
1.  Introduction
Mixed-phase clouds, i.e., clouds in which ice particles and supercooled liquid water can coexist in the tem-
perature range of approximately −40°C to 0°C, are not fully understood yet and therefore not well repre-
sented in weather and climate models (Forbes & Ahlgrimm, 2014; McCoy et al., 2016).

Several studies have shown that mixed-phase clouds occur irrespective of the season, can be found in 
diverse locations, and can be associated with various cloud types (Korolev et al., 2017). Observations of 
mixed-phase clouds include active (e.g., Cesana & Storelvmo, 2017; Tan et al., 2014; Zhang et al., 2010) 
and passive satellite (e.g., Coopman et al., 2019; Noh et al., 2019; Tan et al., 2019), airborne in situ (e.g., 
Barrett et al., 2020; Costa et al., 2017; Korolev, 2008), ground-based (e.g., Gierens et al., 2020; Henneberger 
et al., 2013; Yu et al., 2014) and aircraft-based remote sensing measurements (e.g., Plummer et al., 2014; 
Wang et al., 2012). In Tan et al. (2014), in particular, mixed-phase clouds have been studied statistically in 
terms of supercooled cloud fraction, defined as the ratio of the in-cloud frequency of supercooled liquid 
pixels to the total frequency of supercooled liquid and ice pixels within 2° latitude by 5° longitude grid 
boxes, at several isotherms between −10°C and −30°C, distinguishing cases in the Northern Hemisphere 
(NH) and in the Southern Hemisphere (SH), as well as cases over ocean and over land. This study consisted 
of the analysis of about 5 years of data from NASA's spaceborne lidar, CALIOP (Cloud-Aerosol Lidar with 
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Orthogonal Polarization) level 2 Vertical Feature Mask (VFM) in versions 3.01 and 3.02, and the relation-
ship between the cloud phase and several aerosol types was determined. They found that dust aerosols 
might strongly influence the supercooled cloud fraction by acting as ice-nucleating particles (INPs), illus-
trating how important the atmospheric aerosol composition can be for the cloud phase. Moreover, a larger 
supercooled cloud fraction in SH than in NH has been found, which may be caused by the presence of more 
land in the NH, where efficient INPs originate. This result may also explain why a larger supercooled cloud 
fraction has been found over ocean than over land.

As in Tan et al. (2014), we apply a statistical approach to quantify the phase distribution of mixed-phase 
clouds on isotherms. In addition, we use the International Satellite Cloud Climatology Project (ISCCP) 
cloud classification (Rossow & Schiffer, 1999) to distinguish different cloud types. Our study includes data 
from passive (Advanced Very High-Resolution Radiometer—AVHRR) and active (Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite Observation—CALIPSO) satellite sensors, with the intention to identify robust 
signals despite differences, facilitating the potential identification of common features based on different 
sources and algorithms. Passive sensors offer the benefit of long-period records with daily near-global cov-
erage, which motivates us to compare three AVHRR-based datasets with the CALIPSO-based dataset, and 
to present this work as a validation study.

After a description of the datasets and the method in Sections 2 and 3 contains the analysis and the results 
of our study, while discussion and conclusions are presented in Section 4.

2.  Datasets and Method
2.1.  Datasets

The datasets we analyze are Cloud_cci AVHRR-PMv2 (Stengel et al., 2017), Cloud_cci AVHRR-PMv3 (Sten-
gel et al., 2020), CLARA-A2 (Karlsson et al., 2017), and CALIOP V4 (Liu et al., 2019). While the first three 
are based on the polar-orbiting passive satellite sensor AVHRR onboard NOAA satellites, CALIOP is an 
active sensor onboard the polar-orbiting CALIPSO satellite and is part of the NASA A-Train.

The AVHRR datasets provide cloud top information as global composites with a spatial resolution of 
0.05 × 0.05°, containing data twice per day from ascending and descending for each location. The swath 
width of AVHRR is wide enough to provide global coverage daily. The AVHRR measurements are used to 
perform cloud detection and to retrieve cloud top properties, e.g., the top phase, which consists of a binary 
flag (liquid/ice). Table 1 contains more details about the phase retrieval algorithms. AVHRR-based retriev-
als often lack sensitivity to high, optically very thin cloud layers, which might be missed or associated with 
larger uncertainties in the retrieved cloud properties (Stengel et al., 2015).

CALIOP provides vertical distributions of clouds and aerosols along so-called “granules.” A granule is an 
orbit segment containing cloud, temporal, and geographical information for every vertical profile. The 
horizontal resolution of CALIPSO is 333 m, while the vertical resolution is 30–60 m. In our analysis we 
use CALIOP level 2 Cloud Layer Data in version 4.20 with a spatial resolution of 5 km, corresponding to 
∼0.05° as in AVHRR at the equator. The swath width is very narrow, so that about one month of data must 
be collected to obtain a near-global coverage. The retrieved cloud phase distinguishes liquid water from 
“randomly oriented” and “horizontally oriented” ice. Table 1 includes further details on the phase retrieval 
algorithm. The dataset provides vertical distributions of clouds in layers. Every layer can contain only one 
thermodynamic phase. CALIOP is able to retrieve up to an optical thickness of approximately 5 into the 
cloud (Karlsson & Håkansson, 2018). Only “medium” and “high” cloud-aerosol discrimination scores and 
“medium” and “high” cloud phase confidence scores are used in this study.

2.2.  Method

We analyzed collocated and non-collocated near-global (60°N to 60°S) data from June 1, 2009 to May 31, 
2013. Using this time period, we benefit from the newest AVHRR/3 instrument onboard the most recent 
NOAA satellite, avoiding sensor-calibration differences with AVHRR onboard previous satellites leading to 
potential consistency issues. Moreover, the data in this time period are not biased by the satellite drift yet. 
Latitudes higher than 60° are excluded from our study because of the data low confidence, due to the low 
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solar zenith angle (Grosvenor & Wood, 2014) and the presence of sea ice (King et al., 2004). The collocated 
data involve pixels retrieved as cloudy by all datasets within 3 minutes and 5 km. As the cloud optical thick-
ness, involved in the cloud type classification, can be detected by the AVHRR sensor only by the channels 
in the visible range, we consider only daytime measurements, i.e., the ascending track; we do the same for 
CALIOP to make the comparison as consistent as possible, although daytime CALIOP retrieval has a higher 
backscatter sensitivity threshold (Winker et al., 2009). We constrain further analyses for latitudinal bands 
as follows: NH—from 60°N to 30°N; SH—from 30°S to 60°S; Tropics—from 30°N to 30°S. Continental and 
maritime regions are also analyzed. Because only the cloud top information is available from AVHRR, we 
investigate the cloud top phase distribution in relation to the cloud top temperature, with a focus on the 
mixed-phase temperature range. With a 4-year analysis, we provide statistics on the supercooled liquid frac-
tion (SLF) in clouds, computed as the ratio between the number of liquid cloud top pixels and the sum of ice 
plus liquid cloud top pixels. The analyzed isotherms cover the range −50°C to 5°C, with a 1°C increment. To 
sort the cloud types, the ISCCP classification (Rossow & Schiffer, 1999) is used, based on threshold values of 
cloud top pressure (CTP = [0, 440, 680, 1000] hPa) and cloud optical thickness (COT = [0, 3.6, 23, 379]). For 
simplicity, for each COT-CTP combination the corresponding cloud name (e.g., cirrus, stratocumulus, etc.) 
assigned in Rossow and Schiffer (1999) is used here, despite being aware that a classification of cloud types 
purely based on CTP and COT has limitations (Hahn et al., 2001).

For AVHRR datasets, all the cloudy pixels with COT < 0.3 are filtered out to improve the data quality (Sten-
gel et al., 2015). To be comparable to the AVHRR datasets and mimic the view of the passive sensor, we 
remove the uppermost layers from the CALIOP profiles down to an optical thickness of 0.3 and consider the 
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Dataset Cloud phase algorithm

Spectral 
bands 
(µm) Reference

Cloud_cci v2 Cloud types are produced with a threshold decision tree (a series of spectral tests is applied 
to infrared brightness temperature); then, they are converted to a binary phase. If 
necessary, cloud top temperature is involved to re-set the phase for T < −40°C and at 
T > 0°C

0.6, Algorithm Theoretical Baseline 
Document ATBD-CC4CLv5.1 
(2017), Pavolonis and Heidinger 
(2004), Pavolonis et al. (2005)

1.6/3.75,

10.8,

12

Cloud_cci v3 An artificial neural network trained by collocating AVHRR measurements with CALIOP 
cloud phase produces binary phase information. If necessary, cloud top temperature is 
involved to re-set the phase at T < −40°C and at T > 0°C

0.6, Algorithm Theoretical Baseline 
Document ATBD-CC4CLv6.2 
(2019), Stengel et al. (2020)

1.6/3.75,

10.8,

12

CLARA-A2 As Cloud_cci v2, with some different threshold values in the decision tree scheme 0.6, Algorithm Theoretical Baseline 
Document ATBD-CPP_AVHRR 
(2016), Pavolonis and Heidinger 
(2004), Pavolonis et al. (2005)

1.6/3.75,

10.8,

12

CALIOP Cloud altitude is derived as primary product, then converted to temperatures using model 
data from Goddard Earth Observing System, Version 5 (GEOS-5) vertical profiles. Next, 
the cloud phase is retrieved using the particulate depolarization ratio of backscattered 
light (and the cloud top height and temperature, if necessary)

0.532, Hu et al. (2009)

1.064

Table 1 
Cloud Phase Algorithms Used by the Analyzed Datasets
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remaining highest cloud top layer for the study. The cloud classification precedes the computation of SLF 
on isotherms in the studies in which different cloud types are analyzed.

3.  Results
As a first step, a comparison between the collocated (Figure  1a) and non-collocated (Figure  1b) data is 
shown. The difference in SLF and the associated CTT among the datasets stands out in these figures, and 
in particular the gap between the three AVHRR-based datasets and CALIOP, up to about 25°C or SLF of 
about 80% at a fixed temperature. In Figure 1c, we show that this disagreement is due to both the CTT and 
phase retrievals: There is a CTT bias of Cloud_cci v3 compared to CALIOP mainly at lower temperatures, 
and a frequent disagreement on phase (with Cloud_cci v3 retrieving ice where CALIOP retrieves liquid) in 
the mixed-phase temperature range. This figure uses the collocated data and compares point-by-point the 
cloud top temperature retrieved by Cloud_cci v3 and CALIOP over the entire tropospheric temperature 
range and for three cloud top phase combinations: same phase, CALIOP retrieving ice while Cloud_cci 
v3 liquid, and vice versa. The contour lines indicate the areas (A, B, and C) where the frequency of occur-
rence per 1K × 1K bin is greater than 240. This threshold highlights areas of agreement and disagreement 
between the datasets, and separate the area where the sensors retrieve the same phase into two regions (A 
and C) at around T = −28°C. This temperature value is used to compute the contributions of regions A 
and C separately. Because of the small contribution given by the collocated pixels with CALIOP retrieving 
ice and Cloud_cci v3 liquid, there is no contour line for this phase combination. Region A, including part 
of the cases with the same phase and representing 45.9% of total cases, does not contribute systematically 
to the differences in the phase distribution in Figures 1a and 1b, because it incorporates cases with good 
agreement in temperature and cases where the largest temperature difference is about 10°C. Moreover, only 
a part of that region is within the mixed-phase temperature range (around 13% of total cases). Conversely, 
a clear warm bias in Cloud_cci v3 CTT with respect to CALIOP is indicated in region B, including pixels 
with the same phase, which represents 26.6% of total cases. This region, albeit including only around 0.7% 
of total cases between −40°C and 0°C for both datasets, includes many cases contributing only to the SLF 
computation for Cloud_cci v3 (counting about 11% of total cases considering the mixed-phase temperature 
range for only Cloud_cci v3), which are excluded from the SLF computation in CALIOP because they are 
outside its mixed-phase temperature range. Finally, region C, with 9% of total cases (8.7% between −40°C 
and 0°C), refers to pixels retrieved liquid in CALIOP and ice in Cloud_cci v3. It includes, as region A, cases 
with good agreement in temperature and cases where the largest difference is about 10°C. Nevertheless, 
region C contributes principally to the phase mismatch. A point-by-point comparison of CALIOP with 
CLARA-A2 and with Cloud_cci v2 (not shown) gives similar results. For AVHRR datasets retrieving liquid 
while CALIOP retrieving ice, CLARA-A2 revealed more cases than Cloud_cci v2 and v3 for temperatures 
below −30°C and down to −41°C; For this reason, CLARA-A2 shows SLF around 7% between −40°C and 
−41°C using the collocated data (Figure 1a) and around 17% using the noncollocated data (Figure 1b). A 
quantitative analysis of the differences between CALIOP and Cloud_cci v2 and v3 can be found in Stengel 
et al. (2020): While any phase bias of Cloud_cci v2 and v3 with respect to CALIOP has nearly vanished for 
COTs of ∼0.15 into the clouds, there is still a significant bias at COT = 1 for the Cloud Top Height (CTH) of 
ice clouds, to which CTT is linked. As a consequence, CTH is usually retrieved from levels below the levels 
used to retrieve the phase, so that the retrieved CTT can be warmer than the effective temperature of the 
assigned cloud top phase, agreeing to our results.

We proceed with the study of SLF in separate geographical regions. Figure 1d shows, for all datasets, larger 
SLF in SH than in NH (with an average difference for single datasets between 1.7% and 9.8%). In Figure 1e, 
CALIOP shows clearly larger SLF over ocean than over land (with an average difference of 11.2%), but the 
AVHRR-based datasets do not agree with CALIOP for the entire temperature range. While larger SLF in 
SH than in NH is confirmed when constraining the analysis to maritime pixels (Figure 1f, with an average 
difference for single datasets between 2.1% and 7.3%), it is confirmed only for specific temperature ranges 
over land (Figure 1g), generally for T < −23°C. Near-global SLF geographical distributions are shown in 
Figures S1–S4 in the supporting information.
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Next, we investigate the global SLF distribution for different cloud types (Figure 2). The cloud types have 
been grouped into high-, mid-, and low-level clouds taking into account the temperature ranges that the 
datasets have in common at the three heights individually. This figure is derived from SLF-CTT distribu-
tions, for which the least frequent cases in CTT (frequency of occurrence lower than 2% with respect to the 
maximum of each distribution in temperature) have been filtered out. Similarly to Figure 1, in Figure 2 the 
systematically lower SLF in AVHRR compared to CALIOP is found. A further outcome can be identified 
in this figure for every height-level and almost all cases: the optically thicker the clouds, the larger the SLF. 
This is consistent in all datasets with a few exceptions.
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Figure 2.  Boxplot of the supercooled liquid fraction (SLF) for different cloud types sorted in three height-levels. Clouds at the same height-level share the same 
cloud top temperature range, specified at the top of each panel. The different datasets are separated by columns and every color corresponds to one cloud type. 
The boxes extend from the lower to upper quartile values of the data, whereas the whiskers show the entire range of the data. The horizontal lines within the 
boxes represent the median of the distributions, while the stars represent their mean values.

Figure 1.  Comparison of supercooled liquid fractions (SLFs) versus cloud top temperature (CTT) for collocated (a) and non-collocated (b) near-global (60°N 
to 60°S) data, followed by a point-by-point comparison of CTT and cloud top phase for CALIOP and Cloud_cci v3 using the collocated data (c), where the 
brightness of the bins (1K × 1K) represents the absolute frequency of occurrence and the different colors represent the different combinations of retrieved 
phase. The contour lines encompass bins with frequency greater than 240, while the percentages refer to the contoured areas and represent the relative amount 
of cases within the contour lines with respect to the total cases. A further comparison of SLF versus CTT for non-collocated data follows constraining the 
extratropical Northern and the Southern Hemispheres (d), land and ocean (e), and extratropical Northern and Southern Hemispheres for only maritime (f) and 
only continental (g) regions. Different colors in SLF versus CTT plots represent different datasets; different line types represent different regions.
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Figure 3 condenses the SLF into average values for different cloud types, land and ocean, NH and SH. All 
datasets confirm generally larger SLF for optically thicker clouds at the same height-level. Figures 3a–3c 
reveal larger SLF over ocean than over land and in SH than in NH, respectively, for most of the cloud types 
with the exception of some high- and mid-level clouds in Cloud_cci v2 and v3, especially in Figure 3a. In the 
Tropics (Figure 3b), most of the clouds show larger SLF over ocean than over land, except for again some 
high- and mid-level clouds in Cloud_cci v2 and v3, and low-level clouds in Cloud_cci v2. Finally, Figure 3d 
shows that, separating the maritime and continental pixels in NH and SH, SLF is larger in NH than in SH 
only for most of the low-level clouds over land (cumulus, stratocumulus, and stratus clouds), otherwise 
again a larger SLF in SH than NH is found.

This entire study has been conducted using the collocated data too (not shown), confirming the main results 
of our findings, although with more noise. The collocated data, in fact, represent only about 9.5% of CALI-
OP and 0.02% of AVHRR non-collocated data.
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Figure 3.  Comparison of mean supercooled liquid fraction (SLF) for different cloud types, considered in the temperature ranges they have in common at 
the same height-level and for each subplot individually, for near-global maritime and continental pixels (a), tropical maritime and continental pixels (b), and 
extratropical Northern and Southern Hemispheres (c), with the further separation of maritime and continental regions (d). Different markers identify different 
datasets, filling colors distinguish the cloud types, while edge colors refer to continental or maritime pixels in (d).

(a) (b)

(c) (d)
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4.  Discussion and Conclusions
We performed a 4-year statistical analysis to better understand the relationship between cloud top phase 
and temperature in the mixed-phase temperature range (−40°C to 0°C). Our study is based on four data-
sets (Cloud_cci AVHRR-PM2.0, Cloud_cci AVHRR-PM3.0, CLARA-A2, and CALIOP v4.20) and consists 
of the comparison of the retrieved cloud top phase and cloud top temperature in terms of SLF for specific 
isotherms. The study included collocated data, to determine the inconsistencies among the retrievals, and 
non-collocated data for the main study. The analysis was conducted from 60°N to 60°S, for extratropical 
Northern and Southern Hemispheres separately, for the Tropics, for continental and oceanic surfaces, and 
for different cloud types. To classify the cloud types, cloud top pressure and cloud optical thickness thresh-
olds have been used (Rossow & Schiffer, 1999). Summarizing the main findings:

•	 �Using collocated data, we found a warm bias of AVHRR CTT compared to CALIOP and a phase mis-
match (liquid cloud tops in CALIOP retrieved as ice in AVHRR-based datasets). Many factors can con-
tribute to the disagreements between CALIOP and AVHRR. One of the most important ones is the dif-
ference of the sensors, the first passive and the second active: While the AVHRR has problems detecting 
multilayer clouds that include top layers with small COT, leading to misclassifications of cloud top 
phase, CALIOP can detect multilayer clouds with optical thickness up to 5, and this might cause mis-
classifications too. Processing the data, cloud edges have not been excluded because it was not possible 
for the AVHRR-based datasets, representing a possible source of misclassification for low- and mid-level 
clouds (Pavolonis et al., 2005). Moreover, a possible phase change of a detected cloud top would cause a 
modification of COT, and therefore a possible misclassification to an optically thicker or thinner cloud 
category, modifying the SLF of another cloud type. Some of these issues have also been presented in Ce-
sana et al. (2019) for shallow cumulus and stratocumulus clouds, emphasizing that errors in retrieving 
cloud phase, cloud optical thickness, and cloud top height can result in cloud type misclassifications. 
Furthermore, the filter we apply to the optical thickness may be not sufficient to make sure that we are 
analyzing the cloud data in the same way. In Stengel et al. (2015), CALIOP's liquid cloud fraction result-
ed closer to the AVHRR-based dataset CLAVR-x (Cloud from AVHRR Extended) than to other AVHRR-
based datasets. One reason was that for CLAVR-x algorithms a priori information based on CALIOP 
climatologies was used for ice clouds. This, in turn, prevented that phase and CTT were independently 
retrieved, a condition required for our study

•	 �We found higher SLF in SH than in NH, in agreement with Tan et al. (2014). This result might be ex-
plained by the larger size of the continental area and therefore the prevalence of continental aerosol with 
the ability to act as INPs in NH. Higher SLF in SH than in NH was found also when constraining the 
analysis for maritime surfaces, while over-land cases agree on it for temperatures generally colder than 
−23°C. Further analyses using different cloud types were necessary to understand the origin of this last 
feature, principally due to the low-level clouds, which occur at warmer temperatures than the clouds at 
higher levels. More details are included in the next point

•	 �Analyzing different cloud types and combining NH, SH, continental, and maritime regions, we found 
higher SLF in SH than in NH (in line with Coopman et  al.  [2020]), with the exception of the most 
low-level clouds over land, for which the opposite occurs. This might be due to synoptic conditions or 
specific aerosol conditions experienced by low-level clouds in those regions and impacting their phase. 
Considering that the common temperature range of the analyzed continental low-level clouds goes from 
−15°C to 0°C (not shown), our result shows agreements with Villanueva et al. (2020), where lower ice 
content was found in clouds in NH than in SH for T = −15°C ± 6°C, probably because of the larger 
amount of feldspar in SH. Our result could also be explained by the higher density of particles acting as 
cloud condensation nuclei (CCNs) in NH, resulting in smaller droplet sizes, which might limit second-
ary ice formation (Mossop, 1980). Our speculations are partially supported by further previous studies: 
Some anthropogenic aerosols such as black carbon, sulfate, and organic aerosols, do not act as efficient 
INPs but are efficient CCNs (Hoose & Möhler, 2012); model outputs have shown that sulfate aerosol 
and black carbon have the highest mass concentration in the lower troposphere of NH (Liu et al., 2009), 
where they act as CCNs (Boucher & Lohmann, 1995), whereas they act as INPs only at very high alti-
tudes over the Tropics and the polar regions (Liu et al., 2009). Indeed, Tan et al. (2014) found that dust 
(as mineral desert dust), polluted dust (as dust mixed with urban pollution and biomass burning smoke), 

BRUNO ET AL.

10.1029/2020GL089863

8 of 10



Geophysical Research Letters

and smoke (as biomass burning aerosols, principally made of soot and organic carbon) are mainly dis-
tributed in the Tropics and in NH

•	 �In the analysis of different cloud types, same-height clouds showed SLF increasing with COT. Although 
clouds containing more droplets than ice particles result in higher optical thickness, we cannot exclude 
an influence of the cloud dynamics on both COT and SLF. For example, optically thicker clouds tend to 
have stronger updrafts and consequently higher supersaturation values, which may inhibit the glacia-
tion process (Korolev, 2007), potentially lowering the glaciation temperature in clouds and causing the 
presence of more supercooled liquid water than ice. From our analysis, it is not possible to determine 
which process can explain the obtained result

In our study, we have considered possible limitations in the datasets linked to the phase detection of the 
sensors. Because of this, particular attention has been paid to the cloud optical thickness, bearing in mind 
that the cloud top phase as well as cloud type might be influenced by it. Despite the differences found in the 
datasets, our results show broad agreements among them in many aspects, not only proving the robustness 
of the results but also showing that the passive satellite sensor AVHRR can contribute to the cloud phase 
research once its limitations have been taken into account. The AVHRR-based datasets can be used for fur-
ther studies (e.g., for comparison with climate models), benefiting from the long temporal record and good 
spatial coverage.

Data Availability Statement
For the used AVHRR-PM data sets, the following DOIs provide additional documentation and data download 
sites: Cloud_cci v2—https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002; Cloud_cci v3—
https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003; CLARA-A2— https://doi.org/10.5676/
EUM_SAF_CM/CLARA_AVHRR/V002. CALIOP data are available online at the NASA Langley Atmos-
pheric Sciences Data Center website (https://asdc.larc.nasa.gov/). For the collocated CALIOP data, the 
CAL_LID_L2_05kmCLay-Prov product was downloaded from the ICARE Data and Service Center (http://
www.icare.univ-lille1.fr, last access: March 29, 2017).
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