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Abstract

Automatic speech recognition (ASR) refers to the ability of a machine to identify
words and phrases in spoken languages and convert them to a human-readable format.
Its application remains an essential ability for human digital life, such as allowing
verbal dialog between humans andmachines or enabling cross-lingual communication
between people speaking different native languages. To fully afford this ability, ASR
applications not only need toworkwith high accuracy but also have to respond quickly
enough for their expected interactions with users. This mixture of both constraints
opens up the research area of online speech recognition differing from conventional
speech recognition, which addresses solely the accuracy problem.

The research on automatic speech recognition have been active for over half of
a century. Several patterns and template matching approaches were proposed until
the mid-1980 when Hidden Markov Model (HMM) became a breakthrough to solve
the speech recognition task. The HMM approach allows a generic framework to
statistically decouple and model both temporal and spectral variations in speech.
At the latest fashion, an HMM-based recognizer is built up on top of a complex
pipeline, composed of several statistical and non-statistical components such as
pronunciation dictionaries, HMM topologies, phoneme cluster trees, an acoustic
model and a languagemodel. The recent advances of artificial neural networks (ANN)
in both acoustic modeling and language modeling have made the hybrid HMM/ANN
approach dominant in many types of ASR applications.

In recent years, the introduction of all-neural end-to-end speech recognition,
which uses a neural network architecture to approximate the direct mapping from
acoustic signals to the textual transcription, has been received significant interest. The
advantage of the end-to-end approaches lies in their simplification of training an entire

v



speech recognition system, thereby hiding the awareness of complicated components
as in the HMM-based pipeline. At the same time, the end-to-end ASRs typically
require a more substantial amount of training data, and it is more challenging to adapt
end-to-end models to perform well on a new task.

This thesis is devoted to the development of high-performance speech recognition
systems for the online and streaming scenario. The author achieved this target
by a two-stage approach. In the first stage, various techniques, applied in
both hybrid HMM/ANN and end-to-end paradigms, were proposed to construct
high-performance systems in batch mode, i.e., the complete audio data is available
when starting processing. In the second stage, efficient adaptations were explored
to enable the high-performance batch-mode systems to be capable of online and
run-on inferences. At the same time, novel algorithms were developed to reduce
user-perceived latency, which is the most critical issue of online speech recognizers.

First Stage. The proposed techniques aiming for high-performance achievement
are categorized by which stage in the speech recognition pipeline they involved in,
which are feature extraction and data augmentation.

Speech signals, known as the convolution of multiple frequency components in a
wide dynamic range, before becoming a digital form, can be changed dramatically
with natural factors, such as different speakers, environments, or recording tools.
The large variability of speech signals typically causes the mismatch between training
and testing, and then may largely degrade recognition performance. We address
this mismatch problem by introducing two high-level network-based feature extraction
approaches. In the first approach, a new feature space with less speaker variance
is conducted via a hierarchical combination of bottleneck neural network and
speaker adaptation techniques such as maximum likelihood linear regression (MLLR)
transformation and speaker identity vector (i-vector) extraction. We showed that
a deep neural network (DNN) acoustic model trained on these speaker-adapted
features, gains up to 19% relative in word error rate (WER) over the conventional
feature extraction. In the second approach, long short-term memory (LSTM) network
trained with the connectionist temporal classification criterion (CTC) on phone labels
is used as a high-level feature transformation. The combination of the CTC-network
derived features and the bottleneck features resulted in an efficient feature spacewhich
made a DNN acoustic model outperform a strong CTC-based baseline with a large
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margin. Besides, we revealed the use of the standard cepstral mean and variance
normalization (CMVN) at low-level feature extraction causes a potential mismatch
between offline training and online testing, and proposed a Linear Discriminant
Analysis (LDA) based linear transformation for the replacement.

Data augmentation has been used in speech recognition for producing additional
training data to increase the quality of the training data. This technique then improves
the robustness of the models and avoids overfitting. We pointed out that overfitting is
the most critical issue when training end-to-end sequence-to-sequence (S2S) models
for the speech recognition task, and proposed two novel on-the-fly data augmentation
methods as the solution. The first method, so-called dynamic time stretching, obtains
the effect of speed perturbation by manipulating the time series of the frequency
vectors directly with a real-time interpolation function. In the second method, we
proposed an efficient strategy to sub-sample speech sentences on-the-fly, and then
enlarge the training data withmore variants of original samples. We showed that these
methods are very efficient to avoid overfitting, and the combination of them with the
SpecAugument method in the literature boosted up the performance of the proposed
S2S model to be state-of-the-art on the telephone conversation benchmark.

Second Stage. We showed that the proposed high-performance batch-mode
ASR systems of both hybrid HMM/ANN and end-to-end paradigms could meet
the requirements of online real-world settings with the additional adaptation and
inference techniques.

Neither the commonly used real-time factor nor commitment latency are sufficient to
indicate the latency that users perceive. We proposed a novel and efficient method for
measuring user-perceived latency in online and streaming setup. We further revealed
that to better capture user experience, a run-on hybrid HMM/ANN recognizer needs
to be optimized for the latency at either its peak or average. To improve these latency
metrics, we introduced a mechanism so-called hypothesis update, which allows sending
hypothetical transcripts early to the users, then later revising a part of it. Experiments
on a real-world setup of the lecture presentation domain showed that this approach
largely reduced the word-based latency of our recognizers, i.e., from 2.10 to 1.09
seconds.

Sequence-to-sequence (S2S) attention-based model has become increasingly
popular for end-to-end speech recognition. Several advances have been proposed
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to the architecture and the optimization of S2S models to achieve state-of-the-art
performance on standard benchmarks. However, how to employ S2S models with
their batch-mode capacity in online speech recognition still a research question. We
approached this problem by analyzing the latency issues that occurred from the
regular soft-attention function, bidirectional encoder, and beam-search inference. We
addressed all the latency issues as a whole by proposing an additional training
loss to control the uncertainty of the attention function on look-ahead frames and
novel inference algorithms for providing partial hypotheses. Our experiments on the
standard telephone conversation task show thatwith a delay of 1.5 seconds in all output
elements, our streaming recognizer can fully achieve the performance of a batch-mode
system of the same configuration. To the best of our knowledge for the first time, a S2S
speech recognitionmodel can be used in online conditionswithout scarifying accuracy.
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Zusammenfassung

Automatische Spracherkennung (engl. automatic speech recognition, ASR) beschreibt
die Fähigkeit einer Maschine, Wörter und Ausdrücke gesprochener Sprache zu
identifizieren und diese in ein für Menschen lesbares Format zu konvertieren. Die
Anwendungen sind ein maßgeblicher Teil des digitalen Lebens bspw. wird der
Dialog zwischen Mensch und Maschine oder ein Dialog zwischen Menschen, die
unterschiedliche Muttersprachen sprechen, ermöglicht. Um diese Fähigkeit in vollem
Maße zu gewährleisten, müssen ASR-Anwendungen nicht nur mit hoher Genauigkeit,
sondern, für eine Interaktion mit einem Benutzer, auch schnell genug, antworten.
Dieses Wechselspiel beider Bedingungen eröffnet das Forschungsgebiet der Online
Speech Recognition, welche sich von der konventionellen Spracherkennung, die sich
ausschließlich mit dem Problem der Genauigkeit befasst, unterscheidet.

Schon über ein halbes Jahrhundert wird aktiv in der
automatischen Spracherkennung geforscht. Verschiedene Muster- und
Template-Matching-Methoden wurden bis Mitte 1980 erforscht, als das Hidden
Markov Model (HMM) einen Durchbruch zur Lösung der Spracherkennungsaufgabe
ermöglichte. Der HMM-Ansatz schafft ein allgemeines Framework, welches
Schwankungen in der Zeit sowie Spektrums-Domäne der Sprache statistisch
entkoppelt und modelliert. Ein HMM-basierter Erkenner wird auf eine komplexe
Pipeline aufgesetzt, welche aus etlichen statistischen und nicht-statistischen
Komponenten, wie bspw. einem Aussprachewörterbuch, HMM-Topologien,
Phonem-Cluster-Bäumen, einem akustischen Modell und einem Sprachmodell,
besteht. Durch aktuelle Fortschritte bei künstlichen neuronalen Netzen (KNN)
für die akustische sowie sprachliche Modellierung dominiert der hybride
HMM/KNN-Ansatz in unterschiedlichen ASR-Anwendungen.
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In den letzten Jahren hat die Einführung komplett neuronaler Ende-zu-Ende
Spracherkennungssystems, welche eine neuronale Netzwerkarchitektur verwenden,
um die direkt Abbildung eines akustischen Signals zu einer textuellen Transkription
zu approximieren, großes Interesse auf sich gezogen. Die Vorteile des
Ende-zu-Ende-Ansatzes liegen in der Einfachheit des Trainings eines kompletten
Spracherkennungssystems, wobei die komplexe Struktur einer HMM-basierten
Pipeline entfällt. Gleichzeitig benötigt die Ende-zu-Ende ASR oft eine wesentlich
größere Trainingsdatenmenge und es ist eine größere Herausforderung ein
Ende-zu-Ende Modell so anzupassen, dass es auf einer neuen Aufgabe gut
abschneidet.

Diese Dissertation befasst sich mit der Entwicklung eines hoch-performanten
Spracherkennungssystems für ein Online- und Streaming-Szenario. Der Autor
erreichte dies durch ein Vorgehen in zwei Schritten. Im ersten Schritt wurden
vielfältige Techniken im HMM-KNN- und Ende-zu-Ende-Paradigma angewandt,
um ein hoch-performantes System im Batch-Mode zu bauen. Batch-Mode
bedeutet, dass die vollständigen Audiodaten beim Start der Verarbeitung zur
Verfügung stehen. Im zweiten Schritt wurden effiziente Anpassungen untersucht,
die einem hoch-performanten Batch-Mode-System ermöglichen Inferenzen online
bzw. fortlaufend durchzuführen. Gleichzeitig wurden neuartige Algorithmen zu
Reduktion der wahrgenommenen Latenz, welche das kritischste Problem von online
Spracherkennern ist, entwickelt.

Erster Schritt. Die vorgestellte Techniken, die auf hochperformante Ergebnisse
abzielen, können anhand deren Position in der Spracherkennungs-Pipeline, wie
Merkmalsextraktion und Daten-Augmentierung, kategorisiert werden.

Bevor Sprachsignale eine digitale Form annehmen, sind sie als Ergebnis der Faltung
mehrere Frequenzkomponenten in einem großen Dynamikumfang bekannt. Diese
Merkmale können drastisch durch natürliche Faktoren, wie bspw. unterschiedliche
Sprecher, Umgebungen order Aufnahmegeräte, beeinflusst werden. Die große Varianz
der Sprachsignale verursacht typischerweise die Diskrepanz zwischen Training und
Test und kann die Erkennungsleistung drastisch verschlechtern. Diese Diskrepanz
gehen wir durch zwei high-level Ansätze, welche auf Neuronalen Netzen basieren,
in der Merkmalsextraktion an. Wir zeigten, dass auf tiefe neuronale Netze (DNN)
basierte akustische Modelle, die mittels dieser Sprecher-angepasster Merkmale
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trainiert wurden, in Bezug auf die Wortfehlerrate (WER) relativ, bis zu 19%
besser abschneiden, als herkömmliche Merkmalsextraktionen. Im zweiten Ansatz
wird ein Long short-term memory (LSTM) Netzwerk, das mittels Connectionist
Temporal Classification (CTC) Kriterium auf Phon-Labeln trainiert wurde, als
High-Level Merkmals-Transformation verwendet. Die Kombination der aus dem
CTC-Netzwerk extrahierten Merkmale und der Bottleneck-Merkmale ergab einen
effizienten Merkmalsraum, der ein DNN-basiertes akustisches Modell ein starkes
CTC-basierendes BaselineModellmit deutlichemVorsprung übertreffen ließ. Darüber
hinaus zeigten wir, dass die Verwendung einer Standard Cepstral Mean und Varianz
Normalisierung (CMVN) als low-level Merkmalsextraktion in einer potenziellen
Diskrepanz von Offline Training und Online Test resultiert und schlugen eine Lineare
Diskriminaz Analyse (LDA), die auf linearer Transformation basiert, als Ersatz vor.

Daten-Augmentierung wurde in der Spracherkennung verwendet, um zusätzliche
Trainingsdaten zu generieren und so die Qualität der Trainingsdaten zu erhöhen.
Diese Technik verbessert die Robustheit des Modells und verhindert Overfitting. Wir
zeigten, dass Overfitting das kritischste Problem beim Training eines Ende-zu-Ende
Sequence-to-sequence (S2S) Modells für die Spracherkennungsaufgabe ist und
stellten zwei neuartige on-the-fly Daten-Augmentierungsmethoden als Lösung
vor. Die erste Methode (dynamic time stretching) simuliert den Effekt von
Geschwindigkeitsänderungen durch eine direkte Manipulation der zeitlichen Folge
an Frequenzvektoren durch eine Echtzeit-Interpolationsfunktion. In der zweiten
Methode zeigten wir eine effiziente Strategie, um gesprochene Sätze on-the-fly zu
sub-samplen und so die Trainingsdatenmenge mit mehrere Varianten eines einzelnen
Samples zu vergrößern. Wir zeigten, dass diese Methoden sehr effizient sind,
um Overfitting zu vermeiden und die Kombination mit der SpecAugment-Methode
aus der Literatur verbesserte die Leistung des vorgestellten S2S-Modells zu einem
State-of-the-Art auf dem Benchmark für Telefongespräche.

Zweiter Schritt. Wir zeigten, dass die vorgestellten Hochleistungs-Batch-Mode
ASR Systeme des hybriden HMM/KNN und Ende-zu-Ende Paradigmas die
Anforderungen in einer online bzw. realen Situation, durch zusätzliche Anpassungen
und Inferenz-Techniken, erfüllen.

Weder der üblicherweise verwendete Echtzeitfaktor, noch die Commitment-Latenz
sind ausreichend, um die vom Benutzer wahrgenommene Latenz aufzuzeigen. Wir
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stellten eine neuartige und effiziente Methode zur Messung der vom Benutzer
wahrgenommenen Latenz in einer Online- und Streaming-Situation vor. Wir
zeigten weiter auf, dass ein fortlaufender HMM/KNN Erkenner entweder für
den Latenzhöchstwert oder die mittlere Latenz optimiert werden sollte, um das
Nutzererlebnis zu verbessern. Um die Latenzmetrik zu optimieren, führten wir einen
Mechanismus ein (Hypothese Update), welcher erlaubt hypothetische Transkripte früh
zum Benutzer zu schicken und diese später teilweise zu korrigieren. In Experimenten
in einer realen Situation in der Vorlesungspräsentations-Domäne konnte gezeigt
werden, dass dieses Vorgehen die Wort-basierte Latenz unseres Erkenners stark
reduziert, d.h. von 2,10 auf 1,09 Sekunden.

Das Sequence-to-sequence (S2S) Attention-basiertes Modell ist für Ende-zu-Ende
Spracherkennung zunehmend beliebt geworden. Etliche Vorteile der Architektur
und der Optimierung eines S2S-Modells wurde vorgestellt, um State-of-the-Art
Ergebnisse auf Standard-Benchmarks zu erreichen. Wie S2S-Modelle mit ihrem
Batch-Mode Kapazität aber für eine online Spracherkennung gebraucht werden
können, ist dennoch eine offene Forschungsfrage. Wir näherten uns diesem Problem,
indem wir die Latenzprobleme, die durch die normale Softmax-Attention Funktion,
bidirektionale Encoder und die Inferenz mit Strahlensuche verursacht wurden,
analysierten. Wir nahmen uns all dieser Latenzprobleme in einem an, in dem wir
einen zusätzlichen Trainings-Loss, um die Unsicherheit der Attention-Funktion auf
Frames auf die vorausgeblickt wird, und einen neuartigen Inferenz-Algorithmus, der
partielle Hypothesen bestimmt, vorstellen. Unsere Experimente auf dem Datensatz
mit Telefongesprächen zeigten, dass unser Stream-Erkenner, mit einer Verzögerung
von 1,5 Sekunden für alle Ausgabeelemente, in vollem Umfang die Performanz eines
Batch-Mode-Systems derselben Konfiguration erreicht. Nach bestem Wissen ist dies
das erste Mal, dass ein S2S-Spracherkennungsmodell in einer online Situation ohne
Einbußen in der Genauigkeit genutzt werden kann.
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Chapter 1

Introduction

Automatic speech recognition is one of the most challenging AI problems. The task
of building an online speech recognition system is even more challenging due to the
addition of the low-latency constraint. In this thesis, we present a two-stage approach
for developing online streaming speech recognizers. In the first stage, we propose
and develop various techniques for the construction of high-performance speech
recognition systems in offline condition. In the second stage, we explored efficient
adaptations that enable the high-performance batch-mode systems to be capable of
streaming processing. We further proposed novel algorithms to reduce the latency of
online speech recognizers.

1.1 Contribution

Themain contribution of this thesis is a systematic approach and needed techniques to
construct and evaluate high-performance neural network for online speech recognizer.
While showing the commonly used real-time factor is not a suitable for latency
measure, we proposed a novel method to capture better the latency that users
perceive in an online speech recognizer. We proposed several techniques to deal with
the latency issues occurred with the current approaches to build HMM/ANN and
end-to-end ASR systems. We conducted several comprehensive experiments to verify
if the proposed online ASR system to match the practical constraints in both latency
and accuracy.
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1. INTRODUCTION

1.2 Overview

This section gives an overview of the contents of the individual chapters of this thesis.

Chapter 1 gives an introduction to the topic of this thesis.

Chapter 2 describes the fundamental theory applied in this work. Automatic speech
recognition is introduced and fundamentals of ASR systems are given. Machine
learning algorithms used throughout this work, such as hidden markov model
and neural networks are described. Also, the evaluation metrics we used to
measure the performance of the models built in this work are introduced.

Chapter 3 shows the limits of available techniques and the challenges of developing
an online speech recognition system.

Chapter 4 provides the descriptions of the experimental datasets as well as toolkit
used in the thesis.

Chapter 5 presents the novel techniques for extracting acoustic feature in online
condition.

Chapter 6 presents the data augmentation methods which improve the performance
aswell as increase the robustness of themodels on different recording conditions
and speaking styles.

Chapter 7 reviews the commonmethods formeasuring latency and describes a novel
approach for more suitable user-perceived latency.

Chapter 8 presents the techniques which enable the batch-mode models proposed
for both hybrid HMM/ANN and end-to-end paradigms to be used for online
recognizers while retaining their high performance.
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Chapter 2

Theory and Background

This chapter establishes the background of the thesis. We start by introducing
the problem of automatic speech recognition (ASR) and the fundamentals for
decomposing and modeling the problem. This is followed the description of
the preprocessing and evaluation techniques which are commonly used for the
construction of an ASR system. The following chapters concentrate on describing
Artificial Neural Networks (ANNs) and the associated techniques that provides
methods and tools used for solving the ASR problem in this thesis.

2.1 Automatic Speech Recognition

Automatic speech recognition (ASR) refers to the ability of amachine to identifywords
and phrases in spoken languages and convert them to a human-readable format. The
research on automatic speech recognition have been active for over half of a century.
Several patterns and template matching approaches were proposed until the mid-1980
when Hidden Markov Model (HMM) became a breakthrough to solve the speech
recognition task. The HMM framework has been dominant for ASR development for
several decades. In this section, we first describe the HMM-based ASR approach. We
then provide theoretical background for other important parts for the construction of
ASR systems including feature extraction, inference and evaluation methods.
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2. THEORY AND BACKGROUND

2.1.1 Hidden Markov Model

Hidden Markov model (HMM) have been explored in the 1970s for the recognition
of continuous speech at IBM [JBM75] and Carnegie Mellon University [Bak75].
The HMM-based ASR approach decomposes the speech recognition task with the
inspiration from the noisy channel model [Sha01]:

Ŵ = argmaxWP (W |X) = argmaxW
P (X|W ).P (W )

P (X)

= argmaxWP (X|W ).P (W ),

where W is a word sequence, X denotes an acoustic observation or speech utterance,
and Ŵ is the best guess for the transcription of the utterance. The noisy channel
considers the given utterance to be scrambled by a noisy channel as only a noisy
signal is observed. Then, the speech recognition task is to decode the original signal
based on the noisy signal. In the derived formula, the term P(W) is a prior which
can linguistically be estimated, and P(X|W) is the likelihood of observing a sequence
of acoustic vectors given a particular word sequence. The noisy channel offers a
convenient approach to separate and combine the prior and the conditional model.
Figure 2.1 illustrates how this approach work in practice. The speech signal is
processed to obtain a sequence of feature vectors X and an n-gram language model
[Sha01, CG99] is usually applied to P(W). The probability P(X|W) is statistically
learned with a Gaussian Mixture Model (GMM) or deep neural network (DNN)
acoustic model. Importantly, the language model, acoustic model, and dictionary
are estimated independently of each other. Furthermore, because the HMM-based
acoustic models work best over phonemes while language models over words, a
pronunciation dictionary is necessary to establish a proper mapping. Decoding is
performed by employing a beam search over the search space constructed from the
HMM states.

2.1.2 Feature Extraction

Acoustic signals are recorded as discrete sequences of samples in a microphone. These
signals are digitalized by an A/D converter at intervals of a certain frequency (e.g.,
16kHz, 48kHz) and then quantized to have an array of 16-bit integer samples. For a
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2.1 Automatic Speech Recognition

Figure 2.1: Block diagram of HMM-based speech recognition.

speech utterance of 5 seconds, the sample array can be 90,000 length. This fact results
in a very challenging problem for computation andmodeling. The raw signal therefore
must be transformed into a space of much lower dimension without losing significant
information. Based on the observation that humans can acquire the skill of interpreting
speech signals in the frequency domain but are very poor at doing the same in the
time domain, many prepossessing methods proposed to discrete Fourier transform to
convert raw signal into the frequency domain. Further, the Mel scale and a filter-bank
can be applied to group the frequencies of fixed ranges into bins as the inspiration from
human auditory system. The result is a lower dimension (20-40) feature representation
called Mel filterbank (FBANK) features that are by many techniques proposed in this
thesis. Other common technique is cepstral coefficients (MFCC)which can be obtained
by further applying cosine transformation.

2.1.3 Evaluation Metric

Word-error-rate (WER) is the most common metric for evaluating ASR systems. The
WER is based on the edit distance, also referred to as Levenshtein distance. The main
idea is to count the minimum number of word-level edits necessary to transform the
incorrect output string into the correct reference string. Edits can be substitutions,
insertions, and deletions. The WER is then defined as

WER =
substitutions+ insertions+ deletions

reference length
× 100%.

The minimum number of edits can be computed efficiently through a dynamic
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programming algorithm. In languages where no clear word boundaries exist, such as
Chinese and Japanese, the character edit rate can be used instead which works exactly
the same but operates on character-level instead of word-level.

While WER is meaningful even when computed for individual test sentences, it is
usually computed at the corpus level, so that longer sentences in the corpus are given
proportionally more weight in the final score than shorter sentences.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) inspired by human brain have been around for
over half of a century. In 1957, Rosenblatt formulated the perceptron algorithm [Ros57]
in which a perceptron features one or multiple inputs and activates with an activation
and bias. As the main criticism of Minsky [MS69], a single perceptron can only be
applied to linear separable problems. More complex problems can also be solved, but
do require a multilayer perceptron (MLP) and non-linear activation functions. As the
increase of number of neurons and layers, estimating for suitable values of the neurons
in a neural network is difficult. Error backpropagation [RHW86] had been introduced
to determine how the weights should be updated during the learning process and
become a very efficient optimization method until now a day.

In recent years, due to the emergence of computing capabilities, several network
architectures and optimization methods have been found and made ANNs become
a very powerful machine learning method for artificial intelligence. A new trend
so-called "Deep Learning" leverages the evolution of ANNs with deeper architectures
and a large number of neurons, and efficiently applied it to several problems which
were not possible to solve before such as computer vision, nature language processing,
machine learning and speech recognition.

2.2.1 Feed-forward Neural Network

MLPs are also called feed forward neural networks (FFNNs). The neurons in such
a network are organized in layers. While the neurons are connected between two
consecutive layers, there are no connections of neurons within the same layer. The
use of FFNN always comes with non-linear activation functions since the layers could
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otherwise be can collapsed into one layer big network and the advantage of using
multiple layers would vanish.

The connections between neurons in FFNNs can be further modified for better
modeling particular inputs. Time-Delay Neural Networks (TDNNs), introduced
by [WHH+87], and its successor Convolutional Neural Networks [LB+95] are a special
kind of feedforward neural networks which can effectively deal with variable-length
(time-shifted) sequences and able to model long distance dependencies within them.
TDNNs therefore have been applied in many machine learning problems, mostly in
speech recognition but also widely popular in other areas such as computer vision,
robotics, time series prediction and natural language processing.

Instead of using a fully-connected layer, TDNNs run a window from the delayed
inputDi toDi+N with its parametersW and computes the weighted sum of its inputs
and feed it through a nonlinear function f :

hi = f(W T · Si:i+N )

This non-linear transformation in the TDNN architecture are tied across the delays
(time steps), thus TDNN layers are forced to learn features shifted within the patterns.
Those features are called translation-invariant features, where they do not change over
time. Applied in speech recognition, TDNNs are able to detect of time-independent
sub-patterns, therefore, one does not need to perform an additional step for time
alignment. After that, some sampling operation would be conducted. In TDNN
architecture, max pooling is often used. By this way, the most active features can
be selected as the inputs for the next TDNN layer. In CNN architecture, the sliding
window is called kernels, and in principle, CNNs are TDNNs but they have been
widely applied in computer vision and natural language processing.

2.2.2 Recurrent Neural Network

Recurrent neural networks (RNNs) [Elm90] are a variety of neural networks that was
designed for modeling temporal sequences. RNNs tries to learn representation of time
into internal states of the network. This is done by introducing context units as the way
of keeping information at each time step and hidden units as the result of combining
current input with the context units. Recurrent connection [Jor97] is used for that
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combination. The internal representation is learned via the update on the hidden units
which then provides the network with "memory". Formally, at time step t, given input
xt and hidden unit ht−1 from the previous step, the current hidden state is computed
with an the RNN function as:

ht = RNN(xt, ht−1) = f(Wxhxt +Whhht−1 + bh)

The RNNs can be viewed as a feedforward neural networks if we unroll the hidden
state over time. By unrolling we simply mean that we write out the network for the
complete sequence as shown in Figure 2.2. Note that the learnable parameters are the
same in all time step and the hidden units are transfered to the next step, which is the
difference with feedforward neural networks. To learn RNNs, the back propagation
can be used for updating the parameters as over the unrolled network. That version
of backpropagation is called backpropagation through time (BPTT) [RM85, RF87,
Wer88].

Figure 2.2: An unrolled RNN.

There is a serious problemwith the RNNs when training them on a long sequence.
On the backward pass, the error derivative w.r.t. to the inputs of simple recurrent
hidden units can be extraordinarily large or very small close to zero over the time steps.
More specifically, the gradient signal will always be multiplied by the same matrix
Whh when it is going back through one time step. So it is basically proportional to
WN
hh with N is the number of time steps. If all elements in Whh larger than 1, the

gradient becomes very large then the exploding gradient occurs. On the other hand if
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all elements in Whh smaller than 1, the gradient becomes smaller over time then the
vanishing gradient occurs.

While RNNs are able to model context, they are limited in capturing long
term dependencies due to the vanishing gradient problem [BSF94, HBF+01]. Long
short-term memory (LSTM) networks were proposed to mitigate this problem [HS97,
Hoc98]. By using internal memory cells, these networks are able to preserve
information over longer distances. Each LSTM cell has 3 gates for controlling the
hidden state: 1) a forget gate which determines howmuch information is preserved, 2)
an input gate to decide howmuch new information should be stored and 3) an output
gate to control how much of the internal state is output. Figure 2.2 (from [GSS02])
shows the information flow within an LSTM cell, including peephole connections
[GSS02]. LSTM networks exist also in a bi-directional variant (BiLSTM).

2.2.3 Attentional Encoder-Decoder Neural Network

Many sequential learning problems can be considered as the task of converting from
a source sequence to a target sequence. Such as in machine translation, we have
a sentence in English as the source and other sentence in French as the target for
translation. Or in speech recognition, we need to convert from a sequence of acoustic
vectors to a sequence of words. The attentional encoder-decoder (Attn-EncDec)
neural network has invented to deal with these sequence-to-sequence problems. As
introduced specifically formachine translation, the attentional encoder-decodermodel
quickly becomes the dominant approach for the domain [KB13, SVL14, BCB14] and
later on was successfully applied in automatic speech recognition [CBS+15, CJLV,
PCZ+, NSNW19].

A typical attentional encoder-decoder model includes an encoder network and a
decoder networkwhich employs attentionmechanism. Given x as the source sequence
and y as the target sequence, the Attn-EncDec aims to model the probability P (y|x).
At first, the model transforms the source sequence x into a sequence of representation
vectors h = {h1, ..., hT } using the encoder network. Then, the decoder network
uses an attention function to produce a probability distribution yi over the next token
given a previous token sequence in auto-regressive manner. A common form of these
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functions are:

h = EncoderRNN(x)

si = DecoderRNN(si−1, [yi−1; ci−1])

ci = Attention(h, si)

yi = Distribution(si, ci)

where si is the decoder state at output step i andDistribution is an MLP with softmax
output. The Attention function generates a context vector ci which is a weighted
average of all the vectors in h. So far, the most commonly used attention mechanism
is originally proposed in [BCB14]. This approach uses trainable matrix Wh,Ws and
vectors v, b to compute ci as follow:

ei,j = v>tanh(Whhj +Wssi + b)

ai,j = softmax(ei,:)j

ci =
T∑
j=1

ai,jhj

2.3 Neural Networks Optimizations

How to optimize a neural networks to fit the training task is also the very important
aspect beside the designing neural network architectures. In this section, we have
reviewed the techniques for improving neural network optimizations. This includes
different types of activation and loss functions, parameter initialization approaches as
well as regularization techniques.

2.3.1 Activation Functions

Activation functions are a crucial component of neural network. Activation functions
introduces nonlinearity, determine the output of a network model and its accuracy.
They also have amajor effect on themodel’s ability in converge and convergence speed,
or in some cases, good activation functions can prevent themodel from getting stack in
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local minimums. They also affect to the computational efficiency in training for scaling
larger neural networks.

2.3.2 Loss Functions

Loss function is one of the most important part in training neural networks. In one
hand, it directly reflects the task that a network model has to learn. In other hand, loss
functions hugely influence to the optimization of neural networks.

Cross Entropy
The cross-entropy loss [B+95] is the most common loss function used in training
neural network as it is known as the best fit for the classification tasks.

Mean Squared Error
This function produces the mean squared error as the loss between the output and
the ground truth label. To satisfy this loss function, the output of the networks and the
ground truth need to be real value. This function alsoworks for classification problems
with hard targets but is knowns to be not as suitable as cross-entropy.

2.3.3 Parameter Initialization

Using a good set of initial weights of a neural network does not only improve
the convergence, but sometime also helps the training to bypass local minimums
and then results in better performance. Different network components may need
different approaches for good parameters initialization. One approach is to select the
parameters randomly, but condition the values based on certain criteria, e.g., based on
the used activation function.

2.3.4 Regularizations

Due to the use of much larger number of parameters than other machine learning
models, neural networks are typically prone to overfitting. This situation has
both advantage and disadvantage. The advantage is to shows that the network is
capable enough for the problem, however final result on test set can be poor as the
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disadvantage. Regularization techniques are developed to improve this overfitting
situation in neural networks. Several methods have been proposed:

L2 Regularization
L2 regularization adds “squared magnitude” of coefficient as penalty term to the loss
function. The effect of this regularization is to let the model prefer weights with small
values (closer to zeros is the better).

Dropout Training
Dropout [HSK+12] is a method to approximate training a large number of neural
network models with different architectures in parallel. During training, some layer
outputs node are randomly ignored (or “dropped out”). This results in an effect of
making the layer look-like a new layer with a different set of nodes and connectivity to
the prior layer. Dropout also has the effect of making the training process noisy, thus
prevent network nodes from memorizing and co-adapting the inputs or prior layers.

Gradient Clipping
Another technique is gradient clipping, in which the value of back-propagated
gradients are limited to a certain threshold [GBC16]. This reduces the impact of
exploding gradients occurred during training.

2.3.5 Learning Schedule

As observed in many practices, the update of network network’s parameters is
sensitive to good convergence state (e.g. a large update may make the network jump
out of the good local minimum), learning schedule needs to be defined carefully to
obtain the best possible performance. Multiple learning schedule strategies have been
proposed.

Fixed Scheduling
In this basic method, learning rates are predefined and fixed for a number of epochs.
The fixed schedule is usually based on expert knowledge and prior experiments. Since
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being static, this method does not account for the network’s progress.

Exponential Decay
Instead of using fixed intervals, the exponential decay method decreases the learning
rate exponentially after each epoch with a factor. This strategy is inspired from two
observations. First, the big updates can make the network bypass bad local minimums
while the small updates later keep the network go further to the good local minimum.
This method can be used together with early stopping in which the training stops after
the error on the validation set starts to increase.

Newbob
There exists yet another method, combining static learning rate scheduling with
exponential decay, called “newbob” [MB90]. Based on the progress the network shows
w.r.t. the error rate on the development set after each epoch, different stages are being
selected. The training starts using a fixed learning rate. Once the decrease of the
error rate falls below a certain threshold, newbob switches to exponential decay. The
training continues in this mode until the observed delta of the error rate drops below
the second threshold. After this threshold is met, the training stops. In total, this
method introduces two additional parameters: The first threshold to determine the
switch from a static learning rate to the exponential decay and the second threshold to
stop the training.
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Chapter 3

Modern Approaches in ASR

The research on automatic speech recognition has been active for over half of a century.
Several patterns and template matching approaches were proposed until the mid-1980
when Hidden Markov Model (HMM) became a breakthrough to solve the speech
recognition task. The success of applyingHMM framework to ASR lies on the ability to
decompose the modeling of speech sentences into two separate components: acoustic
model (AM) and languagemodel (LM).With the use of n-gram for languagemodeling
and Gaussian Mixture Model (GMM) for acoustic modeling, HMM-based ASR has
been the mainstream for a long time. Until the year 2010s, artificial neural networks
(ANN) were successfully applied to solve the ASR task and made several changes to
this research field.

This chapter reviews the modern approaches that employ neural networks to
solve the speech recognition problem. We first introduce different neural network
architectures proposed for modeling ASR and improving feature extraction. To give a
systematic view on how neural networks have changed the ASR research, we provide
an analysis on the progress of the ASR systems that have been made for the telephone
conversation speech task over the decade.

3.1 ASR Modeling

ANNs have played an important role in the construction of high-performance speech
recognition systems. At the early stage, ANNs are utilized as a technique for
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acoustic modeling, which replace GMMs in HMM-based systems. Later on, ANNs
have become a whole system for solving the speech recognition task. This section
highlights three different approaches of neural network proposed for the speech
recognition. Figure 3.1 gives an overview of these approaches. The left part presents
HMM/ANN acoustic modeling in which deep neural network (DNN) is used to
classify HMM transition states. The center part presents the neural network model
using connectionist temporal classification (CTC) criterion, while the left part shows
the overall architecture of a sequence-to-sequence encoder-decoder model.

Figure 3.1: Three common approaches for solving ASR.

3.1.1 DNN Acoustic Model

In HMM-based ASR, Gaussian Mixture Model (GMMs) had been used for modeling
the phone emission probabilities for a long time. Until the year 2010, [BM12, SLCY11]
shown that these probabilities can be efficiently estimated by using several layers of
feed forward networks or referred more commonly as deep neural network (DNN) in
the literature. Different from GMMs, DNNs are trained in a discrimination manner
to classify phones or phone states. The phone posterior probabilities for each frame is
then computed by incorporating a prior term. As shown in many practices, this prior
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term can be estimated with simply counting from the training dataset. This type of
model is also referred as hybrid acoustic model in the literature.

3.1.2 Connectionist Temporal Classification Model

The connectionist temporal classification criterion (CTC) [GFGS06, GJ14] and its
associated training methods have received significant interest in speech recognition
in recent years. Using recurrent neural networks (typically long short-term memory
LSTM), CTC training can efficiently model the long-term dependencies between a
small number of units (e.g., phonemes or characters) and speech frames. Utilizing
the CTC optimization criterion which handles possible alignments of the units in a
sequence label, CTC-based speech recognition systems can be trained in a straight
manner, thereby eliminating many complex steps in the conventional hybrid Hidden
MarkovModel /ArtificialNeuralNetwork (HMM/ANN) speech recognition pipeline,
such as the definition of an HMM topology, finding context-dependent phonemes
and modeling units, and the frame-wise alignment of HMM states and feature
vectors. The way CTC was originally introduced motivates the development of such
speech recognition systems in end-to-end fashion in which the language model or a
vocabulary can also be omitted.

Assume that we use a set of labels L and we can always map the ground-truth
transcript of an utterance X into a label sequence z ∈ L∗ (L∗ meaning the Kleene
closure over the alphabet L). A CTC path π (i.e., a sequence at frame level allowing
repeated labels) represents an alignment of z. Denote yπt as the posterior probability
that a recurrent neural network model assigns to the corresponding label of π at time
t. By assuming the independent probabilities of all labels between frames, the CTC
objective function solves all possible alignments as:

P (z|X) =
∑
π

P (π|X) =
∑
π

∏
t

yπt

For model optimization, [GFGS06, GJ14] proposed to use the forward-backward
algorithm to maximize the likelihood of all the transcripts given the speech utterances
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in a training corpus. After training converges, we obtain an optimizedmodel to predict
the posteriors yt of all labels at every time frame t. The inference is then performed
via a beam search with the integration of a language model which is similar to the
HMM-based ASR except the withdrawal of hierarchical transitions in HMMmodel.

3.1.3 Attention-based Sequence-to-Sequence Model

To build an HMM-base ASR system, one needs to follow a complicated pipeline to
create pronunciation dictionaries, HMM topologies, phoneme cluster trees, an acoustic
model and a language model. Some of these components even require language
expertises which pose considerable burden developing ASR for new languages. The
CTC approach tried to simply the HMM pipeline by employing recurrent neural
network (RNN) and CTC loss function. However, the CTCASR system still requires to
integrate an external languagemodel for their inferences. A remedy to this is provided
by attention-based sequence-to-sequencemodel (Seq2Seq) [CBS+15, CJLV15], another
HMM-free approach to speech recognition that uses an encoder-decoder architecture.

The main components of the Seq2Seq model include an encoder, which consumes
the source sequence and then generates a high-level representation, and a decoder
generating the target sequence. The decodermodels the data as a conditional language
model - the probability of the sequence of discrete tokens is decomposed into an
ordered product of distributions conditioned on both the previously generated tokens
and the encoder representation. Both encoder and decoder are neural networks
components that are able to learn the relationship between the time steps in the input
and output sequence. The decoder also requires a mechanism to condition on specific
components of the encoder representation.

Note several important differences to the HMM-based approach:

• P (W | X) is modeled directly without any noisy-channel assumption.

• All parameters are trained jointly. This simplify implementation and
maintenance. On the other side, using auxiliary data such as monolingual data
for language modeling becomes less straight-forward.

• No pronunciation dictionary is required, the creation of which is one of themajor
burdens in traditional speech recognition.
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• This model is more flexible regarding output text normalization, e.g. can be
trained to directly produce output that is properly cased, punctuated, and uses
properly formatted numbers.

3.2 Extracting Features

3.2.1 Bottleneck Features

In HMM-based ASR, log mel filterbank (FBANK) and mel-frequency cepstrum
(MFCC) are the most common techniques to produce frame-based input features
from raw audio signal for modeling. Inspired from the representation learning ability
of neural networks, [YS11, MKC+11, SKR12] have proposed a so-called bottleneck
feature extraction (BNFs) to produce input features for theHMM-basedmodels. BNFs
employs several layers of feature forward networks with a very end bottleneck layer
(before the final softmax layer). This bottleneck layer typically has a the same size as
the number of feature in FBANKorMFCC extraction, and the BNF is trained to classify
phone state labels. Several studies have shown that the BNF can transform the original
input into a new feature domain by discarding irrelevant information, and easier for
modeling with GMMs or DNNs. Using this feature extraction also results in better
recognition performance, especially for GMMs.

3.2.2 Speaker Identity Vector

Speaker identity vector (I-vector) provides a short vector that describes a speaker’s
identity and are successfully used in speaker verification and speaker recognition
tasks. This powerful technique is also useful for speech recognition since i-vectors
encapsulate the speaker relevant information in a low-dimensional fixed-length
representation [GBM+11]. The i-vector extraction is trained in an unsupervised
manner on untranscribed data. Applied to speech recognition, Saon et al. [SSNP13]
and Senior et al. [SLM14] augment regular acoustic features with i-vectors as a speaker
adaptation for their DNN systems. Their works showed that i-vectors possibly provide
additional information allowing for an improving recognition performance. Miao et
al. [MZM15] introduced speaker adaptive training for DNN (SAT-DNN)which learns
an adaptation neural network to convert i-vectors to speaker-specific linear feature
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shifts. The original features (e.g. MFCC) are then speaker-normalized by adding
theses shifts.

3.3 ASR Progress

Figure 3.2: WER over years of different ASR approaches.

Since 2010, the research on automatic speech recognition has gained significant
interest from various research groups and companies. This fact pushes forward the
research development of ASR and resulted in a massive improvement in recognition
performance. In many speech recognition benchmarks, machines have already
outperformed humans byword error rate accuracy. To give an overview of this success,
we review and analyze the progress of ASR research on the Switchboard telephone
conversation speech.

Switchboard telephone conversation speech is one of themost popular benchmarks
in ASR. This corpus contains spontaneous speech with frequent appearance of
disfluency, which is a very challenging recognition task. In Figure 3.2 and Figure 3.3,
we show the development of recognition accuracy from several works reported by
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Figure 3.3: Three milestones in ASR progress.

many different research groups and companies. We category the reported results
by their modeling approaches, including HMM/GMM, HMM/ANN, CTC-based,
and Sequence-to-sequence ASR. When this dataset was first introduced, machines’
recognition performance was above 50% and had not changed much over a decade.
The significant changes have begun since 2010. We highlighted three milestones in
this progress:

• 2012: Deep learning started to show as a potential approach to solve ASR. The
HMM-based ASR with the employment of DNN acoustic model outperformed
the traditional GMM acoustic model.

• 2016: Recognition accuracy produced by machines had reached to human

performance level. Some big companies such as Microsoft and IBM have reported
their success in achieving human performance in this benchmark and made a
breakthrough inASR.However, the results are hardly producible since theywere
produced by several systems and require intensive computing power.
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• 2019: Human performance was achieved again, but with single open-source
systems and much simpler training procedure.
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Chapter 4

Online and Low-latency ASR

In this chapter, we explain the differences between offline (or batch-mode) and online
speech recognition. We further analyze the latency issues that occurred with the
components of the current speech recognition architectures and describe a systematic
approach for the development of an online speech recognizer.

4.1 Offline vs. Online

Automatic speech recognition is the ability of a machine program to identify words
and phrases in spoken sentences and convert them to a human-readable format. In
the statistical approach, this program usually refers to a machine learning model that
learns a mapping function from audio data to phone, character, or word symbols.
Typically, in both training and testing phases, the model is fed with complete audio
data of spoken sentences to start its processing. There is also no constraint onwhen the
model needs to produce its output. This setting is referred to as offline or batch-mode
processing.

In many real-life applications, the speech recognition program needs to respond
quickly to catch up with the verbal interactions. Sometimes, the programmust be able
to start processing before the users have completed a sentence. This type of application
is referred to as online speech recognition, differed from offline in that latency is an
additional optimization constraint. An online recognizer may become not applicable
if its latency does not satisfy users’ needs. The real challenge of building an online
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recognizer usually does not lie on the optimizations for the computational power but
the latency issues introduced by the components of the speech recognition systems.

4.2 Latency Issues

The ASR studies in the literature has focused on offline (batch-mode) conditions.
The batch-mode speech recognition models followed both hybrid HMM/ANN and
end-to-end paradigms have their own latency issues when being in online condition.
Our analyses on the latency of the commonASR systems are summarized as following:

Feature Extraction So far, most of state-of-the-art speech recognition models work
on the extraction of log Mel filter-bank frequency (FBANK) or Mel-frequency cepstral
coefficients (MFCC) features. To obtain the optimal configurations, these features are
usually further normalized via Ceptral mean and variance normalization (CMVN)
or Cepstral mean normalization (CMN) techniques for several samples of the same
sentence or many sentences of the same speaker. However, in many online scenarios,
there is no guarantee to have enough a certain amount of historical data to be available
for the feature normalization. This situation then may leads to a mismatch between
training and test, and degrade the recognition accuracy.

Bidirectional Encoding In many end-to-end speech recognition models which
employ sequence training criterion such as connectionist temporal classification
criterion or sequence-to-sequence encoder-decoder, a neural network architecture is
typically used to encode the acoustic input sequence into a high-level representation.
To achieve high performance, bidirectional LSTM have been the optimal choice for
the encoder of many end-to-end models. However, due to the backward LSTM,
bidirectional LSTM are not suited to provide partial and low-latency output as needed
for streaming recognizers. The addition of acoustic input will affect all of the encoder’s
hidden states, which then makes all partial inference results unstable. This effect
leads to the fact that stable output can be confidently inferred only when the input
is complete.
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Soft-attention Mechanism The introduce of soft-attention mechanism make a
significant change of building end-to-end sequence-to-sequence attention-based
models. However, [RLL+17, CR17] pointed out early that the shortcoming of an
attention-based S2S model used in online condition lies in its attention mechanism,
which must perform a pass over the entire input sequence for every element of
the output sequence. [RLL+17, CR17] proposed a so-called monotonic attention
mechanism which enforces a monotonic alignment between the input and output
sequence.

Beam Search Beam search is the most efficient approach for the inference of both
end-to-end or HMM/ANN models. Its basic idea is to maintain a search network
in which network paths are extended with new nodes with the highest accumulated
scores and to thenprune the network only keeping a set of active paths (or hypotheses).
Typically, the most probable hypothesis for an utterance X is found and guaranteed
when the entire search space constructed from X is supplied to the search. However,
needing the complete acoustic signals of X to its very end in order to output the
inference result is not efficient for a streaming setup. A streaming recognizer must
be able to produce partial output while processing partial input.

4.3 How to Build an Online Recognizer

The difference between offline and online ASR is the appearance of the latency
constraint. As the analysis in the previous section, many components in the current
ASR approaches require entire acoustic signals of input utterances obtain their optimal
performance. When switching to more latency-friendly counterparts, the recognition
performance may reduce dramatically (e.g. from bidirectional to unidirectional
LSTM). So to build online recognizers, we mostly need to improve the latency of the
ASR componentswhilemaintain their capacity for the accuracy performance. An ideal
online recognizer should perform as good as the offline counterpart of the same setting
while being able to serve in real-time and low latency.

We propose a two-stage approach to develop online streaming speech recognizers.
In the first stage, we constructed and evaluated different neural network models to
build high-performance recognition systems in offline condition. In the second stage,
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we explored further techniques that enable the high-performance neural network
models for online streaming processing while maintaining their efficiency as in offline.
The success of the two-stage approach resulted in a speech recognition system that
satisfies the need for both latency and accuracy.
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Chapter 5

Experimental Setup

In this chapter, we will outline our experimental setup. Starting with data sets, we will
also provide an overview of the tasks used for evaluation, as well as short descriptions
of all the toolkits used.

5.1 Datasets

In this work, we used data sets from 3 different projects, covering a wide variety of
acoustic conditions. The most challenging data set originates from the BABEL project
and consists of telephone recordings. Data from Euronews is of a better acoustic
quality, but the available annotations are limited. Data sets used from the BULB project
contain only very little data, which is challenging as well.

5.1.1 Switchboard

Switchboard is a collection of about 2,400 two-sided telephone conversations among
543 speakers (302 male, 241 female) from all areas of the United States. A
computer-driven robot operator system handled the calls, giving the caller appropriate
recorded prompts, selecting and dialing another person (the callee) to take part in a
conversation, introducing a topic for discussion and recording the speech from the two
subjects into separate channels until the conversation was finished. About 70 topics
were provided, of which about 50 were used frequently. Selection of topics and callees
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was constrained so that: (1) no two speakers would converse together more than once
and (2) no one spoke more than once on a given topic.

5.1.2 Fisher

The Fisher telephone conversation collection protocol was created at LDC to address a
critical need of developers trying to build robust automatic speech recognition (ASR)
systems. Previous collection protocols, such as CALLFRIEND and Switchboard-II and
the resulting corpora, have been adapted for ASR research but were in fact developed
for language and speaker identification respectively. Although the CALLHOME
protocol and corpora were developed to support ASR technology, they feature small
numbers of speakers making telephone calls of relatively long duration with narrow
vocabulary across the collection. CALLHOME conversations are challengingly natural
and intimate. Under the Fisher protocol, a large number of participants each calls an
other participant, whom they typically do not know, for a short short period of time
to discuss the assigned topics. This maximizes inter-speaker variation and vocabulary
breath while also increasing formality.

5.1.3 Hub4

The 1996 Broadcast News Speech Corpus contains a total of 104 hours of broadcasts
from ABC, CNN and CSPAN television networks and NPR and PRI radio networks
with corresponding transcripts. The primarymotivation for this collection is to provide
training data for the DARPA "HUB4" Project on continuous speech recognition in the
broadcast domain.

5.1.4 Libri Speech

LibriSpeech is a corpus of approximately 1000 hours of 16kHz read English speech,
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived
from read audiobooks from the LibriVox project, and has been carefully segmented
and aligned. This dataset contains 1000 hours of speech sampled at 16 kHz. We
have made the corpus freely available for download, along with separately prepared
language-model training data and pre-built language models.
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5.1.5 TED Talks

English speech recognition training corpus from 2351 TED talks (452 hours of audio),
created by Laboratoire d’Informatique del’Université du Maine (LIUM). A TED talk
is a video created from a presentation at the main TED (technology, entertainment,
design) conference. This corpus released with a Dictionary with pronunciations
(159848 entries) and selected monolingual data for language modeling from WMT12
publicly available corpora.

5.2 Toolkits

Janus Recognition Toolkit Our traditional speech recognition systems were built
using the Janus Recognition Toolkit (JRTk) [FGH+97]which features the IBIS decoder.
It is being developed at the Carnegie Mellon University (CMU) and at the Karlsruhe
Institute of Technology (KIT). In addition to training ASR systems, we also used
the audio pre-processing pipeline of JRTk for the extraction of features for all our
experiments.

Theano Feed-forward neural networks were trained using a setup based on Theano
[BBB+, BLP+12]. Theano being recently discontinued at the time of writing was one of
the first toolkits with support for automatic differentiation. It allowed for writing code
in Python which would then be compiled to run on either CPUs or GPUs. While this
resulted in fast execution, the drawback of this approach is that runtime debugging
required special methods.

PyTorch PyTorch [PGM+19] is a novel machine learning library, which provides
Python bindings to Torch. It does not require a special compilation step like Theano.
Beingmore recent, it also features a better integrationwith up-to-date CUDA1versions
which result in faster processing times. It was used for training the RNN/CTC based
ASR systems.
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Chapter 6

Feature Extraction

Speech signals, known as the convolution of multiple frequency components in a
wide dynamic range, before becoming digital forms, can be changed dramatically
with natural factors, such as different speakers, environments, or recording tools.
The large variability of speech signals typically causes the mismatch between training
and testing conditions, and then may largely degrade the performance of speech
recognition models. To address this issue, efficient techniques [Gal98, GMMW13] in
feature extraction have been proposed. While [Gal98] used feature-space maximum
likelihood linear regression (fMLLR) to reduce speaker variability in feature space,
[GMMW13]proposed a bottleneck network architecture for producing a robust feature
representation. We advanced this direction by proposing three novel network-based
feature extraction approaches.

In the first approach, an efficient architecture used to combine the benefits of both
i-vectors and speaker-adaptive feature transformations was introduced. In the second
approach, we presented a neural network optimized with connectionist temporal
classification criterion can be used a high-level feature extraction for HMM/ANN
models. We showed that the common CMVN feature extraction introduces a postental
mismatch between offline training and online testing, and proposed a novel approach
to overcome it.
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6.1 Speaker Adapted Features

In statistical speech recognition, speaker adaptation techniques can fall into two
categories: Model adaptation involves modifying the parameters of the acoustic
model to fit the actual speech data from a target speaker. Maximum Likelihood
Linear Regression (MLLR) [Gal98] and Maximum A Posteriori (MAP) [GL94] are
the powerful model adaptation techniques that improve Gaussian Mixture Models
(GMMs). However, there is no similar technique for Deep Neural Network (DNN)
models which have become prominent in recent years. Due to their many large
hidden layers, DNNs have a significantly higher number of parameters. It is
therefore hard to adapt DNNs with only a small amount of data. Several studies
[Lia13] [SLCY11] have shown that DNN models have greater invariance to speaker
variations resulting in model adaptation being less effective than for GMMs. Further,
model adaptation usually results in new models for individual speakers, significantly
increasing complexity and required storage space.

Unlike model adaptation, feature adaptation techniques use regular acoustic
features and adaptation data to provide new features which better fit the trained
acoustic model, thus improving recognition accuracy without the need to change
the model. Feature adaptation is attractive for dealing with the limitations of
model adaptation, especially for DNNs. Feature-space MLLR (fMLLR) [Gal98] is a
well-known adaptation technique which makes better inputs for GMMs. However,
providing good fMLLR features for DNNs is challenging: Due to the huge difference
between DNN and GMMmodels, fMLLR features which are optimized for GMMs are
not guaranteed to be better for DNNs than other regular features. Recently, identity
vectors (i-vectors) for speaker representation have been introduced [DKD+11], and
have been successfully used in speaker verification and speaker recognition. Further
research [SSNP13, SLM14] proved that i-vectors can be used in conjunction with
regular features to improve DNN performance. A later study [SLM14] showed only
small improvements if using a strong DNN baseline.

We examine how i-vectors and fMLLR transformations can be combined in order
to improve both GMM and DNN systems. In particular we analyse speaker-adaptive
bottleneck features (SA-BNF), where log scale Mel filterbank (FBANK) features are
concatenated with i-vectors to form their input features and investigate how both
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speaker-adaptive bottleneck features and speaker-independent bottleneck features can
be further transformed and augmented before being used as DNN or GMM input
features.

6.1.1 Feature Extraction Pipeline

Figure 6.1: Hierarchical combination of bottleneck, fMLLR and i-vector features for either
early or late combination.

An overview of our proposed feature extraction process is shown in Figure 6.1. In
particular, we employ the DBNF architecture described by Gehring et al. [GMMW13],
which is constructed as a stacked denoising auto-encoder, comprised of a bottleneck, a
hidden layer and the classification layer. The stacked auto-encoder is first pre-trained
layer-wise [VLBM08], then the whole network is fine-tuned to discriminate target
phoneme states. After the optimization the last two layers are removed resulting
in a network that can transform acoustic features into effective speaker-independent
bottleneck features (SI-BNF).

Early I-Vectors Having a similar architecture to DNNs, DBNFs are also capable
of modeling high-dimensional correlated input features. We investigate the ability
of incorporating acoustic features and i-vectors to train DBNFs. In our approach,
regular acoustic features (e.g. FBANK) are spliced for some consecutive frames and
then concatenated with i-vector features to be fed into DBNFs. After the training,
we are able to build speaker-adapted bottleneck neural networks which can extract
speaker-adapted bottleneck features (SA-BNF).
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fMLLR fMLLR transformations are typically applied after performing LDA and
STC transformations on Mel-frequency cepstral coefficients (MFCC) [RPVČ13] or on
bottleneck features [GMMW13]. These transformations are known to make inputs
more accurately modeled by GMMs. We observe that LDA and STC techniques can be
less effective for DNNs, e.g. MFCC or LDA is usually not good as FBANK. As a further
evaluation, we estimate fMLLR transformation directly on SI-BNF or SA-BNF without
using LDA and STC transformations.

Late I-Vectors After applying fMLLR transformations, new transformed features are
supposed to have less speaker variability. Providing again speaker information with
i-vectors can lead to improvement as suggested from [SSNP13]. We also concatenate
the transformed SI-BNF or SA-BNF with i-vectors for different combinations.

6.1.2 Experimental Setup

We used a large training dataset of 460 hours from 12000 English talks. This dataset
includes the TED-LIUM [RDE14a], Quaero [SKK12a] and Broadcast News [Gra97]
corpora. The development set including 8 speakers is taken from TED-LIUM corpus.
Since the test set included in TED-LIUM is rather small, we instead used the tst2013
set from the IWSLT evaluation campaign which is much bigger with 27 speakers.

The DBNFs were constructed with 6 hidden layers containing 2000 units and a 42
units bottleneck layer, using input as 11 stacked frames of 40-dimensional mel scale
filterbank coefficients with or without concatenating i-vector features. All the DNN
models also share the same architecture which has 6 hidden layers with 2000 units
per layer. The input of the DNNs is 11 stacked frames of 42-dimensional transformed
SI-BNF or SA-BNF, with or without combining i-vector features. We used sigmoid
activation for hidden layers and soft-max for output layer.

DNN and DBNF systems were trained using cross-entropy loss function to predict
8000 context-dependent states. The same training method is applied for all DNNs and
DBNFs, which includes pre-training with denoising auto-encoders and followed by
fine-tuning with back-propagation. We used an exponential schedule for all of the
trainings. The GMM models were trained using incremental splitting of Gaussians
(MAS) [KFN98] and followed by optimal space training (OFS) (a variant of STC
[Gal99]) if LDA features are used.
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To extract i-vectors, a full universal background model (UBM) with 2048 mixtures
was trained on the training dataset using 20 Mel-frequency cepstral coefficients
with delta and delta-delta features appended. The total variability matrices were
estimated for extracting 100-dimensional i-vector which was observed to give the
optimal recognition performance in [SSNP13] [SLM14]. The UBMmodel training and
i-vector extraction were performed by using the sre08 module from the Kaldi toolkit
[PGB+11a].

The GMMs trained with SI-BNF and SA-BNF were used to compute fMLLR
transformations. The process of fMLLR estimation were performed as the traditional
approach. During the training, we used the adaptation data of the same speaker and
the reference transcriptions to do the alignment, while the same GMMs were used as
first-pass systems to generate transcriptions in the testing.

6.1.3 Results with GMM and DNN Systems

We used a DNN system with FBANK features as the speaker independent baseline
(SI-DNN). This is a strong baseline since DNNs training with mel scale filterbank
is known to outperform other regular features [MHP12]. The other baseline is a
speaker-adapted DNN (SA-DNN) using i-vectors. This baseline is similar to the
speaker-adapted DNNs presented in [SLM14] except our i-vectors are extracted for
speaker-level instead of utterance-level. The results of the baselines on the dev and
test set are shown in Table 6.1. In our setup, we are able to reproduce the improvement
when using i-vector adaptation for DNN systems in both the dev and test set. The
improvement is not large as reported in [SSNP13], but is comparable to [SLM14] since
we used a similar baseline setup.

Table 6.1: Word error rate of baseline systems.

Baselines tst2013 (dev)

SI-DNN 16.2 (13.1)
SA-DNN 15.1 (12.6)

GMM systems Table 6.2 presents the results of our evaluated GMM systems. The
first three columns show the possible techniques applied to make inputs to the
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GMMs. The techniques includeEarly I-vector for extracting speaker-adapted bottleneck
features, followed by LDA+STC transformation, and fMLLR transformation at the last
step. The last column presents word error rates (WER) on the both development set
and the tst2013 set.

The results of the GMMs using SA-BNF are consistently better than using SI-BNF
with identical constructions. The regular bottleneck GMM (with full transformation
techniques) is 4-6 % less effective than the adapted bottleneck GMM. This shows that
DBNFs can explore the adapted input with the addition of i-vector to provide better
discriminative features.

It is worth noting that while the trained GMM systems have good performance, the
best speaker-adapted GMM is even better than SA-DNN baseline. This indicates that
feeding their input features to DNNs may improve systems due to the better capacity
of DNNs in classification task.

Table 6.2: Comparison of word error rate for GMM systems.

Early I-vector LDA+STC fMLLR tst2013

N N N 16.7 (13.7)
Y N N 15.8 (13.6)
N N Y 15.9 (13.4)
Y N Y 15.0 (12.8)
N Y Y 15.3 (12.9)
Y Y Y 14.4 (12.4)

DNN Systems In Table 6.3, we present the results of the examined DNNs in the
experiments. Again, the last column shows the results in word error rates, while the
other columns indicates the usage of our proposed adaptation techniques.

Applying only fMLLR and Early I-vector for the DNNs (the first four systems
in the table) shows significant improvements in tst2013 set. Improvements with
speaker-adapted bottleneck features in the development set are less clear. However,
using both fMLLR andEarly I-vector can improve results up to 8% relative. As predicted,
the performance of these DNNs largely outperform GMMs of the identical inputs.

When concatenating fMLLR transformed features again with i-vectors, we found
the best features combination. The best DNN system with Late I-vector and fMLLR
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Table 6.3: Comparison of word error rate for DNN systems.

Early I-vec LDA+STC fMLLR Late I-vec tst2013

N N N N 15.2 (12.3)
Y N N N 14.6 (12.4)
N N Y N 14.4 (11.9)
Y N Y N 14.0 (12.0)
N N Y Y 13.1 (11.2)
Y N Y Y 14.1 (12.0)
N Y Y Y 13.6 (11.1)
Y Y Y Y 14.2 (11.3)

gives 15-19 % relative improvement over SI-DNN baseline and 11-13% over SA-DNN
baseline. We could not however achieve further improvement with the DNNs by Late
I-vector together with Early I-vector and fMLLR. That may be due to either fMLLR
transformation not being able to completely remove speaker variability, or our used
DNN architecture not being able to exploit this combined structure.

6.2 CTC-Network Derived Features

The connectionist temporal classification criterion (CTC) [GFGS06, GJ14] and its
associated training methods have received significant interest in speech recognition
in recent years. Using recurrent neural networks (typically long short-term memory
LSTM), CTC training can efficiently model the long-term dependencies between a
small number of units (e.g., phonemes or characters) and speech frames. Utilizing
the CTC optimization criterion which handles possible alignments of the units in a
sequence label, CTC-based speech recognition systems can be trained in a straight
manner, thereby eliminating many complex steps in the conventional hybrid Hidden
MarkovModel /ArtificialNeuralNetwork (HMM/ANN) speech recognition pipeline,
such as the definition of an HMM topology, finding context-dependent phonemes
and modeling units, and the frame-wise alignment of HMM states and feature
vectors. The way CTC was originally introduced motivates the development of such
speech recognition systems in end-to-end fashion in which the language model or a
vocabulary can also be omitted. However, to achieve state-of-the-art performance at
par with the traditional hybrid HMM/ANN approach, an efficient decoding algorithm
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that uses additional knowledge sources (e.g., vocabulary, pronunciation lexicon and
language model) is still required to transform the posteriors of the units modeled by
the CTC network into word sequences.

Because the training criterion of the CTC model is to maximize the log posterior
P (z|X) of the target label z given acoustic features, it does not necessarily optimize the
final recognition when decoding with an additional language model. To the best of
our knowledge, a decoding with a weighted finite state transducer (WFST) built over
a pronunciation lexicon and an n-gram language model applied to CTC posteriors is
still the most successful approach with the best word error rate (WER). As observed
in [SdCQS+15, KLK17], the performance of a CTC system can be better than that of a
hybrid system trained with the cross-entropy criterion but is less than that of a hybrid
system optimized with sequence training.

To benefit from the strengths of the CTC network at label discrimination on the one
side and the highly optimized decoding stack of conventional hybrid systems on the
other side, we investigate the use of CTC posterior probabilities as input features in
hybrid HMM/ANN system to boost speech recognition performance.

6.2.1 C-Phone Extraction

Assume thatweuse a set of labelsL andwe can alwaysmap the ground-truth transcript
of an utteranceX into a label sequence z ∈ L∗ (L∗meaning the Kleene closure over the
alphabet L). A CTC path π (i.e., a sequence at frame level allowing repeated labels)
represents an alignment of z. Denote yπt as the posterior probability that a recurrent
neural network model assigns to the corresponding label of π at time t. By assuming
the independent probabilities of all labels between frames, the CTC objective function
solves all possible alignments as:

P (z|X) =
∑
π

P (π|X) =
∑
π

∏
t

yπt

For model optimization, [GFGS06, GJ14] proposed to use the forward-backward
algorithm to maximize the likelihood of all the transcripts given the speech utterances
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in a training corpus. After training converges, we obtain an optimizedmodel to predict
the posteriors yt of all labels at every time frame t.

By using independent phones as the set of labels (e.g., 45 English phones), we
consider yt as a phone information vector (so-called C-Phone) which indicates the
occurrence of the phones in the frames. Since the posterior probabilities extracted from
the softmax output usually have sharp distribution [HES00, ZCMS04], we transform
them to the log domain for bettermodelling. DuringCTC training, the blank labelmust
be introduced to allow the optional occurrences of regular labels in the alignments.
The probability of the blank can be eliminated, i.e. removed from the C-Phone, when
extracting the C-Phone vector since it does not map to any real acoustic event and has
little meaning.

Different from the extracted posterior features [HES00, ZCMS04] or bottleneck
features [GKKC07] where the extracting models are trained with fixed Viterbi
alignments (e.g., the model exactly learns a feature transformation), C-Phone
extraction is trained without any prior alignment (the CTC model needs learns the
alignment by itself based on the label sequences). As observed in [GFGS06, SSR+15,
ZBSN17], the posteriors produced by the CTC model have peaky behaviors in which
blank has the highest probability in almost all frames, except for short peaks where
regular labels dominate. This raises the question whether the phone probabilities
assigned by the CTC model still correlate to the fixed labels of a traditional Viterbi
alignment. In this study, we try to address this question by learning a feed-forward
network transformation to bridge between C-Phones and the context-dependent
phones labels in the conventional HMM system set-up.

6.2.2 Using C-Phone Features

Figure 6.2 illustrates how we investigated the C-Phone features. We trained a CTC
system with an LSTM model for feature extraction as explained in Section 6.2.1. The
trained LSTM model is then used to produce posterior vectors for every frame. These
posteriors are transformed into the log domain and the probability of the blank label is
eliminated to form the final C-Phone feature vectors. These features can be directly fed
into a feed-forward networkmodel to build a conventional hybridHMM/ANNsystem.
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Figure 6.2: Extracting and using C-Phone.

Furthermore, C-Phone features can also be augmented with additional features such
as network-based bottleneck features.

6.2.3 Experimental Setup

Our experimentswere conducted on the Switchboard-1 Release 2 (LDC97S62) training
corpus which contains over 300 hours of speech. The Hub5’00 evaluation data
(LDC2002S09) was used as test set. We used a 4-gram language model which was
trained on the transcripts of the training data (3M words) and the transcripts (22M
words) from the Fisher English Part 1 (LDC2004T19) and Part 2 (LDC2005T19)
corpora. We further used the pronunciation dictionary that camewith the Switchboard
Corpus.

All our systemswere trained on the same trainingdata anduse the samevocabulary
and 4-gram language model. The dictionary used for decoding includes 43 English
phonemes and 2 noise models. For the CTC training, blank is used as additional label
while for the hybrid HMM/ANN system we use silence instead.

The CTC systems used for C-Phone extraction was trained with Eesen [MGM15].
We used a bi-directional LSTM with 5 layers of 320 units, and a uni-directional LSTM
containing 640 units per layer. The training schedule adopts an initial learning rate
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of 0.00004 for every training. A decay with a factor of 4 was applied when the cross
validation error degraded after 12 epochs.

A FFNN architecture of 7 layers of 1600 units is used for all hybrid HMM/ANN
systems. The training of FFNN models uses new bob learning rate schedule with
an initial rate of 0.02. Similar to other FFNNs, the bottleneck extraction network is
also trained on 11 frames of log mel filter-bank features which are normalized per
conversation. The bottleneck layer contains 40 units which is the same as the number
of filter-bank coefficients. The extraction network also has 7 layers and the 2 last
layers are removed after the training. A feature-space Maximum Likelihood Linear
Regression (fMLLR) transformationwas estimated from themanual transcripts during
the training and from high-confidence decoding transcripts during testing.

6.2.4 Results with C-Phone Features

Table 6.4 compares the results of multiple systems using C-Phone features against
conventional hybrid systems with log mel filter-bank (FBank), bottleneck features
(BNF) and fMLLR featureswhich are estimated on top of the BNF. For fair comparison,
all the systems share the same feed-forward neural network (FFNN) architecture for
classifying 8000 context-dependent phonemes on a fixed Viterbi alignment. We use a
popular FFNN as the baseline which was trained with the cross-entropy criterion on
11 frames of FBank coefficients. The referenced CTC system is trained using Eesen
[MGM15] and also uses Eesen’s WFST functionality to decode on the same posteriors
as used for C-Phone extraction. The same 4-gram language model is employed in
all systems. The results are reported on the full Hub5’00 test set. We noticed in our
experiments that our baseline CTC system performs slightly better than a very similar
system recently reported in [ARS+17].

We experimented with 3 variants of C-Phone features. The first variant is the
direct posterior probabilities (C-Phone-P) while the second variant (C-Phone-L) is
obtained after transforming the softmax output to the log domain. The third variant
(C-Phone-NB) is the same as C-Phone-L before eliminating the probability of the blank
unit. In our setup, the training of the FFNN systems on C-Phone-P features did not
converge. However when we switched to C-Phone-L or C-Phone-NB, our training
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Table 6.4: Performance in word error rate (WER) of multiple HMM/ANN systems with
different input features such as C-Phone, FBank, BNF, and fMLLR-BNF.

Model Features Window Hub5’e (SWB)

FFNN FBank 11 22.4 (15.8)
CTC FBank - 19.9 (14.1)

FFNN

C-Phone-P - -
C-Phone-L 1 19.3 (13.7)
C-Phone-L 7 19.0 (13.6)
C-Phone-L 11 18.9 (13.5)
C-Phone-L 15 19.3 (13.8)
C-Phone-NB 1 19.3 (13.8)
C-Phone-NB 7 19.0 (13.6)
C-Phone-NB 11 19.1 (13.6)

BNF 1 22.7 (16.0)
BNF 7 21.8 (15.3)
BNF 11 21.5 (15.1)
BNF 15 21.5 (15.1)

fMLLR-BNF 11 21.0 (14.6)

GMM
C-Phone-L 1 20.9 (15.7)
C-Phone-L 11 20.0 (14.5)

BNF 11 22.1 (15.7)

converges well for all inputs of different context sizes and without applying further
feature normalization techniques.

Even when using only a single C-Phone vector as input, an FFNN can even be
trained well. This reveals an additional aspect to the peaky behavior observed in CTC
training [GFGS06, SSR+15, ZBSN17], e.g., even for the frames when no (regular) label
has its peak probability, the posteriors vector still contains meaningful information
for classifying phonemes (or even context-dependent phonemes) labeled in the fixed
alignment manner.

Interestingly, the performance of the systems with C-Phone-L and C-Phone-NB are
almost identical for the same configurations. This may indicate that the probability of
the blank does not carry any useful information for phoneme classification, and thus
can be eliminated during decoding. This observation consolidates the identification in
[CZQY17].

In terms of word error rate (WER), the FFNN systems trained on C-Phone
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outperform FBank by a large margin (15.6% rel.) and clearly improve over the other
network-based extracted features such as BNF or fMLLR. The improvement of stacking
longer context of C-Phone vectors appears small but is still effective. The extracted
C-Phone features also show their usefulness over other features when switching to
GMMs instead of FFNNs.

In our experiments, the FFNN systems trained on the C-Phone outperform the
referenced CTC system even when using only one feature verctor per frame. It is
worth noting that the superior performance of the FFNNs is observed here with
cross-entropy training (further improvement is expected when optimizing the FFNNs
with sequence training). This result can be explained by either the introduction of
context-dependent phonemes, that helps improving the classification, or by the current
decoding approach of the CTC system not being as good as that of conventional HMM
system.

6.2.5 Results with Feature Stream Combination

As shownpreviously, C-Phone is a compact vectorwhich contains excellent features for
phonemes classification. As a typical approach of feature engineering, one canwonder
if the recognition performance can be further improved by combining additional
features to C-Phone. In this section, we investigate the combination of C-Phone
and FBank, BNF and fMLLR features. Table 6.5 presents the results of different
combinations. We report only with C-Phone-L features but other variants have the
same results. The Window column shows the number of consecutive C-Phone vectors
and additional feature vectors (+Feature) fed into the FFNNs. Basically, we allow only
two different input streams and the center of the context window is always the current
frame.

Combining C-Phonewith FBank features has almost the same result as using single
C-Phone features. This result is different from [ZCMS04] where the combination
of PLP features and their derived multiple layer perceptron (MLP) features gave
improvements. This indicates that C-Phone does not need the complementary
information from the original speech features for phoneme classification.

We found that the other network-based extracted features such as BNF features can
supplement C-Phone and result in a better recognition performance (4.2% rel.). This
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Table 6.5: Results in WER of different feature combinations.

+Features Window Hub5’e (SWB)

FBank
1/1 23.0 (17.7)
3/3 18.9 (13.6)
5/5 19.1 (13.7)
1/5 19.1 (13.7)

BNF

1/1 18.4 (13.1)
2/2 18.2 (12.9)
3/3 18.4 (13.1)
5/5 18.6 (13.3)
1/5 18.5 (13.1)

fMLLR-BNF

1/1 18.1 (12.8)
2/2 18.2 (13.0)
3/3 18.2 (13.1)
5/5 18.3 (13.2)
1/5 18.2 (12.9)

can be explained by the fact that BNF which is extracted from a wide context window
contains additional information for context-dependent phoneme classification.

When transforming BNF into the fMLLR feature space which has less speaker
variability, we achieved remarkable result (see Table 6.4). However, the recognition
performance stays more or less the same when combining with C-Phone with BNF or
fMLLR features. This observation can be explained as the analysis in [ZCMS04] where
the extracted posteriors features reduce the variation among speakers, and thus have
similar effects as fMLLR.

In many modern speech recognition systems, i-vector [DKD+11] which contains
the information about the speaker and environment in a short vector usually helps
supplementing the traditional features such as FBank or fMLLR [SSNP13, SLM14] in
a speaker adaptation manner. Unfortunately, we were not able to provide results with
i-vector adaptationdue to our i-vector training setup could not employ Switchboard (or
also Fisher) corpus to produce efficient i-vectors. We also found the same observation
as reported in [MJZM14].
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6.3 Real-time Feature Normalization

Ceptral mean and variance normalization (CMVN) [VL98] and other normalization
techniques (e.g., Cepstral mean normalization (CMN) [Fur81]) are widely adopted
in many neural network speech recognition systems due to several advantages. First,
these techniques as shown in [VL98]make the recognizermore robust by canceling out
environmental changes. Second, they help reducing the environment mismatch (e.g.
background noises or microphones) between training and testing conditions. Last, the
acoustic features after normalization have zero mean which is found critical for neural
network training [LBOM12].

In offline situations, CMVN is usually applied at the utterance level or more
ideally at the speaker level when many utterances of the same speaker are available.
However, these approaches are not appropriate for real-time situations, because they
require a certain amount of history to be available for the current speaker, and
cannot handle unexpected speaker changes. Instead, mean and variance can be
continuously computed over a moving window of some hundred frames (e.g., 3
seconds [PMN06, AOKO11]). However, moving windows require the availability of
historical data of at least a window-size, so that a delay must be introduced to handle
the beginning of a new utterance. A third approach, computing mean and variance
globally (e.g., [ZSN16, SKMR13]) for all training and test data, avoids the delay but
reduces the recognition performance due to potential data mismatch. CMVN can
also be recursively updated in real-time as in [PMN06], but this approach does not
handle multiple speakers. Peddinti et al. [PPK15] proposed to use mel-frequency
cepstral coefficients (MFCC) without normalization for real-time speech recognition,
as currently implemented in the Kaldi toolkit [PGB+11b]. In their approach, i-vectors
[DKD+11] which supply the information about the mean offset of the speaker’s data
are provided to every input so that the network itself can do feature normalization.
However, i-vectors still require a certain amount of data of about 6 seconds per speaker.

We investigated and employed the feature extraction methods which exhibit
comparable performance to CMVN but do not require speaker historical data and are
therefore better suited for real-time situations.
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Figure 6.3: Real-time feature extraction.

6.3.1 Feature Extraction Pipeline

LDA Features The most popular acoustic features such as MFCC or FBANKwithout
normalization are problematic input for neural networks to learn. MFCC features
usually span a wide range in every dimnension, e.g., [-93, 363] on typical data, while
FBANK features only have positive values, e.g. in the range [0, 11.66]. We attempt to
find a transformed domain such that the transformation can be performed in real-time.
Linear Discriminant Analysis (LDA) [DHS00] is usually used for dimensionality
reduction, but here we propose to use it only for feature transformation. Using
LDA, we compute a d × d linear transformation matrix which projects d-dimensional
FBANK into a new domain with the same dimensionality. In this LDA domain,
the features maintain the class-discriminatory information and can be mapped with
their class-separability magnitudes according to the associated eigenvectors and
eigenvalues. When used for dimensionality reduction, LDA is applied by keeping
only k (much smaller than d) features with largest magnitudes. We, however,
use all d-dimensional features in our in models because we observed better system
performance.
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Normalized Bottleneck Features As will be experimentally shown, optimizing
single network models on unnormalized data can be hard. Dealing with this situation,
our idea is to train a first network model for extracting length-normalized features.
Later we can use a second network to perform the real classification task. Figure 6.3
illustrates our proposed feature extraction architecture. The input of the network can
be unnormalized FBANK or LDA-transformed features. We employ some rectifier
[ZRM+13] layers on top of the input layer, followed by a narrow (bottleneck) layer of 42
sigmoidal units. Two last layers which will be discarded after the training include one
rectifier and the final softmax. Since the training of this feature extraction optimizes
phonemes classification, the extracted features at the bottleneck layer are supposed to
be significant for class-discrimination. Whenusing a sigmoidal activiation function, we
can obtain bottleneck features that are normalized to be in a small range which can be
easier handled by the second network. We experimentedwith sigmoidal functions, the
logistic function which has range if [0,1] and the hyperbolic tangent which produces
features in range [-1,1].

Different from [GMMW13, YS11], the proposed feature extraction is able to handle
both normalized and unnormalized inputs. It does not suffer from vanishing gradients
and does not need pre-trainingwhich significantly reduces the training time. Applying
this feature extraction in real-time can be considered as adding more hidden units to
the classification network, which linearly increases the computation time (i.e. 25% in
our experiments).

6.3.2 Experimental Setup

The dataset is the result of combining TED-LIUM [RDE14a], Quaero [SKK12a] and
Broadcast News [Gra97] corpora. Our three evaluation sets include TED-LIUM test,
tst2013 from the IWSLT evaluation campaign [CNS+13] and the English set from the
MSLT corpus [FL16] which contains conversations over Skype.

The volume perturbations were done as suggested by [PPK15] where each
recording was scaled with a random variable using sox. We set the random variable
within the range [0.2,2] for all recordings in the training data set. Then they were
added to the original training set to form the augmented dataset. To investigate the
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robustness against volume mismatch, we used the ranges [0.2, 0.6] and [1.6, 2.0] for
the all recordings of the tst2013 set to create a perturbed test set.

All the network models used roughtly same number of input features (i.e, 440
FBANK and 462 LDA or bottleneck features) and were trained using the cross-entropy
loss function to predict 8,000 context-dependent phonemes. Rectifier networks were
constructed of 6 hidden layers with 1,600 units per layer. For sigmoidal networks,
we used 5 hidden layers of 2,000 units and performed pre-training with denoising
auto-encoders [VLBM08]. For our convolution neural network (CNN), we used the
best architecture from [SMKR13] which includes two convolutional layers of 256
hidden units with filter size 9 and a max pool size of 3, followed by 4 fully connected
layers with 1,024 units. However, we did not use delta and delta-delta features for
consistent comparisons between models.

6.3.3 Results with Unnormalized Features

In Table 6.6, we compare the systems using different CMVN methods against various
systems trained on unnormalized FBANK features. Using our training data, CMVN
systems performance depends on the amount of available speaker historical data.
Normalization at speaker level yielded the best performance, followed by utterance
level normalization and normalizations with windows 300 frames in length. The
results on the perturbed test set show an interesting fact that these normalizations
produce robust features to the changes of audio volume. Global CMVN is less
optimal than other normalizations (7.1% rel. increase in WER compared to speaker
level). However, real-time system may have to adopt this method, in order to achieve
acceptable latency.

For the normalized features, the gap between sigmoidal and rectifier [ZRM+13]
networks appears small. However, when using the features without normalization
which have only positive values in a large range [0, 11.66], optimizing sigmoidal
networks for good convergence becomes difficult. We had to reduce the initial learning
rate by a factor of ten compared to normalized features. The training then converged
at a poor local minimum and caused worse classification performance. The situation
changed with the rectifier network. We were able to keep the same learning rate and
the training converged with the same pattern. However, it suffers from a 7.3% rel.
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increase in WER compared to global CMVN. Switching to a CNN network gave a
further improvements, however its result is still not good as that of the CMVN systems.
These results demonstrate the difficulties when training single network models on
unnormalized FBANK features.

The increase in WER of the systems using unnormalized features and global
normalized features on the perturbed test set indicates that they may be sensitive to
volume mismatch between training and test data.

Table 6.6: Word error rates of various systems using 40 log mel-filter bank features with
and without CMVN

CMVN Network Type tst2013 tst2013-vp

Speaker sigmoid 15.5 15.5
Utterance sigmoid 15.8 15.8
Window sigmoid 16.2 16.4
Global sigmoid 16.6 17.3
Global rectifier 16.5 17.1
none sigmoid 22.3 23.2
none rectifier 17.7 18.0
none rectifier (CNN) 17.1 17.6

6.3.4 Results with LDA Features

Table 6.7 compares the efficiency of different LDA transformations applied to
unnormalized features. Such a conventional approach (e.g. [RPVČ13])which reduces
dimensionality of 440 features of 11 consecutive frames down to 42 and then stacks
again for 11 frames, does not show clear improvements. When transforming 40 FBANK
features without reduction and stacking 11 adjacent frames of LDA features as the
network input, the systems improved. Further improvement was achieved when
transforming 440 features of 11 consecutive frames via LDA and using them as network
input. Interestingly, the transformed features which are in the range [-14.95, 14.50]
without zero-mean are better than FBANKwith global CMVN. When applying global
mean and variance normalization again on these LDA features, the performance even
got worse showing that the normalization is unnecessary for this training data.

The large degradation (5.4% rel. in WER) of the performance on the perturbed
test set presents the need of a method for improving LDA features against possible
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environment mismatch.

Table 6.7: Results of the systems using LDA features.

LDA Feature CMVN DNN tst2013 tst2013-vp

Reduction none rectifier 17.5 17.8
Full-40 none rectifier 16.8 17.4
Full-440 none rectifier 16.2 17.0
Full-440 Global rectifier 16.5 17.2
Full-440 none sigmoid 16.8 17.7

6.3.5 Results with Normalized Bottleneck Features

The proposed bottleneck feature extraction shows its advantages when applied to both
unnormalized FBANK and LDA features and produces improved features. The same
networks trained on the bottleneck features showed relative reduction of 7.4% and 4.9%
as shown in Table 6.8. The extracted bottleneck features are in a normalized range [0,
1] or [-1, 1], so a sigmoid network can be trained well showing again that we do not
need to apply mean normalization.

When evaluating against themismatch test set, we found that the extracted features
aremore stable to speech variations indicating the normalized bottleneck networkmay
be automatically forced to learn robust features.

Table 6.8: Results of the systems using normalized bottleneck (BN) features.

Feature BN Type DNN tst2013 tst2013-vp

FBANK sigmoid rectifier 16.4 16.6
FBANK sigmoid sigmoid 16.5 16.8
LDA sigmoid rectifier 15.5 15.8
LDA tanh rectifier 15.5 15.8
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Chapter 7

Data Augmentation

In automatic speech recognition, data augmentation has been used for producing
additional training data in order to increase the quality of the training data, i.e. their
amount and variety. This then improves the robustness of the models and avoids
overfitting.

As in [KTO, RKRG], both unsupervised and artificial training data has been
augmented to improve HMM/ANN ASR model training in low-resource conditions.
The addition of training data with perturbation of the vocal tract length [JH13] or
audio speed [KPPK15] helps models to be robust to speaker variations. Simulated
far-field speech [KPP+] and noisy speech [HCC+14] have been used to supplement
clean close-talk training data.

Sequence-to-sequence attention-based models [CBS+15, CJLV15] were introduced
as a promising approach for end-to-end speech recognition. Several advances
[CSW+, ZISN, WCW+] have been proposed for improving the performance of S2S
models. While many works focus on designing better network architectures, the
authors in [PCZ+] have recently pointed out that overfitting is the most critical
issue when training their sequence-to-sequence model on popular benchmarks. By
proposing a data augmentation method together with a long training schedule to
reduce overfitting, they have achieved a large gain in performance superior to many
modifications in network architecture.

In this chapter, we show that our on-the-fly data augmentation methods could
help two latest architectures of sequence-to-sequencemodels to achieve state-of-the-art
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performance on telephone conversation benchmark. We further revealed the difference
in behavior between HMM/ANN and end-to-end models on learning from a speech
dataset of multiple domains. This result leads to a direction for finding and providing
useful data for the improvement of HMM/ANN and end-to-end models.

7.1 On-the-fly Data Augmentation

Overfittingwas found to be themost critical issuewhen training sequence-to-sequence
models. We investigated three data augmentation methods for improving the
performance of sequence-to-sequence encoder-decoder models. The first two modify
the input sequences from different inspirations and aim to improve the generalization
of the log-mel spectrogram encoder. The third approach improves the decoder
by adding sub-samples of target sequences. All of the proposed methods are
computationally cheap and can be performed on-the-fly and can be optimized together
with the model.

7.1.1 Dynamic Time Stretching

Many successful S2S models adopt log-mel frequency features as input. In the
frequency domain, one major difficulty for the recognition models is to recognize
temporal patterns which occur with varying duration. To make the models more
robust to temporal variations, the addition of audio data with speed perturbation in
the time domain such as in [KPPK15] has been shown to be effective. In contrast, in
our work we manipulate directly the time series of the frequency vectors which are
the features of our S2S models, in order to achieve the effect of speed perturbation.
Specifically, given a sequence of consecutive feature vectors seq, we stretch every
window of w feature vectors by a factor of s obtained from an uniform distribution
of range [low, high], resulting in a new window of size w ∗ s. There are different
approaches to perform window stretching, in this work we adopt nearest-neighbor

interpolation for its speed, as it is fast enough to augment many speech utterances on
a CPU while model training for other utterances is being performed on a GPU. The
dynamic time stretching algorithm is implemented by the following python code:
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def t ime_s t r e t ch ( seq ,w, low=0.8 , high =1.25) :
ids = None ; t ime_len = len ( seq )
for i in range ( t ime_len // w + 1) :

s = random . uniform(low , high )
e = min( time_len , w∗( i +1))
r = numpy . arange (w∗ i , e−1, s )
r = numpy . round( r ) . astype ( in t )

ids = numpy . concatenate (( ids , r ))
return seq [ ids ]

7.1.2 SpecAugment

Recently [PCZ+] found that LSTM-based S2S models tend to overfit easily to the
training data, even when regularization methods such as Dropout [SHK+14] are
applied. Inspired by the data augmentation from computer vision, [PCZ+] proposed
to deform the spectrogram input with three cheap operations such as time warping,
frequency and time masking before feeding it to their sequence-to-sequence models.
Time warping shifts a random point in the spectrogram input with a random distance,
while frequency and time masking apply zero masks to some consecutive lines in
both the frequency and the time dimensions. In this work, we study the two most
effective operations which are the frequency and time masking. Experimenting on the
same dataset, we benefit from optimized configurations in [PCZ+]. Specifically, we
consider T ∈ [1, 2, 3] – the number of times that both, frequency and time masking,
are applied. For each time, f consecutive frequency channels and t consecutive time
steps are masked where f and t are randomly chosen from [0, 70] and [0, 7]. When
T = 2, we obtain a similar setting for 40 log-mel features as the SWB mild (SM)
configuration in [PCZ+]. We experimentally find T for different model architectures
in our experiments.

7.1.3 Sub-sequence Sampling

Different from other S2S problems, the input-output of speech recognition models are
the sequences of speech feature vectors and label transcripts which are monotonically
aligned. The alignment can be also estimated automatically via the traditional
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Figure 7.1: Sub-sequence Sampling.

force-alignment process. Taking advantage of this property, we experiment with the
ability to sub-sample training utterances to have more variants of target sequences.
Since the approach of generating sub-sequences with arbitrary lengths does not work,
we propose a constraint sampling depicted in Figure 7.1. Basically, given an utterance,
we allow three different variants of sub-sequences with equal distributions. The first
and second variants constraint sub-sequences to having either the same start or end as
the original sequence while the third variant needs to have their start and end point
within the utterance. All sub-sequences need to have at least half the size of the original
sequence. During training, we randomly select a training sample with probability
alpha and replace it with one of the sampled sub-sequence variants. We also allow
staticmode in which only one fixed instance of sub-sequence per utterance per variant
is generated. This mode is equivalent to statically adding three sets of sub-sequences
to the original training set.

7.1.4 Models

To date, there have been different sequence-to-sequence encoder-decoder models
[PCZ+, PNN+] reporting superior performance over the HMM hybrid models on
standard ASR benchmarks. While [PCZ+] uses Long Short-Term Memory (LSTM)
networks, for both encoder and decoder, [PNN+] employs self-attention layers to
construct the whole S2S network. We use two different S2S models to investigate the
on-the-fly data augmentation methods. In the first model, we use LSTMs and a new
approach for building the decoder network. For the secondmodel, we follow the work
in [PNN+] to replace LSTMs with deep self-attention layers in both the encoder and
decoder.
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LSTM-based S2S Before the LSTM layers in the encoder, we place a two-layer
Convolutional Neural Network (CNN) with 32 channels and a time stride of two to
down-sample the input spectrogram by a factor of four. In the decoder, we adopt two
layers of unidirectional LSTMs as language modeling for the sequence of sub-word
units and the approach of Scaled Dot-Product (SDP) Attention [VSP+17] to generate
context vectors from the hidden states of the two LSTM networks. Specifically, our
implementation for LSTM-based S2S works as follows:

enc = LSTM(CNN(spectrogram))

emb = Embedding(subwords)

dec = LSTM(emb)

context = SDPAttention(dec, enc, enc)

y = Distribution(context+ dec)

Different from previous works [CJLV, CSW+, ZISN, WCW+], we adopt a simpler
recurrent function in the decoder (i.e. without Input-feeding [WCW+]), and a more
complicated attention module. The adopted attention function learns an additional
linear transformation for each input parameter (known as query, key and value) and
use the multi-head mechanism together with Dropout and LayerNorm for efficiently
learning content-based attention [VSP+17]. In fact, the implementation of the attention
function is shared with the deep self-attention network from Section ??. In addition
to that, we share the parameters between Embedding andDistribution to improve the
word embedding. Because this implementation does not require us to customize LSTM
cells (which is needed by Input-feeding), we can achieve high parallelization 1 to speed
up training.

Self-Attention S2S We follow [PNN+] to build an encoder-decoder model with
deep self-attention layers. Specifically, we use many stochastic self-attention layers
(e.g., 36 and 12) for the encoder and the decoder for better generalization of the
deep architecture. Instead of using a CNN for down-sampling the input spectrogram,
we stack four consecutive feature vectors after applying the augmentation methods.

1Highly optimized LSTM implementation offered by cuDNN library
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Compared to [PNN+], we use BPE sub-word units instead of characters for target
sequences. For more details refer to [PNN+].

7.1.5 Experimental Setup

Our experiments were conducted on the Switchboard (300 hours) and the
Fisher+Switchboard (2000h) corpora. The Hub5’00 evaluation data was used as the
test set. For input features, we use 40 dimensional log-mel filterbanks normalized per
conversation. For labels, SentencePiece was used for generating 4,000 BPE sub-word
units from all the transcripts. We use Adam [KB15] with an adaptive learning rate
schedule defined by (lr, warm-up, decay) in which the learning rate lr increases for the
first warm-up steps and then decreases linearly. We adopted the approach in [PNN+]
for the exact calculation of the learning rate at every step. In addition to that, we further
decay the learning rate exponentially with a factor of 0.8 after every decay step. We
save the model parameters of 5 best epochs according to the cross-validation sets and
average them at the end.

7.1.6 Baseline Results

Table 7.1: Baseline models using Switchboard 300h.

Model Size SWB CH Hub5’00

LSTM
4x512 12.9 24.1 18.5
6x1024 12.1 22.7 17.4

6x1024 (SP) 10.7 20.5 15.6

Transformer
8x4 13.2 24.7 19.0

36x12 11.1 21.1 16.1
36x12 (SP) 10.2 19.4 14.8

Using the SWB material and an unique label set of 4k sub-words, we trained
both of the proposed S2S models for 50 epochs. We adopt a mini-batch size of
8,000 label tokens which contains about 350 utterances. In our experiments, the
LSTM-based models tend to overfit after 12k updates (i.e. perplexity increases on the
cross-validation set) while the self-attention models converge slower and saturate at
40k updates. We were able to increase the size of the LSTM-based as well as the depth
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of the self-attention models for performance improvement. We stop at six layers of
1,024 units for the encoder of the LSTM-based and 36-12 encoder-decoder layers of
self-attentionmodels, and then use them as baselines for further experiments. Table 7.1
shows the WER of the baselines. We also include the results of the baseline models
when trained on the speed-perturbed dataset [KPPK15].

7.1.7 Results with Time Stretching and SpecAugment

Table 7.2: The performance of the models trained with TimeStretch and SpecAugment
augmentation.

TimeStretch SpecAugment LSTM Transformer
w T Hub5’00 Hub5’00
50 - 16.1 15.5
100 - 15.9 14.9
200 - 16.0 14.9
∞ - 16.1 15.0
- 1 14.7 14.3
- 2 14.1 14.5
- 3 14.3 14.4

100 1 14.2 13.8
∞ 1 13.9 13.6
100 2 13.7 13.9
∞ 2 13.6 13.7

Both Time Stretching and SpecAugment are augmentation methods which modify
the input sequences aiming to improve the generalization of the encoder network. We
trained several models for evaluating the effects of these methods individually as well
as the combinations as shown in Table 7.2.

For Time Stretching, WER slightly changed when using different window sizes.
However the 8.6% and 12.4% rel. improvement over the baseline performance of the
LSTM-based and self-attention models clearly shows its effectiveness. With a window
size of 100ms, the models can nearly achieve the performance of the static speed
perturbation augmentation.

As shown in [PCZ+], SpecAugment is a very effective method for avoiding
overfitting on the LAS model. Using this method, we can also achieve a large WER
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improvement for our LSTM-based models. However, our observation is slightly
different from [PCZ+], as SpecAugment slows down the convergence of the training
on the training set and significantly reduces the loss on the validation set (as for Time
Stretching) but does not change from overfitting to underfitting. The losses of the final
model and the baseline model computed on the original training set are similar.

SpecAugment is also effective for our self-attention models. However, the
improvements are not as large as for the LSTM-based models. This might be due to
the self-attention models not suffering from the overfitting problem as much as the
LSTM-based models. It is worth noting that for the self-attention models, we use not
only Dropout but also Stochastic Layer [PNN+] to prevent overfitting. When tuning T
for bothmodels, we observed different behaviours. The LSTM-basedmodelswork best
when T = 2, but for self-attention, different values of T produce quite similar results.
This might be due to the fact that the self-attention encoder has direct connections
to all input elements of different time steps while the LSTM encoder uses recurrent
connections.

When combining two augmentationmethodswithin a single training (i.e. applying
Time Stretching first and then SpecAugment for input sequences), we can achieve further
improvements for both models. This result indicates that both methods help the
models to generalize across different aspects and can supplement each other. We keep
using the optimized settings (T = 2 and w = ∞ for LSTM-based and T = 1 for
self-attention) for the rest of the experiments.

7.1.8 Results with Sub-sequence Sampling

Table 7.3: The performance of the models trained with Sub-sequence augmentation.

Sub-sequence SpecAugment LSTM Transformer
alpha & TimeStretch Hub5’00 Hub5’00

0.3 N 18.6 15.6
0.5 N 18.6 15.4
0.7 N 18.8 15.3

0.7 (static) N 15.4 15.1
0.7 Y 13.5 13.4

0.7 (static) Y 13.0 13.2
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Table 7.3 presents the models’ performance when we applied Sub-sequence
augmentation with different alpha values. We observe contrary results for different
models: improving the self-attention but downgrading the performance of the
LSTM-based models. These observations are indeed consistent with the overfitting
problems observed with the two models. The LSTM-based models even overfit
more quickly to the dataset with sub-sequence samples while self-attention models
do not, so that they can benefit from Sub-sequence. However, when using a static
set of sub-sequences, we obtained clear improvement for LSTM-based models but
had comparable performance for self-attention models. This reveals an interesting
observation for the differences between self-attention and LSTM when interpreting
them as language models in the decoder. The static approach is also better when
combined with other augmentation methods.

7.1.9 Results on Larger Training Set

We report the final performance of our models trained on the 2,000h in Table 7.4.
Slightly different from 300h, we used a larger mini-batch size of 12k tokens and do
not use the exponential decay of the learning rate. We also increased the model size by
a factor of 1.5 while keeping the same depth. We need 7 hours to finish one epoch for
the LSTM-basedmodels, 3 hours for the self-attentionmodels. With the bigger training
set, the LSTM-basedmodels saturate after 100k updateswhile the self-attentionmodels
need 250k updates. Even with the large increase in training samples, the proposed
augmentation is still effective sincewe observe clear gaps between themodelswith and
without augmentation. For the final performance, we found that the ensemble of the
LSTM-based and self-attentionmodels are very efficient for the reduction ofWER. Our
best performance on this benchmark is competitive compared to the best performance
reported in the literature so far, and it is notable that we did not employ any additional
text data, e.g., for language modeling.
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Table 7.4: Final performance on Switchboard 300h and Fisher 2000h training sets.

Model LM SWB CH

300h Switchboard

Zeyer et al. 2018 [ZISN] LSTM 8.3 17.3
Yu et al. 2018 [ZISN] LSTM 11.4 20.8
Pham et al. 2019 [PNN+] - 9.9 17.7
Park et al. 2019 [PCZ+] LSTM 7.1 14.0
Kurata et al. 2019 [KA] - 11.7 20.2
LSTM-based - 8.8 17.2
Transformer - 9.0 17.5
ensemble - 7.5 15.3

2000h Switchboard+Fisher

Povey et al. 2016 [PPG+] n-gram 8.5 15.3
Saon et al. 2017 [SKS+] LSTM 5.5 10.3
Han et al. 2018 [HCKL17] LSTM 5.0 9.1
Weng et al. 2018 [WCW+] - 8.3 15.5
Audhkhasi et al. 2018 [AKR+] - 8.8 13.9
LSTM-based (no augment.) - 7.2 13.9
Transformer (no augment.) - 7.3 13.5
LSTM-based - 5.5 11.4
Transformer - 6.2 11.9
ensemble - 5.2 10.2

7.2 Augmentation with Multi-domain Data

The studies onmulti-domain and domain-invariant speech recognition can be roughly
divided into two general approaches. The first approach focuses on exploiting
additional speech data to train acousticmodelswhich then become invariant to specific
acoustic conditions, resulting in domain-invariant speech recognition systems. E.g.,
[YSL+13, KMC+17] used simulated noisy utterances together with clean training data
to achieve invariance to background noise. Similar to that, the authors in [YSL+13]
used a mixed bandwidth training dataset to help the acoustic model generalize to
multiple sampling rates. In [PMW+16], far-field speech recognition is significantly
improved by exploiting large-scale simulated data for training deep neural networks.
[NMS+18] build amulti-domain speech recognition system by pooling a huge amount
of training data from several sources and simulated conditions like background noise,
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codecs and sample rates.
Previous research have focused on hybrid acoustic models to build cross-domain

and domain-invariant speech recognition systems. We empirically examine the
difference in behavior between hybrid acoustic models and neural end-to-end systems
when mixing acoustic training data from several domains. For these experiments we
composed a multi-domain dataset from public sources, with the different domains in
the corpus covering a wide variety of topics and acoustic conditions such as telephone
conversations, lectures, read speech and broadcast news. We show that for the hybrid
models, supplying additional training data from other domains with mismatched
acoustic conditions does not increase the performance on specific domains. However,
our end-to-endmodels optimizedwith sequence-based criterion generalize better than
the hybrid models on diverse domains.

7.2.1 Multi-domain Dataset

Several public speech corpora have been released for speech recognition research.
However, to the best of our knowledge, there has not been such a common corpus
for the study of multi-domain speech recognition. We composed a multi-domain
training dataset which consists of four well-known corpora: Switchboard [GHM92],
TED-LIUM [HNG+18], Libri Speech [PCPK15] and Hub4 (LDC97S44 & LDC98S71).
The statistics of the multi-domain set are described in Table 7.5. Basically, it
includes 1,282 hours of speech data coming from different domains such as telephone
conversations, talks and lectures, read speech and broadcast news. Compared to an internal
multi-domain set reported in [NMS+18], our composed multi-domain set is fairly
distributed in which there is no disproportionally large sub-set.

To evaluate the performance of our models, we use the Hub5’00 test set
(LDC2002S09), the TED-LIUM test set, the Libri test-clean set and the Hub4 eval set
(LDC97S66) as the evaluation sets for the corresponding domains.

7.2.2 Hybrid Models

From a bootstrap system built on a part ofMulti-Set, we used a common cluster-tree of
8,000 context-dependent phonemes and the same forced-alignment system to provide
frame-based labels for all domain-specific and multi-domain training sets. We then
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Table 7.5: The training and test datasets for cross-domain speech recognition.

Dataset Domain Hours #Utt

Switchboard Telephone Conversation 318 263K
TED-LIUM Lecture Presentation 453 268K
Libri Read Speech 363 104K
Hub4 Broadcast News 148 125K
Multi-Set Multiple 1282 760K
Hub5-2000 (Hub5’00) Telephone Conversation 3.79 4458
TED-LIUM test (TED) Lecture Presentation 2.61 1155
Libri test (Libri) Read Speech 5.4 2620
Hub4 eval (Eval98) Broadcast News 2.81 825

trained hybrid acoustic models using both a feed-forward neural network (FFNN) and
a long short-term memory (LSTM) network. The FFNN models consist of 7 layers of
2,000 units while bidirectional LSTM models have 5 layers with 320 units each. 40 log
mel filter-bank features which are mean and variance normalized per utterance are
used for all models. For FFNNs, we used a window of 15 consecutive frames as the
input, while for LSTMs, we generated sub-sequences of 50 frames with a moving step
of 25 frames from the training utterances.

The hybrid acoustic models were decoded with domain-adapted language models
(LM) for individual test sets. Specifically, the LM for Hub5’00 was built from the
transcripts of the Switchboard and Fisher corpora, while the standard LM for Libri is
described in [PCPK15]. We used the same Cantab LM [WPM+15] for TED and Hub4.
To investigate the influence of the domain-adapted language models on recognition
performance, we used an additional LM which was built from the transcripts of the
Multi-Set set.

7.2.3 Results with Hybrid Models

In the first 4 rows of Table 7.6, we present the WER performance of the hybrid acoustic
models trained on individual domain-specific training sets and evaluated with all the
test sets. As can be observed, the domain-specific models only performwell on the test
sets thatmatch the training domain conditions, and can be very poor on out-of-domain
test sets. On Eval98 the recognizer trained on an in-domain dataset with much smaller
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size still outperforms other training sets. At the worst case of mismatching, the
recognition performance hugely drops shownonTED. These observations substantiate
the importance of in-domain data in building hybrid speech recognition. The cross
comparisons also reveal the similarities between the individual training sets. For
example, Switchboard and Libri are very different from the others while TED-LIUM and
Hub4 are closer corpora. These results are consistent with the analysis in Section ??.

We evaluated the multi-domain model with all the test sets as in the last three rows
of Table 7.6. The WER performance of the multi-domain model shows two interesting
facts for the combination of speech corpora of different domains. First, when two
training corpora are close enough (e.g. TED-LIUM and Hub4), they can supplement
each other so that the hybrid acoustic model can benefit from the mixed data training.
Second, for the case of Switchboard and Libri, the recognition performance is hardly
improved when the additional training datasets are diverse.

These results also reveal the abilities as well as the limitations of the hybrid speech
recognition approach. On one hand, the hybrid models are capable of modeling short
windows of frames from amixed domain dataset and actually produce no performance
loss in comparison to specific domain modeling. However, on the other hand, when
acoustic conditions are too diverse, the hybrid models cannot generalize well which
show their limitations in exploiting multi-domain speech data.

The other limitation of a conventional hybrid model is that it always requires
a domain-adapted language model for inference. We investigated the influence of
domain-adapted language models by decoding the multi-domain model with two
different LMs. As can be seen, the performance of the multi-domain model clearly
degrades when switching to the Multi-Set LM which partly includes in-domain data,
and largely drops for the Cantab LM which does not match the domains of the test
sets.

7.2.4 End-to-end Models

The acoustic-to-word (A2W)model based on the Connectionist temporal classification
(CTC) [GFGS06] criterion was first introduced in [SSRB15] as a natural end-to-end
model directly targeting words as output. In [SLS16], the authors have
successfully built a direct A2W system that achieves state-of-the-art speech recognition
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Table 7.6: The WER performance of hybrid systems with FFNN and LSTM (in brackets)
acoustic models. The columns of the table indicate the different test sets while the rows
show the used training sets.

Hub5’00 TED Libri Eval98

Switchboard 23.3 (18.3) 65.7 22.5 63.1
TED-LIUM 54.3 12.0 (10.5) 8.1 17.6
Libri 61.6 18.8 6.5 (5.9) 22.0
Hub4 37.1 15.0 9.7 14.5 (12.8)

Multi-Set 23.2 (18.3) 11.1 (9.6) 6.4 (5.8) 13.6 (11.6)
+Multi-Set LM 24.2 (19.2) 12.3 (11.1) 10.1 (8.4) 14.0 (11.8)
+Cantab LM 27.5 (22.5) - 10.7 (8.6) -

performance by leveraging 125,000 hours of training data collected from Youtube
videos. Later on, [ARS+17, AKR+] proposed training optimization to train A2W
models on the standard Switchboard 300 hours training set which results in
competitive performance with other end-to-end approaches.

One of the major difficulties of training A2W system is the data sparsity problem.
While [SLS16] has alleviated this problem by using exceptionally large training data,
[ARS+17, AKR+] have used pre-trained CTC-phonemodels and and usedGloVeword
embeddings [PSM14] to initialize acoustic-to-word models on a moderately sized
training data. We use themulti-task training approach proposed in [TSN19] to directly
train A2W models on the domain-specific and cross-domain data sets.

Specifically, to build A2Wmodels we use 5 LSTM layers of 320 units. We also keep
the same feature extraction as for the hybrid acoustic models. For each training set,
we find words appearing more than 5 times in the transcripts to build target units
for the corresponding A2W model. The second task of the multi-task network is
always the framewise classification of 8000 context-dependent phonemes. We adopted
a down-sampling on acoustic features performed by stacking two consecutive frames
followed by the drop of one frame. Stochastic gradient descent (SGD) with New-bob
training schedule are used for model optimization. Initial learning rates are set as high
as possible for individual training, and then is decayed by a factor of 0.8 after 12 epochs.

Sequence-to-sequence attention-based speech recognition models
[CBS+15, BCS+16, CJLV] use a single neural network that consists of an encoder
recurrent neural network (RNN) and a decoder RNN, and uses an attention
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Table 7.7: The performance of acoustic-to-word and sequence-to-sequencemodels trained
on domain-specific and multi-domain data sets.

Hub5’00 TED Libri Eval98

Char Seq2Seq Model
Switchboard 22.9 45.4 35.5 *60.2
TED-LIUM 60.1 13.0 17.0 *29.0
Libri 72.7 34.3 10.3 *52.1
Hub4 42.2 25.7 23.8 *25.5
Multi-Set 18.2 10.6 7.6 *20.8

Word Seq2Seq Model
Domain-Specific 22.4 12.8 11.2 23.9
Multi-Set 18.5 10.6 8.5 11.9

Acoustic-to-word Model
Domain-Specific 23.8 14.2 12.2 19.4
Multi-Set 19.4 11.3 8.9 11.9

mechanism to connect between them. The decoder is analogous to a language model
due to attention-based model being trained to provide a probability distribution over
sequences of labels (words or characters). The encoder converting low level acoustic
features into higher level representation is analogous to the RNN of an CTC model.

We follow the approach in [TSN19] in which we took the pre-trained LSTM layers
from the A2W network (trained with the same data set) to initialize the encoder of
attention-based models. For the decoder, we used only one uni-directional LSTM
layer. Adam [KB15] and New-bob schedules are used to optimize the attention-based
models. We experimented with sequence-to-sequence models using characters and
words as target units. For both label units, we use a beam search with the beam size of
12 for decoding.

7.2.5 Results with End-to-end Models

As done for the hybrid acoustic systems, we trained individual end-to-end models for
different domain-specific and multi-domain training sets and evaluated them with
the proposed test sets. For character-based models, we used an unified label set
of 52 characters while the word-based sequence-to-sequence and acoustic-to-word
models share the same vocabularies for individual training sets. During inference, we
observed that the character-based sequence-to-sequence models have confusion when
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decoding with very long utterances (e.g. 60-120 seconds) so that it performs worse
for the Eval98 test set. The word-based models do not have this issue, however it is
theoretically encountered with out-of-vocabulary words.

As shown in Table 7.7, the end-to-end models trained on the domain-specific
sets are also very poor at handling the domain mismatches between training and
testing conditions. However, when switching to the multi-domain dataset, all of the
end-to-end models behave differently from the hybrid models. As can be seen, the
performance of the multi-domain models outperform all the domain-specific models
with clear margins. The improvements on the Hub5’00 and Libri test sets clearly
indicate that the end-to-end models can exploit the additional training data which
come from different domains. This observation also reveals the advantage of the
end-to-end approaches over the hybrid approach in multi-domain speech recognition.

In our multi-domain setup, the performance of the multi-domain end-to-end
systems are still lacking behind the multi-domain hybrid systems using
domain-adapted LMs, but it already surpasses the hybrid systems when the LMs do
not match the target test sets, and is at par with the hybrid domain-specific systems.
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Chapter 8

Measure of Latency

Although latency in general refers to the response time of the recognition systems, it
has been viewed in different ways in the past. For instance, in dialogue systems such
as Google Voice [SBB+10], latency is defined as the time from when the user finishes
speaking until the search results appear. In other related work on speech recognition
for broadcast news [SRBG02], latencymeasurement has included the time for the input
to be completed. In this chapter, we review the methods for measuring latency used
in the literature. We further analyze the shortcomings of these methods when being
for streaming speech recognition and propose novel and useful approaches to replace
them.

8.1 Common Methods

Real-time factor (RTF), is calculated as the ratio between the utterance duration and its
required decoding time. RTF is a common measure to evaluate the speed of a speech
recognition system. Although distinct from the concept of latency, reducing the RTF
can lead to a reduced latency in recognition systems, especially when the decoding
starts after the input is completed.

Commitment latency is the difference between the end time of an audio segment
or portion and when its transcription is available at the display component. This is
equivalent to the latency measure used in [SRBG02].
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8.2 User-perceived Latency

Latency is one of the most important factors that decide the usability of a user-based
online ASR system. Latency measure needs to reflect the actual delay that users
perceive so that the improvement of latency can lead to better usability. Strictly, the
latency that the users observe for a word is the time difference between when the word
was uttered and when its transcript appears to the users.

Neither the commonly used real-time factor nor commitment latency are sufficient
to measure user-perceived latency for a streaming recognizer. For example, the
transcript outputs for an 11-seconds sentence can appear 10 seconds later than a
1-second sentence, but the RTFs measured in two cases can be similar.

8.2.1 Decomposition

We formulate the user-perceived latency as follows. Assume that a recognizer can
confidently infers the word w at the time Cw while Dw is the delay required for the
inference process. If Uw is the uttered time of w, then the user-perceived with regard
to w is calculated as:

Latencyw = Cw +Dw + Tw − Uw

where Tw presents the transmitting time for audio and text data. Tw is usually small
and can be taken out.

For a speech utterance S consisting ofN words w1, w2,.. wn, we are interested in an
average latency:

LatencyS =

N∑
i

(Dwi + Cwi − Uwi)/N

=

N∑
i

Dwi/N +
N∑
i

Cwi/N −
N∑
i

Uwi/N

=
N∑
i

Dwi/N +
N∑
i

Cwi/N −
N∑
i

(Uwi −∆)/N + ∆

= Davg + Cavg − Uavg−∆ + ∆
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In the final equation, the first term presents the computational delay. If we normalize
this termwith length of the utterance, then we have real-time factor (RTF). The second
term indicates how much acoustic evidence the model needs to confidently decide
its output. This latency term represents the difference between offline and online
processing. In offline, it is always a constant for a specific test set, since all the offline
transcripts are outputted at the end of utterances.

To estimate the third term, we usually need to use an external time alignment
system. It is inconvenient to re-run the time alignment for every new transcripts.
To cope with this issue, we use a fixed delay ∆ for all the outputs, and proposed to
compute in advance a set of Uavg−∆ with different values of ∆ as in Section 8.2.2. Later
on, we only need to compute Cavg and compare it with the pre-computed set to find
the corresponding delay ∆.

The latency improvement requires to optimize both Davg and Cavg which we refer
as computation latency and confidence latency. While computation latency can be improved
by faster hardware or more optimized implementation, confidence latency depends on
the recognition model. Thus, we usually need different strategies for the improvement
of them.

8.2.2 Confidence Latency

Assume that a recognizer processes a sentence S of T seconds in streaming fashion
and it outputs N token s1, s2,.. sn at different timestamps t1, t2,.. tn. And assume
the timestamp ti is when the recognizer is confident of producing si. The Confidence
latency of recognizing S with regard to the transcript s1, s2,.. sn, is calculated as the
average of all token timestamps ti ∈ [1, n] normalized by the duration ofS: ∑ ti/(n∗T ).
For short, the proposed method produces a normalized and absolute latency for a
sentence. With this measure, the confidence latency of an offline system is always 1
– as the offline system is only confident for all transcripts until end-of-sentence. In the
sameway, we simulate the latency of an instant recognizer by using a forced-alignment
to find ti for si.
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Chapter 9

Online Capacity and Streaming

Inference

Online speech recognition differs from offline recognition in that latency is a crucial
issue. In many online scenarios, the speech recognition component needs to output
transcript fast enough, e.g., within a delay constraint unless it becomes applicable.
Building an online ASR system which satisfies a latency constraint and produces
comparative accuracy with its offline counterpart, is not a straightforward task. The
real challenge usually does not lie on the optimizations for computing power but
the latency issues introduced by the sub-modules of the system. For example, the
feature normalization technique, e.g., CMVN, which is commonly operated at the
utterance level or more ideally at the speaker level, is not appropriate for low-latency
conditions. Or the use of the attention function and bidirectional encoders in the
sequence-to-sequence model, which require the entire input sequence, is an obstacle
to build an end-to-end online recognizer.

In this chapter, we present the techniques which enable the batch-mode models
proposed for both hybrid HMM/ANN and end-to-end paradigms to be used for
online recognizers while retaining their high performance. In Section 9.1, we
analyze the latency constraint needed for a real-world simultaneous translation system
and then present a set of adaptation to achieve this requirement. In Section 9.2,
we discuss the latency issues introduced by the sub-components of an end-to-end
sequence-to-sequence model and propose effective techniques to overcome.
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9.1 Streaming HMM/ANN System

Since 2012, a system for the simultaneous translation of lectures [FWK07, F0̈8] has been
operating in several of KIT’s lecture halls on a regular basis. In order for students to be
able to follow a lecture by using the system’s automatic translation and transcription,
the system’s output needs to be as much in sync with the lecturer and his presentation
as possible. Thus, the speech and translation components of the systems do not only
need to run in real-time, butmust produce outputwith as lowa latency as possible. The
high importance of a low latency is also the result of a user study and test conducted
with the lecture translation system during real-world operation [MFSW16].

In this section, we present two approaches to address the problem of reducing
the latency of the HMM/ANN speech transcription component while maintaining
its accuracy. The first approach uses a real-time recognition system, utilizing an
incremental decoding framework to decode continuous audio streams, in combination
with a traceback of stable partial hypotheses. This approach is used to output whole
portions, i.e. several words in sequence, of the final hypothesis as soon as possible. The
second approach enhances the first one in combination with the display components
by allowing to output partial hypotheses not only when they are stable, i.e., when it
can be guaranteed that they will not change anymore in the future, but at any time
as soon as they are available. In unison with the display and translation components
the recognition system is then allowed to correct itself later on, i.e. to revise the most
recent history of its output, when adifferentword sequence has becomemore probable.
Since very often the system will not need to correct itself, but the early output turns
out to be the stable one, even though this could not have been guaranteed at the time
it was passed on to the translation and display components, the latency of the system
is reduced further this way. Both approaches are shown to reduce the latency of the
speech transcription component significantly from 18.1s to 1.1s without any loss in
recognition performance.

9.1.1 Run-on Recognition

Run-on recognition overlaps the decoding process with the audio recording process
in order to reduce the latency. Our system used an adapted version of the run-on
decoding described in [F0̈8].
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As in [F0̈8] our system uses an audio segmenter in a separate process for
pre-processing which writes the incoming audio stream into a shared memory with
the decoder, while at the same time filtering out stretches of silence. This reduces the
system load by stopping the recogniser from decoding long stretches of silence. We
refer to everything between two stretches of silence as a segment, which are usually
several minutes long but could be as long as a lecture.

Our recognition system’s search is re-initialised before processing a new segment
and reads the segment’s audio data from the shared memory while the audio
segmenter continues to write to it. The audio data read in chunks consisting of a
fixed number of frames and incrementally decoded. The system therefore only has to
wait until a chunk of audio is available in contrast to batch processing which requires
complete segments before decoding.

9.1.2 Stable Hypothesis Portion

The decoder tries the to find the most probable hypothesis. At any given frame
there are usually many competing hypotheses and only once the final frame has
been processed can the best one be decided upon. However, because waiting for an
end-of-segment detected by the segmenter leads to a high latency, we use a partial
trace-back [F0̈8] for finding stable portions of the hypothesis early. As a partial
hypothesis we define the part of the current hypothesis, i.e. the most probable word
sequencewhen not all audio data has been processed yet, that will not change anymore
even when more audio data becomes available. We know that a part of a hypothesis
will not change anymore when during Viterbi decoding all paths that do not contain
this word sequence as a prefix have been pruned away. In our design, we detect partial
hypotheses right after a chunk has been processed. Whenever a partial hypothesis is
detected, its stable portion is extracted and delivered. The end of the portion will be
tracked for the next detection. Note that the final hypothesis concatenated from all
stable portions is the most probable hypothesis as obtained when batch decoding the
whole segment.

Figure ?? presents the process of finding stable portions for a segment in TED talk
1541. The dark circles indicate the start time and end time of the segment while at the
stars, the decoding was performed incrementally. The dark stars indicate when the

73



9. ONLINE CAPACITY AND STREAMING INFERENCE

Figure 9.1: Finding stable portions.

system found a partial hypothesis and the borders of the stable portions are marked
by white circles. The latency is improved by delivering the portions early (at T3, T4
and T5) rather than delivering all of them at the end of the segment.

9.1.3 Adaptive Pruning

Although our recognition system runs, on average, significantly faster than real time,
we frequently encounter individual chunks which are processed much slower than
real-time. This happens when encountering chunks that are difficult to decode, e.g.
speech with background music, in which case the beam might fail to prune away
competing paths effectively. This problem results in an unstable response time and
introduces latency peaks. To overcome the problem, we use an adaptive pruning
scheme. When an audio chunk is processed slower than real-time, we will narrow
the beam to reduce the processing time of the following chunks. Once the recognition
system has caught up again with the live audio the beam size is set back to its normal
size.

9.1.4 Hypothesis Update

Next, we introduced another method that dramatically reduces the latency. We output
probable parts of the unstable hypothesis and present them to the user. Later, the
recognizer can revise its decision and overwrite the previous output if necessary.
In this way, the recognition component does not need to wait until a stable portion
or end-of-segment, instead it finds the most probable hypothesis every iteration
of the incremental decoding, detects and sends the update portions to the display
component.

Figure 9.2 illustrates how this works in detail. In the example, the incremental
decoding was performed 7 times and each time the most probable hypothesis was

74



9.1 Streaming HMM/ANN System

Figure 9.2: An example of hypothesis update.

generated. The updated parts (italic text) were detected each time and sent to
the display component. At T4, T6 and T7 the system detected the stable portions
(underlined text). These had however already appeared as part of the unstable
hypothesis at much earlier times. At T5 and T7, the hypotheses had new start times as
described in Section 9.1.2.

Ignoring the words that are later replaced this algorithm can be seen as inducing
a partition of stable hypothesis resulting in an improved latency without any accuracy
loss. For example, only at T6 the system was sure about the stable hypothesis portion
“wear a flickering cheap”, but the parts of it were already sent, “wear” at T1, “a” at T2,
“flickering” at T3 and “cheap” at T4. So the latency is again improved.

9.1.5 Experiments

We evaluate two baseline systems and three variants using the techniques described
above for reducing latency. The first baseline which demonstrates batch processing,
waits for completed segments before performing the whole decoding. The segments
are generated by our integrated energy based segmenter. In the second baseline, we
replace the batch processing with the run-on decoding described in Section ??. The
decoded results are still produced for whole segments. Run-on decoding is employed
in all three of the examined experimental systems.

The first advanced system, labelled Portion, uses the algorithm from Section 9.1.2
for finding stable hypothesis portions. The second experimental system, called Update,
applies the update protocol explained in Section 9.1.4. Both of these utilise adaptive
pruning which could result in a loss of accuracy. The third variant, namedUpdate-NA,
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Table 9.1: System Summary (AP = Adaptive Pruning, PH = Partial Hypothesis).

System Run-on AP PH Update
Baseline-1 N N N N
Baseline-2 Y Y N N
Portion Y Y Y N
Update Y Y Y Y

Update-NA Y N Y Y

applies the update protocol but without adaptive pruning. A chunk size of 40 frames
is used in all run-on systems. Table 9.1 shows the summary of the applied techniques.

All systems share the same basic setup. The setup is based on the off-line systems
used in the IWSLT 2015 evaluation [MNS+15]. It uses a hybrid DNN/HMM acoustic
model with log-Mel features. The acoustic model uses a context dependent phoneme
setup with three states per polyphone. The DNN has an input window of +-7 frames,
followed by 4 layers of 1,600 neurons and a classification output layer containing just
over 8,000 neurons. The acoustic model was trained on the TEDLIUM [RDE14b]
and Quaero data [SKK12b]. We used a 4-gram language model with more than 150
thousand words.

Evaluations were conducted using an Intel Xeon E5-2697 server with 512
GB memory. Experiments were performed using the Janus Recognition Toolkit
(JRTk) [FGH+97] which was developed jointly by Karlsruhe Institute of Technology
and Carnegie Mellon University.

First we evaluate the overall performance by averaging the measurements of WER,
RTF, commitment latency and word latency over all talks in the test set. RTF is
measured by the ratio between the processing time and the length of the processed
audio segment. Commitment latency and word latency are measured as defined in
Section ??. Secondly, we measure the peaks in latency. We use both commitment
latency and word latency for this analysis.

The test data used for the evaluation includes 8 TED talks from the development
set of the IWSLT 2015 evaluation campaign. These talks are about different domains
and presented in English by different speakers.
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9.1.6 Accuracy and Latency

Table 9.2 shows the performance of all systems on all test talks in terms of overall WER
as well as average RTF, commitment latency and word latency.

Table 9.2: Overall performance.

System WER RTF Commit. Latency Word Latency
Baseline-1 18.6 0.51 7.02 18.1
Baseline-2 18.4 0.68 0.92 10.2
Portion 18.5 0.68 1.72 2.10
Update 18.5 0.68 0.83 1.09

Update-NA 18.5 0.71 1.03 1.23

All the systems have similar WER performance. This confirms that our
implemented algorithms did not change the accuracy. The batch processing Baseline-1
achieves a lower RTF than the other systems that employ run-on processing. This
is because it is less efficient for the DNN acoustic model to process multiple smaller
chunks than a few large chunks.

Despite its low RTF Baseline-1 has a large commitment latency since in the batch
processing this latency mostly reflects the processing time of the segments. Portion
has a larger commitment latency than Baseline-2 and Update since it needs to wait
until the output can be guaranteed to be stable. Baseline-2 demonstrates that we can
significantly reduce the commitment latency by following the run-on design. Note also
that commitment latency, word latency, and RTF are only loosely correlated, indicating
that commitment latency and RTF are not sufficient for evaluating the latency of the
continuous recognition systems, and justifying our introduction of word latency.

Baseline-2 is especially interesting in this regard, because it has a low commitment
latency but a very high word latency. This demonstrates the need for committing
recognition results as quickly as possible in order to achieve a low latency. In this
sense, Portion and Update perform better than the others.

As a more detailed analysis, we provide the statistics in Figure 9.3. It shows the
latency distribution of all uttered words in the test set. We only focus on Portion and
Update. According to the diagram, most spokenwords are recognisedwithin 2 seconds
in Update, and 3.5 seconds in Portion.
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Figure 9.3: Word latency distribution (the rightmost column also includes the words with
latency larger than 6s).
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9.2 Streaming End-to-End System

[RLL+17, CR17] pointed out early that the shortcoming of an attention-based S2S
model used in online condition lies in its attention mechanism, which must perform a
pass over the entire input sequence for every element of the output sequence. They
proposed a so-called monotonic attention mechanism which enforces a monotonic
alignment between the input and output sequence. Later on, [FZC+19a, MCZ+19,
TKKW19] have addressed the latency issue of bidirectional encoders which is also
an obstacle for online speech recognition. In these studies, unidirectional and
chunk-based encoder architectures replace the fully-bidirectional approach to control
the latency.

In this work, we analyze the alignment behavior of the attention function of a
high-performance S2S model and propose an additional constraint loss to make it
capable of streaming inference. By discussing the problems that occurred when
adapting a S2S model to be used for a streaming recognizer, we additionally show
that the standard beam-search has no guarantee for low-latency inference results, and
needs to be modified for providing partial hypotheses.

In contrast to earlier research in the literature, our experimental results prove that
a bidirectional encoder can be combined with suitable inference methods to produce
high accuracy and low latency speech recognition output. With a delay of 1.5 seconds
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in all output elements, our streaming recognizer can fully achieve the performance
of an offline system of the same configuration. To the best of our knowledge for the
first time, a S2S speech recognition model can be used in online conditions without
scarifying accuracy.

9.2.1 LSTM-based Model

Our model can be decomposed using a set of neural network functions as follows:

enc = LSTM(CNN(spectrogram))

emb = LSTM(Embedding(subwords))

ctx, attn = SoftAttention(emb, enc, enc)

y = Distribution(ctx+ emb)

In principle, the functions are designed to map a sequence of acoustic vectors to a
sequence of sub-words and can be grouped into two parts: encoder and decoder. In
the encoder, acoustic vectors are down-sampledwith two convolutional layers and then
fed into several bidirectional LSTM layers to generate the encoder’s hidden states enc.
In the decoder, two unidirectional LSTM layers are used to embed a sub-word unit into
a latent representation emb. The soft-attention function proposed in [VSP+17] is used
to model the relationship between enc and emb, which results in a context vector ctx.
All the functions are jointly trained via the sequence cross-entropy loss by plugging a
softmax distribution on top of ctx and emb.

As shown in [NSNW19], this S2S model can achieve highly-competetitive offline
performance on the Switchboard speech recognition task. However, the model
encounters latency issues when being used in online conditions since both, the
attention function and the bidirectional encoder network, require the entire input
sequence to achieve their optimal performance.

9.2.2 Discouraging Look-ahead Attention

The core of S2S models is the mechanism that autoregessively generates a context
vector ctx for the prediction of the next token. For this model as described in Section ??,
ctx is computed as a sum of all the encoder’s hidden states weighted by the attention
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Figure 9.4: Attention-based alignments provided by a) the regular attention function and
b) c) the attention function trained with the constraint loss during the inference of an
utterance of 4-seconds length (down-sampling of 4 frames after encoder’s layers). The
alignments for the tokens 3, 8, 9, 16 are dominated by both start and end frames in a), and
dominated by start frames only in b).

scores which are calculated by the attention function. The attention scores calculated
for a specific token typically reveals which of the positions of the encoder (or spectral
frames) correspond to the token. So, the attention function can be considered as
an alignment model. However, this unsupervised alignment does not pursue what
traditional forced-alignments (or human alignments) do for the speech recognition
task. As illustrated in Figure 9.4a, during the inference of an utterance, the attention
scores produced for many tokens (e.g., #3, 8, 9, 16) are dominated by the start and
end frames, which are not the proper alignments. In this case, the inference still
produces the correct transcript, and so the attention function works as it is expected.
The mismatch between the attention-based alignment and regular alignment reveals
uncertainty that the attention function may have while being optimized with the
sequence training likelihood. Although this uncertainty may not lead to inference
errors, the attention function always employs all the encoder’s hidden states, which
hinders the model from being used in streaming inference. It is preferable for
streaming inference that for the prediction of a token S, the attention function only
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considers past frames until a particular timeSt (the endpoint) and disregards all future
frames.

To build such a S2S model for streaming, we investigated the incorporation of an
additional loss which discourages the attention function from using future frames
during training. Specifically, given token S which belongs to wordW in label sequence
L, we find a regionRs = (Wt,∞) inwhichWt is the end time ofW provided by aViterbi
alignment. The attention-based constraint loss is computed as the sum of all attention
scores within the region Rs for all S in L:

Lattn = α
∑
S

|Rs|∑
x

AscorexS

The tuneable parameter α adjusts the influence of the constraint loss to the maximum
likelihood loss of the label sequence during training. By minimizing the total of both
losses, we expect that the attention function learns to produce close-to-zero scores for
the constraint regions for all label tokens while still minimizing the main loss.

9.2.3 Inference for Partial Stable Hypothesis

Beam search is the most efficient approach for the inference of S2S models. Its idea is
to maintain a search network in which network paths are extended with new nodes
with the highest accumulated scores and to then prune the network only keeping a
set of active paths (or hypotheses). Typically, the most probable hypothesis for an
utterance X is found and guaranteed when the entire search space constructed from
X is supplied to the search. However, needing the complete acoustic signals ofX to its
very end in order to output the inference result is not efficient for a streaming setup. A
streaming recognizer must be able to produce partial output while processing partial
input. In this section, we describe our search algorithm applied to the proposed S2S
model to produce partial output while retaining high accuracy.

Assume that in a streaming setup, at time t we use the proposed S2S model to
perform inference for t audio frames. Given a context sequence C, the attention
function is used to generate t attention scores for the prediction of the next token. We
find a time tc <= t such that the sum of all attention scores from the covering window
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w = [0, tc] is equal to a constant θ =
∑|tc|

x Ascorex. When θ = 0.95, w covers all
dominant attention scores and the context vector generated from w is almost the same
as from [0, t]. If tc is observed to be unchangedwhen t keeps growing, thenwe consider
tc as the endpoint of C. During stream processing, we use a term ∆ to determine if
endpoint tc finally gets fixed as tc < t−∆.

We then incorporate the information of endpoints into the beam search to find
a partial stable hypothesis. Assume that our beam search can always perform in
real-time for t audio frames to produce N considered hypotheses. If all N hypotheses
share the same prefix sequence C and the endpoint of C is determined, then we
consider C to be an immortal part that will not change anymore in the future. When
more audio frames are available in the stream, C will be used as the prefix for all
search hypotheses, and we repeat this step to find a longer stable hypothesis. Except
the condition on endpoints, the idea of finding immortal prefix is similar to the partial
trace-back [BSHB82, SAHW11] used in HMM-based speech recognizers.

In addition to the immortal prefix, we also investigated a more straightforward
method in which we only consider best-ranked hypothesis and decide on a stable part
C based solely on the term ∆. This approach is inspired from the incremental speech
recognition proposed in [WFS98].

9.2.4 Bidirectional Encoder

To achieve high performance, bidirectional LSTM have been the optimal choice for
the encoder of LSTM-based S2S models. However, due to the backward LSTM,
bidirectional LSTM are not suited to provide partial and low-latency output as needed
for streaming recognizers. The addition of acoustic input will affect all of the
encoder’s hidden states, which then makes all partial inference results unstable. This
effect leads to the fact that stable output can be confidently inferred only when the
input is complete. Therefore, earlier works [RLL+17, HSP+19, NPC+19] switched to
unidirectional LSTM in their online models.

In this work, we try to utilize bidirectional LSTM for high-performance speech
recognition in a streaming scenario. In the first setting, we investigated the use of
the S2S model with a fully bidirectional encoder. First, we train the S2S model with
optimal settings found for an offline setup, and with the attention-based constraint
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loss proposed in Section 9.2.2. Then, during inference, we updated the encoder’s
hidden states fromall available acoustic input before performing the search approaches
in Section 9.2.3 to find stable hypotheses. As will be shown later, the use of a
bidirectional LSTM as this way is possible since the proposed inference methods rely
on the determination of endpoints, and the update of encoder’s hidden states leads to
stabilizing this determination.

In addition to fully bidirectional LSTM, we also experimented with a chunk-based
BLSTM approach. During training, we divide input sequences into many
non-overlapping blocks of a fixed size of K, and then use a BLSTM to compute each
block sequentially. To benefit from long-context learning, we initialize the forward
LSTMwith its last hidden states after processing the previous chunk. The initialization
of the backward LSTM can either be a constant or from the previous chunk. By doing
that, the encoder’s hidden states can be computed incrementally and efficiently as for
unidirectional LSTM. This chunk-based approach is different from [AST+19] and the
latency-controlled BLSTM [FZC+19b, XY17] that adopt constant initialization of both
directions.

9.2.5 Experiments

Our experiments were conducted on the Fisher+Switchboard corpus consisting of
2,000 hours of telephone conversation speech. The Hub5’00 evaluation data was
used as the test set. All the experimental models use the same input features of
40 dimensional log-mel filterbanks to predict 4,000 BPE sub-word units generated
with the SentencePiece toolkit from all the training transcripts. The models with
bidirectional encoder employ six layers of 1024 units while it is 1536 for the
unidirectional encoders. We used only 1-head for the attention function in all setups.
All models were trained with a dropout of 0.3. We further used the combination of
two data augmentation methods Dynamic Time Stretching and SpecAugment proposed
in [NSNW19] to reduce model overfitting. We use Adam [KB15] with an adaptive
learning rate schedule to perform 12,000 updates during training. The model
parameters of the 5 best epochs according to the perplexity on the cross-validation
set are averaged to produce the final model.
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For beam search, we use neither length normalization nor a language model. With
a beam size of 8, the experimental models typically achieve their optimal accuracy.

9.2.6 Effect of the Constraint Loss

Table 9.3: WER performance of the S2S model with bidirectional encoder trained with
different scales of the constraint loss.

Model α SWB CH Hub5’00

6x1024 BLSTM
5.9 11.8 8.9

0.40 6.2 12.2 9.2
0.20 6.1 12.1 9.1
0.05 5.8 12.0 8.9

In this section, we evaluate the influence of the constraint loss proposed in
Section 9.2.2 on the training of the S2S model. We started by using a high value for
α and exponentially decreased it to train several systems for comparison. As observed
during training, the constraint loss gets small quickly to a stable value depended on
α. Joint training slows down the convergence of the main loss but does not have a
significant impact on the final performance. As shown in Table 9.3, WERs are slightly
worsewith highα and can be similar to the regular trainingwhenα is small (e.g., 0.05).
Different from that, the constraint loss may largely change the behavior of the attention
function. For example, in Figure 9.4b, the attention function moves the high scores of
the mismatched alignment to start frames, instead of start and end frames as in the
regular training. We also found an extreme case when α = 0.4. The attention-based
alignment does not correspond at all to the proper alignment as illustrated Figure 9.4c.

Using the model trained with α = 0.05, we follow the approach in Section 9.2.3 to
extract the endpoints for all prefixes found during the inference of the evaluation set.
We could verify that the extracted endpoints in all sentences match the expectation
for streaming inference described in Section 9.2.2. So we keep this model for further
experiments.

84



9.2 Streaming End-to-End System

Table 9.4: Latency and accuracy of the S2S model with bidirectional encoder on Hub5’00
test set.

Method Beam Size ∆ WER Latency

Force-Alignment
8 8.9 0.60
4 9.1 0.60
2 9.3 0.60

Immortal Prefix

8 20 8.9 0.93
8 30 8.9 0.93
4 20 9.2 0.86
4 30 9.1 0.87
2 20 12.6 0.74
2 40 10.1 0.79
2 60 9.5 0.83
2 80 9.3 0.86

1st-Ranked Prefix

8 30 11.2 0.75
8 50 9.6 0.80
8 70 9.3 0.84
4 30 11.3 0.75
4 50 9.6 0.80
4 70 9.3 0.84
2 10 25.8 0.62
2 30 11.4 0.75
2 50 9.7 0.80
2 70 9.3 0.84

Combination
8 20-70 9.2 0.83
4 30-70 9.4 0.81
2 60-70 9.5 0.83

9.2.7 Latency on Various Conditions

Using the S2S model with a bidirectional encoder trained with the constraint loss
scale α = 0.05, we performed several experiments with the inference approaches
described in Section 9.2.3. In the experiments, the streaming scenario is simulated by
repeatedly feeding an additional audio chunk of 250 ms to the experimental systems
for incremental inferences. All the inferences were performed on a single Nvidia Titan
RTX GPU, which produced an average RTF of 0.065 with a beam size of 8. The RTF
result shows that real-time capacity is not a bottleneck problem in this setup. So we
focus on the latency measure proposed in Section ??.
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For baselines, we computed the offline WER performance with the beam sizes 8,
4, 2, and then used a force-alignment system to produce the ideal latency from the
offline transcripts. The ideal latency is always 0.6. If we shift the time alignment of the
transcripts with 250 ms (i.e., all the outputs have a delay of 250 ms), 500 ms, 1 second,
and 1.5 seconds, then we obtained a latency of 0.71, 0.78, 0.86 and 0.91 respectively.

Table 9.4 presents the accuracy and the latency we achieved when using the
immortal prefix and 1st-ranked prefix inference methods with several settings of ∆.
Overall, the two methods are consistent with the observations in the HMM-based
systems [BSHB82, SAHW11, WFS98]. Using the immortal prefix condition, the final
accuracy can be guaranteed as for the offline inference for large beam sizes, e.g., 8
and 4. For a smaller beam size, this condition is not strong enough to deal with
unstable partial results – probably due to the changes of the encoder’s hidden states.
In the 1st-ranked prefix approach, increasing ∆ allows for a flexible trade-off between
the accuracy and the latency. The offline accuracy can also be achieved if a very
large ∆ is applied. These results consolidate our findings in two aspects. First, the
integration of ∆ is reliable and crucial for the streaming inferences to work efficiently.
And second, the use of the bidirectional LSTM for the encoder is possible and results
in high accuracy.

To achieve 8.9% WER (the offline accuracy), the system needs to delay outputs
with an average duration of about 1.5 seconds. To obtain a lower latency of 1 second,
the WER increases to 9.2%, e.g., by using the immortal prefix method with ∆ = 20 and
beamsize = 4. The combination of bothmethods is efficient if wewant to reach a latency
of 0.81, which is closer to the average delay of 0.5 seconds.

9.2.8 Performance of Different Encoders

The shortcoming of the bidirectional encoder lies on the re-computation of the entire
encoder’s hidden states for every addition of input signal in the stream. In this
section, we investigate two additional network architectures, unidirectional LSTM
and chunk-based BLSTM described in Section 9.2.4, that improve the computational
efficiency of the encoder. For chunk-based, we experimented with K = 80 and
K = 200, as the chunk sizes of 800 ms and 2 seconds. We constantly found that
initializing the backward LSTM from the last hidden state of the previous chunk is
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Table 9.5: Latency and accuracy of the S2S models with unidirectional and chunk-based
encoders using immortal prefix.

Encoder Beam Size ∆ WER Latency

Unidirectional

8 30 12.7 0.94
8 ∞ 12.6 1.00
2 20 13.6 0.82
2 30 13.2 0.85
2 ∞ 13.1 1.00

Chunk-based K=80

8 30 10.5 0.91
8 ∞ 10.4 1.00
2 20 11.1 0.80
2 30 10.9 0.82
2 ∞ 10.8 1.00

Chunk-based K=200

8 30 10.3 0.89
8 ∞ 10.0 1.00
2 30 11.3 0.79
2 60 10.8 0.85
2 ∞ 10.7 1.00

better than a constant, so we only present the results of this approach. We evaluated
two types of encoders in two categories: the best accuracy and the accuracy that the
systems retain when maintaining an average delay of 1 second. To do so, we use the
same immortal prefix inference and experiment with different settings of beam size and
∆.

As shown in Table 9.5, there is a big gap between the bestWER of the unidirectional
and bidirectional encoders (12.6% vs. 8.9%). The chunk-based encoder closes the gap
and moves closer to the performance of the bidirectional encoder when a large chunk
size is used. As the encoder’s states are fixed early, the inferences are already stable
when ∆ = 30 for all beam sizes. To achieve 1-second delay, all the approaches need to
trade-off for an accuracy reduction of 5% relatively. In term of latency, the chunk-based
approach withK = 80 and beamsize = 2 and ∆ = 30 is the best setting in this setup.
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Chapter 10

Conclusion

In this thesis, we tackled the problem of online streaming speech recognition. Online
streaming speech recognition is different from conventional speech recognition in
which both latency and accuracy play an equally important role and need to be
addressed together. We approached this problem with a two-stage approach. In the
first stage, we constructed and evaluated different neural network models to build
high-performance recognition systems in offline condition. In the second stage, we
explored further techniques that enable the high-performance neural network models
for online streaming processing while maintaining their efficiency as in offline. The
success of the two-stage approach resulted in a speech recognition system that satisfies
the need for both latency and accuracy.

We started by investigating all the current modeling approaches in automatic
speech recognition. While the traditional Hidden Markov Model / Artificial Neural
Network (HMM/ANN) model has been the mainstream for a long time, the newly
introduced end-to-end models with connectionist temporal classification (CTC) and
sequence-to-sequence (seq2seq) learning are attractive approaches as they only
use single neural networks for directly mapping from acoustic signals to textual
transcription. So far, several advances in architectural modifications and optimization
have been proposed to improve the training of end-to-end models. However, their
performance is still behind highly engineered traditional HMM/ANN models unless
a large amount of training data (several thousand hours) employed.

We argued that the seq2seq learning approach is more likely the better approach
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for performance improvement as it allows us to learn and optimize both acoustic and
language modeling in a single training. Pursuing in this direction, we revealed that
overfitting is the most critical issue when training seq2seq models and has not been
solved efficiently with available techniques. We proposed to use the combination of
three on-the-fly data augmentation methods to overcome this problem. Dynamic Time
Stretching and SpecAugmentmodify the input sequences fromdifferent inspirations and
aim to improve the generalization of the log-mel spectrogram encoder. Sub-sequence
Sampling improves the decoder by adding sub-samples of target sequences. All of these
methods can be optimized together with the model, which remains the simplification
of training seq2seq speech recognition. On the telephone conversation benchmark,
our seq2seq model optimized with the proposed data augmentation achieved a WER
of 5.2% on the Switchboard test set, which is so far the state-of-the-art and on par with
human performance.

While the proposed seq2seq model has shown to achieve appealing offline
performance, it encounters latency issues when used in online conditions as both the
attention mechanism and the bidirectional encoder network, require an entire input
sequence to achieve the optimal performance. Tackling these latency issues, we first
proposed an additional training loss, which prevents the attention mechanism from
using unnecessary future frames. We then proposed modifications to the beam search
inference to provide partial stable output and to cope with the bidirectional encoder’s
incremental update. We also argued that the common real-time factor is not a proper
choice for measuring the user-perceived latency in online and streaming setup and
proposed a novel and suitable technique for the replacement.

In contrast to the earlier works in the literature, our experimental results proved
that a bidirectional encoder could be combined with suitable inference methods to
produce high accuracy and low latency speech recognition output. With a delay of
1.5 seconds in all output elements, our streaming recognizer can achieve an offline
system’s ideal performance with the same configuration. To the best of our knowledge
for the first time, a S2S speech recognition model can be used in online conditions
without scarifying accuracy.
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