KIT | KIT-Bibliothek | Impressum | Datenschutz

Adaptive Optimal Trajectory Tracking Control Applied to a Large-Scale Ball-on-Plate System

Köpf, Florian; Kille, Sean; Inga, Jairo; Hohmann, Sören

Abstract:
While many theoretical works concerning Adaptive Dynamic Programming (ADP) have been proposed, application results are scarce. Therefore, we design an ADP-based optimal trajectory tracking controller and apply it to a large-scale ball-on-plate system. Our proposed method incorporates an approximated reference trajectory instead of using setpoint tracking and allows to automatically compensate for constant offset terms. Due to the off-policy characteristics of the algorithm, the method requires only a small amount of measured data to train the controller. Our experimental results show that this tracking mechanism significantly reduces the control cost compared to setpoint controllers. Furthermore, a comparison with a model-based optimal controller highlights the benefits of our model-free data-based ADP tracking controller, where no system model and manual tuning are required but the controller is tuned automatically using measured data.

Open Access Logo


Zugehörige Institution(en) am KIT Institut für Regelungs- und Steuerungssysteme (IRS)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2021
Sprache Englisch
Identifikator KITopen-ID: 1000128916
Erschienen in Proceedings of the 2021 American Control Conference (ACC), 26th - 28th May, New Orleans, LA
Veranstaltung Annual American Control Conference (ACC 2021), New Orleans, LA, USA, 26.05.2021 – 28.05.2021
Schlagwörter Adaptive Dynamic Programming, Reinforcement Learning, Tracking Controller, Control Application
Nachgewiesen in arXiv
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page