostly unaffected by the lanthanide ions coordination environment. 
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The electronic spectra of lanthanide complexes are similar to their free ions. Moreover, the 

lanthanide complexes have almost the same colour as their aqua ions. This phenomenon is seen in 

the solid-state, in which there is a small competition from other non-radiative deactivation sources. 

This increased the attention of scientists to explore the application of lanthanide complexes in 

chemosensors, bioimaging probes and optical communications. For example, currently, there is a 

growing interest in the synthesis of lanthanide complexes and investigation into their fascinating 

magnetic and extremely interesting optical properties [93-95], in which the emission bands range 

from the visible to the near-infrared (NIR) regions. Lanthanide ions and complexes have found 

applications in modern everyday technologies such as: television, computer displays, optical 

amplifiers, lasers, economical luminescent lamps, optical fibers and light-emitting diodes. 

Lanthanide complexes are used in biological media as luminescent labels for analysis. In addition, 

they are used as responsive luminescent stains for medical diagnosis, biomedical analysis and cell 

imaging that depends on lanthanide ions heavily [96-98]. There are unique features in the lanthanide 

ions with potential candidates in conversion or amplification of light, fluorescent probes and light-

emitting diodes [99, 100]. These features are long-lived emission, high Stokes shifts and high 

luminescence quantum yield [101-105] leading to applications in fluoroimmunoassays, optical 

telecommunication [106, 107], solar energy conversion [108, 109] and organic light-emitting diodes 

(OLEDs) [110, 111] synthesis of LnIII (Nd, Yb or Er) complexes are highly desired. 

 

Figure 1.15. The energy transfer pathway of Europium and Terbium emission (taken from 

reference [112]). 

As shown in Figure 1.15, the energy transfer pathway consists of absorption, fluorescence, 

phosphorescence and photodegradation.  
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The ligand is excited from the ground state (S0) into the single state (S1) by absorbtion of photons. 

Fluorescence is the energy transfer from the excited single-state (S1) to ground state (S0) followed 

by the light emission due to internal conversion of the ligand. Intersystem crossing (ISC) is a 

nonradiative conversion from the singlet state (S1) to the triplet state (T1). Phosphorescence is a 

conversion from the lowest triplet level of the ligand to the excited state of the lanthanide ion 

accompanied by light emission [112, 113]. Efficient energy transfer is a requirement for luminescence. 

This can be done by matching the triplet state of the ligand to the excited-state of the lanthanide. 

To ensure a forward exothermic process occurs, it is preferred that the triplet state of the ligand 

has slightly lower energy than the lanthanide excited state. When the energy gap is too small 

between the triplet state of the ligand and the excited state of the lanthanide ion, a problem may 

occur with the energy transfer from the excited state of the lanthanide to the triplet state of the 

antenna. Thus this process will affect the intensity of the emission [114]. 

The lanthanide ions are classified into three groups according to luminescence properties: 

1. The first group contains four lanthanide ions (Sm3+, Eu3+, Tb3+ and Dy3+). They exhibit a 

strong luminesce and their emission are easily detected in the visible region [115, 116]. The 

emission spectra of Eu3+ (red), Tb3+ (green), Sm3+ (orange) and Dy3+ (yellow) in their 

complexes are shown in Figure 1.16. These complexes have characteristic long lifetimes 

in the range (microsecond or millisecond). 

2. The second group contains five lanthanide ions (Pr3+, Gd3+, Ce3+, Ho3+ and Tm3+). These 

five lanthanide ions appear in the visible region with weaker luminescence.  

3. The third group contains six lanthanide ions (Pr3+, Nd3+, Er3+, Ho3+, Tm3+ and Yb3+). They 

emit strong luminesce in the NIR region due to the small energy differs between their 

energy levels [117]. 

Lu3+ (4f 14) has no f-f transitions so no emissions have been observed in the visible range due to 

the filled 4f orbital. 

This work focuses on looking for europium and terbium complexes that exhibit optically 

interesting properties making them suitable probes or labels for biological and chemical 

applications. Their electronic spectra display very narrow bands. Adjusting the coordination 

environments or temperature can shift the wavelengths no more than ±2cm-1. Using the sensitised 
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emission leads to the Stokes shift so it is unlikely to have overlap of the emission bands with the 

high absorption bands. 

 

Figure 1.16. Luminescence spectra of EuIII, TbIII, SmIII and DyIII complexes (taken from 

reference[118]). 

In Figure 1.17, NR arrows indicate non-radiative processes while other arrows indicate radiative 

processes.  

For the EuIII complexes, all emissions emanate from the 5D0 level. The emission line in EuIII 

complexes result predominately from electric dipole character (ED), although magnetic dipole 

radiation (MD) is often jointly responsible [119, 120]. The electrons in the 4f orbitals are shielded 

from ligand interactions very well by intervening 5p65s2 octet so that the extent of removing the 

degeneracy depends upon both the symmetry and strength of the ligand field [119, 120]. The emission 

spectrum of the EuIII complex exhibits a sharp emission band from the interaction between f-f 

transition of EuIII corresponding to the 5D0 → 7FJ (J = 1-4) transitions of the EuIII ion 5D0→7F1 

(590 nm), 5D0→7F2 (619 nm), 5D0→7F3 (650 nm) and 5D0→7F4 (700 nm). 
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Figure 1.17. Schematic energy–level diagram of TbIII and EuIII [121]. 

The emission band at 619 nm corresponds to the hypersensitive 5D0 → 7F2 transition. It dominates 

the emission spectra (high intensity) including the EuIII ion which is not on an inversion centre. It 

is most likely at a site with low symmetry and non-centrosymmetric ligand [122]. The 5D0→7F2 and 

the 5D0→7F1 transitions have been referred to as hypersensitive electric-dipole (ED) and magnetic-

dipole (MD) transitions, respectively [122-125]. For TbIII complex, all emissions emanate from the 
5D4 level. The emission spectrum of the TbIII complex exhibits a sharp emission bands from the 

intra f-f transition of TbIII corresponding to the 5D4 → 7FJ (J = 3–6) transitions of the TbIII ion 
5D4→7F6 (488 nm), 5D4→7F5 (542 nm), 5D4→7F4 (585 nm) and 5D4→7F3 (620 nm). The emission 

at 488 nm (5D4→7F6) was assigned to the magnetic dipole transition whilst the emission at 542 nm 

(5D4→7F5) was assigned to the electric dipole transition [126]. The emission intensity at 542 nm 

(5D4→7F5) dominates the emission spectra (high intensity) that deduces the Tb3+ ion is located on 

an asymmetric coordination [122].  

TbIII complexes are not as useful as EuIII complexes for probing asymmetry of its complex. It only 

exhibits moderate sensitivity when compared to the Eu complex. It exhibits hypersensitivity to 

ligand environment. 

Lanthanide ions face two problems for luminescence. The first one is the lower absorption bands 

with absorption coefficients normally less than 1 M-1 cm-1. Therefore, the molar absorption 
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coefficients of the lanthanide ions are very low usually because the f–f transitions are parity 

forbidden making the direct excitation of lanthanide ions inefficient [92]. 

The second problem is the deactivation of the emissive states of the metal by vibrational energy 

transfer. This effect emerges through the process of energy transfer from the excited state of metal 

to O-H stretching vibrations of the coordinated or closely diffusing water molecules [127]. The 4f 

orbitals are shielded by 5p and 6s orbitals so that lanthanide ions are strong Lewis acids [128-131]. 

To overcome the second problem, we can use antenna ligands. By designing the antenna ligand in 

such a way, sufficient shielding of the lanthanide ions from water molecules can take place. In 

addition, this provides a non-radiative deactivation for excited state lanthanide ions through 

vibrational modes. Using the antenna chelates to synthesise the lanthanide complex has an 

advantage that one ligand can produce many different wavelengths by changing the metal (where 

not all metals have the same efficiency). 

The ligand must have two features combined to synthesise luminescent lanthanide complexes: 

(1) The ligand must include a chromophoric moiety which can prosses a large molar absorptivity. 

In addition, the ligand has the ability to coordinate with various lanthanide ions emitting in visible 

or/and near-infrared regions.  

(2) The ligand must minimise nonradiative deactivation pathways so that it can protect the 

lanthanide cation. 

Synthesising 3d-lanthanide complexes by using a ligand and trying to modify the ligand could 

produce complexes that have optical properties, magnetic properties or show SMM behaviour. 

This approach has been used in the literature [48, 81, 132]. 

Nevertheless, it is difficult to predict and assess how the modification will affect the luminescence 

properties of a complex. 

1.3. Magnetocaloric effect and molecular magnetic refrigerants 

The magnetocaloric effect (MCE) is another area of solid-state chemistry and physics where 

molecules are showing some advantages in terms of processability and reduced dimension. MCE 
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used to cool systems offers the possibility to achieve sub-Kelvin temperatures. On a more everyday 

note, cooling via magnesium offers several environmental advantages to standard refrigeration 

methods. The principle behind MCE is to use changes in entropy to either cool or heat locally. For 

cooling this can be best illustrated diagrammatically. 

Two parameters are key to evaluate the performance of the magnetocaloric effect (MCE). These 

are the magnetic entropy change (-ΔSm) or/and the adiabatic temperature (ΔTad). This is shown 

schematically in Figure 1.18 and Figure 1.19. 

In order to achieve good saturation of magnetisation, a material ideally be isotopic. All spins are 

aligned with the field. On removing the field the spins take heat out of the (adiabatic) system to 

randomise because the universe wants disorder (increasing entropy) ∆H=T∆S when ∆S +ve so ∆H 

+ve  and T given by ∆S/∆H. 

 

Figure 1.18. The schematic illustration of the adiabatic process (taken from reference [34]). 

 

Figure 1.19. The schematic illustration of the isothermal process (taken from reference [34]). 
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1.4. Outlook for Quantum Computing  

Whilst the idea of a Quantum computer offers ways to use interently quantum-based systems such 

as molecules to provide ultrafast processing coupled with sufficient storage (magnetic memory), 

the realisation of this concept is far from simple.  

Whilst it is possible to find and optimise systems which provide rapid information processing, as 

gauged by relaxation times of the magnetisation, actually delivering and accessing the information 

is still a significant challenge.  

In this thesis, some molecules have been identified as having the potential to be developed for 

Quantum computing applications but in common with similar systems, we are still far from finding 

ways to control the spin properties of these systems in terms of creating a Quantum Computer. 

Table 1.2 summarises the features of quantum computers compared with their solid state 

counterparts.  

Table 1.2. Comparison between conventional and quantum computers. 

 Conventionally Quantum 

Information 
carriers 

The states are reliably 
distinguishable and it can be 
observed without disturbing the 
system. 

In general, the attempting of observation for the 
information carriers state disturbs the system. 
While it obtain only partial information about 
the state (uncertainty principle). 

To specify the joint state of two or 
more systems, it is sufficient to 
specify the state of each one 
separately. 

Two systems can exist in an entangled state and 
causing them to behave in ways that cannot be 
explained by supposing that each particle has 
some state of its own. 

The Bits The information is reducible to bits 
0 and 1. 

Quantum information is reducible to qubits 
α|0> + β|1>. 

All processing can be done by 
simple logic gates (AND, NOT) 
acting on bits one and two bits. 

Quantum information processing is reducible to 
one and two-qubit gate operations. 

As shown in Table 1.2, in classic computation, the basic element of information is a bit which can 

take two values (1 and 0). Its material realisation is a classical physical with two well-defined 
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states. Quantum computing is a quantum system termed qubit with quantum microstates (ms) that 

can take |1> or |0> but also any arbitrary superposition of these two (namely, | φ > = α|0> + β|1>). 

The physical implementation of quantum computing (QC) is considered one of the most difficult 

challenges in nanoscience. Quantum computing (QC) aims to use the quantum mechanics laws to 

implement tasks of the information processing [133]. 

The “quantum parallelism” is correlated using such superposition and is expected to enormously 

increase the potential of information processing [134-136]. It means that the possibility to extract and 

manipulate the information from a quantum system becomes reliable. 

1.5. Methodology used to access 4f and 3d-4f cluster  

There are three techniques to get crystals: 

1.5.1. Evaporation technique  

This technique is used widely. It is the simplest method used to create crystals, as shown in Figure 

1.20. Large and high-quality crystals can be obtained by slow evaporation when the solution is left 

without disturbance and more solvent evaporates. In this work, all crystals are obtained by the slow 

evaporation technique by making holes in the cap of the vial. The number of holes controls the 

rate of evaporation based on the boiling point of the solvent. A lower boiling point like acetone 

needs fewer holes. On the other hand, the higher boiling point like toluene or water needs more 

holes even without closed cap [88].  
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Figure 1.20. Schematic of the slow evaporation method (taken from reference [137]). 

1.5.2. Vapour and Liquid diffusion 

This technique is used to obtain crystals when slow evaporation does not work. Usually two 

solvents are allowed to diffuse together to aid the crystallisation. 

There is a difference between liquid and vapour diffusion. In liquid diffusion, as shown in Figure 

1.21, the solvents must be insoluble (immiscible) so the diffused solvent must be added slowly on 

the wall of vial. It will be on the top of the solution because it has lower density. If this method is 

successfully, the crystal will grow up in the interface of two layers. If precipitation is formed, the 

system will need another carefully selected solvent which is immiscible in both. The third solvent 

will separate the two layers by slowing down the reactions and allowing the crystal to grow up [88]. 

 

Figure 1.21. Schematic of the liquid diffusion method (taken from reference [138]).  

In vapour diffusion, as shown in Figure 1.22, the solvents must be soluble (miscible). The solution 

will be placed in the small vial inside a bigger vial with another solvent. The solution must be less 

soluble in the new solvent than in the closed outer vial. The vapour from the bigger vial will diffuse 

into the small vial. That leads to supersaturation and crystallisation may take place. These good 

conditions may enable the crystals to grow [88].  

https://upload.wikimedia.org/wikipedia/commons/b/bf/X-ray_crystals_-_slow_evaporation_1_solvent.png
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Figure 1.22. Schematic of the vapour diffusion method (taken from reference [137]). 

1.5.3. Cooling method (Thermal gradient) 

This technique is used to create crystals by decreasing the temperature of the solution, as shown 

in Figure 1.23. 

The mechanism of this method converts the saturated to a supersaturated solution. If the solubility 

decreases with the temperature of the solution, the lower solubility of the product will lead to 

crystals. The advantage of this method is a high quality crystal [139]. 

 

Figure 1.23. Schematic of the cooling method (taken from reference [140]). 

1.6. Ligand Selection 

The main goal of this research is to construct 4f and Fe-4f coordination clusters in order to study 

their magnetic and electronic properties and potential applications. 

Amino-polyalcohol ligands have been widely used in the synthesis of high spin molecules and 

SMM. 

https://upload.wikimedia.org/wikipedia/commons/5/55/X-ray_crystals_-_slow_gas_diffusion_2_solvent.png
https://www.google.jo/url?sa=i&url=https://web.mit.edu/x-ray/cystallize.html&psig=AOvVaw2Xni__bryu0d2vgSM_XqAb&ust=1592838415054000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKC9wdaXk-oCFQAAAAAdAAAAABAO
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These ligands combine a central N-donor with oxygen from the alcohol arms which chelate to a 

metal ion in conjunction with the central N donor as well as forming bridges to further metals 

through the alkoxy oxygens. Based on HSAB (hard-soft acid-base), the hard-donor oxygen tends 

to be connected with lanthanide ions while the soft-donor nitrogen tends to be connected with 

transition-metal ions.  

In chapter, three and four different amino-polyalcohol ligands have been used to synthesise four 

different types of homometallic lanthanide complexes as seen from their topology and magnetic 

properties.  

Amino-polyalcohol ligands represent the major ingredient of the synthesis, often acting as the main 

ligand. In some cases, amino polyalcohol ligand is absent from the final product, but is a necessary 

ingredient in this synthesis since there is no product without it. The amino polyalcohol acts as a 

base to deprotonate the oxygens. It can be a protecting buffer of the lanthanide towards further 

hydrolysis. 

1,3-bis-diethanolamino-2-propanol (H5bdp) ligand (Figure 1.24, a) has been used in chapter three. 

It is a flexible ligand and it can bind metals in many ways or/and with many coordination modes. 

It has two N and five O atoms that allow the ligand to coordinate with metal depending on the 

basicity of the conditions. A review of the literature reveals that the H5bdp ligand has been bound 

to the metal in the form of a singly-deprotonated (H4bdp)- (Figure 1.24, b), with four-deprotonated 

(Hbdp)4- (Figure 1.24, c) and five-deprotonated oxygens (bdp)5- (Figure 1.24, d). 
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Figure 1.24. H5bdp ligand (a) coordination mode of H5bdp ligand Dy2 from this work (b) and 

reported (c-d) [141]. 

Triisopropanolamine (TipaH3) ligand was employed in the synthesis 4f (Yb2 [82]), 3d (Ti [142, 143], 

V [143, 144], Cu [145, 146]) and 3d-4f (Fe-Gd [84]) with different coordination modes and different 

topologies. 

Triisopropanolamine (TipaH3) ligand was used in chapter three as a ligand with chirality. It has 

three stereogenic centres as shown in (Figure 1.25, a). It can bond to metals in many ways or/and 

with many coordination modes. It has one N and three O atoms which allow the ligand to 

coordinate with metal depending on the basicity of the conditions. A review of the literature reveals 

that the TipaH3 ligand has been bound to the metal in a singly-deprotonated form (TipaH2)- (Figure 

1.25, b), triply-deprotonated (Tipa)3- (Figure 1.25, c) and also fully protonated (TipaH3) (Figure 

1.25, d). 
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Figure 1.25. Triisopropanolamine (TipaH3) ligand (a) stereocentres marked with (*) and reported 

coordination modes (b) mode I [82, 145], (c) mode II [142, 143] and (d) mode III [84, 146] 

Diisopropanolamine (dipaH3) ligand is employed to synthesise 3d (Fe and Co [147]) with different 

coordination modes and different topologies. 

Diisopropanolamine (dipaH3) ligand (Figure 1.26, a) has been used in chapter three as chiral 

ligand. It can bond to metals in many ways or/and with many coordination modes. It has one N 

and two O atoms allowing the ligand to coordinate with the metal depending on the basicity of the 

conditions. A review of the literature reveals that the dipaH3 ligand has been bound to the metal in 

singly-deprotonated (dipaH2)- (Figure 1.26, b-c) and doubly-deprotonated (dipaH)2- form (Figure 

1.26, d). 
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Figure 1.26. Diisopropanolamine (dipaH3) ligand (a) stereocentres marked with (*) and (b-d) 

coordination modes with reported [147]. 

In this work, diisopropanolamine ligand is absent in the final product of the Ln2 (1D polymer) 

complex but is a necessary in this synthesis. The diisopropanolamine ligand acts as a buffer that 

protects the dysprosium from further hydrolysis. The benzoate ligand selected to be an auxiliary 

ligand then becomes the main ligand.  

In chapter three, N-methyldiethanolamine ligand is absent in the final product of Ln4 complex but 

is a necessary in this synthesis. The N-methyldiethanolamine ligand acts as a base to deprotonate 

oxygen from the o-vanillin ligand. The o-vanillin ligand has selected to be an auxiliary ligand then 

it becomes the main ligand.  

The o-vanillin (o-van) ligand has three potential O donor atoms for coordination with the metal, 

e.g. 4f [74, 148-162], 3d (V [163], Mn [164], Fe [165, 166],Co [167-181], Ni [173, 175, 182-197], Cu [198-209], Zn [210-

212]), 3d-3d (Mn-Ni [213]), Cu-Co [214], Cu-Ni [214], Cu-Zn [214]), 3d-4f (Mn-Ln [215], Co-Ln [216], Ni-

Ln [217-222], Cu-Ln [223-225] and Zn-Ln [226-230]). There are many potential coordination modes giving 

rise to different topologies for the metal clusters with a variety of properties (Figure 1.27). 
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Figure 1.27. o-Vanillin and coordination modes reported for o-vanillin ligand mode I [149, 151, 153, 

154, 163-165, 167-177, 181-192, 198-205, 210, 211, 214, 216, 217, 220, 223, 224, 226-228], mode II [162, 213], mode III [74, 148, 150, 

152, 155-162, 166, 178-180, 192-197, 200, 206-209, 212, 218, 219, 221, 222, 225, 229, 230], mode IV [215] and mode V [214, 221]. 

In this work, different metal to ligand ratios were used along with different metal salt starting 

material, co-ligand and synthetic strategy.  

In chapter four, the auxiliary ligand is the same as in chapter three but Pivalic acid is replaced with 

sodium azide. It is selected to encourage amino-polyalcohol ligands to construct high-nuclearity 

complexes. Sodium benzoate is used as an auxiliary ligands in chapter three and four to synthesise 

lanthanide complexes.  

The carboxylic acid works as co-ligand in this work, in order to increase the nuclearity of homo-

heterometallic clusters (Figure 1.28). 
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Figure 1.28. Coordination modes of the carboxylate group, commonly. 

N-methyldiethanolamine (mdeaH2) ligand is used in chapter four. It is a flexible ligand and it can 

bond to metals in many ways or/and with many coordination modes. It has one N and two O atoms, 

which allow the ligand to coordinate with the metal depending on the basicity of the conditions. A 

review of the literature reveals that the mdeaH2 ligand has been bound to the metal in the form of 

a singly-deprotonated (mdeaH), doubly-deprotonated (mdea2-) and with protonated oxygen atoms 

(mdeaH2). 

The N-methyldiethanolamine ligand is flexible and widely employed to synthesise 4f [231-234], 3d 

(Ti [235, 236], Fe [237, 238], Ni [239, 240], Cu [128-131], Zn [128, 241]) and 3d-4f (Cr-Ln [242-247], Mn-Ln [248-252], 

Fe-Ln [79, 80, 89, 253], Co-Ln [254-259], Cu-Ln [260]) with different coordination modes and different 

topologies. N-methyldiethanolamine and its coordination modes are shown in Figure 1.29.  
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Figure 1.29. N-methyldiethanolamine and its coordination modes reported (mode I [79, 80, 233, 234, 242-

249, 253-255, 257, 258], mode II [232, 241], mode III [231, 251, 259], mode IV [89, 251, 252, 256], mode V [235-238, 250], 

mode VI [128-131, 234], mode VII [239, 240, 260] and mode VIII [234]). 

In chapter four N-methyldiethanolamine (mdeaH2) is selected as the main ligand to synthesise four 

different series of FeIII/LnIII metal complexes. Magnetic studies indicate the influence of changing 

co-ligand and synthetic procedure. 

Use of auxiliary ligands in conjunction with N-methyldiethanolamine ligands helps to construct 

high-nuclearity complexes. Often the auxiliary ligands are carboxylates such as benzoate and 
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Pivalate. These carboxylates act as a bridge or/and chelate and often act to complete the 

coordination sphere of metal. Therefore, benzoate and Pivalate have been used as an auxiliary 

ligand in this thesis to obtain Fe-Ln and 4f metal complex. In addition, sodium azide is common 

in Fe-Ln chemistry and can bridge or/and complete coordination sphere of metal ions. 

1.7. Thesis Overview 

This thesis describes the synthesis of homo-and heterometallic complexes which have been 

characterised crystallographically and it investigates the optical and magnetic properties. The 

research results are divided into three chapters (3, 4 and 5).  

Chapter 3 describes the synthetic strategy, crystal structures, magnetic and optical investigations 

(photoluminescence) of homometallic lanthanide complexes by using four different amino-

polyalcohol ligands (H5bdp, dipaH3, TipaH3 and mdeaH2) along with co-ligands such as (benzoate, 

Pivalate and o-vanillin). Some of these compounds are magnetically, optically investigated and 

presented.  

Chapter 4 represents the synthetic strategy crystal structures, optical (photoluminescence) and 

magnetic investigations  of heterometallic Fe-4f complexes using mdeaH2 as the main ligand along 

with co-ligands such as benzoate, sodium azide, di(2-pyridyl) ketone or o-vanillin. Some of the 

compounds are optically and magnetically investigated and presented.  

Chapter 5 describes the synthesis of two binuclear copper (II) complex incorporating with 2,2′-

bipyridine (bpy) and benzylphosphonic acid (PhCH2PO(OH)2) ligands. These were tested for the 

transmission in the visible-NIR region of the electromagnetic spectrum. In addition, they were 

used as thin film on glass substrate to test their potential for use in energy saving glass. The 

compounds are promising for this application. Furthermore a preliminary test for microwave 

transmission showed that a mobile phone still receive signals when put in a box simulating the 

construction a modern office building. 

Chapter 6 summarises the conclusion of the thesis. 

Chapter 7 describes the experimental part of the thesis in detail. 

Chapter 8 summarises crystallographic data and shape analysis of coordination complexes. 
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Chapter 9 describes characterisation techniques. 

Chapter 10 contains all Appendix items. 

Chapter 11 contains the bibliography which supports the whole research work structure. 
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Chapter 2. Goal and Objectives  

It has been observed that coordination clusters can exhibit SMM behaviour and optical properties. 

In coordination chemistry, it is still difficult to control the key parameters for such behaviour in an 

existing cluster, because it is difficult to control the arrangement of the metal ions, the relative 

orientations of the single-ion anisotropy axes and the magnetic coupling between them. These 

factors all have profound effects on the height of the energy barrier to spin reorientation, the 

splitting of the magnetic states and the possibilities of Quantum Tunneling of the magnetisation. 

The creation of a molecular compound that has multifunctionality is very important in many high-

technology applications and everyday technology. Lanthanide and iron ions are considered as ideal 

candidates for the construction of complexes exhibiting magnetic (SMM behaviour and magnetic 

cooler) and optical (photoluminescent) properties. 

Single-molecule magnets are considered as an interesting class of compounds with potential 

applications in fields of industrial and modern technology such as in highly efficient data storage 

systems, quantum computers, molecular coolers and contrast agents. 

The key requirement for SMM behaviour is a combination of sufficient spin and uniaxial 

anisotropy within the molecule. Some metal ions such as CrIII, MnII, FeIII and GdIII can contribute 

high spin but minimal anisotropy whereas others such as MnIII, CoII and most of the trivalent 

lanthanide ions can contribute high single-ion anisotropy. 

The fact that the magnetic anisotropy is a major requirement to see SMM behaviour explains well 

the intense attention of many groups to incorporate lanthanide ions (homometallic complexes) or 

in combination with 3d transition metal ions in the same coordination complex (heterometallic 3d-

4f complexes). Combining 3d and 4f means combining the high, predominantly anisotropic 

moments of lanthanide ions (e.g. Tb or Dy) with the high-spin states of many transition metal ions 

(Fe, Cr). 

SMMs are among the most complex magnetic entities that show quantum phenomena like quantum 

tunneling of the magnetisation [261], quantum interference or quantum coherence and they have 

been postulated as candidates for spin qubits in quantum computing [136, 262, 263]. 



48 
 

A further characteristic of lanthanide ions is the ability to emit radiation often in the visible range 

(we focus on those) as well as in NIR regions of the electromagnetic spectrum when excited with 

short wavelength light. The 4f-4f electronic transitions are responsible for light emission. 

The present work has been motivated by the need to obtain new homometallic lanthanide 

complexes and heterometallic iron-lanthanide complexes and find the possible applications in 

industrial and everyday technology. 

In order to construct such polynuclear complexes in the principle of self-assembly of the 

paramagnetic metal ions with suitable ligands like amino-polyalcohol ligand was applied. Amino-

polyalcohol ligands have been used to synthesise 3d, 4f and a 3d-4f metal complexes. Based on 

the resulting structure, magnetic and optical properties, further attempts were made to extend the 

systems to explore optical and magnetic properties of homometallic lanthanide complexes and 

heterometallic iron-lanthanide complexes. This work examines the synthesis, structure, optical and 

magnetic properties of 3d–4f and 4f coordination compounds with amino-poly-alcohol ligands and 

their magnetic and optical properties. 

Amongst the motivations for this was to investigate the possibility to use compounds in quantum 

computer devices through the properties of the metal complex as SMM behaviour, which can be 

employed to build the smallest magnetic memory. In addition, to explore their luminescence which 

may be used in OLEDs. The magnetocaloric effect, which can be used for refrigeration was also 

investigated. 

In particular, Dy and Tb ions have magnetic anisotropy and high spins so that their complexes may 

show SMM behaviour. Gd as an isotopic metal is suited for magnetocaloric effects and these were 

evaluated for performances and efficiencies as magnetic refrigerants.  

The optical properties have been studied of lanthanides and iron-lanthanide metal complex of Tb 

and Eu. These exhibit emission bands in the visible region. Therefore, the metal complexes have 

been studied to explore the electronic spectra and luminescence. 

The goal of chapter five is to synthesise copper (II) complexes which are known to absorb in parts 

of the visible and NIR regions when coordinated by 2,2′-bipyridine and benzylphosphonic acid 

(PhCH2PO(OH)2) ligands. Such coatings have potential applictions in ESG.  
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Chapter 3. Structure, optical and magnetic properties of lanthanide aggregates 

3.1. Introduction 

Lanthanide complexes have gained the attention of researchers around the world due to their photo-

physical and magnetic properties with potential applications in medicine (e.g. as photosensors or 

as agent for MRI) quantum materials with both unusual photophysical and exotic magnetic 

properties in addition to catalytic application, luminescent materials and commercial permanet 

magnets [264, 265]. Due to their unique and useful electronic, optical and magnetic properties [266], 

lanthanide complexes have potential application fields in industrial and in everyday technology 

such as in molecular optoelectronic devices, high-density data storage, laser materials, catalysis, 

quantum-based spintronic devices, OLEDs, metallurgy, MRI agents and electronic video displays 
[264-270]. Lanthanide complexes are uses in OLEDs because the luminescence lifetimes of 

lanthanide complexes (milliseconds-microseconds) are longer than organic dyes (nanoseconds) 
[271, 272]. Magnetic material in nanoscale has driven by the rapid growth in high-density magnetic 

storage devices and high-speed computers with the promise of a revolution in information 

technology [70, 273, 274]. Dy3+, Tb3+, Ho3+ and Er3+ ions have a higher magnetic anisotropy than the 

left side of lanthanide series (4f n, n < 7), therefore they are widely uses to obtain SMM, especially 

the DyIII ion [275, 276]. One of the objectivies of this chapter is to produce lanthanide complexes that 

could be used to develop quantum computer. 

A review of the literature shows that homonuclear lanthanide complexes have been reported using 

different types of ligand and co-ligand. The commercial and synthesised ligand contains one or 

more donor atoms (O, N and S donors) which allows access to coordination complexes with 

different nuclearity. Lanthanide ions prefer binding with oxygen donors (neutral or /and negative 

charge) or/ and nitrogen donors. Some triangular Dy3 complexes present a new concept for 

magnetic memory without a net magnetic moment [74, 75]. These show a vanishing susceptibility at 

low temperature which is unexpected in a system having an odd number of unpaired electrons. 

Amino-polyalcohol ligands have been used in the literature due to containing polydentate chelating 

and having two donor atoms N and O. Many lanthanide complexes have been reported in the 

literature and those involving amino polyalcohol ligands and their modifications are an important 

subset. 
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A review of the literature reveals that amino-polyalcohol based ligand, their modifications, or a 

part of the ligand contains diethanolamine have been employed to synthesise 53 series of Ln 

complexes. Table 3.1, presents 53 series of Ln complexes from the literature and 2 compounds 

from this work which were synthesised using amino-polyalcohol ligands. 

Table 3.1. LnIII complexes based on amino-polyalcohol ligands with Dy SMM listed. 

N
O

 

Structure  Ln Dy 

SMM 

Ref  

1 [Ln(bheg)2(MeCO2)(H2O)4] La-Nd NM [277] 

2 [Ln(MeCO2)(bicH2)(phen)(H2O)](ClO4)·phen·3H2O Gd,Er,Pr,Nd NM [278] 

3 [Ln(teaH3)2(MeCO2)](MeCO2)2]·0.5Py Ce, Pr NM [279] 

4 [Ln2(MeCO2)4(teaH2)2] Gd, Dy-Er Not [279] 

5 [Dy2(LH2)2(μ2-Piv)](Cl)·2MeOH·H2O Dy Not [280] 

6 [Ln2(mdeaH2)2(Piv)6] La- Gd  NM [232] 

7 [Ln2(H2L)2(μ-Piv)2(Piv)2]·2CHCl3 Eu-Dy SMM [281] 

8 [Ln2(TipaH2)2(Piv)4] (6-9) Gd-Er SMM This 
work 

9 [Dy2(tea)2(PhCO2)4·2H2O] Dy Not [282] 

10 [Dy2(teaH2)2(PhCO2)4]·2H2O Dy Not [283] 

11 [Yb2(TipH2)2(PhCO2)4] Yb NM [82] 

12 [Ln2(H4bdp)(PhCO2)2(NO3)2]·(NO3) Dy SMM This 
work  

13 [Dy4(LH)2(μ3-OH)2(Piv)4(MeOH)2]·4MeOH·2H2O Dy SMM [280] 

14 [Ln4(μ3-OH)2(mdeaH)2(Piv)8] Tb-Tm SMM [231] 

15 [Ln4(LH)2(µ2-Piv)(Piv)(µ3-
OH)2]·xH2O·yMeOH·zCHCl3 

Tb-Yb SMM [284] 

16 [Ln4(LH2)2(O3PtBu)2(μ2–
η1η1tfa)2]·(Cl)2·xMeOH·yH2O 

Gd-Dy SMM [285] 

17 [Ln6(H3L)6(PhCO2)6]·(2H2O)x·(C7H8)y Gd-Dy Not [286] 
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18 [Ln8(LH2)4(μ2-Piv)4(Piv)4(μ2-OMe)4]·xCH3OH·yH2O Gd-Ho SMM [287] 

19 [NaCe10O7(OH)(ib)14(HCO2)(mdea)5] Ce NM [233] 

20 [La(Bis-Tris)2](Cl)3 La NM [288] 

21 [Pr(teaH3)2(NO3)](NO3)2 Pr NM [289] 

22 [La(Theen)(Pic)(H2O)2](Pic)2]·2H2O La NM [290] 

23 [Ln(teaH3)2](CF3SO3)3 Pr, Yb ,Lu NM [291] 

24 [La(NO3)(teaH3)2](NO3)2 La NM [292] 

25 [La(teaH3)2(H2O)2](Pic)3 La NM [290] 

26 [Dy2(HL1)2(NO3)4] Dy SMM [293] 

27 [Dy2(HL3)2(NO3)4] Dy SMM [293] 

28 [Gd2(H3L)2(NO3)2](NO3)2 Gd NM [294] 

29 [Eu(teaH3)2](ClO4)2 Eu NM [295] 

30 [Yb(teaH3)2]2(ClO4) Yb NM [296] 

31 [Dy2L(H2L)(teaH2)(o-van)(H2O)](ClO4)2·2CH3OH Dy SMM [153] 

32 [HNEt3]x[Ln2(LH4)2(dbm)2](NO3)y Gd, Dy SMM [297] 

33 [Ln2(teaH2)2(NO3)4] Pr, Gd-Ho Not [289] 

34 [Gd(Hsabhea)(NO3)]2·2MeOH Gd NM [298] 

35 [Gd(teaH2)(NO3)2]2·2MeOH Gd NM [299] 

36 [Gd3(HL)(H2L)(NO3)4]·C2H5OH Gd NM [294] 

37 [Dy3(OH)(teaH2)3(paa)3](Cl)·2MeCN·4H2O Dy Not [157] 

38 [Ln3(OH)(teaH2)3(paa)3](Cl)2 Tb-Ho Not [300] 

39 [Dy3(HL)(H2L)(NO3)4]·EtOH Dy SMM [301] 

40 [Gd2(teaH2)(teaH)(NO3)3]2·MeOH Gd NM [299] 

41 [Dy4(dhampH3)4(NO3)2](NO3)2 Dy SMM [302] 

42 {[(C5H5)Ln(npdea)]4(μ4-Cl)}[Na(DME)4] Sm, Yb  NM [303] 

43 [Gd(teaH)(NO3)]6·8MeOH Gd NM [299] 

44 [Ln6(teaH)6(NO3)6]·8MeOH Tb-Er SMM [304] 
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SMM means Dy is SMM, NM means not measured and Not means does not display SMM. 

Carboxylate have been used widely as a co-ligand to build up high nuclearity lanthanide 

complexes. A review of the literature reveals that 17 series (1-19 of Table 3.1) out of 53 

homometallic lanthanide complexes based on amino-polyalcohol ligand incorporating 

carboxylates have been reported so far. Four series incorporate acetic acid, four series incorporate 

benzoic acid, seven series incorporate Pivalic acid, one series incorporates trifluoroacetic acid and 

one series incorporates isobutyric acid. 

In this thesis, four new series were successfully synthesised and characterised using amino-

polyalcohol ligand as the main ligand supported by an auxiliary carboxylate co-ligand. The co-

ligand was changed in the series in order to study the effect of the co-ligand on the structure as 

well as the magnetic and optical properties. 

The nuclearity and topology depend on the strength of co-ligand and coordination modes of the 

ligand. The coordination modes of the carboxylate presented here can be divided into three types: 

bridging, bridging-chelating and terminal (monodentate and chelating). Changing the co-ligand 

leads to a change in nuclearity as well as in the resulting magnetic properties. The carboxylate 

group has proven to be a useful functional group to obtain high-nuclear clusters of lanthanide 

45 [Dy6(Me-teaH)6(NO3)6]·6MeCN Dy Not [305] 

46 [Dy6(apadH2)6(NO3)6]·2THF Dy SMM [305] 

47 [Dy6(teaH)6(NO3)6]·3DMF·H2O Dy Not [304] 

48 [Dy6(pdeaH)6(NO3)6] Dy SMM [300] 

50 [Ln6(teaH)6(NO3)6]·8MeOH Gd, Dy Not [306] 

51 [Ln6(teaH)2(teaH2)2(CO3)(NO3)2(chp)7(H2O)](NO3)·4·
5MeOH·1·5H2O 

Gd-Dy SMM [307] 

52 [Dy8(OH)6(teaH)6(teaH2)2(teaH3)2](CF3SO3)4 
0.5MeOH 2H2O 

Dy SMM [157] 

53 [Gd9(OH)10(mdea)4(mdeaH)2(mdeaH2)2(NO3)7(CH3O
H)4] 

Gd NM [234] 

54 [Ce13O8(phdea)18] Ce NM [308] 

55 [Gd32(OH)54(mdea)12(NO3)12(H2O)24](OH)6·24CH3O
H·30H2O 

Gd NM [234] 
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species which can act as a main ligand or co-ligand. Carboxylate ligands include benzoate, 

Pivalate, acetate and isobutyrate are all commonly used for assembling LnIII complexes. Changing 

ligand allowed change in magnetic properties. 

The first series comprises one representative binuclear dysprosium complex and was obtained by 

using 1,3-bis-diethanolamino-2-propanol (H5bdp) ligand, iron-benzoate (Fe3O(PhCO2)) and 

Dy(NO3)3. A binuclear [Dy2(H4bdp)(PhCO2)2(NO3)2] (NO3) MeCN, system with a novel core was 

successfully synthesised, characterised and the magnetic properties were investigated.  

The second series comprises isostructural binuclear Ln complex and was obtained by using 

diisopropanolamine ligand (dipaH3), iron-benzoate (Fe3O(PhCO2)) and Ln(NO3)3. A binuclear 

[Ln2(PhCO2)6(CH3OH)4]∞ (Ln= Eu-Dy), system provides a novel core as 1D polymer and was 

fully synthesised, characterised, the optical and magnetic properties were also investigated.  

The third series comprises the binuclear Ln complex and was obtained by using 

triisopropanolamine (TipaH3), iron-Pivalate (Fe3O(Piv)) and Ln(NO3)3. A binuclear 

[Ln2(TipaH2)2(Piv)4] (Ln= Eu-Dy), system with a novel core was successfully synthesised, 

characterised and the magnetic properties were investigated. 

The fourth series comprises isostructural tetranuclear Ln complexes and was obtained by using N-

methyldiethanolamine (mdeaH2), o-vanillin (o-van), Pivalic acid and LnCl3. A tetranuclear 

butterfly complex [Ln4(μ3-OH)2(o-van)4(Piv)6] 2MeCN (Ln= Eu-Dy) was successfully 

synthesised, characterised and the magnetic properties were investigated.  

3.2. Structure and magnetic properties of [Dy2(H4bdp)(PhCO2)2(NO3)2]NO3·MeCN (1) 

3.2.1. Synthetic description  

The reaction of [Fe3O(PhCO2)6(H2O)3](PhCO2), Dy(NO3)3·6H2O and 1,3-bis-

diethanolamino-2-propanol (H5bdp) in a molar ratio of 1:1:4 in MeCN over stirring and heating 

for two hours and afforded colourless needles of a new binuclear DyIII cluster 

[Dy2(H4bdp)(PhCO2)2(NO3)2]NO3·MeCN (1). 
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3.2.2. Crystal structure of [Dy2(H4bdp)(PhCO2)2(NO3)2] NO3·MeCN 

The structure of compound 1 was characterised by single-crystal X-ray diffraction (full 

crystallographic data is given in Table 8.1) as shown in Figure 3.1. The purity of the phase is 

confirmed by powder X-ray diffraction (PXRD) (Figure 3.2). 

The crystal structure of the binuclear complex [Dy2(H4bdp)(PhCO2)2(NO3)2]NO3·MeCN (1) is 

described in detail. The compound 1 crystallises in the orthorhombic space group Pna21 with Z = 

4. Compound 1 is a monocation complex with the charge balanced by a lattice nitrate and there is 

one lattice MeCN in the asymmetric unit of the lattice. However, it loses the lattice MeCN per 

molecule after dry according to elemental analyses. 

 

Figure 3.1. Molecular structure of compound 1. Colour code: black, red, blue, white and violet 

spheres represent C, O, N, H and Dy, respectively. Some of the H atoms are omitted for clarity. 

The H5bdp ligand (Figure 3.3, a) and benzoate are coordinating to the metal centre of Dy atoms as 

shown in the crystal structure. The compound 1 consists of two DyIII ions, a singly-deprotonated 

oxygen (H4bdp)– ligand resulting in one negatively charged oxygen atom O(3) bridging two 

neighbouring DyΙΙΙ ions, two syn-syn -bridging benzoate and two chelated nitrate anions NO3–. A 

singly-deprotonated (H4bdp)– ligand displays the (η1: η1: η1: η2: η1: η1: η1: μ2) coordination mode 
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both bridging and chelating the two Dy metal centres (Figure 3.3, b). The H5bdp ligand has 

successfully been used to synthesise binuclear {Ln2} complex. 
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Figure 3.2. Calculated (black) and experimental (red) powder X-ray diffraction (PXRD) patterns 

of compound 1. 

Figure 3.3. (a) H5bdp ligand (b) the coordination mode of (H4bdp)- ligand. 

Both octa-coordinated DyIII ion are surrounded by one N and seven O donor atoms (NO7). One N 

and three O atoms come from the singly-deprotonated oxygen (H4bdp)- ligand, two O atoms come 

from the syn-syn bridging benzoate ligand and two O atoms come from the chelating nitrate NO3– 

ligand. This results in a distorted triangular dodecahedron geometry which was confirmed by 

SHAPE analysis [309-312] with a deviation value of 2.02, (Figure 3.4, Table 8.7). 
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Using SHAPE software has afforded the value of continuous shape measurement (CShM), which 

is used to quantitatively evaluate how much a particular structure deviates from the ideal shape 
[312]. 

The Dy−O and Dy−N bond distances are in the range 2.250(15)−2.481(16) Å and 

2.518(17)−2.887(18) Å, respectively. The Dy···Dy distance is 3.962(13) Å. The Dy−O−Dy angle 

is 119.2(5). Selected bond distances are summarised in Table 3.2. 

Intra- and intermolecular interactions are stabilised the structure of compound 1 through hydrogen 

bonds. O(1)–H(1) and O(4)–H(4) from a single-deprotonated oxygen (H4bdp)– ligand make 

intramolecular hydrogen bond to O(16) from uncoordinated nitrate NO3– group. The distances of 

O(1)⋯O(16) and O(4)⋯O(16) are 2.69 and 2.70 Å, respectively. In addition, O(2)–H(2) from a 

single-deprotonated oxygen (H4bdp)– ligand makes an intramolecular hydrogen bond to N(6) from 

lattice MeCN molecule with a O(2)⋯N(6) distance of 2.87 Å. O(5)–H(5) from a single-

deprotonated oxygen (H4bdp)– ligand makes an intermolecular hydrogen bond to O(17) from 

nitrate NO3– counterion of a neighbouring molecule at {1-x, 1- y, -1/2+z} with an O(5)⋯O(17) 

distance of 2.70 Å. In addition, O(5)–H(5) from single-deprotonated oxygen (H4bdp)– ligand of a 

neighbouring molecule at {1-x, 1- y, 1/2+z} make an intermolecular hydrogen bond to O(17) from 

uncoordinated NO3– group with an O(5)⋯O(17) distance of 2.70 Å. Intermolecular interaction 

results in a 2D supramolecular. The packing of compound 1 is presented in Figure 3.5. 

Table 3.2. Selected bond distances (Å) of compound 1. 

 
Bond distances Bond distances 

Atom Atom Distance /Å Atom Atom Distance /Å 
Dy(1) O(1) 2.377(13) Dy(2) O(3) 2.282(12) 
Dy(1) O(2) 2.397(16) Dy(2) O(4) 2.388(14) 
Dy(1) O(3) 2.311(11) Dy(2) O(5) 2.390(2) 
Dy(1) O(6) 2.250(15) Dy(2) O(7) 2.300(14) 
Dy(1) O(8) 2.262(15) Dy(2) O(9) 2.358(16) 
Dy(1) O(10) 2.445(14) Dy(2) O(13) 2.432(15) 
Dy(1) O(11) 2.466(18) Dy(2) O(14) 2.481(16) 
Dy(1) N(1) 2.518(17) Dy(2) N(2) 2.584(16) 
Dy(1) Dy(2) 3.962(13)    
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Figure 3.4. Distorted triangular dodecahedron geometry of the 8-coordinated Dy ion. Colour 

code: red, blue and violet spheres represent O, N and Dy, respectively. 

 

 

Figure 3.5. The packing structure of compound 1 (2D). Colour code: black, red, blue, white and 

violet spheres represent C, O, N, H and Dy, respectively. 

3.2.3. Magnetic properties  

DC magnetic susceptibility of compound 1 was carried out on freshly prepared polycrystalline 

sample in the temperature range 2-300 K under an applied DC magnetic field of 1000 Oe (0.1 T). 

The plot of χT versus T for compound 1 is shown in Figure 3.6. 
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Figure 3.6. Temperature dependence of the χT products for compound 1 at 1000 Oe 

The experimental χT value of compound 1 at 300 K is 25.90 cm3mol−1K which is lower than the 

expected value of 28.34 cm3mol-1K for two non-interacting DyIII ions (6H15/2, S = 5/2, g = 4/3, L = 

5, C = 14.17 cm3mol-1K) [276]. The χT product decreases slightly between 300 to 70 K followed by 

a rapid decrease from 70 to 2 K, reaching a value of 18.16 cm3mol-1K at 2 K.  

The decrease of χT experimental values with the temperature is probably due to the thermal 

depopulation of the Stark sublevels of DyIII ions and/or antiferromagnetic interactions between the 

DyIII ions [313, 314]. 
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Figure 3.7. Field dependence of magnetisation at indicated temperatures of compound 1. 

The field dependence of the magnetisation of compound 1 was measured at fields ranging from 0 

to 70000 Oe (0-7 T) at temperatures of 2 K, 3 K and 5 K. 

Figure 3.7 shows the magnetisation values of compound 1 has a relatively rapid increase below 1 

T followed by increase linearly up to 7 T, reaching a value of 12.36 µB at 2 K and 7 T without 

saturation indicating the presence of magnetic anisotropy or/and the population of low-lying 

excited states [315]. 

AC susceptibility measurements were performed in order to investigate the dynamic magnetic 

behaviour of compound 1. The measurements were carried out in the frequency range 1-1488 Hz 

and in the temperature range 2-12 K. As shown in Figure 3.8, compound 1 shows slow relaxation 

of the magnetisation below 6 K under an applied DC field of 2500 Oe. The maximum out-of-phase 

signal has been noticed at 2 K at 2.6 Hz. The frequency dependence of the in-phase and out-of-

phase susceptibility of compound 1 shown in Figure 3.9, indicates that compound 1 shows SMM 

behaviour. The characteristic SMM energy gap Ueff of 4.38 K and the pre-exponential factor of τo 

= 8.15× 10-3 s were estimated from linear fitting (Figure 3.10) of the data to an Arrhenius law. 
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Figure 3.8. Temperature dependence of the in-phase (left) and the out-of-phase (right) components 

of the AC susceptibility of compound 1 under an applied DC field of 2500 Oe 

  

Figure 3.9 Frequency dependence of the in-phase (left) and the out-of-phase (right) components 

of the AC susceptibility of compound 1 under an applied DC field of 2500 Oe. 
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Figure 3.10. Arrhenius plot of compound 1 under an applied DC field of 2500 Oe. 

The plot between out-of-phase (χ'') versus in-phase (χ') is to make the various relaxation processes 

visible; the resultant plot is called Cole-Cole diagram and is generally, useful in characterising the 

relaxation process and distribution of relaxation time in SMM and SCM. Out-of-phase (χ'') and in-

phase (χ') are AC susceptibility components which are extracted from AC data at different 

temperatures. The Cole-Cole plot of compound 1 was constructed in the temperature range 2-3.2 

K. The data were fitted using a generalised Debye model [316, 317] as shown in Figure 3.11. A fit to 

the plots gave α value are in the range 0.526-0.579 (Table 3.3) which indicate a wide distribution 

of relaxation time or multiple relaxation process within the compound 1. 
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Figure 3.11. Cole-Cole plots of compound 1 under 2500 applied DC field. Solid lines for the fitting 

using a generalised Debye model. 

Table 3.3. Analysis of the Cole-Cole plots of compound 1. 

Temperature (K) 𝜒𝜒𝑆𝑆 𝜒𝜒𝑇𝑇 τ α Residual 
2 3.47E+00 7.75E+00 9.43E-02 0.540 4.20E-02 

2.2 3.56E+00 7.45E+00 9.37E-02 0.526 2.75E-02 
2.4 3.74E+00 7.15E+00 9.92E-02 0.539 2.28E-02 
2.6 3.89E+00 6.57E+00 6.44E-02 0.528 1.44E-02 
2.8 4.00E+00 6.22E+00 5.74E-02 0.539 1.15E-02 

3 4.05E+00 5.93E+00 5.73E-02 0.560 8.21E-03 
3.2 4.07E+00 5.68E+00 6.32E-02 0.579 6.32E-03 

3.2.4. Comparison of the core structure  

A review of the literature shows that homonuclear lanthanide complexes have been reported using 

amino-polyalcohol based ligand incorporating benzoic acid three times and all of them are 

binuclear, as shown in Table 3.4. 
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Table 3.4. Binuclear LnIII synthesised using amino-polyalcohol ligands incorporating benzoic acid. 
N

O
 o

f c
om

po
un

d 

 
Structure Ligand  SMMs Coordination 

mode of 

benzoic acid 

Ref 

Dy 

Ueff 
(K) 

τ0 (s) 

1 [Dy2(tea)2(PhCO2)4·2H2O] Triethanolamine Not SMM Chelating [282] 

2 [Dy2(H2tea)2(PhCO2)4] 
2H2O 

Triethanolamine Not SMM Chelating [283] 

3 [Yb2(TipH2)2(PhCO2)4] Triisopropanolamine Not 
measured 

Chelating 
and 
monodentate 

[82] 

4 [Dy2(H4bdp)(PhCO2)2(NO3)
2] (NO3) (1) 

1,3-bis-
diethanolamino-2-
propanol 

4.38 8.15×
10-3  

bridging This 
work  

As shown in Table 3.4, the first three compounds are absent of SMM behaviour and {Dy2} from 

this work shows weak SMM behaviour.  

1,3-bis-diethanolamino-2-propanol (H5bdp) ligand has been used to synthesised {Mn18} and 

{Mn21} [141], but not used to obtain lanthanide or iron–lanthanide metal complexes. From this 

perspective, in this work a combination of H5bdp alongside benzoate as the co-ligand has been 

employed to obtain higher nuclearity cluster which could provide route toward compound 

potentially having optical or magnetic properties as well as SMM behaviour, With this synthetic 

approach [Dy2(H4bdp)(PhCO2)2(NO3)2] (NO3) MeCN (1) was produced.  

There are many reported {Dy2} compounds in various topologies with different main ligand/co-

ligand and synthetic procedures. 

Compound 1 has a new core but similar to an existing core. The ligand previously used to 

synthesise a {Nd2} complex [318] is similar to the ligand used in compound 1. The crystallographic 

and magnetic detail are compared in this section. The difference between the two ligands is 

carboxylic arms in {Nd2} and alcoholic arms in compound 1. Therefore, the comparison of both 

compounds is summarised in Figure 3.12 and Table 3.5. {Nd2} is denoted by compound A.  
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Figure 3.12. Molecular structure of compounds 1 (left) and A (right) (some H atoms omitted for 

clarity). Colour code: black, red, blue, white and violet spheres represent C, O, N, H and Dy/ Nd, 

respectively. 

As shown in Table 3.5. Compound 1 was synthesised using 1,3-bis-diethanolamino-2-propanol 

(H5bdp) as the main ligand and benzoate (Fe3O(PhCO2)) as co-ligand. While compound A was 

synthesised using 2-hydroxypropane-1,3-diamine-N,N,N',N'-tetraacetic acid as the main ligand. 

Compound 1 is a cation neutralised by a nitrate, while compound A is an anion neutralised by four 

sodium ions. Compound 1 crystallises in the orthorhombic space group Pna21, while compound A 

in the triclinic space group Pī.  

Dy ions in compound 1 are eight-coordinate with a distorted triangular dodecahedron geometry, 

while Nd ions in compound A are nine-coordinate with a distorted capped square antiprism 

geometry. 

The average Nd–O and Nd–N bond distances are longer than the Dy–O and Dy–N. The Nd···Nd 

distance is longer than the Dy···Dy. The average Nd–O–Nd angle is larger than Dy–O–Dy due to 

the bigger size of the Nd atom. 

The magnetic studies of compounds 1 and A revealed that the Dy-Dy interaction is 

antiferromagnetic interaction. The magnetisation of compound 1 is higher than compound A at 2 
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K and 7 T (μB). Compound 1 demonstrate SMM behaviour with Ueff = 4.38 K and pre-exponential 

relaxation time τo =8.15x10-3 s, whereas compound A exhibits lack SMM. 

Table 3.5. Comparison between compounds 1 and A. 

 

 

Complex 
abbreviated as 

Compound 1 Compound A [318] 

Structure [Dy2(H4bdp)(PhCO2)2(NO3)2].(NO3) 
MeCN 

Na4[{Nd(H2O)}2(µ2--dptaO)2] 
13H2O 

Ligand 1,3-bis-diethanolamino-2-propanol 
(H5bdp) 

2-hydroxypropane-1,3-diamine-
N,N,N',N'-tetraacetic acid 

Co−ligand Benzoate (Fe3O(PhCO2)) ----------------- 
Charge of complex Cation Anion 

Crystal system Orthorhombic Triclinic 
Space group Pna21 P1� 

Volume 3547.98(18) 1112.97(6) 
Colour of crystal Colourless Colourless 
Shape of crystal Needle Platelet 
Shape of Ln ions Distorted triangular dodecahedron 

 
Distorted spherical capped 

square antiprism 
Average 
distance 

of 

Ln−O 2.41 2.47 
Ln−N 2.65 2.72 

Average angle of 
Ln−O−Ln 

109.12 112.49(9) 

Distance of 
Ln−Ln 

3.92 3.93 

Interactions Antiferromagnetic Antiferromagnetic 
Magnetisation 
at 2 K and 7 T 12.36 μB 2.37 μB 

Relaxation 
behaviour 

SMM Lack SMM 
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3.3. Structure, optical and magnetic properties of [Ln2(PhCO2)6(CH3OH)4]∞ 1D polymer . (Ln 

= Eu(2), Gd(3), Tb(4) and Dy(5)) 

3.3.1. Synthetic description  

The reaction of [Fe3O(PhCO2)6(H2O)3](PhCO2), Ln(NO3)3·6H2O and diisopropanolamine 

(dipaH3) in a molar ratio of 1:1:2 in methanol under reflux for two hours and afforded colourless 

needles of a new family of binuclear Ln clusters [Ln2(PhCO2)6(CH3OH)4]∞. 

3.3.2. Crystal structure of [Ln2(PhCO2)6(CH3OH)4]∞ 

In this series of binuclear lanthanide clusters, only compounds 3 and 5 have been characterised 

fully by single-crystal X-ray diffraction (full crystallographic data is given in Table 8.1); while the 

other compounds 2 and 4 were confirmed by their unit cell (Table 3.6). In addition, elemental 

analyses, FTIR spectroscopy and powder XRD studies (Figure 3.14) also support the suggestion 

that the whole series are isostructural, isomorphous and pure. Therefore, only the structure of 

[Dy2(PhCO2)6(CH3OH)4]∞ (5) will be described in detail as a representative of the whole series. 

Compound 5 crystallises in the monoclinic space group P21/c with Z = 8. The compound 5 is 

neutral complex.  

The molecular structure of compound 5 is shown in Figure 3.13. The diisopropanolamine is a 

necessary reagent for the isolation of the compounds in this synthesis. The diisopropanolamine 

was not part of the obtained product, although it could act as a buffer protecting the dysprosium 

from further hydrolysis. The benzoate ligand coordinates to the metal centres as shown in the 

crystal structure. The benzoate ligand has been used successfully to synthesise binuclear {Ln2} 

complex. 
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Figure 3.13. Molecular structure of compound 5. Colour code: black, red, white and violet spheres 

represent C, O, H and Dy, respectively. Some of the H atoms are omitted for clarity. 

The core central of compound 5 consists of two DyIII ions, six benzoate ligands (PhCO2) − (Figure 

3.15) and four methanol molecules (CH3OH). 
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Figure 3.14. Calculated and experimental powder X-ray diffraction (PXRD) patterns of 

compounds 2-5. 
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 Table 3.6. The unit cells of compound 2-5. 

 

Six of benzoate ligands are in the crystal structure adopting two different coordination modes.  

(i) Two of them are chelating to Dy(1) and Dy(2) with a (η1:η1:μ1) coordination mode (Figure 

3.15, a).  

(ii) Four of them are syn-syn bridging to two Dy(ΙΙΙ) ions with a (η1:η1:μ2) coordination mode 

(Figure 3.15, b). 

 
 
 
 
 
 
 
 
 
 

Figure 3.15. Bridging/coordination mode of benzoate ligand a) chelating b) bridging. 

Both octa-coordinated DyIII ion are surrounded by eight O donor atoms (O8). Four O atoms come 

from syn-syn bridging benzoate ligand (PhCO2)−, two O atoms come from the chelating benzoate 

ligand (PhCO2)− and two O atoms come from two methanol molecules (CH3OH). This results in a 

distorted biaugmented trigonal prism geometry, which was confirmed by SHAPE analysis [309-312] 

with a deviation value of 1.28, (Figure 3.16, Table 8.8). 

The Dy−O bond distances are in the range 2.259(4)−2.491(4) Å and the Dy···Dy distance is 

4.848(5) Å. Selected bond distances are summarised in Table 3.7. 

 a [Å] b [Å] c [Å] α [deg] β [deg] γ [deg] V [Å3] 
Eu2(2) 9.6265(8) 21.4008(8) 22.0554(12)  90 90.764(5) 90 4550.4(5) 
Gd2(3) 9.6286(7) 21.4017(9) 22.0547(11)  90 90.799(5) 90 4544.3(4) 
Tb2(4) 9.6291(6) 21.4251(7) 22.0409(10) 90 90.801(3) 90 4541.2(3) 
Dy2(5) 9.6416(4) 21.4344(11) 22.0152(9) 90 90.837(4) 90 4549.2(4) 

a) b) 
Ph

OO
Dy  

Ph

OO

Dy Dy  
η1: η1:μ1 η1:η1:μ2 
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The structure is further stabilised by inter- and intramolecular interactions through hydrogen 

bonds. O(14)−H(14) and O(15)−H(15) from the methanol molecule (CH3OH) make an 

intramolecular hydrogen bond to O(7) and O(1) from the chelating benzoate (PhCO2)− ligand, 

respectively. The distance O(14)⋯O(7) and O(15)⋯O(1) are 2.85 and 2.76 Å, respectively. 

In addition, O(13)−H(13) from the methanol molecule (CH3OH) makes an intermolecular 

hydrogen bond to O(8), O(10) and O(12) from benzoate (PhCO2)− ligand of the neighbouring 

molecule at {1+x, +y, +z}. The distance of O(13)⋯O(8), O(13)⋯O(10) and O(13)⋯O(12) are 

2.73, 2.79 and 2.80 Å, respectively. Also, O(16)−H(16) from the methanol molecule (CH3OH) 

makes an intermolecular hydrogen bond to O(2) from the benzoate (PhCO2)− ligand of the 

neighbouring molecule at {1+x, +y, +z} with distance of 2.81 Å. The inter- and intramolecular 

interaction results in a 1D polymer, as shown in Figure 3.17. 

Table 3.7. Selected bond distances (Å) for compound 5. 

 

 

 

 

 

 

Figure 3.16. Distorted biaugmented trigonal prism geometry of the 8-coordinated Dy ion. Colour 

code: red and violet spheres represent O and Dy, respectively. 

 

Bond Distances Bond Distances 
Atom Atom Distance/Å Atom Atom Distance/Å 
Dy(1) O(1) 2.441(5) Dy(1) O(10)' 2.310(5) 
Dy(1) O(2) 2.489(4) Dy(1) O(12)' 2.261(4) 
Dy(1) O(3) 2.313(4) Dy(1) O(13) 2.465(5) 
Dy(1) O(5) 2.291(5) Dy(1) O(14) 2.445(5) 
'-1+x, +y, +z 



70 
 

 

Figure 3.17. Packing structure of compound 5. Colour code: black, red and violet spheres represent 

C, O and Dy, respectively. 

3.3.3. Magnetic properties  

DC magnetic susceptibilities of compounds 3 and 5 were carried out on freshly prepared 

polycrystalline samples in the temperature range 2-300 K under an applied magnetic field of 1000 

Oe (0.1 T). The plot of χT versus T for compounds 3 and 5 is shown in Figure 3.18. DC data are 

summarised in Table 3.8. 
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Figure 3.18. Temperature dependence of χT products for compounds 3 and 5 at 1000 Oe. 

The experimental χT values of compounds 3 and 5 at 300 K are 14.94 cm3 K mol-1 and 28.08 cm3 

K mol-1, respectively, close to those expected values for two non-interacting ions of 3: Gd2 (15.76 

cm3Kmol-1) and 5: Dy2 (28.34 cm3Kmol-1), respectively.  
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For compound 3, upon cooling, the χT product stays almost constant to 120 K before a slight 

increase until reaching a maximum value of 15.70 cm3 K mol-1 at 90 K followed by a sharp fall 

reaching minimum of 13.05 cm3 K mol-1 at 2 K. 

For compound 5, upon cooling, the χT product slightly decreases to 70 K followed by a sharp fall 

reaching minimum of 16.51 cm3 K mol-1 at 2 K.  

The decreases of χT experimental value with the temperature are probably due to the thermal 

depopulation of the Stark sublevels of LnIII ions and/or the presence of dominant antiferromagnetic 

interactions between the LnIII ions in compounds 3 and 5 [313, 314]. 

Table 3.8. DC data for compounds 3 and 5. 

The field dependence of the magnetisation for compound 5 was performed at fields from 0 to 

70000 Oe (0–7 T) at temperatures of 2 K, 3 K and 5 K. 

 
Compounds 

Ground 
state of 
the Ln 

III Ion 

Curie 
Constant 
for each Ln 
ion at 300 
K 
(cm3K/mol) 
[180 ] 
 

χT 
(cm3mol-

1K) 
expected 
value for 
Ln2 at 
RT  
 

χT (cm3mol-

1K) 
experimental 
value for Ln2 
at RT 
 
 
 

χT (cm3mol-

1K) 
experimental 
value for Ln2 
at 2 K 
 
 
 

Magnetistion 
at 2 K and 7 
T 
(µB) 
 
 
 
 

Gd2  8S7/2 7.88 15.76 14.94 13.05 13.08 

Dy2  6H15/2 14.17 28.34 28.08 16.51 12.75 
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Figure 3.19. Field dependence of magnetisation at indicated temperatures for compound 5. 

Figure 3.19 shows the magnetisation values of compound 5 have a relatively rapid increase below 

1 T followed by increase linearly up to 7 T reaching 12.75 µB without saturation. This behaviour 

indicates that the presence of magnetic anisotropy or/and the population of low-lying excited states 
[315]. 

AC susceptibility measurements were performed in order to investigate potential SMM behaviour. 

AC magnetic susceptibility measurements of compound 5 were carried out in the frequency range 

1-1488 Hz and at temperature 2 K under different applied DC field. As shown in Figure 3.20, in 

the out of phase, slow relaxation was observed at 1000 Oe. The results indicate that compounds 5 

is SMM behaviour but the energy barrier can‘t be obtained. There is a possibility that this system 

could be an SMM with a lower energy barrier and could potentially be observed at very low, sub 

Kelvin, temperatures. 
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Figure 3.20. The plot of in-phase (left) and out-of-phase (right) against the frequency of compound 

5 under 1000 Oe. 

3.3.4. Comparison of the core structure 

Diisopropanolamine (dipaH3) ligand has been used as the main ligand once in the literature to 

synthesise Fe and Co metal complexes with different coordination modes and various topologies 
[147]. However, dipaH3 has not used to obtain lanthanide or iron–lanthanide metal complexes.  

Taking this into consideration, in the present work the combination of dipaH3 alongside benzoate 

as the co-ligand has been employed to obtain higher nuclearity cluster which could provide route 

toward compounds potentially having optical or magnetic properties as well as SMM behaviour. 

With this synthetic approach, [Ln2(PhCO2)6(CH3OH)4]∞ was produced as a 1D polymer. The 

dipaH3 ligand was not present in the crystal structure as it only functioned as a buffer protecting 

the dysprosium from further hydrolysis. 

There are many reports on {Dy2} compounds in various topologies with different main ligand/co-

ligand and procedures. 

A review of the literature reveals that lanthanide compounds with carboxylic acid as the main 

ligand only resulted in six complexes (Table 3.9). 
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Table 3.9. Lanthanide complexes based on carboxylic acid ligand. 

Compound 5 has chain topology similar to compound B which was previously reported by our 

group [319]. The crystallographic and magnetic details are compared in this section. The comparison 

of both compounds is summarised in Figure 3.21 and Table 3.10. In all cases, the Dy containing 

structure has chosen as representative of the whole lanthanide. Dy2 [319] is abbreviated as compound 

B. 

 

N
O

 

Structure  Carboxylic acid Ln Dy  

SMM 

Ref  

1 [Dy2(OAc)6(H2O)4]∞·4H2O (B) Acetic acid Dy NO [319] 

2 [Dy2(BuCO2)6(MeOH)2(H2O)2] Butyric acid Dy NO [320] 

3 [Dy2(3-Htzba)2(3-
tzba)2(H2O)8]·4H2O 

3-H2tzba = 3-(1H-
tetrazol-5-yl) benzoic 
acid 

Dy Yes [321] 

4 [Dy2(Acc)4(H2O)8]·Cl6 5.89 
H2O 

amino-
cyclohexanecaboxylic 
acid 

Dy NO [69] 

 

5 [Dy2(phen)2(L)6] 2H2O β-naphthoic acid (HL) Dy Yes [322] 

6 [Dy2(phen)2(L)6] β-naphthoic acid (HL) Dy Yes [322] 

7 [Ln2(PhCO2)6(CH3OH)4]∞ Benzoic acid Eu-
Dy 

Yes This 
work 
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Figure 3.21. Molecular structure of compound 5 on the left and [Dy2] had been reported on the 

right (some H atoms omitted for clarity). Colour code: black, red, white and violet spheres 

represent C, O, H and Dy, respectively. 

Table 3.10. Comparison between compounds 5 and B. 

 

 

 
 

Complex abbreviated 
as 

Compound 5 Compound B 

Structure [Dy2(PhCO2)6(MeOH)4]∞ [Dy(OAc)3(MeOH)]∞ 
Ligand Benzoate Acetate 

Crystal system Monoclinic Monoclinic 
Space group P 21/c P 21/c 

Volume 4549.2(4) 1077.2(3) 
Colour of crystal Colourless Colourless 
Shape of crystal Needle Needle 
Shape of Ln ions Distorted biaugmented trigonal prism Distorted muffin 

Average distance of 
Ln−O 

2.38 Å 2.42 Å 

Average angle of 
Ln−O−Ln 

----------- 111.65° 

Distance of 
Ln−Ln 

4.85 Å 4 Å 

Interactions Antiferromagnetic Ferromagnetic 
Magnetisation 
at 2 K and 7 T 

16.51 ------------ 

Relaxation behaviour SMM SCM 
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Compound 5 was synthesised using benzoate from Fe3O(PhCO2) as a ligand while compound B 

was synthesised using acetate (Dy(acetate)) as a ligand. Both compounds 5 and B were crystallised 

in the monoclinic space group P21/c  

Dy ions in compound 5 are eight-coordinate with a distorted biaugmented trigonal prism geometry 

while in compound B the Dy ions are nine-coordinate with a distorted muffin geometry. 

The average Dy–O bond distance in compound B is longer than that in compound 5. The Dy···Dy 

distance of compound B is shorter than that in compound 5. The average Dy–O–Dy angle in 

compound B is (111.65°). 

The magnetic studies of compound 5 revealed that the Dy–Dy interaction is antiferromagnetic 

while ferromagnetic interaction in compound B. 

The magnetisation of Dy2 in compound 5 is 16.51 μB at 2 K and 7 T whereas compound B has not 

been reported. Relaxation behaviour of compound 5 is SMM while compound B is SCM. 

3.3.5. Magnetocaloric effect  

Recently, Gd complexes have gained attention due to their potential applications for low-

temperature magnetic coolers. Since, the compound 3: {Gd2} exhibits an antiferromagnetic 

interaction between Gd ions therefore, it was decided to explore the magnetocaloric effect (MCE). 

The field dependence of the magnetisation of compound 3 had performed under different fields 

range from 0 to 70000 Oe (0–7 T) at the temperatures range 2-10 K. 

Figure 3.22 shows the magnetisation values of compound 3 arise gradually as the field increase to 

reach saturation value 13.05 µB at 2 K and 7 T close to the theoretical value of 14 µB for two Gd. 

The MCE performance was evaluated by meaursing the magnetic entropy change (-ΔSm) using 

Maxwell relationship as shown in Figure 3.23. 
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Figure 3.22. Field dependence of magnetisation at indicated temperatures of compound 3 
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Figure 3.23. Changes in (-ΔSm) induced by magnetic field and temperatures of compound 3. 

Magnetic entropy change (-ΔSm) could be calculated from M versus H plots according to the 

Maxwell equation. The maximum entropy (-ΔSm) of compound 3 is 24.44 J kg-1 K-1 with ΔH =7T 

at 3 K which is lower than the theoretical (-ΔSm) value per mole (4.16R∼34.59 J kg−1 K−1) probably 

due to the antiferromagnetic coupling between Gd ions. From the value (-ΔSm) of compound 3 

was found acts as a molecular magnetic refrigerant.  
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Table 3.11. Magnetic entropy changes for selected Gadolinium complexes. 

Gadolinium complexes -Δ Sm T(K) Δ H Ref  AF/F 

[Gd(OAc)3(H2O)2]2·4H2O 40.6 1.8 7 T [323] F 

[Gd2(OAc)2(Ph2acac)4(MeOH)2] 23.7 2.4 7 T [324] F 

[Gd2(hfac)4L2] 16.89 2 8 T [325] AF 

[Gd2(2-TCA)6(phen)2]·2H2O 21.8 2 7 T [326] AF 

[Gd2(Piv)6(phen)2] 19.21 2 7 T [326] AF 

[Gd2(PhCO2)6(CH3OH)4]∞(3) 24.44 3 7 T This 
work 

AF 

As shown in Table 3.11 ( AF= antiferremagnetic, F= ferromagnetic), the magnetic entropy change 

for {Gd2} in this work is higher than the others in the table except the [Gd(OAc)3(H2O)2]2·4H2O 
[323].  

3.3.6. Photoluminescence study 

Photoluminescence spectra were recorded in the range from 200 to 800 nm in solid-state. of 

compounds 2 (Eu3+) and 4 (Tb3+). 

The excitation spectrum of compound 2 monitored at 548 nm emission exhibits a high absorption 

in the range 200–400 nm (centred at 282 nm), (Figure 3. 24, a) presents the excitation and emission 

spectra of compound 2 in solid-state. The emission spectrum shows a sharp band which is a result 

of the intra f-f transition of Eu3+ corresponding to the 5D0 → 7FJ (J = 0-4) transitions of the Eu3+ 

ion 5D0→7F0 (548 nm), 5D0→7F1 (581 nm), 5D0→7F2 (617 nm), 5D0→7F3 (655 nm) and 5D0→7F4 

(699 nm). Among all the transitions, the 5D0→7F2 and the 5D0→7F1 are referred to as hypersensitive 

electric-dipole (ED) and magnetic-dipole (MD) transitions, respectively [122-125]. 

The excitation spectrum of compound 4 monitored at 544 nm emission exhibits a high absorption 

in the range 200–400 nm (centred at 282 nm), (Figure 3.24, b) which presents the excitation and 

emission spectra of compound 4 in solid-state. The emission spectrum of Tb3+ exhibits a sharp 

bands which is a result of intra f-f transition of Tb3+ corresponding to the 5D4 → 7FJ (J = 3–6) 

transitions of the Tb3+ ion  5D4→7F6 (490 nm), 5D4→7F5 (544 nm), 5D4→7F4 (590 nm), 5D4→7F3 
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(618 nm). The emission at 488 nm (5D4→7F6) was assigned to the magnetic dipole transition; while 

at 544 nm (5D4→7F5) was assigned to the electric dipole transition [126]. The emission intensity at 

544 nm was the strongest which deduced that the Tb3+ ion is located in asymmetric coordination 
[122]. These results indicate that these compounds may be good candidates as emitting molecular 

materials such as those used in OLEDs which is one of the industrially relevant fields using 

coordination chemistry. 

Figure 3.24. Excitation and emission spectra a) compound 2 b) compound 4. 

3.4. Structure and magnetic properties of [Ln2(TipaH2)2(Piv)4]. (Ln = Eu(6), Gd (7), Tb (8) 

and Dy(9)) 

3.4.1. Synthetic description  

The reaction of [Fe3O(Piv)6(H2O)3]Piv·, Ln(NO3)3·6H2O and triisopropanolamine (TipaH3) in a 

molar ratio of 1:1:4 in MeCN in the presence of triethylamine (NEt3) over stirring for one hour 

and afforded colourless crystals of a new family of binuclear LnIII clusters [Ln2(TipaH2)2(Piv)4]. 

The NEt3 acts as a base to facilitate the deprotonation of the TipaH3 ligand.  

a) b) 
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3.4.2. Crystal structure of [Ln2(TipaH2)2(Piv)4] 

Full structure determination was performed for compound 9 (Figure 3.25) by single-crystal X-ray 

diffraction (full crystallographic data is given in Table 8.2); while compounds 6-8 were found to 

be isostructural with 9 by checking their unit cells (Table 3.12). Analysis of the IR spectra, PXRD 

patterns (Figure 3.26) and elemental analyses further confirmed that compounds 6-9 are 

isomorphous and isostructural. 

The structure of the binuclear complex [Ln2(TipaH2)2(Piv)4] (9) will be described in detail as 

representative of the whole series. Compound 9 crystallises in the triclinic space group P1� with 

Z=2. Compound 9 is neutral cluster. The unit cell has two molecules. 

The structure of compound 9 is shown in Figure 3.25, the TipaH3 and Pivalate ligands are 

coordinating to the Dy metal centres as shown in the crystal structure. TipaH3 ligand is singly-

deprotonated resulting in one negatively charged oxygen atom O(1) or O(1)' bridging two 

neighbouring DyIII ions Dy (1) and Dy(1)'. The TipaH3 ligand (Figure 3.27, a) has successfully 

been used to synthesise binuclear {Ln2} complex.  

 

Figure 3.25. Molecular structure of compound 9. Colour code: black, red, blue, white and violet 

spheres represent C, O, N, H and Dy, respectively. Some of the H atoms are omitted for clarity. 
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Figure 3.26. Calculated and experimental powder X-ray diffraction (PXRD) patterns of 

compounds 6-9. 

Table 3.12. The unit cells of compounds 6-9 

 a [Å] b [Å] c [Å] α [deg] β [deg] γ [deg] V [Å3] 
Eu2(6) 10.599(4) 14.301(3) 16.89(3) 68.88(5) 89.69(8) 84.99(9) 2405.19(3) 
Gd2(7) 10.688(17) 14.314(3) 16.94(3) 68.89(18) 89.72(14) 84.94(15) 2407.20(7) 
Tb2(8) 10.842(2) 14.321(4) 16.80(4) 68.92(2) 89.81(17) 84.92(2) 2408.43(10) 
Dy2(9) 11.100(3) 14.375(5) 16.78(5) 69.17(3) 89.88(2) 85.31(3) 2492.50(14) 

The compound 9 consists of two DyIII ions, two singly-deprotonated oxygen (TipaH2)– and four 

Pivalates ligands. Two of the singly-deprotonated oxygen (TipaH2)− ligands are tetradentate 

coordinating to the Dy metal centre with a (η1: η1: η1: η2: μ2) coordination mode (Figure 3.27, b). 

Four Pivalates are in the crystal structure adopting two different coordination modes: 

(i) Two of them are chelating to Dy(1) and Dy(1)' with a (η1:η1:μ1) coordination mode (Figure 

3.27, c).  

(ii) Two of them are monodentate coordinated with a (η1:η0:μ1) coordination mode (Figure 

3.27, d) on Dy(1) and Dy(1)'. 



82 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 3.27. (a) Triisopropanolamine. The coordination modes of (b) (TipaH2)− (c+d) Pivalate 

ligands found in compound 9. 

Both octa-coordinated DyIII ion are surrounded by one N and seven O donor atoms (NO7). One N 

and four O atoms (two deprotonated and two protonated) come from the singly-deprotonated 

oxygen (TipaH2)− ligand, two O atoms come from the chelating Pivalate (Piv)− ligand and one O 

atom comes from the monodentate Pivalate ligand. This results in a distorted triangular 

dodecahedron geometry which was confirmed by SHAPE analysis [309-312] with a deviation value 

of 1.48, (Figure 3.28, Table 8.9). 

The Dy–O bond distances are in the range 2.271(3)−2.516(4) Å. The Dy–N bond distance is 

2.563(4) Å. The distance Dy····Dy is 3.688(5) Å. The Dy−O−Dy angle is 108.38 (13)°. Selected 

bond distances are summarised in Table 3.13. 
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The structure is stabilised by intramolecular interactions through hydrogen bonds. O(2)−H(2) and 

O(2)'−H(2)' from the singly-deprotonated oxygen (TipaH2)− ligands make an intramolecular 

hydrogen bond to O(5) and O(5)' from the monodentate Pivalate ligand, respectively, with the 

distances of O(2)⋯O(5) and O(2)'⋯O(5)' are 2.54 Å. In addition, O(3)−H(3) and O(3)'−H(3)' from 

the singly-deprotonated oxygen (TipaH2)− ligands make an intramolecular hydrogen bond to O(7) 

and O(7)' from the chelating Pivalate ligand, respectively. The distances of O(3)⋯O(7) and 

O(3)'⋯O(7)' are 2.72 Å. Figure 3.29 present packing of compound 9. 

Table 3.13. Selected bond distances (Å) of compound 9 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.28. Distorted triangular dodecahedron geometry of the 8-coordinated Dy ion. Colour 

code: red, blue and violet spheres represent O, N and Dy, respectively. 

 

Bond distances Bond distances 
Atom Atom Distance/Å Atom Atom Distance/Å 
Dy(1) O(1) 2.271(3) Dy(1) O(4) 2.289(4) 
Dy(1) O(1)' 2.276(4) Dy(1) O(6) 2.373(4) 
Dy(1) O(2) 2.379(4) Dy(1) O(7) 2.516(4) 
Dy(1) O(3) 2.432(4) Dy(1) N(1) 2.563(4) 
' 1-x, 1-y, 2-z 
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Figure 3.29. Packing structure of compound 9. Colour code: black, red, blue, white and violet 

spheres represent C, O, N, H and Dy, respectively. 

3.4.3. Magnetic properties  

DC magnetic susceptibility of compound 9 was carried out on freshly prepared polycrystalline 

sample in the temperature range 2-300 K under an applied DC magnetic field of 1000 Oe (0.1 T). 

The plot of χT versus T for compound 9 is shown in Figure 3.30. 

The χT product of compound 9 at 300 K is 25.65 cm3mol−1K which is lower than the expected 

value of 28.34 cm3mol-1K for two non-interacting DyIII ions (6H15/2, S = 5/2, g = 4/3, L = 5, C = 

14.17 cm3mol-1K) [276]. The χT product shows decreases slightly at the temperature from 300 to 

100 K and is followed by a rapid decrease from 100-2 K, reaching a value of 7.81 cm3mol-1K at 2 

K.  
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Figure 3.30. Temperature dependence of the χT products for compound 9 at 1000 Oe. 

The decrease of χT experimental value with the temperature is probably due to the thermal 

depopulation of the Stark sublevels of DyIII ions and/or antiferromagnetic interactions between the 

DyIII ions [313, 314]. 

The field dependence of the magnetisation for compound 9 was measured at fields range from 0 

to 70000 Oe (0-7 T) at temperatures of 2 K, 3 K and 5 K. 

Figure 3.31 shows the magnetisation values of compound 9 has a relatively rapid increase below 

2 T and then increase linearly up to 7 T, reaching a value of 11.59 µB at 2 K and 7 T without 

saturated which indicates the presence of magnetic anisotropy or/and the population of low-lying 

excited states [315]. 
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Figure 3.31. Field dependence of magnetisation at indicated temperatures for compound 9. 

AC susceptibility measurements of compound 9 were performed to investigate potential SMM 

behaviour. AC magnetic susceptibility measurements were carried out in the frequency range 1-

1488 Hz and in the temperature range 2-12 K under different applied DC fields. 

As shown in Figure 3.32, compound 9 shows slow relaxation of the magnetisation below 10 K 

under an applied DC field of 1500 and the out of phase signal, maxima peak has been observed at 

7 K at 1488 Hz.  

As shown in Figure 3.33, compound 9 shows SMM behaviour. The characteristic SMM energy 

barrier Ueff of 22.44 K and the pre-exponential factor of τo = 5.23× 10-6 s were estimated from linear 

fitting (Figure 3.34) of the data to an Arrhenius law. 
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Figure 3.32. Temperature dependence of the in-phase (left) and the out-of-phase (right) 

components of the AC susceptibility for compound 9 under an applied DC field of 1500 Oe. 

 

1 10 100 1000

0.0

0.5

1.0

1.5

2.0

 2 K
 3 K
 4 K
 5 K
 6 K
 7 K
 8 K

χ'
' (

 c
m

3 
m

ol
-1

)

Frequency (Hz)  

Figure 3.33. Frequency dependence of the in-phase (left) and the out-of-phase (right) components 

of the AC susceptibility for compound 9 under an applied DC field of 1500 Oe. 
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Figure 3.34. Arrhenius plot of compound 9 under an applied DC field of 1500 Oe. 

The plot of out-of-phase (χ'') versus in-phase (χ') makes the various relaxation processes visible, 

the resultant plot is called Cole-Cole diagram and is generally useful in characterising the 

relaxation process and distribution of relaxation time in SMM and SCM. Out-of-phase (χ'') and in-

phase (χ') are AC susceptibility components which are extracted from AC data at different 

temperature. The Cole-Cole plot of compound 9 was constructed in the temperature range 2-7 K. 

The data were fitted using a generalised Debye model [316, 317]. The Cole-Cole plot of 9, as shown 

in Figure 3.35, has relatively symmetrical semicircles. As the temperature increases, the semicircle 

shape becomes smaller and smaller. A fit to the plots gave α values in range 0.052-0.222 (Table 

3.14) which indicate a wide distribution of relaxation time or relaxation process within the 

compound 9. 
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Figure 3.35 Cole-Cole plots of compound 9 under 1500 applied DC field. Solid lines for the fitting 

using a generalised Debye model. 

Table 3.14. Analysis of the Cole-Cole plots of compound 9 

Temperature 
(K) 

𝜒𝜒𝑆𝑆 𝜒𝜒𝑇𝑇 τ α Residual 

2 4.30E-01 5.86E+00 2.28E-03 0.222 4.27E-01 
3 4.90E-01 5.28E+00 1.47E-03 0.222 3.62E-01 
4 4.72E-01 4.62E+00 9.24E-04 0.202 2.86E-01 
5 4.46E-01 4.07E+00 5.23E-04 0.137 9.75E-02 
6 3.92E-01 3.59E+00 2.57E-04 0.074 2.12E-02 
7 2.78E-01 3.22E+00 1.17E-04 0.052 5.77E-03 

3.4.4. Comparison of the core structure 

A review of the literature on homonuclear lanthanide complexes reported using amino-polyalcohol 

based ligand incorporating Pivalic acid shows that all three are binuclear, as shown in Table 3.15. 
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Table 3.15. Binuclear LnIII complexes incorporate Pivalic acid. 

As shown in Table 3.15, the first two compounds lack SMM behaviour and the other two 

compounds are showing SMM behaviour. The previously reported Dy2(H2L)2(μ-

Piv)2(Piv)2]·2CHCl3 has a higher energy barrier than compound (9).  

Triisopropanolamine (TipaH3) ligand has been used to obtain {Fe3Gd2} complex [84] and {Yb2} 

complex [82]. However, TipaH3 has not used to obtain Dy or Tb metal complexes which show SMM 

behaviour. Bearing this fact in mind, in the present work a combination of TipaH3 alongside 

Pivalate from (Fe3O(Piv)) as the co-ligand has been employed to obtain higher nuclearity cluster 

which could provide route toward compounds potentially having optical or magnetic properties as 

well as SMM behaviour. 
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Structure Ligand  SMMs 

Dy 

Coordination 

mode of  

Pivalic acid 

Ref 

Ueff 
(K) 

τ0 (s) 

1 [Dy2(LH2)2(μ2-
Piv)](Cl)·2MeOH 

·H2O 

6-((bis(2-
hydroxyethyl)amino)m
ethyl)-N'-((8-hydroxy-
quinolin-2-
yl)methylene)picolinoh
ydrazide 

Not Chelating [280] 

2 [Ln2(mdeaH2)2(Piv)6

] (Ln=La-Gd) 
Diethanolamine Not measured  Bridging, 

monodentate, 
Bridging and 

chelating.  

[232] 

3 Dy2(H2L)2(μ-
Piv)2(Piv)2]·2CHCl3 

 

2,2'-(2-hydroxy-3-
methoxy-5-
methylbenzylazanediyl
)diethanol 

35.51 1.48×
10-6 

[281] [281] 

4 [Dy2(TipaH2)2(Piv)4] 
(9) 

Triisopropanolamine 22.44 5.23 
× 10-6 

This work This 
work  
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Thus, a little adjustment of synthetic strategy led to the isolation of compounds 6-9 

[Ln2(TipaH2)2(Piv)4]. Many {Dy2} compounds have been already reported in the literature with 

various topologies, using different ligand and co-ligand. 

Since {Yb2} [82] and 9 were synthesised using TipaH3 ligand, the crystallographic and magnetic 

details will be compared in this section. The comparison between them is summarised in Figure 

3.36 and Table 3.16. In all cases the Dy containing structure is chosen as representative for the 

whole lanthanide. {Yb2} is abbreviated as compound C. 

 
 

Figure 3.36. Molecular structure of compound 9 on the left and compound C on the right (some H 

atoms omitted for clarity). Colour code: black, red, blue, white and violet spheres represent C, O, 

N, H and Dy/Yb, respectively. 
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Table 3.16. Comparison between compounds 9 and C 

Compound 9 was synthesised with triisopropanolamine as the main ligand alongside Pivalate from 

(Fe3O(Piv)) as the co-ligand while compound C was synthesised triisopropanolamine as the main 

ligand alongside benzoate from (Fe3O(PhCO2)) as the co-ligand. 

Compound 9 crystallises in the triclinic space group P1� while compound C in the monoclinic space 

group P 21/n. Dy and Yb ions are eight-coordinate with a distorted triangular dodecahedron 

geometry. The Dy–O and Dy–N bond distances are longer than Yb–O and Yb–N. The Dy···Dy 

distance is longer than Yb···Yb due to the bigger size of Dy. The Dy–O–Dy angle is higher than 

Yb–O–Yb. 

The magnetic studies of compound C have not been reported. The magnetic studies of compound 

9 revealed that the Dy–Dy interaction is antiferromagnetic. The magnetisation of compound 9 is 

11.59 μB. Compound 9 demonstrates SMM behaviour Ueff = 22.44 K and τo =5.23x10-6 s. 

Complex abbreviated 
as 

Compound 9 Compound C [82] 

Structure [Dy2(TipaH2)2(Piv)4] [Yb2(TipaH2)2(PhCO2)4] 

Ligand Triisopropanolamine Triisopropanolamine 

Co−ligand Pivalate Benzoate 
Crystal system Triclinic Monoclinic 
Space group P1� P 21/n 

Volume 2492.50(14) 2394.0(6) 
Colour of crystal Colourless Colourless 
Shape of crystal Block Block 
Shape of Ln ions Distorted triangular dodecahedron Distorted triangular dodecahedron 

Average 
distance of 

Ln−O 2.36 2.33 

Ln−N 2.56 2.50 
Ln−O−Ln angle 108.38 (13)° 106.4(2)° 

Distance of 
Ln−Ln 

3.69 3.60 

Interactions Antiferromagnetic ------- 
Magnetisation 
at 2 K and 7 T 

11.59 μB -------- 

Relaxation behaviour SMM --------- 
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3.5. Structure and magnetic properties of [Ln4(μ3-OH)2(o-van)4(Piv)6]·2MeCN. (Ln = Eu(10), 

Gd(11), Tb(12) and Dy(13)) 

3.5.1. Synthetic description  

The reaction of LnCl3·6H2O, Pivalic acid (CMe3CO2H), N-methyldiethanolamine (mdeaH2) and 

o-vanillin (o-van) in a molar ratio of 1:3:5:1.1 in MeCN over reflux for two hours and afforded 

yellow block crystals of a new family of tetranuclear planar LnIII clusters [Ln4(μ3-OH)2(o-

van)4(Piv)6]·2MeCN. N-methyldiethanolamine ligand was not present in the crystal structure as it 

only functioned as a base to facilitate the deprotonation of the o-vanillin ligands 

3.5.2. Crystal structure of [Ln4(μ3-OH)2(o-van)4(Piv)6]·2MeCN 

In the series of tetranuclear lanthanide clusters, only compound 13 has been characterised fully by 

single-crystal X-ray diffraction, as shown in Figure 3.37 (full crystallographic data is given in 

Table 8.2); while the other compounds 10-12 were confirmed by their unit cell (Table 3.17). In 

addition, elemental analyses, FTIR spectroscopy and powder XRD studies (Figure 3.38) also 

support the suggestion that the whole series are isostructural, isomorphous and pure. Therefore, 

only the crystal structure of Dy4(μ3-OH)2(o-van)4(Piv)6]·2MeCN (13) is described in detail as a 

representative of the whole series. Compound 13 crystallises in the triclinic space group P1� with 

Z = 1. Compound 13 is a neutral cluster along with two lattice MeCN molecules. However, it loses 

the lattice MeCN after dry according to elemental analyses. 

The structure and the central core of compound 13 are shown in Figure 3.36. The o-vanillin (o-

van) and Pivalic ligands are coordinating to the Dy metal centres as can be seen in the crystal 

structure and o-vanillin (o-van) ligand is singly-deprotonated resulting in one negatively charged 

oxygen atom O(2) or O(2)' or O(5) or O(5)' form bridges along the Dy⋯Dy edges. The o-vanillin 

ligand (Figure 3.39, a) has been successfully used to synthesise the tetranuclear {Ln4} complex. 

 



94 
 

 

 

 

Figure 3.37. Molecular structure of compound 13. Colour code: black, red, white and violet spheres 

represent C, O, H, and Dy, respectively. The core of compound 13 is shown on the right (o-vanillin 

and Pivalates are omitted for clarity). 
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Figure 3.38. Calculated and experimental powder X-ray diffraction (PXRD) patterns of 

compounds 10-13. 
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Table 3.17. The unit cells of compounds 10-13 

 a [Å] b [Å] c [Å] α [deg] β [deg] γ [deg] V [Å3] 
Eu4(10) 12.10(5) 13.39(5) 13.64 (6) 69.94(8) 68.17(8) 88.06(9) 1919.12(13) 
Gd4(11) 12.12 (4) 13.40(4) 13.68 (4) 69.77(2) 68.15(2) 88.04(3) 1923.50(11) 
Tb4(12) 12.13 (7) 13.36 (7)  13.65 (8) 69.82(4) 67.96(4) 88.00(4) 1914.40(2) 
Dy4(13) 12.15(6) 13.36(7) 13.65 (7) 70.00(5) 67.94(5) 88.07(4) 1918.12(19) 

The compound 13 consists of four DyIII ions, four (o-van)− and six Pivalates (Piv) −. The compound 

13 possesses a centrosymmetric [DyΙΙΙ4(μ3-OΗ)2]10+ “butterfly” core, all four Dy atoms are in one 

plane. In this butterfly motif, two of the DyΙΙΙ ions occupy the body positions and the other two 

DyΙΙΙ ions occupy the outer wing-tips. Compound 13 has Dy3 units in which the Dy3 triangles are 

each bridged by a single (μ3−OH)− group, syn-syn bridging Pivalate and deprotonated oxygen (o-

van)− ligands. As shown in Figure 3.41, each of the Dy3 triangles are bridged by a (μ3−OH)− groups 

through O (1) and O(1)', lying above and below the {Dy4} plane with a distance of 0.799 Å. 

Four of deprotonated oxygen (o-van)− ligands are tridentate coordinating to the Dy metal centre 

with a (η1: η2: η1: μ2) coordination mode (Figure 3.39, b). Six of the Pivalate ligands are in the 

crystal structure adopting two different coordination modes.  

(i) Two of them are chelating to Dy(2) and Dy(2)' with a (η1:η1:μ1) coordination mode (Figure 

3.39, c).  

(ii) Four of them are syn-syn bridging to two Dy(ΙΙΙ) ions with a (η1:η1:μ2) coordination mode 

(Figure 3.39, d). 
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a)  b) c) d) 

O

OH O  
 

  

o-vanillin η1:η2:η1:μ2 η1:η1:μ1 η1: η1:μ2 

Figure 3.39. (a) o-vanillin, (b) Coordination modes of (o-van)− (c-d) Coordination modes of (Piv)− 

ligands found in compound 13. 

 

Figure 3.40. Single unit of the planar of compound 13. 

The DyIII ions here present two different types of coordination spheres: 

(i) Both octa-coordinated Dy(1) and Dy(1)' are surrounded by eight O donor atoms (O8). Two 

O atoms come from the syn-syn bridging Pivalate ligand, four O atoms come from 

deprotonated oxygen (o−van)− ligand and two O atoms come from (μ3−OH)−. This results 

in a slightly distorted triangular dodecahedron geometry which was confirmed by SHAPE 

analysis [309-312] with a deviation value of 0.56, (Figure 3.41, Table 8.10). 

(ii) Both nine-coordinated Dy(2) and Dy(2)' are surrounded by nine O donor atoms (O9). Two 

O atoms come from the chelating Pivalate ligand, two O atoms come from the syn-syn 

bridging Pivalate ligand, four O atoms come from deprotonated oxygen (o−van)− ligand 

and one O atom comes from (μ3−OH) −. This results in a slightly distorted spherical capped 

square antiprism geometry which was confirmed by SHAPE analysis [309-312] with a 

deviation value of 0.98, Figure 3.41, Table 8.10). 

C(CH3)3

OO

Dy Dy

C(CH3)3

OO
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O
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The Dy−O bond distances are in the range 2.28(3)−2.59(3)Å. The Dy···Dy distances are in the 

range 3.80(4)−3.89(4) Å. The Dy−O−Dy angles are in the range 101.64(12)−111.14(13)°. Selected 

bond distances are summarised in Table 3.18. 

  

Figure 3.41. Slightly distorted triangular dodecahedron geometry of the 9-coordinated Dy(1) ion 

in the left and a distorted spherical capped square antiprism geometry of the 8-coordinated Dy(2) 

ion in the right. Colour code: red and violet spheres represent O and Dy, respectively. 

Table 3.18. Selected bond distances (Å) and angles (°) of compound 13 

 

 

 

 

 

 

 

 

 

 

 

Bond distances Bond distances 
Atom Atom Distance/Å Atom Atom Distance/Å 
Dy(1) O(1) 2.360(3) Dy(2) O(3) 2.361(3) 
Dy(1) O(1)' 2.352(3) Dy(2) O(5)' 2.514(3) 
Dy(1) O(2) 2.361(3) Dy(2) O(7)' 2.557(4) 
Dy(1) O(4) 2.586(3) Dy(2) O(9) 2.317(4) 
Dy(1) O(5) 2.386(3) Dy(2) O(11)' 2.337(3) 
Dy(1) O(6) 2.383(4) Dy(2) O(12) 2.384(4) 
Dy(1) O(8) 2.283(3) Dy(2) O(13) 2.489(3) 
Dy(1) O(10) 2.301(4) Dy(1) Dy(1)' 3.823(6) 
Dy(2) O(1) 2.353(3) Dy(1)' Dy(2) 3.799(4) 
Dy(2) O(2) 2.456(3) Dy(1) Dy(2) 3.887(4) 

Bond Angles Bond Angles 
Atom Atom Atom Angles/° Atom Atom Atom Angles/° 
Dy(1) O(1) Dy(2) 111.14(13) Dy(1) O(5) Dy(2)' 101.64(12) 
Dy(1)' O(1) Dy(2) 107.74(14) Dy(1) O(2) Dy(2) 107.55(12) 
Dy(1) O(1) Dy(1)' 108.48(13)     

'1-x, 1-y, 1-z 
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3.5.3. Magnetic properties  

DC magnetic susceptibility of compound 13 was carried out on a freshly prepared polycrystalline 

sample in the temperature range 2-300 K under an applied DC magnetic field of 1000 Oe (0.1 T). 

The plot of χT versus T, for compound 13 is shown in Figure 3.42. 
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Figure 3.42. Temperature dependence of χT products for compound 13 at 1000 Oe. 

The experimental χT of compound 13 at 300 K is 58.86 cm3mol−1K which is slightly higher than  

the expected value of 56.68 cm3mol-1K for four non-interacting DyIII ions (6H15/2, S = 5/2, g = 4/3, 

L = 5, C = 14.17 cm3mol-1K) [276]. The χT product shows steady decrease at the temperature from 

300 to 70 K, while at low-temperature it follows a sharp decrease down from 70-2 K reaching 

minimum value of 28.87 cm3mol-1K at 2 K.  

The decreasing of χT experimental values with the temperature is probably due to the thermal 

depopulation of the Stark sublevels of DyIII ions and/or antiferromagnetic interactions between the 

DyIII ions [313, 314]. 

AC susceptibility measurements were performed in order to investigate the dynamic magnetic 

behaviour of compound 13. As shown in Figure 3.43, compound 13 shows no AC signal under 

zero applied DC field and even no signal under small-applied DC fields (1500 and 3000 Oe). These 

results indicate that compound 13 lacks SMM behaviour within the measurement parameters. 

However, the presence of a peak without a maximum in the Dy analogue, there is a possibility that 
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this system could be an SMM with a lower energy barrier which could be observed at very low, 

sub Kelvin, temperatures.  

  

Figure 3.43. A plot of in-phase (left) and out-of-phase (right) versus frequency for compound 13 

at 2 K at indicated applied magnetic fields. 

3.5.4. Comparison of the core structure 

The first lanthanide complex was synthesised in 2001 using o-vanillin (o-van) [148]. o-Vanillin has 

been widely used as a main ligand and co-ligand to synthesise lanthanide complexes with various 

topologies and also exhibiting interesting magnetic properties like SMM behaviour [32, 74, 148, 149, 

151-157, 159-162]. For example, the highest energy barrier in Dy mononuclear, Ueff =615 K [154]. 

o-Vanillin was also used to synthesise {Dy3} which presents a new concept for magnetic memory 

without a net magnetic moment [74, 75]. {Dy3} shows a vanishing susceptibility at low temperature 

which is unexpected in a system having an odd number of unpaired electrons. N-

methyldiethanolamine (mdeaH2) has been widely used as a main ligand to synthesise Fe-Ln and 

4f metal complexes with various topologies and also exhibiting interesting magnetic properties 

like SMM behaviour [79, 80, 89, 253]. For example, the highest energy barrier in the {Fe7Dy3} cluster 

Ueff = 33.40 K with pre-exponential relaxation time τ0=6.6×10-8 s [80]. However, mdeaH2 and o-

vanillin together have not been used to obtain lanthanide or iron–lanthanide metal complexes. 

From this perspective, in present work a combination of mdeaH2 alongside o-vanillin and Pivalic 

acid as the two co-ligands have been employed to obtain a higher nuclearity cluster which could 
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provide route toward compound potentially having optical or magnetic properties as well as SMM 

behaviour. With this synthetic approach [Ln4(μ3-OH)2(o-van)4(Piv)6] 2MeCN was produced. The 

N-methyldiethanolamine ligand was not present in the crystal structure and probably functions as 

a base to facilitate the deprotonation of the o-vanillin ligands. There are many reports on {Ln4} 

compounds in various topologies with different main ligand/co-ligand and synthesis procedures. 

A review of the literature reveals that o-vanillin based ligands have been employed to synthesise 

lanthanide complexes with nuclearity ranging from 1-10 with various 4f metals. 

Table 3.19. Lanthanide complexes based on o-vanillin ligand. 

N
O

 Structure  Ln Dy SMM Ref  

1 [DyLz2(o-van)2] Br. solvent  Dy SMM [154] 

2 [DyLz2(o-van)2] NO3.solvent  Dy SMM [154] 

3 [DyLz2(o-van)2]CF3SO3.solvent  Dy SMM [154] 

4 [Dy2L(H2L)(teaH2)(o-van)(H2O)](ClO4)2·2CH3OH·H2O Dy SMM [153] 

5 [Dy2(Pc)2(o-van)2(H2O)]·2THF Dy SMM [161] 

6 [Dy2(H2O)2(o-van)L](NO3)2(H2O)2 Dy Not 
measured 

[149] 

7 [Yb2(o-van)LL′(CH3OH)(H2O)2](ClO4)2·CH3OH·H2O Yb SMM [162] 

8 [Ce2(H2L1)(o-van)3(NO3)3] Ce Not 
measured 

[160] 

9 [Dy3(µ3-OH)2(o-
van)3Cl(H2O)5](Cl)3·4H2O·2MeOH·0.7MeCN 

Dy SMM [74] 

10 [Gd3(o-van)3(OH)2(NO3)2(OH2)4](NO3)2(H2O)4 Gd Not 
measured 

[32] 

11 [Yb3(o-van)3(OH)2Cl(H2O)5]·(Cl)3·4H2O Yb Not 
measured 

[158] 

12 [Ln4(µ3-OH)2(o-van)4(Piv)4(NO3)2]·CH2Cl2·1.5H2O Gd 
and 
Dy 

SMM [156] 

 

13 [Ln4(μ3-OH)2(o-van)4(Piv)6]·2MeCN Eu-
Dy 

Not  
SMM 

This 
work 
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The core of compound 13 is similar to an existing Ln4 core. As shown in Table 3.19, 

{Dy4}complex has been reported [156]. The crystallographic and magnetic details are compared in 

this section.  

Therefore, the comparison of both compounds is summarised in Figure 3.44 and Table 3.20. In all 

cases the Dy containing structure has chosen as representative for the whole lanthanide. The 

reported {Dy4} [156] is denoted by compound D. 

 

 

14 [Dy6(μ3-OH)4(μ2-OH)2(o-van)8(H2O)6](CF3SO3)4·6H2O  Dy SMM [155] 

15 [Dy6(µ3-OH)4(o-
van)4(avn)2(NO3)4(H2O)4](NO3)2·(H2O)·3(CH3)2CO  

Dy SMM [159] 

16 [Dy3(µ3-OH)2(o-van)3Cl2(H2O)4][Dy3(µ3-OH)2(o-
van)3Cl(H2O)5](Cl)5·19H2O 

Dy SMM [74] 

17 [Dy6(µ3-OH)4(o-van)4L'2(H2O)9Cl](Cl)5·15H2O Dy SMM [32] 

18 [Tm6(µ3-OH)4(o-van )4L'2(H2O)10](Cl)6·18H2O Tm Not 
measured 

[32] 

19 [Dy8(μ3-OH)4(o-van)2(mvn)2(p-
NO2bz)14(CH3OH)2]·3.09CH3CN·6CH3OH·H2O 

Dy SMM [152] 

20 [Ln9L1(o-van)2(OAc)15(OH)8(H2O)2(DMF)] Nd 
and 
Gd 

Not 
measured 

[151] 

21 [Dy10(µ4-O)2(µ3-OH)6(o-van)6(ISO)13(H2O)2](NO3) Dy SMM [157] 
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Figure 3.44. Molecular structure and the core of compound 13 on the top and compound D on the 

bottom (some H atoms omitted for clarity). Colour code: black, red, blue, white and violet spheres 

represent C, O, N, H and Dy, respectively. 
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Table 3.20. Comparison between compounds 13 and D. 

Both compounds 13 and D were synthesised using o-vanillin as the main ligand alongside Pivalic 

acid as the co-ligand. The base in compound 13 was N-methyldiethanolamine whereas in 

compound D it was triethylamine. The counter ion of lanthanide in compound 13 is chloride, while 

in compound D it is nitrate. Both compounds 13 and D crystallises in the triclinic space group P1�. 

The colour and shape of the crystals of compound 13 is yellow blocks, while compound D is 

colourless blocks.  

Both compounds 13 and D have butterfly core topology. In both compounds, the body and wing-

tips of the butterfly topology are occupyied by two DyIII ions. The two (μ3−OH) are lying above 

and one below {Dy4} plane in compounds 13 and D with distance 0.799 and 0.828 Å, respectively. 

The Dy ions in compounds 13 and D two Dy ions are eight- coordinate with a distorted triangular 

Complex abbreviated as Compound 13 Compound D [156] 
Structure [Dy4(μ3-OH)2(o-

van)4(Piv)6]·2MeCN 
[Dy4(μ 3-OH)2(o-van) 

4(Piv)4(NO3)2]·CH2Cl2·1.5H2O 
Ligand o-vanillin o-vanillin 

Co−ligand Pivalic acid Pivalic acid 
Base N-methyldiethanolamine Triethylamine, 

Crystal system Triclinic Triclinic 
Space group P1� P1� 

Volume 1918.12(19) 1728.65(9) 
Colour of crystal Yellow Colourless 
Shape of crystal Block Block 

Positions in 
butterfly 
topology 

body Two Dy ions 

wing-tips Two Dy ions 

Position of (μ3−OH)2 lying above and one below {Dy4} plane 
Distance between (μ3-

OH) and the {Dy4}plane 
0.799 Å 0.828 Å 

Shape of Dy ions One atom distorted triangular dodecahedron and one atom  
distorted spherical capped square antiprism 

Average distance of 
Dy−O 

2.40 2.39 

Average 
angle of 

Dy−O−Dy 107.31 106.90 

Distance of Dy−Dy 4.31 4.26 
Interactions Antiferromagnetic 

Relaxation behaviour Lack SMM Ueff = 6.25 K τ0 =3.75 x10-5 s 
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dodecahedron geometry and two Dy ions are nine-coordinate with a distorted spherical capped 

square antiprism geometry. The average Dy−O bond distance in compound 13 is longer than that 

in compound D. The Dy···Dy distance in compound 13 is longer than that in compound D. The 

average of Dy−O−Dy angle in compound 13 is larger than that in compound D. 

The magnetic studies of compounds 13 and D revealed that the Dy−Dy interaction is 

antiferromagnetic interaction. Compound D demonstrates SMM behaviour Ueff = 6.25 K and τ0 

=3.75x10-5 s whereas compound 13 lacks SMM behaviour. 

3.6. Conclusion 

In this research, thirteen homometallic lanthanide complexes based on amino-polyalcohol ligands 

have been synthesised and characterised. Among dinuclear and tetranuclear Ln complexes, the 

crystal structures, optical and magnetic properties of Dy-based componds have been discussed in 

detail. Homometallic lanthanide complexes have been synthesised from the reactions of respective 

lanthanide cations, amino-polyalcohol ligand and co-ligand (benzoate, Pivalate and o-vanillin). 

Three different dinuclear series [Dy2(H4bdp)(PhCO2)2(NO3)2]·NO3·MeCN (1), a series of four 

dinuclear [Ln2(PhCO2)8(MeOH)4]∞ (2-5) four dinuclear [Ln2(TipaH2)2(Piv)4] (6-9) and four 

tetranuclear compounds [Ln4(μ3-OH)2(o-van)4(Piv)6]·2MeCN (10-13) have been successfully 

synthesised, crystallographically characterised and magnetically studied. 

Compound 1 was synthesised using 1,3-bis-diethanolamino-2-propanol (H5bdp), iron-benzoate 

(Fe3O(PhCO2)) and Dy(NO3)3. Magnetic studies carried out on compound (1) revealed that 

antiferromagnetic interactions are dominant. Compound 1 exhibits slow relaxation of 

magnetisation and shows SMM behaviour. The energy barrier for 1 is 4.38 K with the pre-

exponential factor τ0 8.15×10-3 s. The Cole-Cole plots indicate a wide distribution of relaxation 

time or multiple relaxation process within the compound 1. 

Compounds 2-5 were synthesised using diisopropanolamine ligand, iron-benzoate (Fe3O(PhCO2)) 

and Ln(NO3)3. The diisopropanolamine is a necessary reagent for the isolation of the compounds 

in this synthesis, although it was not part of the obtained product it could act as a buffer protecting 

the dysprosium from further hydrolysis. The lanthanide ions are connected to benzoate and the 

coordination sphere completed by methanol.  
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Static magnetic studies show the presence of overall antiferromagnetic interactions in compounds 

3-5. Compound 5 exhibits slow relaxation of magnetisation with a maximum peak and the energy 

barrier is difficult to obtain. The maximum magnetic entropy (-ΔSm) value of 24.44 J kg-1 K-1 was 

obtained for compound 3 with ΔH =7T at 3 K. Such a feature may be of potential interest as 

molecular magnetic refrigerant systems. Luminescence studies performed on compounds 2 and 4 

shows the emission bands emerging from f–f transitions. Compounds 2 and 4 were found to be 

luminescent materials. 

Compounds 6-9 were synthesised using triisopropanolamine, iron-Pivalate (Fe3O(Piv)) and 

Ln(NO3)3. Dominant antiferromagnetic interactions are observed in compound 9 and it displays 

slow relaxation of magnetisation and SMM behaviour. Fitting the AC data to an Arrhenius law 

results in an energy barrier of 22.44 K with the pre-exponential factor of 5.23× 10-6 s. The Cole-

Cole plots suggest that a single relaxation process occurs in compound 9. 

Compounds (10-13) were synthesised using N-methyldiethanolamine (mdeaH2), o-vanillin (o-

van), Pivalic acid and LnCl3. The N-methyldiethanolamine (mdeaH2) is an essential reagent for 

obtaining the compound. Although N-methyldiethanolamine (mdeaH2) is not in the final product, 

it acts as a base catalyst to facilitate the deprotonation of the o-vanillin ligand. Magnetic studies 

carried out on compound (13) revealed that antiferromagnetic interactions are dominant and a lack 

SMM behaviour. 
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Chapter 4. Structure, optical and magnetic properties of iron-lanthanide aggregates 

4. 1. Introduction  

Fe-Ln metal complexes have gained the attention of researchers around the world due to their 

intriguing architectures and promising applications as single-molecule magnets (SMMs). SMMs 

have potential applications in industries such as a refrigeration, data storage, sensing and there is 

fucture expectation for use of SMM in quantum computing. 

A review of the literature reveals that the synthesis of 3d-4f polynuclear metal complexes is a 

promising approach to SMM. Fe-Ln metal complexes have been reported in the literature using 

many different types of ligand and co-ligands, these can be mono- or multidentate to build the 

desired coordination complex. 

Our group has long used the approach of incorporating N-substituted diethanolamine ligands along 

with carboxylic acids as a means of targeting 3d-4f coordination clusters (Scheme 4.1). This 

mixture of ligands provides various types of chelating and bridging modes allowing for 

"clustering" of 3d and 4f ions into favorable structural motifs. A large number of bridging 

possibilities for these ligands via hard O-donors means that the coordination environment and 

geometry preferences of both 3d and 4f ions can be accommodated. Stabilisation of a given motif 

is assisted through finding reaction conditions (temperature, pressure, solvents, etc...) to promote 

bulk crystallisation. We call this method "assisted self-assembly". It is clearly based on a 

serendipitous approach but with an eye to directing the system towards a "happy accident". 
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N

HO OH

R

R

OHO

R= H, Me, Et, nBu, tBu, Py-CH2
 or CH

2CH2OH

R= H, Me, tBu, CN, N3, NO2
 or CN

 

Scheme 4.1. The ligands and co-ligands used to assemble coordination clusters 

A range of nuclearities has been achieved using this basic approach (from 2-10) with Fe or/and 4f 

ions [79, 80, 283]. This approach has been successfully used to synthesise 3d-metal complexes [327] 

and combine 3d and 4f metal in one aggregate [78-80, 328]. 

The fact that lanthanide/rare-earth ions (here we use the convention that Ln include the rare earths-

ie. Sc, Y, La-Lu) adopt coordination geometries based principally on electrostatic considerations 

rather than ligand field stabilisation effects means that it is usually possible to study isostructural 

series of 3d-4f coordination clusters for a given 3d ion. In some case a series can be accessed for 

a large family of Ln3+ ions–rarely for La3+ and Ce3+ but, as here, for Pr-Ho or beyond (ideally to 

Lu). 

The fact that such families are accessible means that the contribution of Ln ions to the properties 

of the coordination cluster (eg, magnetism, optical properties) can be surveyed. In addition, 

substituting a paramagnetic Ln3+ ion with diamagnetic Y3+, La3+, or Lu3+ (chosen according to 

which radius is most appropriate) means that the effect of the open 4f electron-shell on the 

properties can be determined as well as allowing for the investigation of the contribution of the 3d 

ions to the magnetic properties. 

More specifically this work will investigate 3d-4f cluster complexes where 3d = Fe3+. A large 

number of Fe/4f systems can be found in the literature where the majority, incorporate iron as the 
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high spin (hs) Fe3+ ion (note there are some high spin Fe2+ examples). As a d5 ion, Fe3+ provides 

five spins in its high spin state, the maximum allowed in a d-block complex, making it a good 

choice in the search for new single-molecule magnet (SMM) systems. Indeed, mixing Fe3+ with 4f 

ions has led to the discovery of many SMM as well as compounds showing unusual features such 

as the reported ‘Fe10Gd10’ from our group which is a system lying in close proximity to a Quantum 

Critical Point (QCP) [329]. Recently the highest nuclearity Fe-Ln cluster, the Fe18Dy6 SMM was 

reported by our group [330]. 

In terms of the cluster-based cooperative magnetic properties, the Fe-Ln pairing for Ln = Dy is 

generally the most promising first choice for finding SMM properties due to the large anisotropy 

and five unpaired electrons of DyIII. Generally, the Fe-Dy interaction is ferromagnetic in nature. 

Using a third type of ligand in the system, normally the azide ion can guarantee ferromagnetic 

coupling when it acts as a bridging (η1:η1) ligand. The (η1:η2) mode tends to favour 

antiferromagnetic coupling.  

A review of the literature reveals that 27 series of Fe-Ln metal complexes incorporating azide 

ligands have been reported, so far. Table 4.1, presents 30 compound families, of the 27 reported 

in the literature and 3 from this work. 

Table 4.1. Fe-Ln metal complex incorporates azide ligands. 

N
O

 Structure  Ln SMM Ref  

1 [Fe2Ln2(µ3-O)4(H2L)2(mpm)2(Piv)2(N3)4-x(Cl)x] Gd-Er Not [87] 

2 [Fe2Ln2(μ3-OH)2(teg)2(N3)2(Piv)4] Dy, Ho 
and Y 

Not [331] 

3 [FeLn2Fe(μ3‐OH)2(teg)2(N3)2(PhCO2)4] Dy and Y Not  [332] 

4 [Fe2Ce2Na2(μ4-O)2(Me3CCO2)8(N3)2(ap)2]F Ce NM [333] 

5 [Fe2Ln2(mdea)2{(py)2C(OCH3)O}2(μ4-
O)(N3)2(NO3)2(CH3OH)2] H2O (14-20) 

Pr-Dy  

and Y 

Not This work 

4.2 

6 [Fe3Gd2(N3)15(OH)3(TipaH3)2] (TBA)3 Gd NM [84] 

7 [Fe4Ln2(OH)2(N3)2(nbdea)4(Me3CCO2)5(H2O)]NO3·2EtO
H 

Dy and Y SMM [334] 
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8 [Fe4Ln2(OH)2(N3)2(nbdea)4(Me3CCO2)4(NO3)2]·3EtOH Gd and 
Eu 

NM [334] 

9 [Fe4Ln2(μ3-OH)2(nbdea)4(Me3CCO2)6(N3)2]·3MeCN Dy and Y Not [335] 

10 [Fe4Ln2(OH)2(Me2CHCO2)6(N3)2(nbdea)4]·2MeOH Gd-Tm 
and Y 

Dy and 
Tb are 
SMM 

[336] 

11 [Fe4Ln2(Me3CCO2)6(N3)4(teaH)4]·2EtOH Dy-Er Tb  [337] 

12 [Fe4Tb2(Me3CCO2)6(N3)4(teaH)4] Tb Not  [337] 

13 [Fe4Ln2(Me3CCO2)6(N3)4(teaH)4]·2CH2Cl2 Dy, Er Not [337] 

14 [Fe4Ln2(Me3CCO2)4(N3)6(teaH)4]·2EtOH·2CH2Cl2 Dy, Er Not [337] 

15 [Fe4Ln2(teaH)4(μ-N3)4(N3)3(Piv)3] Gd-Er and 
Y 

Dy and 
Tb are 
SMM 

[85] 

16 [Fe4Ln2(teaH)4(N3)4(Piv)6] Er and Lu Not [83] 

17 [Fe2Ln4(mdea)2(mdeaH)2(μ3-
OH)2(N3)2(PhCO2)8]·3MeCN (21-29) 

Pr-Ho and 
Y 

Not This work  

4.3  

18 [Fe4Ln2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN (40-46) Eu-Er and 
Y 

SMM This work  

4.5 

19 [Fe4Dy4(teaH)8(N3)8(H2O)]·H2O·4CH3CN· Dy SMM [86] 

20 [Na2Fe6Dy2(N3)4(HL)4(CH3O)4(PhCO2)6] Dy Not [338] 

21 [Na2Fe6Dy2(N3)4(L′)4(CH3O)4(PhCO2)6(H2O)] Dy Not [338] 

22 [Na2Fe6Dy2(N3)4(L′)4(CH3O)4(Me3CCO2)6] Dy Not [338] 

23 [Na2Fe6Y2(N3)4(L′)4(CH3O)4(PhCO2)6(H2O)] Y NM [338] 

24 [Na2Fe6Gd2(N3)4(L′)4(CH3O)4(PhCO2)6(CH3OH)2] Gd NM [338] 

25 [Fe6Dy3(μ7-C2H2O4)(μ4-tea)2(μ3-teaH)4(μ2-
N3)2(N3)6(NO3)]·2EtOH 

Dy SMM [339] 

26 [Fe6Ln4(Me2CHCO2)8(N3)2(nbdea)10]·n(methanol) Gd-Ho 
and Y 

Tb  [336] 

27 [Fe7Dy3(μ4-O)2(μ3-OH)2(mdea)7(μ- 
PhCO2)4(N3)6]·2H2O·7CH3OH 

Dy SMM [80] 
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SMM means Dy is SMM, NM means not measured, Not means does not display SMM, Tb and 

means Tb is SMM. 

Herein, the crystal structures, optical and magnetic properties are reported for 3 series of Fe-Ln 

metal complexes incorporating azide ligand plus a 4th without azide. 

The four series of Fe-Ln metal complexes reported here used N-methyldiethanolamine (mdeaH2) 

as the main ligand, supported by co-ligands. The co-ligand was changed in the series to study the 

magnetic and optical properties of the assembly and structures. The nuclearity and topology 

depend on the strength of co-ligand and possible coordination modes to complete the coordination 

sphere of the metal. The coordination modes presented here can be divided into bridging, bridging-

chelating and terminal (monodentate and chelating). Changing the co-ligand allowed a change in 

nuclearity as well as the resulting magnetic and optical properties. The carboxylate group has 

proven a useful functional group as a main ligand or co-ligand for obtaining higher-nuclearity 

clusters of iron-lanthanide species. Carboxylate ligands include benzoate, Pivalate, acetate and 

isobutyrate which are all commonly used for Fe-Ln metal complexes. 

To study the cooperative effect of combining FeIII with paramagnetic LnIII, the Ln can be replaced 

with diamagnetic ions such as YIII, LaIIIor LuIII or FeIII can be replaced with AlIII or GaIII. 

The first series compound 5 in Table 4.1 comprises seven isostructural tetranuclear Fe-Ln metal 

complexes and was obtained by using N-methyldiethanolamine (mdeaH2), di-2-pyridyl ketone 

(dpk), iron chloride, lanthanide nitrate and sodium azide (NaN3). A tetranuclear Fe-Ln 

[Fe2Ln2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O with a novel core was 

successfully synthesised, characterised and the magnetic properties were investigated  

28 [Fe7Ln3(μ4-O)2(μ3-OH)2(mdea)7(μ- 
PhCO2)4(N3)6]·H2O·4MeCN 

Gd, Tb Tb  [79] 

29 [Fe7Er3(μ4-O)2(μ3-OH)2(mdea)7(μ- 
PhCO2)4(N3)5(MeOH)]Cl·7.5H2O·11.5MeOH 

Er Not  [79] 

30 [Fe18Ln6(Me2CHCO2)12(teaH)18(tea)6(N3)6]· 
n(solvent) 

Sm-Ho 
and Y 

Not [337] 



111 
 

The second series compound 17 in Table 4.1 comprises nine isostructural hexanuclear Fe-Ln metal 

complexes and was obtained by using N-methyldiethanolamine (mdeaH2), sodium benzoate 

(PhCO2Na), iron chloride, lanthanide nitrate and sodium azide (NaN3). A hexanuclear Fe-Ln 

butterfly complex [Fe2Ln4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN with a novel core 

was successfully synthesised, characterised, the optical and magnetic properties were investigated.  

The third series comprises ten isostructural hexanuclear Fe-Ln metal complexes and was obtained 

by using N-methyldiethanolamine (mdeaH2), sodium benzoate (PhCO2Na), iron chloride, 

lanthanide nitrate and o-vanillin (o-van). A hexanuclear Fe-Ln [Fe2Ln4(mdea)2(o-van)2(μ4-

O)2(PhCO2)8] (2·5 MeCN) with a novel core was successfully synthesised, characterised and the 

magnetic properties were investigated.  

The fourth series compound 18 in Table 4.1 comprises seven isostructural hexanuclear Fe-Ln 

metal complexes and was obtained by using N-methyldiethanolamine (mdeaH2), sodium benzoate 

(PhCO2Na), iron chloride, lanthanide chloride and sodium azide (NaN3). A hexanuclear Fe-Ln 

with butterfly topology [Fe4Ln2(mdea)4(μ3-OH)2(N3)2(PhCO2)6] MeCN was successfully 

synthesised, characterised, the optical and magnetic properties were investigated.  

The content in the fourth series is similar to that presented in the second series. However changing 

the counter ion of the lanthanide provided a new series which may feature very different in 

magnetic and optical properties. 

4.2. Structure and magnetic properties of [Fe2Ln2(mdea)2{(py)2C(OCH3)O}2(μ4-

O)(N3)2(NO3)2(CH3OH)2]·H2O. (Ln = Pr(14), Nd(15), Sm(16), Eu(17), Gd(18), Tb(19) and 

Dy(20)) 

4.2.1. Synthetic description  

The reaction of anhydrous FeCl3, Ln(NO3)3·6H2O, sodium azide (NaN3), N-methyldiethanolamine 

(mdeaH2) and di(2-pyridyl) ketone (dpk) in a molar ratio of 10:10:30:50:11 in a mixture of 

MeCN/MeOH (1:1) under reflux for two hours subsequent cooling and afforded brown block 

crystals of a new family of tetranuclear Fe-Ln clusters [Fe2Ln2(mdea)2{(py)2C(OCH3)O}2(μ4-

O)(N3)2(NO3)2(CH3OH)2] ·H2O.  
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4.2.2. Crystal structure of [Fe2Ln2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] 

H2O 

Full structure determination was performed for compound 20 by single-crystal X-ray diffraction 

(Figure 4.1) (crystallographic data is given in Table 8.3); while compounds 14-19 were found to 

be isostructural with 20 by checking their unit cells (Table 4.2). Analysis of the IR spectra, PXRD 

patterns (Figure 4.2) and elemental analyses further confirmed that compounds 14-20 are 

isomorphous and isostructural.  

The crystal structure of the tetranuclear complex [Fe2Dy2(mdea)2{(py)2C(OCH3)O}2(μ4-

O)(N3)2(NO3)2(CH3OH)2] ·H2O (20) will be described in detail as representative of the whole 

series. The compound 20 crystallises in the monoclinic space group Cc with Z = 4. Compound 20 

is a neutral cluster with one lattice water molecule form an intramolecular interaction with terminal 

azide and also an intermolecular interaction with the nitrate (NO3)– group of the neighbouring 

molecule. 

Figure 4.1. Molecular structure of compound 20. Colour code: black, red, blue, green, white and 

violet spheres represent C, O, N, Fe, H and Dy, respectively. The core of compound 20 on the right 

(H atoms, mdea2- and (py)2C(OCH3)O– ligands are omitted for clarity). 

The structure and the central core of compound 20 are shown in Figure 4.1, the compound 20 

consists of two FeIII, two DyIII, two doubly-deprotonated mdea2–, two singly-deprotonated 

 

 



113 
 

((py)2C(OCH3)O)– ligands, two terminal azide (N3)– and two chelating nitrate (NO3)– group. The 

compound 20 has [Fe2Dy2(μ4-O)]10+ distorted square core. The mdeaH2 and “ modified dpk” 

ligands are coordinating to the metal centres as shown in the crystal structure and the mdeaH2 is 

doubly–deprotonated resulting in two negatively charged oxygen atoms O(6), O(7), or O(8), O(9) 

form alkoxy bridges along the Fe⋯Dy edges, whilst (py)2C(OCH3)OH is singly–deprotonated 

resulting in one negatively charged oxygen atom O(2) or O(4) form additional bridges along the 

Fe⋯Dy edges. The core is held together by the (μ4-O)2– group O(1) (Figure 4.1 right). 

As commonly observed, the keto group of the dpk molecule forms a hemiacetal through reaction 

with the solvent MeOH [340] according to Scheme 4.2. 

N N

O

+ MeOH
N N

OMe

OH

 

Scheme 4.3. Modification of dpk ligand by reaction methanol with dpk ligand 

Table 4.2. The unit cells for compounds 14-20. 

 a [Å] b [Å] c [Å] α [deg] β [deg] γ [deg] V [Å3] 
Fe2Pr2(14) 18.28(7) 17.56(7) 16.32(3) 90.1(3) 98.15(2) 89.9(2) 5180(30) 
Fe2Nd2(15) 18.41(3) 17.41(3) 16.48(3) 90.15(12) 98.12(14) 89.71(14) 5214(15) 
Fe2Sm2(16) 18.32(13) 17.45(6) 16.16(11) 89.91(4) 97.99(6) 90.07(4) 5118(5) 
Fe2Eu2(17) 18.35(4) 17.41(10) 16.24(13) 89.92(11) 97.82(11) 89.75(12) 5110(14) 
Fe2Gd2(18) 18.28(10) 17.44(13) 16.17(12) 90(6) 97.97(5) 90.09(5) 5102(6) 
Fe2Tb2(19) 18.45(2) 17.43(2) 16.31(3) 90.06(12) 97.63(12) 90.15(10) 5180(12) 
Fe2Dy2(20) 18.13(4) 17.43(3) 15.85(3) 90(3) 97.52(2) 90(3) 4962.5(17) 
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Figure 4.2. Calculated and experimental of PXRD patterns of compounds 14–20. 

The doubly-deprotonated mdea2– ligands are tridentate coordinating to the metal centre with a (η2: 

η1: η2: μ3) coordination mode (Figure 4.3, a). The doubly–deprotonated ligands are centred on the 

FeIII ions through the N atom, while the singly-deprotonated ((py)2C(OCH3)O)– ligands are 

tridentate coordinating to the metal centre with a (η1: η2: η1: μ2) coordination mode (Figure 4.3, b). 

a) b) 

η2: η1: η2: μ3 η1: η2: η1: μ2 

Figure 4.3. Coordination mode of ligands (a) mdea2–, (b) {(py)2C(OCH3)O}–. 

Both hexa-coordinated FeIII ion are surrounded by two N and four oxygen donor atoms (N2O4). 

One N and two O atoms come from the doubly-deprotonated oxygen mdea2– ligands. One N and 

one O atom come from the deprotonated oxygen of the ((py)2C(OCH3)O)– ligand and one O atom 
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comes from the (μ4-O)2– group. The Fe–O and Fe–N bond distances are in the range 

1.890(6)−2.044(6) Å and 2.133(8)−2.217(8) Å, respectively. The Fe−Dy distance are in the range 

3.1009(11)−3.4159(13). The Fe···Fe bond distance is 3.73(15) Å. The Fe−O−Fe angle is 

161.4(3)°. Selected bond distances and bond angles are summarised in Table 4.3. This results in a 

distorted octahedron geometry with a ∑ parameter of 95.36. This octahedral geometry was 

confirmed by SHAPE analysis [309-312] with a deviation value of 2.73, (Figure 4.4, Table 8.11). 

Both nine-coordinated DyIII ion are surrounded by two N and seven O donor atoms (N2O7). One 

N atom comes from the terminal azide (N3)–, two O atoms come from doubly-deprotonated 

oxygens of the mdea2– ligand, one N atom and one O atom come from the deprotonated oxygen 

((py)2C(OCH3)O)– ligand, one O atom comes from the (μ4-O)2–, two O atoms come from the 

chelating nitrate anions NO3– and one O atom comes from the methanol molecule CH3OH. The 

Dy−O and Dy−N bond distances are in the range 2.361(6)−2.579(6) Å and 2.371(9)−2.586 (8) Å, 

respectively. The Dy···Dy distance is 4.84(5) Å. The Fe−O−Dy angles are in the range 

87.1(2)−104.4(2)° and Dy−O−Dy angle is 142.1(2)°. This results in a distorted spherical capped 

square antiprism geometry. This geometry was confirmed by SHAPE analysis [309-312] with a 

deviation value of 1.30, (Figure 4.4, Table 8.11).  

 

 

 

 

 

Figure 4.4. Distorted octahedron geometry of the 6-coordinated Fe ion on the left and distorted 

spherical capped square antiprism geometry of the 9-coordinated Dy ion on the right. Colour code: 

red, blue, green and violet spheres represent O, N, Fe and Dy, respectively. 
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The structure of compound 20 is further stabilised by intra- and intermolecular interactions. 

Intramolecular interactions stabilise the structure through π-π stacking and hydrogen bonds. The 

π-π stacking interaction is between the pyridine rings which are in the parallel (face-to-face) mode, 

where the distance between centroid-centroid is ∼3.72 Å as shown in Figure 4.5.  

 

Figure 4.5. Intramolecular interactions of compound 20. Colour code: black, red, blue, green, white 

and violet spheres represent C, O, N, Fe, H and Dy, respectively. 

In addition, the intramolecular interaction has stabilised the structure through hydrogen bonds. 

O(16)−H(16) and O(17)−H(17) from the methanol molecule (CH3OH) which make intramolecular 

hydrogen bonds to O(9) and O(6) from the doubly-deprotonated oxygen (mdea)2- ligands, 

respectively. The distances of O(16)⋯O(9) and O(17)⋯O(6) are 2.63 and 2.64 Å, respectively.  

Also, O(21)−H(212) from the lattice water molecule (H2O) makes an intramolecular hydrogen 

bond to N(23) from the terminal azide (N3)- with a O(21)⋯N(23) distance of 2.91 Å. 

O(21)−H(211) from the lattice H2O makes an intermolecular hydrogen bond to O(12) from nitrate 

group NO3− of a neighbouring molecule at {+x, 1-y, ½+z} with an O(21)⋯O(12) distance of 2.99 

Å. 

In addition, O(21)−H(212) from the lattice H2O makes an intermolecular hydrogen bond to N(23) 

from the terminal azide N3− of the neighbouring molecule at {+x, 1-y, ½+z} with an O(21) ⋯N(23) 
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distance of 2.91 Å. The intra and intermolecular interaction result in a 3D supramolecular packing 

of compound 20 as shown in Figure 4.6. 

Table 4.3. Selected bond distance (Å) and bond angles (°) of compound 20 

Bond distances Bond distances 
Atom Atom Distance/Å Atom Atom Distance/Å 
Fe(1) O(1) 1.894(6) Dy(1) O(2) 2.391(6) 
Fe(1) O(2) 2.013(6) Dy(1) O(6) 2.423(6) 
Fe(1) O(6) 2.026(6) Dy(1) O(8) 2.367(7) 
Fe(1) O(7) 1.931(6) Dy(1) O(10) 2.471(10) 
Fe(1) N(2) 2.133(8) Dy(1) O(11) 2.565(9) 
Fe(1) N(5) 2.211(8) Dy(1) O(16) 2.392(7) 
Fe(2) O(1) 1.890(6) Dy(1) N(1) 2.586(8) 
Fe(2) O(4) 1.999(6) Dy(1) N(11) 2.371(9) 
Fe(2) O(8) 1.947(6) Dy(2) O(1) 2.543(6) 
Fe(2) O(9) 2.044(6) Dy(2) O(4) 2.401(6) 
Fe(2) N(4) 2.149(7) Dy(2) O(7) 2.361(6) 
Fe(2) N(6) 2.217(8) Dy(2) O(9) 2.407(6) 
Fe(1) Dy(1) 3.122(11) Dy(2) O(13) 2.470(7) 
Fe(1) Dy(2) 3.400(12) Dy(2) O(14) 2.525(7) 
Fe(2) Dy(1) 3.416(13) Dy(2) O(17) 2.384(7) 
Fe(2) Dy(2) 3.101(11) Dy(2) N(3) 2.586(8) 
Dy(1) O(1) 2.579(6) Dy(2) N(21) 2.387(9) 

Bond angles Bond angles 
Atom Atom Atom Angles/° Atom Atom Atom Angles/° 
Fe(1) O(1) Dy(1) 87.1(2) Fe(2) O(1) Dy(1) 98.5(2) 
Fe(1) O(2) Dy(1) 89.9(2) Fe(2) O(8) Dy(1) 104.3(3) 
Fe(1) O(6) Dy(1) 88.7(2) Fe(2) O(1) Dy(2) 87.5(2) 
Fe(1) O(1) Dy(2) 99.0(2) Fe(2) O(4) Dy(2) 89.1(2) 
Fe(1) O(7) Dy(2) 104.3(2) Fe(2) O(9) Dy(2) 87.9(2) 
Fe(1) O(1) Fe(2) 161.4(3) Dy(1) O(1) Dy(2) 142.1(2) 



118 
 

 

Figure 4.6. Packing of compound 20 (3 D supramolecular). Colour code: black, red, blue, green, 

white and violet spheres represent C, O, N, Fe, H and Dy, respectively. 

4.2.3. Magnetic properties  

DC magnetic susceptibility measurement of compound 20 was carried out on freshly prepared 

polycrystalline sample in the temperature range 1.8-300 K under an applied DC magnetic field of 

1000 Oe (0.1 T). The plot of χT versus T, for compound 20 is shown in Figure 4.7.  
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Figure 4.7. Temperature dependence of the χT products of compound 20 at 1000 Oe 
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The χT product of compound 20 value at 300 K is 32.01 cm3mol−1K which is lower than the 

expected value of 37.09 cm3mol-1K for four non interacting FeIII and DyIII (FeIII, S = 5/2, g = 2, C 

= 4.375 cm3mol-1K) and (DyIII, 6H15/2, S = 5/2, g = 4/3, L = 5, C = 14.17 cm3mol-1K) [276]. The χT 

product shows a steady decrease between 300 to 100 K followed by a rapid drop from 100-1.8 K 

reaching a minimum value of 16.03 cm3mol-1K at 1.8 K. The decreases of χT experimental values 

with the temperature is probably due to the thermal depopulation of the Stark sublevels of DyIII 

ions within the complexes or with the individual DyIII ions and/or antiferromagnetic interaction 

between the DyIII ions or between FeIII-DyIII ions [313, 314]. 
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Figure 4.8. Field dependence of magnetisation at indicated temperatures of compound 20. 

The field dependence of the magnetisation of compound 20 was measured at field range from 0 to 

70000 Oe (0-7 T) at temperatures of 2 K, 3K and 5 K. Figure 4.8 shows the magnetisation values 

for compound 20 increase rapidly below 2 T followed by a linear increase up to 7 T reaching a 

value of 12.04 µB at 2K and 7 T without saturation which indicates the presence of magnetic 

anisotropy or/and the population of low-lying excited states [315]. 

AC susceptibility measurements were performed in order to investigate potential SMM behaviour 

of compound 20. As shown in Figure 4.9 compound 20, shows no AC signals under zero applied 

DC field but shows slow relaxation without maxima under small-applied DC fields (500-3000 Oe). 

This result indicates that compound 20 lacks SMM behaviour. However, given the presence of a 

peak without a maxima in the Dy analogue, there is a possibility that this system could be an SMM 
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with a lower energy barrier and could potentially be observed at very low, sub Kelvin, 

temperatures. 
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Figure 4.9. Frequency dependence of the In-phase (left) and the out-of-phase (right) components 

of the AC susceptibility of compound 20, under different applied DC fields. 

4.2.4. Comparison of the core structure 

A review of the literature for heterometallic iron-lanthanide complexes reported incorporating 

azide ligands shows 4 of them are tetranuclear as shown in Table 4.4. 
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Table 4.4. Tetranuclear Fe-Ln metal complex incorporate azide ligands 
N

O
 

 
Structure Ln SMMs 

Dy 

Core Coordination 

mode of 

azide  

Ref 

1 [Fe2Ln2(µ3-O)4(H2L)2(mpm)2(Piv)2(N3)4-

x(Cl)x] 
Gd-
Er 

Not 
SMM 

Inverse 
butterfly 

Terminal [87] 

2 [Fe2Ln2(μ3-OH)2(teg)2(N3)2(Piv)4] Dy, 
Ho, 
Y 

Not 
SMM 

Butterfly Terminal [331] 

3 [FeLn2Fe(μ3‐OH)2(teg)2(N3)2(PhCO2)4] Dy, 
Y 

Not 
SMM 

Butterfly Terminal [332] 

4 [Fe2Ce2Na2(μ4-
O)2(Me3CCO2)8(N3)2(ap)2]F 

Ce ------- Chain Bridging+ 
Terminal 

[333] 

5 [Fe2Ln2(mdea)2{(py)2C(OCH3)O}2(μ4-
O)(N3)2(NO3)2(CH3OH)2] H2O (14-20) 

Pr-
Dy, 
Y 

Not 
SMM 

Distorted 
square 

Terminal This 
work 
4.2 

As shown in Table 4.4, all series are absent of SMM behaviour. 

Di(2-pyridyl) ketone (dpk) has been used as a main ligand and co-ligand in the literature to 

synthesise Fe-Ln with various topologies and also exhibiting interesting magnetic properties like 

SMM behaviour [341-343]. For example, the highest energy barrier in an {Fe4Dy2} cluster with Ueff 

=22.20 K and pre-exponential relaxation time τo =1.20×10-7 s [341]. 

N-methyldiethanolamine (mdeaH2) has been widely used as a main ligand to synthesise Fe-Ln, 

with various topologies and also exhibiting interesting magnetic properties like SMM behaviour 
[79, 80, 89, 253]. For example, the highest energy barrier in an {Fe7Dy3} cluster Ueff =33.40 K and pre-

exponential relaxation time, τo =6.6×10-8 s [80]. 

However, mdeaH2 and dpk together have not been used to obtain lanthanide or iron–lanthanide 

metal complexes. Taking this into consideration, in the present work a combination of mdeaH2 

alongside dpk and sodium azide as the two co-ligands has been employed to obtain higher 

nuclearity cluster which could provide a route towards compound potentially having optical or 
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magnetic properties as well as SMM behaviour. With this synthetic approach 

[Fe2Dy2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O (20) was produced with the 

topology distorted square. There are many reports on {Fe2Ln2} compounds in various topologies, 

with different main ligands/co-ligand and synthesis procedures [87, 313, 331, 332, 344-359]. Herein, the 

distorted square [Fe2Ln2] topology is generally rare in Fe-Ln metal complexes but the topology of 

this tetranuclear [Fe2Ln2] was initially reported for [Mn2Ln2] complexes [360]. [Mn2Dy2] is 

abbreviated as compound E. 

Compounds 20 and E have the same distorted tetrahedral topology, “distorted square”. The angles 

around the (μ4-O) for Fe2Dy2 centre vary from 87.11 to 98.95° while for Mn2Dy2 centre vary from 

92.11 to 101.60° both consistent with the distorted tetrahedral geometry. Therefore, the 

crystallographic and magnetic details are compared. The comparison between both compounds 20 

and E is summarised in Figure 4.10 and Table 4.5. M=Fe, Mn and in all cases the Dy containing 

structure has chosen as representative for the whole lanthanide. 
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Figure 4.10. Molecular structure and the core of compound 20 on the top and compound E on the 

bottom (H atoms omitted for clarity). Colour code: black, red, blue, green, rose, white and violet 

spheres represent C, O, N, Fe, Mn, H and Dy, respectively. 
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Table 4.5. Comparison between compounds 20 and E 

Compound 20 was synthesised using N-methyldiethanolamine as the main ligand and di(2-pyridyl) 

ketone and azide as the two co-ligands. While compound E was synthesised using 2-(2-

hydroxyethyl) pyridine as the main ligand and Pivalate from (Mn(Pivalate) as the co-ligand. 

Compound 20 crystallises in the monoclinic space group Cc, while compound E in the 

orthorhombic space group Pbca. 

The average Mn−O bond distance is longer than Fe−O and the Mn−N is shorter than the Fe−N. 

The Dy−O bond distance in compound E is shorter than that in compound 20.  

Complex abbreviated as Compound 20 Compound E [360] 
Structure  [Fe2Dy2(mdea)2{(py)2C(OCH3)O}2 

(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O 
[Mn2Dy2(μ4-O)(Piv)2(hep)4 

(NO3)4] 3MeCN 
Ligand  N-methyldiethanolamine 2-(2-hydroxyethyl)pyridine 
Co−ligand  Di(2-pyridyl) ketone Pivalate 
Co−ligand  Azide ------------- 
Crystal system Monoclinic Orthorhombic 
Space group Cc Pbca 
Volume  4962.59(17) 10298.8 (15) 
Colour of crystal Brown Dichroic (blue/brown) 
Shape of crystal  Block Octahedron 
Shape of M ions Distorted octahedron Distorted octahedron 
Shape of Dy ions Distorted spherical capped square 

antiprism 
One atom distorted muffin and 

one atom distorted spherical 
capped square antiprism 

Average 
distance of 

M−O 1.97 Å 2.05 Å 
M−N 2.18 Å 2.14 Å 
Dy−O 2.45 Å 2.41 Å 

Average  
angle of 

M−O−M 161.40° 145.35° 
M−O−Dy 93.63° 94.74° 
Dy−O−Dy 142.10° 130.06° 

Distance of M−M 3.73(15) Å 3.63 Å 
Dy−Dy 4.84(5) Å. 4.38 Å 
M−Dy 3.26Å 3.25 Å 

Interactions Antiferromagnetic Antiferromagnetic 
Magnetisation 
at 2 K and 7 T 12.04 μB 10.9 μB 

Relaxation behaviour  Lack SMM Lack SMM 
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The average Mn−O−Mn angle is shorter than Fe−O−Fe and Mn−O−Dy angle is larger than 

Fe−O−Dy. The Dy−O−Dy angle of compound E is shorter than that in compound 20.  

The Fe···Fe distance is longer than Mn···Mn. The Dy···Dy distance of compound 20 is longer 

than that in compound E. The Fe···Dy distance is longer than Mn···Dy. Fe and Mn in their 

respective compounds are hexa-coordinated with a distorted octahedron geometry. 

Dy ions in compound 20 are nine coordinate with a distorted spherical capped square antiprism 

geometry, while in compound E the Dy ions are nine coordinate with two geometries a distorted 

muffin and a distorted spherical capped square antiprism. 

The magnetic studies of both compounds revealed that the presence of antiferromagnetic 

interactions. The magnetisation of compound 20 is higher than in compound E at 2 K and 7 T (μB) 

because Fe has more unpaird electron than Mn. Both compounds lack SMM behaviour. 

4.3. Structure, optical and magnetic properties of [Fe2Ln4(mdea)2(mdeaH)2(μ3-

OH)2(N3)2(PhCO2)8] ·3MeCN. (Ln = Pr(21), Nd(22), Sm(23), Eu(24), Gd(25), Tb(26), Dy(27), 

Ho(28) and Y(29)) 

4.3.1. Synthetic description  

The reaction of anhydrous FeCl3, Ln(NO3)3·6H2O, sodium benzoate (PhCO2Na), N-

methyldiethanolamine (mdeaH2) and sodium azide (NaN3) in a molar ratio of 1:1:3:5:3 in MeCN 

under reflux for two hours subsequent cooling and afforded yellow needles of a new family of 

hexanuclear Fe-Ln clusters [Fe2Ln4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN.  

4.3.2. Crystal structure of [Fe2Ln4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN 

In this series of hexanuclear iron-lanthanide clusters only compounds 21, 27 and 28 have been 

characterised fully by single-crystal X-ray diffraction (full crystallographic data is given in Table 

8.3); while the other compounds 22-26 and 29 were confirmed by their unit cell (Table 4.6). In 

addition, elemental analyses, FTIR spectroscopy and powder XRD studies (Figure 4.12) also 

support the suggestion that the whole series are isostructural, isomorphous and pure. Therefore, 

only the structure of [Fe2Ln4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (27) will be 

described in detail as a representative of the whole series. Compound 27 crystallises in the triclinic 
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space group P1� with Z = 1. Compound 27 is a neutral cluster containing three lattice MeCN 

molecules. However, it loses lattice MeCN after dry according to elemental analyses. 

The structure and the central core of compound 27 are shown in Figure 4.11. The mdeaH2 is 

coordinating to the metal centres as can be seen in the crystal structure and the mdeaH2 ligands are 

either are singly or doubly-deprotonated oxygen. 

 

 

 
 
 
 
 
 

Figure 4.11. Molecular structure of compound 27. Colour code: black, red, blue, green, white and 

violet spheres represent C, O, N, Fe, H and Dy, respectively. The core of compound 27 is shown 

on the right (mdea2–, mdeaH–and benzoates are omitted for clarity). 
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Figure 4.12. Calculated and experimental of PXRD patterns of compounds 21-29. 

Table 4.6. The unit cells data of compounds 21-29 

 

The compound 27 possesses a centrosymmetric [FeIII2DyIII4(μ3-OΗ)2]16+ “butterfly” core and 

consists of two FeIII, four DyIII, two terminal azide (N3)–, two doubly-deprotonated mdea2–, two 

singly-deprotonated mdeaH– and eight of benzoate ligands. All four Dy atoms are in one plane. In 

this butterfly motif two of the DyIII ions occupy the body positions and the other two DyIII ions 

occupy the outer wing-tips, whilst the two FeIII ions are lying above and below the Dy4 plane at a 

 a [Å] b [Å] c [Å] α [deg] β [deg] γ [deg] V [Å3] 
Fe2Pr4(21) 12.50(3) 13.735(3) 15.99(4) 76.79(2) 69.89 (2) 62.50(2) 2280(11) 
Fe2Nd4(22) 12.51(18) 13.75(3) 16.07(3) 85.51(17) 69.98(16) 63.07(17) 2310(8) 
Fe2Sm4(23) 12.17(8) 13.49(18) 16.03(2) 85.01(1) 69.80(1) 63.02(11) 2262(50) 
Fe2Eu4(24) 12.55(17) 13.81(19) 16.07(12) 84.40(9) 69.01(10) 63.08(1) 2304(40) 
Fe2Gd4(25) 12.36(13) 13.65(13) 15.89(15) 84.83(8) 69.54(9) 63.15(10) 2233(4) 
Fe2Tb4(26) 12.38(16) 13.66(6) 15.82(6) 83.94(9) 69.52(4) 63.06(5) 2229(2) 
Fe2Dy4(27) 12.34(4) 13.62(5) 15.82(5) 85.01(3) 69.51(3) 63.21(4) 2213(15) 
Fe2Ho4(28) 12.95(3) 13.92(3) 15.30(3) 63.40(2) 66.65(2) 62.52 (2) 2125(10) 
Fe2Y4(29) 12.25(10) 13.65(15) 16.02(17) 84.58(7) 69.82(7) 63.10(8) 2246(6) 
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2 Theta (degree)

21 Exp.
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27 Exp. 

27 Calc.
21 Calc.
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distance of 2.048 Å. Moreover, compound 27 has a FeDy3 unit, in which the Dy3 triangles are each 

bridged through single (μ3-OH)– group, singly-deprotonated mdeaH–, doubly-deprotonated mdea2–

, syn-syn bridging benzoate and chelating and bridging benzoate. The FeIII ions are each bridging 

through O(2) or O(2)' from the singly deprotonated mdeaH– ligand, syn-syn bridging benzoate and 

O(4), O(5), or O(4)', O(5)' from the doubly deprotonated mdea2– ligand to the tetranuclear core. 

The two Dy3 triangles which share a Dy (1) and Dy (1)' backbone. The core is held together by 

two (μ3-OH)– groups O (1) and O(1)' lying above and below the Dy4 plane with a distance of 0.799 

Å. 

There are two doubly-deprotonated mdea2– ligands and two singly-deprotonated mdeaH– ligands 

bridging to the metal centres. Interestingly the doubly–deprotonated ligands are centred on the 

outer FeIII ions through the N atom and resulting in two negatively charged oxygen atoms O(4), 

O(5), or O(4)', O(5)' form alkoxy bridges along the Fe⋯Dy edges with a (η2: η1: η2: μ3) 

coordination mode (Figure 4.13, a). The two singly-deprotonated mdeaH– ligands are centred on 

the outer DyIII ions through the N atom resulting in one negatively charged oxygen atom O(2) or 

O(2)' form alkoxy bridges along the Fe⋯Dy and Dy⋯Dy edges with a (η1: η1: η3: μ3) coordination 

mode (Figure 4.13, b). 

Eight of benzoate ligands are in the crystal structure adopting three different coordination modes:  

(i) Four of them are syn-syn bridging to two DyIII ions with a (η1:η1:μ2) coordination mode 

(Figure 4.13, c) either ((Dy(1) and Dy(2)), (Dy(1)' and Dy(2)'), (Dy(1)' and Dy(2)) and 

(Dy(1) and Dy(2)')). 

(ii)  Two of them are syn-syn bridging to FeIII ion and DyIII ion with a (η1:η1:μ2) coordination 

mode (Figure 4.13, d) either ((Fe(1) and Dy(1)) and ((Fe(1)' and Dy(1)')). 

(iii) Two of them are chelating and bridging to two DyIII ions with a (η1:η2:μ2) coordination 

mode (Figure 4.13, e) η2 by O(10) and O(10)' either (Dy(1), Dy(2)' and Dy(1)) and 

(Dy(1)', Dy(2) and Dy(1)'). 
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Figure 4.13. Coordination modes of (a) doubly-deprotonated mdea2– (b) singly-deprotonated 

mdeaH– and (c-e) benzoate ligands.  

Both hexa-coordinated FeIII ion are surrounded by two N and four O donor atoms (N2O4). One N 

and two O atoms come from doubly-deprotonated oxygen mdea2– ligands. One N comes from the 

terminal azide (N3)–, one O comes from syn-syn bridging benzoate and one O comes from a singly-

deprotonated oxygen mdeaH– ligand. The Fe−O and Fe−N bond distances are in the range 

1.970(3)−2.065(3) Å and 2.025(4)−2.266(4) Å, respectively. The Fe–Dy distance is 3.447(7). The 

Fe–O–Dy angles are in the range 98.29(12)−112.61(14)°. Selected bond distances and angles are 

summarised in Table 4.7. This results in a distorted octahedron with a ∑ parameter of 103°. This 

geometry was confirmed by SHAPE analysis [309-312] with a deviation value of 2.71, (Figure 4.14, 

Table 8.12). 
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The DyIII ions present two different types of coordination spheres: 

(i) Both octa-coordinated Dy(1) and Dy(1)' are surrounded by eight O donor atoms (O8). 

Four O atoms come from syn-syn bridging benzoate, two O atoms come from the (μ3-

OH)– group, one O atom comes from the doubly-deprotonated oxygen mdea2– ligand 

and one O atom comes from the singly-deprotonated oxygen mdeaH– ligand. This 

results in a distorted triangular dodecahedron geometry. This geometry was confirmed 

by SHAPE analysis [309-312] with a deviation value of 0.94, (Figure 4.14, Table 8.12). 

(ii) Both nine-coordinated Dy(2) and Dy(2)' are surrounded by one N and eight O donor 

atoms (NO8). One N atom and two O atoms come from the singly-deprotonated oxygen 

mdeaH– ligand, two O atoms come from the chelating and bridging benzoate ligands, 

two O atoms come from syn-syn bridging benzoate ligands, one O atom comes from 

the doubly-deprotonated oxygen mdea2– ligand and one O atom comes from (μ3-OH)– 

group. This results in spherical capped square antiprism geometry. This geometry was 

confirmed by SHAPE analysis [309-312] with a deviation value of 2.35, (Figure 4.14, 

Table 8.12). 

The Dy–O bond distances are in the range 2.304(3)−2.768(3) Å and Dy–N bond distance is 

2.653(4) Å. The Dy···Dy distances are in the range 3.904(4)−4.019(4) Å. The Dy–O−Dy angles 

are in the range 101.48(10)−117.99(12)°. 

The structure is further stabilised by intermolecular interactions through hydrogen bonds. O(3)-

H(3) from a singly-deprotonated mdeaH– ligand makes an intermolecular hydrogen bond to O(11) 

from the chelating and bridging benzoate ligand (PhCO2)– of a neighbouring complex at (2-x, 1-

y, 1-z). In addition, O(3)-H(3) from a singly-deprotonated mdeaH– ligand of a neighbouring 

complex at (1+x, +y, +z) makes an intermolecular hydrogen bond to O(11) from a chelating and 

bridging benzoate ligand (PhCO2)–. The O(3)⋯O(11) distance is 2.86 Å. Intermolecular 

interaction results in a 1D chain structure. The packing structure of compound 27 is presented in 

Figure 4.15. 
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Figure 4.14. Octahedral geometry of the 6-coordinated Fe ion on the left, triangular dodecahedron 

geometry of the 8-coordinated Dy ion on the centre and spherical capped square antiprism 

geometry of the 9-coordinated Dy ion on the right. Colour code: red, blue, green and violet spheres 

represent O, N, Fe and Dy, respectively. 

 

 

Figure 4.15. Single unit of the planar of compound 27 on the top and packing of compound 27 on 

the bottom. Colour code: black, red, blue, green, white and violet spheres represent C, O, N, Fe, H 

and Dy, respectively. 
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Table 4.7. Selected bond distances (Å) and bond angles (°) of compound 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3. Magnetic properties  

DC magnetic susceptibilities of compounds 25-27 and 29 were carried out on freshly prepared 

polycrystalline samples in the temperature range 1.8-300 K under an applied DC magnetic field of 

1000 Oe (0.1 T). The plot of χT versus T for compounds 25-27 and 29 is shown in Figure 4.16. 

The DC data are summarised in Table 4.8. 

Bond distances Bond distances 
Atom Atom Distance/Å Atom Atom Distance/Å 
Fe(1) O(2) 2.031(3) Dy(1) O(13) 2.351(3) 
Fe(1) O(4) 1.985(3) Dy(2) O(1) 2.308(3) 
Fe(1) O(5) 1.970(3) Dy(2) O(2) 2.535(3) 
Fe(1) O(6) 2.065(3) Dy(2) O(3) 2.449(3) 
Fe(1) N(2) 2.266(4) Dy(2) O(5) 2.304(3) 
Fe(1) N(11) 2.025(4) Dy(2) O(9) 2.320(3) 
Dy(1) O(1) 2.381(3) Dy(2) O(10) 2.768(3) 
Dy(1) O(1)' 2.388(3) Dy(2) O(11) 2.461(3) 
Dy(1) O(2) 2.507(3) Dy(2) O(12) 2.323(3) 
Dy(1) O(4) 2.328(3) Dy(2) N(1) 2.653(4) 
Dy(1) O(7) 2.356(3) Fe(1) Dy(1) 3.447(7) 
Dy(1) O(8) 2.329(4) Dy(1) Dy(1)' 3.934(5) 
Dy(1) O(10) 2.378(3) Dy(1) Dy(2) 3.904(4) 

Bond angles Bond angles 
Atom Atom Atom Angle/° Atom Atom Atom Angle/° 
Fe(1) O(2) Dy(1) 98.29(12) Dy(2) O(1) Dy(1) 112.49(13) 
Fe(1) O(2) Dy(2) 101.95(12) Dy(1) O(1)' Dy(2)' 117.99(12) 
Fe(1) O(4) Dy(1) 105.82(14) Dy(1) O(2) Dy(2) 101.48(10) 
Fe(1) O(5) Dy(2) 112.61(14) Dy(1) O(10) Dy(2)' 102.45(12) 
Dy(1) O(1)' Dy(1)' 111.19(12)     
'1-x,1-y,1-z 
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Figure 4.16. Temperature dependence of χT products for compounds 25-27 and 29 at 1000 Oe. 

The χT products of compounds 25-27 and 29 at 300 K are 40.40 cm3 K mol-1, 55.70 cm3 K mol-1, 

64.07 cm3 K mol-1 and 8.80 cm3 K mol-1, respectively, close to those expected for six non-

interacting ions of 25: Fe2Gd4 (40.27 cm3Kmol-1), 26: Fe2Tb4 (56.03 cm3Kmol-1), 27: Fe2Dy4 

(65.43 cm3Kmol-1) and 29: Fe2Y4 (8.75 cm3Kmol-1), respectively. Upon lowering the temperature, 

the χT product of compound 29 stays almost constant down to 15 K before rapidly decreasing 

down to 6.47 cm3Kmol-1 at 1.8 K, indicating that the interaction between the two separated Fe 

centres is very weak and antiferromagnetic. For compound 25, the χT product continuously 

increases to 25 K until a maximum value of 52.17 cm3 K mol-1 at 5.90 K reached this is followed 

by sharp fall to 45.67 cm3Kmol-1 at 1.8 K. Compounds 26 and 27 show similar behaviour. χT 

remains essentially constant to 100 K and decreases slightly between 100 and 20 K. Below 20 K, 

the χT product increases to reach maximum values of 60.12 cm3Kmol-1 at 4.9 K for compound 26 

(70.86 cm3 K mol-1 at 4.3 K for 27, Fe2Dy4) followed by sharp fall to reach 49.61 cm3 K mol-1 for 

26 (61.49 cm3 K mol-1 for 27, Fe2Tb4) at 1.8 K. These indicate a dominant ferromagnetic 

interaction in compounds 25-27.  
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Table 4.8. DC data of compounds 25-27 and 29 

The field dependence of the magnetisation of compounds 25-27 and 29 were performed at fields 

range from 0 to 70000 Oe (0-7 T) at temperatures of 2K, 3 K and 5 K. 

Figure 4.17 shows the magnetisation values of compounds 25 and 29 increase rapidly below 3 T 

and then follow steady increases to reach saturation values 38.08 µB for compound 25 (Fe2Gd4, 

2*5 µB + 4*7µB) and 10.31µB for compound 29 (Fe2Y4, 2*5µB) at 2 K and 7 T. 

For compounds 26 and 27, the magnetisation values increase rapidly below 1.5 T and then increase 

linearly up to 7 T reaching values of 30.84 µB for compound 26 and 33.89 µB for compound 27. 

The magnetisations for compounds 26 and 27 at 7 T are lower than the expected values, suggesting 

a lack of saturation. This behaviour indicates that the presence of magnetic anisotropy or/and the 

population of low-lying excited states [315]. 

 

Compounds 

Ground 
state of 
the Ln 

III Ion 

Curie Constant 
for each Ln ion 
at 300 K 
(cm3K/mol) [276] 
 
 
 

χT 
(cm3mol-

1K) 
expected 
value for 
Fe2Ln4 at 
RT  
 

χT (cm3mol-

1K) 
experimental 
value for 
Fe2Ln4 at RT 
 
 
 

χT (cm3mol-

1K) 
experimental 
value for 
Fe2Ln4 at 1.8 
K 
 
 

Magnetistion 
at 2 K and 7 
T (µB) 
 
 
 
 
 

Fe2Gd4 (25) 8S7/2 7.88 40.27 40.40 45.67 38.08 

Fe2Tb4 (26) 7F6 11.82 56.03 55.70 49.61 30.84 

Fe2Dy4 (27) 6H15/2 14.17 65.43 64.07 61.49 33.89 

Fe2Y4 (29) -------- -------- 8.75 8.80 6.47 10.31 
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Figure 4.17. Field dependence of magnetisation at indicated temperature of compounds 25-27 and 

29.  

AC susceptibility measurements of compounds 26 and 27 were performed in order to investigate 

potential single molecule magnetic behaviour of compounds 26 and 27. AC magnetic 

susceptibilities measurements of compounds 26 and 27 were carried out in the frequency range 1-

1488 Hz and at temperature 2 K under different applied DC fields. As shown in Figure 4.18, 

compound 26 shows slow relaxation under zero applied DC field but without maxima even under 

small-applied DC fields (500-3000 Oe). Compound 27 shows no AC signals under zero applied 

DC field but shows slow relaxation without maximum under a small-applied DC field (500-3000 

Oe). These results indicate that both compounds 26 and 27 show lack SMM behaviour, however 

given the presence of a peak without maximum in the Dy analogue. There is a possibility that this 

system could be an SMM with a lower energy barrier which could potentially be observed at very 

low, sub Kelvin, temperatures. 
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Figure 4.18. Frequency dependence of the In-phase (left) and the out-of-phase (right) components 

of the AC susceptibility for compounds 26 (top) and 27 (bottom) under different applied DC fields.  

4.3.4. Comparison of the core structure 

N-methyldiethanolamine (mdeaH2) has been widely used as a main ligand to synthesise Fe-Ln 

clusters with various topologies and also exhibiting interesting magnetic properties like SMM 

behaviour [79, 80, 89, 253]. For example, the highest energy barrier in an {Fe7Dy3} cluster is Ueff =33.40 

K with pre-exponential relaxation time τo =6.6×10-8 s [80]. 

Bearing this fact in mind, in the present work a combination of mdeaH2 alongside benzoate and 

sodium azide as the two co-ligands has been employed to obtain a higher nuclearity cluster which 
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could provide routes toward compounds potentially having optical or magnetic properties as well 

as SMM behaviour. With this synthetic approach [Fe2Ln4(mdea)2(mdeaH)2(μ3-

OH)2(N3)2(PhCO2)8] 3MeCN was produced with a butterfly-shaped topology. There many reports 

on {Fe2Ln4} compounds with various topologies with different main ligands/co-ligand and 

synthesis procedures, such as squashed octahedral [361] and butterfly-shaped [362]. The same 

nuclearity has been reported with different topologies in other 3d-4f complexes e.g. Cr2Dy4 [363], 

Ni2Dy4 [364], Zn2Dy4 [229], Mn2Dy4 [365-367] and Co2Dy4 [368-373]. The {Fe2Ln4} (27) is in general rare 

for hexanuclear [3d-4f] coordination but this butterfly topology motif has initially been reported 

for the {Fe2Ln4} complexes [362]. Both compounds have the same butterfly-shaped geometry. The 

crystallographic and magnetic details are compared in this section. The comparison of both 

compounds is summarised in Figure 4.19 and Table 4.9. In all cases the Dy containing structure 

has chosen as representative for the whole lanthanide. {Fe2Dy4} is abbreviated as compound F 
[362].  
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Figure 4.19. Molecular structure and the core of compound 27 on the top and compound F on the 

bottom (H atoms omitted for clarity). Colour code: black, red, blue, green, white and violet spheres 

represent C, O, N, Fe, H and Dy, respectively. 
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Table 4.9 Comparison between Compounds 27 and F 

 

Compound abbreviated 
as 

Compound 27 Compound F [362] 

Structure  [Fe2Dy4(mdea)2(mdeaH)2(μ3-
OH)2(N3)2(PhCO2)8].3MeCN 

[Fe2Dy4(L′H)2(L)2(μ-Piv)4(η2-
Piv)2(μ2-η2-Piv)2(μ3-OMe)2] 

Ligand  N-methyldiethanolamine 
(mdeaH2) 

(E)-2-(hydroxymethyl)-6-((2-
(hydroxymethyl)phenylimino)methyl)-

4-methylphenol 
Co−ligand  Sodium benzoate (PhCO2Na) Pivalic acid 
Co−ligand  Sodium azide (NaN3) --------------- 
Crystal system Triclinic Triclinic 
Space group P1� P1� 
Volume  2213.32(15) 2622.7(16) 
Colour of crystal Yellow Brown 
Shape of crystal  Block Plate 
Positions in 
butterfly 
topology 

body Two Dy ions Two Fe ions 

wing-tips Two Dy ions Two Dy ions 

(μ3-OR)2 R= H R= CH3 
Position of (μ3−OR)2 Lying above and below the 

{Dy4} plane 
Lying same directions “in the plane” 

Distance between 
(μ3−OR) and the 
{Dy4}plane 

0.592 Å ---------------------- 

Distance between Fe and 
the {Dy4}plane  

2.05 Å 1.60 Å 

Shape of Fe ions Distorted octahedron Distorted octahedron 
Shape of Dy ions Two atoms distorted 

triangular dodecahedron and 
two atom distorted spherical 

capped square antiprism 

Two atom distorted muffin and two 
atom distorted square antiprism 

Average 
distance of 

Fe−O 2.01 2.00 
Dy−O 2.41 2.38 
Dy−N 2.65 2.37 

Average 
angle of 

Fe−O−Dy 104.67 103.38 
Dy−O−Dy 109.12 96.97 

Distance of Dy−Dy 3.92 3.58 
Fe−Dy 3.45 3.42 

Interactions Ferromagnetic Antiferromagnetic 
Magnetisation 
at 2 K and 7 T 

33.89 μB 24.0 μB 

Relaxation behaviour  Lack SMM Lack SMM 
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Compounds 27 was synthesised using N-methyldiethanolamine as the main ligand and sodium 

benzoate and sodium azide as the two co-ligands, while compound F was synthesised using (E)-

2-(hydroxymethyl)-6-((2-(hydroxymethyl)phenylimino)methyl)-4-methylphenol as the main 

ligand and Pivalic acid as the co-ligand. 

Both compounds 27 and F were crystallise in the triclinic space group P1�. The colour and shape 

of the crystals of compound 27 are yellow blocks, while compound F are brown plates.  

Both compounds 27 and F have butterfly topology geometry. The body of the butterfly topology 

are occupied by two Dy ions and two Fe ions for compounds 27 and F, respectively. The wing-

tips of the butterfly topology are occupied by two Dy ions in both compounds 27 and F. 

The core of the compound is held together by two of (μ3-OR)− groups in compound 27 (R=H) and 

compound F (R=CH3). The two of (μ3-OH) groups in compound 27 lying above and below the 

{Dy4} plane at distance 0.592 Å, while compound F two (μ3-OCH3) groups are lying in the {Dy4} 

plane. 

Fe ions in both compounds 27 and F are six-coordinate with a distorted octahedron geometry lying 

above and below the {Dy4} plane with distances 2.048 and 1.603 Å, respectively. 

Dy ions in compounds 27 and F are eight and nine-coordinate. Dy ion in compound 27 is eight- 

coordinate with a distorted triangular dodecahedron geometry and nine-coordinate with a distorted 

spherical capped square antiprism shape geometry. While Dy ion in compound F is eight- 

coordinate with a distorted square antiprism geometry and nine-coordinate with a distorted muffin 

geometry. 

The average Fe−O distance in compound 27 is longer than that in compound F. The average Dy−O 

bond and Dy−N distances in compound 27 is longer than that in compound F. The Fe···Dy distance 

in compound 27 is longer than that in compound F and the Dy···Dy distance in compound 27 is 

longer than that in compound F. The average Fe−O−Dy angles in compound 27 are larger than t 

in compound F and the average Dy−O−Dy angles in compound 27 are larger than that in 

compound F. 
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The magnetic studies of compound 27 revealed that the Dy-Dy interaction is ferromagnetic, while 

antiferromagnetic interaction in compound F.  The magnetisation of compound 27 is higher than 

in compound F at 2 K and 7 T (μB). Both compounds lack SMM behaviour. 

4.3.5. Magnetocaloric effect  

Recently, Gd-based-3d metal complexes have gained attention due to their potential application 

for low-temperature magnetic coolers. Since the compound 25 {Fe2Gd4} exhibits a ferromagnetic 

interaction between Fe-Gd ions therefore, it was decided to explore the magnetocaloric effect 

(MCE). 

The field dependence of the magnetisation of compound 25 was performed under different fields 

ranging from 0 to 70000 Oe (0-7 T) at the temperatures of 2-10 K.  

Figure 4.20 shows the magnetisation values of compound 25 rise gradually as the field increases 

to reach a saturation value of 38.90 µB at 2 K and 7 T close to the theoretical value of 38 µB for 

two Fe and four Gd. 

0 1 2 3 4 5 6 7

0

10

20

30

40

M
 (µ

B)

Temperature (K)

2 K

10 K

 

Figure 4.20. Field dependence of magnetisation at an indicated temperature of compound 25. 

Magnetic entropy change (-ΔSm) could be calculated from M versus H plots according to the 

Maxwell equation. The maximum entropy (-ΔSm) of compound 25 is 27.50 J kg-1 K-1 with ΔH =7T 

at 4 K (Figure 4.21) which is lower than the theoretical (-ΔSm) value per mole (69.17 J kg−1 K−1) 
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probably due to the ferromagnetic interaction between Fe-Gd ions. From the value (-ΔSm) 

compound 25 was found to act as a molecular magnetic refrigerant. To use such a material as a 

magnetic coolant, it should have higher MCE under a small magnetic field. Comparing compound 

25 with reported Fe-Gd metal complexes, the maximum entropy (-ΔSm) of compound 25 (27.50 J 

kg -1 K-1) is higher than Fe5Gd8 (7.9 J kg -1 K-1)[374] and also higher than Fe3Gd2 (21.1 J kg -1 K-1) 
[84] due to ferromagnetic interaction coupling of compound 25. 
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Figure 4.21. Changes in (-ΔSm) induced by magnetic field and temperatures of compound 25.  

4.3.6. Photoluminescence study  

Photoluminescence spectra were recorded in the range from 200 to 800 nm in both solution and 

solid-state. Compounds 24 and 26 were measured in methanol and dichloromethane (1:1) at low 

concentration (100 µM) and were prepared at room temperature. 

The excitation spectrum of compound 24 monitored at 614 nm emission exhibits high absorption 

in the range 200–400 nm (centred at 235 nm), Figure 4.22 presents the excitation and emission 

spectra of compound 24 in solution and solid-state. 
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The emission spectrum of compound 24 exhibits a sharp band which is a result of the f-f transition 

of Eu3+ corresponding to the 5D0 → 7FJ (J = 0-4) transitions of the Eu3+ ion 5D0→7F0 (544 nm), 
5D0→7F1 (590 nm), 5D0→7F2 (614 nm), 5D0→7F3 (650 nm) and 5D0→7F4 (698 nm). 

The emission band at 614 nm dominates the emission spectra (high intensity) corresponding to the 

hypersensitive 5D0 → 7F2 transition, indicating that the Eu3+ ion is not on an inversion centre but 

is most likely at a site with low symmetry and non-centrosymmetric ligand field [122]. 

Among all the transitions, the 5D0→7F2 and the 5D0→7F1 are referred to as hypersensitive electric-

dipole (ED) and magnetic-dipole (MD) transitions, respectively [122-125]. 
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Figure 4.22. Excitation and emission spectra of compound 24 a) in solution b) solid-state. 

The excitation spectrum of compound 26 monitored at 544 nm emission exhibits high absorption 

in the range 200–400 nm (centred at 235 nm), Figure 4.23 presents the excitation and emission 

spectra of compound 24 in solution and solid-state. The emission spectrum of compound 24 

exhibits a sharp bands which is a result of the intra f-f transition of Tb3+ corresponding to the 5D4 

→ 7FJ (J = 3–6) transitions of the Tb3+ ion  5D4→7F6 (488 nm), 5D4→7F5 (544 nm), 5D4→7F4 (584 

nm) and 5D4→7F3 (620 nm). The emission at 488 nm (5D4→7F6) was assigned to the magnetic 

dipole transition; while at 544 nm (5D4→7F5) was assigned to the electric dipole transition [126]. 

The emission intensity at 544 nm was the strongest which deduced that the Tb3+ ion was located 
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on an asymmetric coordination [122]. This result indicates that these compounds may be good 

candidates as emitting molecular materials such as those used in OLEDs, which is one of the 

industrially relevant fields using coordination chemistry.  

Figure 4.23. Excitation and emission spectra of compound 26 the solution-state on the left and the 

solid-state on the right. 

4.4. Structure and magnetic properties of [Fe2Ln4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 

2·5MeCN. (Ln = Eu(30), Gd(31), Tb(32), Dy(33), Ho(34), Er (35), Tm(36), Lu(37), Yb(38) and 

Y(39)) 

4.4.1. Synthetic description  

The reaction of anhydrous FeCl3, Ln(NO3)3·6H2O, sodium benzoate (PhCO2Na), N-

methyldiethanolamine (mdeaH2) and o-vanillin (o-van) in a molar ratio of 1:1:3:5:1.1 in MeCN 

over reflux for two hours and afforded yellow block crystal of a new family of hexanuclear Fe-Ln 

clusters [Fe2Ln4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN.  

4.4.2. Crystal structure of [Fe2Ln4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN 

Full structure determination was performed for compounds 31 and 33 by single-crystal X-ray 

diffraction (full crystallographic data is given in Table 8.4); while the other compounds 30, 32 and 

34-39 were found to be isostructural with 31 and 33 by checking their unit cells (Table 4.10). 
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Analysis of the IR spectra, PXRD patterns (Figure 4.25) and elemental analyses further confirmed 

that compounds 30−39 are isomorphous, isostructural and pure.  

The structure of the hexanuclear complex [Fe2Dy4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN 

(33) will be described in detail as a representative of the whole series. Compound 33 crystallises 

in the triclinic space group P1� with Z = 1. Compound 33 is a neutral cluster crystallising with 2·5 

lattice MeCN molecules. However, it loses the lattice MeCN after dry according to elemental 

analyses. 

Figure 4.24. Molecular structure of compound 33. Colour code: black, red, blue, green, white and 

violet spheres represent C, O, N, Fe, H and Dy, respectively. The core of compound 33 is shown 

on the right (mdea2−, o-van− and some benzoates are omitted for clarity). 

The structure and the central core of compound 33 are shown in Figure 4.24, the mdeaH2 and o-

vanillin ligands are coordinating to the metal centres and doubly-deprotonated. The mdeaH2 

ligands are centred on the outer FeIII through the N atom resulting in two negatively charged 

oxygen atoms O(2), O(3), or O(2)', O(3)' form alkoxy bridges along the Fe⋯Dy edges, whilst o-

vanillin (o-van) ligand is a singly-deprotonated resulting in one negatively charged oxygen atom 

O(4) or O(4)' form bridges along the Dy⋯Dy edges. 
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Table 4.10. The unit cells data of compounds 30-39 
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Figure 4.25. Calculated and experimental of PXRD patterns of compounds 30-39. 

The compound 33 possesses a centrosymmetric [Fe2Dy4(μ4-O)2]14+core with all four Dy atoms in 

one plane in a butterfly manner. In this butterfly motif two of the DyIII ions occupy the body 

positions and the other two DyIII ions occupy the outer wing-tips, whilst the two FeIII ions are lying 

above and below the Dy4 planner at a distance of 2.644 Å. Moreover, the compound 33 has FeDy3 

 a [Å] b [Å] c [Å] α [deg] β [deg] γ [deg] V [Å3] 
Fe2Eu4(30) 12.25(5) 12.87(7) 15.42(11) 73.45(5) 71.61(5) 89.54(5) 2190.39(17) 
Fe2Gd4(31) 12.27(4) 12.85(5) 15.30(8) 73.41(4) 71.58(4) 89.56(3) 2185.80(17) 
Fe2Tb4(32) 12.22(15) 12.86(13) 15.35(19) 73.58(18) 71.46(19) 89.54(18) 2182.16(40) 
Fe2Dy4(33) 12.21(4) 12.84(5) 15.27(5) 73.35(3) 71.42(3) 89.44(3) 2166.26(14) 
Fe2Ho4(34) 12.24(6) 12.83(6) 15.28(7) 73.31(4) 71.16(4) 89.30(4) 2167 28(2) 
Fe2Er4(35) 12.14(8) 12.83(8) 15.30(12) 73.23(6) 71.28(7) 89.20(5) 2152 51(3) 
Fe2Tm4(36) 12.18(6) 12.81(4) 15.28(9) 73.24(4) 71.29(5) 89.30(3) 2154 14(2) 
Fe2Lu4(37) 12.17(7) 12.80(8) 15.29(9) 73.28(6) 70.98(5) 89.25(5) 2149.32(2) 
Fe2Yb4(38) 12.24(12) 12.94(18) 15.41(5) 73.23(19) 71.16(17) 89.29(10) 2205.11(8) 
Fe2Y4(39) 12.32(4) 12.81(3) 15.28(2) 73.41(17) 70.6(2) 89.20(2) 2172.04(10) 
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unit each bridged through single (μ4-O)− group, syn-syn, doubly-deprotonated mdea2−, (o-van)− 

and syn-syn-syn bridging benzoate resulting in distorted tetrahedral {FeDy3(μ4−O)} geometry. The 

core is held together by two (μ4−O)2− groups O(1) or O(1)' lying above and below the Dy4 plane at 

a distance of 0.781 Å (Figure 4.28). The structure does not have any inter or intramolecular 

interactions. 

Thus compound 33 consists of two FeIII and four DyIII, two doubly-deprotonated mdea2–, two 

singly-deprotonated (o-van)− and eight of benzoate ligands. Two doubly-deprotonated (mdea)2− 

ligands are tridentate coordinating to the metal centres with a (η2: η1: η2: μ3) coordination mode 

(Figure 4.26, a). Two deprotonated oxygen (o-van)− ligands are tridentate coordinating to the metal 

centres with a (η1: η2: η1: μ2) coordination mode (Figure 4.26, b).  

Eight of benzoate ligands are in the crystal structure adopting three different coordination modes: 

(i) Two of them are chelating to Dy(2) and Dy(2)' with a (η1:η1:μ1) coordination mode 

(Figure 4.26, c). 

(ii) Two of them are syn-syn bridging to two DyΙΙΙ ions with a (η1:η1:μ2) coordination 

mode (Figure 4.26, d).  

(iii) Two of them are syn-syn bridging to FeΙΙΙ ion and DyΙΙΙ ion with a (η1:η1:μ2) 

coordination mode (Figure 4.26, e).  

(iv) Two of them are syn-syn-syn bridging to two DyΙΙΙ ions and one FeΙΙΙ ion with a 

(η2:η1:μ3) coordination mode (Figure 4.26, f). 
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Figure 4.26. Coordination modes a) mdea2−, b) (o-vanillin)− and c-f) benzoate ligands. 

Both hexa-coordinated FeIII ion are surrounded by one N and five O donor atoms (NO5). One N 

and two O atoms come from the doubly-deprotonated oxygen (mdea)2− ligands, one O atom comes 

from syn-syn, one O atom comes from syn-syn-syn bridging benzoate and one O atom comes from 

the (μ4−O)2− group. The Fe–O bond distances are in the range 1.902(3)−2.213(5) Å and the Fe–N 

bond distance is 2.213(5) Å. The Fe⋯Dy distances are in the range 3.307(9)–3.337(9) Å. Selected 

bond distances and angles are summarised in Table 4.11. This results in a distorted octahedron 

geometry with a ∑ parameter of 91.82. This geometry was confirmed by SHAPE analysis [309-312] 

with a deviation value of 2.09, (Figure 4.27, Table 8.13). 

The DyIII ions here have eight O donors but present two different types of coordination 

environmental based on the source of O atom: 

(i) Both octa-coordinated Dy(1) and Dy(1)' are surrounded by eight O donor atoms (O8). 

One O atom comes from the doubly-deprotonated oxygen mdea2− ligand, two O atoms 

N

Fe
OO

DyDy

O

O O
DyDy
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come from syn-syn bridging benzoate, one O atom comes from syn-syn-syn bridging 

benzoate, two O atoms come from the deprotonated oxygen o-vanillin (o-van)− ligand 

and two O atoms come from (μ4−O)2− group. This results in a distorted triangular 

dodecahedron geometry. This geometry was confirmed by SHAPE analysis [309-312] 

with a deviation value of 1.31, (Figure 4.27, Table 8.13). 

(ii) Both octa-coordinated Dy(2) and Dy(2)' ions are surrounded by eight O donor atoms 

(O8). One O atom comes from the doubly−deprotonated oxygen mdea2− ligand, one 

O atom comes from syn-syn bridging benzoate, one O atom comes from syn-syn-syn 

bridging benzoate, two O atoms come from chelated benzoate, two O atoms come 

from the deprotonated oxygen o-vanillin (o-van)− ligand and one O atoms comes from 

the (μ4−O)2− group. This results in a distorted triangular dodecahedron geometry 

which was confirmed by SHAPE analysis [309-312] with a deviation value of 1.31, 

(Figure 4.27, Table 8.13). 

The Dy−O bond distances are in the range 2.259(4)−2.589(3) Å. The Dy⋯Dy distances are in the 

range 3.664(6)−3.786(5) Å. The Dy−O−Fe and Dy−O−Dy angles are in the range 

101.33(15)−121.79(16)° and 94.26(11)−112.03(13)°, respectively. 

 

 

 

 

 

Figure 4.27. Distorted octahedral geometry of 6-coordinated Fe ion on the left, triangular 

dodecahedron geometry of 8-coordinated of Dy(1) ion on the centre and triangular dodecahedron 

geometry of 8-coordinated of Dy(2) ion on the right. Colour code: red, blue, green and violet 

spheres represent O, N, Fe and Dy, respectively. 
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Table 4.11 Selected bond distances (Å) and angles (°) of compound 33 

 
Bond distances Bond distances 

Atom Atom Distance/Å Atom Atom Distance/Å 
Fe(1) O(1) 1.902(3) Dy(2) O(1) 2.298(3) 
Fe(1) O(2) 1.978(4) Dy(2) O(2) 2.259(4) 
Fe(1) O(3) 1.995(4) Dy(2) O(4) 2.336(3) 
Fe(1) O(8) 2.053(4) Dy(2) O(5) 2.369(4) 
Fe(1) O(10) 2.051(4) Dy(2) O(7) 2.548(4) 
Fe(1) N(1) 2.213(5) Dy(2) O(12) 2.307(4) 
Dy(1) O(1)' 2.323(3) Dy(2) O(13) 2.420(4) 
Dy(1) O(1) 2.267(3) Dy(2) O(14) 2.439(4) 
Dy(1) O(3) 2.311(4) Fe(1) Dy(1)' 3.337(9) 
Dy(1) O(4) 2.385(4) Fe(1) Dy(2) 3.307(9) 
Dy(1) O(6) 2.575(4) Dy(1) Dy(1)' 3.664(6) 
Dy(1) O(7) 2.589(3) Dy(1) Dy(2)' 3.765(5) 
Dy(1) O(9) 2.315(4) Dy(1) Dy(2) 3.786(5) 
Dy(1) O(11) 2.321(4)    

Bond angles Bond angles 
Atom Atom Atom Angles/° Atom Atom Atom Angles/° 
Fe(1) O(1) Dy(1) 121.79(16) Dy(1) O(1) Dy(1)' 105.93(14) 
Fe(1) O(1) Dy(1)' 103.85(14) Dy(1) O(1) Dy(2) 112.03(13) 
Fe(1) O(1) Dy(2) 103.45(15) Dy(1)' O(1) Dy(2) 109.13(13) 
Fe(1) O(2) Dy(2) 102.40(16) Dy(1) O(4) Dy(2) 106.63(13) 
Fe(1) O(3) Dy(1)' 101.33(15) Dy(1) O(7) Dy(2)' 94.26(11) 
'1-x, 1-y, 1-z 
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Figure 4.28. Single unit of the planar of compound 33. Colour code: red, blue, green and violet 

spheres represent O, N, Fe and Dy, respectively. 

4.4.3. Magnetic properties  

DC magnetic susceptibilities of compounds 31-33 were carried out on freshly prepared 

polycrystalline samples in the temperature range 1.8-300 K under an applied magnetic field of 

1000 Oe (0.1 T). The plot of χT versus T for compounds 31-33 is shown in Figure 4.29. The DC 

data are summarised in Table 4.12. 
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Figure 4.29. Temperature dependence of χT products for compounds 31-33 at 1000 Oe. 

The χT products of compounds 31-33 at 300 K are 38.66 cm3 K mol-1, 55.82 cm3 K mol-1 and 63.44 

cm3 K mol-1, respectively, close to those expected values for six non-interacting ions of 31: 
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Fe2Gd4(40.27 cm3Kmol-1), of 32: Fe2Tb4 (56.03 cm3Kmol-1) and 33: Fe2Dy4 (65.43 cm3Kmol-1) 

respectively. For compound 31, the χT product stays almost constant from 300 to 120 K and then 

slightly increases from 120 to 70 K, followed by a slight decrease from 70-30 K, then a drop from 

30-1.8 K, reaching a minimum value of 16.05 cm3 K mol-1 at 1.8 K. 

Compounds 32 and 33 are similar χT remain essentially constant from 300-110 K and decrease 

slightly from 110-70 K, followed by a drop from 70-1.8 K, reaching a minimum value of 19.23 

cm3 K mol-1 for compound 32 and 20.09 cm3 K mol-1 for compound 33 at 1.8 K  

The decrease of χT experimental values with the temperature is probably due to the thermal 

depopulation of the Stark sublevels of LnIII ions within the complexes or with the individual LnIII 

ions and/or antiferromagnetic interaction between the LnIII ions or between FeIII-LnIII ions [313, 314]. 

Changing the co-ligand from azide in compound 27 to o-vanillin allow to obtain new compound 

33 and changes the magnetic properties. Compound 27 has ferromagnetic while compound 33 has 

antiferromagnetic interaction. 

 Table 4.12. DC data for compounds 31-33 

 

AC susceptibility measurements of compounds 32 and 33 were performed in order investigate 

potential SMM behaviour of compounds 32 and 33. AC magnetic susceptibility measurements of 

compounds 32 and 33 were carried out in the frequency range 1-1488 Hz and at temperature 2 K 

under different applied DC field. As shown in Figure 4.30, compounds 32 and 33 shows slow 

Compounds 
 
 
 
 
 
 

Ground 
state of 
the Ln 

III Ion 

Curie Constant 
for each Ln ion at 
300 K 
(cm3K/mol)[276] 
 
 
 

χT 
(cm3mol-

1K) 
expected 
value for 
Fe2Ln4 
at RT  

χT (cm3mol-

1K) 
experimental 
value for 
Fe2Ln4 at RT 
 
 

χT (cm3mol-

1K) 
experimental 
value for 
Fe2Ln4 at 1.8 
K 
 

Magnetistion 
at 2 K and 7 
T (µB) 
 
 
 
 

Fe2Gd4 (31) 8S7/2 7.88 40.27 38.66 16.05 38.03 

Fe2Tb4 (32) 7F6 11.82 56.03 55.82 19.23 26.94 

Fe2Dy4 (33) 6H15/2 14.17 65.43 63.44 20.09  
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relaxation without maxima under a small-applied DC fields (0-3000 Oe). The results indicate that 

both compounds 32 and 33 lack SMM behaviour, however given the presence of a peak without a 

maxima in the Dy analogue, there is possibility that this system could be an SMM with a lower 

energy barrier and could potentially be observed at very low, sub Kelvin, temperatures. 

Figure 4.30. Frequency dependence of the In-phase (left) and the out-of-phase (right) components 

of the AC susceptibility for compounds 32 (top) and 33 (bottom) under different applied DC fields.  

4.4.4. Comparison of the core structure 

N-methyldiethanolamine (mdeaH2) has been widely used as a main ligand to synthesise Fe-Ln, 

with various topologies and also exhibiting interesting magnetic properties like SMM behaviour 
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[79, 80, 89, 253]. For example, the highest energy barrier in an {Fe7Dy3} cluster is Ueff =33.40 K with 

pre-exponential relaxation time, τo =6.6×10-8 s [80]. 

o-Vanillin has been widely used as a main ligand and co-ligand to synthesise lanthanide metal 

complexes with various topologies and also exhibiting interesting magnetic properties like SMM 

behaviour. o-Vanillin was also used to synthesise {Dy3} which presents a new concept for 

magnetic memory without a net magnetic moment [74, 75]. {Dy3} shows a vanishing susceptibility 

at low temperature which is unexpected in a system having an odd number of unpaired electrons. 

Nevertheless, o-vanillin has not been used to obtain iron–lanthanide metal complexes and also 

mdeaH2 and o-vanillin together have not been used to obtain lanthanide or iron–lanthanide metal 

complexes. From this perspective, in the present work a combination of mdeaH2 alongside o-

vanillin and benzoate as the two co-ligands have been employed to obtain higher nuclearity cluster 

which could provide route toward compounds potentially having optical or magnetic properties as 

well as SMM behaviour, with this synthetic approach, [Fe2Ln4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]. 

2·5 MeCN was produced with butterfly-shaped manner. 

Changing the co-ligand from Pivalic acid in compound 13 to benzoate (sodium benzoate) in 

compound 33 and the counter ion of the lanthanide give the system the opportunity to increase the 

nuclearity of the resulting compound.  

Herein, the {Fe2Ln4} (33) is in general rare for hexanuclear complex [3d-4f] coordination but 

similar core is existing. The core topologies of reported [Fe4Ln2] complex [375] is similar to the 

compound 33. Both compounds have almost the same geometry. The crystallographic and 

magnetic details are compared in this section. The comparison between both compounds is 

summarised in Figure 4.31 and Table 4.13. In all cases, the Dy containing structure has chosen as 

representative for the whole lanthanide. {Fe4Dy2} is denoted by compound G [375]. 
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Figure 4.31. Molecular structure and the core of compound 13 on the top compound 33 on the 

middle and compound G on the bottom (H atoms omitted for clarity). Colour code: black, red, 

blue, green, white and violet spheres represent C, O, N, Fe, H and Dy, respectively.  
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Table 4.13. Comparison between compounds 33 and G 

Compounds 33 was synthesised using N-methyldiethanolamine (mdeaH2) as the main ligand and 

sodium benzoate and o-vanillin as the two co-ligands, while compounds G was synthesised using 

N,N,N’,N’-tetrakis-(2-hydroxyethyl) ethylenediamine as the main ligand and Pivalic acid and 

phenol as the two co-ligands. Compound 33 crystallises in the triclinic space group P1�, while 

compound G in the monoclinic space group P 21/n. The colour and shape of the crystals of 

compound 33 are yellow block, while compound G are orange blocks. The core of compound 33 

Complex abbreviated as Compound 33 Compound G [375] 
Structure [Fe2Dy4(mdea)2(o-van)2(μ4-

O)2(PhCO2)8] 2·5MeCN 
[Fe4Dy2(μ4-O)2(Piv)6(NO3)2(Hedte)2] 

4MeCN C6H5OH 
Ligand N-methyldiethanolamine 

(mdeaH2) 
N,N,N’,N’-tetrakis-(2-hydroxyethyl) 

ethylenediamine 
Co−ligand o-Vanillin Pivalic acid 
Co−ligand Sodium benzoate (PhCO2Na)  

Crystal system Triclinic Monoclinic 
Space group P1� P21/n 

Volume 2166.26(14) 8251.2(6) 
Colour of crystal Yellow Orange 
Shape of crystal Block Block 

Position of (μ4-O)2 Lying above and below the 
{Dy4} plane 

Lying above and below the {Fe4} 
plane 

Distance between (μ4-O) 
and the {Dy4} plane 

0.78 Å 0.99 Å 

Distance between the 
plane and rest metals 

{Dy4}···Fe =2.64Å {Fe4}···Dy = 3.14 Å 

Shape of Fe ions Distorted octahedron Distorted octahedron 
Shape of Dy ions Distorted triangular 

dodecahedron 
Distorted biaugmented trigonal prism 

Average 
distance of 

Fe−O 2.00 2.01 
Fe−N 2.21 2.25 
Dy−O 2.38 2.37 

Average 
angle of 

Fe−O−Dy 106.56 114.83 

Average 
distance of 

Fe−Dy 3.32 4.07 

Interactions Antiferromagnetic Ferromagnetic 
Relaxation behaviour Lack SMM SMM Ueff=30.85 K with a relaxation 

time τo =3.7x10-8 s. 
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and G is held together by two (μ4-O) groups lying above and below the {Dy4} plane at distances 

0.78 and 0.99 Å, respectively. 

Fe ions in both compounds 33 and G are six-coordinate with a distorted octahedron geometry. Fe 

ions in compound 33 lying above and below the {Dy4} plane at distances 2.64 Å. Dy ions in 

compounds 33 and G are octa-coordinated with a distorted triangular dodecahedron and distorted 

biaugmented trigonal prism, respectively. Dy ions in compound G lying above and below the 

{Fe4} plane at distances 3.14 Å. 

The average Fe−O and Fe−N bond distances in compound G are longer than those in compound 

33, Dy−O bond distance in compound G is shorter than that in compound 33. The average Fe···Dy 

distances in compound G is longer than that in compound 33. The average Fe−O−Dy angle in 

compound G is larger than that in compound 33. 

The magnetic studies of compound 33 revealed the Dy−Dy interaction is antiferromagnetic, while 

ferromagnetic interaction that in compound G. Compound G demonstrate SMM behaviour Ueff = 

30.85 K and τo =3.7x10-8 s while compound 33 lacks SMM behaviour. 

4.4.5. Magnetocaloric effect  

Recently, Gd-based-3d metal complexes have gained attention due to their potential application 

for low-temperature magnetic coolers. Since, the compound 31 {Fe2Gd4} exhibits an 

antiferromagnetic interaction between Fe-Gd ions therefore, it was decided to explore the 

magnetocaloric effect (MCE). 

The field dependence of the magnetisation of compound 31 was performed under different fields 

ranging from 0 to 70000 Oe (0-7 T) at the temperatures range 2-10 K.  

Figure 4.32 shows the magnetisation values of compound 31 arises gradually as the field increases 

to reach a saturation value of 38.03 µB at 2 K and 7 T close to the theoretical value of 38 µB for 

two Fe and four Gd. 
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Figure 4.32. Field dependence of magnetisation at indicated temperatures of compound 31 

Magnetic entropy change (-ΔSm) could be calculated from M versus H plots according to the 

Maxwell equation. The maximum entropy (-ΔSm) of compound 31 was 18.41 J kg-1 K-1 with at 

ΔH =7T at 5 K (Figure 4.33) which is lower than the theoretical (-ΔSm) value per mole (69.17 J 

kg−1 K−1) probably due to the antiferromagnetic interaction between Fe-Gd ions. 

Comparing compound 31 with reported Fe-Gd metal complexes, the maximum entropy (-ΔSm) of 

compound 31 (18.41 J kg-1 K-1) is higher than Fe5Gd8 (7.9 J kg-1 K-1) [374], lower than Fe3Gd2 (21.1 

J kg -1 K-1) [84]. Compound 25 is the best 27.50 J kg-1 K-1 vs 18.41 J kg-1 K-1 for compound 31 

which is quite a big improvement. 
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Figure 4.33. Changes in (-ΔSm) induced by the magnetic field and temperatures of compound 31 

 



159 
 

4.5. Structure and magnetic properties of [Fe4Ln2(mdea)4(PhCO2)6(N3)2(μ3-OH)2] ·MeCN 

·H2O. (Ln = Eu(40), Gd(41), Tb(42), Dy(43), Ho(44), Er (45) and Y(46)) 

4.5.1. Synthetic description  

The reaction of [Fe3O(PhCO2)6(H2O)3](PhCO2), LnCl3·6H2O, N-methyldiethanolamine (mdeaH2) 

and sodium azide (NaN3) in a molar ratio of 1:1:4:8 in MeCN with stirring and heating for one 

hour and afforded orange plate crystals of a hexanuclear Fe-Ln clusters 

[Fe4Ln2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O after standing at room temperature 

overnight.  

4.5.2. Crystal structure of [Fe4Ln2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O 

In this series of hexanuclear iron-lanthanide clusters, only compound 43 and 45 have been 

characterised fully by single-crystal X-ray diffraction (full crystallographic data is given in Table 

8.5); while the other compounds 40-42, 44 and 46 were confirmed by their unit cell (Table 4.14). 

In addition, elemental analyses, FTIR spectroscopy and powder XRD studies (Figure 4.35) also 

support the suggestion that compounds 40-46 are isostructural, isomorphous and pure. Therefore, 

only the structure of [Fe4Ln2(mdea)4(PhCO2)6(N3)2(μ3-OH)2] ·MeCN·H2O (43) will be described 

in detail as a representative of the whole series. Compound 43 crystallises in the triclinic space 

group P1� with Z = 2. Compound 43 is a neutral cluster containing one lattice MeCN and one lattice 

water molecule. However, it loses the lattice MeCN according to elemental analyses. 

The structure and the central core of compound 43 are shown in Figure 4.34, the mdeaH2 and 

benzoate ligands are coordinating to the metal centres as can be seen in the crystal structure. The 

mdeaH2 is doubly-deprotonated resulting in two negatively charged oxygen atoms O(3), O(6) or 

O(7), O(10) or O(3), O(4) or O(7), O(8) form alkoxy bridges along the Fe⋯Dy edges. In addition, 

O(3), O(5) or O(7), O(9) form alkoxy bridges along the Fe⋯Fe edges. 
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Figure 4.34. Molecular structure of compound 43. Colour code: black, red, blue, green, white and 

violet spheres represent C, O, N, Fe, H and Dy, respectively. The core of compound 43 is shown 

on the right (mdea2-, azides and benzoates are omitted for clarity). 
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Figure 4.35. Calculated and experimental of PXRD patterns of compounds 40-46. 
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Table 4.14. Unit cells data of compounds 40-46 

 

The compound 43 possesses [FeΙΙΙ2DyΙΙΙ2(μ3-OΗ)2]10+ a non-planar butterfly. In this butterfly motif, 

two of the DyΙΙΙ ions occupy the body positions and two FeΙΙΙ ions occupy the outer wing-tips, 

whilst the two Dy III ions Dy(1) and Dy(2) are lying in the same directions above the Fe4 planner 

at a distance of 0.811 and 0.992 Å, respectively. Moreover, the compound 43 has Fe2Dy2 unit, in 

which the FeDy2 triangles are each bridged by a single (μ3-OH)– group, syn-syn bridging benzoate 

and doubly-deprotonated mdea2–. The remaining FeIII ions are each bridging through two 

deprotonated oxygens O(3), O(5) and O(6) or O(7), O(9) and O(10) from the doubly deprotonated 

mdea2– ligand and syn-syn bridging benzoate to the tetranuclear core. There are two FeDy2 

triangles which share a Dy(1) and Dy(2) backbone. The triangles are held together by two (μ3-

OH)- groups O (1) and O(2) are lying in the same directions above the {Fe4} planner at a distance 

of 1.264 and 1.314 Å, respectively. Single unit of compound 43 is presented in Figure 4.38. 

The compound 43 consists of four FeIII and two DyIII, two terminal azide (N3)–, four doubly-

deprotonated mdea2– and six of benzoate ligands. 

There are four doubly-deprotonated mdea2– ligands are centred on the outer FeIII ions through the 

N atom present with two different types of coordination modes:  

(i) Two of them are tridentate bridging to the metal centre with a (η2: η1: η2: μ3) 

coordination mode (Figure 4.36, a). 

(ii) Two of them are tridentate bridging to the metal centre with a (η2: η1: η3: μ4) 

coordination mode (Figure 4.36, b). 

 a [Å] b [Å] c [Å] α [deg] β [deg] γ [deg] V [Å3] 
Fe4Eu2(40) 12.18(3) 14.54(3) 23.26(4) 89.67(9) 74.80(9)  70.00(9) 3721.66(11) 
Fe4Gd2(41) 12.20(2) 14.56(4) 23.23(5) 89.62(7) 74.88(8) 70.17(8) 3719.29(12) 
Fe4Tb2(42) 12.15(4) 14.48(4) 23.22(6) 89.33(8) 75.10(9) 70.28(12) 3708.90(15) 
Fe4Dy2(43) 12.16(2) 14.52(3) 23.08(4) 89.54(2) 75.03(10) 70.41(2) 3695.12(13) 
Fe4Ho2(44) 12.18(4) 14.57(5) 23.00(7) 89.47(5) 74.95(5) 70.22(6) 3696.53(14) 
Fe4Er2(45) 12.14(2) 14.53(2) 22.97(3) 89.57(10) 75.26(10) 70.33(10) 3674.00(10) 
Fe4Y2(46) 12.14(3) 14.55(3) 23.08(5) 89.60(7) 75.16(8) 70.31(7) 3695.28(14) 



162 
 

Six of benzoate ligands are in the crystal structure adopting two different coordination modes. 

(i) Four of them are syn-syn bridging to FeIII ion and DyIII ion with a (η1: η1: μ2) coordination 

mode (Figure 4.36, c).  

(ii) Two of them are monodentate to Dy(1) and Dy(2) with a (η1:η0:μ1) coordination mode 

(Figure 4.36, d).  

 

 

 

 

 

 

 

 

 

 

Figure 4.36. Coordination modes (a-b) mdeaH2, (c-d) benzoate ligands. 

FeIII ions here present two different types of coordination environmental:  

(i) Both hexa-coordinated Fe(1) and Fe(3) ions are surrounded by one N and five O donor 

atoms (NO5). One N and three O atoms come from the doubly-deprotonated oxygen 

mdea2– ligands one O atom comes from syn-syn bridging benzoate and one O atom comes 

from the (μ3-OH)– group. This results in a distorted octahedron with a ∑ parameter of 

88.64. This geometry was confirmed by SHAPE analysis [309-312] with a deviation value of 

1.43, (Figure 4.37, Table 8.14). 
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(ii) Both hexa-coordinated Fe(2) and Fe(4) ions are surrounded by two N and four O donor 

atoms (N2O4). One N atom comes from the terminal azide (N3)–, one N and three O atoms 

come from the doubly-deprotonated oxygen mdea2– ligands and one O atom comes from 

syn-syn bridging benzoate. This results in a distorted octahedron with a ∑ parameter of 

93.15. This geometry was confirmed by SHAPE analysis [309-312] with a deviation value of 

2.92, (Figure 4.37, Table 8.14). 

The Fe–O and Fe–N bond distances are in the range 1.934(3)−2.084(3) Å, 1.997(4)−2.197(4) Å, 

respectively. The Fe−Dy distances are in the range 3.371(6)−3.470(7) Å. The Fe−O−Fe angles are 

in the range 99.65(12)−105.09(13)°. Selected bond distances and angles are summarised in Table 

4.15. 

Both octa-coordinated DyIII ion are surrounding by eight O donor atoms (O8). Three O atoms come 

from the doubly-deprotonated oxygen mdea2– ligand, two O atoms come from syn-syn bridging 

benzoate, one O atom comes from the monodentate benzoate and two O atoms come from the 

(μ3−OH)– groups. This results in a slightly distorted square antiprism geometry which was 

confirmed by SHAPE analysis [309-312] with a deviation value of 0.70, (Figure 4.37, Table 8.14). 

The Dy−O bond distances are in the range 2.272(3)−2.602(3) Å. The Dy···Dy distance is 3.89(3) 

Å. The Fe−O−Dy and Dy–O−Dy angles are in the range 95.35(11)−110.34(12)° and 

106.59(10)−110.02(11)°, respectively. 

The structure is further stabilised by intramolecular interactions through hydrogen bonds. O(71) 

−H(71B) from a lattice water molecule (H2O) makes an intramolecular hydrogen bond to O(22) 

from the monodentate (PhCO2)– with an O(71)⋯O(22) distance of 2.78 Å. In addition, O(1)−H(1) 

from (μ3-OH)– group makes an intramolecular hydrogen bond to O(20) from the monodentate 

(PhCO2)– with an O(71)⋯O(20) distance of 2.57 Å and O(2)−H(2) from (μ3-OH)– group makes 

an intramolecular hydrogen bond to O(22) from the monodentate (PhCO2)– with an O(71)⋯O(22) 

distance of 2.63 Å. 
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Figure 4.37. Distorted octahedral geometry of the 6-coordinated Fe (3) ion on the left, distorted 

octahedral geometry of the 6-coordinated of Fe(4) ion on the centre and a slightly distorted square 

antiprism geometry of 8-coordinated of Dy ion on the right. Colour code: red, blue, green and 

violet spheres represent O, N, Fe and Dy, respectively. 

 

Figure 4.38. Single unit of the plane of compound 43. Colour code: black, red, blue, green, white 

and violet spheres represent C, O, N, Fe, H and Dy, respectively. 
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Table 4.15. Selected Bond Distances (Å) and angles (°) of compound 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bond distances Bond distances 
Atom Atom Distance/Å Atom Atom Distance/Å 
Fe(1) O(1) 1.953(3) Fe(4) N(8) 2.028(4) 
Fe(1) O(3) 2.082(3) Dy(1) O(1) 2.368(3) 
Fe(1) O(4) 1.989(3) Dy(1) O(2) 2.444(3) 
Fe(1) O(5) 1.970(3) Dy(1) O(3) 2.602(3) 
Fe(1) O(12) 1.992(3) Dy(1) O(6) 2.285(3) 
Fe(1) N(1) 2.185(4) Dy(1) O(8) 2.321(3) 
Fe(2) O(3) 2.066(3) Dy(1) O(13) 2.391(3) 
Fe(2) O(5) 2.022(3) Dy(1) O(16) 2.354(3) 
Fe(2) O(6) 1.961(3) Dy(1) O(21) 2.272(3) 
Fe(2) O(15) 2.037(3) Dy(2) O(1) 2.379(3) 
Fe(2) N(2) 2.197(4) Dy(2) O(2) 2.406(3) 
Fe(2) N(5) 1.997(4) Dy(2) O(4) 2.323(3) 
Fe(3) O(2) 1.934(3) Dy(2) O(7) 2.581(3) 
Fe(3) O(7) 2.084(3) Dy(2) O(10) 2.301(3) 
Fe(3) O(8) 1.984(3) Dy(2) O(11) 2.370(3) 
Fe(3) O(9) 1.971(3) Dy(2) O(18) 2.373(3) 
Fe(3) O(14) 1.991(3) Dy(2) O(19) 2.305(3) 
Fe(3) N(3) 2.197(4) Fe(1) Dy(2) 3.371(6) 
Fe(4) O(7) 2.044(3) Fe(2) Dy(1) 3.470(7) 
Fe(4) O(9) 2.017(3) Fe(3) Dy(1) 3.377(6) 
Fe(4) O(10) 1.961(3) Fe(4) Dy(2) 3.461(6) 
Fe(4) O(17) 2.017(3) Dy(1) Dy(2) 3.889(3) 
Fe(4) N(4) 2.197(4)    

Bond angles Bond angles 
Atom Atom Atom Angle/° Atom Atom Atom Angle/° 
Fe(1) O(1) Dy(1) 110.34(12) Fe(3) O(7) Dy(2) 98.96(10) 
Fe(1) O(3) Dy(1) 98.12(11) Fe(4) O(7) Dy(2) 96.19(11) 
Fe(1) O(1) Dy(2) 101.72(11) Fe(4) O(10) Dy(2) 108.32(13) 
Fe(1) O(4) Dy(2) 102.55(12) Fe(1) O(3) Fe(2) 99.65(12) 
Fe(2) O(3) Dy(1) 95.35(11) Fe(1) O(5) Fe(2) 105.09(13) 
Fe(2) O(6) Dy(1) 109.39(13) Fe(3) O(7) Fe(4) 99.73(12) 
Fe(3) O(2) Dy(1) 100.31(12) Fe(3) O(9) Fe(4) 104.61(13) 
Fe(3) O(8) Dy(1) 103.06(12) Dy(1) O(1) Dy(2) 110.02(11) 
Fe(3) O(2) Dy(2) 109.81(12) Dy(1) O(2) Dy(2) 106.59(10) 
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4.5.3. Magnetic properties  

DC magnetic susceptibility of compound 43 was carried out on freshly prepared polycrystalline 

sample in the temperature range 1.8-300 K under an applied DC magnetic field of 1000 Oe (0.1 

T). The plot of χT versus T for compound 43 is shown in Figure 4.39. 
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Figure 4.39. Temperature dependence of the χT products for compound 43 at 1000 Oe. 

The χT product value of compound 43 at 300 K is 39.90 cm3 K mol-1 which is lower than the 

expected value of 45.84 cm3Kmol-1 for six non-interacting ions (four FeIII and two DyIII) (FeIII, S 

= 5/2, g = 2, C = 4.375 cm3mol-1K) and (DyIII, 6H15/2, S = 5/2, g = 4/3, L = 5, C = 14.17 cm3mol-

1K) [276]. The χT product shows a gradual decrease from 300-7.42 K, reaching a minimum value 

of 24.25 cm3 K mol-1 at 7.42 K, followed by steep increase from 7.42-1.8 K, reaching value of 

25.70 cm3 K mol-1 at 1.8 K. This indicates a dominant ferromagnetic interaction at low temperature 

probably between FeIII-DyIII ions in compound 43. 

The low value of the room temperature χT vs T curve suggests that the pairs of iron (III) ions are 

antiferromagnetically coupled. The upturn in the χT vs T plot at very low temperatures suggests 

that at this point a ferromagnetic coupling between Fe and Dy becomes dominant. To investigate 

this idea a magnostructural correlation according to the equations proposed by christou et al [376, 

377] gives antiferromagnetic interaction of -9 cm-1 in line with this suggestion. 
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Figure 4.40. Field dependence of magnetisation at indicated temperatures for compound 43. 

The field dependence of the magnetisation for compound 43 was performed at a field range from 

0 to 70000 Oe (0-7 T) at temperatures of 2 K, 3 K and 5 K. 

Figure 4.40 shows the magnetisation values of compound 43 increases rapidly below 1 T and then 

increases linearly up to 7 T, reaching a value of 10.81 µB at 1.8 K and 7 T which indicates the 

presence of magnetic anisotropy or/and the population of low-lying excited states [315]. 

AC susceptibility measurements of compound 43 were performed in order to investigate potential 

single molecule magnetic behaviour of compound 43. AC susceptibility measurements of 

compound 43 were carried out in the frequency range 1-1488 Hz and in the temperature range 2-

12 K under zero applied DC field. As shown in Figure 4.41, compound 43 shows slow relaxation 

of the magnetisation below 5 K under zero applied DC field and the maximum out-of-phase signal 

is seen at 1.8 K at 80.13 Hz indicating slow relaxation of the magnetisation. The characteristic 

SMM energy gap, Ueff of 14.19 K and the pre-exponential factor τo=1.94×10-6 s were estimated 

from linear fitting (Figure 4.43 left) of the data to an Arrhenius law. However, the fitting does not 

include the first point of the plot. This makes the analysis unreliable. Using the approach of fitting 

data to include further relaxation processes give a much more satisfactory model. It was found that 

the data could be fit using only QTM and Raman relaxation indicating the lack of an Orbach 

process. 
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Figure 4.41. Temperature dependence of the in-phase (left) and the out-of-phase (right) 

components of the AC susceptibility of compound 43 under zero applied DC field. 
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Figure 4.42. Frequency dependence of the in-phase (left) and the out-of-phase (right) components 

of the AC susceptibility of compound 43 under zero applied DC field. 

 



169 
 

Figure 4.43. The maxima for the out-of-phase ac susceptibility data measured under zero applied 

field for compound 43 were fitted using an Arrhenius law with the parameters showing in the inset 

(left) and also modelled using only QTM and Raman processes (right). 

The Cole-Cole plot of compound 43 was constructed in the temperature range 1.8-4K. The data 

were fitted using a generalised Debye model [316, 317]. The Cole-Cole plot of 43, as shown in Figure 

4.44, has relatively symmetrical semicircles. As the temperature increases, the semicircle shape 

becomes smaller and smaller. A fit to the plots gave α values in range 0.011-0.161 (Table 4.16) 

which indicate a single relaxation process within the compound 43. 
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Figure 4.44. Cole-Cole plots of compound 43 under zero applied DC field. Solid lines for the 

fitting using a generalised Debye model. 

Table 4.16. Analysis of the Cole-Cole plots of compound 43 

Temperature (K) 𝜒𝜒𝑆𝑆 𝜒𝜒𝑇𝑇 τ α Residual 
1.8 6.41E-01 1.46E+01 1.75E-03 0.161 1.20E+00 
2 6.12E-01 1.28E+01 1.30E-03 0.135 7.08E-01 

2.2 5.81E-01 1.16E+01 9.80E-04 0.117 5.27E-01 
2.4 5.68E-01 1.05E+01 6.73E-04 0.098 3.47E-01 
2.6 5.27E-01 9.55E+00 4.62E-04 0.093 3.05E-01 
2.8 5.84E-01 8.89E+00 3.08E-04 0.080 1.39E-01 
3 6.99E-01 8.26E+00 2.22E-04 0.066 8.99E-02 

3.2 7.43E-01 7.71E+00 1.62E-04 0.056 4.69E-02 
3.4 8.33E-01 7.21E+00 1.20E-04 0.045 2.57E-02 
3.6 1.05E+00 6.78E+00 9.30E-05 0.030 1.09E-02 
3.8 1.03E+00 6.38E+00 6.94E-05 0.023 8.07E-03 
4 1.15E+00 6.02E+00 5.43E-05 0.011 5.74E-03 

4.5.6. Comparison of the core structure 

A review of the literature reveals that 10 hexanuclear series of Fe-Ln metal complexes 

incorporating azide ligands have been reported so far, as shown in Table 4.17. 
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Table 4.17. Hexanuclear Fe/ Ln metal complex incorporate azide ligands 
N

O
 O

f 
co

m
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Structure  SMMs 
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Dy Tb 

Ueff 

(K) 

τ0  

(s) 

Ueff 

(K) 

τ0 

(s) 

1 [Fe4Ln2(OH)2(N3)2(nbdea)4(Me3CC
O2)5(H2O)](NO3)·2EtOH (Ln=Dy, 
Y) 

26.50 1.0x10-7 NM NM B T [334] 

2 [Fe4Ln2(OH)2(N3)2(nbdea)4(Me3CC
O2)4(NO3)2]·3EtOH (Ln=Eu, Gd) 

NM NM NM NM B T [334] 

3 [Fe4Ln2(μ3-
OH)2(nbdea)4(Me3CCO2)6(N3)2] 
3MeCN (Ln= Dy, Y) 

NM NM NM NM B T [335] 

4 [Fe4Ln2(OH)2(Me2CHCO2)6(N3)2(n
bdea)4]·2MeOH (Ln= Gd-Tm, Y) 

13.97 1.1x10-6 18.29 5.2x10-8 B T [336] 

5 [Fe4Ln2(Me3CCO2)6(N3)4(teaH)4]·2
EtOH (Ln= Gd-Er) 

NM NM 38.01 1.2×10-9 W B [337] 

6 [Fe4Tb2(Me3CCO2)6(N3)4(teaH)4] Not SMM W B [337] 

7 [Fe4Ln2(Me3CCO2)6(N3)4(teaH)4]·2
CH2Cl2 (Ln= Dy, Er) 

Not SMM W B [337] 

8 [Fe4Ln2(Me3CCO2)4(N3)6(teaH)4]·2
EtOH 2CH2Cl2 (Ln= Dy, Er) 

Not SMM W B+ T [337] 

9 [Fe4Ln2(teaH)4(μ-N3)4(N3)3(Piv)3] 
(Ln= Gd-Er, Y) 

24 8×10-8 36.9 6.8×10-10 W B+ T [85] 

10 [Fe4Ln2(teaH)4(N3)4(Piv)6] (Ln= Er, 
Lu) 

Not SMM W B [83] 

11 [Fe2Ln4(mdea)2(mdeaH)2(μ3-
OH)2(N3)2(PhCO2)8] 3MeCN (21-
29) (Ln= Pr-Ho, Y) 

Not SMM B T This 
work 

4.3 

12 [Fe4Ln2(mdea)4(PhCO2)6(N3)2(μ3-
OH)2]·MeCN H2O (40-46) (Ln= 
Eu-Er, Y) 

14.19 1.9×10-6 NM NM B T This 
work 
4.5 
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Table 4.17 (B= Butterfly, W=wheel, NM not measured, T= Terminal and B= Bridging), 7 series 

are lack SMM behaviour and 5 series are SMMs. 

N-methyldiethanolamine (mdeaH2) has been widely used as a main ligand to synthesise Fe-Ln, 

with various topologies and also exhibiting interesting magnetic properties like SMM behaviour 
[79, 80, 89, 253]. 

Taking this into consideration, in the present work a combination of mdeaH2 alongside benzoate 

and sodium azide as the two co-ligands has been employed to obtain higher nuclearity clusters 

which could provide routes toward compounds potentially having optical or magnetic properties 

as well as SMM behaviour. Thus, a little adjustment of synthetic strategy led to the isolation 

[Fe4Ln2(mdea)4(PhCO2)6(N3)2(μ3-OH)2](MeCN)(H2O) with a Fe2Ln2 butterfly core. 

Changing of the procedure from reflux in compound 27 to stirring in compound 43 and counter 

ion of lanthanide give the opportunity to the system to change the nuclearity of the compound and 

changing the core.  

There many reports on {Fe4Ln2} compounds with various topologies with different main 

ligands/co-ligand and synthesis procedures. Such as in butterfly-shaped topology [89, 334-336, 378, 379] 

and in cyclic topology”wheel” [83, 85, 337, 341] and different topology [82, 90, 343, 375, 380-395]. The same 

nuclearity was also reported with different topology in other 3d-4f complexes e.g. Mn4Dy2 [84, 396-

400], Co4Dy2 [401-405], Ni4Dy2 [406-409], Cu4Dy2 [410-412] and Zn4Dy2 [413]. Our group has reported 

{Fe4Dy2} twice using the N-butyldiethanolamine (nbdeaH2) ligand with the same core and 

butterfly-shaped topology. The crystallographic and magnetic detail are compared in this section. 

The N-methyldiethanolamine (mdeaH2) ligand possesses the same functional group as N-the 

butyldiethanolamine (nbdeaH2) ligand. The difference between the two ligands is an additional 

propylene group in the case of N-butyldiethanolamine (mbeaH2). 

The comparison both of them is summarised in Figure 4.45 and Table 4.18. In all cases the Dy 

containing structure has chosen as representative for the whole lanthanide. {Fe4Dy2} [379] is 

abbreviated as compound H and {Fe4Dy2} [335] is abbreviated as compound I.  
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Figure 4.45. Molecular structure and the core of compound 43 on the top, compound H on the 

middle and compound I on the bottom (H atoms omitted for clarity). Colour code: black, red, blue, 

green, white and violet spheres represent C, O, N, Fe, H and Dy, respectively. 
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Table 4.18 Comparison between compounds 43, H and I 

Compound abbreviated 
as 

Compound 43 Compound H [379] Compound I [335] 

Structure [Fe4Dy2(mdea)4(PhCO2)
6(N3)2(μ3-OH)2](MeCN) 

[Fe4Dy2(μ3-
OH)2(n-

bdea)4(PhCO2)8]·
MeCN 

[Fe4Dy2(μ3-
OH)2(nbdea)4 

(Piv)6(N3)2]·3(M
eCN) 

Ln Eu-Er Dy-Er Dy 
Ligand N-methyldiethanolamine 

(mdeaH2) 
N-

butyldiethanolamin
e (nbdeaH2) 

N-
butyldiethanolam

ine (nbdeaH2) 
Co−ligand Benzoate Benzoate Pivalic acid 
Co−ligand Sodium azide 

(NaN3) 
----------- Sodium azide 

(NaN3) 
Crystal system Triclinic Monoclinic Triclinic 
Space group P1� P21/c P1� 

Volume 3695.12(13) 9564.5(18) 4542.9(4) 
Colour of crystal Orange Orange Orange 
Shape of crystal Plate Block Block 

Positions in 
butterfly 
topology 

body Two Dy ions 
wing-
tips 

Two Fe ions 

Position of 2 (μ3−OH) Lying in the same direction of plane 
Average distance 
between (μ3−OH) and the 
{Fe4} plane 

1.289 Å 1.3105 Å 1.328 Å 

Position of Dy Lying in the same direction 
Average distance 

between Dy and the 
{Fe4}plane 

0.9015 Å 1.0085 Å 0.9615 Å 

Shape of Fe ions Distorted octahedron 
Shape of Dy ions Distorted square antiprism 

Average 
distance of 

Fe−O 2.004 1.9912 2.0159 
Fe−N 2.1335 2.20825 2.1466 
Dy−O 2.380 2.369 2.384 

Average 
angle of 

Fe−O−Dy 102.843 102.916 102.415 
Fe−O−Fe 102.27 102.77 102.86 
Dy−O−Dy 108.306 108.615 108.025 

Distance of Dy−Dy 3.889 3.855 3.872 
Fe−Dy 4.075 4.070 4.089 
Fe−Fe 5.578 5.538 5.590 

Interactions 10.81 µB 11 µB --------- 
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Magnetisation at 2 K and 

7 T 

Ferromagnetic 

Relaxation behaviour 14.19 K 1.94 × 10-6 s 21.4 K 2.7 × 
10−8 s 

SMM 

Compound 43 was synthesised using N-methyldiethanolamine (mdeaH2) ) as the main ligand and 

benzoate and sodium azide as the two co-ligands. Compounds H and I were synthesised using N-

butyldiethanolamine (nbdeaH2) as the main ligand. Benzoate is a co-ligand of compound H, while 

Pivalic acid and sodium azide are the two co-ligands to synthesise compound I.  

Both compounds 43 and I were crystallised in the triclinic space group P1�, while compound H in 

the monoclinic space group P21/c.  

All compounds 43, H and I have a butterfly topology geometry. In all compounds, the butterfly 

motif has the two DyIII ions occupying the body positions and two FeIII ions the outer wing-tips.  

In all compounds, 43, H and I the core is held together by two (μ3-OH)– ligand lying in the same 

direction of {Fe4} plane. The average distance between (μ3-OH) and {Fe4} plane of compound H 

are the largest and compound 43 is the shortest. 

In all compounds, 43, H and I the two Dy ions are lying in the same direction of {Fe4} plane, the 

average distances between Dy ions and {Fe4} plane compound H are the largest and compound 43 

is the shortest. 

In all compounds 43, H and I each Fe ion is six-coordinate with a distorted octahedron geometry, 

while each Dy ions are eight coordinate with a distorted square antiprism geometry. 

The average Fe−O and Dy−O distances in compound I are the longest and in compound H are the 

shortest, while average Fe−N distance in compound H is the longest and in compound 43 is the 

shortest.  

The Fe···Fe and Fe···Dy distances in compound I are the longest and in compound H are the 

shortest. The Dy···Dy distances in compound 43 are the longest and in compound H are the 

shortest. 
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The average Fe−O−Dy and Dy−O−Dy angles in compound H are the biggest and in compound I 

are the smallest. The average Fe−O−Fe angle in compound I is the biggest and in compound 43 is 

the smallest. 

The magnetic studies of all compounds 43, H and I revealed the presence of ferromagnetic 

interaction. Both compounds 43 and H demonstrate SMM behaviour. The energy barrier (Ueff) for 

compound H is higher than that of compound 43. 

From this summary, it can be concluded that increasing the chain of a ligand can make a difference 

in the energy barrier. 

4.5.5. Photoluminescence study  

Photoluminescence spectra for compound 40 were recorded in the range from 200 to 800 nm in 

the solid-state.  

The excitation spectrum of compound 40 monitored at 617 nm emission exhibits high absorption 

in the range 200–400 nm (centred at 242 nm), Figure 4.46 presents the excitation and emission 

spectra of compound 40. 

The emission spectrum of compound 40 exhibits a sharp band which is a result of the intra f-f 

transition of Eu3+ corresponding to the 5D0 → 7FJ (J = 0-4) transitions of the Eu3+ ion 5D0→7F0 

(542 nm), 5D0→7F1 (590 nm), 5D0→7F2 (617 nm), 5D0→7F3 (650 nm) and 5D0→7F4 (699 nm). 

The fact that the emission band at 617 nm has a dominates the emission spectra (high intensity) 

corresponding to the hypersensitive 5D0 → 7F2 transition, indicating that the Eu3+ ion is not on an 

inversion centre. This is expected given the molecule is not on any symmetry centre [122]. 

Among all the transitions, the 5D0→7F2 and the 5D0→7F1 are referred to as hypersensitive electric-

dipole (ED) and magnetic-dipole (MD) transitions, respectively [122-125]. This result which indicate 

that this compound may be good candidates as emitting molecular materials such as those used in 

OLEDs which is one of the industrially relevant fields using coordination chemistry. 
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Figure 4.46. Excitation and emission spectra of compound 40. 

4.6. Conclusions 

In this research, thirty-three heterometallic iron-lanthanide complexes based on N-

methyldiethanolamine (mdeaH2) ligands have been synthesised and characterised. These 

compounds have been synthesised from the reactions of N-methyldiethanolamine ligand and co-

ligand (sodium benzoate, di(2-pyridyl) ketone (dpk), sodium azide and o-vanillin), iron and 

respective lanthanide cations. A series of seven tetranuclear 

[Fe2Ln2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2]·H2O (14-20) nine hexanuclear 

[Fe2Ln4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (21-29) ten hexanuclear 

[Fe2Ln4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (30-39) and seven hexanuclear 

[Fe4Ln2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O (40-46) have been successfully synthesised 

and structurally characterised by single crystal XRD and powder XRD, optically and magnetically 

investigated. 

Slight changes in synthetic conditions allowed to change the nuclearity of the compound and the 

core from [Fe2Dy4] (compound 27) to [Fe4Dy2] (compound 43). 

Compounds 14-20 were synthesised using N-methyldiethanolamine (mdeaH2), di(2-pyridyl) 

ketone (dpk), sodium azide (NaN3), iron chloride and lanthanide nitrate. Magnetic studies carried 
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out on compound 20 (Ln=DyIII) revealed that antiferromagnetic interactions are dominant and 

showed lack SMM behaviour.  

Compounds 21-29 were synthesised using N-methyldiethanolamine (mdeaH2), sodium benzoate, 

sodium azide (NaN3), iron chloride and lanthanide nitrate. Static magnetic studies show the 

presence of overall ferromagnetic interactions in compounds 26 (Ln=TbIII) and 27 (Ln=DyIII) were 

investigated for potential SMM behaviour. Compound 26 exhibits slow relaxation of 

magnetisation at a zero external DC field but without any maxima even under small-applied DC 

fields (500-3000 Oe). Compound 27 shows no AC signals under zero-DC field but displays slow 

relaxation of magnetisation without maxima under applied DC field of 500-3000 Oe. These 

analyses indicated that compounds 26 and 27 lack of SMM properties under these conditions. 

However, in order to confirm the SMM behaviour, the magnetisations of 26 and 27 can be studied 

on field-oriented single crystals by micro-SQUID at very low, sub Kelvin, temperatures.  

The maximum entropy (-ΔSm) value of 27.50 J kg-1 K-1 was obtained for compound 25 (Ln=GdIII) 

with ΔH =7T at 4 K. Such a feature may be of potential interest in molecular magnetic refrigerant 

systems. 

Luminescence studies performed on 24 (Ln=EuIII) and 26 (Ln=TbIII) compounds shows the 

emission bands emerging from f–f transitions. Compounds 24 and 26 were found to be 

luminescence materials. The ability of compounds 24 and 26 to generate luminescence makes them 

potentially attractive materials for application in various optoelectronic devices.  

Compounds 30-39 were synthesised using N-methyldiethanolamine (mdeaH2), o-vanillin (o-van), 

sodium benzoate, iron chloride and lanthanide nitrate. Magnetic susceptibility data of 31-33 

demonstrate the presence of dominant antiferromagnetic interactions in all compounds. Compound 

32 (TbIII) shows slow relaxation of magnetisation in zero applied DC field but without any maxima 

even under applied DC fields of 500-3000 Oe. Compound 33 (Ln=DyIII) exhibits no AC signals at 

zero applied DC field but showed slow relaxation of magnetisation at applied DC fields of 500-

3000 Oe. However, no clear peak maxima were observed. These results indicate that compounds 

32 and 33 lack of SMM behaviour properties under these conditions. However, in order to confirm 

the SMM behaviour, the magnetisations of 32 and 33 can be studied on field-oriented single 

crystals by micro-SQUID at very low, sub Kelvin, temperatures. 
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The maximum entropy (-ΔSm) value of 18.41 J kg-1 K-1 was obtained for compound 31 (Ln=GdIII) 

with ΔH =7T at 5 K. The obtained results on magnetocaloric properties suggest that compound 31 

might be of interest in magnetic refrigeration applications. 

Compounds 40-46 were synthesised using N-methyldiethanolamine (mdeaH2), sodium benzoate, 

sodium azide (NaN3), iron chloride and lanthanide chloride. Static magnetic studies show the 

presence of overall ferromagnetic interactions in compound 43 (Ln=DyIII). The analysis of AC 

susceptibility data at a zero applied DC field illustrates that compound 43 displays slow relaxation 

of magnetisation and has SMM behaviour. Fitting the AC data to an Arrhenius law resulted in an 

energy barrier of 14.19 K with the pre-exponential factor of 1.94 × 10-6 s. The Cole-Cole plots 

suggest that a single relaxation process occurs in compound 43.  

Compounds with SMM properties are important because of their possible applications in data 

storage, quantum computing and molecule-based spintronics devices. 

Luminescence studies performed on compound 40 (Ln=EuIII) show emission bands arising from 

f–f transitions which could lead to optoelectronic applications. 

  



180 
 

Chapter 5. Structure and optical properties of copper complex as Near-Infrared (NIR) 

blocked 

5.1. Introduction  

The ozone layer protects the earth’s surface from the harmful rays (UVA and UVB) that exist in 

sunlight. Day by day, global warming and environmental problems increase due to both nature and 

human activities which continue to contribute the expanded hole in the ozone. Protecting the 

population, automobiles and buildings from global warming by an improved of cooling efficiency 

has been promoted on a global scale. For example, shielding buildings by preventing the inflow of 

heat through windows. 

Glass windows have undergone an energy-saving evolution from single panes to today’s ultralow-

emission windows [414]. Glass characteristically has high strength and is generally lighter in weight 

compared to metallic materials. Also, it retains its strength to relatively higher temperatures and 

corrosion at these elevated temperatures and is less susceptible to oxidation [415]. 

Windows are considered one of the least energy-efficient component of buildings. Building walls 

and roofs can be thermally insulated but glass has required properties for example it should be 

transparent, so for that reason we can not insulate glass [416]. However, for aesthetic purposes large 

glass windows have become increasingly popular in modern buildings leading to an increase in a 

building’s heating in winter and cooling loads in summer [417] (Figure 5.1). The suitable 

arrangement of windows is a basic element for the bioclimatic design of buildings. In addition, 

large glass windows create a pleasant feeling for the inhabitants [418]. Curtains are the conventional 

prevention for blocking the sun’s heat but unfortunately they also block the daylight [419]. Buildings 

in most warm climate countries get excessive heat gain throughout the year with average 

temperatures of 34˚C. A large amount of energy is consumed due to large glass surfaces, large 

internal loads, modern office having a high cooling demand during majority of the year [420, 421].  
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Figure 5.1. Functions of solar shading and heat insulating films in summer and winter seasons 

(taken from reference [422]).  

Passive cooling can be accessed with an IR-shielding coating by blocking the NIR from solar light 
[423]. The most important factor that should be considered when applying IR-shielding coatings on 

smart windows is retaining the optical transparency in addition to effectiveness in blocking the 

NIR emissions. Therefore, there is a high demand for IR-shielding not only in windows of building 

but also in automobile windows which presenting infrared radiation (λ = 0.7–3 μm) from passing 

through window glass allows the indoors to remain cool in summer by blocking sun’s radiation 

wheras in winter internal heat is prevented from passing through the windows.. 

Energy-saving windows (i.e containing Energy Saving Glass, ESG) contain low emissivity (Low-

E) coatings that have a high transmittance in the visible region and reduce the ultraviolet (UV) 

and/or infrared (IR) radiation [423-425]. They are used in modern buildings in both hot and cold 

climates to provide isolation from severe temperatures [426]. 

Low-E coatings are known from the 1960s, but the main development took place in 1974 after the 

petroleum crisis. In the 1980s and 1990s, Low-E glass products dominated the markets [418]. 

Today's use of Low-E glass is very common in architecture for increasing the energy efficiency of 

buildings (reducing the large energy consumption of air conditioning), promote rational use of 

energy and reduce CO2 emissions [418, 420, 427]. The heavy usage of air-conditioning contributes to 

global warming because it releases its gaseous refrigerants which are mainly Chlorofluorocarbons 

and Hydrofluorocarbon into the atmosphere [161, 162] leads to depletion of the ozone layer [418, 

420, 427]. Therefore, more efficient use of energy is an important key to improving the environment 
[418, 420, 427]. 
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ESG prevents the permeation of infrared radiation (heat waves) through its surface so the thermal 

effects inside buildings remain comfortable [428]. Hence a useful amount of energy is saved due to 

a lesser-load on the heating and cooling systems [428]. These windows provide certainty of keeping 

the heat within the indoor environment (thermal insulation), thus protecting the house from cooling 

for a longer period of time without significant heat loss during the winter seasons. This also reduces 

the cost of heating. In addition, ESGs protect the house from overheating from the solar radiation 

by blocking heat from entering the building during the summer seasons therefore reducing the cost 

of cooling [429]. 

It has been reported that using a single slide ESG in windows of the building could increase the 

temperature inside the building to 8 °C if the temperature outside is -10 °C, while a double glass 

ESG could increase the temperature inside the building to 15 °C if the temperature outside is -10 

°C [430]. 

Low emissivity (Low-E) coatings usually consist of a stack of dielectric (8–15 layers) and metallic 

thin films (1–3 layers of silver) [431]. The Low-E glass includes panes with coatings of thin metal 

and/or metal oxides on one side of the glass [429, 432]. 

This coating has created radio propagation problems for communication systems; something that 

can be used to protect the building from intentional electromagnetic interference (IEMI) attacks 

and protecting against information leakage [414]. Low-E glass was deposited using different 

methods include evaporation [433, 434], chemical vapor deposition (CVD) [435, 436], spray pyrolysis 
[437, 438], magnetron sputtering [439, 440], sol-gel dip-coating processes [441, 442], rf sputtering [443, 444], 

immersion methods [445], photo-chemical vapor deposition [446], pulsed laser deposition [447], 

painting [448] and atomic layer epitaxy [449, 450]. These methods need large vacuum equipment or 

high electron or high glass substrate temperatures [451, 452] which are considered as disadvantages 

because of their associated high cost [453], low productivity and difficulty in retrofitting of existing 

architectural glass. Among these techniques, the drop-casting technique has the advantage of 

simple and inexpensive experimental arrangements. 

Thin coating films are increasingly being applied to advanced technology today. Low-E window 

glassing and displays, functional layers in semiconductor chips, protective topcoats, stacks of 

recording films in optical storage disks, thin film in multilayer capacitors and hydrophobic layers 
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for keeping an adequate viewing field of mirrors on rainy days are some examples of their 

commercial applications [418, 454]. 

The most important application of thin-film technology for global energy conservation is a solar 

cell that converts solar radiation to electrical energy [453]. The main requirement for a solar cell is 

a material-coated the glass window which allows the maximum visible light to pass through and 

reflect IR radiation [453]. These types of thin films have been widely used in thermal insulation in 

lamps, solar photovoltaic conversion, window insulation, solar heating and solar thermal energy 

conversion [455]. 

Coating technology is divided into two different types based on the film thickness: Thick film with 

thicknesses above 10 mm and thin-film with thicknesses between 0.1 nm and 10 mm [456]. 

ESG can be divided into two types based on colour which are thin-film and tinted film. The tinted 

film has the properties to reflect heat and infrared light in the automotive application. Tinted film 

can be divided into few types based on the percentage of visible light and infrared transmission. 

The differences between thin-film and tinted film are the visibility of the glass and the features on 

it [454].  

Tinting vehicle windows is a technique used to control undesirable solar heating. Optical thin films 

(like Low-E coatings) is another technique that has been applied on glass windows of automobile 

especially on windshields by utilising several layers of IR-shielding to allow a sufficient amount 

of visible light to be transmitted through the windows for the safe operation of the vehicle and to 

control solar energy passing through the automobile by absorbing or reflecting a portion of solar 

energy which has a lower wavelength and high energy [457].  

Automobile glass has many problems that could be solved with coating technology in order to 

meet special requirements for automobiles, trucks, trains and other vehicles, such as light 

scattering from water droplets during rainy weather disturbing the driver’s vision and can cause 

severe discomfort as well as restricted vision. To overcome this problem, hydrophobic thin film 

coatings have been used to keep adequate viewing on rainy days [456]. 

Thermal overheating due to sun load of more than 70% of solar radiation transmitted into a vehicle 

compartment through window glass, results in heat deposition and temperature increases of up to 
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80°C or more. To overcome this problem, IR-shielding is effective in controlling the heating inside 

the automobile and therefore reducing the loading on the air-conditioner maintaining a comfort 

level [454]. Therefore, blocking heating radiation can be done by absorption/reflection of NIR. 

The main goal of using optical thin films is to have a high degree of transmission over the visible 

region of the electromagnetic energy spectrum and to control the amount of solar energy inflow 

through windows to heat the interior space which means having a low amount of transmission to 

non-visible solar radiation, therefore reducing undesirable solar heating of the automobile’s 

interior. Moreover, this provides protection for a driver's skin, interior fabric, and protecting sheet 

materials from strong ultraviolet (UV) light irradiation (Figure 5.2). 

 

Figure 5.2. The application of surface technologies in a modern car (taken from reference [456]). 

5.1.1. Electromagnetic spectrum 

Solar radiation which is reaching the earth’s surface is divided into the ultraviolet (UV 200-400 

nm, 6.9%), visible light (400-700 nm, 42.2%), and near-infrared radiation (700-2500 nm, 37.7%) 

(Figure 5.3).  
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Figure 5.3. Radiation and earth’s atmosphere (taken from reference [458]). 

The ultraviolet radiation is distributed in UVA in the range 320-400 nm and it is believed to cause 

the pigmentation on human skin [459, 460], UVB in the range 290-320 nm and UVC in the range 200-

290 nm [459]. UVC possesses a lower wavelength, higher energy and has the greatest potential for 

biological damage but fortunately UVC is effectively blocked by the ozone layer therefore not 

considered to be a factor in solar exposure of human beings [459] (Figure 5.4). The rest of the 

ultraviolet radiation that reaches the earth’s surface consists of 3.5% UVB and 96.5% UVA during 

a typical summers day. Visible light is the wavelength range of general illumination in the range 

400-700 nm.  
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Figure 5.4. Electromagnetic spectrum (taken from reference [461]). 

The German-British astronomer William Herschel discovered infrared light in 1800 when he 

investigated the temperature difference among the colours in the visible light spectrum by using 

thermometers [462]. He realised the temperature increased in the red light region of the visible 

wavelength range. Herschel assigned that region as infrared light and postulated that infrared light 

can be sensed as heat [463]. 

Infrared radiation is not visible to the human eye, it is between the visible and microwave regions 

of the electromagnetic spectrum ranging from 700 nm to 1 mm. The radiation responsible for 

heating is in the range 700-2500 nm and in the IR region, 35.9% of energy is in the 700–1200 nm 

range according to ASTM D173. The International Commission on Illumination has classified 

Infrared light based on photon energy into three categories as shown in Table 5.1 [464]. In addition, 

the International Organisation for Standardisation has classified Infrared light based on wavelength 

into three categories as shown in Table 5.2 [464]. As shown in Table 5.1 the highest photon energy 

and the lowest wavelength are for Near-Infrared in the range 700–1400 nm, which is considered 

as the heating range. 

 

 

https://www.google.com/url?sa=i&url=https://www.forbes.com/sites/cognitiveworld/2019/04/12/the-weaponization-of-the-electromagnetic-spectrum/&psig=AOvVaw1naJmg8_Mifr3sMVPcXdh1&ust=1603695959909000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIjX6pKXz-wCFQAAAAAdAAAAABAk
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Table 5.1. CIE classification of IR radiations 

Name Wavelength  Frequency 

 (THz) 

Photon energy 

 (meV) 

Near infrared (IR-A) 0.7–1.4 μm (700–1400 nm) 215–430 886–1653 

Mid-infrared (IR-B) 1.4–3.0 μm (1400–3000 nm) 100–215 155–413 

Far-infrared (IR-C) 3.0–100 μm (3000–0.1 mm) 3–100 1.2–83 

Table 5.2. ISO 20473 standard subdivision of IR 

 

 

 

There are requirements of glass coating on ESG as these need a high visible light transparency and 

a heat-shielding function (cut off NIR). NIR-absorbing dyes and metal nanoparticle dispersions 

are commonly used as transparent resin materials that absorb light in broad absorbance in the range 

700–1200 nm and weak absorbance in the visible region is highly desirable for window materials 
[465-468]. Some examples of NIR-absorbing dyes are dithiolene complexes [469], nickel complexes 
[470], azo compounds [471], cyanines [472], phthalocyanines [473], polymethine [474], and boron–

dipyrromethene [475]. Examples of NIR-absorbing metal nanoparticles are cesium tungsten oxide 
[476] and lanthanum hexaboride [477]. Unfortunately, these NIR-absorbing dyes are either strongly 

coloured owing to absorption in the visible (400-700 nm) region or provide insufficient heat 

shielding owing to a narrow NIR absorption band. Generally, organic dyes are unsuitable for use 

in environments like windows that are exposed to sunlight for long periods of time due to them 

having lower light stability [478]. 

Cu(II) often has a broad absorption band in the range 700 to 1200 nm which resulting from d–d 

transitions of Cu2+ (2Eg-2T2g) electronic transition of the single unpaired electron and weak 

absorption in the visible region from 400 to 700 nm [478] (Figure 5.5). In addition, this broad 

absorption band results in the splitting of the orbital energy level by Jahn-Teller distortion [478]. 

Therefore, this was taken into account when making the decision to implement 3d-metal 

Name Wavelength (μm) 

Near infrared (NIR) 0.78–3 μm  

Mid-infrared (MIR) 3–50 μm  

Far-infrared (FIR) 50–1000 μm  
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complexes, in particular copper complexes, as NIR absorbers. The optical performance of copper 

complexes for NIR-absorbing has been illustrated by measuring their UV, visible and NIR spectra. 

The copper complexes have suitable absorption features for applications that require transparency 

or brightness [478]. Moreover, during thermal studies, some complexes showed decomposition at 

temperatures above 250 °C. Therefore, they are stable above the processing temperature of typical 

transparent resins [478].  

x2-y2 z2

xy xz yz

x2-y2 z2

xy xz yz

Energy

(light absorbed)

Ground state Cu2+ Excited state Cu2+
 

Figure 5.5. A d-d transition of Cu(II) ions (taken from reference[479, 480]). 

NIR optical filtering has received much attention due to the rapid development of laser applications 

in various fields such as free-space optical telecommunication [481], night view imaging [482], 

satellite remote sensing [483, 484] and biological medicine [485, 486]. NIR optical filtering is a relation 

between optical attenuation and laser protection within a biological optical window of 800~1300 

nm [469]. Often, optical filtering is applied in precision instruments, eye-protecting glasses, laser 

protections and photographs [469]. Due to their tense and broad absorption in the near-infrared 

region, copper metal complexes are also considered quite outstanding NIR optical filtering 

materials that will be discussed herein this research. 

Modern windows, automobiles and trains include metal-containing coatings for ESG and to block 

heat penetration through the glass [431, 487, 488]. Unfortunately, these coatings have the problem of 

weakening the wireless transmission of Microwave/ Radio Frequency (RF) signals such as radio 

waves, television signals, shields radio signals, mobile phone signals [431, 452], Wi-Fi, security and 

personal communication signals which are used for mobile communications such as the Global 

System for Mobile communications (GSM) in the range 0.340-0.312 m (880–960 MHz), Universal 

Mobile Telecommunications System (UMTS) which is in the range 0.156-0.138 m (1920–2170 
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MHz), 0.1 m (3G) and GPS, etc. (<0.150 m (2 GHz)) signals, which affect the wireless 

communication between the inside and outside of  those buildings which have ESG [431] (Figure 

5.6). 

Most developments of coatings of the panes are optimised with ultra-violet or infrared radiation 

but no attention has been paid for the microwave region of the electromagnetic spectrum. Modern 

windows have proven to block modern communication systems and lose radio signals [487, 489, 490]. 

It has been reported that this metallic shielding is opaque for microwaves [429, 487, 489-493]. 

 

 

 

 

 

 

 

 

Figure 5.6. Illustration of the issues with ESG. The windowpane observes an opaque behaviour 

for heat, (A) IR-radiation, (B) transparent for the visible part of the spectrum, and (C) microwaves 

are stopped (taken from reference [494]). 

The solution for attenuation consists of using repeaters to amplify the signal which is expensive 

because it needs to be used whenever communication standards change [431]. To overcome the 

weakening of the transmission of Microwave/RF signals, Frequency Selective Surface (FSS) is 

used as bandpass filter [431]. FSS is a technique that was applied to ESG to overcome the weakness 

useful microwave frequencies can pass through it whilst reflecting NIR by removing less than 4% 

of the coating area [431, 495]. The FSS structure etched on the metal oxide coated glass is designed 

to improve microwave transmission through it and reflects the infrared (IR) signal [496, 497].  
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5.1.2. Problem statement and Objective 

Energy Saving Glass (ESG) is considered as a form of thermal insulation by keeping the room 

cold in the summer and warm in the winter. ESG can allow the visible light to pass through, 

reflect/absorb UV and IR radiations to reduce the consumption of energy, carbon emissions, and 

contribute to improving the environment. Unfortunately, ESG can attenuate/ reflect the useful 

electromagnetic wave (microwave frequencies) such as GSM mobile signal, wireless network, 

Bluetooth, and GPS signal in a certain area. Because of this, different approaches have been used 

to overcome this problem to reflect microwave frequencies. Herein, copper (II) complexes have 

been used to improve the transmission of microwave and cut off near infrared radiation of ESG. 

The objective of this chapter of the research is the applications of copper(II) complexes as a near-

infrared radiation-absorbing compounds, having a favorable shielding properties in a near-infrared 

range when used to produce films. The near-infrared radiation absorbing composition includes a 

copper (II) complex formed by reacting a 2,2′-bipyridine (bpy) and benzylphosphonate with two 

coordinating atoms form bonds using unshared electron pairs with the copper (II) component. 

The goal of the coating is to combine three main properties: undisturbed visibility through the 

window, negligible losses in the thermal performances of the window and transparency to 

microwaves for telecommunications. To reach these goals, copper (II) complexes have been 

synthesised using a stirring method and glass substrate deposition using the drop-casting method 

to prepare structured low emissivity coatings that are optimised towards enhanced IR shielding 

properties and microwave transmission. Transparent IR shielding coatings were coated on the glass 

substrate in order to control the amount of solar radiation permitted to pass through the window, 

to heat the interior space with the remainder being reflected or absorbed by the coating layer while 

maintaining a desired visible light characteristic transmission. This coating can be also applied to 

vehicle glass windows to match special requirements for automobiles, trucks and trains. The 

optical and IR shielding performance of the coatings were evaluated. The IR shielding coating 

with a synthesised copper complex can block more than 90% NIR while it can maintain more than 

80% transmittance in the visible range. Coated glass has been characterised by UV-Visible-NIR 

spectrophotometry and SEM. 
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5.1.2.1. Scope of Research 

1- Employ a copper(II) coordination complex like copper complex in the application field and 

explore its properties including molecular structure in the solid-state. 

2- Deposit the copper(II) complex on a glass substrate using drop-casting technique and 

characterise with FTIR, SEM and PXRD.  

3- Provide and evaluate Ultraviolet Radiation-absorbing/reflecting composite having favorable 

shielding properties.  

4- Provide coated glass that allows maximum transmission of visible light.  

5- Provide and evaluate Near-Infrared Radiation-absorbing composition having favorable 

shielding properties. 

6- Examine the surface morphology, optical and electrical properties of a copper complex thin 

film. 

7- Evaluate the mobile radio signal transmission through the coated glass (Figure 5.7). 

 

Figure 5.7 Optical Filter cut off UV and NIR. 
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Scheme 5.1. Approach of copper(II) complex as NIR blocking. 

In this chapter, copper complexes (47 and 48) were synthesised, characterisation and their 

solubility in different solvent such as: methanol, pyridine, and DMF were investigated.  

The glass substrate was cleaned then these copper complexes were deposited on the glass substrate 

by drop-casting technique. The copper(II) complex coated on the glass substrate was confirmed 

by PXRD and FTIR. The dissolution and phase separation of the composites were investigated by 

scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDX). The 

performances of copper(II) complexes as heat-shielding transparent window materials were 

determined the solar direct transmittance and visible light transmittance. The thermal properties 

were evaluated by thermogravimetric analysis (TGA). 

Deposit copper(II) complex on glass 
substrate by drop casting technology 

 

FTIR-spectra to conform the coating  PXRD to conform the coating  

UV-Visible-Near IR radiation  

Microwave transmission  

Clean glass substrate  

Prepare copper(II) complex 
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The first binuclear copper (II) complex was obtained by using Cu(OAc)2 H2O, benzylphosphonic 

acid (PhCH2PO(OH)2) and 2,2′-bipyridine (bpy). The binuclear CuII complex 

[Cu2(bpy)2(PhCH2PO2OH)4] CH3OH (47) was successfully synthesised, characterised and the 

optical properties were investigated.  

The second binuclear copper (II) complex was obtained by using Cu(NO3)2 3H2O, 

benzylphosphonic acid (PhCH2PO(OH)2) and 2,2′-bipyridine (bpy). The a binuclear CuII complex 

[Cu2(bpy)2(PhCH2PO2OH)2(H2O)2] (NO3)2 4H2O (48) was successfully synthesised, characterised 

and the optical properties were investigated.  

5.2. Structure and optical properties of [Cu2(bpy)2(PhCH2PO2OH)4]·CH3OH (47) 

5.2.1. Synthetic description  

The reaction of Cu(OAc)2 H2O, benzylphosphonic acid (PhCH2PO(OH)2) and 2,2′-bipyridine 

(bpy) in a molar ratio of 1:1:1 in MeOH with stirring for two hours and afforded blue block crystals 

of a new family of binuclear CuII complex [Cu2(bpy)2(PhCH2PO2OH)4]·CH3OH. 

5.2.2. Crystal structure of [Cu2(bpy)2(PhCH2PO2OH)4]·CH3OH 

The structure of compound 47 was characterised by single-crystal X-ray diffraction (full 

crystallographic data is given in Table 8.6) as shown in Figure 5.8. The purity of the phase is 

confirmed by powder X-ray diffraction (PXRD) (Figure 5.9). 

The crystal structure of the binuclear complex [Cu2(bpy)2(PhCH2PO2OH)4]·CH3OH (47) 

crystallises in the triclinic space group P1� with Z = 2.  
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Figure 5.8. Molecular structure of compound 47. Colour code: black, red, blue, white, pink and 

turquoise spheres represent C, O, N, H, P and Cu, respectively. Some of the H atoms are omitted 

for clarity. 

As shown in Figure 5.8, the benzylphosphonate and 2,2′-bipyridine are coordinating to the metal 

centre of Cu atoms as shown in the crystal structure. The benzylphosphonic acid ligand is singly-

deprotonated resulting in one negatively charged oxygen atom. The benzylphosphonate and 2,2′-

bipyridine ligands have been successfully used to synthesise a new binuclear {Cu2} complex 

consisting of two CuII ions, two 2,2′-bipyridine and four benzylphosphonate ligands.  
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Figure 5.9. Calculated (black) and experimental (red) powder X-ray diffraction (PXRD) patterns 

of compound 47. 

Both penta-coordinated CuII ions are surrounded by two N and three O donor atoms (N2O3). Two 

N atoms come from the 2,2′-bipyridine ligand and three O atoms come from benzylphosphonate 

ligand. This results in a distorted spherical square pyramid geometry, which was confirmed by 

SHAPE analysis [215] with a deviation value of 1.07, (Figure 5.10, Table 8.15). 

The Cu−O and Cu−N bond distances are in the range 1.930(2)−2.260(2) Å and 2.013(2)−2.016(2) 

Å, respectively. The Cu···Cu distance is 4.629(6) Å. Selected bond distances are summarised in 

Table 5.3. 

Table 5.3. Selected bond distances (A°) for compound 47 

Bond distances Bond distances 
Atom Atom Distance/Å Atom Atom Distance/Å 

Cu(1) O(1) 1.936(2) Cu(1) N(1) 2.016(2) 
Cu(1) O(2)' 2.260(2) Cu(1) N(2) 2.013(2) 
Cu(1) O(4) 1.930(2)     
'1-x, 1-y, 1-z 
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Intramolecular interaction has stabilised the structure of compound 47 through hydrogen bonds. 

O(6)–H(6) and O(6)'–H(6)' from the benzylphosphonate ligand make intramolecular hydrogen 

bonds to O(5) and O(5)' from the neighbouring benzylphosphonate ligand with distances of 

O(6)⋯O(5) and O(6)'⋯O(5)' 2.585 Å. In addition, O(3)–H(3) and O(3)'–H(3)' from the 

benzylphosphonate ligand makes intramolecular hydrogen bonds to O(5)' and O(5) from the 

neighbouring benzylphosphonate ligand with distances of O(3)⋯O(5)' and O(3)'⋯O(5) 2.588 Å. 

O(7)–H(7A) from the methanol (CH3OH) makes intramolecular hydrogen bonds to O(5) from the 

benzylphosphonate ligand with distances of O(7)⋯O(5) is 2.834 Å. 

 

Figure 5.10. Distorted spherical square pyramid geometry of 5-coordinated of Cu ion. Colour code: 

red, blue and turquoise spheres represent O, N and Cu, respectively. 

5.2.3. Thermal stability 

Thermal Gravimetric Analysis (TGA) was used to evaluate the thermal stability of the copper 

complex 47 as shown in Figure 5.11. The decomposition temperature is the temperature of the 

crossing point of two tangential lines at the decomposition onset stage of the TGA curve. 
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Figure 5.11. Thermogravimetric analysis curves of copper complex 47. 

Thermogravimetric analysis of 47 was performed between 30 and 1000 °C using a thermal 

gravimetric analysis (TGA Q-500, TA Instruments) under a nitrogen atmosphere to determine 

thermal stability. Complex 47 demonstrates thermal stability up to 250 °C. The weight loss of 

about 2.5% between 30 and 250 °C can be attributed to the loss of methanol molecule it should be 

5% as theoretical might be sample more dry present in 47. The continuous weight loss of about 

55.3 % between 250 and 513 °C can be attributed to the loss of benzylphosphonate and the 

continuous weight loss of about 21 % between 513 and 1000 °C can be attributed to the loss of 

bpy present in 47, it should be 26.3% as theoretical but the curve was stopped at 1000 °C.  

5.2.4. Optical properties and Optical Filter  

5.2.4.1. UV-visible and NIR study of Complex 47. 

Optical transmission and absorption of complex 47 were measured in methanol with the 

concentration 2×10–3 M at room temperature on a Cary 5000 scan Spectrophotometer over the 

ultraviolet (UV), visible and NIR regions i.e from 200-1000 nm. Figure 5.12, shows the 

transmission with respect to the wavelength of copper complex 47. The transmission in the visible 

region has been found to be 87.46 % at λmax 474 nm for complex 47. Generally, in the visible 

region (400-700 nm) of the spectrum, the transmission is high enough to observe interference 
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fringes. It is due to less absorption arising from the transfer of electrons from the valence to the 

conduction band owing to optical interference effects. The transmission in the NIR region has been 

found to be 15.17 % at λmin 700 nm for complex 47. In the absorption spectra as shown in Figure 

5.13, the absorbance in the NIR region has been found to be 0.9 at λmax 700 nm for complex 47. 

Generally, in the NIR region there is a broad band from 700-1000 nm that is attributed to the d–d 

transitions of Cu2+ and weak absorption in the visible region [478]. 
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Figure 5.12. Transmission spectra of complex 47. 

 

 

 

 

 

 

 

Figure 5.13. Absorption spectra of complex 47. 
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5.2.4.2. Preparation of NIR-absorbing composition. 

5.2.4.2.1. Preparation of glass substrate for coating  

Commercial glass window has used with a thickness of 2 mm and a size of 2.5 cm x 2.5 cm. Glass 

substrates were cleaned first by dip it in “ piranha” solution (H2SO4 75% and H2O2 25%) followed 

by rinsing several times with water and then sonicated for 20 min in isopropanol and dried in 

nitrogen. It was then placed in a plasma cleaner for 5 min prior to coating.  

5.2.4.2.2. Film fabrication 

The NIR optical filters were fabricated using a static solution drop-casting technique. The specific 

procedure is given below: 200 mg copper complex 47 was dissolved in 8 mL dry methanol with 

stirring for 10 minutes. Alternatively, the reaction between the components (see 7.2.47) without 

waiting for crystal growth gave the same result. This was followed by filtering the solution three 

times using pore diameter of the filter 0.45, 0.2 and 0.1 μm to reliably remove fine foreign 

substances while suppressing the filter clogging. Then 1.5 mL of solution is dropped to the cleaned 

glass substrate in three stages each 0.5 mL followed by increasing the temperature of hotplate to 

50 °C. When the solvent had evaporated the temperature was decreased to room temperature. This 

was repeated three times using three 0.5 mL aliquots. Then film was further dried on the hotplate 

for 10 min at 75 °C. Another method drop-cast 0.75 mL all at once on the cleaned glass substrate 

and after an hour this was repeated with further 0.75 mL and left for 24 hours to dry completely. 

Sometimes during evaporation of the solvent, some precipitate started to appear and this was 

avoided using poly(2-vinylpyridine) (PVP) for complex 47. 

Thus, 200 mg copper complex 47 was dissolved in 8 mL dry methanol and 200 mg PVP was 

dissolved in 2 mL dry methanol followed by mixing and stirring for 20 minutes then the solution 

filtered three times with 0.45, 0.2 and 0.1 μm pore diameter filter 0.7 mL. The final solution was 

dropped once on the cleaned glass substrate and after half an hour, the process repeated. The coated 

film was left to stand at room temperature for 24 hours to be dried. 
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5.2.4.3. Thin Film Characterisation 

5.2.4.3.1. IR transmission of the coatings 

The transmission of the coatings was measured in the middle infrared range using Fourier 

transform infrared spectrophotometer (FTIR), Bruker Alpha from wavenumber 4000–400 cm−1 

(Figure 5.14). The IR of the pure complex and the film coating on glass substrate, for 47 shows 

that the complex and its thin film are identical. 
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Figure 5.14. FTIR spectra for the pure complex and the film coating on glass substrate, for 47. 

5.2.4.3.2. Evaluation of the thickness of the coated film  

The thickness of coated films complex 47 and 47 + PVP were evaluated by programmable surface 

profiler measuring system-DEKTAK 6m model. As shown in Figure 5.15, the thickness of 

complex 47+PVP is 33.63 μm for 34.43 μm for complex 47. 
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Figure 5.15. Thickness of coated film complex 47 and 47 + PVP. 

5.2.4.3.3. Optical properties of the thin film  

Optical transmission and absorbance of thin films of 47 and 47+PVP were measured on a Cary 

5000 scan Spectrophotometer UV-Vis-NIR in the ultraviolet (UV), visible and NIR 200-2000 nm 

as shown in Figure 5.16 and Figure 5.17. 

The transmission in the visible region has been found to be 77.68% at λmax 468 nm for copper 

complex 47 films and 80.56% at λmax 470 nm for complex 47 film+ PVP. Generally, in the visible 

region (400-700 nm) of the spectrum, the transmission is high enough to observe interference 

fringes. It is less absorption due to the transfer of electrons from the valence to the conduction 

band owing to optical interference effects. 

The transmission in the NIR region has been found to be 3.16 %at λmin 674 nm for copper complex 

47 films and 5.96 % at λmin 675 nm for complex 47 film+ PVP. The absorbance in the NIR region 

has been found to be 1.5 at λmax 673 nm for copper complex 47 films and 1.23 at λmax 677 nm for 

complex 47 film+ PVP. Generally, in the NIR region there is a broad band from 700-1000 nm that 

is attributed to the d–d transitions of Cu2+ and weak absorption in the visible region [478].  
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Figure 5.16. Transmission spectra of complex 47 film and complex 47+PVP film. 
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Figure 5.17. Absorbance spectra of complex 47 film and complex 47+PVP film. 
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5.4.4.4.4. Scanning electron microscopy (SEM) /Energy-dispersive X-ray spectroscopy 

(EDX) 

The copper complex 47 film was observed by SEM/EDX, analyse the surface morphology and the 

dissolved states of the complex 47 film was evaluated using Zeiss Auriga 60. The SEM images 

and EDX complex 47 film distribution maps are shown in Figure 5.18. There are no precipitates 

but like flexes on glass surface and Cu is homogeneously dispersed in the glass surface. The EDX 

mapping results show the composition of glass coated with 47.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 SEM and EDX spectra of complex 47 film. 

 

  

 

https://en.wikipedia.org/wiki/SEM-EDX
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5.2.4.3.5. Preliminary test of Microwave Transmission  

A wide box was constructed from cement and sand opened from up with size 6 cm x 6 cm with 

depth 5cm was used to test microwave transmission.  

A mobile phone was placed in the box which was then sealed with glass (10 cm x10 cm) coated 

with 47. The phone showed a signal strength with 4 bars before being placed in the box. A call 

was made to the phone in box which received the signal still with a strength of 4 bars indicating 

successful microwave transmission. 

5.3. Structure and optical properties of [Cu2(bpy)2(PhCH2PO2OH)2(H2O)2] (NO3)2 4H2O 

(48) 

5.3.1. Synthetic description  

The reaction of Cu(NO3)2·3H2O, benzylphosphonic acid (PhCH2PO(OH)2) and 2,2′-bipyridine 

(bpy) in a molar ratio of 1:1:1 in MeOH with stirring and heating at 70 °C for two hours and 

afforded blue block crystals of a new family of binuclear CuII complex 

[Cu2(bpy)2(PhCH2PO2OH)2(H2O)2]·(NO3)2·4H2O. 

5.3.2. Crystal structure of [Cu2(bpy)2(PhCH2PO2OH)2(H2O)2]·(NO3)2·4H2O 

The structure of compound 48 was characterised by single-crystal X-ray diffraction (full 

crystallographic data is given in Table 8.6) (Figure 5.19). The purity of the phase is confirmed by 

powder X-ray diffraction (PXRD) (Figure 5.20). 

The binuclear complex [Cu2(bpy)2(PhCH2PO2OH)2(H2O)2]·(NO3)2·4H2O (48) crystallises in the 

triclinic space group P1� with Z = 1.  
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Figure 5.19. Molecular structure of compound 48. Colour code: black, red, blue, white, pink and 

turquoise spheres represent C, O, N, H, P and Cu, respectively. Some of the H atoms are omitted 

for clarity. 

The benzylphosphonate and 2,2′-bipyridine are coordinating to the metal centre of Cu atoms as 

shown in the crystal structure as shown in Figure 5.19. The benzylphosphonic acid ligand is singly-

deprotonated resulting in one negatively charged oxygen atom. The benzylphosphonate and 2,2′-

bipyridine ligands have successfully used to synthesise binuclear {Cu2} complex consisting of two 

CuII ions, two 2,2′-bipyridine ligand, two water, two nitrate groups and two benzylphosphonate 

ligands. 
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Figure 5.20. Calculated (black) and experimental (red) powder X-ray diffraction (PXRD) patterns 

of compound 48. 

Both penta-coordinated CuII ions are surrounded by two N and three O donor atoms (N2O3). Two 

N atoms come from the 2,2′-bipyridine ligand, two O atoms come from benzylphosphonate ligand 

and O atom comes from water (H2O). This results in a distorted spherical square pyramid geometry 

which was confirmed by SHAPE analysis [215] with a deviation value of 0.85, (Figure 5.21, Table 

8.16). 

The Cu−O and Cu−N bond distances are in the range 1.940(14)−2.359(15) Å and 1.989(16)− 

2.006(17) Å, respectively. The Cu···Cu distance is 5.160(4) Å. Selected bond distances are 

summarised in Table 5.4. 

Table 5.4. Selected bond distances (A°) for compound 48 

 

 

Bond distances Bond distances 
Atom Atom Distance/Å Atom Atom Distance/Å 
Cu(1) O(1) 1.940(14) Cu(1) N(1) 1.989(16) 
Cu(1) O(2)' 1.945(13) Cu(1) N(2) 2.006(17) 
Cu(1) O(4) 2.359(15) '1-x, 1-y, 1-z 
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Intramolecular interaction has stabilised the structure of compound 48 through hydrogen bonds. 

O(3)–H(3) from the benzylphosphonate ligand makes intramolecular hydrogen bond to O(8) from 

the lattice water molecule with distances of O(3)⋯O(8) 2.582 Å. In addition, O(8)–H(8A) from 

the lattice water molecule makes intramolecular hydrogen bond to O(9) from the another lattice 

water molecule with distances of O(8)⋯O(9) 2.662 Å, and O(8)–H(8B) from the lattice water 

molecule makes intramolecular hydrogen bonds to O(5) from the nitrate counteranion (NO3)– 

group with distances of O(8)⋯O(5) 2.862 Å. 

Intermolecular interaction has stabilised the structure of compound 48 through hydrogen bonds. 

O(8)–H(8B) from the lattice water molecule makes intermolecular hydrogen bond to O(5) from 

the nitrate NO3– counterion of a neighbouring molecule with O(8)⋯O(5) distance of 2.86 Å. In 

addition, O(9)–H(9A) from the lattice water molecule makes intermolecular hydrogen bond to 

O(7) from the nitrate NO3– counteranion of the neighbouring molecule with distances of 

O(9)⋯O(8) 2.94 Å, and O(8)–H(8B) from the lattice water molecule makes intramolecular 

hydrogen bond to O(3) from the benzylphosphonate ligand of the neighbouring molecule with 

distances of O(8)⋯O(3) 2.578 Å. Intra- and Intermolecular interaction results in a 3D 

supramolecular. The packing of compound 47 is presented in Figure 5.22. 

 

Figure 5.21. Distorted spherical square pyramid geometry of 5-coordinated of Cu ion. Colour code: 

red, blue and turquoise spheres represent O, N and Cu, respectively. 
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Figure 5.22. Packing of compound 48. Colour code: black, red, blue, magenta and turquoise 

spheres represent C, O, N, P and Cu, respectively. 

5.3.3. Thermal stability 

Thermal Gravimetric Analysis (TGA) was used to evaluate the thermal stability of the copper 

complex 48 as shown in Figure 5.23. The decomposition temperature is the temperature of the 

crossing point of two tangential lines at the decomposition onset stage of the TGA curve. 
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Figure 5.23. Thermogravimetric analysis curves of copper complex 48. 
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Thermogravimetric analysis of 48 was performed between 30 and 1000 °C using a thermal 

gravimetric analysis (TGA Q-500, TA Instruments) under a nitrogen atmosphere to determine 

thermal stability. Complex 48 demonstrates thermal stability up to 207 °C. The weight loss of 

about 3% between 30 and 142 °C can be attributed to the loss of 2 water molecule, 7.5% between 

142 and 207 °C can be attributed to the loss of 4 water molecule, 31 % between 207 and 293 °C 

can be attributed to the loss of benzylphosphonate and 27% between 293 and 762 °C can be 

attributed to the loss bpy present in 48. 

5.3.4. Optical properties and Optical Filter  

5.3.4.1. UV-visible and NIR study of Complex 48 

Optical transmission and absorption of complex 48 were measured in methanol with the 

concentration 2.3×10–3 M at room temperature on a Cary 5000 scan Spectrophotometer over the 

ultraviolet (UV), visible and NIR regions i.e from 200-1000 nm. 

Figure 5.24, shows the transmission with respect to the wavelength of copper complex 48. The 

transmission in the visible region has been found to be 88.16 % at λmax 476 nm for the complex 

48. Generally, in the visible region (400-700 nm) of the spectrum, the transmission is high enough 

to observe interference fringes. It is due to less absorption arising from the transfer of electrons 

from the valence to the conduction band owing to optical interference effects. 

The transmission in the NIR region has been found to be 14.92 % at λmin 700 nm for copper 

complex 48. In the absorption spectra as shown in Figure 5.25, the absorbance of the NIR region 

has been found to be 0.82 at λmax 700 nm. Generally, in the NIR region there is a broad band from 

700-1000 nm that is attributed to the d–d transitions of Cu2+ and weak absorption in the visible 

region [478].  
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Figure 5.24. Transmission spectra of complex 48. 
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Figure 5.25. Absorption spectra of complex 48. 

5.3.4.2. Preparation of NIR-absorbing composition. 

5.3.4.2.1. Film fabrication  

The NIR optical filter was fabricated using a static solution drop-casting technique. The specific 

procedure is given below: 180 mg copper complex 48 was dissolved in 8 mL dry methanol with 

stirring for 10 minutes. Alternatively, the reaction between the components (see 7.2.48) without 
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waiting for crystal growth gave the same result. This was followed by filtering the solution three 

times using pore diameter of the filter 0.45, 0.2 and 0.1 μm to reliably remove fine foreign 

substances while suppressing the filter clogging. Then 1.5 mL of solution is dropped to the cleaned 

glass substrate (see 5.2.4.2.1) in three stage each 0.5 mL followed be increasing the temperature 

of hotplate to 50 °C. When the solvent had evaporated the temperature was decreased to room 

temperature. This was repeated three times using three 0.5 mL aliquots. Then film was further 

dried on the hotplate for 10 min at 75 °C. Another method drop-cast 0.75 mL all at once on the 

cleaned glass substrate and after an hour this was repeated with further 0.75 mL and left for 24 

hours to dry completely. 

Notably, the optical filters with copper complex 48 are impossibly achieved with poly(2-

vinylpyridine) (PVP) as a matrix, mixing PVP with complex 48 form PVP was precipitated and 

not soluble this might be resulted from complex 48 since contains water lattice and PVP is form 

precipitated when mixed with water. 

5.3.4.3. Thin Film Characterisation 

5.3.4.3.1. IR transmission of the coatings  

The transmission of the coatings was measured in the middle infrared range using Fourier 

transform infrared spectrophotometer (FTIR), Bruker Alpha from wavenumber 4000–400 cm−1 as 

shown in Figure 5.26. The IR for the pure complex and the film coating on glass substrate, for 48 

shows that the complex and its thin film are identical. 
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Figure 5.26. FTIR spectra for the pure complex and the film coating on glass substrate for 48. 

5.3.4.3.2. Evaluation of the thickness of the coated film  

The thickness of coated film complex 48 was evaluated by programmable surface profiler 

measuring system- DEKTAK 6m model. As shown in Figure 5.27, the thickness of complex 48 is 

26.78 μm.  
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Figure 5.27. Thickness of coated film complex 48. 

5.3.4.3.3. Optical properties of the thin film 

Optical transmission and absorbance of coated glass with 48 were measured on a Cary 5000 scan 

Spectrophotometer UV-Vis-NIR in the ultraviolet (UV), visible and NIR 200-2000 nm as shown 

in Figure 5.28 and Figure 5.29. 

The transmission of copper complex 48 films in the visible region has been found to be 91.68 % 

at λmax 461 nm. Generally, in the visible region (400-700 nm) of the spectrum, the transmission is 

high enough to observe interference fringes. It is less absorption due to the transfer of electrons 

from the valence to the conduction band owing to optical interference effects. 

The transmission of copper complex 48 films in the NIR region has been found to be 11.66 %at 

λmin 701 nm. The absorbance of copper complex 48 films in the NIR region has been found to be 

0.95 at λmax 700 nm. Generally, in the NIR region there is a broad band from 700-1000 nm that is 

attributed to the d–d transitions of Cu2+ and weak absorption in the visible region [478].  
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Figure 5.28. Transmission spectra of complex 48 film. 
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Figure 5.29. Absorbance spectra of complex 48 film. 

5.5.4.3.4. Scanning electron microscopy (SEM) /Energy-dispersive X-ray spectroscopy 

(EDX). 

The copper complex 48 film was observed by SEM/EDX, analyse the surface morphology and the 

dissolved states of the complex 48 film was evaluated using Zeiss Auriga 60. The SEM images 

and EDX complex 48 film distribution maps are shown in Figure 5.30. There are no precipitates 

https://en.wikipedia.org/wiki/SEM-EDX


215 
 

but like flexes on glass surface and Cu is homogeneously dispersed in the glass surface. The EDX 

mapping results show the composition of glass coated with 48.  

 
 

 

Figure 5.30. SEM and EDX spectra of complex 48 film. 

5.3.4.3.5. Preliminary test of Microwave Transmission  

A wide box was constructed from cement and sand opened from up with size 6 cm x 6 cm with 

depth 5cm was used to test microwave transmission.  

A mobile phone was placed in the box which was then sealed with glass (10 cm x10 cm) coated 

with 48. The phone showed a signal strength with 4 bars before being placed in the box. A call 
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was made to the phone in box which received the signal still with a strength of 4 bars indicating 

successful microwave transmission. 

 

 

 

Figure 5.31. Comparisen of transmission of radiation through different glass substarte  

5.4. Conclusion  

In this research, two homometallic copper(II) complexes have been synthesised and characterised 

from the reactions of 2,2′-bipyridine (bpy) ligand, benzylphosphonic acid (PhCH2PO(OH)2) as co-

ligand and copper salt. By changing the copper salt either [Cu2(bpy)2(PhCH2PO2OH)4] CH3OH 

(47) or [Cu2(bpy)2(PhCH2PO2OH)2(H2O)2] (NO3)2 4H2O (48) could be obtained.  
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Compound 47 was synthesised using Cu(OAc) H2O, benzylphosphonic acid and 2,2′-bipyridine 

(bpy) and structurally characterised by single crystal XRD and powder XRD, and investigated 

optically. Optical studies carried out on compound 47 revealed that it has a broad band absorption 

in the NIR region in the range 700-1000 nm.  

Complex 47 was found to be thermally stable below 250 °C. The optical transmission in the visible 

region has been found to be 87.46 % at λmax 474 nm while the transmission in the NIR region has 

been found to be 15.17 % at λmin 700 nm. In the absorption spectra, the absorbance in the NIR 

region has been found to be 0.9 at λmax 700 nm for complex 47. Generally, in the NIR region there 

is a broad band from 700-1000 nm that is attributed to the d–d transitions of Cu2+ and weak 

absorption in the visible region [478]. 

The film was fabricated on glass substrate and some characterisation was taking place to confim 

the coating film on glass. The transmission of the coatings was measured in the middle infrared 

range by Fourier transform infrared spectrophotometer (FTIR), using Bruker Alpha spectrometer. 

The IR for the pure complex and the film coating on glass substrate, for 47 shows that the complex 

and its thin film are identical. The thickness of coated film complex 47 and 47 with PVP was 

evaluated 33.63 μm for complex 47+PVP and 34.43 μm for complex 47. Optical properties were 

investigated for complex 47 film and complex 47 film+ PVP. The transmission in the visible region 

was 77.68% at λmax 468 nm for copper complex 47 films and 80.56% at λmax 470 nm for complex 

47 film+ PVP. The transmission in the NIR region was 3.16 %at λmin 674 nm for copper complex 

47 films and 5.96 % at λmin 675 nm for complex 47 film+ PVP. The absorbance in the NIR region 

was 1.5 at λmax 673 nm for copper complex 47 films and 1.23 at λmax 677 nm for complex 47 film+ 

PVP. Generally, in the NIR region there is a broad band from 700-1000 nm that is attributed to the 

d–d transitions of Cu2+ and weak absorption in the visible region [478]. 

Compound 48 was synthesised using Cu(NO3)2 3H2O, benzylphosphonic acid (PhCH2PO(OH)2) 

and 2,2′-bipyridine (bpy) and structurally characterised by single crystal XRD and powder XRD, 

and investigated optically. Optical studies carried out on compound 48 revealed that it has a broad 

band absorption in the NIR region in the range 700-1000 nm. 

Complex 48 was found to be thermally stable below 207 °C. The optical transmission in the visible 

region has been found to be 88.16% at λmax 476 nm while the transmission in the NIR region has 
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been found to be 14.92 % at λmin 700 nm for complex 48. In the absorption spectra, the absorbance 

of the NIR region has been found to be 0.82 at λmax 700 nm for complex 48. Generally, in the NIR 

region there is a broad band from 700-1000 nm that is attributed to the d–d transitions of Cu2+ and 

weak absorption in the visible region [478]. 

The film was fabricated on glass substrate and some characterisation was taking place to confimed 

the coating film on glass. The transmission of the coatings was measured in the middle infrared 

range by Fourier transform infrared spectrophotometer (FTIR), using Bruker Alpha spectrometer. 

The IR for the pure complex and the film coating on glass substrate, for 48 shows that the complex 

and its thin film are identical. The thickness of coated film complex 48 was evaluated 26.78 μm. 

Optical properties was investigated for complex 48 film. The transmission of complex 48 films in 

the visible region has been found to be 91.68 % at λmax 461 nm. The transmission of complex 48 

films in the NIR region has been found to be 11.66 %at λmin 701 nm. In the absorption spectra, the 

absorbance of complex 48 films in the NIR region has been found to be 0.95 at λmax 700 nm. 

Generally, in the NIR region there is a broad band from 700-1000 nm that is attributed to the d–d 

transitions of Cu2+ and weak absorption in the visible region [478].  

The optical film was fabricated in order to construct an optical filter cuts off UV and NIR and 

allow the maximum visible radiation to pass through, together with microwave radiation. Low-

emissivity coatings have been made from film of copper complexes 47 and 48. These coatings 

exhibit superior solar infrared shielding with high visible transmittance and high environmental 

durability. It was found that copper complexes 47 and 48 both act as NIR-absorbers while allowing 

microwave transmission. 
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Chapter 6. Summary and Conclusions 

This doctoral research work has produced compounds exhibiting a wide range of structural motifs 

and interesting magnetic and optical properties. The obtained results are divided into three 

chapters; each chapter contains one kind of cluster aggregate. In chapter 3, homometallic 

lanthanide complexes are discussed, whereas in chapter 4 heterometallic iron-lanthanide 

complexes (Fe-4f) are described while in chapter 5 homometallic copper(II) complexes are 

explained. 

Chapter 3, Thirteen homometallic lanthanide complexes based on amino-polyalcohol ligands 

have been synthesised and characterised. Among dinuclear and tetranuclear Ln complexes, the 

crystal structures, optical and magnetic properties of Dy-based compounds have been discussed in 

detail. Homometallic lanthanide complexes have been synthesised from the reactions of the 

respective lanthanide cations, amino-polyalcohol ligands and co-ligands (benzoate, Pivalate or o-

vanillin).  

Three different dinuclear series [Dy2(H4bdp)(PhCO2)2(NO3)2]·NO3·MeCN (1), a series of four 

dinuclear [Ln2(PhCO2)8(MeOH)4] (2-5), four dinuclear [Ln2(TipaH2)2(Piv)4] (6-9) and four 

tetranuclear compounds [Ln4(μ3-OH)2(o-van)4(Piv)6]·2MeCN (10-13) have been successfully 

synthesised, crystallographically characterised and magnetically studied. These syntheses were 

carried out under aerobic conditions. 

Compound 1 was synthesised using 1,3-bis-diethanolamino-2-propanol (H5bdp), benzoate and 

lanthanide nitrate. Moreover, intermolecular hydrogen bonding in compound 1 results in a 2D 

supermolecular. Magnetic studies carried out on compound 1 shows weak antiferromagnetic 

interactions. Compound 1 shows slow relaxation of the magnetisation below 6 K under an applied 

DC field of 2500 Oe. The maximum out-of-phase signal was noticed at 2 K at 2.6 Hz which 

indicates the presence of SMM behaviour in a compound 1 with energy barrier of 4.38 K and the 

pre-exponential factor of 8.15×10-3 s. The Cole-Cole plots suggest that a single relaxation process 

exists in compound 1. 

Compounds 2-5 were synthesised using diisopropanolamine ligand, benzoate from (Fe3O(PhCO2)) 

and lanthanide nitrate. The diisopropanolamine is a necessary reagent for the isolation of the 
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compounds in this synthesis. Although diisopropanolamine is not part of the obtained product it 

could act as a buffer protecting the dysprosium from further hydrolysis. Compound 5 (Ln=DyIII) 

is further stabilised by intramolecular interaction through hydrogen bonding. These syntheses were 

carried out under aerobic conditions and products were crystallised in methanol by slow 

evaporation in air, resulting in dinuclear clusters. Static magnetic studies show the presence of 

antiferromagnetic interactions in compounds 3 and 5. Compound 5 exhibits slow relaxation of 

magnetisation with a maximum peak. 

The maximum entropy (-ΔSm) value of 24.44 J kg-1 K-1 was obtained for compound 3 (Ln=GdIII) 

with ΔH =7T at 3 K. The MCE observed in 3 may be of the potential interest to the magnetic 

refrigeration technologies. 

Luminescence studies performed on compounds 2 (Ln=EuIII) and 4 (Ln=TbIII) show the emission 

bands emerging from f–f transitions. This feature is important due to their potential applications 

as luminescent materials in areas such as: telecommunications, optical amplifiers and sensors.  

Compounds 6-9 were synthesised using triisopropanolamine, iron-Pivalate and lanthanide nitrate. 

Dominant antiferromagnetic interactions are observed. Compound 9 (Ln=DyIII) shows slow 

relaxation of magnetisation below 10 K under an applied DC field of 1500 Oe. The maximum out-

of-phase signal observed at 7 K at 1488 Hz illustrates the SMM behaviour in 9. Fitting the AC 

data to an Arrhenius law results in an energy barrier of 22.44 K with the pre-exponential factor of 

5.23× 10-6 s. The Cole-Cole plot suggest that a single relaxation process occurs in compound 9. 

Compounds 10-13 were synthesised using N-methyldiethanolamine (mdeaH2), o-vanillin (o-van), 

Pivalic acid and respective lanthanide chloride. The N-methyldiethanolamine (mdeaH2) is an 

essential reagent for obtaining the compound. Although N-methyldiethanolamine (mdeaH2) is 

unlisted in the final product, it acts as a base to facilitate the deprotonation of the o-vanillin ligand. 

Tetranuclear compounds 10-13 are isostructural having a “butterfly” motif. Magnetic studies 

carried out on compound 13 (Ln=DyIII) revealed that antiferromagnetic interactions are dominant. 

Compound 13 shows no AC signal under zero applied DC field and not even under small-applied 

DC fields (500-3000 Oe). These results indicate that compound 13 lacks SMM behaviour under 

these conditions; but it might be a SMM with lower energy barriers or at very low- temperatures 
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which cannot be measured in a standard SQUID. This can be studied using micro-SQUID at very 

low, sub Kelvin, temperatures.  

Chapter 4, Thirty-three heterometallic iron-lanthanide complexes based on N-

methyldiethanolamine (mdeaH2) ligands have been synthesised and characterised. Among Fe-Ln 

complexes, the crystal structures, optical and magnetic properties of tetranuclear and hexanuclear 

have been discussed in detail. These complexes have been synthesised from the reactions of iron 

chloride and respective lanthanide cations, N-methyldiethanolamine ligand and co-ligand (sodium 

benzoate, di(2-pyridyl) ketone (dpk), sodium azide and o-vanillin). 

A series of seven tetranuclear [Fe2Ln2(mdea)2{(py)2C(OCH3)O}2(μ4-

O)(N3)2(NO3)2(CH3OH)2]·H2O (14-20) nine hexanuclear [Fe2Ln4(mdea)2(mdeaH)2(μ3-

OH)2(N3)2(PhCO2)8]·3MeCN (21-29) ten hexanuclear [Fe2Ln4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 

·2·5MeCN (30-39) and seven hexanuclear [Fe4Ln2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O 

(40-46) complexes have been successfully synthesised, crystallographically characterised, 

optically and magnetically studied. 

Compounds 14-20 were synthesised using N-methyldiethanolamine (mdeaH2), di(2-pyridyl) 

ketone (dpk), sodium azide (NaN3), iron chloride and lanthanide nitrate. Tetranuclear compounds 

14-20 are isostructural and having a distorted square core. Compound 20 (Ln=DyIII) has been 

further stabilised by intramolecular interaction through hydrogen bonding resulting in a 2D 

extended structure. Magnetic studies carried out on compound 20 revealed that weak 

antiferromagnetic interactions are dominant. Compound 20, shows no AC signals under zero 

applied DC field but shows slow relaxation without maxima under the small-applied DC field 

(500-3000 Oe). The results indicate that compound 20 lacks SMM behaviour. It is possible that 

compound 20 will be a SMM with lower energy barriers or at very low- temperatures which cannot 

be measured in a standard SQUID but with micro-SQUID at very low, sub Kelvin, temperatures. 

Compounds 21-29 were synthesised using N-methyldiethanolamine (mdeaH2), sodium benzoate, 

sodium azide (NaN3) iron chloride and lanthanide nitrate. Hexanuclear compounds 21-29 are 

isostructural with a “butterfly” core. Compound 27 (Ln=DyIII) has been further stabilised by 

intramolecular interaction through hydrogen bonds which result in a 1D polymeric structure. Static 

magnetic studies show the presence of overall ferromagnetic interactions in compounds 26 
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(Ln=TbIII) and 27 (Ln=DyIII) were investigated for potential SMM behaviour. Compound 26 

shows slow relaxation under zero applied DC field but without maxima even under small-applied 

DC fields (500-3000 Oe). Compound 27 shows no AC signals under zero applied DC field but 

shows slow relaxation without maxima under a small-applied DC field (500-3000 Oe). These 

analyses indicate that both compounds 26 and 27 are lacking SMM behaviour. They might be 

SMM with lower energy barriers or at very low-temperatures which cannot be measured in a 

standard SQUID.  

The maximum entropy (-ΔSm) value of 27.50 J kg-1 K-1 was obtained for compound 25 (Ln=GdIII) 

with ΔH =7T at 4 K. The magnetocaloric properties of 25 could of potential interest in molecular 

magnetic refrigerant systems. 

Luminescence studies performed on compounds 24 (Ln=EuIII) and 26 (Ln=TbIII) shows the 

emission bands emerging from f–f transitions. Compounds 24 and 26 can acts as luminescence 

material. 

Compounds 30-39 were synthesised using N-methyldiethanolamine (mdeaH2), o-vanillin (o-van), 

sodium benzoate, iron chloride and lanthanide nitrate. Magnetic studies carried out on compounds 

31-33 exhibit weak antiferromagnetic interactions in these compounds. Compound 32 (Ln=TbIII) 

shows slow relaxation under zero applied DC field but without maxima even under small-applied 

DC fields (500-3000 Oe). Compound 33 (Ln=DyIII) shows no AC signals under zero applied DC 

field but shows slow relaxation without maxima peak under a small-applied DC field (500-3000 

Oe). The results indicate that both compounds 32 and 33 are lacking SMM behaviour under such 

conditions. They might be SMM with lower energy barriers or at very low-temperatures which 

cannot be measured in a standard SQUID but can be examined by micro-SQUID measurements.  

The maximum entropy (-ΔSm) value of 18.41 J kg-1 K-1 was obtained for compound 31 (Ln=GdIII) 

with ΔH =7T at 5 K. The investigation of magnetocaloric properties in compound 31 exhibits that 

it might be useful as magnetic cooler.  

Compounds 40-46 were synthesised using N-methyldiethanolamine (mdeaH2), sodium benzoate, 

sodium azide (NaN3) iron chloride and lanthanide chloride. The hexanuclear compounds 40-46 are 

isostructural and possessing a “butterfly” core. Static magnetic studies show that both 
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antiferromagnetic and ferromagnetic interactions are dominant in compound 43 (Ln=DyIII). 

Compound 43 shows slow relaxation of the magnetisation below 5 K under zero an applied DC 

field. The observation of maximain the out-of-phase signal at 1.8 K at 80.13 Hz indicates the SMM 

behaviour in 43. Fitting the AC data to an Arrhenius law results in an energy barrier of 14.19 K 

with the pre-exponential factor of 1.94 × 10-6 s. The Cole-Cole plots suggest that a single relaxation 

process occurs in compound 43. This result provides a path for developing novel molecular devices 

for information storage and quantum computing. 

Luminescence studies performed on compound 40 (Ln=Eu) shows the emission bands emerging 

from f–f transitions. Such properties can be of interest in developing light emitting materials. 

Chapter 5, Two homometallic copper complexes have been synthesised and characterised. 

Among Cu complexes, the crystal structures, optical properties have been discussed in detail. 

These compounds have been synthesised from the reactions of 2,2′-bipyridine (bpy) ligand, 

benzylphosphonic acid (PhCH2PO(OH)2) as co-ligand and copper salt. 

[Cu2(bpy)2(PhCH2PO2OH)4] CH3OH (47) and [Cu2(bpy)2(PhCH2PO2OH)2(H2O)2]·(NO3)2·4H2O 

(48) complexes have been successfully synthesised, crystallographically characterised, optically 

studied. Changing the copper salt allowed to obtained new compound.  

Compound 47 (CuII) was synthesised using Cu(OAc)2·H2O, benzylphosphonic acid and 2,2′-

bipyridine (bpy) has been successfully synthesised and structurally characterised by single crystal 

XRD, powder XRD, and optically investigated. Compound 47 has been stabilised by 

intramolecular interaction through hydrogen bonding. Optical studies was investigated on 

compound 47 revealed that it has a broad band absorption in the range 700-1000 nm which act as 

NIR-absorbing. The transmission in the visible region has been found to be 87.46 % at λmax 474 

nm while the transmission in the NIR region has been found to be 15.17 % at λmin 700 nm. In the 

absorption spectra, the absorbance of the NIR region has been found to be 0.9 at λmax 700 nm for 

complex 47. Complex 47 was found to be thermally stable below 250 °C. Generally, in the NIR 

region there is a broad band from 700-1000 nm that is attributed to the d–d transitions of Cu2+ and 

weak absorption in the visible region [478]. 

Complex 47 film was fabricated on glass substrate and some characterisation was taking place to 

confirm the coating film. The emissivity of the coatings was measured for investigating the optical 
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properties of thin films in the middle infrared range for the pure complex and the film coating on 

glass substrate, for 47 shows that the complex and its thin film are identical. The thickness of 

coated film was evaluated 33.63 μm for complex 47+PVP and 34.43 μm for complex 47. Optical 

properties was investigated on complex 47 film and complex 47 film+ PVP. The transmission in 

the visible region has been found to be 77.68% at λmax 468 nm for complex 47 films and 80.56% 

at λmax 470 nm for complex 47 film+ PVP. The transmission in the NIR region has been found to 

be 3.16 %at λmin 674 nm for copper complex 47 films and 5.96 % at λmin 675 nm for complex 47 

film+ PVP. The absorbance in the NIR region has been found to be 1.5 at λmax 673 nm for copper 

complex 47 films and 1.23 at λmax 677 nm for complex 47 film+ PVP. Generally, in the NIR region 

there is a broad band from 700-1000 nm that is attributed to the d–d transitions of Cu2+ and weak 

absorption in the visible region [478]. 

Compound 48 (CuII) was synthesised using Cu(NO3)2·3H2O, benzylphosphonic acid 

(PhCH2PO(OH)2) and 2,2′-bipyridine (bpy) has been successfully synthesised and structurally 

characterised by single crystal XRD, powder XRD and optically investigated. Compound 48 has 

been further stabilised by intra- and intermolecular interaction through hydrogen bonding resulting 

in a 3D supramolecular. Optical studies was investigated on compound 48 revealed that it has a 

broad band absorption in the range 700-1000 nm which act as NIR-absorbing. The transmission in 

the visible region has been found to be 88.16 % at λmax 476 nm while the transmission in the NIR 

region has been found to be 14.92 % at λmin 700 nm for complex 48. In the absorption spectra, the 

absorbance of the NIR region has been found to be 0.82 at λmax 700 nm. Complex 48 was found to 

be thermally stable below 207 °C. 

Complex 48 film was fabricated on glass substrate and some characterisation was taking place to 

confirm the coating film. The emissivity of the coatings was measured for investigating the optical 

properties of thin films in the middle infrared range for the pure complex and the film coating on 

glass substrate, for 48 shows that the complex and its thin film are identical. The thickness of 

coated film of complex 48 was evaluated 26.78 μm. 

 Optical properties was investigated of complex 48 film. The transmission of complex 48 films in 

the visible region has been found to be 91.68 % at λmax 461 nm. The transmission of complex 48 

films in the NIR region has been found to be 11.66 %at λmin 701 nm. The absorbance of complex 

48 films in the NIR region has been found to be 0.95 at λmax 700 nm. Generally, in the NIR region 
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there is a broad band from 700-1000 nm that is attributed to the d–d transitions of Cu2+ and weak 

absorption in the visible region [478]. 

Optical film was fabricated in order construct an optical filter which cut off UV and NIR and allow 

maximum visible region to pass through. In addition, to allow microwave radiation to pass through 

without problem. Low-emissivity coatings has made from copper complex 47 and 48 films. These 

coatings exhibit superior solar infrared shielding with high visible transmittance and high 

environmental durability. 

Generally, in the visible region (400-700 nm) of the spectrum, the transmission is high enough to 

observe optical interference fringes, due to the transfer of electrons from the valence to the 

conduction band. In addition, in the NIR region there is a broad band from 700-1000 nm that is 

attributed to the d–d transitions of Cu2+ and weak absorption in the visible region [478]. Complex 

47 and 48 were found both act as NIR-absorbing and allow microwave transmission. 
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Chapter 7. Experimental 

All chemicals were sourced commercially through Alfa aesar and were used without further 

purification. All synthetic procedures were carried out under aerobic conditions using commercial 

solvents.  

7.1. Starting material  

7.1.1. Synthesis of inorganic material  

7.1.1.1. Synthesis of [Fe3O(PhCO2)6(H2O)3](PhCO2) 

A solution of iron nitrate Fe(NO3)3·9H2O (12.12 g, 30 mmol) in absolute ethanol (50 mL) was 

added to a second solution of sodium benzoate PhCO2Na (14.4 g, 100 mmol) in distilled water (90 

mL). The combined solutions were stirred for two hours at 60 ˚C followed by a further two hours 

at room temperature. The product was washed with a combination of water/ethanol/ether (5 /5/5 

mL), isolated and dried under vacuum [81]. 

Elemental analyses calculated (%) for, C 52.40, H 4.02; found: C 51.9, H 3.79. 

7.1.1.2. Synthesis of [Fe3O(Piv)6(H2O)3](Piv) 

Iron nitrate Fe(NO3)3. 9H2O (10.0 g, 24.8 mmol) and Pivalic acid (HPiv, 28.0 g, 274.0 mmol) was 

heated to 200°C whilst stirring for 2h or longer until there was no more gas formation. After the 

reaction had cooled down to 80 °C, a mixture of ethanol and water (85:15) mL was added slowly 

whilst stirring for 10 min and then left to stand undisturbed overnight. Red-brown hexagonal 

prism-shaped crystals appeared. The crystals were collected, washed with hexane and dried under 

vacuum [85, 90].  

Elemental analyses calculated (%) for, C 44.40, H 7.34; found: C 44.04, H 7.21. 

7.1.1.3. Synthesis of Ln(NO3)3·6H2O 

A mixture of Ln2O3 (15 mg) in H2O (400 mL) was heated to reach 300 ˚C under stirring. Then 

Nitric acid (HNO3 65%) was added dropwise until the oxide fully dissolved and the solution 

became transparent. Then the solvent was evaporated and the product was collected [88].  
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7.1.1.4. Synthesis of LnCl3·6H2O 

A mixture of Ln2O3(15 mg) in H2O (400 mL) was heated to reach 300 ˚C under stirring. Then 

Hydrochloric acid (HCl 37%) was added dropwise of until the oxide fully dissolved and the 

solution became transparent. Then the solvent was evaporated and the product was collected [88]. 

7.1.2. Synthesis of organic material  

7.1.2.1. Synthesis of 1,3-bis-diethanolamino-2-propanol (H5bdp) 

A mixture of diethanolamine (10.5 g, 100 mmol) and epichlorohydrin (9.3 g, 100 mmol) was 

stirred whilst cooling below 30° for over 2 h. Then an additional amount of diethanolamine (10.5 

g, 100 mmol) was added to the reaction. The final reaction was heated on a water bath for 8 h. 

Then the product was acidified with concentrated hydrochloric acid. After one hour of stirring, the 

product was extracted with acetone and recrystallised from absolute ethanol [498]. 

7.2. Synthesis of inorganic complexes 

7.2.1. Synthesis of [Dy2(H4bdp)(PhCO2)2(NO3)2]·NO3·MeCN (1) 

A mixture of 1,3-bis-diethanolamino-2-propanol (H5bdp) (178 mg, 0.50 mmol), 

[Fe3O(PhCO2)6(H2O)3](PhCO2) (125 mg, 0.125 mmol) and Dy(NO3)3·6H2O (57 mg, 0.125 mmol) 

was dissolved in of acetonitrile (20 mL). The mixture was stirred at room temperature for 2 h then 

heated to boiling after which it was cooled to room temperature, filtered and left to stand 

undisturbed to crystllise via slow evaporation of the solvent. Colourless needles of compound 1 

were obtained after three days. The crystals were filtrated and washed with MeCN. Yield; 52% 

based on Dy. 

Elemental analyses calculated (%) of compound 1 (corresponds to a loss of all lattice MeCN): C 

30.59, H 3.59, N 7.93; found: C 29.35, H 3.34, N 6.84. 

IR: ν (cm-1): 3328(w), 3158(w), 3054(w), 2991(w), 2966(w), 2911(w), 2861(w), 2741(w), 

2519(w), 2290(w), 2246(m), 1769(w), 1608(s), 1562(s), 1494(m), 1448(w), 1429(w), 1406(vs), 

1344(m), 1270(vs), 1218(w), 1181(w), 1162(m), 1110(m), 1074(m), 1058(w), 1041(w), 1022(vs), 



228 
 

999(m), 949(m), 897(vs), 859(m), 843(w), 807(m), 745(m), 724(vs), 672(s), 639(m), 569(w), 

551(m), 509(m), 469(m), 448(w), 432(s). 

7.2.2. Synthesis of [Eu2(PhCO2)8(MeOH)4]∞ (2) 

A mixture of Diisopropanolamine (dipaH3) (133 mg, 1 mmol) Eu(NO3)3.6H2O (112 mg, 0.25 

mmol) and [Fe3O(PhCO2)6(H2O)3](PhCO2) (250 mg, 0.25 mmol) was dissolved in methanol (20 

mL). The mixture was heated under reflux for 2.5 h after which it was cooled to room temperature, 

filtered and left to stand undisturbed to crystllise via slow evaporation of the solvent. Colourless 

needles of compound 2 were obtained after three days. The crystals were filtrated and washed with 

MeOH. Yield; 32% based on Eu. 

Elemental analyses calculated (%) of compound 2: C 51.10, H 3.82, found: C 50.85, H 3.71.  

IR: ν (cm-1): 3648 (w), 3061 (w), 1590 (s), 1528 (vs), 1490 (w), 1409 (w), 1384 (vs), 1302 (w), 

1276 (w), 1177 (m), 1148 (w), 1137 (w), 1113 (w), 1071 (m), 1012 (s), 999 (w), 871 (w), 844 (w), 

825 (w), 806 (w), 712 (vs), 689 (s), 667 (m), 545 (w), 417 (s). 

7.2.3. Synthesis of [Gd2(PhCO2)8(MeOH)4]∞ (3) 

Compound 3 was prepared in the same way as compound 2 but using Gd(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 33% based on Gd. 

Elemental analyses calculated (%) of compound 3: C 51.12, H 3.83, found: C 50.92, H 3.77.  

IR: ν (cm-1): 3649 (w), 3062 (w), 1589 (s), 1527 (vs), 1491 (w), 1408 (w), 1385 (vs), 1303 (w), 

1277 (w), 1176 (m), 1149 (w), 1137 (w), 1114 (w), 1070 (m), 1012 (s), 999 (w), 872 (w), 845 (w), 

824 (w), 805 (w), 713 (vs), 688 (s), 667 (m), 544 (w), 416 (s). 

7.2.4. Synthesis of [Tb2(PhCO2)8(MeOH)2]∞ (4) 

Compound 4 was prepared in the same way as compound 2 but using Tb(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 34% based on Tb. 

Elemental analyses calculated (%) of compound 4: C 50.99, H 3.82, found: C 50.72, H 3.63.  
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IR: ν (cm-1): 3064(w), 1625 (w), 1589 (s), 1519 (s), 1495 (w), 1410 (vs), 1302 (w), 1177 (m), 1160 

(w), 1106 (m), 1068 (m), 1024 (vs), 932 (w), 857 (m), 819 (w), 711 (vs), 683 (w), 670 (m), 553 

(m), 522(w), 483 (w), 466 (s), 417 (s). 

7.2.5. Synthesis of [Dy2(PhCO2)8(MeOH)2]∞ (5) 

Compound 5 was prepared in the same way as compound 2 but using Dy(NO3)3·6H2O (114 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 39% based on Dy. 

Elemental analyses calculated (%) of compound 5: C 50.74, H 3.81, found: C 50.42, H 3.57.  

IR: ν (cm-1): 3061 (w), 1589 (s), 1523 (vs), 1491 (m), 1442 (m), 1376 (vs), 1305 (w), 1174 (m), 

1143 (w), 1067 (m), 1022 (m), 1001 (w), 974 (w), 935 (w), 858 (m), 821 (w), 711 (vs), 680 (s), 

666 (m), 560 (w), 470 (w), 421 (s). 

7.2.6. Synthesis of [Eu2(TipaH2)2(Piv)4] (6) 

A mixture of Triisopropanolamine (TipaH3) (192 mg, 1 mmol), Eu(NO3)3·6H2O (112 mg, 0.25 

mmol) and [Fe3O(Piv)6(H2O)3]·Piv·(250 mg, 0.24 mmol) was dissolved in acetonitrile (20 mL). 

The mixture was stirred at ambient temperature for 10 minutes after which triethylamine (1 mL) 

was added dropwise to the solution followed by stirring at ambient temperature a further one hour. 

Then the solution was heated for 10 min to boiling after which it was cooled to room temperature, 

filtered and left to stand undisturbed to crystallise via slow evaporation of the solvent. Colourless 

block crystals of compound 6 suitable for X-ray crystallography were obtained after 2 weeks. The 

crystals were filtrated and washed with MeCN. Yield; 29% based on Eu. 

Elemental analyses calculated (%) of compound 6: C 41.99, H 6.81, N 2.58; found: C 41.82, H 

6.73, N 2.54. 

IR : ν (cm-1): 3180(br), 2970(m), 2952(w), 2866(w), 1531(s), 1482(s), 1463(w), 1430(vs), 

1418(vs), 1359(vs), 1312(m), 1297(w), 1262(w), 1222(vs), 1187(m), 1145(vs), 1123(w), 

1072(vs), 1044(vs), 981(vs), 940(m), 896(s), 882(m), 871(s), 840(s), 809(m), 790(s), 750(w), 

630(m), 602(s), 573(m), 551(m), 539(w), 495(vs), 478(m), 432(w). 
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7.2.7. Synthesis of [Gd2(TipaH2)2(Piv)4] (7) 

Compound 7 was prepared in the same way as compound 6 but using Gd(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 34% based on Gd. 

Elemental analyses calculated (%) of compound 7: C 41.44, H 6.54, N 2.54; found: C 41.22, H 

6.49, N 2.46. 

IR : ν (cm-1): 3181(br), 2971(m), 2953(w), 2865(w), 1530(s), 1483(s), 1464(w), 1429(vs), 

1417(vs), 1358(vs), 1311(m), 1297(w), 1261(w), 1221(vs), 1186(m), 1144(vs), 1124(w), 

1073(vs), 1044(vs), 980(vs), 939(m), 896(s), 881(m), 870(s), 841(s), 808(m), 791(s), 751(w), 

629(m), 601(s), 572(m), 550(m), 538(w), 495(vs), 479(m), 433(w). 

7.2.8. Synthesis of [Tb2(TipaH2)2(Piv)4] (8) 

Compound 8 was prepared in the same way as compound 6 but using Tb(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 37% based on Tb. 

Elemental analyses calculated (%) of compound 8: C 41.49, H 6.55, N 2.54; found: C 41.29, H 

6.43, N 2.47. 

IR : ν (cm-1): 3174(br), 2971(m), 2931(w), 2867(w), 1530(s), 1488(s), 1468(w), 1429(vs), 1417(vs), 

1362(vs), 1314(m), 1298(w), 1263(w), 1223(vs), 1188(m), 1139(vs), 1127(w), 1071(vs), 1042(vs), 

982(vs), 938(m), 894(s), 885(m), 868(s), 835(s), 806(m), 791(s), 755(w), 632(m), 605(s), 579(m), 

550(m), 500(vs), 486(m), 446(m), 431(w). 

7.2.9. Synthesis of [Dy2(TipaH2)2(Piv)4] (9) 

Compound 9 was prepared in the same way as compound 6 but using Dy(NO3)3·6H2O (114 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 39% based on Dy. 

Elemental analyses calculated (%) of compound 9: C 41.23, H 6.51, N 2.53; found: C 41.03, H 

6.40, N 2.50. 

IR: ν (cm-1): 3174(w), 2966(m), 2929(w), 2869(w), 1532(s), 1481(s), 1464(w), 1429(vs), 1417(vs), 

1358(vs), 1316(m), 1296(w), 1258(w), 1221(vs), 1186(m), 1141(vs), 1126(w), 1071(vs), 1049(vs), 
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983(vs), 938(m), 896(s), 883(m), 867(s), 841(s), 806(m), 793(s), 760(w), 636(m), 605(s), 579(m), 

550(m), 500(vs), 485(m), 435(w). 

7.2.10. Synthesis of [Eu4(μ3-OH)2(o-van)4(Piv)6]·2MeCN (10) 

A mixture of N-methyldiethanolamine (mdeaH2) (149 mg, 1.25 mmol), Pivalic acid (HPiv) (77 

mg, 0.75 mmol), o-vanillin (o-van) (42 mg, 0.275 mmol) and EuCl3·6H2O (94 mg, 0.25 mmol) 

was dissolved in acetonitrile (20 mL). The mixture was heated under reflux for 2 h after which it 

was cooled to room temperature, filtered and left to stand undisturbed to crystallise via slow 

evaporation of the solvent. Yellow single crystals of compound 10 were obtained after two days. 

The crystals were filtrated and washed with MeCN. Yield; 38% based on Eu. 

Elemental analyses calculated (%) of compound 10 (corresponds to a loss of all lattice MeCN): C 

50.90, H 4.91, N 9.40; found: C 49.19, H 4.74, N 7.52. 

IR: ν (cm-1): 3604 (w), 2950(w), 2918(w), 2866(w), 1686(w), 1647(vs), 1612(m), 1564(s), 

1542(m), 1481(m), 1422(vs), 1378(m), 1353(m), 1319(s), 1231(m), 1202 (vs), 1170(w), 1099(m), 

1070(m), 955(s), 895(m), 855(m), 811(w), 795(m), 738(w), 727(m), 688(w), 648(m), 607(w), 

594(m), 565(w), 550(w), 537(w), 503(w), 451(w). 

7.2.11. Synthesis of [Gd4(μ3-OH)2(o-van)4(Piv)6]·2MeCN (11) 

Compound 11 was prepared in the same way as compound 10 but using Gd(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 41% based on Gd. 

Elemental analyses calculated (%) of compound 11 (corresponds to a loss of all lattice MeCN): C 

50.35, H 4.86, N 9.30; found: C 48.74, H 4.70, N 7.48. 

IR: ν (cm-1): 3602 (w), 2948(w), 2918(w), 2864(w), 1684(w), 1648(vs), 1612(m), 1563(s), 

1543(m), 1482(m), 1423(vs), 1377(m), 1352(m), 1319(s), 1230(m), 1205 (vs), 1172(w), 1097(m), 

1072(m), 956(s), 897(m), 855(m), 812(w), 795(m), 739(w), 724(m), 689(w), 648(m), 610(w), 

595(m), 566(w), 552(w), 537(w), 504(w), 454(w). 
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7.2.12. Synthesis of [Tb4(μ3-OH)2(o-van)4(Piv)6]·2MeCN (12) 

Compound 12 was prepared in the same way as compound 10 but using Tb(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 37% based on Tb. 

Elemental analyses calculated (%) of compound 12 (corresponds to a loss of all lattice MeCN): C 

50.18, H 4.84, N 9.27; found: C 48.57, H 4.68, N 7.45. 

IR: ν (cm-1): 3601 (w), 2949(w), 2919(w), 2864(w), 1685(w), 1649(vs), 1613(m), 1563(s), 

1540(m), 1482(m), 1422(vs), 1378(m), 1353(m), 1320(s), 1230(m), 1205 (vs), 1170(w), 1098(m), 

1069 (m), 956(s), 897(m), 855(m), 811(w), 795(m), 739(w), 726(m), 688(w), 649(m), 610(w), 

595(m), 566(w), 552(w), 537(w), 504(w), 453(w). 

7.2.13. Synthesis of [Dy4(μ3-OH)2(o-van)4(Piv)6]·2MeCN (13) 

Compound 13 was prepared in the same way as compound 10 but using Dy(NO3)3·6H2O (114 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 42% based on Dy. 

Elemental analyses calculated (%) of compound 13 (corresponds to a loss of all lattice MeCN): C 

49.81, H 4.80, N 9.20; found: C 48.20, H 4.65, N 7.39. 

IR: ν (cm-1): 3603 (w), 2948(w), 2917(w), 2866(w), 1685(w), 1648(vs), 1611(m), 1563(s), 

1541(m), 1480(m), 1422(vs), 1377(m), 1353(m), 1319(s), 1230(m), 1204 (vs), 1171(w), 1099(m), 

1071(m), 956(s), 896(m), 855(m), 810(w), 795(m), 738(w), 726(m), 688(w), 648(m), 609(w), 

595(m), 565(w), 552(w), 536(w), 504(w), 452(w). 

7.2.14. Synthesis of [Fe2Pr2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2]·H2O (14) 

A mixture of N-methyl diethanolamine (mdeaH2) (149 mg, 1.25 mmol), FeCl3 anhydrous (41 mg, 

0.25 mmol), sodium azide (NaN3) (49 mg, 0.75 mmol), 2,2′-Dipyridyl ketone(dpk) (51 mg, 0.275 

mmol) and Pr(NO3)3·6H2O (109 mg, 0.25 mmol) was dissolved in a mixture of methanol 

/acetonitrile (20 mL, 1:1). The solution was heated under reflux for two hours after which it was 

cooled to room temperature, filtered and left to stand undisturbed to crystallise via slow 

evaporation of the solvent. Brown block crystals of compound 14 were obtained overnight. The 

crystals were filtrated and washed with MeCN / MeOH. Yield; 28% based on Pr. 
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Elemental analyses calculated (%) of compound 14, C 31.66, H 3.96, N 14.36; found: C 31.49, H 

3.79, N 14.17. 

IR: ν (cm-1):  3380(w), 2909(w), 2870(m), 2826(w), 2054(vs), 1603(m), 1573(w), 1432(vs), 

1350(w), 1289(s), 1262(m), 1221(s), 1154(w), 1107(m), 1047(vs), 983(m), 952(w), 893(s), 

820(m), 785(m), 762(w), 684(vs), 647(m), 620(s), 569(m), 520(m), 512(w), 490(w), 474(m), 

421(w). 

7.2.15. Synthesis of [Fe2Nd2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O(15) 

Compound 15 was prepared in the same way as compound 14 but using Nd(NO3)3·6H2O (110 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 30 % based on Nd. 

Elemental analyses calculated (%) of compound 15, C 31.51, H 3.94,N 14.30; found : C 31.35, H 

3.79, N 14.15 

IR: ν (cm-1): 3381(w), 2906(w), 2868(m), 2820(w), 2054(vs), 1600(m), 1573(w), 1432(vs), 

1353(w), 1289(s), 1259(m), 1221(s), 1157(w), 1107(m), 1047(vs), 980(m), 952(w), 893(s), 

821(m), 785(m), 762(w), 684(vs), 647(m), 620(s), 569(m), 520(m), 512(w), 490(w), 474(m), 

421(w). 

7.2.16. Synthesis of [Fe2Sm2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O(16) 

Compound 16 was prepared in the same way as compound 14 but using Sm(NO3)3·6H2O (111 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 31 % based on Sm. 

Elemental analyses calculated (%) of compound 16, C 31.23, H 3.90,N 14.17; found :C 31.06, H 

3.78, N 13.95. 

IR: ν (cm-1): 3383(w), 2906(w), 2864(m), 2826(w), 2058(vs), 1601(m), 1570(w), 1435(vs), 

1350(w), 1303(s), 1258(m), 1228(s), 1154(w), 1107(m), 1054(vs), 983(m), 952(w), 897(s), 

817(m), 781(m), 765(w), 685(vs), 646(m), 622(s), 571(m), 522(m), 510(w), 497(w), 478(m), 

422(w). 
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7.2.17. Synthesis of [Fe2Eu2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O (17) 

Compound 17 was prepared in the same way as compound 14 but using Eu(NO3)3·6H2O (112 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 32 % based on Eu. 

Elemental analyses calculated (%) of compound 17, C 31.16, H 3.89,N 14.14 ; found: C 30.98, H 

3.87, N 13.98. 

IR: ν (cm-1): 3387(w), 2909(w), 2867(m), 2825(w), 2061(vs), 1603(m), 1573(w), 1435(vs), 

1350(w), 1305(s), 1258(m), 1225(s), 1156(w), 1107(m), 1052(vs), 983(m), 955(w), 896(s), 

817(m), 784(m), 765(w), 687(vs), 648(m), 624(s), 571(m), 524(m), 512(w), 494(w), 475(m), 

422(w). 

7.2.18. Synthesis of [Fe2Gd2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2]H2O (18) 

Compound 18 was prepared in the same way as compound 14 but using Gd(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 35 % based on Gd. 

Elemental analyses calculated (%) of compound 18, C 30.92, H 3.87, N 14.03; found: C 30.50, H 

4.04, N 13.94. 

IR: ν (cm-1): 3391(w), 2915(w), 2872(m), 2826(w), 2060(vs), 1601(m), 1570(w), 1432(vs), 

1350(w), 1305(s), 1256(m), 1228(s), 1156(w), 1107(m), 1054(vs), 983(m), 958(w), 894(s), 

817(m), 781(m), 762(w), 687(vs), 649(m), 624(s), 569(m), 523(m), 512(w), 500(w), 472(m), 

422(w). 

7.2.19. Synthesis of [Fe2Tb2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O (19) 

Compound 19 was prepared in the same way as compound 14 but using Tb(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 38 % based on Tb. 

Elemental analyses calculated (%) of compound 19, C 30.85, H 3.86,N 14.00; found: C 30.29, H 

3.80, N 13.70. 

IR: ν (cm-1): 3391(w), 2917(w), 2872(m), 2824(w), 2062(vs), 1601(m), 1574(w), 1435(vs), 

1352(w), 1307(s), 1258(m), 1228(s), 1154(w), 1109(m), 1052(vs), 983(m), 958(w), 894(s), 
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820(m), 784(m), 764(w), 686(vs), 649(m), 625(s), 569(m), 525(m), 512(w), 500(w), 472(m), 

422(w). 

7.2.20. Synthesis of [Fe2Dy2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O (20) 

Compound 20 was prepared in the same way as compound 14 but using Dy(NO3)3·6H2O (114 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 39 % based on Dy. 

Elemental analyses calculated (%) of compound 20, C 30.69, H 3.84,N 13.92; found: C 29.34, H 

3.81, N 13.43  

IR: ν (cm-1): 3391(w), 2917(w), 2872(m), 2826(w), 2064(vs), 1598(m), 1573(w), 1434(vs), 

1352(w), 1308(s), 1258(m), 1228(s), 1156(w), 1107(m), 1052(vs), 983(m), 958(w), 894(s), 

820(m), 781(m), 762(w), 690(vs), 651(m), 627(s), 571(m), 525(m), 512(w), 500(w), 475(m), 

422(w). 

7.2.21. Synthesis of [Fe2Pr4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (21) 

A mixture of N-methyl diethanolamine (mdeaH2) (149 mg, 1.25 mmol), FeCl3 anhydrous (41 mg, 

0.25 mmol), sodium benzoate (PhCO2Na) (108 mg, 0.75 mmol), sodium azide (NaN3) (49 mg, 

0.75 mmol) and Pr(NO3)3.6H2O (109 mg, 0.25 mmol) was dissolved in acetonitrile (20 mL). The 

solution was heated under reflux for 2h after which it was cooled to room temperature, filtered and 

left to stand undisturbed to crystallise via slow evaporation of the solvent. Yellow needles of 

compound 21 were obtained after overnight. The crystals were filtrated and washed with MeCN. 

Yield; 37% based on Pr. 

Elemental analyses calculated (%) of compound 21 (corresponds to a loss of all lattice MeCN): C 

40.88, H 3.94, N 6.27; found: C 40.75, H 3.22, N 6.21  

IR: ν (cm-1): 2861 (w), 2061 (s), 1597 (s), 1556 (s), 1535 (s), 1395 (vs), 1338 (m), 1258 (w), 1198 

(w), 1173 (w), 1141 (w), 1067 (m), 1024 (m), 996 (m), 888 (m), 869 (w), 836 (w), 756 (w), 716 

(vs), 690 (m), 671 (s), 640 (m), 568 (m), 501 (m), 419 (s). 
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7.2.22. Synthesis of [Fe2Nd4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (22) 

Compound 22 was prepared in the same way as compound 21 but using Nd(NO3)3·6H2O (110 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 40 % based on Nd. 

Elemental analyses calculated (%) of compound 22 (corresponds to a loss of all lattice MeCN): C 

40.64, H 3.91, N 6.24; found: C 40.47, H 3.78, N 6.22. 

IR: ν (cm-1): 2864 (w), 2060 (s), 1599 (s), 1556 (s), 1535 (s), 1399 (vs), 1338 (m), 1256 (w), 1198 

(w), 1176 (w), 1143 (w), 1067 (m), 1024 (m), 999 (m), 895 (m), 865 (w), 836 (w), 756 (w), 715 

(vs), 690 (m), 672 (s), 643 (m), 570 (m), 500 (m), 419 (s). 

7.2.23. Synthesis of [Fe2Sm4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (23) 

Compound 23 was prepared in the same way as compound 21 but using Sm(NO3)3·6H2O (111 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 43 % based on Sm. 

Elemental analyses calculated (%) of compound 23 (corresponds to a loss of all lattice MeCN): C 

40.20, H 3.87, N 6.16; found: C 40.04, H 3.78, N 6.09. 

IR: ν (cm-1): 2864 (w), 2059 (s), 1601 (s), 1562 (s), 1536 (s), 1395 (vs), 1336 (m), 1258 (w), 1201 

(w), 1175 (w), 1140 (w), 1067 (m), 1027 (m), 999 (m), 895 (m), 871 (w), 836 (w), 755 (w), 715 

(vs), 690 (m), 672 (s), 640 (m), 576 (m), 502 (m), 419 (s). 

7.2.24. Synthesis of [Fe2Eu4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (24) 

Compound 24 was prepared in the same way as compound 21 but using Eu(NO3)3·6H2O (112 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 44% based on Eu. 

Elemental analyses calculated (%) of compound 24 (corresponds to a loss of all lattice MeCN): C 

40.09, H 3.86, N 6.15; found: C 39.95, H 3.79, N 6.13 

IR: ν (cm-1): 2864 (w), 2064 (s), 1601 (s), 1562 (s), 1541 (s), 1402 (vs), 1338 (m), 1256 (w), 1201 

(w), 1176 (w), 1143 (w), 1068 (m), 1027 (m), 999 (m), 897 (m), 869 (w), 834 (w), 754 (w), 718 

(vs), 690 (m), 674 (s), 640 (m), 570 (m), 503 (m), 422 (s). 
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7.2.25. Synthesis of [Fe2Gd 4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (25) 

Compound 25 was prepared in the same way as compound 21 but using Gd(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 53 % based on Gd. 

Elemental analyses calculated (%) for of compound 25 (corresponds to a loss of all lattice MeCN): 

C 39.72, H 3.82, N 6.09; found: C 39.56, H 3.69, N 6.04 

IR: ν (cm-1): 2861 (w), 2061 (s), 1601 (s), 1565 (s), 1540 (s), 1395 (vs), 1338 (m), 1258 (w), 1201 

(w), 1176 (w), 1143 (w), 1069 (m), 1027(m), 999 (m), 898 (m), 867 (w), 837 (w), 754 (w), 717 

(vs), 690 (m), 673 (s), 638 (m), 570 (m), 504 (m), 422 (s). 

7.2.26. Synthesis of [Fe2Tb4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (26) 

Compound 26 was prepared in the same way as compound 21 but using Tb(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 47 % based on Tb. 

Elemental analyses calculated (%) of compound 26 (corresponds to a loss of all lattice MeCN): C 

39.61, H 3.81, N 6.07; found: C 39.44, H 3.72, N 6.02 

IR: ν (cm-1): 2864 (w), 2059 (s), 1606 (s), 1567 (s), 1540 (s), 1399 (vs), 1338 (m), 1256 (w), 1201 

(w), 1177 (w), 1145 (w), 1068 (m), 1027 (m), 999 (m), 897 (m), 868 (w), 839 (w), 756 (w), 718 

(vs), 690 (m), 676 (s), 640 (m), 574 (m), 505 (m), 422 (s). 

7.2.27. Synthesis of [Fe2Dy4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (27) 

Compound 27 was prepared in the same way as compound 21 but using Dy(NO3)3·6H2O (114 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 50 % based on Pr. 

Elemental analyses calculated (%) of compound 27 (corresponds to a loss of all lattice MeCN) : C 

39.36, H 3.79,N 6.03; found: C 39.26, H 3.66, N 6.02. 

IR: ν (cm-1): 2864 (w), 2062 (s), 1606 (s), 1565 (s), 1543 (s),  1392 (vs), 1338 (m), 1256 (w), 1198 

(w), 1176 (w), 1145 (w), 1069 (m), 1024 (m), 999 (m), 897 (m), 869 (w), 839 (w), 754 (w), 718 

(vs), 690 (m), 671 (s), 649 (m), 571 (m), 505 (m), 422 (s). 
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7.2.28. Synthesis of [Fe2Ho 4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (28) 

Compound 28 was prepared in the same way as compound 21 but using HoCl3·6H2O (95 mg, 0.25 

mmol) in place of Pr(NO3)3·6H2O. Yield; 41 % based on Ho. 

Elemental analyses calculated (%) of compound 28 (corresponds to a loss of all lattice MeCN): C 

39.19, H 3.77, N 6.01; found: C 39.06, H 3.66, N 6.02 

IR: ν (cm-1): 2864 (w), 2060 (s), 1605 (s), 1568 (s), 1541 (s),  1394 (vs), 1338 (m), 1257 (w), 1198 

(w), 1176 (w), 1145 (w), 1065 (m), 1025 (m), 999 (m), 896 (m), 868 (w), 837 (w), 755 (w), 717 

(vs), 689 (m), 670 (s), 649 (m), 571 (m), 505 (m), 424 (s). 

7.2.29. Synthesis of [Fe2Y4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8]·3MeCN (29) 

Compound 29 was prepared in the same way as compound 21 but using Y(NO3)3·6H2O (96 mg, 

0.25 mmol) in place of Pr(NO3)3·6H2O. Yield; 36 % based on Y. 

Elemental analyses calculated (%) of compound 29 (corresponds to a loss of all lattice MeCN): C 

45.08, H 4.34, N 6.92; found: C 44.95, H 4.25, N 6.85  

IR: ν (cm-1): 2864 (w), 2059 (s), 1605 (s), 1570 (s), 1541 (s), 1397 (vs), 1338 (m), 1258 (w), 1198 

(w), 1176 (w), 1145 (w), 1067 (m), 1025 (m), 999 (m), 897 (m), 867 (w), 832 (w), 758 (w), 715 

(vs), 687 (m), 674 (s), 640 (m), 572 (m), 505 (m), 425 (s). 

7.2.30. Synthesis of [Fe2Eu4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (30) 

A mixture of N-methyldiethanolamine (mdeaH2) (149 mg, 1.25 mmol), FeCl3 anhydrous (41 mg, 

0.25 mmol), sodium benzoate (PhCO2Na) (108 mg, 0.75 mmol), o-vanillin (o-van) (42 mg, 0.275 

mmol) and Eu(NO3)3·6H2O (113 mg, 0.25 mmol) was dissolved in acetonitrile (20 mL). The 

solution was heated under reflux for 2 h after which it was cooled to room temperature, filtered 

and left to stand undisturbed to crystallise via slow evaporation of the solvent. Yellow single 

crystals of compound 30 were obtained in 3 days. The crystals were filtrated and washed with 

MeCN. Yield; 37% based on Eu. 

Elemental analyses calculated (%) of compound 30 (corresponds to a loss of all lattice MeCN): C 

43.59, H 3.37, N 1.24; found: C 43.29, H 3.26, N 1.20. 
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IR: ν (cm-1): 3064 (w), 2841 (w), 1649 (m), 1598 (s), 1562 (s), 1545 (s), 1490 (m), 1463 (w), 1449 

(w), 1397 (vs), 1307 (m), 1265 (w), 1244 (m), 1204 (s), 1169 (w), 1091 (s), 1064 (w), 1025 (m), 

998 (m), 958 (m), 903 (m), 855 (m), 817 (w), 783 (w), 755 (m), 717 (vs), 690 (s), 670 (s), 631 (m), 

606 (vs), 584 (w), 548 (m), 502 (m), 461 (w), 417 (m). 

7.2.31. Synthesis of [Fe2Gd4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (31) 

Compound 31 was prepared in the same way as compound 30 but using Gd(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 31% based on Gd. 

Elemental analyses calculated (%) of compound 31 (corresponds to a loss of all lattice MeCN): C 

43.19, H 3.35, N 1.22; found: C 42.94, H 3.23, N 1.20. 

IR: ν (cm-1): 3062 (w), 2843 (w), 1650 (m), 1598 (s), 1561 (s), 1548 (s), 1491 (m), 1465 (w), 1446 

(w), 1398 (vs), 1305 (m), 1263 (w), 1242 (m), 1207 (s), 1170 (w), 1090 (s), 1066 (w), 1027 (m), 

999 (m), 958 (m), 901 (m), 856 (m), 819 (w), 784 (w), 756 (m), 717 (vs), 691 (s), 671 (s), 630 (m), 

604 (vs), 582 (w), 547 (m), 504 (m), 463 (w), 417 (m). 

7.2.32. Synthesis of [Fe2Tb4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (32) 

Compound 32 was prepared in the same way as compound 30 but using Tb(NO3)3·6H2O (113 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 31% based on Tb. 

Elemental analyses calculated (%) of compound 32 (corresponds to a loss of all lattice MeCN): C 

43.06, H 3.32, N 1.22; found: C 42.97, H 3.31, N 1.18. 

IR: ν (cm-1): 3062(w), 2843(w), 1650(m), 1595(s), 1561(s), 1546(s), 1493(m), 1467(w), 1446(w), 

1401(vs), 1307(m), 1261(w), 1237(m), 1207(s), 1170(w), 1096(s), 1070(w), 1025(m), 999(m), 

955(m), 897(m), 853(m), 819(w), 782(w), 749(m), 714(vs), 688(s), 671(s), 630(m), 597(vs), 578 

(w), 547(m), 506(m), 463(w), 417(m). 

7.2.33. Synthesis of [Fe2Dy4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (33) 

Compound 33 was prepared in the same way as compound 30 but using Dy(NO3)3·6H2O (114 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 30 % based on Dy.  
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Elemental analyses calculated (%) of compound 33 (corresponds to a loss of all lattice MeCN): C 

42.79, H 3.30,N 1.21; found : C 42.74, H 3.30, N 1.19 

IR : ν (cm-1): 3054 (w), 2846 (w), 1648 (m), 1600 (s), 1561 (s), 1544 (s), 1494 (m), 1466 (w), 1444 

(w), 1401 (vs), 1309 (m), 1259 (w), 1242 (m), 1211 (s), 1173 (w), 1097 (s), 1070 (w), 1027 (m), 

999 (m), 958 (m), 899 (m), 853 (m), 819 (w), 784 (w), 756 (m), 717 (vs), 683 (s), 669 (s), 626 (m), 

604 (vs), 580 (w), 550 (m), 506 (m), 463 (w), 417 (m). 

7.2.34. Synthesis of [Fe2Ho4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (34) 

Compound 34 was prepared in the same way as compound 30 but using Ho(NO3)3·6H2O (115 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 30% based on Ho. 

Elemental analyses calculated (%) of compound 34 (corresponds to a loss of all lattice MeCN): C 

42.61, H 3.29, N 1.21; found: C 42.40, H 3.19, N 1.18. 

IR: ν (cm-1): 3065 (w), 2858 (w), 1648 (m), 1600 (s), 1559 (s), 1562 (s), 1491 (m), 1474 (w), 1441 

(w), 1405 (vs), 1313 (m), 1261 (w), 1240 (m), 1209 (s), 1170 (w), 1094 (s), 1068 (w), 1025 (m), 

999 (m), 959 (m), 901 (m), 851 (m), 816 (w), 780 (w), 751 (m), 717 (vs), 693 (s), 675 (s), 640 (m), 

600 (vs), 584 (w), 552 (m), 504 (m), 469 (w), 417 (m). 

7.2.35. Synthesis of [Fe2Er4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (35) 

Compound 35 was prepared in the same way as compound 30 but using Er(NO3)3·6H2O (115 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 32% based on Er. 

Elemental analyses calculated (%) of compound 35 (corresponds to a loss of all lattice MeCN): C 

42.44, H 3.27, N 1.20; found: C 42.331, H 3.11, N 1.18. 

IR: ν (cm-1): 3065 (w), 2843 (w), 1652 (m),1602 (s), 1563 (s), 1548 (s), 1493 (m), 1465 (w),1444 

(w), 1409 (vs), 1309 (m), 1263 (w), 1240 (m), 1211 (s), 1173 (w), 1094 (s), 1070 (w), 1027 (m), 

1000 (m), 955 (m), 901 (m), 851 (m), 819 (w), 786 (w), 756 (m), 717 (vs), 688 (s), 669 (s), 630 

(m), 604 (vs), 578 (w), 552 (m), 506 (m), 467 (w), 417 (m). 
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7.2.36. Synthesis of [Fe2Tm4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (36) 

Compound 36 was prepared in the same way as compound 30 but using Tm(NO3)3·6H2O (116 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 34% based on Tm.   

Elemental analyses calculated (%) of compound 36 (corresponds to a loss of all lattice MeCN): C 

42.32, H 3.26, N 1.20; found: C 42.24, H 3.23, N 1.15. 

IR: ν (cm-1): 3060 (w), 2843 (w), 1650 (m), 1599 (s), 1563 (s), 1548 (s), 1491 (m), 1467 (w), 1448 

(w), 1400 (vs), 1307 (m), 1261 (w), 1242 (m), 1214 (s), 1170 (w), 1092 (s), 1068 (w), 1029 (m), 

999 (m), 964 (m), 899 (m), 856 (m), 816 (w), 784 (w), 751 (m), 719 (vs), 691 (s), 673 (s), 632 (m), 

605 (vs), 578 (w), 547 (m), 508 (m), 469 (w), 417 (m). 

7.2.37. Synthesis of [Fe2Yb4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (37) 

Compound 37 was prepared in the same way as compound 30 but using Yb(NO3)3·6H2O (117 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 28% based on Yb. 

Elemental analyses calculated (%) of compound 37 (corresponds to a loss of all lattice MeCN): C 

42.02, H 3.24, N 1.19; found: C 41.89, H 3.19, N 1.17. 

IR: ν (cm-1): 3062 (w), 2848 (w), 1648 (m), 1600 (s), 1563 (s), 1550 (s), 1491 (m), 1470 (w), 1441 

(w), 1400 (vs), 1307 (m), 1261 (w), 1245 (m), 1211 (s), 1172 (w), 1096 (s), 1070 (w), 1027 (m), 

999 (m), 962 (m), 901 (m), 853 (m), 836 (w), 816 (w), 786 (w), 754 (m), 719 (vs), 691 (s), 669 (s), 

632 (m), 608 (vs), 586 (w), 552 (m), 510 (m), 471 (w), 417 (m). 

7.2.38. Synthesis of [Fe2Lu4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (38) 

Compound 38 was prepared in the same way as compound 30 but using Lu(NO3)3·6H2O (117 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 27% based on Lu. 

Elemental analyses calculated (%) of compound 38 (corresponds to a loss of all lattice MeCN): C 

41.88, H 3.23, N 1.19; found: C 41.51, H 3.15, N 1.14. 

IR: ν (cm-1): 3060 (w), 2841 (w), 1648 (m), 1600 (s), 1563 (s), 1552 (s), 1494 (m), 1467 (w), 1446 

(w), 1407 (vs), 1311 (m), 1263 (w), 1240 (m), 1209 (s), 1171 (w), 1094 (s), 1073 (w), 1025 (m), 
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999 (m), 958 (m), 900 (m), 851 (m), 819 (w), 784 (w), 751 (m), 719 (vs), 688 (s), 671 (s), 636 (m), 

612 (vs), 584 (w), 552 (m), 506 (m), 476 (w), 417 (m). 

7.2.39. Synthesis of [Fe2Y4(mdea)2(o-van)2(μ4-O)2(PhCO2)8]·2·5MeCN (39) 

Compound 39 was prepared in the same way as compound 30 but using Y(NO3)3·6H2O (96 mg, 

0.25 mmol) in place of Eu(NO3)3·6H2O. Yield; 38% based on Y. 

Elemental analyses calculated (%) of compound 39 (corresponds to a loss of all lattice MeCN): C 

49.08, H 3.79, N 1.39; found: C 48.88, H 3.62, N 1.25. 

IR: ν (cm-1): 3065 (w), 2845 (w), 1650 (m), 1602 (s), 1550 (s), 1544 (s), 1493 (m), 1470 (w), 1446 

(w), 1405 (vs), 1313 (m), 1263 (w), 1242 (m), 1209 (s), 1168 (w), 1092 (s), 1068 (w), 1025 (m), 

997 (m), 960 (m), 899 (m), 853 (m), 836 (w), 816 (w), 784 (w), 747 (m), 717 (vs), 691 (s), 669 

(s), 632 (m), 602 (vs), 584 (w), 547 (m), 508 (m), 448 (w), 417 (m). 

7.2.40. Synthesis of [Fe4Eu2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O (40) 

Method A 

A mixture N-methyl diethanolamine (mdeaH2) (60 mg, 0.5 mmol), sodium azide (NaN3) (65 mg, 

1 mmol), [Fe3O(PhCO2)6(H2O)3](PhCO2) (125 mg, 0.125 mmol) and EuCl3·6H2O (46 mg, 0.125 

mmol) was dissolved in acetonitrile (20 mL). The solution followed by stirring at room 

temperature for one hour. The solution was then heated to boiling, after which it was cooled to 

room temperature, filtered and left to stand undisturbed to crystallise via slow evaporation of the 

solvent. An orange plate crystals of compound 40 were obtained after overnight. The crystals were 

filtrated and washed with MeCN. Yield; 40% based on Eu. 

Elemental analyses calculated (%) of compound 40 ( corresponds to a loss of all lattice MeCN): C 

40.47, H 4.26, N 8.10; found: C 40.23, H 4.19, N 7.99. 

IR: ν (cm-1): 3667 (w), 3369 (w), 2961 (w), 2869 (m), 2824 (w), 2061 (s), 1594 (m), 1536 (s), 1493 

(w), 1450 (m), 1387 (vs), 1369 (w), 1330 (w), 1261 (w), 1199 (w), 1176 (w), 1154 (w), 1069 (s), 

1046 (w), 1024 (m), 996 (s), 903 (m), 823 (m), 759 (m), 717 (vs), 689 (w), 673 (vs), 639 (m), 579 

(s), 513 (s), 459 (s), 431(w), 416 (w).  
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Method B 

A mixture of N-methyl diethanolamine (mdeaH2) (149 mg, 1.25 mmol), FeCl3 anhydrous (41 mg, 

0.25 mmol), sodium benzoate (PhCO2Na) (108 mg, 0.50 mmol), sodium azide (NaN3) (49 mg, 

0.75 mmol) and EuCl3·6H2O (92 mg, 0.25 mmol) was dissolved in acetonitrile (20 mL). The 

solution was heated under reflux for 2h after which it was cooled to room temperature, filtered and 

left to stand undisturbed to crystallise via slow evaporation of the solvent. An orange plate crystals 

of compound 40 was obtained after overnight. The crystals were filtrated and washed with MeCN. 

Yield; 37% based on Eu. 

7.2.41. Synthesis of [Fe4Gd 2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O (41) 

Compound 41 was prepared in the same way as compound 40 but using GdCl3·6H2O (46 mg, 

0.125 mmol) in place of EuCl3·6H2O. Yield; 44% based on Gd. 

Elemental analyses calculated (%) of compound 41 (corresponds to a loss of all lattice MeCN): C 

40.24, H 4.24, N 8.06; found C 40.08, H 4.14, N 7.92. 

IR: ν (cm-1): 3665 (w), 3366 (w), 2964 (w), 2870 (m), 2823 (w), 2061 (s), 1595 (m), 1540 (s), 1493 

(w), 1451 (m), 1388 (vs), 1369 (w), 1330 (w), 1258 (w), 1198 (w), 1176 (w), 1156 (w), 1069 (s), 

1046 (w), 1024 (m), 995 (s), 905 (m), 823 (m), 759 (m), 716 (vs), 689 (w), 674 (vs), 633 (m), 580 

(s), 512 (s), 462 (s), 431(w), 416 (w). 

7.2.42. Synthesis of [Fe4Tb2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O (42) 

Compound 42 was prepared in the same way as compound 40 but using TbCl3·6H2O (47 mg, 0.125 

mmol) in place of EuCl3·6H2O. Yield; 43% based on Tb. 

Elemental analyses calculated (%) of compound 42 (corresponds to a loss of all lattice MeCN): C 

40.17, H 4.23, N 8.04; found C 39.89, H 4.11, N 8.00. 

IR: ν (cm-1): 3664 (w), 3366 (w), 2961 (w), 2871 (m), 2823 (w), 2061 (s), 1595 (m), 1540 (s), 1490 

(w), 1451 (m), 1388 (vs), 1369 (w), 1330 (w), 1258 (w), 1198 (w), 1176 (w), 1156 (w), 1069 (s), 

1046 (w), 1024 (m), 996 (s), 905 (m), 823 (m), 759 (m), 716 (vs), 689 (w), 674 (vs), 633 (m), 580 

(s), 512 (s), 462 (s), 431(w), 416 (w). 
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7.2.43. Synthesis of [Fe4Dy2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O (43) 

Compound 43 was prepared in the same way as compound 40 but using DyCl3·6H2O (47 mg, 

0.125 mmol) in place of EuCl3·6H2O. Yield; 50% based on Dy. 

Elemental analyses calculated (%) of compound 43 (corresponds to a loss of all lattice MeCN): C 

40.00, H 4.21, N 8.01; found: C 39.76, H 4.11 N 7.99. 

IR: ν (cm-1): 3665 (w), 3366 (w), 2961 (w), 2870 (m), 2820 (w), 2061 (s), 1595 (m), 1540 (s), 1490 

(w), 1449 (m), 1388 (vs), 1369 (w), 1331 (w), 1258 (w), 1198 (w), 1176 (w), 1154 (w), 1069 (s), 

1046 (w), 1024 (m), 996 (s), 905 (m), 820 (m), 759 (m), 716 (vs), 687 (w), 674 (vs), 633 (m), 580 

(s), 514 (s), 462 (s), 431(w), 416 (w). 

7.2.44. Synthesis of [Fe4Ho2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O (44) 

Compound 44 was prepared in the same way as compound 40 but using HoCl3·6H2O (47 mg, 

0.125 mmol) in place of EuCl3·6H2O. Yield; 44% based on Ho. 

Elemental analyses calculated (%) of compound 44 (corresponds to a loss of all lattice MeCN): C 

39.92, H 4.20, N 7.99; found: C 39.54, H 4.09, N 7.96. 

IR: ν (cm-1): 3666 (w), 3369 (w), 2964 (w), 2870 (m), 2823 (w), 2061 (s), 1595 (m), 1540 (s), 1492 

(w), 1452 (m), 1391 (vs), 1369 (w), 1330 (w), 1259 (w), 1198 (w), 1176 (w), 1154 (w), 1068 (s), 

1046 (w), 1024 (m), 996 (s), 905 (m), 823 (m), 759 (m), 716 (vs), 689 (w), 674 (vs), 633 (m), 580 

(s), 512 (s), 462 (s), 431(w), 416 (w). 

7.2.45. Synthesis of [Fe4Er2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O (45) 

Compound 45 was prepared in the same way as compound 40 but using ErCl3·6H2O (48 mg, 0.125 

mmol) in place of EuCl3·6H2O. Yield; 35% based on Er. 

Elemental analyses calculated (%) of compound 45 (corresponds to a loss of all lattice MeCN): C 

39.82, H 4.17, N 7.97; found: C 39.54, H 3.97, N 7.91. 

IR: ν (cm-1): 3664 (w), 3369 (w), 2964 (w), 2867 (m), 2820 (w), 2061 (s), 1595 (m), 1540 (s), 1493 

(w), 1449 (m), 1388 (vs), 1369 (w), 1331 (w), 1259 (w), 1199 (w), 1178 (w), 1154 (w), 1069 (s), 
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1046 (w), 1024 (m), 997 (s), 904 (m), 823 (m), 759 (m), 716 (vs), 689 (w), 674 (vs), 633 (m), 580 

(s), 514 (s), 462 (s), 431(w), 416 (w).  

7.2.46. Synthesis of [Fe4Y2(mdea)4(PhCO2)6(N3)2(μ3-OH)2]·MeCN·H2O (46) 

Compound 46 was prepared in the same way as compound 40 but using YCl3·6H2O (38 mg, 0.125 

mmol) in place of EuCl3·6H2O. Yield; 38% based on Y. 

Elemental analyses calculated (%) of compound 46 (corresponds to a loss of all lattice MeCN): C 

38.37, H 6.06, N 12.34; found: C 38.22, H 5.88, N 12.15. 

IR: ν (cm-1): 3666 (w), 3369 (w), 2961 (w), 2870 (m), 2820 (w), 2061 (s), 1595 (m), 1541 (s), 1493 

(w), 1452 (m), 1388 (vs), 1372 (w), 1333 (w), 1264 (w), 1199 (w), 1173 (w), 1156 (w), 1069 (s), 

1049 (w), 1024 (m), 996 (s), 903 (m), 820 (m), 759 (m), 716 (vs), 689 (w), 675 (vs), 633 (m), 581 

(s), 516 (s), 461 (s), 431(w), 414 (w).  

7.2.47. Synthesis of [Cu2(bpy)2(PhCH2PO2OH)4]·CH3OH (47) 

A mixture of Cu(OAc)2·H2O (200 mg, 1 mmol) was dissolved in MeOH (5 mL) was 

added dropwise over 10 min to a stirred solution of benzylphosphonic acid (PhCH2PO(OH)2) (172 

mg, 1 mmol) and 2,2′-bipyridine (156 mg, 1 mmol) in MeOH (15 mL). The mixture was stirred at 

ambient temperature for two hours then the solution was filtered and left to stand undisturbed to 

crystallise via slow evaporation of the solvent. Blue block crystals of compound 47 suitable for X-

ray crystallography were obtained after one week. The crystals were filtrated and washed with 

MeOH. Yield; 45% based on Cu. 

Elemental analysis calcd (%) of compound 47 (corresponds to a loss of all lattice MeOH) : C 48,49 

H 4.04, N 4.71; found: C 48.26, H 3.99, N 4.61. 

IR: ν (cm-1): 3603(m), 3496(w), 3411(w), 3323(w), 3118(w), 3084(w), 3063(w), 3026(w), 

3004(w), 2945(w), 2907(w), 1670(w), 1640(w), 1603(s), 1575(w), 1565(w), 1494(s), 1475(m), 

1442(s), 1409(m), 1314(m), 1271(w), 1238(vs), 1196(w), 1139(vs), 1115(w), 1063(m), 1029(s), 

935(w), 911(w), 901(w), 811(w), 773(vs), 730(m), 697(vs), 660(w), 650(w), 636(w), 589(s), 

546(m), 522(vs), 498(w), 475(w), 451(s), 417(w). 
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7.2.48. Synthesis of [Cu2(bpy)2(PhCH2PO2OH)2(H2O)2]·(NO3)2·4H2O (48) 

A mixture of Cu(NO3)2.3H2O (240 mg, 1 mmol), benzylphosphonic acid (PhCH2PO(OH)2) (172 

mg, 1 mmol) and 2,2′-bipyridine (156 mg, 1 mmol) was dissolved in of methanol (25 mL). The 

mixture was stirred at 70 °C for two hours then the solution was filtered and left to stand undisturbed 

to crystallise via slow evaporation of the solvent. Blue block crystals of compound 48 suitable for 

X-ray crystallography were obtained after one week. The crystals were filtrated and washed with 

MeOH. Yield; 55% based on Cu. 

Elemental analysis calcd (%) of compound 48: C 40.25, H 4.34,N 8.29; found: C 40.13, H 4.26, N 

8.18. 

IR: ν (cm-1): 3084(w), 3077(w), 3065(w), 3054(w), 3036(w), 2918(w), 2413(w), 2034(w), 

2016(w), 1981(w), 1945(w), 1921(w), 1880(w), 1749(w), 1601(vs), 1572(m), 1494(s), 1469(m), 

1456(w), 1446(vs), 1429(w), 1413(m), 1379(vs), 1314(vs), 1250(m), 1220(m), 1196(w), 1168(w), 

1154(w), 1137(w), 1108(w), 1078(m), 1056(vs), 1026(m), 1016(w), 978(w), 964(w), 927(vs), 

902(w), 853(w), 841(w), 823(m), 809(m), 771(s), 729(w), 721(w), 700(m), 659(w), 651(w), 

636(w), 595(m), 516(m), 491(m), 470(w), 443(w), 419(w). 
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Chapter 8. Crystallographic data and SHAPE analysis 

8.1. Crystallographic Data 

Table 8.1. Crystal data of compounds 1, 3 and 5 

 

Compound 1 3 5 
Formula C27H38Dy2N6O18  C46H42Gd2O16  C46H42Dy2O16  
Formula weight 1059.63  1127.46 1137.46 
Crystal system Orthorhombic  Monoclinic  Monoclinic  
Space group Pna21  P 21/c  P 21/c  
a/Å 21.6171(8)  9.6286(7) 9.6416(4)  
b/Å 8.1007(2)  21.4017(9) 21.4344(11)  
c/Å 20.2610(5)  22.0547(11) 22.0152(9)  
α/º 90  90 90  
β/º 90  90.799(5) 90.837(4)  
γ/º 90  90 90  
V/Å 3547.98(18)  4544.3(4) 4549.2(4)  
Z 4  8 8  
T/K 150.15 150.15 150.15 
F(000) 2072 2312 2328 
Dc/Mg m-3 1.984 1.709 1.723 
µ/mm-1 (Ga-Kα) 22.434 (Ga-Kα) 15.913 (Ga-Kα) 17.501 
Data measured 17248 26668 21049 
Unique data 6460 10597 9275 
Rint 0.0672 0.0315 0.0616 
Data with I ≥2σ(I) 5167 9233 5581 
wR2(all data) 0.2147 0.1028 0.0982 
S(all data) 1.014 1.071 0.847 
R1[I≥2σ(I)] 0.0876 0.0371 0.0444 
Parameters/Restraints 491 /13 594/12 593 /5 
Biggest diff. peak/hole/eÅ +4.068/-1.048 +1.388/-1.879 +1.250/-0.573 
Colour of crystal Colourless needle Colourless needle Colourless 

needle 
Diffractometer Stoe Stadi Vari  Stoe Stadi Vari Stoe Stadi Vari 
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Table 8.2. Crystal data of compounds 9, 13 and 20 

 

 
 
 
 
 
 
 
 

Compound 9 13 20 
Formula C38H72Dy2N2O14 C66 H90Dy4N2O26 C36H54Dy2Fe2N14O18 
Formula weight 1110 1977.39 1407.63 
Crystal system Triclinic Triclinic Monoclinic 
Space group Pī Pī C c  
a/Å 11.1003(3) 12.1480(6) 18.1252(4) 
b/Å 14.3753(5) 13.3595(7) 17.4250(3) 
c/Å 16.7760(5) 13.6518(7) 15.8493(3) 
α/º 69.166(3) 70.001(5) 90 
β/º 89.878(2) 67.942(5) 97.526(2) 
γ/º 85.311(3) 88.070(4) 90 
V/Å 2492.50(14) 1918.12(19) 4962.59(17) 
Z 2 1 4 
T/K 293(2) 199.99 180.15 
F(000) 1124 972 2784 
Dc/Mg m-3 1.479 1.712 1.884 
µ/mm-1 (Mo-Kα) 3.031 (Cu-Kα) 21.117 (Mo-Kα) 3.634 
Data measured 54224 14303 38676 
Unique data 11678 7272 12852 
Rint 0.0946 0.0393 0.0257 
Data with I ≥2σ(I) 8414 5972 12397 
wR2(all data) 0.1187 0.0969 0.1165 
S(all data) 1.078 1.045 1.045 
R1[I≥2σ(I)] 0.0461 0.0369 0.0445 
Parameters/Restraints 535 /109 474/16 667 /9 
Biggest diff. peak/hole/eÅ +1.715/-1.125 +0.988/-1.132 +2.6/-1.181 
Colour of crystal Colourless block Yellow crystal Brown block 
Diffractometer Super Nova  Super Nova  Stoe Stadi Vari 
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Table 8.3. Crystal data of compounds 21, 27 and 28 

 

 

 

 

 

 

 

 

 

Compound 21 27 28 
Formula C82H97Pr4Fe2N13O26 C82H97Dy4Fe2N13O26 C76H90Fe2Ho4N10O27  
Formula weight 2356.06 2442.42 2346.99  
Crystal system Triclinic Triclinic Triclinic 
Space group Pī Pī Pī 
a/Å 12.5044(3) 12.3370(4) 12.9532(3)  
b/Å 13.7356(3) 13.6145(5) 13.9206(3)  
c/Å 15.9969(4) 15.8170(5) 15.3045(3)  
α/º 76.787(2) 85.012(3) 63.402(2)  
β/º 69.891(2) 69.505(3) 66.654(2)  
γ/º 62.503(2) 63.206(4) 62.520(2)  
V/Å 2280.55(11) 2213.32(15) 2125.68(10)  
Z 1 1 1  
T/K 180 180 180 
F(000) 1176 1204 1152.0 
Dc/Mg m-3 1.716 1.832 1.833 
µ/mm-1 (Ga-Kα) 12.825 (Cu-Kα) 20.982 (Ga-Kα) 18.808 
Data measured 29381 24546 26486 
Unique data 10766 8432 9269 
Rint 0.0203 0.0432 0.0344 
Data with I ≥2σ(I) 10016 7204 7645 
wR2(all data) 0.0827 0.0941 0.1076 
S(all data) 1.115 1.045 1.006 
R1[I≥2σ(I)] 0.0287 0.0358 0.0393 
Parameters/Restraints 581/6 596/13 556/7 
Biggest diff. peak/hole / eÅ +1.165/-0.808 +1.184/-1.115 +1.582/-1.717 
Colour of crystal Yellow needle Yellow block Yellow block 
Diffractometer Stoe Stadi Vari Super Nova Stoe Stadi Vari 
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Table 8.4. Crystal data of compounds 31and 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 31 33 
Formula C87H83.50Gd4Fe2N4.50O28 C87H83.5Dy4Fe2N4.5O28 
Formula weight 2380.78 2401.78 
Crystal system Triclinic Triclinic 
Space group Pī Pī 
a/Å 12.2707(4) 12.2130(4) 
b/Å 12.8584(5) 12.8391(5) 
c/Å 15.2993(8) 15.2748(5) 
α/º 73.408(4) 73.346(3) 
β/º 71.581(4) 71.419(3) 
γ/º 89.562(3) 89.444(3) 
V/Å 2185.85(17) 2166.26(14) 
Z 1 1 
T/K 150.15 150.15 
F(000) 1169 1177 
Dc/Mg m-3 1.809 1.841 
µ/mm-1 (Cu-Kα) 22.562 (Cu-Kα) 21.418 
Data measured 24260 23846 
Unique data 8305 8258 
Rint 0.0383 0.0398 
Data with I ≥2σ(I) 6461 6436 
wR2(all data) 0.1016 0.0982 
S(all data) 1.041 1.027 
R1[I≥2σ(I)] 0.0386 0.0378 
Parameters/Restraints 539/14 516/3 
Biggest diff. peak/hole/eÅ +0.997/-0.839 +0.747 /-0.745 
Colour of crystal Yellow block Yellow block 
Diffractometer Super Nova Super Nova 
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Table 8.5. Crystal data of compounds 43 and 45 

 

 

 

 

 

 

Compound 43 45 
Formula C64H81Dy2Fe4N11O23  C64H81Er2Fe4N11O23  
Formula weight 1920.79  1930.31  
Crystal system Triclinic  Triclinic  
Space group Pī  Pī 
a/Å 12.1633(2)  12.1377(2)  
b/Å 14.5145(3)  14.5255(2)  
c/Å 23.0837(4)  22.9684(3)  
α/º 89.544(2)  89.5710(10)  
β/º 75.0260(10)  75.2610(10)  
γ/º 70.409(2)  70.3260(10)  
V/Å 3695.12(13)  3674.00(10)  
Z 2  2  
T/K 180.15 180.15 
F(000) 1924 1932 
Dc/Mg m-3 1.726 1.745 
µ/mm-1 (Cu-Kα) 17.434 (Ga-Kα) 12.084 
Data measured 33273 42742 
Unique data 12858 17329 
Rint 0.0387 0.0284 
Data with I ≥2σ(I) 12247 15965 
wR2(all data) 0.1243 0.1092 
S(all data) 1.093 1.053 
R1[I≥2σ(I)] 0.0440 0.0407 
Parameters/Restraints 949/4 949/4 
Biggest diff. peak/hole/eÅ +1.998/-1.428 +1.471/-2.211 
Colour of crystal Orange plate Orange plate 
Diffractometer Stoe Stadi Vari Stoe Stadi Vari 
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Table 8.6. Crystal data of compounds 43 and 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2. SHAPE analysis  

A boldface values indicate the closest gemometry acooording to Continuous Shape Measures 

(CShM). Abbreviations: HP(D6h)hexagon, PPY(C5v) Pentagonal pyramid, OC(Oh) Octahedron, 

TPR(D3h) Trigonal prism, JPPY (C5v) Johnson pentagonal pyramid J2, OP (D8h) Octagon, 

HPY(C7v) Heptagonal pyramid, HBPY(D6h) Hexagonal bipyramid, CU(Oh) Cube, SAPR(D4d) 

Square antiprism, TDD(D2d) Triangular dodecahedron, JGBF(D2d) Johnson gyrobifastigium J26, 

Compound 47 48 
Formula C25H28CuN2O7P2  C34H44Cu2N6O18P2  
Formula weight 593.96  1013.77  
Crystal system Triclinic Triclinic 
Space group Pī Pī 
a/Å 10.7015(4)  7.5302(3)  
b/Å 11.4449(5)  11.1890(4)  
c/Å 12.4513(5)  12.3150(5)  
α/º 78.681(3)  93.176(3)  
β/º 64.548(3)  95.600(3)  
γ/º 68.850(3)  91.965(3)  
V/Å 1282.70(10)  1030.24(7)  
Z 2  1  
T/K 150  180 
F(000) 614 522 
Dc/Mg m-3 1.538 1.634 
µ/mm-1 (Ga-Kα) 5.641 (Mo-Kα) 1.194 
Data measured 13124 20137 
Unique data 5575 8584 
Rint 0.0512 0.0340 
Data with I ≥2σ(I) 5278 6261 
wR2(all data) 0.1701 0.1322 
S(all data) 1.051 0.990 
R1[I≥2σ(I)] 0.0636 0.0476 
Parameters/Restraints 348/0 301/8 
Biggest diff. peak/hole / eÅ +1.498/-1.013 +1.111/-1.113 
Colour of crystal Blue block Blue block 
Diffractometer Stoe StadiVari Stoe StadiVari 
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JETBPY(D3h) Johnson elongated triangular bipyramid J14, JBTPR (C2v) Biaugmented trigonal 

prism J50, BTPR (C2v) Biaugmented trigonal prism, JSD (D2d) Snub diphenoid J84, TT (Td) 

Triakis tetrahedron, ETBPY (D3h) Elongated trigonal bipyramid, EP (D9h) Enneagon, OPY (C8v) 

Octagonal pyramid, HBPY (D7h) Heptagonal bipyramid, JTC (C3v) Johnson triangular cupola J3, 

JCCU (C4v) Capped cube J8 CCU (C4v) Spherical-relaxed capped cube, JCSAPR (C4v) Capped 

square antiprism J10, CSAPR (C4v) Spherical capped square antiprism, JTCTPR(D3h) Tricapped 

trigonal prism J51, TCTPR(D3h) Spherical tricapped trigonal prism, JTDIC (C3v) Tridiminished 

icosahedron J63, HH (C2v) Hula-hoop, MFF (Cs) Muffin. PP(D5h) Pentagon, vOC (C4v) Vacant 

octahedron, TBPY (D3h) Trigonal bipyramid, SPY (C4v) Spherical square pyramid, JTBPY (D3h) 

Johnson trigonal bipyramid J12. 

8.2.1. SHAPE analysis of compound (1) 

Table 8.7. Shape measurement calculations of compound (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dy 

Eight-coordinate 

OP 34.88 

HPY 22.02 

HBPY 14.68 

CU 9.92 

SAPR 3.76 

TDD 2.02 

JGBF 14.31 

JETBPY 28.79 

JBTPR 3.23 

BTPR 2.67 

JSD 5.04 

TT 10.60 

ETBPY 24.02 
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8.2.2. SHAPE analysis of compound (5) 

Table 8.8. Shape measurement calculations of compound (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dy 

Eight-coordinate 

OP 29.34 

HPY 21.34 

HBPY 13.69 

CU 11.24 

SAPR 2.32 

TDD 1.98 

JGBF 12.39 

JETBPY 27.49 

JBTPR 1.67 

BTPR 1.28 

JSD 2.71 

TT 11.92 

ETBPY 24.45 



255 
 

8.2.3. SHAPE analysis of compound (9) 

Table 8.9. Shape measurement calculations of compound (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dy 

Eight-coordinate 

OP 31.00 

HPY 23.56 

HBPY 12.24 

CU 11.47 

SAPR 3.07 

TDD 1.48 

JGBF 13.46 

JETBPY 26.50 

JBTPR 2.98 

BTPR 2.74 

JSD 3.33 

TT 11.88 

ETBPY 23.36 
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8.2.4. SHAPE analysis of compound (13) 

Table 8.10. Shape measurement calculations of compound (13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dy(1) 

Eight-coordinate 

Dy(2) 

Nine-coordinate 

OP 33.50 EP 34.55 

HPY 23.63 OPY 23.06 

HBPY 12.63 HBPY 18.56 

CU 5.94 JTC 14.55 

SAPR 2.91 JCCU 10.23 

TDD 0.56 CCU 9.19 

JGBF 15.54 JCSAPR 1.86 

JETBPY 27.72 CSAPR 0.98 

JBTPR 3.39 JTCTPR 2.44 

BTPR 3.00 TCTPR 1.62 

JSD 3.75 JTDIC 13.37 

TT 6.63 HH 11.64 

ETBPY 24.73 MFF 1.07 
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8.2.5. SHAPE analysis of compound (20) 

Table 8.11. Shape measurement calculations of compound (20) 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fe 

Hexa-coordinate 

Dy 

Nine-coordinate 

HP 32.98 EP 36.46 

PPY 20.20 OPY 23.29 

OC 2.73 HBPY 18.00 

TPR 9.99 JTC 15.51 

JPPY 23.63 JCCU 10.84 

  CCU 9.25 

  JCSAPR 2.01 

  CSAPR 1.30 

  JTCTPR 3.81 

  TCTPR 1.94 

  JTDIC 12.40 

  HH 10.92 

  MFF 1.32 



258 
 

8.2.6. SHAPE analysis of compound (27) 

Table 8.12. Shape measurement calculations of compound (27) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fe(1) 

Hexa-coordinate 

Dy(1) 

Eight-coordinate 

Dy(2) 

Nine-coordinate 

HP 33.04 OP 29.30 EP 32.06 

PPY 21.08 HPY 22.49 OPY 21.82 

OC 3.36 HBPY 15.41 HBPY 16.97 

TPR 6.63 CU 8.83 JTC 13.37 

JPPY 24.14 SAPR 0.95 JCCU 9.12 

  TDD 0.94 CCU 8.42 

  JGBF 15.04 JCSAPR 2.93 

  JETBPY 27.77 CSAPR 2.35 

  JBTPR 2.25 JTCTPR 2.39 

  BTPR 1.99 TCTPR 2.48 

  JSD 3.57 JTDIC 12.32 

  TT 9.65 HH 9.29 

  ETBPY 23.26 MFF 2.42 
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8.2.7. SHAPE analysis of compound (33) 

Table 8.13. Shape measurement calculations of compound (33) 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fe(1) 

Hexa-coordinate 

Dy(1) 

Eight-coordinate 

Dy(2) 

Eight-coordinate 

HP 33.32 OP 32.50 OP 29.80 

PPY 20.07 HPY 21.78 HPY 22.36 

OC 2.09 HBPY 12.75 HBPY 12.46 

TPR 9.76 CU 8.72 CU 8.17 

JPPY 24.39 SAPR 3.99 SAPR 3.84 

  TDD 1.31 TDD 1.69 

  JGBF 11.81 JGBF 11.63 

  JETBPY 25.14 JETBPY 26.54 

  JBTPR 2.26 JBTPR 3.01 

  BTPR 2.43 BTPR 2.80 

  JSD 3.61 JSD 4.36 

  TT 9.21 TT 8.92 

  ETBPY 22.30 ETBPY 21.12 
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8.2.8. SHAPE analysis of compound (43) 

Table 8.14. Shape measurement calculations of compound (43) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.2.9. SHAPE analysis of compound (47) 

Table 8.15. Shape measurement calculations of compound (47) 

Cu(1) 
Five-coordinate 

PP 30.95 
vOC 1.95 

TBPY 3.00 
SPY 1.07 

JTBPY 6.13 

Fe (1) − Fe (3) 
Hexa-coordinate 

Fe(2)−Fe (4) 
Hexa-coordinate 

Dy 

Eight-coordinate 

HP 32.26 HP 32.97 OP 29.42 

PPY 23.29 PPY 21.64 HPY 20.67 

OC 1.43 OC 2.92 HBPY 15.95 

TPR 12.47 TPR 7.34 CU 10.68 

JPPY 27.37 JPPY 24.76 SAPR 0.70 

    TDD 2.56 

    JGBF 14.09 

    JETBPY 25.37 

    JBTPR 2.27 

    BTPR 1.87 

    JSD 4.78 

    TT 11.51 

    ETBPY 21.64 
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8.2.10. SHAPE analysis of compound (48) 

Table 8.16. Shape measurement calculations of compound (48) 

Cu(1) 
Five-coordinate 

PP 32.32 
vOC 1.19 

TBPY 4.66 
SPY 0.85 

JTBPY 7.63 
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Chapter 9. Methods of characterisation 

The main compound of each series in this work is fully crystallographic characterisation by single-

crystal X-ray diffraction, while other compounds were confirmed by unit cell and powder XRD. 

Also, check the purity of all compounds characterisation by powder XRD. 

All compounds were characterised by elemental analyses and infrared spectroscopy, to match the 

theoretical calculation from the crystal structure and experimental part. Optical and magnetic 

properties were studied in this work. 

9.1. X-ray crystallography 

The structures were measured using different single crystal X-ray diffractometer (SCXRD): 

STADIVARI (Mo-Kα, λ = 0.71073 Å; Cu-Kα, λ = 1.5405 Å, detector: Dectris Pilatus 300K 

(detector: CMOS)), STOE STADIVARI diffractometer with a Dectris Eiger2 R 4M detector using 

Ga-Kα radiation (λ = 1.34143  Å) from a MetalJet2 s, Stoe IPDS II area detector diffractometer 

using graphite-monochromated Mo Kα and Rigaku Oxford Diffraction SuperNova E 

diffractometer (Rigaku Europe, Kemsing, UK) with Mo-Kα and Cu-Kα radiation from a 

microfocus source. 

The structure solution was achieved using Olex2 [499] by dual-space direct-methods (SHELXT), 

followed by full-matrix least-squares refinement (SHELX-2016) [500, 501], with anisotropic thermal 

parameters for all the ordered non-H atoms. Organic hydrogen atoms were placed in calculated 

positions; the coordinates of H(1) were refined. 

The equations for the R-factor and goodness of fit S used in the structure refinement are:  

wR2 = {Σ [w (Fₒ2-Fc2)2] / Σ [w (Fₒ2)2………………………………………………….Equation 7.1 

S = {Σ [w (Fₒ2-Fc2)2] / (n-p)1/2……………………………………………………….Equation 7.2 

R1 = {Σ ||Fₒ|-|Fc||} / {Σ |Fₒ|}………………………………………………………….Equation 7.3 
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Where Fₒ and Fc are the observed and calculated structure factors for each reflection, while n and 

p are the number of unique reflections (omitting systematic absences) and the total number of 

parameters, respectively. The weighting factor w is defined as: 

w-1 = {σ2(Fₒ2) + (αP)2 + bP}………………………………………………………….Equation 7.4 

where P is; 

max(Fₒ2, 0) + 2 Fc2 / 3……………………………………………………………….Equation 7.5 

wR2 is the function minimised during the refinement process and all reflections (except those 

having high negative value or that have flagged manually using OMIT as ‘bad reflection”) were 

used in refinement and for the calculation of S. 

All Figures in this work were prepared by using the Diamond program version 4 [502] and the 

packing were prepared by using the Mercury program version 4.3.0 [503]. 

9.2. Powder X-ray diffraction (PXRD) 

X-Ray powder diffraction patterns for all compounds were measured at room temperature using a 

Stoe STADI-P diffractometer with a Cu-Ka radiation at the Institute of Nanotechnology, Karlsruhe 

Institute of Technology. Samples were ground and fixed between two plastic sheets with grease 

(Lithylen®). In addition, some samples were measured in the mother liquid in the capillary–tube 

method. 

9.3. Elemental analysis 

The elemental analyses (C, H, and N) were carried out using an Elementar Vario EL analyser. 

9.4. FTIR spectroscopy 

Fourier transform IR spectra were measured on a Bruker Alpha. In the region, 400 cm-1 to 4000 

cm-1 were performed on transmission mode using 24 scans with a resolution of 4 cm-1. Spectra 

were obtained to provide a fingerprint of the sample. 
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9.5. UV-Vis- NIR spectroscopy 

UV-Vis-NIR spectra were measured at the Institute of Nanotechnology, Karlsruhe Institute of 

Technology on a Cary 5000 scan Spectrophotometer UV-Vis-NIR in the range 200 nm to 2000 

nm at a scan rate of 600 nm/min. Quartz glass cuvettes were used for the solution sample. Quartz 

glass plates were used for the solid-state by putting the sample between two plates with a drop of 

mineral oil also glass film was measured. 

9.6. Emission spectroscopy  

Fluorescence measurements were performed at the Institute of Nanotechnology, Karlsruhe 

Institute of Technology on a Cary-Eclipse fluorescence spectrophotometer. 

9.7. Magnetic measurements 

Magnetic susceptibility measurements were conducted on a Quantum Design MPMS-XL SQUID 

magnetometer. This magnetometer can work between 1.8 and 400 K with external field up to 7 T. 

All the measurements were performed on polycrystalline samples. AC susceptibility 

measurements were performed with an oscillating AC field (0-3T) and frequencies varying from 

1 to 1500 Hz. The magnetic data were corrected for sample holder contributions and for 

diamagnetic contributions calculated from Pascal's constants. 

9.8. SHAPE analysis of the metal coordination environmental  

The coordination geometries of selected metal centres within the crystal structure were determined 

using the software 2.1 SHAPE [145, 146]. 
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Chapter 10. Appendix 

Appendix A: List of Inorganic compounds 

NO Inorganic compounds 
1 [Dy2(H4bdp)(PhCO2)2(NO3)2] NO3 MeCN 
2 [Eu2(PhCO2)6(CH3OH)4]∞ 
3 [Gd2(PhCO2)6(CH3OH)4]∞ 
4 [Tb2(PhCO2)6(CH3OH)4]∞ 
5 [Dy2(PhCO2)6(CH3OH)4]∞ 
6 [Eu2(TipaH2)2(Piv)4] 
7 [Gd2(TipaH2)2(Piv)4] 
8 [Tb2(TipaH2)2(Piv)4] 
9 [Dy2(TipaH2)2(Piv)4] 
10 [Eu4(μ3-OH)2(o-van)4(Piv)6] 2MeCN 
11 [Gd4(μ3-OH)2(o-van)4(Piv)6] 2MeCN 
12 [Tb4(μ3-OH)2(o-van)4(Piv)6] 2MeCN 
13 [Dy4(μ3-OH)2(o-van)4(Piv)6] 2MeCN 
14 [Fe2Pr2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O 
15 [Fe2Nd2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O 
16 [Fe2Sm2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O 
17 [Fe2Eu2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O 
18 [Fe2Gd2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O 
19 [Fe2Tb2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O 
20 [Fe2Dy2(mdea)2{(py)2C(OCH3)O}2(μ4-O)(N3)2(NO3)2(CH3OH)2] H2O 
21 [Fe2Pr4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN 
22 [Fe2Nd4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN 
23 [Fe2Sm4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN 
24 [Fe2Eu4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN 
25 [Fe2Gd4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN 
26 [Fe2Tb4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN 
27 [Fe2Dy4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN 
28 [Fe2Ho4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN H2O 
29 [Fe2Y4(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN 
30 [Fe2Eu4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
31 [Fe2Gd4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
32 [Fe2Tb4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
33 [Fe2Dy4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
34 [Fe2Ho4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
35 [Fe2Er4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
36 [Fe2Tm4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
37 [Fe2Lu4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
38 [Fe2Yb4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
39 [Fe2Y4(mdea)2(o-van)2(μ4-O)2(PhCO2)8] 2 5MeCN 
40 [Fe4Eu2(mdea)4(PhCO2)6(N3)2(μ3-OH)2] MeCN 
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Appendix B: List of Inorganic compounds were reported 
Compounds  inorganic compounds Reference 
Compound A Na4[{Nd(H2O)}2(µ2--dptaO)2] 13H2O [318] 
Compound B [Dy(OAc)3(MeOH)]∞ [319] 
Compound C [Yb2(TipaH2)2(PhCO2)4] [82] 
Compound D [Dy4(μ 3-OH)2(o-van)4(Piv)4(NO3)2] CH2Cl2 1 5H2O [156] 
Compound E [Mn2Dy2(μ4-O)(Piv)2(hep)4(NO3)4] 3MeCN [360] 
Compound F [Fe2Dy4(L′H)2(L)2(μ-Piv)4(η2-Piv)2(μ2-η2-Piv)2(μ3-OMe)2] [362] 
Compound G [Fe4Dy2(μ4-O)2(Piv)6(NO3)2(Hedte)2] 4MeCN C6H5OH [375] 
Compound H [Fe4Dy2(μ3-OH)2(n-bdea)4(PhCO2)8] MeCN [379] 
Compound I [Fe4Dy2(μ3-OH)2(nbdea)4(Piv)6(N3)2] 3MeCN [335] 

 

Appendix C: List of Abbreviations 
General Abbreviations 

 

Chemical Abbreviations 

 

 

 

41 [Fe4Gd2(mdea)4(PhCO2)6(N3)2(μ3-OH)2] MeCN 
42 [Fe4Tb2(mdea)4(PhCO2)6(N3)2(μ3-OH)2] MeCN 
43 [Fe4Dy2(mdea)4(PhCO2)6(N3)2(μ3-OH)2] MeCN 
44 [Fe4Ho2(mdea)4(PhCO2)6(N3)2(μ3-OH)2] MeCN 
45 [Fe4Er2(mdea)4(PhCO2)6(N3)2(μ3-OH)2] MeCN 
46 [Fe4Y2(mdea)4(PhCO2)6(N3)2(μ3-OH)2] MeCN 
47 [Cu2(bpy)2(PhCH2PO2OH)4] CH3OH 
48 [Cu2(bpy)2(PhCH2PO2OH)2(H2O)2] (NO3)2 4H2O 

3d  Transition metal ions  S  Spin ground state 

4f  Lanthanide ions  SEM  Scanning Electron 
Microscope  

Å Angstrom  TGA Thermogravimetric analysis 
FSS  Frequency Selective Structure   XRD X-Ray diffraction 
PXRD  Powder X-Ray diffraction    

CO(py)2  Di-2-pyridyl ketone  MeOH   Methanol 
Cu  Copper  N3−  Azide ion 
DMF  Dimethylformamide  NEt3  Triethylamine  
Fe3O(PhCO2) [Fe3O(PhCO2)6(H2O)3](PhCO2)  PhCO2− Benzoate  
Fe3O(Piv) [Fe3O(Piv)6(H2O)3](Piv)  Piv− Pivalate 
MeCN  Acetonitrile  PVP Poly(2-vinylpyridine) 
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Abbreviations and Terms Used in Magnetism 

 

Abbreviations and Terms Used in Optical 

 

Appendix D: List of Figures 
Figure 1.1. Spin interactions for common magnetic behaviours (a) paramagnetic (b) ferromagnetic 
(c) antiferromagnetic (image adapted from reference [19, 20]). ....................................................... 10 
Figure 1.2. Spin interactions for magnetic behaviours (a) Ferrimagnetism (b) Canted 
antiferromagnetism (weak ferromagnetism) (taken from reference [19, 20]). ................................. 11 
Figure 1.3. Hysteresis loops of magnetisations pattern (taken from reference [56-58]). ................. 15 
Figure 1.4 Molecular structure of [MnIII8MnIV4O12(O2CMe)16(H2O)4]. Colour code: blue, green, 
red, gray and white represent Mn3+, Mn4+, O, C and H, respectively (left) (taken from reference 
[4]). Hysteresis loop of a Mn12 for single crystal at different temperatures with an axially applied 
magnetic field (right) (taken from reference [4]). The steps indicate the relative change in 
magnetisation upon tunnelling. ..................................................................................................... 17 
Figure 1.5. Quadrupole approximations of the 4f-shell electron distribution for the trivalent state 
of lanthanides (taken from reference [63]). ..................................................................................... 18 
Figure 1.6. The basic structural motifs in Dy1-5 complexes (taken from reference [70]). .............. 20 
Figure 1.7.  [Pc2Ln]- (Ln = Tb, Dy, Ho, Er, Tm or Yb) (taken from reference [71]). .................... 21 
Figure 1.8. Molecular structure of [Dy3]. Colour code: black, red, violet, green and white spheres 
represent C, O, Dy, Cl and H respectively. ................................................................................... 21 

AC  Alternating-current  SMMs Single-molecule Magnets 
C  Curie constant  SQUID  Superconductive Quantum Interface Device 
DC  Direct-current  TB  Blocking temperature 
K  Kelvin  Ueff  Effective energy barrier of magnetisation  
kB  Boltzmann constant  μB  Bohr magneton 
M  Magnetisation  τ  Relaxation time 
H  Field  τo  Pre-exponential factor 
Hz  Hertz  χ molar magnetic susceptibility 
J  Spin-orbit quantum number  χ̍  In-phase dynamic susceptibility 
Oe  Oersted  χ̎  Out-of-phase dynamic susceptibility 

QTM  Quantum Tunneling of 
Magnetisation 

 VSM Vibrating Sample Magnetometer 

cm-1  Wavenumber  λem Emission wavelength / nm 
FTIR  Fourier transform infrared   λex Excitation wavelength / nm 
NIR Near Infrared  λmax Maximum wavelength / nm 
RF Radio Frequency  PL  Photoluminescence 
λ  Wavelength   OLEDs organic light-emitting diodes 
UV-VIS  Ultra violet visible spectroscopy    



268 
 

Figure 1.9. Temperature dependence of the χT products (per trimeric unit) for 1 (&) and 2 (*). The 
solid line represents the calculated value for three uncorrelated DyIII ions. Inset: low-temperature 
susceptibility (taken from reference [74]). ...................................................................................... 22 
Figure 1.10. Molecular structure of [Cu2Tb2]. Colour code: black, red, blue, green, turquoise and 
violet spheres represent C, O, N, F, Cu and Dy, respectively. ..................................................... 24 
Figure 1.11. Plots of χMT versus T for [CuIILTbIII(hfac)2]2. ......................................................... 25 
Figure 1.12. Molecular structure of [Fe2Ho2(mdea)2(mdeaH)2(μ3-OH)2(N3)2(PhCO2)8] 3MeCN. 
Colour code: black, red, blue, green, white and violet spheres represent C, O, N, Fe, H and Ho 
respectively. .................................................................................................................................. 26 
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