
Master’s Thesis

Parallel Sparse Matrix-Matrix
Multiplication

Luben Alexandrov

December 15, 2014

Advisers: Prof. Dr. rer. nat. Peter Sanders
Dipl.-Phys. David Kernert

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen,
als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich
übernommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher
Instituts für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils
gültigen Fassung beachtet habe.

Karlsruhe, 15.12.2014

Acknowledgments

I would like to thank my thesis advisers Prof. Dr. Peter Sanders and Dipl.-Phys.
David Kernert for their commitment and active guidance throughout the work. I
appreciate that they gave me the opportunity to work on this thesis and I am
thankful for the many fruitful ideas they gave me.

I want also to thank my family for their support during my studies.

Abstract

The thesis investigates the BLAS-3 routine of sparse matrix-matrix
multiplication (SpGEMM) based on the outer product method. Sev-
eral algorithmic approaches have been implemented and empirically an-
alyzed. The experiments have shown that an algorithm presented by
Gustavson [22] outperforms other alternatives.

In this work we propose optimization techniques that improve the
scalability and the cache efficiency of the Gustavson’s algorithm for large
matrices. Our approach succeeded to reduce the cache misses by more
than a factor of five and to improve the net running time by 30% with
some instances. The thesis also presents an algorithm for flops estima-
tion, which can be used to determine an upper bound for the density of
the result matrix.

Furthermore, the work analyzes and empirically evaluates techniques
for parallelization of the multiplication in a shared memory model by
using Intel TBB and OpenMP. We investigate the cache efficiency of the
algorithm in a parallel setting and compare several approaches for load
balancing of the computation.

Zusammenfassung

Die Masterarbeit untersucht die BLAS-3 Operation für Multiplika-
tion von dünnbesetzten Matrizen durch das dyadische Produkt. Eine
empirische Evaluation von unterschiedlichen Vorgehnsweisen stellte fest,
dass der Algorithmus von Gustavson [22] die beste Performanz erzielt.

Diese Arbeit präsentiert Verfahren für Verbesserung der Cache-Effizienz
und Skalierbarkeit des Gustavson Algorithmus. Die vorgestellte Techni-
ken führten zu 30% Verbesserung der Laufzeit und zu Verringerung der
Cachemisses mit mehr als Faktor fünf mit manchen Probleminstanzen.
Weiterhin wird einen Algorithmus für Evaluation der Anzahl der benöti-
geten mathematischen Operationen (flops) vorgestellt. Dieser Wert kann
dann für Bestimmung einer Obergränze für die Dichtigkeit der Ausgabe-
matrix verwendet werden.

Zusätzlich ist die Multiplikation in shared memory model unter Zu-
hilfenahme von Intel TBB und OpenMP parallelisiert. Unterschiedliche
Strategien für Lastverteilung wurden implementiert und evaluiert.

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 4

2 Background and Related Work 5
2.1 Related Work . 5
2.2 Datastructures . 7

2.2.1 Triples . 7
2.2.2 Hash Table . 8
2.2.3 Compressed Sparse Row (CSR) 8
2.2.4 Compressed Sparse Column (CSC) 10
2.2.5 Doubly Compressed Sparse Column (DCSC) 10

2.3 Algorithms . 11
2.3.1 Inner Product . 11
2.3.2 Outer Product . 12

2.4 Limitations . 12

3 Problem Instances and Test System 15
3.1 Test System and Implementation Details 15

4 Sequential Algorithms 18
4.1 Algorithms . 18

4.1.1 join aggregate . 18
4.1.2 outerP hash . 20
4.1.3 outerP hash2 . 21
4.1.4 Gustavson . 22

4.2 Experiments . 24
4.3 Conclusion . 26

5 The Density Estimator 28
5.1 Problem Description . 28
5.2 The Estimator . 31

6 Cache Efficiency 33
6.1 Optimization Idea . 33
6.2 Initial Evaluation of the Concept . 34
6.3 The Custom Hash Table . 39
6.4 Fine-tuning of sparse cemm . 44
6.5 Generalizing the Algorithm . 46

vii

6.6 Conclusion . 49

7 Parallelization 51
7.1 Parallelization Framework . 51
7.2 Horizontal Partitioning . 53
7.3 Cache Efficiency in a Parallel Setting 57
7.4 Load Balancing . 59
7.5 Conclusion . 63

8 Experimental comparison with other frameworks 65

9 Conclusion 67

10 Future work 69

Bibliography 71

A Appendix 75

List of Figures

2.1 Triple representation of a sparse matrix. 7

2.2 The compressed sparse row data structure. 9

2.3 The compressed sparse column data structure. 10

2.4 The doubly compressed sparse column data structure. 11

2.5 The outer product algorithm. 12

3.1 Cache hierarchy of Intel Xeon X5550 17

4.1 Performance of the sequential algorithms for SpGEMM 25

4.2 Cache misses of the different sequential algorithms for multiplying
matrix5 0 . 27

5.1 Connection between the densities of both input matrices and the out-
put matrix . 29

5.2 Connection between the densities of both input matrices and the out-
put matrix, variant 2. 29

5.3 Number of flops contributing to an element 30

6.1 Execution time of gustavson with different hash tables; L3 cache hit
ratios; matrix with random distributed elements. 36

6.2 L2 and L3 cache misses for the different hash tables. 37

6.3 Number of retired instructions. 38

6.4 Performance of different hash functions. 40

6.5 Difference of the execution time by core, deviation of the cache misses. 43

6.6 Execution times (ms) for two matrices. 49

7.1 Task scheduler with a Thread Pool, as in Intel TBB. 52

7.2 Parallelization of gustavson by using equidistant 1-D partitioning. . 53

7.3 Speedups factors for different matrices and variation of the number
of tasks; allocation of x and xb in each task verus allocation once per
thread . 55

ix

7.4 Execution times for gustavson and sparse_cemm when parallelized;
matrix6 2 . 58

7.5 Improvement of the L3 cache efficiency; matrix6 2 59

7.6 Scalability of sparse_cemm, multiplying the road network of Europe
(matrix7 0) . 60

7.7 Example for a matrix with an unbalanced structure. 61

7.8 Performance of the parallelization with different strategies for load
balancing; matrix6 15 . 62

7.9 Performance of the parallelization by increasing the granularity of the
partitioning; matrix6 15 . 63

7.10 Parallelization with TBB and OpenMP; matrix6 15 64

8.1 Comparison with a widely used system for numerical linear algebra,
sequential execution . 66

8.2 Further improvement of the speedup by sparse_cemm 66

A.1 L3 cache misses for both algorithms for different tasks; matrix6 2 . . 76

A.2 Improvement of the speedup after paralleilzation on 8 physical cores . 76

List of Tables

3.1 Description of test matrices . 16

3.2 Some metrics of the test matrices . 16

6.1 Performance of minimal_hash_map3 and comparison with the dense
arrays. 42

6.2 Comparison between original gustavson and sparse cemm when mul-
tiplying matrix6 10 . 46

A.1 Sequnetial algorithms, execution times in ms 75

A.2 Execution times [ms] for the parallelized gustavson algorithm with
different task numbers; allocation and destruction of the temporary
arrays is done in every task. 75

xi

List of Algorithms

1 The join aggregate algorithm, matrix A has n rows. 19
2 The outerP hash algorithm. 20
3 The gustavson [22] algorithm. 22
4 Pseudo code of the flops estimator 31
5 sparse_cemm algorithm. 45
6 general_sparse_cemm . 48

xii

1. Introduction

Matrix-matrix multiplication is a basic mathematical operation, often used as a
subroutine in algorithms and numerical methods. The matrices that arise from real
world problems are usually sparse, i.e. the most of the values in the matrix are zero.
For example, the matrix describing the road network of Europe has dimensions
(51 ∗ 106) × (51 ∗ 106), but consists of only 108 ∗ 106 nonzero values. The sparsity
enables the development of space efficient data structures and fast algorithms that
perform significantly better than the naive O(n3) multiplication.

Many real world problems lead to basic operations from the linear algebra. There-
fore, the topic has been of great interest both for the academia and the industry. In
1979 [34] presents a library of basic linear algebra subprograms (BLAS). Since then
the abbreviation has been commonly used by the research community to address
the functionality as an interface. BLAS defines three levels of linear operations:

• BLAS-1: operations between two vectors

• BLAS-2: operations between a matrix and a vector

• BLAS-3: operations between two matrices

Part of the BLAS-3 level is the General Matrix Multiplication (GEMM), where is
assumed that both input matrices have a dense structure. However, many problems
lead to a multiplication of two sparse matrices with very large dimensions, where
executing the multiplication on dense data structures is extremely inefficient. Be-
cause of that, a special case of Sparse General Matrix Multiplication (SpGEMM)
has emerged as needed algebraic operation. A big point of interest is also the op-
eration Sparse Matrix Vector Multiplication (SpMV). The routine is used in many
linear solvers, e.g. computing eigenvalues and eigenvectors. However, this topic is
not specifically discussed in this thesis. There has been done a considerable amount
of work in finding good SpMV algorithms (e.g. [13] [47]), but there are not as many
studies for the problem of sparse matrix-matrix multiplication. Although in the past
years the topic has gained increasingly attention from the research community [3]
[50], still many aspects of the problem have not been investigated.

1

1. Introduction

There are many examples from different domains where SpGEMM is utilized. Meth-
ods for finding similarity (cosine similarity) between objects lead to matrix multipli-
cation. If one object is compared to a set of objects, a matrix-vector multiplication is
conducted. In case we want to examine the many-to-many relationships, a matrix-
matrix multiplication is needed. Cosine similarity is widely used in text mining,
clustering and bioinformatics.

Furthermore, there is a dualism between graphs and matrices [20]. Every topology
of a graph G = (V,E) can be represented as a adjacency matrix An×n, where n = |V |
and the edges E form the nonzero elements in the matrix. If we number the vertexes
from 1 to n this can be expressed as A(i, j) 6= 0 ⇐⇒ ∃{u, v} ∈ E : u = i ∧ v = j.
Thus, we can use matrix multiplication as a subroutine in graph algorithms [51]. For
example, the product of multiplying the graph matrix by itself k times is a matrix
that contains the information if there is path of length k between two vertices. This
technique is used to implement algorithms for determining reachability between
nodes [43]. Further, [51] depicts an algorithm for solving All Pairs Shortest Paths
problem in a graph by using matrix multiplication.

In [19] is suggested that a graph contraction can be executed through matrix mul-
tiplication, where the adjacency matrix An×n is multiplied by a specially generated
hypersparse matrix S, which contains n nonzero elements. The contracted graph is
then given by the product SAST

As a low level mathematical operation, sparse matrix multiplication is also of im-
portance in numerical computing. For example SpGEMM might be relevant in
methods for solving Partial Differential Equations (PDEs). On its side PDEs are
used in numerous areas like engineering, finance, thermodynamics, electrodynamics
and applied physics in general. The Finite Elements Method (FEM) is widely used
in civil and mechanical engineering and also involves PDEs.

In [50] further use cases for sparse matrix multiplication are given.

It can be concluded that there is an increasing demand for fast and scalable algo-
rithms for sparse matrix multiplication. Therefore, the goal of this master thesis is to
research the state-of-the-art methods for sparse matrix multiplication and evaluate
new techniques for further improvement. To achieve this goal, we utilize the power
of parallelism as nowadays multicore architectures has become common hardware
1. This rapid development in the hardware industry has made possible that parallel
computing has emerged as a powerful trend and is getting increasing attention. The
new paradigm gives a whole other dimension for developing algorithms. Many old
algorithms have to be rethought and adapted so that they are able to fully utilize
the parallel resources.

A second development in the hardware is the adoption of larger memory hierarchies.
Up to date there are processors with 20MB of Level-3 cache. Algorithms should
be intelligently constructed also in this regard, so they leverage this advantage. In
this thesis we analyze the problem of sparse matrix multiplication from the new
perspective of parallel computing and cache-efficiency.

1Some speculate that the Moore’s Law will soon be not valid for number of transistors on chip,
but it will continue to hold for number of cores per chip.

2

1.1. Contributions

1.1 Contributions

Throughout this work we will use A and B as input matrices and C as their product.
The nonzero elements of a matrix A are denoted with nnz(A). a(i, j) (or aij) refers
to the element in the matrix in row i and column j. A(i, ·) and A(·, j) represent the
whole i-th row and the whole j-th column accordingly.

The thesis concentrates on the outer product method for multiplying sparse matri-
ces, since it has proven to be the most efficient approach [4] (more details will be
elaborated in chapter 4). In 1978 Gustavson [22] presented an algorithm (further
on referred as gustavson) that uses the outer product approach for implementing
SpGEMM. The algorithm has proven as efficient as well in time as in space and
it is still the state of the art, as seen from the experiments in the thesis (see also
[4]). For computing the product Ap×q × Bq×n = Cp×n the algorithm has time com-
plexity of O(flops + nnz(A) + nnz(C) + n), where flops is the minimal number of
floating-point operations2 that are needed do calculate the product and nnz(C) are
the nonzero values in the result matrix. The space complexity of Gustavson’s algo-
rithm is O(2n), the method uses two dense arrays of size n as an accumulator. This
work empirically evaluates gustavson by comparing it with other algorithms. The
experiments have shown that the method outperforms the competitors. Outgoing
from this principle, we show that one can apply further improvement by presenting
a hash-based and load-balanced parallel algorithms.

Flops estimator: As a first contribution, this work presents a simple algorithm for
evaluating the needed floating point operations prior to the matrix multiplication.
The value can be used to determine an upper bound for the density of the rows of C.
This information is of importance for algorithms presented in the thesis, regarding
cache efficiency and load balancing.

Cache efficiency: The work proposes a cache-efficient sparse accumulator that
improves the space complexity of the original gustavson algorithm from O(2n) to
O(max1≤i≤p(nnz(C(i, ·)))). The time complexity transforms to O(δflops +nnz(A)+
δnnz (C) + n), where δ is expected to be a constant factor. The new algorithm
(sparse_cemm) is based on gustavson, however it replaces dense arrays in the clas-
sical method with a specially tuned hash table. Our modification leads to signifi-
cantly less cache misses for large scale matrices. The better cache efficiency reduces
the execution time by 30% for some problem instances. Further, the influence of
NUMA effects are investigated. The presented algorithm is more resistant to such
effects. We also propose an algorithm that generalizes our approach for all problem
instances.

Parallelization: The presents methods for parallelization of gustvson in a shared
memory model and evaluates different load balancing approaches. The default load
balancing strategies of Intel TBB and OpenMP are compared with some techniques
for manual distribution of the computation among the threads. Furthermore, the
effects of our cache efficiency improvement are evaluated in the parallel setting.

2In the literature flops sometimes stands also for Floating-Point Operations per second. This
ratio is however more useful for hardware benchmarking. In this work the term describes the
number of arithmetical operations.

3

1. Introduction

sparse_cemm scales significantly better than the original algorithm when paral-
lelized. The improvement in the space complexity that was introduced, makes it
possible to run the algorithm on more threads. Secondly, the influence of the cache
misses rises in the parallel setting, since all threads have to compete for the shared
cache. The experiments have shown an interesting result: although for some in-
stances both algorithms have equal performance in the sequential case, sparse_cemm
achieves a 26% faster execution time in a parallel setting.

1.2 Outline

In chapter 2 the theoretical foundations of sparse matrix multiplication are presented
and different data structures for storing sparse matrices are discussed. Furthermore,
two basic approaches, inner product and outer product, for matrix multiplication are
introduced. The next chapter presents the problem instances and the test system
that was used for the evaluation. Afterwords, in chapter 4 we search for an efficient
SpGEMM algorithm that solves the problem in the sequential case. In this chapter
we also present the gustvson algorithm, which has proven to be the most efficient
in the tests. Chapter 5 presents an algorithm determining an upper bound for the
density of the output matrix. In chapter 6 we propose a new algorithm for multi-
plying sparse matrices, which is based on gustavson, but causes less cache misses.
Chapter 7 discusses different strategies for parallel sparse matrix multiplication in
a shared memory model. Chapter 8 compares the presented algorithms with a state
of the art competitor - a widely used commercial system for scientific computation.
Finally, in chapter 9 the results of this thesis are summarized and 10 elaborates
possibilities for further research.

4

2. Background and Related Work

For simplification and without loss of generality we will assume multiplication of
qudratic matrices in the analyses of the algorithms and data structures, i.e. An×n×
Bn×n = Cn×n. All of the presented algorithms and data structures are also applica-
ble for rectangular matrices. In this work a one-based matrix notation is used, i.e.
rows and columns start with index 1.

2.1 Related Work

There has been a lot of research on the topic of general matrix multiplication. The
O(n3) bound of the trivial algorithm was broken and reduced to O(n2.81) by Strassen
in 1969 [45]. In 1990 Coppersmith and Winograd [9] improved the lower bound
further, as they presented an algorithm inO(22.38), although with very large constant
factors. An important remark is that one has to differentiate between the general
matrix multiplication and the sparse matrix multiplication. These are two different
problems, therefore the algorithms for dense matrices are not in the focus of the
thesis. It is possible to develop algorithms with lower complexity by using the
sparse property of the matrices and employing sparse data structures. The goal
for the sparse algorithms is to achieve complexity that is more dependent on the
nonzero flops and less dependent on the dimension factor n.

Duff et al. [14] proposed sparse extension to the Level-3 BLAS operations. However,
their multiplication algorithms use a dense data structure for the result matrix,
which reduces significantly the applicability. Sulatycke and Ghose [46] discussed the
topics of cache efficiency and parallelization for sparse matrices (also using dense
structures for some of the matrices). Mccourt, Smith and Zhang [35] demonstrate
how the multiplication can benefit from graph coloring approaches. Their algorithms
also use dense formats for the result matrix, further in some cases one of the two
input matrices is dense.

An important restriction, when multiplying large scale problem instances, is to store
both input matrices and their product in sparse data structures. It is crucial to
retain low space complexity, storing even one matrix in a dense structure would
make an algorithm not applicable for even relatively small matrices. Therefore,

5

2. Background and Related Work

in our research we concentrate on a fully sparse matrix multiplication, where only
sparse data structures are used.

Yuster and Zwick [50] described an algorithm for sparse matrix multiplication,
where they used a permutation of the columns and the rows of both input ma-
trices A and B, so the multiplication can be decomposed in a dense section and
a sparse section. Accordingly, they proposed that the dense section is multiplied
with a fast algorithm for dense matrix multiplication [9] and the sparse section
is computed with a sparse matrix multiplication algorithm [22]. The result ma-
trix C is the sum of the two interim results. The complexity of their algorithm is
O(max(nnz(A), nnz(B))0.7n1.2 + n2+o(1)). The usefulness of the approach is limited
by the algorithm used for the multiplication of the dense sections, since it has large
constant factors.

Gustavson [22] presented an algorithm where all of the matrices in the multiplication
use sparse data structures (CSR, see next section). The method is suitable for
practical use, it has a complexity of O(flops + nnz(C) + nnz(A) + n), observe
that the matrix dimension is present only at a linear scale. Buluc and Gilbert [4]
described an alternative algorithm, suitable for hypersparse matrices, where a matrix
Xn×n is defined as hypersparse when nnz(X) < n. Their method uses the doubly
compressed sparse column data structure (see next section) and has time complexity
of O(nzc(A) + nzr(B) + flops ∗ log ni), where nzc(A) denotes the nonzero columns
of A, respectively nzr(B) are the number of nonzero rows of B, ni is the number
of indexes i for which A(·, i) 6= 0 ∧ B(i, ·) 6= 0. The advantage is that the time
complexity does not depend on n. That would be beneficial for hypersparse matrices,
where there are columns and rows that do not contain values at all.

Another topic in the current literature is the parallelization of SpGEMM. There
are significant number of publications regarding the parallelization of the dense
multiplication (e.g. [6], [17]). However, introducing sparsity to the multiplication
is a relatively new problem. Buluc and Gilbert [4] [3] discussed sparse algorithms
in a distributed setting. They used a two-dimensional (2-D) partitioning and a
hypersparse sequential algorithm as the core for a parallel method. Campagna,
Kutzkov and Pagh [5] presented distributed communication-avoiding algorithm that
uses hashing approaches.

Most of the current research focuses mainly on a distributed prallelization [15]. To
our surprise, a parallelization in a shared memory model was not explicitly discussed
in the recent literature, although it has been shown ([3] C184, [5]) that the commu-
nication costs play significant role in the execution time of distributed algorithms.
In this thesis we focus on a shared memory parallelization. The main memory ca-
pacity is continuously increasing on server machines, up to date the random access
memory can be ranging from several gigabytes up to terabytes. Thus, it is possible
to multiply large matrices also in a shared memory environment.

Linear algebra operations have been widely used in different domains. Therefore,
there are numerous libraries and systems that implement the BLAS interface, e.g.
Intel Math Kernel Library (MKL) [26], Automatically Tuned Lineare Algebra Soft-
ware (ATLAS) [24], Linear Algebra Package (LAPACK) [28], MATLAB [27]. How-
ever, only few support the special case of sparse matrix-matrix multiplication, e.g.
from the previously mentioned, only MATLAB offers SpGEMM functionality.

6

2.2. Datastructures

2.2 Datastructures

Before discussing algorithms for multiplying sparse matrices, one has to address
the problem of representing large scale sparse matrices in memory. As already
mentioned, the graph of the European road network consists of 51 ∗ 106 nodes [12].
If the corresponding matrix is stored naive in a two dimensional dense array and
each edge uses 4 Bytes the memory needed for storing the graph is (51∗106)2×4B =
10.4PB. The term “dense array” is used whenever an array data structure is referred
that stores trivially all values, also these equal to zero. Thus, storing sparse matrices
in two dimensional array is often not feasible, moreover there are matrices which
are much bigger than the road network of Europe, e.g. Facebook has more than
1.1 ∗ 109 users, i.e. the Facebook’s graph consists of more than a billion nodes.
As most of these large scale matrices are extremely sparse, the only possibility to
manipulate them is to store only the values not equal to zero, storing only the edges
that actually exist. This chapter presents data structures for this task.

In addition, the efficiency of the data structure is also crucial for the execution time
of the whole algorithm. Matrix multiplication is a low level algorithm, where the
running time depends heavily on the complexity of the accessing and modifying
operations of the data structures holding the matrices. Therefore, it is of big impor-
tance to select a space- and access- efficient data representation for the input and
output matrices. We will discuss different structures in the following sections.

2.2.1 Triples

The triple format consists of three arrays, storing the row index, the column index
and the associated value, see figure 2.1. The disadvantage of this representation is
that there is no structure. For finding, if a particular value exists, a full linear scan
over the list of triples is needed. Because of this, the triples are often sorted by the
row index, by the column index or by both. In this way one reduces the search times,
but still there is no fast (constant time) access for all elements of a specific row or
column. When the list is sorted by row, binary search can find the starting triple of
a particular row i in O(log nnz), where nnz are the nonzero elements in the matrix.
For finding the last element of i, a second binary search or onward linear scan is
needed. An advantage is that the triple format is cache efficient, if the elements are
accessed in a sequential order.

A =

0.12 X X X 3

X X X X X

2 1.8 X -1 X

X 1.9 X X X

X X X 2.72 X

row

1

1

3

4

3

3

5

column

1

5

1

2

2

4

4

value

0.12

3

2

1.9

1.8

-1

2.72

Figure 2.1: Triple representation of a sparse matrix.

7

2. Background and Related Work

2.2.2 Hash Table

One strategy to overcome the slow access time is to put the triples in a hash table.
Here there are a couple of options. The coordinates pair (row, column) can be
used as the key and the according value as the value. A disadvantage of this data
structure is that it is not possible to get all elements of a specific row in a constant
time. An alternative is to use only row as the key, and a vector of (column, value)
tuples as the value. In this way a whole row, all nonzero values in the raw, can be
retrieved in expected O(1). If we are looking for a specific value, we still have to
do a linear or binary search in the row vector. The same approach can be used for
fast column retrieval, where the key is the column index and value is then a vector
of (row, value) tuples. A third options is to combine the previous techniques and
to have two-layered hash table. The top level hash table has row as key, value is a
second hash table, which contains all values in the specific row. The second hash
table has column as the key and the corresponding value as the value. In this way
we have efficient access to specific elements as well as to a certain row. The whole
row is in a hash table of its own, so retrieving of all its elements would mean iterating
over it. If the hash table has many empty buckets and only few stored (key, value)
pairs, the iteration might be not very efficient.

A considerable disadvantage of the general randomized hash tables is that their lack
of structure might lead to cache inefficiency. Furthermore, there is the overhead of
calculating the hash function and collision resolution. Because of the possibility of
collisions a get(key) and set(key, value) operations are in general not in O(1) but
rather in expected O(1) time. It is possible that one has to iterate through other keys
until the right one is found. The lack of structure has also another disadvantages.
If we want to scan over the matrix (e.g. for output), we have to iterate through the
hash table, which might be a costly operation. The same holds if one needs to get
all elements of the matrix in general, for example for sequence of matrix multipli-
cations (i.e. computing the product of multiple matrices, also called chain matrix
multiplication). The obtained tuple list will be randomly distributed, so a posterior
sorting of the tuples might be needed. Hash tables have also a memory overhead,
since for storing n elements a table of larger size is needed, so the probability of
collisions is not too high. Depending on the implementation there are also other
factors that contribute to the memory overhead, i.e. additional pointers, dynamical
growth, storing keys et cetera.

2.2.3 Compressed Sparse Row (CSR)

Motivated from the need of fast access to all elements in a row, this section presents
the compressed sparse row (CSR) format [22]. The data structure, filled with the
matrix A from fig. 2.1, is depicted in fig. 2.2.

8

2.2. Datastructures

IA

1 2 3 4 5 6

1 3 3 6 7 8

JA 1 5 4 2 1 2 4

A 0.12 3 -1 1.8 2 1.9 2.72

Figure 2.2: The compressed sparse row data structure.

The array JA contains the column indexes of the nonzero elements and A holds the
values of the elements. The nonzero values are ordered by row, so all elements of a
row are in a consecutive segment in JA and A. The IA array, also called row pointer
array, contains pointers to the beginning of each row in JA. Each row has a pointer
to the the column array, even if the row doesn’t contain any values. Because of this
we can access the rows of the matrix through the indexes of IA in O(1). In general
the segment in the column array and the value array, where the row i resides, is
specified by:

r o w i s t a r t :=IA [i]
row i end :=IA [i +1]−1

This leads to an interesting feature of the CSR, the size of the row i (the number of
its nonzero elements) can be obtained in constant time via:

#nnz in row i :=IA [i +1]−IA [i]

In order this invariant hold even for the last row of the matrix, a dummy element
(or sentinel) is added at the end of the row pointer array. The value of the dummy
element should be nnz(A) + 1. In this way, there is one branch less when iterating
over IA, there is no need to check if the currently processed row is the very last
one. In matrix multiplication algorithms there is a need of repeatedly iterating over
the rows of the matrix, thus this one branch less plays significant role in the end
execution time, as fewer branches lead also to fewer branch mispredictions. In our
experiments we saw that a simple improvement as adding a dummy element might
lead to 23% reduction in the running time of the whole algorithm.

It has to be also noticed that inside a row the values might be not sorted by their
column index. For access to a specific value a linear scan in the row segment is
needed, if the values are sorted a binary search would be possible.

The CSR data structure has various advantages and it s widely used in sparse linear
algebra [41]. It is similar to the hash table approach, where the key is the row
index, and the value is the row. In compressed sparse row the overhead of hashing
doesn’t exist and the row pointer array IA can be seen as an implicit hash table.
Another advantage of the format is the cache efficiency of the arrays, since the rows
of the matrix are chronologically ordered in consecutive segments. A disadvantage
is that there is no efficient way to access a whole column of the matrix. Further
consideration is that the nonzero elements of the matrix have to be sorted by row

9

2. Background and Related Work

when constructing the CSR format. Very often the elements of the matrices are
stored in an unordered list of triples. So there will be an overhead of sorting for
generating a compressed sparse row data structure from the triple list.

In graph theory the data structure is also well known and it is referred as adjacency
array [36]. This shows once again the analogy between graphs and matrices.

2.2.4 Compressed Sparse Column (CSC)

Analog to CSR one can create a compressed sparse column (CSC) data structure
(figure 2.3). The difference is that there is no row pointer array but a column pointer
one. Thus, whole columns can be accessed in constant time and we can iterate over
the matrix efficiently in column-wise manner. On the contrary, there is no efficient
iteration over rows.

JA

1 2 3 4 5 6

1 3 5 5 7 8

IA 1 3 3 4 5 3 1

A 0.12 2 1.8 1.9 2.72 -1 3

Figure 2.3: The compressed sparse column data structure.

The two formats have also another interesting characteristic. If we read a CSC
format as if it was a CSR, and vice versa, we get the transposed matrix AT . Hence,
the problem of transposing a matrix can be solved by simply creating a compressed
sparse row, or compressed sparse column, data structure of the matrix.

2.2.5 Doubly Compressed Sparse Column (DCSC)

The conventional CSC format stores pointers to all n columns, even to those, which
do not contain any elements. For example in the matrix A the third column is
empty, nevertheless we store a pointer for it. Further, there is no fast iteration over
all non-empty columns. Buluc and Gilbert [4] present a new data structure, which
aims to eliminate these drawbacks. The new format is called doubly compressed
sparse column (DCSC) and is depicted in figure 2.4.

10

2.3. Algorithms

JP

JA 1 2 4 5

1 3 5 7 8

IA 1 3 3 4 5 3 1

A 0.12 2 1.8 1.9 2.72 -1 3

Figure 2.4: The doubly compressed sparse column data structure.

One can see from the graphic that the data structure stores only the columns that
contain some elements. This feature is only relevant forhypersparse matrices ([4]
defines hypersparse matrix as a matrix where nnz < n). A disadvantage of the
DCSC is that the direct indexing of the columns is lost. If there is a need for that,
one has to maintain an additional array with the original column pointers. Still, we
have the advantage of fast iteration over all non-empty columns.

Analog to the doubly compressed sparse column, a doubly compressed sparse row
data structure can be constructed. According to our observation, most sparse ma-
trices, unless they are not partitioned, contain one or more elements per row and
per column, which is why we do not consider the doubly compressed formats any
further.

2.3 Algorithms

After some data structures suitable for storing sparse matrices have been presented,
this section will discuss the two main algorithmic approaches for multiplying matri-
ces.

2.3.1 Inner Product

Calculating the product C = AB can be defined as cij =
∑n

k=1 aikbkj. The common
algorithm for computing the matrix multiplication is the row-column method, also
called inner product. An element of the result matrix is obtained through computing
the dot product (inner product) between a row of the first matrix with a column of
the second matrix through cij = A(i, ·) • B(·, j). This approach has severe disad-
vantages regarding sparse matrix multiplication. In the classical algorithm we have
to iterate n times (the number of columns of B) over the first row of A in order
to calculate the first row of C. This can be avoided, as we will see in the next
section. Another issue is the computation of the dot product. In terms of the data
base jargon, this can be seen as a join problem, where the algorithm has to match
the nonzero elements of the two vectors (the row from A and the column from B)
by their indexes. This task is a costly operation. There are many possibilities to
solve it, but all of these involve significant computational overheads such as sorting,
additional branches, unnecessarily flops. The join problem is also bypassed with the
outer product.

11

2. Background and Related Work

All in all, inner product is highly ineffective approach for executing SpGEMM and
it is not suitable for practical use. The algorithm is in order of magnitudes worse
than its counterpart (outer product) for sparse matrix multiplication. In our exper-
iments, comparison between two naive implementations of the both methods, led to
differences by a factor of 20000 in the execution times for particular matrices.

2.3.2 Outer Product

Another algorithmic approach for multiplying matrices is the outer product, called
also column-row method. The structure of the algorithm is illustrated in figure 2.5.

=

A B C1 C2 C3

+ +

.

Figure 2.5: The outer product algorithm.

The result matrix C is computed by calculating the outer products (tensor products)
between the columns of A with the respective rows of B. The result of the outer
product between two vectors a and b is a matrix M and it is defined as mij = aibj.
Thus, we get that Ci = A(·, i) � B(i, ·), where � stands for the outer product
operator. At the end all matrices have to be aggregated in one solution matrix

C =
n∑

i=1

Ci

As already mentioned, this approach have various advantages over the inner product,
which is why it is widely used for multiplying sparse matrices. Through changing
the order of the operations (additions are left for later time) we circumvent the join
problem and reduce the number of iterations. There is only one iteration over the
elements of the matrix A.

In the next chapters we will present some algorithms that change the order of itera-
tion as they process the matrix A in a row-wise manner, matrix B is still processed
row-wise. Nevertheless, such algorithms also employ the outer product strategy,
since a column of the first matrix is multiplied with the row of the second matrix
and the result is a matrix. The approach can be called row-wise outer product.

Since outer product has been proven as efficient way to multiply sparse matrices,
the thesis concentrates on this approach. All of the algorithms in this work use
the column-row method as their core, although some of them may iterate through
the matrices in different fashion (row-wise outer product). The next chapters will
demonstrate that although the algorithms have the same basis, there could be sig-
nificant difference in their efficiency.

2.4 Limitations
Matrix multiplication is a very general mathematical operation. There are different
classes of problem instances depending on multiple properties of the two input ma-
trices, such as sparsity ratio, distribution of the nonzero elements, patterns of the

12

2.4. Limitations

nonzero elements, dimensions et cetera. Different domains produce different type
of matrices and one can make use of their specific features to further improve the
general approach. The performance of the algorithms is strongly coupled to the
structures and patterns in the two input matrices. Therefore, one has to keep in
mind that improvement techniques are often specific for a certain class of instances
(the thesis concentrates mainly on large scale sparse matrices). Further, we try to
generalize them as much as possible and to derive some universal conclusions and
techniques which can be used also in other domains and not only specifically for
sparse matrix multiplication.

13

2. Background and Related Work

14

3. Problem Instances and Test
System

This chapter gives an overview over the problem instances used in the experiments
in this work.

The name and the kind of the matrices that were used for the evaluation can be seen
in Table 3.1. The table collects all matrices used in the tests. Some of the instances
were taken from the Florida Sparse Matrix Collection [12], others were custom gen-
erated (matrix6 10 - matrix6 15). The custom generated matrices represent graph
matrices, where the nonzeros in each row are randomly distributed through the row.
In our experimental environment we named (renamed) the matrices with the pattern
matrixX Y , where the idea is that the scale of the problem instance will grow with
X, i.e. we assign problem instances with the same value for X to the same scale
class. Y is used to differentiate between the problem instances in the same class.

The multiplication experiments in all upcoming chapters, consists of multiplying a
particular matrix by itself.

Table 3.2 reveals more details about some features of the problem instances (di-
mensions, nonzeros, symmetry et cetera). The graph matrices are noted as binary
because the values in these cases are 0 or 1. The non-binary matrices come from
engineering problems and have real numbers for values (double precision was used).

Generally, there are many classes of problem instances. For example, we could
separate the matrices in two types: graphs and matrices from engineering problems.
The matrices from engineering problems tend to have diagonal structure (nonzeros
distributed close to the diagonal). Graph matrices often have much larger dimensions
and more complicated internal patterns, which are not easily recognizable.

3.1 Test System and Implementation Details

All of the experiments in this thesis, unless stated otherwise, were executed on a HP
Workstation Z600 with 24GB of main memory and two Intel Xeon X5550 processors
with 2.67GHz of peak frequency. Each processor has 4 physical cores and supports

15

3. Problem Instances and Test System

Name Florida Name Matrix kind

matrix2 1 nemeth07 theoretical chemistry problem
matrix3 1 lhr71c chemical process
matrix3 3 c-71 nonlinear optimization problem
matrix3 6 DIMACS10/preferentialAttachment graph
matrix4 0 consph FEM engineering problem
matrix4 3 DIMACS10/rgg n 2 22 s0 graph
matrix5 0 ASIC 680ks circuit simulation problem
matrix5 10 rajat31 circuit simulation problem
matrix5 13 DIMACS10/M6 graph
matrix6 2 DIMACS10/hugebubbles-00010 graph
matrix6 10 none (custom matrix) random graph
matrix6 12 none (custom matrix) random graph
matrix6 13 none (custom matrix) random graph
matrix6 14 none (custom matrix) random graph
matrix6 15 none (custom matrix) random graph
matrix7 0 DIMACS10/europe osm road network Europe

Table 3.1: Description of test matrices

Name Dimensions Nnz Nnz in result Symmetric Binary

matrix2 1 9.5K x 9.5K 394.8K 892.1K true false
matrix3 1 70.3K x 70.3K 1,528K 8.2M true false
matrix3 3 76.6K x 76.6K 859.5K 52.5M true false
matrix3 6 100K x 100K 999.9K 32.9M true true
matrix4 0 83.3K x 83.3K 6M 26.5M true false
matrix4 3 4.1M x 4.1M 60.7M 187M true true
matrix5 0 682.7K x 682.7K 1.6M 15.9M false false
matrix5 10 4.6M x 4.6M 20.3M 53.1M false false
matrix5 13 3.5M x 3.5M 21M 53.1M true true
matrix6 2 19.4M x 19.4M 58.3M 121.5M true true
matrix6 10 19.4M x 19.4M 58.3M 175.1M false true
matrix6 12 20M x 20M 69.9M 214.7M false true
matrix6 13 20M x 20M 69.9M 245.2M false true
matrix6 14 10M x 10M 30M 8.9M false true
matrix6 15 10M x 10M 73.9M 392.7M false true
matrix7 0 50.9M x 50.9M 108.1M 182.5M true true

Table 3.2: Some metrics of the test matrices

16

3.1. Test System and Implementation Details

L1

L2

L3

core #0 core #1 core #2 core #3

32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB

Data Code Data Code Data Code Data Code

256KB 256KB 256KB 256KB

8MB

node #0

Figure 3.1: Cache hierarchy of Intel Xeon X5550

the Hyper-Threading Technology from Intel, which leads to a sum of 8 physical and
16 logical cores. Intel Xeon X5550 has a three level cache hierarchy, 256KB L1
cache, 1MB L2 cache and 8MB L3 cache. Each core has its own Level-1 and Level-2
cache, the Level-3 cache is shared between all cores. The whole architecture can be
seen in Fig. 3.1. The L1 cache is divided in two equal sections, where one of them
is used for data and the other is reserved for instructions.

The operating system was SUSE Linux Enterprise Server (SLES) 11. All of the
algorithms were implemented in C++ 11 and were compiled with the GNU Compiler
Collection (GCC) version 4.7. The code was always compiled with the compiler flag
for highest level of optimization -O3.

Further implementation details, e.g. considering used libraries, will be discussed in
the next chapters when needed.

17

4. Sequential Algorithms

This chapter presents and evaluates some sequential algorithms for SpGEMM. For
constructing efficient parallel algorithms, we first analyze the task of sparse matrix
multiplication in the sequential setting, in order to gain useful insights into the
problem. At the end we will have an algorithm that can be used as the sequential
core of the parallel one. Furthermore, since the goal of this thesis is to contribute
new ideas to the problem of sparse matrix multiplication, it is important to evaluate
different algorithms and look for the state of the art.

4.1 Algorithms

As already mentioned, the inner product approach is not feasible for sparse matrices,
therefore all of the algorithms presented in this section implement outer product.
Another criteria is that every matrix in the multiplication, both input matrices and
the result matrix, must use a sparse data structure. Otherwise, the algorithm would
be not scalable and not applicable for even relatively small matrices. Further major
challenge is that the computation have to be more dependent on the number of
nonzeros in the matrix and less on the dimensions.

In this thesis we are interested both in the theoretical and practical qualities of the
presented methods. To evaluate them, there is a need of a more low level analysis of
the algorithms. Therefore, when analyzing the complexities we will often consider
constant factors that are usually omitted in purely theoretical algorithm analysis.

4.1.1 join aggregate

First, we will present a simple algorithm for SpGEMM that works on a triple level
(join_agregate). The approach is very basic and probably well known by the
research community (e.g. [4] uses similar idea for the sequential algorithm).

The matrices A and B are stored in the CSR format. The result matrix C has triple
representation. The pseudocode of the method can be seen in Algorithm 1. For the
arrays of the CSR strucutres we use notation introduced in chapter 2, i.e. IA is the
row pointer array, JA contains the column indexes and A holds the actual values.

18

4.1. Algorithms

Algorithm 1 The join aggregate algorithm, matrix A has n rows.

function join aggregate(matrixA:CSR, matrixB:CSR):List<Triple>
for i ∈ 1...n do

startRowA ← IA[i]
endRowA ← IA[i+1]
for j ∈ startRowA...endRowA do

startRowB ← IB[JA[j]]
endRowB ← IB[JA[j]+1]
for k ∈ startRowB...endRowB do

matrixC.insertTriple(i, JB[k], A[j] ∗B[k])
end for

end for
end for
aggregate(matrixC)
return matrixC

end function

According to the outer product, every element aij is multiplied with all of the el-
ements in the row B(j, ·). The algorithm deviates from the classical column-row
method as the matrix A is processed not in column-wise manner but in row-wise
one. Nevertheless, the algorithm uses the basis of outer product. We are storing the
result of every multiplication aijbj· as a (row, column, value) triple into matrixC.
Potentially there will be more than one triple for the same coordinates, so an aggre-
gation step is required, where all of the values for the same coordinate are added.
There are different options for the aggregation itself. For example the list of triples
could be sorted by row and by column, so the values which belong to the same coor-
dinate are contained consecutively in a list. In this case, the aggregation can be done
with one linear scan over the sorted triple list. Thus, the complexity of the aggrega-
tion in this case would be O(m logm+m), where m = |triples|. More efficiently the
aggregation can use a temporary hash table to sum up the triples. The key would
be the coordinates pair (row, column). Then the values can be summed with only
only one linear scan over the initial triple list. A third option is to use a priority
queue for the aggregation, were the key is again the combined coordinates. First we
build the queue with the triple list. After that we can aggregate by retrieving the
triples in ascending order with deleMin() operations. The priority queue approach
was used by Buluc and Gilbert [4].

In our experiments we tested the join_aggregate algorithm with the hash table
aggregation. The two 32 Bit integers row and column are combined in one 64 Bit
key with two simple bit operations:

key=(row<<32)|column

A considerable disadvantage of the hash table is the fact that after the aggregation
we need to iterate through it in order to copy the final values to the originally triple
matrix format.

The complexity of the algorithm is O(multiplication flops + Taggregation + n +
nnz(A)). We can see here for the first time a major problem with the sparse matrix
multiplication, the computation is strongly dependent on the nonzero patterns of

19

4. Sequential Algorithms

both input matrices. Initially, it is not known how many nonzero elements there are
going to be in the product C. The multiplication of two sparse matrices can produce
a sparse matrix as well as a completely dense one. Accordingly, without any further
calculations one cannot predict the needed flops, thus at first we do not have even
vague estimate for the running time. The interesting topic of flops estimation, will
be discussed in detail in the next chapters.

The space complexity of the algorithm O(|triples|), where triples is the list of
triples before the aggregation step. It could be specified further that triples =
multiplication fops, as each multiplication inserts a new triple into the list. Thus,
the space complexity of join_aggregate is O(|multiplication flops|).

4.1.2 outerP hash

The next algorithm is called outerP_hash and uses hash tables for the matrices B
and C, A is stored as triples (see Algorithm 2). The rows of matrix B are stored as
vectors of tuples in the hash table. A tuple consists of a value and the column index
of this value. A whole row can be efficiently retrieved from the hash table through
its row index.

The list of triples of matrix A does not have to be sorted with this algorithm.
Therefore, there will be random write access in the grid of the result matrix. This
motivate the use of a second hash table for the matrix C, where the key is a tuple
of (row, column) coordinates.

Algorithm 2 The outerP hash algorithm.
Input: matrixA: List<Triple>, matrixB: HashTable<int,vector<tuple> >
Output: matrixC: HashTable<coordinates, value>

function outerP-hash(matrixA, matrixB)
for triple ∈ matrixA do

rowB ← matrixB[triple.column]
for (column, value) ∈ rowB do

row C ← triple.row
column C ← column
key ← (row C �32) | column C . combining the coordinates
if matrixC[key] = ⊥ then

matrixC.insert(key, triple.val∗value)
else

matrixC[key] += triple.val∗value
end if

end for
end for
return matrixC

end function

outerP_hash stores the calculated values directly on the right coordinates in C,
thus there is the advantage that one does not need an aggregation step at the end,
the aggregation is done on the fly into the hash table.

20

4.1. Algorithms

On the other hand, the use of hash tables for the matrices B and C comes with a
price: there is an overhead of hashing and collisions. Another disadvantage of the
algorithm is that at the end the result matrix C is stored in unstructured way, so
to output the matrix, one will have to iterate over the hash table. The format of
C could be also problematic if a sequence of multiplications is needed, for example
when exponentiating a matrix.

One idea for improvement would be to sort the list of triples of the matrix A by
their column index and than to run the algorithm. In this way the algorithm will
first iterate over the first column of matrix A. Respectively every element in the
column will be multiplied with the nonzero elements in the very first row of B.
Thus, the whole row B(1, ·) can be loaded into the cache. After the outer product
A(·, 1) � B(1, ·) is computed, the row B(1, ·) will be not needed in the next steps
of the multiplication. All in all, we gain locality of the data, in the sense that the
matrix B is processed on row-wise manner. If the triple list is not sorted, there would
be random access over the rows of B and a certain row have to be loaded multiple
times into the cache. Thus, beforehand sorting will reduce the cache misses caused
by the multiplication. Nevertheless, in the experiments the overhead of sorting the
matrix A column-wise have proven to be dominating over the reduction of the cache
misses. Moreover, the sorting causes cache misses on its own. It can be concluded
that in this case the sorting is not really beneficial.

The complexity of the algorithm is O(αflops + nnz(A)), where α is the combined
constant factor (more precisely expected to be a constant factor) needed for the
hashing. α summarizes the time needed to retrieve value from the hash table B
and to write in the hash table C. flops describes all of the needed arithmetical
operations, i.e. multiplications and additions:

flops = multiplication flops+ addition flops (4.1)

An advantage of the algorithm is that the execution time does not depend on n. The
space complexity of the method is O(1), since the only additional space comes from
the hash tables, which will be always with constant factor larger than the needed
space for the elements stored in them.

4.1.3 outerP hash2

After analysis of the mechanics of the previous algorithm, it can be seen that the
data structure of the matrix B has the same characteristics as a compressed sparse
row format, the matrix is stored row-wise and there is a fast access to each row.
Hence, we can improve the algorithm by just interchanging the data structure of
B with a classical CSR. In such way there will be no overhead for hashing and
the cache efficiency may improve due to the arrays of the compressed sparse row.
outerP_hash2 is exactly the same as the previous method but only with matrix B
in a CSR data structure.

The complexity of the algorithm doesn’t change, but the constant factors have been
reduced, since α depends now only on the matrix C.

21

4. Sequential Algorithms

4.1.4 Gustavson

Finally, this section presents an algorithm which does not have an extra aggregation
step and uses the convenient CSR format for all of the matrices in the multiplication.
In Algorithm 3 one can see the pseudo code of the gustavson algorithm [22].

Algorithm 3 The gustavson [22] algorithm.

Input: matrixA: CSR, matrixB: CSR
Output: matrixC: CSR

1: function gustavson(matrixA, matrixB)
2: ip ← 0
3: xb:Array[1...n]
4: x:Array[1...n]
5: for i ∈ [1...n] do
6: xb[i] ← -1 . Initialization
7: end for
8: for i ∈ [1 ... IA.size− 1] do
9: IC[i] ← ip

10: startRowA ← IA[i]
11: endRowA ← IA[i+ 1]− 1
12: for jp ∈ [startRowA ... endRowA] do
13: j ← JA[jp]
14: startRowB ← IB[j]
15: endRowB ← IB[j + 1]− 1
16: for kp ∈ [startRowB ... endRowB] do
17: k ← JB[kp]
18: if xb[k] 6= i then
19: JC.pushBack(k)
20: ip++
21: xb[k] ← i
22: x[k] ← A[jp] ∗B[kp]
23: else
24: x[k] ← x[k] + A[jp] ∗B[kp]
25: end if
26: end for
27: end for
28: for vp ∈ [IC[i] ... ip) do . Copy the calculated row i to C
29: v ← JC[vp]
30: C.pushBack(x[v])
31: end for
32: end for
33: IC[IA.size] ← ip . Add dummy element
34: return matrixC
35: end function

We used the notation from section 2.2, i.e. matrix C consists of the arrays IC, JC
and C. Initially, the value nnz(C) is not known. Therefore JC and C are actually
unbounded arrays. The size of IC is known and it is equal to the size of IA.

22

4.1. Algorithms

The algorithm utilizes the sentinel element in the compressed sparse row data struc-
tures. After an initialization step, it starts with an iteration over the rows of he
matrix A. The dummy element at the last position of the row pointer array IA,
guarantees the invariant for starting and ending point of an row. This utilization
of the sentinel spares two branches, which would have been needed for handling the
case for the endpoint of a last row. Without a sentinel there would have been the
need of a IF statement in line 11 and line 15 in the pseudo code.

Another major part of the algorithm is the use of the two arrays x and xb. gustavson
processes the the data not as the classical column− row method would imply. The
algorithm iterates over the matrix A in a row-wise manner. Though, this order
enables the computation of the result matrix to be done also row by row. Every
element of the matrix a(i, j) is multiplied with all of the nonzero elements in the row
B(j, ·). The results are stored in the array x. The array has the length of a row of
the matrix C, so it can be seen as a temporary row (or accumulator). The product
a(i, j)b(j, k) is stored at the position k in x. The method uses xb to differentiate
if there was already a valid entry on that position, i.e. an aggregation is needed,
or if the present value is outdated, in this case the value must be overwritten. The
following invariant holds:

xb[i] = k ⇒ x[i] ∈ C(k, ·) (4.2)

For each element of x the array xb indicates to which row in the matrix C the
element belongs to. At first the array x is filled with random values, so we need
a simple initialization step, all values of xb are set to some invalid row number.
e.g. −1. The rows of C are calculated in a strict ascending order, thus if xb[i] is
smaller than the currently processed row i one can be sure that the value x[i] is no
more relevant and it can be overwritten. The technique of using two interconnected
arrays, with one storing information about the elements of the other, has proven as
very beneficial. This is actually a quite generic algorithmic approach, which can be
used also in other cases, e.g. similar idea is used for lazy initialization of arrays.

After executing all possible nonzero multiplications a(i, j)b(j, k) for a specific row
i, the result row C(i, ·) is stored in the dense array x. Thus, a iteration over the
values is needed, in order to copy them into the CSR structure of the matrix C.
This is done with the loop at the 28-th line. Observe that the algorithm does not
iterate over the whole dense array x, but only over the needed values. The indexes
of the valid values in x are actually also the column indexes in the result matrix
and the respective column indexes have been already stored in JC. With this trick
gustavson does not use another temporary data structure for storing indexes of the
calculated values in x.

Considering the pattern of iteration over the matrices A and B, it can be seen that
gustavson is similar to the join_aggregate algorithm, nevertheless gustavson

performs an on the fly aggregation, since it processes the result matrix row by row.
Further, the algorithm does not employs any hash tables as in outerP_hash. By
using the temporary data structure of the two dense arrays x and xb, the algorithm
manages to execute the aggregation very efficiently.

The method has several advantages. There is no costly aggregation at the end.
Hash tables are not used, so there is no overhead for hashing. In addition the

23

4. Sequential Algorithms

cache efficiency improves significantly due to the use of arrays and the chronological
calculation of the matrix C, i.e. rows are being calculated in an ascending order.
The result matrix is in a structured format. Moreover, all of the matrices are stored
as CSR, hence the algorithm is very suitable for computing sequences of matrix
multiplications. The result can be directly used as the input matrix for a consecutive
multiplication.

On the other hand, CSR data structures have to be generated for the input matrices,
which demands a beforehand sorting of their nonzero elements.

The complexity of the algorithm can be expressed asO(flops+nnz(A)+nnz(C)+n),
which can be explained as follows. As already mentioned, the number of the needed
arithmetical operations (flops) is initially unknown. We always iterate over all
nonzero elements of A, even if not even one flop takes place, therefore there is the
factor of nnz(A). Every nonzero value of C has to be copied from the temporary
array x into the CSR, hence also nnz(C) is influencing the time. Lastly, in the
initialization step we set all values of xb to −1 (|xb| = n) and the outer loop iterates
over all n rows, thus n also plays role in the execution time. Usually this factor might
be dominated by the first three, but by the computation of HyperSparse matrices
this may not be the case. One of the main contributions in [4] is the developing of
an algorithm suitable for HyperSparse matrices, which complexity does not depend
on n.

The time complexity of gustavson depends on multiple factors. Furthermore, some
of the variables in it are not known beforehand. The cost model gets even more
complicated if we consider some constant factors as cache misses for example. This
issue will be analyzed further in the next chapters.

The space complexity of the algorithm is on the other hand rather straight forward.
The method demands only two temporary arrays x and xb as overhead, thus the
needed additional space is O(2n).

4.2 Experiments

In this chapter we will present and evaluate empirical data for the performance of
the algorithms. The description of the problem instances that were used for the
evaluation can be seen in Table 3.2.

Figure 4.1 depicts the speedups for five different matrices, where the first algorithm
join_aggregate is taken as a baseline and therefore with a speedup factor of 1.
The precise execution times can be seen in table A.1. For the algorithms that
need a hash table (outerP_hash and outerP_hash2), the implementation used the
standard library unordered_map from the tr1 namespace.

24

4.2. Experiments

 0

 2

 4

 6

 8

 10

 12

 14

 16

matrix2_1 matrix3_1 matrix3_6 matrix4_0 matrix5_0

S
pe

ed
up

join_aggregate
outerP_hash

outerP_hash2
gustavson

Figure 4.1: Performance of the sequential algorithms for SpGEMM

Clearly gustavson has remarkable advantage over the other three algorithms. It
can be said that the experiments corroborate the conclusions that can be made from
theoretically analyzing the complexities of the algorithms. join_aggregate has an
additional aggregation step at the end, which is not presented in the other methods.
The additional time needed for this aggregation predetermines join_aggregate

as the slowest approach. The two algorithms that use hash table and on the fly
aggregation achieve better execution times with all test matrices, where the speedup
goes up to 2.16 with matrix2 1.

outerP_hash and outerP_hash2 have also another crucial advantage. Very impor-
tant for the applicability of an algorithm is not only its execution time but also its
space complexity. In this regard the hash algorithms are significantly better than
one big aggregation at the end. join_aggregate maintains a list of triples with size
of the multiplication flops. This list might be considerably larger than the nonzero
elements in the result matrix. Thus, the algorithm may run out of memory although
theoretically there is enough space for storing all of the nonzeros of the result ma-
trix. On the other hand the hash algorithms do not have this issues as they have
only O(1) space complexity. Hence, they scale much better than join_aggregate

in regard to memory, they are in different complexity classes. Indeed, with out-

erP_hash we were able to compute the product of matrices with larger scale, for
which join_aggregate have run out of memory.

Another phenomenon that can be observed is that although the hash algorithm
are consistently better than the first method, their speedup varies strongly between
different test matrices(from 2.16 by matrix2 1 to 1.31 by matrix3 6). This fact can
be also explained with the size of the triple list in join_aggregate. This size is
highly dependent on the specific structure of the matrix. The advantage of the hash
algorithms will be more evident, when the triple list is larger than nnz(C). For
example apparently in the case with matrix2 1 there are many aggregation flops,

25

4. Sequential Algorithms

meaning many triples, that contribute to a single value in the result matrix, thus
the triple list is quite large, so the aggregation step at the end will be costly. On the
contrary, the multiplication of matrix3 6 does not need so much addition flops, the
ratio ϑ = |triples|

nnz(C)
is smaller and the additional aggregation step is not so prominent,

which explains the smaller speedup factors achieved by the hash algorithms. Observe
that the ratio ϑ may also be equal to 1. In such case outerP_hash will have a
minimal speedup. Noting this ratio is useful, since it can be used to bind the
triples, the nonzero elements of the result and the needed additions in one equation:
(ϑ− 1)|triples| = addition flops, where ϑ ≥ 1

There is practically no difference between the speedups of the two hash algorithms.
Because the triples in matrix A are unsorted there is a random access over the rows
of B. Therefore, there is no significant difference, if we use the CSR or a hash table.
With matrix B in CSR we do not have the overhead of hashing, as when B in
stored in a hash table the hash function will be called nnz(A) times. Nevertheless,
the experiment indicates that this overhead is negligible.

The remarkable winner in the executed experiments is the gustavson algorithm. It
achieves significant speedups with all of the test matrices. The method is with more
than a factor of 10 faster than the first algorithm, where the speedup goes up to 15.6
by matrix5 0. Figure 4.1 also indicates that the speedup of gustavson is tending
to increase with larger problem instances. Therefore it is likely that the algorithm is
not with constant factor, but rather with order of magnitude better than the other
approaches. Thus, gustavson is not only the fastest algorithm in the test, but also
the best one in regard to scalability.

There are multiple reasons for that notable performance. The algorithm uses on
the fly aggregation. However, there are no hash tables and no overhead for hashing
and managing keys. Further, the cache efficiency is greatly improved, for example
the result matrix C is computed row by row, this leads to reduction of write cache
misses. This is also evident from the chart in figure 4.2. The graphic depicts the
cache misses of the different algorithms for the case of matrix5 0. One can recognize
that there is a correlation between the number of cache misses and the execution
times of the algorithms, respectively the speedups. The fastest algorithm causes at
least cache misses. Furthermore, it is interesting that the cache misses of gustavson
are about 16 times less than those of join_aggregate. This coincide almost exactly
with the speedup coefficient. Nevertheless, we can also see that cache misses are not
the only factor influencing the performance. Although outerP_hash2 has less cache
misses than outerP_hash, both algorithm have practically the same execution time.
This indicates that performance is dependent on multiple parameters with cache
misses being just one of them. Factors as instruction count, branch mispredictions
and migrations play also crucial role in end running time. We will investigate this
issue further in the chapter Cache Efficiency.

4.3 Conclusion

By analyzing the results of the experiments, we can conclude that gustavson is not
only the fastest algorithm, moreover it outperforms significantly its competitors. By
all test matrices the method was consistently better and it was from 5 to 11 times
faster than the second best algorithm. gustavson also caused notably fewer cache

26

4.3. Conclusion

 0

 2

 4

 6

 8

 10

 12

join_aggregate outerP_hash outerP_hash2 gustavson

C
ac

he
 m

is
se

s
[m

ill
io

n]

Figure 4.2: Cache misses of the different sequential algorithms for multiplying
matrix5 0

misses. Further, the algorithm uses the practical CSR format for all of the matrices
in the multiplication. Hence, the result matrix C is also stored in a structured man-
ner, which makes the algorithm relevant in practice and also suitable for sequence
of matrix multiplications.

Altogether gustavson has proven itself in the experiments as the state of the art
algorithm for sparse matrix multiplication. Therefore, we will use it as a baseline in
our further research. The method is apparently very efficient already, nevertheless
in the next chapters we will propose new techniques for improvement of the perfor-
mance. In addition to that, since gustavson is the best performing approach so far,
it will be used as the sequential algorithmic core for a parallel SpGEMM algorithm.

27

5. The Density Estimator

Before starting with particular optimization proposals, we will introduce a density
estimator as a component that will be used to calibrate the optimization techniques
presented in the next chapters (similar idea was used by Zwick and Yuster [50]).
This short chapter discusses the problem of estimating the density structure of the
product matrix C.

5.1 Problem Description
The findings from the previous sections indicate that sparse matrix multiplication is
a procedure with a rather complex cost model. The needed time for calculating the
product of two matrices is dependent on multiple factors. Refer that the complexity
of gustavson is O(flops+nnz(A) +nnz(C) +n). The dimensions and the number
of nonzero elements are important, but most of the times the needed flops are
the dominant factor (except in the special cases of hypersparse matrices where the
flops might be not dominating). Since the multiplication algorithms have only few
arithmetical operations and permanent read/write accesses in the data structures, it
is possible that the multiplication is bounded by the memory access times (memory
bound) and not by the actual arithmetical operations (CPU bound). However, in
both models the value of the flops is decisive for the cost model, since the number
of flops correlates with the memory accesses.

Thus, for a estimation of the execution time, some knowledge about the number
of flops is mandatory. Another crucial value is the size of the product matrix C.
It would be beneficial if we know the number of nonzero elements in C before
the multiplication. This information is important for size estimation and hence,
memory allocation for the result. Without knowledge of the size, it is even not clear
if it would be possible to perform the computation on the current machine (if there
will be enough memory). Knowing the size of the output will also contribute to
equal partitioning of the computation between the threads by parallelization. The
problem is that neither the flops nor nnz(C) are known beforehand. Further, there
is no trivial way to determine the sparsity structure of the result matrix. This issue
is illustrated in figure 5.1.

To formalize the density of a matrix this work uses the following definition.

28

5.1. Problem Description

X X X

X X X

X X X

X X X

X X X

X X X
1 2 3 4 5 6

6
5

4
3

2
1

1 2 3 4 5 6

6
5

4
3

2
1

=

X X X X X X

X X X X X X

X X X X X X

1 2 3 4 5 6

6
5

4
3

2
1

Figure 5.1: Connection between the densities of both input matrices and the output
matrix

Definition 5.1. The density of matrix An×n is defined as ξ(A) = nnz(A)
n2 .

Although both input matrices in fig. 5.1 have density factor of 0.5, the patterns of
their nonzero elements lead to completely empty result matrix. One has to consider
that a matrix which is half full is an extremely dense sparse matrix. The sparse ma-
trices that arise from real world problems are usually far more sparse. For example
the density factor of the road network of Europe is 0.42 ∗ 10−7.

On the other hand, very sparse matrices might multiply to a completely dense result.
This kind of reaction can be observed in fig. 5.2. In general the phenomenon could
be formalized through the following implication:

∃j : nnz(A(·, j)) = n ∧ nnz(B(j, ·)) = n⇒ ξ(C) = 1 (5.1)

In other words if a column A(·, j) and a row B(j, ·) are full with values, then the
whole output matrix will be full. In this case outer product between the two vectors
will compute a complete dense matrix. Note how the input matrices are very sparse,
density factor is only 1

n
, nevertheless the output is a dense matrix.

=

X

X

X

X

X

X
1 2 3 4 5 6

6
5

4
3

2
1

X X X X X X

1 2 3 4 5 6

6
5

4
3

2
1 X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X
1 2 3 4 5 6

6
5

4
3

2
1

Figure 5.2: Connection between the densities of both input matrices and the output
matrix, variant 2.

So far we have seen that that the size of the result is highly dependent on the
patterns of both input matrices and in general case it is hard to make conclusions
about the structure of the output. Parameters like the sparsity and the dimensions
of the input play role in the execution time, however they can be also misleading.
Matrices with huge dimensions might be multiplied relatively fast if their nonzeros
follow convenient distribution. On the contrary much “smaller“ instances might
cause much longer execution times, or even might be impossible to compute (due to
lack of memory). This is the reason why it is hard to talk about scale when referring
to a sparse matrix multiplication problem. The scale depends heavily on the needed

29

5. The Density Estimator

flops, however the only exact way to determine them is to execute the whole matrix
multiplication.

There is a connection between flops and the number of nonzeros in C. For a more
precise analysis, we divided the arithmetical operations in two groups: multiplica-
tion flops (mult flops) and addition flops (add flops). For each nonzero element
there must be at least one flop. From figure 5.1 can be observed that nnz(C) = 0
and accordingly the executed flops would be 0 (we consider gustavson as the mul-
tiplication algorithm). It can be generalized that:

flops ≥ nnz(C) (5.2)

Further, it is interesting that an element of C can demand just one multiplication
but also n multiplications and n additions. Thus, some nonzeros of the result matrix
are much more costly to compute than others. Figure 5.3 gives a good example for
that case. Observe the discrepancy between c(1, 1) and c(1, 6).

X X X X X X

1 2 3 4 5 6

6
5

4
3

2
1 X X

1 2 3 4 5 6

6
5

4
3

2
1X

X

X

X

X

X

X

1 2 3 4 5 6

6
5

4
3

2
1

=

Figure 5.3: Number of flops contributing to an element

If one wants to further formalize the flop count, the multiplication flops can be
described with the following equation:

mult flops =
n∑

i=1

∑
a(i,j)∈nnz(A(i,·))

nnz(B(j, ·)) (5.3)

The multiplication flops for the whole computations are the sum of the multiplication
flops of each row, where the elements in the row and the nonzeros in the respective
rows in B are determining how many multiplication operations will take place for
that row (refer to the approach in gustavson). The multiplication operations are
upper limit for the nonzero elements in C. As already seen in the Algorithm 1
for example, every multiplication flop creates a new triple, there will be a nonzero
value at these coordinates in the result matrix. However, there could be more triples
contributing to the value at the specific coordinates (Figure 5.3). At most there can
be n different triples, i.e. n mult flops. The addition flops on the other hand, sum
the triples in order to calculate the final nonzero value. Each addition aggregates
the result of two multiplication flops. This means, if there are x mult flops (triples)
contributing to a single nonzero vale in C, there are also x−1 add flops for summing
all of the triples and calculating this value. Hence, if we assume that the probability
of triples summing to zero is negligible, the following dependency can be derived:

mult flops− add flops = nnz(C) (5.4)

30

5.2. The Estimator

The last equation illustrates the connection between the flop count and the density
of the output matrix. One can conclude that one way for evaluating the density of
C might be to evaluate the needed flops.

5.2 The Estimator

In the previous section was shown that estimation of the flops and nonzeros of
the result matrix is a major problem of sparse matrix multiplication. In the next
chapters we will see that this information is needed for engineering some optimization
techniques. Therefore, a flops estimator would be valuable for the further research.

Motivated from equation 5.3, Algorithm 4 defines the pseudo code of a flops estima-
tor. Similar idea was used by Zwick and Yuster [50], however they did not compute
the flops per row as we do it here.

Algorithm 4 Pseudo code of the flops estimator
Input: matrixA: CSR, matrixB: CSR
Output: flops:[1...n] of Number

1: function get mult flops(matrixA, matrixB)
2: nnzB:[1...n]
3: flops:[1...n]
4: for i ∈ [1...n] do . Calculate nnz per row
5: nnzB[i] ← IB[i+ 1]− IB[i]
6: end for
7: for i ∈ [1...n] do
8: startRow ← IA[i]
9: endRow ← IA[i+1]

10: for j ∈ [startRow...endRow] do
11: flops[i] ← flops[i] + nnzB[JA[j]]
12: end for
13: end for
14: return flops
15: end function

The algorithm computes the exact number of the needed mult flops for each row of
the result matrix. The CSR structure contains implicit the information about the
number of nonzeros per row. The flops estimator uses this feature of the CSR to
build the array nnzB. After that the algorithm counts the number of multiplication
operations that gustavson would execute per row.

The method computes only the multiplication flops, the addition flops are not re-
garded. Therefore, the proposed method is called an estimator and not an evaluator.
The only exact way to know all of the flops, inclusive the additions, is to actually
perform the whole multiplication. However, the running time of an estimator should
be relatively low, so it is feasible to use it for optimizations. Otherwise, one can just
execute the multiplication instead. Furthermore, we assume that the multiplication
flops will be most likely the dominating factor by sparse matrices.

31

5. The Density Estimator

The complexity of the estimator is O(n + nnz(A)), because it firstly computes the
nonzeros per row of B and then there is a linear scan over the elements of A.

From flops to density

In order to make conclusion about the density of the output, we consider equation
5.4. It implies that:

mult flops ≥ nnz(C) (5.5)

Thus, with the flops estimator we have gained an upper bound for the nonzeros of
the output. In this way the flops estimator can be also used for density estimation
(see also [50]).

Furthermore, by very sparse matrices the number of addition flops might be negli-
gible. For example by multiplication of two matrices with dimensions (20 ∗ 106) ×
(20 ∗ 106) and with only 3 elements per row, additions would take place with very
low probability, especially if the elements follow a random distribution. For such
kind of matrices the assumption could be made that add flops ≈ 0, which leads to
mult flops ≈ nnz(C).

Other approaches

The presented algorithm computes deterministically the exact number of multiplica-
tion flops for each row. One proposition for improvement might be to sacrifice some
precision and to use only a subset of the nonzero elements of A and from that to
make a conclusion about the whole sparsity structure. However, it is questionable
if this would lead to significant improvement. The deterministic method has rather
low complexity already, especially when compared to the time for the multiplication.

One can use randomized data structures to estimate also the addition flops. For
example a Bloom Filter might be used to check if there was already a value at
specific coordinates. In such way, also estimation for the add flops can be given.
The execution time of the estimator would of course increase (due to additional
data structures, hashing et cetera). The exacter the estimation, the closer is the
estimator to the actual multiplication. It is a trade off between precision and time.
There is a threshold where the execution time would be too long and although more
precise, a slow estimator would not be beneficial.

An alternative approach would be to estimate the density of C only by regarding
ξ(A) and ξ(B). If we make the assumption that the elements of the matrices follow
a random distribution, the density of the result matrix can be expressed only with
the help of statistics. We refer to [32] for more details.

32

6. Cache Efficiency

“A designer knows he has achieved perfection
not when there is nothing left to add, but when
there is nothing left to take away.”

— Antoine de Saint-Exupéry

So far, the sparse accumulator-based methods like gustavson have shown the best
performance in comparison to other approaches. Nevertheless, there is still poten-
tial for improvement. This chapter analyzes the cache efficiency of the gustavson

algorithm and proposes new techniques for further reduction of the cache misses.
At the end we will have a proven method for enhancement of the cache efficiency
that can be used as a general strategy in algorithm design, even for algorithms not
connected with matrix multiplication.

6.1 Optimization Idea

Our optimization idea is rooted in the two dense arrays x and xb that are used by
gustavson for temporary storing of matrix elements. The arrays are a cache-efficient
data structure already. However, in some cases they might cause also significant
amount of cache misses.

The two arrays scale with the dimensions of the matrix and have a length of n. If
we multiply matrices with relatively small dimensions, so that the arrays can be
stored in the cache, the use of an array as a data structure is optimal. On the other
hand, if we compute the product of matrices with very large dimensions the arrays
will not fit in the cache entirely. For example, by the multiplication of two matrices
with n = 20∗ 106 and double precision for the result, the memory demand for x and
xb would be (8 + 4)Byte ∗ 20 ∗ 106 = 240MB, which is around 30 times more than
the Level-3 cache of a state of the art processor. Furthermore, by the sparse matrix
multiplication there might be rather random access on the two temporary arrays.
Thus, there will be a significant amount of cache misses, where at the worst case
each write in the x and xb will cause a cache miss. Hence, only the writing in the
temporary arrays would lead to mult flops cache misses.

33

6. Cache Efficiency

Having said that, it is highly likely that the arrays will be not filled completely.
They store the temporary values of an row in the result matrix, so if the output is
a sparse matrix, its rows will be also sparse. Thus, gustavson might use too much
redundant memory for x and xb. Our optimization idea is to replace the arrays with
a smaller hash table, that will fit entirely in the cache. In this way all of the cache
misses caused by read/write accesses will be optimized.

In this optimization technique we use the core of the gustavson algorithm and re-
place the dense arrays with a hash table. The new algorithm is called sparse_cemm,
i.e. sparse cache-efficient matrix multiplication.

With a hash table the cache misses will be reduced, but in this case there is an
overhead of additional instructions, hashing, collisions et cetera. The arrays are
low level data structure. Exchanging them with a hash tables, adds significantly
more instructions for each read and write. Furthermore, there has been substantial
development in the hardware. CPU prefetchers has been optimized to work with
arrays. The CPU can recognize patterns in the reads and writes to the main memory,
so only the relevant sections are loaded to the cache. Pipelining and look-ahead
techniques might also reduce the costs of cache misses. Cache technology is also
improving constantly, trying to intelligently recognize needed memory blocks. Thus,
although theoretically reasonable, there is a need for an empirical evaluation that
would investigate, if the approach can indeed lead to a speedup.

6.2 Initial Evaluation of the Concept

This section gives details about the initial implementation of the optimization strat-
egy. We used hash tables from different libraries to replace the two dense arrays x
and xb. Intel PCM was used for the performance profiling of the algorithms.

There are a couple of challenges when implementing the optimization technique.
The hash table has to remain small, so that it does not overflow out of the cache.
We have seen empirically that a hash table that would mostly fit in the L2 cache is
preferable than bigger one that would fit in L3. This is expected, since in this way
the access times will be even smaller.

Furthermore, the hash table must not grow too often because each growing step
includes rehashing of all keys and copying all of the elements to a new hash table.
This process will be significant overhead over the simple arrays. The hash table
has to be initialized with an appropriate size, so some growing steps are spared. As
already mentioned, the whole optimization idea depends on the data structure fitting
into the cache. Thus, we have to periodically empty it. This clearing process also
adds to the running time. It arises also the question, when would it be optimal to
empty the hash table. In this section the emptying was done naively by destruction
and new initialization. If the hash table is cleared too often, the clearing process
might raise the overhead. On the other hand too rare clearing, will lead to hash
table with bigger fill ratio and thus more collisions or it might lead to growing.

Regarding the implementation, the column index of the result element c(i, j) is used
as the key in the hash table. This index coincide with the index of c(i, j) in the
temporary arrays x and xb. In this first implementation the value in the hash table
is the pair (c(i, j), i). In this way the arrays are replaced by the hash table and the
index of the array becomes its key.

34

6.2. Initial Evaluation of the Concept

In order to prevent growing of the hash table, the maximum load factor was explicitly
set to 1, so we have more control over when a rehash would take place. After each
calculated row of the result matrix the table includes also the elements from that
row. Then the algorithm checks if the number of elements in the data structure is
over a certain threshold. If so, the hash table is emptied, if not, the calculation of
the next row is continued without emptying. In summery, the method tries to keep
the hash table at a static size and not exceed a certain fill level.

The new data structure introduces two new parameters that influence the running
time. First, there is the size of the hash table, as already said, it has to fit in the
lower levels of the cache. Second, there is the threshold ratio at which a clearing
would be executed. The experiments suggested that a size of around 214 elements
is optimal. This is attributed to the fact that the data structure would then need
a minimum of (8 + 4 + 4)Byte ∗ 214 = 262144Byte (8 Bytes for the result, 4 Bytes
for the row index and 4 Bytes for the key)1. The Level-2 cache of the test system
has 256KB, thus with this setting there are good chances that large portion of the
data structure will be even in the L2 cache. For the second parameter, the fill ratio,
the experiments have pointed that a value around 0.3 is optimal. Higher fill ratio
causes the overhead of collisions happening too often.

The optimization approach was tested with a couple of hash table implementations
with the described setting - table size 16834 elements and maximum fill ratio of 0.3.
As input we used matrix6 10, described in the Appendix table 3.2. The matrix
was multiplied by itself. The goal is to improve the end running time by reducing
the cache misses. Therefore, in the experiment we used a matrix with randomly
distributed elements. This would guarantee a random access over the temporary
arrays x and xb. Furthermore, n should be sufficiently large, so the arrays will not
fit into the cache. Our baseline is the classical gustavson algorithm, implemented
with dense arrays. The execution times for the different hash tables can be seen in
figure 6.1.

The experiment reveals that there is a remarkable deviation between the perfor-
mance of the different hash tables. std::map from the C++ Standard Template
Library is the slowest implementation. This makes sense, since the data structure is
implemented as a tree. Thus, accessing and updating operation will be in O(log n)
instead the usual expected O(1). The advantage of the tree structure is by growing,
however in the particular case often growing steps are not desirable. Interestingly,
there is a considerable difference between the unordered_map from the standard
library and the one from the tr1 namespace. The one from tr1 is about 23% better
in regard to execution time.

In order not to restrict the evaluation only to the standard library, the test included
also two hash tables from an external library. google::dense_hash_map achieved
the best running time among the hash tables, noticeably better than the others. This
hash table has been optimized for fast access time, but has relatively high memory
overhead (78%). On the other hand google::sparse_hash_map is optimized for low
memory consumption, it takes only about 4 additional bits for an item. The trade-
off between space efficiency and time efficiency can be observed by the difference

1Depending on the implementation the hash table may demand more storage, for pointers,
additional structures etc.

35

6. Cache Efficiency

 0

 10000

 20000

 30000

 40000

 50000

 60000

dense array

std::m
ap

google::sparse_hash_m
ap

std::unordered_m
ap

std::tr1::unordered_m
ap

google::dense_hash_m
ap

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

T
im

e
[m

s]

Time
L3 hit ratio

Figure 6.1: Execution time of gustavson with different hash tables; L3 cache hit
ratios; matrix with random distributed elements.

in the performance of the two hash tables. The sparse variant, with lower memory
footprint, is more than two times slower than the dense version.

Although some of the implementations with hash tables came close to the time of
the original gustavson, none of them was able to achieve speedup against the plain
arrays. To investigate the reasons, we have also depicted the hit ratio of the Level-3
cache in Figure 6.1. A cache miss on this level will be most expensive since it will
cause a data retrieval from the much slower main memory. Compliant with the
theory, all of the implementations with hash tables lead to a great improvement
of the hit ratio. The dense array implementation has hit ratio close to 0. At first
sight there is also rather illogical dependency between the time and the cache hit
ratio. Although map has the best hit ratio it exhibits actually the slowest running
time. The explanation for this phenomenon is that the cache hit ratio is misleading
as a measure for the absolute performance. One should consider that the absolute
number of the cache misses are actually more relevant than the ratio. It would be
not beneficial if the hit ratio has improved at the cost of introducing huge amount
of new cache references. The amount of cache misses might actually rise and in the
same time the hit ratio can increase, if we add also enough cache references in the
algorithm.

In order to be more precise, one also has to differentiate between the cache misses
on the different levels. Figure 6.2 gives information about the absolute number of
L2 and L3 cache misses.

The dense array has almost the same amount of L2 and L3 cache misses. This is
caused by the fact that there is a random access on the array and it is much larger
than the cumulative cache size. Thus, a Level-2 cache miss will cause also a Level-3

36

6.2. Initial Evaluation of the Concept

 0

 10000

 20000

 30000

 40000

 50000

 60000

dense array

std::m
ap

google::sparse_hash_m
ap

std::unordered_m
ap

std::tr1::unordered_m
ap

google::dense_hash_m
ap

 0

 100

 200

 300

 400

 500

 600

T
im

e
[m

s]

M
ill

io
ns

Time
L2 cache misses
L3 cache misses

Figure 6.2: L2 and L3 cache misses for the different hash tables.

cache miss with a high probability. Further, one can observe that all hash tables
led to reduction of the L3 cache misses. Moreover, all of the implementations show
the exact same amount of L3 cache misses. This is due to the small size of the hash
table, it is stored entirely in the cache, i. e. all levels combined, with all variants.
Access to the table causes no main memory retrieval. On the other hand, there
is a quite large variance between the L2 cache misses. The size of the hash table
was intentionally chosen small so that theoretically big portion of the data structure
may fit even into the L2 cache. The experiment reveals that there is a considerable
difference between the space overheads. As already mentioned sparse_hash_map is
extremely space efficient (only 4 additional bits per item), so it makes sense that
this hash table leads to less L2 cache misses, because more portions of it fit in L2.
On the contrary, dense_hash_map uses nearly two times the space actually needed
for storing the items. Thus, a high percentage of the hash table will not fit in the
Level-2 cache and so it is understandable that it has 40% more L2 cache misses than
the sparse version.

From the chart one can also see the discrepancy between cache hit ratio and absolute
number of cache misses. std::map has shown 60 times improvement in the L3 cache
hit ratio. Nevertheless, this data structure has actually only 20% less cache misses,
if the absolute values are regarded.

Although the absolute values give more insights in the reasons for the different
running times, there is still no clear correlation between the cache efficiency and the
time. For example dense_hash_map causes more L2 cache misses than the sparse
version sparse_hash_map, nevertheless it is more than two times faster. Thus, there
are also another factors that influence the efficiency of the algorithms.

37

6. Cache Efficiency

In figure 6.3 are depicted the number of retired instructions for the different imple-
mentations. This is another key indicator, which has great effect on the execution
times. Naturally, the plain array leads to an algorithm with least instructions. The
hash tables inevitably add some overhead. The data depicted in the graphic indicate
that this overhead is crucial for the running time. dense_hash_map introduces at
least additional instructions when compared with the dense array. This data struc-
ture leads also to the fastest running time among the hash tables. On the other
hand, sparse_hash_map has the biggest overhead, factor of 14 more instructions
than the version with dense arrays. Accordingly, the running time is also more than
2 times slower.

 0

 10000

 20000

 30000

 40000

 50000

 60000

dense array

std::m
ap

google::sparse_hash_m
ap

std::unordered_m
ap

std::tr1::unordered_m
ap

google::dense_hash_m
ap

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

T
im

e
[m

s]

B
ill

io
ns

Time
Instructions

Figure 6.3: Number of retired instructions.

Overall, one can conclude that the time efficiency is influenced by multiple factors.
The number of cache misses and the cache efficiency of the algorithms alone are not
sufficient for making conclusions about the running times. The number of instruc-
tions should be also regarded. Optimization technique that will reduce the number
of cache misses, will succeed to improve the final execution time only if it does not
introduce too much instruction overhead. From the previously tested hash tables,
only dense_hash_map came close to the time of the arrays. It reduced the number
of cache misses, mainly the expensive L3 cache misses. Further, it succeeded no to
add to much additional instructions, by doing that.

The first experiments show that none from the tested hash tables leads to a net
improvement of the algorithm. Nevertheless, there is some potential for our opti-
mization approach. The instructional overhead of the tested data structures was to
high to beat the arrays. If we can construct a lean hash table with less instructions,
it might be possible to observe a speedup.

38

6.3. The Custom Hash Table

6.3 The Custom Hash Table

In the previous section we have seen that the cache efficiency and the instructional
overhead are two major variables that have to be regarded by optimization strategies.
This section will introduce a custom minimal hash table, with the goal to decrease
the instruction count and still implement the cache-optimization idea.

A hash table consists mainly of tree components:

• hash function

• data structure for storing the elements

• collision avoidance strategy

Each component can be changed, thus there are many different combinations pos-
sible. We have tested multiple variants but the best times were achieved by a hash
table called minimal_hash_map3 (”three” because there were a couple of optimizing
iterations). The configuration of the data structure is as follows.

The hash function

The hash function is crucial for the performance of a hash table. Firstly, the function
has to maintain sufficient randomness, i.e. two different keys will be hashed to the
same value with very low probability. This will lead to spreading the hashed keys
over the whole data structure and will reduce the number of collisions. Each collision
causes additional overhead for searching the right element. Thus, a function with
lower collision probability is desirable. The second factor is the instruction count
that the function needs to calculate a particular hash value. In general the function
will be called by every read and write operation, hence its execution time is also of
great importance.

Experiments with different hash functions have been conducted (see below). Sur-
prisingly, a simple concept of tabulation hashing ([36] [39]) led to very promising re-
sults. With classical tabulation hashing the key is tokenized in equally sized chunks.
Additionally there are lookup tables filled with random values. If the key can be
tokenized in say n words, then there must be n different lookup tables. Each lookup
table contains 2|chunk| random values, so each chunk can be used as an index in the
according lookup table. The hash value is constructed by XOR operation between
the random values from the lookup tables which are pointed by the chunks, their
bit-pattern is interpreted as an index in the lookup table. In our application the
keys were 32 bit integers, and the size of a chunk was 1Byte. Thus, for tabulation
hashing we need 4 lookup tables with 256 random values each. If the lookup table
are named Ti, then the a tabulation hash function would be defined as:

H1(x1x2x3x4) = T1[x1]⊕ T2[x2]⊕ T3[x3]⊕ T4[x4] (6.1)

The different chunks are retrieved through bit shift and logical AND operations.

39

6. Cache Efficiency

To reduce the number of instructions, a variance of the tabulation hashing was
implemented that uses only one lookup instead of four (Peter Sanders and Kurt
Mehlhorn [36]). The key in our use case is the column index of a matrix element, so
key is between 1 and n. In the experiments in this thesis n is usually less than 225.
In this setting only one lookup table with 2048 random elements is used. We use
the first (most significant) 11 Bit as an index in the lookup table. The last 14 Bits
are xor-ed to the random value from the lookup table. Hence, the hash function has
only one lookup and three bit operations. If the size of the lookup table is |key|−m,
for some 0 ≤ m < |key|, then the hash function can be defined as:

H2(x) = T [x� m]⊕ (x ∧ (2m − 1)) (6.2)

The parameter m is important for the performance of the function because it de-
termines the size of the lookup table. The lookup table should be small enough so
it can fit into the lower levels of the cache, preferably L1 cache. Furthermore, m
depends on the specific key domain.

In figure 6.4 are depicted the times for adding 45 ∗ 106 elements in the custom
hash table when different hash functions are used. All other components of the
data structure were the same with all experiments, so the only differences are the
functions, i. e. collisions and execution time are causing the deviation in the time.
Detailed description of the has functions Jenkins, cityHash and FNV can be seen
respectively in [31], [40] and [16]. Table hash 1 is the classical tabulation hashing
and Table hash 2 stands for the second version with less instructions. In most of the
multiplications the most significant byte of the key will be zero, therefore we spare
one lookup in the implementation of the classical variant, only the last three bytes
are used for lookup. This one lookup and one XOR less led to 4% faster execution.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Table hash 1 Table hash 2 Jenkins cityhash FNV

T
im

e
[m

s]

Figure 6.4: Performance of different hash functions.

The simple tabulation hashing outperforms state of the art hashing functions. At
least in this experiment. One has to consider that multiple experiments in different

40

6.3. The Custom Hash Table

kind of settings are needed to evaluate fully a hash function. This extensive evalu-
ation is out of the scope of the thesis. In our tests tabulation hashing achieved the
best running times, therefore it was used in the custom hash table.

The data structure

As our goal is to construct a hash table as minimalistic as possible, we have chosen
a plain array as the data structure for storing the items. There are no additional
pointers and complications. The array stores triples containing the key and the
values for x and xb. In order to reduce the number of instructions, the hash table
has static size, thus it cannot grow. In this way instructions related to the growing
logic are not present at all. The non-dynamical size of the data structure makes it
faster, however it is also a significant restriction. The next sections will get back to
this problem.

Collision avoidance

For collision avoidance linear probing was used. Quadratic probing was also imple-
mented and tested but it did not lead to an improvement.

In the first experiments the data structure was cleared through new initialization,
i.e. deleting the old container and allocating a new one. Further, the hash table
does not have to support delete operations, so there are no gaps between the items
caused by deletion. Thus, when there is a collision we can be sure that we have
found the right place by finding the key or by hitting an empty cell. This helped
also for sparing some instructions that otherwise would have been needed.

Initially, the size of the hash table was set to 214. The fact that it is a power of two
is not a coincidence. The random values in the lookup tables are between 0 and
214−1, in this way the hash value for every key is already in the bounds of the array
used as hash table. Thus, one modulo operation is spared, because the hash can be
used directly as an index.

In general the strategy in the implementation of minimal_hash_map3 was to add as
few instructions as possible. Only than sparse_cemm has a chance to be faster than
the array implementation. Every code line less is important for the performance of
the algorithm.

Table 6.1 illustrates the performance of sparse_cemm when minimal_hash_map3 is
used instead of the original version of gustavson with dense arrays. The experiment
is the same as with the previously tested hash tables, so the values can be compared.

41

6. Cache Efficiency

dense array minimal hash map3

L3 hit ratio 0.02 0.38
L3 cache misses [106] 353 205
L2 cache misses [106] 359 335
Instructions [109] 11.3 27.8
Time [ms] 18820 16740

Table 6.1: Performance of minimal_hash_map3 and comparison with the dense ar-
rays.

Our minimalistic implementation of a hash table succeeded to improve the running
time when compared with the dense array baseline. The custom data structure
managed to reduce the cache misses (L3 cache misses have been reduced by 42%) and
in the same time not to add too large instructional overhead. minimal_hash_map3

causes two times less instructions than google::dense_hash_map - the best from
the previously tested hash tables in regard to instruction count. Overall, this leads
to 11% net speedup of the multiplication when compared with the dense arrays.

Although there is an improvement in the execution time, one could expect that this
has to be more evident, after all the L3 cache misses have been reduced almost
two times. Interestingly, the large reduction of cache misses does not cause as large
improvement in the time. One reason might be recent advancement in hardware
technology. Pipelining, CPU instruction prefetchers and look ahead technologies
might be reducing the cost of a cache miss on modern machines. Instead of stall
waiting for data retrieval from main memory the processor could continue with other
instructions. Also the time gap between cache and main memory might be closing
with new hardware. Despite all this, the cache optimization strategy led to improve-
ment.

Non Uniform Memory Access (NUMA)

Often there have been significant differences in the running time for the same ex-
periment. For example, for multiplying the same matrices with the exact same
algorithm there has been a deviation of more than 25% in some cases. There are
multiple factors that influence the execution time of a program on a multi-core ar-
chitecture. At first, our presumption was that this behavior is cased by deviation
of the cache misses. On the system are running multiple processes, so some of the
other programs may contaminate the shared cache with their own data. This would
lead to increasing amount of cache misses of the process being tested. However, to
our surprise, the number of cache misses de facto did not change. Our assumption
is that NUMA effects are influencing the running time. In order to examine further,
we pinned the algorithm thread on the different cores by using:

numactl --physcpubind=#core_id

The variance of the cache misses and the according running times are depicted in
Figure 6.5. The number of cache misses stays practically constant, there is only

42

6.3. The Custom Hash Table

marginal deviation. However, there is a difference of 30% in the running times for
the different cores. Considering the execution time, we can clearly observe that the
cores are packed by groups of four. This fact supports also the hypothesis that
NUMA is causing the deviation. Moreover, cores 4-7 and 12-15 are in one node
(socket), respectively cores 0-3 and 8-11 are belonging to the other node. Further
experiments have been made with explicitly binding the memory allocation to a
specific node (-membind=#node_id). The deviation in the execution confirmed that
NUMA is the reason for the time variance.

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 23000

 24000

 25000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0.96

 0.98

 1

 1.02

 1.04

T
im

e
[m

s]

C
ac

he
 m

is
se

s
va

ria
nc

e

Core id

Time
Cache misses variance

Figure 6.5: Difference of the execution time by core, deviation of the cache misses.

Hence, NUMA effects can cause noticeable difference. For correct evaluation of al-
gorithms one has to carefully bind the tested program to a specific NUMA node. In
our test setting the internal scheduler of the operating system did not succeed to
automatically optimize memory allocation on its own.

Migrations

On a multi-core architecture the operating system might force migration of a thread
between the different cores. This is done by the internal scheduler for load balancing
purposes. The presented cache optimization technique is even more worthy if a
migration takes places. A migration of the thread to different node will cause increase
of the cache misses, since the cache at the new node is fresh and is not containing
relevant data. Further, each write to the arrays x and xb will lead not only to a
cache miss, but also the data has to be retrieved from remote memory module. Thus,
NUMA effects will amplify the costs of a cache miss. As already seen these effects
can cause severe time lags. On the other hand the hash table fits entirely in the
cache. At first accessing values from it would cause also a cache miss, but gradually
it will be loaded into the new local cache. This would lead to even larger speedup for
sparse_cemm. As a conclusion, reducing the size of the temporary data structure has

43

6. Cache Efficiency

positive influence on the flexibility and NUMA awareness of the algorithm. In real
world environment, where thread migrations are possible, the cache optimization
technique will be even more valuable. In the previous experiments the execution
thread was pinned to a specific core, so migrations and NUMA were excluded. When
during the experiment a migration between nodes takes place, the speedup of the
hash table optimization rises to 20%.

6.4 Fine-tuning of sparse cemm

The previous sections we have presented a cache optimization technique that led to
11% speedup when using a specially tuned hash table. It has been shown that the
approach has potential. In this part we will further refine the algorithm and present
its pseudocode.

Initially, the hash table has been used for processing multiple rows of the result ma-
trix and after certain fill ratio is exceeded, it was emptied through new initialization.
It is actually beneficial to empty the data structure after each processed row. This
strategy leads to several advantages. Firstly, the hash table can be of smaller size,
so it is more likely to fit in the lower levels of the cache. The smaller size should
reduce the Level-2 cache misses when compared with the previous implementation.
Secondly, if the temporary data structure is emptied after each processed row, then
there is no need for storing the xb index. xb was used to differentiate if a certain
value belongs to the currently processed row or not. Accordingly one should update
(aggregation) or overwrite the value. By clearing the hash table after each row, we
create the invariant that each value (different from zero) belongs to the currently
processed row. The pseudocode of sparse_cemm is presented in Algorithm 5.

The size of the hash table is a tuning parameter, which also depends on the specific
problem instance. Smaller size is better for the cache efficiency (less L2 and L1 cache
misses). In the same time the data structure must have enough free slots so each
row of the result matrix can be stored in it, without growing to be needed. Further,
there has to be always some overhead of free slots, so collisions do not take place
too often.

The algorithm uses additional stack for storing the positions of the stored elements
in the hash table. After all values from the current row of C are calculated and
stored in the temporary data structure, we can use the indexes from the stack to
retrieve the values and copy them to the final CSR structure of the result matrix.
Storing the indexes brings the advantage that there is one call less for the hashing
function. In the implementation from the previous section the key (i.e. the column
index) was hashed two times: first for storing a value into the hash table and then
second time for retrieving it and copying it. In the here presented variant the key
is hashed only once, namely in line 16. After that we use only the stored indexes
to iterate over the nonzero elements of the hash table, in the same time the data
structure is cleared by zeroing the (key, value) tuple at that position.

The new algorithm is more cache-efficient than the original gustavson. Both al-
gorithms have the same time complexity, since fewer cache misses is low level op-
timization that can be seen as constant factor in the complexity term. The space
complexity on the other hand improves to O(max1≤i≤n(nnz(C(i, ·)))).

44

6.4. Fine-tuning of sparse cemm

Algorithm 5 sparse_cemm algorithm.

Input: matrixA: CSR, matrixB: CSR
Output: matrixC: CSR

1: function sparse cemm(matrixA, matrixB)
2: initLookupTables()
3: x ← minimal hash map3(t) . t being the size
4: indexStack:Stack<int>
5: ip ← 0
6: for i ∈ [1 ... IA.size− 1] do
7: IC[i] ← ip
8: startRowA ← IA[i]
9: endRowA ← IA[i+ 1]− 1

10: for jp ∈ [startRowA ... endRowA] do
11: j ← JA[jp]
12: startRowB ← IB[j]
13: endRowB ← IB[j + 1]− 1
14: for kp ∈ [startRowB ... endRowB] do
15: k ← JB[kp]
16: index ← x.getIndex(k)
17: if x[index] 6= 0 then
18: x[index] ← x[index] + A[jp] ∗B[kp]
19: else
20: x[index] ← A[jp] ∗B[kp]
21: ip++
22: indexStack.push(index)
23: end if
24: end for
25: end for
26: while indexStack not empty do
27: z ← indexStack.pop()
28: (key, value) ← x.popAt(z) . get and remove
29: JC.pushBack(key)
30: C.pushBack(value)
31: end while
32: end for
33: IC[IA.size] ← ip . Add dummy element
34: return matrixC . Consists of IC, JC and C
35: end function

The same experiment as in the previous section was executed, this time with the
lastly described optimized version of the sparse_cemm algorithm. The used hash
table is still minimal_hash_map3. The hash table was initialized with a size of 256
elements, this was enough for the particular problem instance. The performance of
the new algorithm can be seen in table 6.2.

45

6. Cache Efficiency

gustavson sparse cemm

L3 cache misses [106] 353 205
L2 cache misses [106] 359 209
Instructions [109] 11.3 21.4
Time [ms] 18820 15096

Table 6.2: Comparison between original gustavson and sparse cemm when multi-
plying matrix6 10

The last optimizations reduced the execution time even more, the speedup against
the gustavson algorithm improves from the previous 11% to 20%. If the values
are compared with the previous results from Table 6.1, it can be seen that the new
implementation manages to reduce further the instruction count and in the same
time to improve the L2 cache efficiency. Now the temporary data structure is small
enough to fit even in the Level-1 cache. Compared with the previous implementation
L2 cache misses droped by 42%, the number of retired instructions have been reduced
by 23%.

As already mentioned thread migrations cause NUMA effects that amplify the costs
of a cache miss. In such cases sparse_cemm shows even bigger speedup. If the
running thread executes on a core of node #0 and the memory is allocated on a
module close to node #1, the cache optimized algorithm computes the product with
28% faster than the original gustavson.

Furthermore, the speedups also rise with denser matrices. For example a multiplica-
tion of a uniformly distributed matrix with same dimensions as matrix6 10 but with
14 elements per row, instead of 3, led to a 30% improvement of the execution time
(versus 20% before). With more elements there will be more memory accesses and
thus more cache misses that can be optimized by sparse_cemm. With this instance
the algorithm caused reduction of the L3 cache misses by a factor of 5 against the
original gustavson.

6.5 Generalizing the Algorithm

The presented algorithm has also considerable disadvantages. For example, the
used hash table for storing the temporary values has static size. Growing steps
were intentionally not allowed, since growing will force copying of the elements and
thus lead to an overhead. Further, the static hash table is simpler and has less
instructions, does not need growing logic.

However, the hash table must be sufficiently large so every row of the result matrix
can be stored in it. This implies that in order to be able to use sparse_cemm,
one has to know the maximum nonzero elements for a row in C. Since the data
structure has static size, the algorithm is technically not applicable for matrices
where nnz(C(i, ·)) > |hashtable|.

There are cases where this is not a problem. Before the multiplication takes place,
we have read the input matrices A and B, so at this point the maximum nonzeros
per row is known for the both matrices. Lets denote κA = maxnnz(A(i, ·)) for

46

6.5. Generalizing the Algorithm

1 ≤ i ≤ n, respectively κB = max(nnz(B(i, ·))). Knowing these values, we can
easily find an upper bound for the maximum number of elements of a row in C,
κC ≤ κAκB. This estimation can be used to determine the needed size of the hash
table. However, although the upper bound is correct, it is very conservative (loose)
in the general case. If we multiply two matrices with constant number of elements
per row, this means there is no variance between the number nonzeros per row, the
bound is quite exact. On the other hand, by large variance between the number of
nonzeros per row, the bound is rather inaccurate. Hence, using it for such problem
instances would lead to a highly overestimation of the size of the hash table. This is
a problem because the algorithm is only beneficial if the hash table is small enough
to fit in the cache.

Furthermore, sparse_cemm has its limitations. Replacing a large array with hash
table will lead to a speedup only when:

1. The array is large enough so it exceeds the cache size

2. The array is sparse, so the stored values can fit in the cache

3. There is a random access over the array

In regard to the second point: the cache optimization technique would be beneficial
only if the rows of the output matrix are sparse enough. It is not beneficial to replace
the arrays with hash table for dense rows. In such cases the hash table would also
flow out of the cache, and it would cause the same amount of cache misses as the
dense arrays. Further, it will add an instructional overhead. Thus, sparse_cemm is
feasible only when all of the rows of C are sparse enough to fit in the cache. However,
in general case there is deviation between the densities of the individual rows. It
is possible that there are some rows that are even completely full and in the same
time the majority of rows are sparse. In such cases it would be not advisable to use
sparse_cemm for the whole matrix. Firstly, because it is not beneficial for the dense
rows and secondly because the hash table has static size and might be too small for
the rows with many elements.

Yuster and Zwick [50] proposed an algorithm for sparse matrix multiplication with
a hybrid approach that partitions the multiplication in a dense and a sparse section.
This strategy is useful also in our case. Since the cache optimization technique is
not suitable for every kind of density, one could differentiate between dense rows
and sparse rows of the result matrix. Then, for the rows that are sparse enough we
can use sparse_cemm and for the dense ones - the classical gustavson.

Here arises the question, how will the densities of the row of C be determined. For
this task the density estimator from the previous chapter 5 is utilized. The output
of the estimator is an array W of size n, containing the mult flops for each row.
This value can be used as an upper bound for the nonzeros in the row (refer to The
Density Estimator for more details). The generalized algorithm can be described
with the following five steps:

47

6. Cache Efficiency

Algorithm 6 general_sparse_cemm

1: Density estimation per row
2: Reordering of the rows by their density
3: Find suitable density threshold line
4: Use gustavson for rows with density above threshold line
5: Use sparse_cemm for rows under (or at) the threshold line

Initially, the implementation used sorting for the second step. However, complete
sorting is actually redundant. It is sufficient to partition W around the threshold
line, i.e. the threshold line is used as the pivot p of the partitioning. After the
reordering of the array, elements larger than p have smaller index than the one of
p, respectively elements with smaller or equal values have larger index. By using a
partitioning, the time needed for the sorting (O(n log n)) is reduced to a linear scan.
The sorting of W will be however not the bottleneck of the algorithm in most cases.
The partitioning has also another important advantage. Through partitioning there
is a larger probability that consecutive rows will be next to each other after the
reordering. This will improve the locality and thus also the cache efficiency for the
reading of matrix A. We used Hoare-Partitioning, since it has been reported as
efficient when compared to other methods [48].

The value for the threshold density is hardware dependent. It should be chosen in
such way that the rows under the threshold line can fit entirely in the lower levels
of the cache.

The reordering of the rows is not made physically. Instead a permutation array over
the original CSR structure is used. After running the density estimator with input
A and B we get the array with the estimated nnz per row. The row indexes are
reordered according to that array. In this way a permutation of the rows is obtained.
The algorithm computes the rows of the result matrix by respecting the order of that
permutation.

Overall, the approach generalizes sparse_cemm, so the algorithm can be used with
all kind of matrices. The presented method performs cache optimization only on
rows where this is feasible.

One disadvantage of the algorithm is the already mentioned processing of the rows
by a permuted ordering. This will lead to non consecutive reads of the rows of matrix
A. Thus, there will be some overhead of cache misses related to that. Processing
the matrix A with a permutation will have the effect that the result matrix is
computed with the same permutation of the rows. There will be no additional
cache misses regarding the storing of the result matrix because the rows are written
sequentially one after other. However, C will be stored in permuted CSR format.
This might be considerable disadvantage with some applications (e.g. sequence of
matrix multiplications).

In Figure 6.6 can be seen the execution times of the described generalized algorithm
(sparse_cemm) for multiplying two different matrices. As usual, our baseline is the
classical gustavson algorithm. The majority of the rows in the test matrices are
sparse with only 3 elements per row, which are randomly distributed over the row.
Thus, the matrices are suitable for the cache optimization technique. However, in

48

6.6. Conclusion

each matrix there are also 1000 denser rows, containing 10000 elements. This rows
will be more denser after the multiplication and therefore using a hash table for
them is not preferable. The difference between the two test matrices is that the
dense rows in matrix6 12 are in a one consecutive segment and in matrix6 13 are
spread over the whole matrix.

 0

 5000

 10000

 15000

 20000

 25000

 30000

6_12 6_13

T
im

e
[m

s]

Matrix

gustavson
general_sparse_cemm

Figure 6.6: Execution times (ms) for two matrices.

The generalized algorithm outperform in both cases the traditional gustavson. The
speedups for matrix6 12 and matrix6 12 are 17% and 16% respectively. This values
are comparable with the result from the previous sections. Once again, if the memory
allocation is not set to be optimal by hand, NUMA effects amplify the costs of the
cache misses and thus lead to larger speedups. In such cases the speedup rises to
30%.

6.6 Conclusion

This chapter presented algorithms that improved even more the cache efficiency of
gustavson. The improvement was done by exchanging the large dense arrays with
a smaller hash table that would fit into the cache. Several hash table implemen-
tations have been compared. None of the already known implementations could
outperform the dense arrays, although every hash table caused significant reduction
of the cache misses. The experiments have shown that the instructional overhead is
crucial for the performance. Better cache efficiency will not lead to a speedup at the
end, if too much additional instructions are added to the algorithm. Therefore we
constructed a custom minimalistic hash table specially tuned for the use case. The
new data structure has considerable less instructions and succeeds to outperform
the arrays with suitable problem instances. A new algorithm have been specified

49

6. Cache Efficiency

(sparse_cemm). By employing the custom hash table, one could achieve speedup
up to 30%. Further, a hybrid algorithm has been proposed, that uses the cache op-
timization technique only for the sparse rows of the matrix and the original arrays
for the denser ones.

The tests have also indicated that NUMA effects have significant influence over the
execution times. On a machine with only two nodes NUMA was responsible for a
deviation of 30% when executing the same algorithm.

As a conclusion, the experiments have shown, that it is possible to improve the cache
efficiency and the running time of an algorithm by replacing a large array with a
smaller hash table. This holds only when specific criteria are met (see the previous
sections). The presented cache optimization technique can be seen as general ap-
proach for improving the cache efficiency of an algorithm. Thus, it can be used also
in other domains and not only for sparse matrix multiplication.

50

7. Parallelization

In order to improve the efficiency of algorithms, one has to consider possibilities for
parallelized computation. This work focuses on a parallelization in a shared memory
model.

7.1 Parallelization Framework

Intel Threading Building Blocks (Intel TBB) [42] and OpenMP [2] are parallelization
frameworks, which enable parallel programming on more abstract level. They are
conceptually different from low level threading libraries (pthread, boost), where
each created logical thread is mapped to a thread, manged by the operating system
(further on referred as physical thread). This direct mapping may lead to several
disadvantages. If too many threads are created, the performance will suffer from
the overhead of constantly context switching between the different threads. To the
contrary, if the programmer creates too few threads underutilisation of the hardware
will occur. The more sophisticated frameworks for parallel programming overcome
these problems, as they introduce the concept of partitioning the computations in
tasks or work chunks. This section sketches the design of a parallelization framework
by discussing Intel TBB.

The framework creates a thread pool where the physical threads reside. The pro-
grammer can spawn tasks, which are assigned from the framework to the physical
threads. Thus, there is conceptual difference between a task and a thread. The
architecture is depicted in figure 7.1. Each physical thread has its own task pool,
from which it fetches new tasks to execute. The TBB framework provides a higher
level of abstraction, since it can determine on its own the optimal number of needed
physical threads. By default, this number is about the same as the number of the
logical cores presented on the machine.

51

7. Parallelization

T
B

B

Task Pools

Tasks

Thread Pool

. . .

CPU cores

Figure 7.1: Task scheduler with a Thread Pool, as in Intel TBB.

This higher level of abstraction allows also finer granularity and better load balanc-
ing. The tasks can be seen as separate work chunks that are being executed by the
physical threads. Tasks are much more light weighted than real threads. Thus, there
is less overhead for spawning a task than for spawning a physical thread. This allows
to partition a problem with higher resolution, i.e. dividing the problem on smaller
work chunks. Although the needed time for starting and finishing a task is much
smaller than these for a real thread, there is some overhead. If we have a sequential
problem that cannot be partitioned, it would be always more efficient to compute
it without the use of TBB. Thus, although task switching is not as expensive as
thread switching, it is also a factor that have to be considered. The next sections
will examine further how large this overhead is. They will present experiments that
test the scalability of the task concept.

Another advantage of TBB is that it supports out of the box load balancing. The
framework implements dynamical load balancing through work-stealing. Threads,
that are ready and don’t have any tasks left in their own task pool, steal tasks from
other threads. Therefore, often it is a good strategy to spawn considerably more
tasks than physical threads and leave the parallelization framework to do the load
balancing.

Another important feature of the tasks is that they are not preemptive, thus there is
a difference in their behavior when compared to threads. Let a thread T1 executes
a certain task A. The thread T1 can be of course preempted, but T1 will not start
another task until it has not completed A.

52

7.2. Horizontal Partitioning

=

...

Task 1

Task 2

Task m

...

Figure 7.2: Parallelization of gustavson by using equidistant 1-D partitioning.

7.2 Horizontal Partitioning

This section will present a parallel algorithm for sparse matrix multiplication in
a shared memory model. As already empirically shown in the chapter Sequential
Algorithms, the gustavson algorithm outperforms significantly all alternatives in
the single thread case. Therefore, we concentrate our efforts in parallelizing this
algorithm. The parallelization techniques will be also useful for the presented cache
optimized version sparse_cemm, since it has the same algorithmic core.

The gustavson algorithm is well suited for parallelization. The result matrix is
computed row by row sequentially. Further, there is no dependence between the
different rows. The algorithm finishes the complete row i before it proceeds with
i + 1. However, one must consider how to use the temporary arrays x and xb in
a parallel setting. To prevent concurrent writes, we assigned a separate pair of
temporary arrays to each execution thread.

Overall, the problem can be partitioned fairly easy on multiple work chunks. Each
work chunk will be a consecutive segment of rows from the output matrix. This
partitioning is known in the literature as horizontal partitioning or 1-D partitioning
[4], since the matrix is decomposed horizontally, in one dimension only. The parti-
tioning pattern can be observed in figure 7.2. Notice that each task must have read
access over the whole matrix B.

The matrix A is decomposed in segments and each segment is assigned to a different
TBB task. For example, the task that processes the segment with row interval [i...j]
will compute the rows [i...j] from the result matrix. One row of C is computed
by only one task. Thus, there will be no overlapping between the segments and
we can use different data structures for storing the smaller results. Therefore, each
task writes in its own CSR structure. After all of the task have completed their
computation, one can iterate over the segments and assemble the end result by
just putting together the individual CSRs in the final result. There is also an
optimization potential in the combining step alone. Firstly, there is no need to
iterate over each single element of the segments and copy them to the final CSR.
Since the computed segments are in CSRs already, we can just iterate over the whole
data structures and append them to each other. After the tasks are completed
the memory needed for the end result is known (the sum of all individual CSR
sizes). Thus, we can allocate beforehand the needed space for C, there will be no
costly resizing operations. As a second improvement, the joining procedure can be
parallelized on its own.

Another time-consuming operation than can be optimized through parallelization is
the creation of the CSR structures of both input matrices A and B. This is done
by sorting the nonzero elements by their row index. The step is not directly in

53

7. Parallelization

the gustavson algorithm but it must be executed beforehand, so it would be also
advantageous if we lower its time consumption. Optimization can be easily achieved
by just replacing the sorting routine with a parallel one. Our experiments have
shown that the creation of the CSR structures is substantial part of the whole time
for the matrix multiplication. In some cases, the limiting operation is actually not
the multiplication itself but rather the CSR construction. Therefore, it is highly
beneficial to parallelize the sorting.

The naive approach would be to perform an equidistant partitioning, i.e. each task
gets equal amount of rows assigned. The first m − 1 tasks process (n div m) rows
and the last one computes the rest (n mod m) rows. In the same time it is beneficial
to increase the number of tasks more than the running physical threads. In this way
the TBB will perform a dynamical load balancing automatically on its own.

With this approach we run the gustavson algorithm for each row segment (i.e. each
task) independently. Thus, each task must have access to its own pair of x and xb
arrays for storing its temporary results. In the first implementation each task created
its own temporary structures and than freed the taken memory after completion.
This does not mean that there will be as much x and xb arrays as tasks. Because
the tasks are executed by the physical threads and a task is not preemptive, at each
point of time there will be only as many pairs of arrays as the number of physical
threads.

An alternative strategy is to extract the allocation of the x and xb arrays from the
tasks and to perform it only once per thread and not in every single task. In this way
the overhead of allocation is not dependent on the task count and the parallelization
is more scalable.

Figure 7.3 illustrates the speedup achieved by the parallelized gustavson for 6 dif-
ferent matrices with the two different allocation strategies. The execution times for
the case with allocation in each task can be seen in table A.2. As usual, each matrix
is multiplied by itself. The speedups are plotted relative to a different task count
and the number of running physical threads was left to be automatically optimized
by the TBB framework. By default the framework spawns as many threads as the
number of logical cores presented on the machine. Thus, in our case the experiments
were executed with 16 threads running on 8 physical cores. It has to be noted that
the thread count might be changed dynamically by the TBB framework during the
execution, in order to achieve better performance.

The simple parallelization strategy leads to improvement of the execution time with
all test matrices. It can be observed that the number of tasks have large influence
on the achieved speedup. Further, there is a substantial discrepancy between the
top speedups achieved for the different instances. The parallelization of matrix3 3
leads at best to a speedup factor of 2.4 against the sequential algorithm. On the
other hand, the speedup rises to 5 with matrix4 0. Thus, we can conclude that the
benefit of the parallelization is coupled to the structure of the matrix. The smallest
problem instance matrix3 3 achieved also the smallest speedup. The parallelization
framework has its overhead and the gain is not so substantial for small computa-
tional problems. This is also evident from the speedup values when we run the
multiplication with only one task. For matrix3 3 it is slower to run gustavson with
TBB and only one task than to execute the algorithm without the parallelization

54

7.2. Horizontal Partitioning

allocation in tasks
one allocation per thread

 0

 1

 2

 3

 4

 5

1 4 16 64 256 1024

S
pe

ed
up

Tasks

matrix3_3

 0

 1

 2

 3

 4

 5

1 4 16 64 256 1024

S
pe

ed
up

Tasks

matrix3_6

 0

 1

 2

 3

 4

 5

1 4 16 64 256 1024

S
pe

ed
up

Tasks

matrix4_0

 0

 1

 2

 3

 4

 5

1 4 16 64 256 1024

S
pe

ed
up

Tasks

matrix6_2

 0

 1

 2

 3

 4

 5

1 4 16 64 256 1024

S
pe

ed
up

Tasks

matrix6_10

 0

 1

 2

 3

 4

 5

1 2 4 8 64 256 1024

S
pe

ed
up

Tasks

matrix7_0

Figure 7.3: Speedups factors for different matrices and variation of the number of
tasks; allocation of x and xb in each task verus allocation once per thread

framework. There are initialization overheads for starting and finishing a task that
can be observed in this case.

First, we will focus on the performance when the allocation and deallocation of the
temporary arrays is done in each task.

TBB employs work stealing between the threads. In this way the computation
is dynamically load balanced over the processor cores. Therefore, one strategy to
achieve better load balancing, and thus better execution time, is to spawn more
tasks than running threads. The results from the experiment however show different
behavior for some matrices. The graphs of matrix6 2, matrix6 10 and matrix7 0
show a rapid drop down of the speedups factors when the task count is increased
beyond 16. In the same time this behavior is not present in the first three matrices,
i.e. matrix3 3, matrix3 6 and matrix4 0. The two groups of matrices differentiate
in their dimensions, the problem instances with the drop down in the speedup are
significantly larger (see Table 3.2).

55

7. Parallelization

The rapid decrease in the speedup was caused by the non-optimal resource man-
agement of the x and xb arrays. Each task allocates the temporary structures for
its execution. This allocation leads to a large overhead, as evident from the graphs.
The first three matrices have smaller dimensions, so their x and xb arrays can be
allocated relatively efficiently in the cache. Therefore, there was no rapid decrease
in their running times when the task count was increased.

A more scalable strategy is to allocate the x and xb arrays once per thread and not
once per task. In this way the overhead of allocation is not dependent on the task
count. Work stealing may dispose tasks to different threads, so one pair of arrays
might be used for not consecutive rows. However, this is not an obstacle since a task
can use the xb array to check if a certain value belongs to the currently processed
row.

The new implementation (one allocation per thread) uses a concurrent map, which
is shared among the threads and contains a pair of x and xb arrays for each thread.
Thus, the keys in the map are the pthread ids and the values are pair of pointers
to x and xb arrays. When a task gets scheduled for an execution, firstly it gets the
pthread id of its execution thread and then obtains the temporary structures assigned
to that key in the map. The arrays for certain key are initialized when a thread with
the same id accesses the map for the first time and performs a lookup for that key.
Hence, there is also a write access to the map and therefore it has to be a concurrent
data structure. The implementation used the tbb::concurrent_hash_map.

The speedups of the same experiment but with the updated implementation, where
the allocation is extracted from the tasks, can be also seen in Figure 7.3.

The graphs indicate that the new implementation eliminates the allocation overhead.
The trends for the smaller matrices (i.e. matrix3 3, matrix3 6) remain unchanged.
However, there is no drop in the speedup by the large scale matrices matrix6 2 and
matrix6 10. With the new version of the algorithm it was not possible to run the
multiplication of matrix7 0 with more than 8 tasks (i.e. 8 threads) because of an
out of memory exception. Although both variants start with the same number of
threads, apparently the first version allocates less pairs of temporary arrays at a
time and manages to fit the execution in the memory of the system. The memory
needed for one pair of x and xb arrays is 51∗106∗12Byte = 612MB for this instance.
The second implementation allocates new pair of arrays when a new thread performs
a lookup in the map. Thus, with 16 tasks and more it will allocate 16 temporary
structures.

Further, it can be observed that the new implementation reduced the speedups for
matrix4 0. Explanation for that could be that the lookups in the concurrent map
might be more costly than allocating the arrays in this case, since they will have
smaller size and could fit in the cache.

From the plots is also evident that the work stealing dynamical load balancing of
TBB leads to improvements by some of the matrices, since the execution with more
than 16 tasks, i.e. more tasks than threads, leads to increase of the speedup. The
elements in matrix6 10 are uniformly distributed over the matrix, which leads to a
well balanced problem. Thus, execution with more than 16 tasks should not increase
the performance since each task will have a work chunk of the same size with the
equidistant partitioning. Similarly, the elements of matrix4 0 follow a diagonal

56

7.3. Cache Efficiency in a Parallel Setting

pattern and are equally distributed over the matrix. Thus, this problem instance it
also well balanced.

Overall, it can be concluded that the gustavson algorithm is very suitable for par-
allelization. The independent computation of the rows makes it possible to split
the problem easily with 1-D equidistant partitioning. Our parallelized implemen-
tations led to speedups up to a factor of 5 on a machine with 8 physical cores.
However, there is also a large variance between the speedups for different matrices,
where smaller problem instances achieve also smaller speedups. The experiments
also indicate that the memory consumption of the parallelized algorithm could be
an issue with matrices with large dimensions. For large scale matrices the allocation
overhead for the temporary arrays x and xb might be a limiting factor.

7.3 Cache Efficiency in a Parallel Setting

In chapter 6 we presented an optimization technique that led to improvement of the
cache efficiency and ultimately also reduced the execution time. This section will
examine the performance of sparse_cemm when parallelization gets involved.

The already described strategy for parallelization with 1-D partitioning can be used
also for the parallel execution of the sparse_cemm algorithm. As already mentioned
in a parallel setting each thread must have its own pair of x and xb arrays. This
increases significantly the memory consumption of the algorithm when multiplying
matrices with large dimensions. In the sequential case the whole capacity of the
cache is used for for only one pair of arrays. With parallelization the cache has to be
shared between the threads and each thread will try to fit sections of its temporary
structures into the cache. They will have to compete for space in the cache. This
will lead to cache contamination where some threads will cause the data relevant to
others to be evicted. Thus, when gustavson is run in parallel, the possibility for a
cache miss rises.

Further, in a parallel setting thread migrations between the different cores and even
between the nodes are possible. This will not only cause more cache misses but
will also lead to inevitable NUMA effects. In the sequential case we could avoid
NUMA by forcing the execution thread to run on one specific core and simultaneously
binding the memory allocation to the according node. With parallelization there is
a need for fully utilizing the hardware, so the computation cannot be pinned to one
core as before.

sparse_cemm managed to reduce the cache misses and to decrease the NUMA effects
in the sequential case. The next observations examine the behavior in a parallel
setting. Figure 7.4 depicts the execution time of the algorithm for multiplication of
matrix6 2 with different number of tasks. The baseline is the parallelized gustavson

algorithm. In both cases an identical 1-D partitioning was used.

The graphic reveals an interesting result: although in the sequential case the cache
optimization does not improve the running time for that problem instance, in the
parallel setting sparse_cemm outperforms the classical algorithm.

Firstly, we will analyze the results in the sequential case. With one thread both
algorithms have practically the same execution time. Apparently, this matrix does
not fit in the class of matrices that benefit from our cache optimization (refer to the

57

7. Parallelization

 0

 2000

 4000

 6000

 8000

 10000

sequential 2 4 8 16 32 64 128 256 512 1024

T
im

e
[m

s]

Tasks

gustavson_parallel
sparse_cemm_parallel

Figure 7.4: Execution times for gustavson and sparse_cemm when parallelized;
matrix6 2

list at page 43). The dimension of the matrix is large enough so the x and xb arrays
flow out of the cache. At the same time, the matrix is sparse enough, so there have
to be stored only few values that can fit in the cache (the matrix has about 3 element
per row on average). The problem is that the read/write access over the arrays x
and xb is not random enough. There are patterns in the matrix that cause some
sections of the arrays to be used more than others. This patterns are recognized
by the hardware and the respective sections stay in the cache. Thus, there are not
sufficiently many cache misses that the cache optimization strategy can eliminate.
This is the reason for the lack of improvement in the sequential case. The particular
problem instance is an example for the limitations of the cache optimization strategy.
If there is a sequential access or some access patterns are presented, the arrays are
still a very cache-efficient data structure.

However, when we increase the number of tasks, i.e. increasing the number of
threads, sparse_cemm shows faster execution times than plain gustavson. The
pair of arrays per thread cause that the memory consumption grows linearly with
the number of threads with the classical algorithm. Thus, the cache inefficiency
also increases with the parallelization. Hence, the presented cache optimization
technique scales with the parallelization. Although, both algorithms had identical
execution times when running on one thread, sparse_cemm led to a speedup of 26%
when running on multiple threads. The speedup stays about constant after 16 tasks
because from this point on the number of threads will also stay constant, i.e. there
will be no more than 16 threads. As there is one pair of temporary structures per
thread, we expect the speedup to grow even further if the thread count is increased.

The increase in the discrepancy by the cache efficiencies of the both algorithms can
be observed in Figure 7.5. One can see there the ratio with which sparse_cemm has
better cache efficiency when compared to gustavson. The absolute values of the L3
cache misses can be seen in Figure A.1. The graphic shows that the advantage of

58

7.4. Load Balancing

the cache optimization technique is increasing with the task number, respectively
thread number.

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

sequential 2 4 8 16 32 64 128 256 512 1024

L3
 c

ac
he

 im
pr

ov
em

en
t

ra
tio

Tasks

cache misses (gustavson_parallel / sparse_cemm_parallel)

Figure 7.5: Improvement of the L3 cache efficiency; matrix6 2

A second significant advantage of the algorithm with hash tables is that it is more
scalabe than the dense arrays. We improved the space complexity in the sequential
case and now this improvement will multiply with the number of threads, because
each thread must have a pair of x and xb arrays. Thus, with sparse_cemm it would
be possible to execute a parallel multiplication of matrices with large dimensions,
for which the parallelized gustavson will run out of memory.

An example for that behavior is matrix7 0 (Figure 7.6). This matrix represents the
graph of the road network of Europe, the matrix was taken from the Florida Sparse
Matrix Collection [12]. As seen in Figure ?? the multiplication cannot be executed
with more than 8 Taks, i.e. with more than 8 Threads. However, when we use the
smaller hash tables per thread instead of the large dense arrays, the computation
can use the full capacity of the hardware, 16 logical cores in our case, and it will
not run out of memory. With the parallel version of sparse_cemm was possible to
achieve a multiplication time of 2020ms with 32 tasks, which is 40% faster than the
best running time of the original algorithm.

As a conclusion, the experiments have shown that the presented in previous chapters
cache optimization technique is even more worthy in a parallel setting.

7.4 Load Balancing

As seen in the previous sections, a naive partitioning of the computation in a com-
bination with the dynamical load balancing of TBB through work stealing perform
usually well for the parallelization of the multiplication. However, there are prob-
lem instances where the equidistant partitioning might be not the optimal strategy.
Consider for example a problem instance where there is a very high variance between
the nonzeros per row of the result matrix C as depicted in Figure 7.7. There is a

59

7. Parallelization

 0

 2000

 4000

 6000

 8000

 10000

sequential 2 4 8 16 32 64 128 256 512 1024

T
im

e
[m

s]

Tasks

gustavson_parallel
sparse_cemm_parallel

Figure 7.6: Scalability of sparse_cemm, multiplying the road network of Europe
(matrix7 0)

narrow segment in the matrix with very high density (a hot spot) and in the same
time the other rows are much more sparser. Respectively, the computational time
for calculating the rows of the dense segment will be much higher than the time
needed for the same amount of rows from different part of the matrix. Moreover, it
is possible that the work needed for multiplying solely the dense segment is equal
or even more than the computation power needed for the whole other part of the
matrix. Thus, to make use of the parallelization and in order to achieve the optimal
speedup factor one has to assign more threads to work on the dense segment. If
only one thread is calculating the hot spot the algorithm will be not load balanced,
since the other threads will idle and will have to wait until the thread computing
the dense region finishes.

Distributing the dense segment over the threads means that the region has to be
assigned to different tasks. The problem is that by large scale matrices with very
high variance of the work load, i.e. high variance in the density of the rows, it is
difficult to achieve that.

Consider for example the problem instance matrix6 15 (see table 3.2 in the Ap-
pendinx). The matrix has similar structure as the one illustrated in figure 7.7, more
precisely - it has 400 consecutive rows with 110K elements per row and the rest
rows of the matrix have 3 elements per row, the elements in a row are uniformly
distributed. In the parallelization experiments the matrix was multiplied by itself.
The indexes of the 400 dense rows were not presented in the sparse rows, thus the
result matrix C will have also the same structure, i.e. 400 very dense rows and the
rest very sparse.

Figure 7.8 depicts the execution times of the parallelized multiplication with three
different load balancing strategies. The naive implementation (the baseline) uses
the trivial equidistant 1-D partitioning with work stealing, presented in the previous
sections. As can be seen from the graphic, the increase of the task count up to 1024
does not lead to a speedup against the sequential implementation with this strategy.

60

7.4. Load Balancing

Figure 7.7: Example for a matrix with an unbalanced structure.

With 1024 equal work chunks the hot spot will be still in only one task and thus
computed by a single thread. The concept of tasks offers a finer granularity than
conventional threads. However, in large scale problems with high variance between
the computational load of different parts, one has to spawn enough amount of tasks
in order to evenly partition the problem.

On the other hand, one could employ other load balancing strategies to evenly
distribute the computation among the threads. The presented density estimator
(chapter 5) can be used to compute the needed multiplication flops per row of the
output matrix. With this information one can perform an 1-D non-equidistant
partitioning, where each task will have a work chunk with the same amount of
multiplication flops as the others. In such way, the dense region of 400 rows will be
divided among multiple tasks and thus also multiple threads. Each multiplication
flop leads also to a memory access to the temporary arrays x and xb. If we assume
that the multiplication operations are the dominating factor of the computation than
the non-equidistant partitioning with the density estimator will lead to an optimal
decomposition of the problem. The overhead needed for the estimator is one scan
over the nonzeros of matrix A (O(nnz(A))).

The experiments indicate that this load balancing strategy outperforms the naive
partitioning up to 1024 tasks. The increase of the task count cause a speedup even
with only 2 tasks, in this case the computation will be evenly divided among two
threads. After 16 tasks the execution time does not change significantly because with
this tasks count the multiplication was already evenly assigned to the 16 logical
threads of the test system. Nevertheless, the the approach does not exclude the
out of the box work stealing of TBB. The two strategies are orthogonal and can
simultaneously contribute for a better load balancing. Indeed, the work stealing
increases further the speedup (see 7.8), since the execution time is reduced when
more tasks are used.

61

7. Parallelization

 10

 20

 30

 40

 50

 60

sequential 2 4 8 16 32 64 128 256 512 1024

T
im

e
[s

]

Tasks

naive
with density estimator

random permutation

Figure 7.8: Performance of the parallelization with different strategies for load bal-
ancing; matrix6 15

Another option for better load balancing is to distribute each row of the result matrix
to a randomly chosen thread. This will lead also to even partitioning of the dense
section and as it can be see from the graphic it reduces the execution time even more
than the variant with density evaluation. With this strategy there is no overhead
for beforehand estimations. However, a disadvantage of the approach is that the
rows of the output matrix are then stored in a randomly permuted order. Hence,
depending on the application, one has to reorder the result after the multiplication.

The problem with the previous experiment is that the task count is too low so the
naive partitioning cannot decompose the dense segment and it will be assigned to
only one task. Therefore, the next test investigates the behavior of the load balancing
techniques when the task count is further increased (see Figure 7.9). The large
number of tasks leads to a finer granularity, so that the hot spot is then processed
by multiple threads. Only when the dense segment can be assigned to multiple tasks,
the work stealing of TBB manages to load balance the computation and the naive
partitioning marks a speedup. The results show that the the TBB tasks are scalable
and the overhead for spawning and finishing a task does not have heavy influence
on the running time. Nevertheless, the other two approaches reached better peak
speedups than the naive equidistant partitioning, where the load balancing with
density estimation is with 15% faster and the random permutation with 26%.

OpenMP

Another framework for parallelization in a shared memory model is OpenMP. The
framework is similar to TBB since it also provides mechanisms for dynamical load
balancing of the computation. In order to be able to compare with the previous
paralleization strategies, the implementation used the #pragma omp parallel for

construct for the outer loop of gustavson. This leads also to an 1-D partitioning
of the multiplication, where each iteration of the loop (i.e. each row of the result
matrix) can be independently computed. The keyword parallel spawns a team

62

7.5. Conclusion

 10

 20

 30

 40

 50

 60

sequential 8 16 256 1024 32K 100K 160K 260K

T
im

e
[s

]

Tasks

naive
with density estimator

random permutation

Figure 7.9: Performance of the parallelization by increasing the granularity of the
partitioning; matrix6 15

of threads and for distributes the single iterations to the threads. In OpenMP
one can choose from different scheduling strategies for the partitioning of the loop’s
iterations: static, dynamic, guided and auto [2]. Further, the granularity of the
partitioning, i.e. the chunk size, can be specified with a second parameter. In
this way it is possible to create work chunks with the same size as the TBB tasks
from the previous section, thus one can compare the efficiency of the parallelization
with OpenMP versus the one of TBB. Figure 7.10 presents the execution times for
the paralleized multiplication of matrix6 15 with the static, dynamic and guided
scheduling strategies and different number of chunks. With the auto setting the
chunk size cannot be specified, in this case the framework determines the scheduling
strategy automatically at run time. However, this setting proved less efficient than
the others. The granularity was chosen in such way that the number and the sizes
of the chunks correspond to these of the TBB tasks. As before, the tests have been
executed with 16 threads, where each thread has its own temporary data structures
and result CSR. At the end all CSRs are joined in one.

If we compare the different strategies at the point of highest speedup, i.e. at the point
of finest granularity, it can be observed that the dynamic scheduling of OpenMP has
the best performance, with 15% faster than the TBB implementation. However, it
has to be noted that the dynamic scheduling distributes the chunks with no specific
order to the execution threads. Hence, at the end the result will be permuted, on
the other hand the TBB variant outputs an ordered result matrix. The static and
guided scheduling strategies also lead to a permuted result.

7.5 Conclusion

This chapter showed that sparse matrix multiplication can be easily parallelized in
shared memory through horizontal partitioning of the input matrix A and the result
matrix C. The parallelization led to speedup up to a factor of 5 on a machine with
8 physical cores.

63

7. Parallelization

 10

 20

 30

 40

 50

 60

sequential 8 16 256 1024 32K 100K 160K 260K

T
im

e
[s

]

Tasks (TBB) or Chunks (OpenMP)

TBB naive
OpenMP static

OpenMP dynamic
OpenMP guided

Figure 7.10: Parallelization with TBB and OpenMP; matrix6 15

Further, it has been shown that the parallelization of gustavson introduces new
challenges for the cache efficiency and scalability of the algorithm. The cache op-
timization technique presented in sparse_cemm proved to be even more worthy in
a parallel setting. For a problem instance where sequentially both algorithms have
equal execution times, sparse_cemm was with 26% faster after parallelization. An-
other advantage is that the improvement in the space complexity multiplies with
the number of threads and thus enhances the scalability. This led to 40% speedup
against the parallel gustavson when multiplying the matrix of the road network of
Europe.

The experiments concerned with the load balancing indicated that the dynamical
load balancing, which TBB implements through work stealing, can achieve speedups
even with highly unbalanced problems, when the computation is decomposed in
small enough tasks. Nevertheless, with flops estimation or with random permu-
tation of the rows one could achieve respectively 15% and 26% better execution
times. The performance of the OpenMP implementation varied with the different
scheduling strategies, where auto and guided have proven as inefficient and static
and dynamic were close to the performance of TBB. However, the result with an
OpenMP parallelization is a matrix with permuted rows.

64

8. Experimental comparison with
other frameworks

Although there are many libraries for linear algebra, only few have support for sparse
operations. Further, there are even fewer when it comes to sparse matrix-matrix
multiplication. Many of the libraries, e.g. Intel MKL, does not provide methods for
fully sparse matrix multiplication, where both input matrices and the output matrix
are stored in a sparse data structure. Usually there are methods where at least one
of the matrices in the multiplication is stored in a dense format. This is a problem
for large scale matrices. Storing even one large scale matrix (e.g. 224×224) in a dense
format demands petabytes of free memory, when using 4 bytes for a matrix element.
Thus, those frameworks are not applicable, or at least extremely cost ineffective,
for large scale SpGEMM. In the previous chapters we have shown that matrices of
such dimensions, and bigger, can be multiplied with only 24GB of memory in a
matter of seconds. The task of this chapter is to compare the algorithms presented
in this thesis with other frameworks and libraries that have support for full sparse
matrix-matrix multiplication.

The comparison has been made with MATLAB - a widely used system for scien-
tific computation that provides sparse linear algebra operations, among others also
SpGEMM. The algorithm implemented in the competitor should be in the same com-
plexity class as gustavson, i.e. the complexity of the computation should be pro-
portional to the number of needed flops, the dimensions and the number of nonzero
elements of B. To our surprise, we could not find library that offers parallelized
version of the sparse matrix multiplication, this was also the case with the tested
framework. Therefore, we compared the results with our sequential implementation
of the classical gustavson algorithm and not with the parallelized versions. The
result of the experiments with several matrices can be seen in Figure 8.1.

Our sequential implementation of gustavson succeeds to mark a speedup against
competitor with seven out of the nine test matrices, where the speedup goes to more
than a factor of 2 with matrix3 6 and matrix6 10. Analysis of the matrices where
the framework was faster (matrix4 0 and matrix5 10) showed that the nonzeros in
those matrices follow a diagonal pattern. This sort of matrices arise usually from

65

8. Experimental comparison with other frameworks

 0

 0.5

 1

 1.5

 2

 2.5

3_6 4_0 4_3 5_10 5_13 6_2 7_0 6_10 6_14

S
pe

ed
up

Matrix

MATLAB
gustavson

Figure 8.1: Comparison with a widely used system for numerical linear algebra,
sequential execution

numerical, optimization and engineering problems. Regarding the results, one could
suggest that the tested framework is performing slightly better for such kind of in-
stances. On the other hand, for graph matrices, where there are different patterns in
the distribution of the nonzeros, our implementation of gustavson achieves better
execution times. The result prove that the algorithm is state of the art, and it is
in many cases even more efficient than up to date systems for sparse linear alge-
bra. The methods for parallelization and cache efficiency, presented in the previous
chapters, enhance further the capabilities of the sequential algorithm. For exam-
ple, Figure 8.2 shows how the speedup is improved even further if we use the cache
optimization technique for matrices where this is feasible. Naturally, the presented
parallel algorithms will increase also the speedup, this is evident from Figure A.2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

6_10 6_14

S
pe

ed
up

Matrix

sparse_cemm
gustavson

Figure 8.2: Further improvement of the speedup by sparse_cemm

66

9. Conclusion

The thesis presented multiple approaches and techniques for constructing efficient
algorithms for sparse matrix-matrix multiplication. It shows that the gustavson

algorithm is a highly efficient for executing the multiplication in the sequential case,
where our implementation outperformed in many cases state of the art competitors.

The work proposes an improvement for the cache efficiency of the algorithm that
in the end led to 30% reduction of the running time and improvement of the L3
cache-efficiency by a factor of 5 with some instances. The idea behind the new
algorithm (sparse_cemm) is to replace very large arrays with few elements with
smaller hash table that would fit in the cache. The experiments show that the hash
table implementations from the standard library are not fast enough and thus not
suitable for reduction of the running time. Although, they succeeded to reduce the
cache misses, the standard library variants demonstrated large instruction overhead
against the simple arrays, which leads to the slower execution. The work presents
a minimalistic hash table that, by removing some functionality, managed to reduce
the instructional overhead and marked a speedup against the arrays. The technique
is not bounded to the problem of SpGEMM and can be used as general approach for
improving cache efficiency also in other domains, where there are similar conditions.

Further, the thesis presents a simple algorithm for determining the needed multi-
plication flops before the actual multiplication takes place. The number of multi-
plication flops can be seen as an upper bound of the elements in the result matrix,
thus the method is also useful for density evaluation of the output. Replacing an
array with a hash table is not always beneficial. Therefore, the density estimation
technique was used to construct a hybrid algorithm, which employs arrays for rows
of the output that are too dense and a hash table for the sparser ones.

The test also indicated that Non Uniform Memory Access can have significant influ-
ence over the running times. On a test machines with only two nodes NUMA could
lead to fluctuations of 30% by the running time.

The second part of the work shows how gustavson can be parallelized in a shared
memory through one dimensional decomposition of the first input matrix and the
result matrix. To our best knowledge, although effective and simple, such approach
for a parallel SpGEMM is not present in the current literature.

67

9. Conclusion

Another finding was that the new algorithm sparse_cemm proved to be even more
valuable in a parallel setting. For some matrices the technique does not lead to
speedup in the sequential case, but it was with 40% faster than the classical algo-
rithm in the parallel case. With the cache improvements and parallelization one
could multiply the matrix of the road network of Europe (51 million nodes, 108
million edges) by itself on a machine with 8 physical cores and 24GB of memory in
2 seconds.

Also experiments with different load balancing strategies have been conducted. We
used highly unbalanced problem instances, in order to investigate the properties
and the scalability for the out of the box balancing strategies of TBB and OpenMP.
Both frameworks show comparable results and succeed to achieve speedups when
the granularity of the partitioning is high enough. The TBB tasks proved to be
a scalable concept with minimal overhead. Nevertheless, a random permutation
of the rows or partitioning through flops estimation leads to net speedup of 26%,
respectively 15%, in some cases.

68

10. Future work

As proposal for future work, we would suggest the creation of cost model that puts
into relationship the execution time of an algorithm, the number of its cache misses
and the number of needed instructions. After such formula is found, one can then
derive the break-even point between additional instructions and optimized cache
misses. In other words we are looking for the number of additional instructions ψ
that we are allowed to add as an overhead for reducing one cache miss and still not
changing the running time. Knowing this value implies that each cache optimization
strategy that adds less than ψ additional instructions will be worthy and will lead to
a speedup at the end. The variable ψ might be dependent on the specific hardware.

It will be even more interesting, if ψ can be generalized for all kinds of algorithms
and not only for matrix multiplication. If that is the case, the value can be used as
a general restriction that has to be considered by algorithm engineers when trying
to optimize cache misses.

Further, one could investigate more deeply the cost model of the matrix-matrix
multiplication and find if the problem is memory-bound or CPU-bound. The matrix
multiplication is a low level algorithm with few mathematical operations per iteration
and quite a few memory accesses. Hence, there is the possibility that the time for
the multiplication is bounded by the memory accesses. Therefore, it would be of
interest to conduct experiments that will confirm, or deny, that the multiplication
is memory-bound. Understanding the cost model will help to locate the bottleneck
and thus it will provide valuable insights how to further speedup the algorithms.

Another possibility for research is to look for more locality, and thus better cache-
efficiency. With the presented versions of the gustavson algorithm, there is a ran-
dom access over the second matrix by the multiplication, i.e. B. With a 2-D
partitioning of matrix A, one could enforce better cache utilization for the B. For
this purposes, a new data structure is needed - blocked CSR. The approach is not
trivial and it will face multiple challenges, as for example need for dense structures
for the output matrix.

A next proposal for future work can be to investigate external sparse matrix mul-
tiplication, i.e. using a slow non-volatile memory, which has large capacity. This
would be needed for scalability of the computation.

69

10. Future work

Further, one could compare the presented here shared memory parallel algorithms
to distributed methods in regard to efficiency and cost-effectiveness. Distributed
approaches are more scalable, but the here presented algorithms might be more
applicable for praxis relevant problems.

Another technique for improving the execution time of algorithms is to vectorize
them. Single Instruction Multiple Data (SIMD) is approach that is gaining much
attention and has proven as effective in many cases. However, if we assume that the
running time of the algorithm is bounded by the memory accesses and not by the
arithmetical operations, then SIMD would not lead to actual improvement. There
is a need for an empirical evaluation of the matter.

70

Bibliography

[1] Rasmus Resen Amossen and Rasmus Pagh. “Faster Join-projects and Sparse
Matrix Multiplications”. In: Proceedings of the 12th International Conference
on Database Theory. ICDT ’09. St. Petersburg, Russia: ACM, 2009, pp. 121–
126. isbn: 978-1-60558-423-2. doi: 10.1145/1514894.1514909.

[2] OpenMP Architecture Review Board. OpenMP Application Program Interface.
2013.

[3] A. Buluc and J. Gilbert. “Parallel Sparse Matrix-Matrix Multiplication and
Indexing: Implementation and Experiments”. In: SIAM J. Sci. Comput. 34.4
(2012), pp. 170–191.

[4] Aydin Buluc and John R. Gilbert. Highly Parallel Sparse Matrix-Matrix Mul-
tiplication. Tech. rep. Lawrence Berkeley National Laboratory and University
of California, 2010.

[5] A. Campagna, K. Kutzkov, and R. Pagh. “On parallelizing matrix multiplica-
tion by the column-row method.” In: ALENEX. 2013, pp. 122–132.

[6] L. E. Cannon. “A Cellular Computer to Implement the Kalman Filter Algo-
rithm”. PhD thesis. Montana State University, 1969.

[7] M. Charikar, K. Chen, and M. Farach-Colton.“Finding Frequent Items in Data
Streams”. In: Proceedings of the 29th International Colloquium on Automata,
Languages and Programming. ICALP ’02. London, UK, UK: Springer-Verlag,
2002, pp. 693–703. isbn: 3-540-43864-5. url: http://dl.acm.org/citation.cfm?
id=646255.684566.

[8] Edith Cohen. “Structure Prediction and Computation of Sparse Matrix Prod-
ucts”. In: J. Combinatorial Optimization 2.4 (1998), pp. 307–332. issn: 1382-
6905. doi: 10.1023/A:1009716300509.

[9] D. Coppersmith and S. Winograd. “Matrix Multiplication via Arithmetic Pro-
gressions”. In: Proceedings of the Nineteenth Annual ACM Symposium on The-
ory of Computing. STOC ’87. New York, NY, USA: ACM, 1987, pp. 1–6. isbn:
0-89791-221-7. doi: 10.1145/28395.28396. url: http://doi.acm.org/10.1145/
28395.28396.

[10] T. Cormen et al. Introduction to Algorithms. The MIT Press, 2009.

[11] Kernert. D., F. Köhler, and W. Lehner. “Bringing Linear Algebra Objects to
Life in a Column-Oriented In-Memory Database.” In: IMDM@VLDB. 2013,
pp. 37–49.

71

http://dx.doi.org/10.1145/1514894.1514909
http://dl.acm.org/citation.cfm?id=646255.684566
http://dl.acm.org/citation.cfm?id=646255.684566
http://dx.doi.org/10.1023/A:1009716300509
http://dx.doi.org/10.1145/28395.28396
http://doi.acm.org/10.1145/28395.28396
http://doi.acm.org/10.1145/28395.28396

Bibliography

[12] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix
Collection”. In: ACM Trans. Math. Softw. 38.1 (Dec. 2011), 1:1–1:25. issn:
0098-3500. doi: 10.1145/2049662.2049663. url: http://doi.acm.org/10.1145/
2049662.2049663.

[13] David S. Dodson, Roger G. Grimes, and John G. Lewis.“Algorithm 692: Model
Implementation and Test Package for the Sparse Basic Linear Algebra Sub-
programs”. In: ACM Trans. Math. Softw. 17.2 (June 1991), pp. 264–272. issn:
0098-3500. doi: 10.1145/108556.108582.

[14] S. Duff et al.“Level 3 Basic Linear Algebra Subprograms for Sparse Matrices: A
User-level Interface”. In: ACM Trans. Math. Softw. 23.3 (Sept. 1997), pp. 379–
401. issn: 0098-3500. doi: 10.1145/275323.275327. url: http://doi.acm.org/
10.1145/275323.275327.

[15] S. Filippone and M. Colajanni. “PSBLAS: A Library for Parallel Linear Al-
gebra Computation on Sparse Matrices”. In: ACM Trans. Math. Softw. 26.4
(Dec. 2000), pp. 527–550. issn: 0098-3500. doi: 10.1145/365723.365732.

[16] G. Fowler et al. The FNV Non-Cryptographic Hash Algorithm. 2014.

[17] Robert A. van de Geijn and Jerrell Watts. SUMMA: Scalable Universal Matrix
Multiplication Algorithm. Tech. rep. Austin, TX, USA, 1995.

[18] J. Gilbert, C. Moler, and R. Schreiber. “Sparse Matrices in Matlab: Design and
Implementation”. In: SIAM J. Matrix Anal. Appl. 13.1 (Jan. 1992), pp. 333–
356. issn: 0895-4798. doi: 10.1137/0613024. url: http://dx.doi.org/10.1137/
0613024.

[19] J. Gilbert, V. Shah, and S. Reinhardt. “A Unified Framework for Numerical
and Combinatorical Computing”. In: Computing in Science and Engineering
10.2 (2009), pp. 20–25. issn: 521-9615.

[20] John R. Gilbert, Steve Reinhardt, and Viral B. Shah. “High-performance
Graph Algorithms from Parallel Sparse Matrices”. In: Proceedings of the 8th
International Conference on Applied Parallel Computing: State of the Art in
Scientific Computing. PARA’06. Sweden: Springer-Verlag, 2007, pp. 260–269.
isbn: 3-540-75754-6, 978-3-540-75754-2. url: http://dl.acm.org/citation.cfm?
id=1775059.1775097.

[21] Gero Greiner and Riko Jacob. “The I/O Complexity of Sparse Matrix Dense
Matrix Multiplication”. In: Proceedings of the 9th Latin American Conference
on Theoretical Informatics. LATIN’10. Oaxaca, Mexico: Springer-Verlag, 2010,
pp. 143–156. isbn: 3-642-12199-3, 978-3-642-12199-9. doi: 10.1007/978-3-642-
12200-2 14.

[22] Fred G. Gustavson. “Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition”. In: ACM Trans. Math. Softw. 4.3 (Sept. 1978),
pp. 250–269. issn: 0098-3500. doi: 10.1145/355791.355796. url: http://doi.
acm.org/10.1145/355791.355796.

[23] http://bebop.cs.berkeley.edu/oski/related.html.

[24] http://math-atlas.sourceforge.net/.

[25] http://sparsehash.googlecode.com/svn/trunk/doc/index.html.

[26] https://software.intel.com/en-us/intel-mkl.

72

http://dx.doi.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
http://dx.doi.org/10.1145/108556.108582
http://dx.doi.org/10.1145/275323.275327
http://doi.acm.org/10.1145/275323.275327
http://doi.acm.org/10.1145/275323.275327
http://dx.doi.org/10.1145/365723.365732
http://dx.doi.org/10.1137/0613024
http://dx.doi.org/10.1137/0613024
http://dx.doi.org/10.1137/0613024
http://dl.acm.org/citation.cfm?id=1775059.1775097
http://dl.acm.org/citation.cfm?id=1775059.1775097
http://dx.doi.org/10.1007/978-3-642-12200-2_14
http://dx.doi.org/10.1007/978-3-642-12200-2_14
http://dx.doi.org/10.1145/355791.355796
http://doi.acm.org/10.1145/355791.355796
http://doi.acm.org/10.1145/355791.355796

Bibliography

[27] http://www.mathworks.com/products/matlab/.

[28] http://www.netlib.org/lapack/.

[29] http://www.openblas.net/.

[30] Intel Guide for Developing Multithreaded Application. Intel. 2011, pp. 27–29.

[31] Bob Jenkins. Hash functions. Dr. Dobbs Journal. 1997.

[32] D. Kernert, F. Köhler, and W. Lehner. SpMachO - Optimizing Sparse Linear
Algebra Expressions with Probabilistic Density Estimation. SAP.

[33] David Kernert, Frank Köhler, and Wolfgang Lehner. “SLACID - Sparse Linear
Algebra in a Column-oriented In-memory Database System”. In: Proceedings
of the 26th International Conference on Scientific and Statistical Database
Management. SSDBM ’14. Aalborg, Denmark: ACM, 2014, 11:1–11:12. isbn:
978-1-4503-2722-0. doi: 10.1145/2618243.2618254. url: http://doi.acm.org/
10.1145/2618243.2618254.

[34] C. L. Lawson et al. “Basic Linear Algebra Subprograms for Fortran Usage”.
In: ACM Trans. Math. Softw. 5.3 (Sept. 1979), pp. 308–323. issn: 0098-3500.
doi: 10.1145/355841.355847.

[35] M. Mccourt, Smith B., and Zhang H.“Efficient Sparse Matrix-Matrix Products
Using Colorings”. In: (2013).

[36] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic
Toolbox. ISBN-10: 3540779779. Springer, 2008.

[37] A. Metwally, D. Agrawal, and A. Abbadi. “An Integrated Efficient Solution for
Computing Frequent and Top-k Elements in Data Streams”. In: ACM Trans.
Database Syst. 31.3 (Sept. 2006), pp. 1095–1133. issn: 0362-5915. doi: 10 .
1145/1166074.1166084. url: http://doi.acm.org/10.1145/1166074.1166084.

[38] H. Mohammadzadeh et al. “TitleFinder: Extracting the Headline of News Web
Pages Based on Cosine Similarity and Overlap Scoring Similarity”. In: Proceed-
ings of the Twelfth International Workshop on Web Information and Data
Management. New York, NY, USA: ACM, 2012, pp. 65–72. isbn: 978-1-4503-
1720-7. doi: 10.1145/2389936.2389950.

[39] M. Patrascu and M. Thorup. “The Power of Simple Tabulation Hashing”. In:
Proceedings of the Forty-third Annual ACM Symposium on Theory of Com-
puting. STOC ’11. San Jose, California, USA: ACM, 2011, pp. 1–10. isbn:
978-1-4503-0691-1. doi: 10.1145/1993636.1993638. url: http://doi.acm.org/
10.1145/1993636.1993638.

[40] G Pike and J. Alakuijala. CityHash: Fast Hash Funtions for Strings.

[41] Sergio Pissanetsky. Sparse Matrix Technology. Academic Press, 1984.

[42] James Reinders. Intel threading building blocks. O’Reilly Media, 2007.

[43] L. Rodditty and Uri Zwick. “Improved dynamic reachability algorithms for
directed graphs”. In: SIAM J. on Computing 37.5 (2008), pp. 1455–1471. doi:
10.1137/060650271.

[44] K. Sruthi and B. Venkateshwar Reddy. “Document Clustering on Various Sim-
ilarity Measures”. In: IJARCSSE 3.8 (Aug. 2013), pp. 1269–1273. issn: 2277-
128X.

73

http://dx.doi.org/10.1145/2618243.2618254
http://doi.acm.org/10.1145/2618243.2618254
http://doi.acm.org/10.1145/2618243.2618254
http://dx.doi.org/10.1145/355841.355847
http://dx.doi.org/10.1145/1166074.1166084
http://dx.doi.org/10.1145/1166074.1166084
http://doi.acm.org/10.1145/1166074.1166084
http://dx.doi.org/10.1145/2389936.2389950
http://dx.doi.org/10.1145/1993636.1993638
http://doi.acm.org/10.1145/1993636.1993638
http://doi.acm.org/10.1145/1993636.1993638
http://dx.doi.org/10.1137/060650271

Bibliography

[45] V. Strassen.“Gaussian elimination is not optimal”. In: Numerische Mathematik
13.4 (Dec. 1968), pp. 354–356.

[46] P.D. Sulatycke and K. Ghose. “Caching-efficient multithreaded fast multipli-
cation of sparse matrices”. In: Parallel Processing Symposium (Mar. 1998),
pp. 117–123. issn: 1063-7133.

[47] W. Vuduc and H. Moon. “Fast Sparse Matrix-vector Multiplication by Ex-
ploiting Variable Block Structure”. In: Proceedings of the First International
Conference on High Performance Computing and Communications. HPCC’05.
Sorrento, Italy: Springer-Verlag, 2005, pp. 807–816. isbn: 3-540-29031-1, 978-
3-540-29031-5. doi: 10.1007/11557654 91.

[48] Sebastian Wild. “Java 7’s Dual Pivot Quicksort”. PhD thesis. Technische Uni-
versität Keiserslautern, 2013.

[49] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: An In-
sightful Visual Performance Model for Multicore Architectures”. In: Commun.
ACM 52.4 (Apr. 2009), pp. 65–76. issn: 0001-0782. doi: 10.1145/1498765.
1498785. url: http://doi.acm.org/10.1145/1498765.1498785.

[50] Raphael Yuster and Uri Zwick. “Fast Sparse Matrix Multiplication”. In: ACM
Trans. Algorithms 1.1 (July 2005), pp. 2–13. issn: 1549-6325. doi: 10.1145/
1077464.1077466.

[51] Uri Zwick. “All Pairs Shortest Paths Using Bridging Sets and Rectangular
Matrix Multiplication”. In: J. ACM 49.3 (May 2002), pp. 289–317. issn: 0004-
5411. doi: 10.1145/567112.567114.

74

http://dx.doi.org/10.1007/11557654_91
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785
http://dx.doi.org/10.1145/1077464.1077466
http://dx.doi.org/10.1145/1077464.1077466
http://dx.doi.org/10.1145/567112.567114

A. Appendix

XXXXXXXXXXXXmatrix
algorithm

spspsp outerP hash outerP hash2 gustavson

matrix2 1 733 366 339 68
matrix3 1 2484 1740 1711 217
matrix3 6 11923 9045 9077 950
matrix4 0 20979 10993 10918 1912
matrix5 0 4734 3340 3276 303

Table A.1: Sequnetial algorithms, execution times in ms

Name sequential 1 Task 8 Tasks 16 Tasks 64 Tasks 1024 Tasks

matrix3 3 889 1202 1038 752 422 400
matrix4 0 1907 2026 500 381 379 381
matrix3 6 1050 1193 637 550 433 393
matrix6 2 9398 9352 2756 2250 2722 17764
matrix6 10 20215 22925 4829 4355 5025 21776
matrix7 0 10303 11739 4216 3527 5411 60451

Table A.2: Execution times [ms] for the parallelized gustavson algorithm with
different task numbers; allocation and destruction of the temporary arrays is done
in every task.

75

A. Appendix

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

sequential 2 4 8 16 32 64 128 256 512 1024

L3
 c

ac
he

 m
is

se
s

[K
]

Tasks

gustavson_parallel
sparse_cemm_parallel

Figure A.1: L3 cache misses for both algorithms for different tasks; matrix6 2

 0

 2

 4

 6

 8

 10

3_6 4_0 4_3 5_10 5_13 6_2 7_0 6_10 6_14

S
pe

ed
up

Matrix

MATLAB
gustavson

gustavson_parallel

Figure A.2: Improvement of the speedup after paralleilzation on 8 physical cores

76

	Contents
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background and Related Work
	2.1 Related Work
	2.2 Datastructures
	2.2.1 Triples
	2.2.2 Hash Table
	2.2.3 Compressed Sparse Row (CSR)
	2.2.4 Compressed Sparse Column (CSC)
	2.2.5 Doubly Compressed Sparse Column (DCSC)

	2.3 Algorithms
	2.3.1 Inner Product
	2.3.2 Outer Product

	2.4 Limitations

	3 Problem Instances and Test System
	3.1 Test System and Implementation Details

	4 Sequential Algorithms
	4.1 Algorithms
	4.1.1 join`aggregate
	4.1.2 outerP`hash
	4.1.3 outerP`hash2
	4.1.4 Gustavson

	4.2 Experiments
	4.3 Conclusion

	5 The Density Estimator
	5.1 Problem Description
	5.2 The Estimator

	6 Cache Efficiency
	6.1 Optimization Idea
	6.2 Initial Evaluation of the Concept
	6.3 The Custom Hash Table
	6.4 Fine-tuning of sparse`cemm
	6.5 Generalizing the Algorithm
	6.6 Conclusion

	7 Parallelization
	7.1 Parallelization Framework
	7.2 Horizontal Partitioning
	7.3 Cache Efficiency in a Parallel Setting
	7.4 Load Balancing
	7.5 Conclusion

	8 Experimental comparison with other frameworks
	9 Conclusion
	10 Future work
	Bibliography
	A Appendix

