KIT | KIT-Bibliothek | Impressum | Datenschutz

Fully printed origami thermoelectric generators for energy-harvesting

Rösch, Andres Georg ORCID iD icon 1; Gall, André 1; Aslan, Silas 1; Hecht, Matthias 1; Franke, Leonard 1; Mallick, Md. Mofasser ORCID iD icon 1; Penth, Lara; Bahro, Daniel; Friderich, Daniel; Lemmer, Uli 1,2,3
1 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
2 Kernkraft-Betriebsgesellschaft mbH Eggenstein-Leop- (Fremdeinrichtung) (KBG), Karlsruher Institut für Technologie (KIT)
3 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Energy-harvesting from low-temperature environmental heat via thermoelectric generators (TEG) is a versatile and maintenance-free solution for large-scale waste heat recovery and supplying renewable energy to a growing number of devices in the Internet of Things (IoT) that require an independent wireless power supply. A prerequisite for market competitiveness, however, is the cost-effective and scalable manufacturing of these TEGs. Our approach is to print the devices using printable thermoelectric polymers and composite materials. We present a mass-producible potentially low-cost fully screen printed flexible origami TEG. Through a unique two-step folding technique, we produce a mechanically stable 3D cuboidal device from a 2D layout printed on a thin flexible substrate using thermoelectric inks based on PEDOT nanowires and a TiS2:Hexylamine-complex material. We realize a device architecture with a high thermocouple density of 190 per cm² by using the thin substrate as electrical insulation between the thermoelectric elements resulting in a high-power output of 47.8 µWcm−² from a 30 K temperature difference. The device properties are adjustable via the print layout, specifically, the thermal impedance of the TEGs can be tuned over several orders of magnitudes allowing thermal impedance matching to any given heat source. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000128928
Veröffentlicht am 25.01.2021
Originalveröffentlichung
DOI: 10.1038/s41528-020-00098-1
Scopus
Zitationen: 71
Dimensions
Zitationen: 91
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Institut für Nanotechnologie (INT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2021
Sprache Englisch
Identifikator ISSN: 2397-4621
KITopen-ID: 1000128928
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in npj flexible electronics
Verlag Nature Research
Band 5
Heft 1
Seiten Article: 1
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 04.01.2021
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page