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Abstract: The potential for lithium-ion (Li-ion) batteries and supercapacitors (SCs) to overcome
long-term (one day) and short-term (a few minutes) solar irradiance fluctuations with high-temporal-
resolution (one s) on a photovoltaic-powered reverse osmosis membrane (PV-membrane) system was
investigated. Experiments were conducted using synthetic brackish water (5-g/L sodium chloride)
with varied battery capacities (100, 70, 50, 40, 30 and 20 Ah) to evaluate the effect of decreasing
the energy storage capacities. A comparison was made between SCs and batteries to determine
system performance on a “partly cloudyday”. With fully charged batteries, clean drinking water was
produced at an average specific energy consumption (SEC) of 4 kWh/m3. The daily water production
improved from 663 L to 767 L (16% increase) and average electrical conductivity decreased from
310 µS/cm to 274 µS/cm (12% improvement), compared to the battery-less system. Enhanced water
production occurred when the initial battery capacity was >50 Ah. On a “sunny” and “very cloudy”
day with fully charged batteries, water production increased by 15% and 80%, while water quality
improved by 18% and 21%, respectively. The SCs enabled a 9% increase in water production and 13%
improvement in the average SEC on the “partly cloudy day” when compared to the reference system
performance (without SCs).

Keywords: lithium-ion battery; supercapacitors; photovoltaics; desalination; membranes

1. Introduction
1.1. Water Scarcity

The provision of potable water via brackish water desalination powered by solar
energy is an attractive option for coping with the scarcity of natural freshwater resources
in many regions worldwide. The International Energy Agency has reported that around
45% of the population of Sub-Saharan Africa lives without access to electricity, with this
figure dropping to 26% in rural areas [1]. It is estimated by the United Nations that over
330 million people in Sub-Saharan Africa are still relying on unimproved drinking water
sources (unprotected wells, springs and surface water) [2]. A direct correlation exists
between the availability of electricity and drinking water, with the effect of energy poverty
indicating that the population living with electricity is also very likely to have access to
an improved water source (and vice versa) [3]. Thus, opportunities for decentralized
technologies exist for the applications where little water and energy infrastructure exists
and the population density is sparse.

When examining desalination technologies, nanofiltration/reverse osmosis (NF/RO)
membranes have gained the highest level of acceptance due to a modular design, easy scal-
ing of capacity and their low specific energy consumption (SEC). While several emerging
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desalination technologies—such as membrane distillation (MD), forward osmosis (FO),
pervaporation and capacitive deionization (CDI)—are being developed, only bench-scale
systems have been demonstrated [4]. MD technology is a thermal-driven process that
operates at atmospheric pressure and high salt rejection for seawater desalination, yet
it exhibits high energy consumption and low water production [5]. FO appears to be
promising for desalinating extremely saline water—containing a total dissolved solids
(TDS) of >100,000 mg/L—that cannot be treated with RO [5]. Pervaporation can cope with
a wide range of saline water with high rejection (>99.99%), but the choices of membrane
material and low flux remain as obstacles in its development [5]. CDI is an electrochem-
ical desalination technology based on the electrosorption of ions by porous electrodes.
Several challenges exist for the identification of optimum material for manufacturing
electrodes [5]. Other electrically driven separation desalination processes—such as elec-
trodeionization (EDI) and electrodialysis (ED)—transport charged ions in a solution by
utilizing an electric field. EDI is an energy-efficient option for brackish water desalination.
Whilst ED exhibits significant promise and is well-suited for treating lower salinity feedwa-
ter (<1700 µS/cm) [6], it remains much less developed than NF/RO membrane technology.

Many remote regions of developing countries that possess a significant solar energy
resource are also located far away from the coast, thus suggesting that the most energy-
efficient treatment option would be the desalination of brackish groundwater. For such
applications, pilot-scale NF/RO membrane technology has been widely used as an energy-
efficient and robust option for the provision of clean drinking water [7,8]. In order to make
the desalination technology more sustainable, renewable energy sources are increasingly
deployed for providing the energy requirements. When renewable energy-powered mem-
brane (RE-membrane) systems are deployed in remote areas that lack an electricity grid,
such decentralized technologies can provide an ideal solution. In particular, photovoltaic
(PV) energy has become an affordable source of clean electricity due to steady price de-
clines over the last decade [7] and is currently (2020 data) one of the cheapest sources
of electricity [9]. When examining energy efficiency and cost estimations, many of the
emerging technologies are based on bench-scale systems. In addition, the majority of these
technologies are typified by having a high energy consumption. Recent investigations at
the Plataforma Solar de Almeria indicated that vacuum-assisted air gap MD technology
could reduce the SEC [10,11]. The pilot MD system for seawater desalination – which
exhibited an electrical conductivity (ED) of 37–40 mS/cm – exhibited a thermal SEC of
208 kWh/m3 and an electrical SEC of 5–20 kWh/m3 [10]. However, the water cost was
hardly comparable due to the large data variations and different applications from the
literature [11]. Unfortunately, no reliable energy and cost data on a solar-powered FO
desalination system can be found. The electrical SEC of pervaporation technology indicated
a value < 0.3 kWh/m3, but a considerable thermal energy was required for heating and
maintaining the feed stream [12]. Various models suggested have shown that CDI could
operate with a SEC of less than 1 kWh/m3 for low-salinity brackish water but remains
less energy-efficient than RO [13–15]. In a pilot 1-kW photovoltaic (PV)-powered mem-
brane CDI system for treating 6700-µS/cm brackish water, the system exhibited a low SEC
(the sum of battery, pump and power supply associated with an electrode) in the range
of 0.7–1.1 kWh/m3 for producing 5-m3/d potable water [16]. For other electrochemical
systems, an EDI system performed with an SEC in the range of 0.3~0.7 kWh/m3 when
treating water with a TDS of 5 g/L [17]. However, these SEC values were not consistent, as
many values stem from bench-scale systems operating with a low-feed salinity and salt
removal. Comparatively, in a field demonstration of a solar-powered ED reversal system
in rural India for treating ground water (salinity of 2100–2500 µS/cm), the solar system
produced 6 m3/d, with a SEC of 1.7 kWh/m3 and an estimated levelized cost of water of
US$ 1.9/m3 [18]. A RO system typically exhibited a SEC in the range of 0.6–4 kWh/m3 for
desalinating brackish groundwater (depending on the salinity of the water and the size
of the system) at a low water cost of US$ 0.2–0.4/m3 [19]. Hence, PV-powered membrane
filtration (PV-membrane) systems appear attractive for small-scale (~1 m3/d), distributed
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and robust systems where no electricity is present [20], and it is envisaged that these can
potentially help break the paradigm of the water–energy nexus [3].

1.2. Directly Coupled PV-Membrane System

The concept of directly coupled PV-membrane systems—where no energy storage
components are included—is to capitalize on the ability of the system to easily, efficiently
and cost-effectively store clean drinking water that was created during hours of sunshine,
instead of storing electricity. Several reports have demonstrated the successful operation
of directly coupled renewable energy-powered membrane (RE-membrane) systems, the
challenge of which is naturally dealing with the intermittency and fluctuations inherent to
the wind and solar energy resource [20–30]. In the group of Murdoch University, Mathew
et al. designed a PV-membrane system for brackish water desalination based on a piston
pump with 120-W PV power that was capable of producing 400 L/d of potable water with
a recovery of either 16% or 25% [24,25,27]. The group of Infield et al. designed a directly
coupled RO desalination system that could be powered by wind or PV energy [26,28,29].
Thomson and Infield reported the PV-membrane system for seawater desalination, which
produced ~1.5 m3/day of permeate at a SEC of 4 kWh/m3 [26]. Bilton et al. designed a
battery-less PV-membrane desalination plant, which enabled a clean water production of
300 L on a sunny summer day with an overall SEC in the range of 2.5–4 kWh/m3 [31]. In
a final example, Ruiz-García and Nuez [32] investigated the long-term performance of a
RO desalination plant operating under intermittent conditions for 14 years (around nine
h/d) when treating brackish groundwater with conductivity in the range of 7–9.6 mS/cm.
The results indicated a specific energy consumption (SEC) in the range of 1.8–2.2 kWh/m3.
Such directly coupled systems can potentially exhibit higher efficiency when no batteries or
additional electrical devices are incorporated, leading to a higher output power due to less
power loss. However, because such systems are subject to fluctuations and intermittency
from the RE source, this can result in a lower permeate quality and productivity [25,26,33].
A further economic issue is the underutilization of the equipment—due to operating only
during the day—that ultimately affects the cost of water.

1.3. Energy Storage Options for Small-Scale PV Systems

Short-term energy buffering has been introduced to PV-membrane systems via the
addition of supercapacitors (SCs) with a suitable charge controller. SCs have proven to be
good candidates for short-term energy buffering [33–36], with the technology being chosen
due to its ability to endure hundreds of thousands of charge/discharge cycles, as well as
being able to provide a large amount of instantaneous power. For example, Soric et al.
developed a regulator with the use of relays and a 250-F supercapacitor (maximum voltage
of 32 V) to stabilize the solar power supply to the pump in a PV-membrane desalination
system [36]. The system exhibited a SEC of 2.9–4.3 kWh/m3 when treating brackish
water, synthesized using 8–22 g/L of sodium chloride (NaCl). Further advantages of SCs
are the high efficiency (85–98%) of energy storage [37] and the relatively long lifetime
(8–12 years) [38,39], significantly longer than classical lead–acid (LA) batteries. However,
the disadvantage of SCs are, firstly, the high self-discharging rate, which was calculated to
be 1.5% per day in a previous work [40]. This is significantly higher than that encountered
with either LA or lithium-ion (Li-ion) batteries, which achieve 5% per month and 1% to 2%
per month, respectively [37]. Secondly, the amount of electrical energy that can be stored in
SCs is much more limited than that in batteries, typically only providing energy buffering
for a period of minutes [34].

For long-term electrical energy storage, LA batteries remain the most common solution
applied to PV systems due to their global availability and relatively low cost [37,41]. There
are several studies of the successful operation of RE-membrane systems that incorporate
LA batteries. A seawater desalination plant equipped with a 4.8-kWp PV array and 60 kWh
of LA battery storage was installed on the island of Gran Canaria, Spain, being capable
of providing 0.8–3 m3/d of drinking water [42]. The lower limit of the amount of energy
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stored in the batteries remained ~19 kWh. This corresponds to a depth of discharge (DoD)
of 32%, a value that should be remained above in order to prevent damage and extend
the lifetime of the batteries. The batteries enabled an improvement of water production
by ~15% compared to the daily water production of 800 L without batteries being present.
A small-scale PV-membrane pilot plant that was installed at a vocational training center
in Northern Tanzania [43] was equipped with 2.25-kWp PV power and 2.2-kWh batteries
(battery technology not stated), which allowed for two hours of an additional operation
when no PV power was available. The system was operated successfully over a nine-
month period, with a water production of 2.4 m3/d at a SEC of 4.4 kWh/m3 when treating
feedwater with an electrical conductivity (EC) of 3000 µS/cm [43]. Another small-scale
PV-membrane desalination system was designed with 2 kWp of PV power and 2.4-kWh LA
batteries in Malaysia [44]. The system was capable of producing 5.1 m3 of clean water per
day (10 h) at a SEC of 1.1 kWh/m3 while treating brackish water at a salinity of 2000 mg/L.
Batteries were used to provide a stable current supply and store energy during cloudy
weather. The total hours of autonomy via the addition of batteries during the daytime
and nighttime operation modes (10 h of operation per day) were tested to be ~22 h and
24 h, respectively; however, the number of hours of autonomy afforded by the battery bank
declined to 11 h after one year of operation during the daytime due to the high ambient
temperature (exceeding 35 ◦C). The overall disadvantages of LA batteries are their low
roundtrip efficiency of 75–84%, limited number of charging/discharging cycles (~2000) [45],
reduced operational lifetime (three–five years) and DoD of higher than 50% [37].

Alternatively, Li-ion batteries—which are already commonplace in transportation
applications due to their high energy density—are becoming increasingly popular in on-
grid PV systems. This is primarily due to their increased number of charge/discharge
cycles (4000) and long lifetimes (10 years) [46], whilst also exhibiting a higher efficiency
(>90%) [46] and DoD > 80% [47] and reduced cost per kWh [48]. In 2015, Mueller et al.
emphasized that Li-based batteries would play an increasingly important role and were
more attractive than other energy storage technologies due to their ongoing innovation [49].
Moreover, with the reduced cost per kWh of the Li-ion batteries, they are considered to
be promising energy storage units for fluctuating RE systems and will emerge as a very
competitive technology for medium- and long-term PV applications [50]. Tan et al. [51]
applied 2 kWh of Li-ion batteries as an energy storage solution for on-grid PV systems in
the range of 10–30 kWp. The batteries allowed short-term (3–30 min) power leveling of
schools and buildings that were equipped with PV generation systems. Li-ion batteries
were also employed in a residential PV system, which was analyzed by simulations to gain
insights into the sizing and grid integration issues [52]. The system was sized with 4 kWp
of PV and a Li-ion battery bank with a capacity of 4 kWh (converted by battery capacity
times voltage, Ah·V·10−3). The state-of-charge (SOC) of the battery was constrained to a
20–80% (of the nominal battery capacity) range and enabled an extra six hours of energy
provision at night [52].

1.4. System Control with Energy Storage Options

Several control strategies have been implemented in the RE system that are equipped
with energy storage units. SCs have been used in combination with batteries to extend the
battery lifetime by buffering the peak current pulses and reducing the charge/discharge
cycles in the battery. Glavin et al. [53] designed a hybrid SC–battery energy storage system
for a PV system, where the SCs supplied the high peak power while the battery supplied
the low power in terms of operating conditions. It was concluded that the addition of
SCs increased the battery SOC by 12% under peak load, hence reducing the size of the
battery and avoiding a deep discharge of the batteries. Bludszuweit et al. [54] proposed
a hybrid battery and SCs for large-scale grid-connected wind turbine systems in order to
smooth fluctuations. The LA batteries smoothed the power output for ~10 min, while the
SCs absorbed the short transients in energy (1–10 s) that prevented the current peaks from
reaching the battery. These applications highlight the feasibility of coupling SCs in parallel
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with batteries to RE systems to improve the performance with the inherent variability of
the resource and the ability of SCs to reduce the size of the battery so that the cost can
be reduced. Mehr et al. [55] proposed a current control scheme for Li-ion battery energy
storage systems (energy storage capacity of 0.55 kWh) that was designed based on the SOC
of the batteries for load leveling and peak shaving of the on-grid system. A bidirectional
converter was designed to transfer power in both directions by including a current control
loop. Provided the SOC is limited to the upper and lower thresholds, the simulated results
indicated that the batteries absorbed 35-W power from the grid while injecting 200 W
of power to the grid in a time period of 25 ms (corresponding to the energy capacity of
10−3 Wh). The energy transfer of the bidirectional alternating current (AC)/direct current
(DC) converter was confirmed.

1.5. Research Needs

It has been demonstrated that off-grid PV-membrane systems can function from a
varying RE source. The usage of SCs and LA batteries for storing energy has been elabo-
rated in several studies, while the application of Li-ion batteries in off-grid PV systems—in
particular, with the impacts on the SEC, water quality and quantity—needs further investi-
gation due to its high energy intensity and large charging/discharging cycles. Furthermore,
experiments comparing the performance of different energy storage options—SCs vs.
Li-ion batteries vs. the reference (directly coupled) system without storage—need to be
conducted. In this paper, the following research questions will be addressed:

(i) How does the addition of up to one day’s worth of energy storage via Li-ion bat-
teries affect water production and the SEC of a PV-membrane system operated un-
der a variety of weather conditions (so-called “partly cloudy”, “sunny” and “very
cloudy” days)?

(ii) What are the effects of using different amounts of battery storage capacity (realized
by limiting the initial SOC of the batteries) on the PV-membrane system?

(iii) What are the impacts of different energy storage options on the PV-membrane system
when compared with SCs and Li-ion batteries?

Previous research by the authors resulted in the design of a PV-membrane system
coupled with SCs [40], which, in this work, was used to investigate the performance of
such systems under real weather conditions. The system setup, including Li-ion batteries,
was based on a modified version of the system described in Li et al. [40] by (i) reconfiguring
the PV characteristics (PV maximum point voltage and current), (ii) adding a new charge
controller to regulate the power from the PV to the Li-ion batteries and load (the pump
and membrane system) and (iii) adding a DC/DC converter to boost the output voltage of
the batteries to assure the operation of the pump. This setup was used to study the impacts
of Li-ion batteries and then enable the comparison with SCs on the PV-membrane system
performance under real solar days.

2. Materials and Methods
2.1. PV Membrane System Description

The filtration experiments were conducted with a PV-membrane system—comprised
of both ultrafiltration (UF) pretreatment and NF/RO membranes—that was equipped with
either a Li-ion battery bank or SCs as energy storage components. A system schematic
is shown in Figure 1, while the majority of the present system components have already
been described in a previous paper [40]. Briefly, a solar array simulator (SAS; Chroma
62000H; Taiwan) was used to simulate the output of the PV panels (detailed below) to
ensure the reproducibility of the experiments—using real-world measured solar irradiance
(SI)—being conducted in an indoor laboratory. A helical rotor pump (Grundfos SQFlex
0.6–2 N; Denmark) was employed to achieve the desired pressure and flowrate. The pump
can be operated over a very wide voltage range (30–300 Vdc). It should be noted that the
pump has a built-in maximum power point tracker (MPPT) that is designed to extract the
maximum power available from the PV panels.
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Figure 1. Schematic of the photovoltaic (PV)-membrane system equipped with a lithium-ion (Li-ion) battery pack or
supercapacitors (SCs) for energy storage. Note the directly coupled system is configured by connecting the solar array
simulator (SAS) to the pump, and the change between the battery and SC configurations is manually switched. All sensors
for measuring flow, pressure, conductivity, voltage (V) and current (I) are connected to a data acquisition card (DAQ) and
computer. The solid lines represent the hydraulic connections, while dashed lines represent the electrical connections. Note:
The numbers indicate the valves within the system: 1©: safety valve, 2©: check valve and 3©: needle valve for creating back
pressure. NF/RO: nanofiltration/reverse osmosis, UF: ultrafiltration and DC: direct current.

For electrical energy storage, two lithium iron-phosphate (LiFePO4) battery packs
(Power Brick 24 Vdc and 50 Ah, PowerTech Systems, France) were connected in parallel to
provide a maximum battery capacity of 100 Ah for the PV-membrane system. A charge
controller (Victron MPPT 100/20, the Netherlands) was used to regulate the charging and
discharging behaviors of the batteries with a maximum current up to 20 A (claimed—this
was actually 15 A in practice). A DC/DC converter (MeanWell SD-500L-48, Taiwan) was
used to convert the battery voltage from 24 Vdc up to 48 Vdc in order to supply a suitable
voltage to drive the pump. Pairs of current (DRF-IDC, Omega, Bridgeport, N.J., USA) and
voltage (DRF-VDC, Omega, Bridgeport, N.J., USA) sensors were installed to measure the
electrical characteristics of both batteries and pump. These sensors were monitored to
determine the status of the pump and batteries (charging or discharging).

The other energy storage option was twelve SCs (Maxwell Boostcap BPAK0058-E015-
B01; San Diego, California, USA) connected in a series to achieve a maximum output
voltage of 180 V and a capacitance of 4.8 F. A charge controller was designed based on preset
voltage thresholds to control the state of the pump (on/off) and the charging/discharging
behaviors of the SCs, as described previously [40]. It should be noted that the switching of
the energy storage options (Li-ion vs. SC vs. reference) is carried out manually.

Inline sensors for measuring the pressure, flowrate and EC were installed in feed,
permeate and concentrate streams of the PV-membrane system to monitor instantaneous
performances during transient periods (details found in [40]). All the sensors exhibited
a response time of 1 s or less, and their outputs were recorded using a data acquisition
card (DAQ, National Instruments 6229; Austin, Texas, USA) and displayed instantaneously
on a computer running LabVIEW for data logging and control. A needle valve in the
concentrate stream (see 3© in Figure 1) was used to regulate the desired back pressure
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for the system. Throughout all the experiments, the permeate and concentrate streams
flew back into the feed tank to maintain a constant feed concentration. The feedwater
temperature was maintained at 20 ± 0.5 ◦C via a chiller (Julabo, FC600).

2.2. Water Quality and Membrane Type

The feedwater was prepared using deionized water and NaCl (Sigma-Aldrich, general
purpose grade) to create synthetic brackish water with a salt concentration of 5 g/L.
The concentration was calculated from EC values that were measured with conductivity
electrodes (Bürkert 8222, Germany) using a conversion factor of k = 0.59, determined by
calibration with NaCl dissolved in deionized water (BWT Moro 350, Germany) at 20 ◦C.

The UF membrane (DuPont Dizzer P4040-6.0, Wilmington, Delaware, USA, membrane
area: 6 m2 [56]) was chosen as a pretreatment to remove large particles and protect the RO
membrane against fouling, while a loose 4” spiral-wound brackish water RO membrane
(DuPont BW30-4040, Wilmington, Delaware, USA, [57]) was used for desalination. The
BW30 membrane exhibited 24% recovery and 97.5% retention when treating 5-g/L NaCl
saline feedwater with the system operating at 300 W of power and a transmembrane
pressure (TMP) of 10 bar under steady-state conditions [40]. The membrane-specific
parameters (flux, TMP, retention, recovery and SEC) were calculated using well-known
relationships, detailed in Equations (1) to (5) [58,59] below.

J =
QP
A

, (1)

where J represents the flux (L/m2·h), A is the membrane-active area (m2), and Qp is the
permeate flowrate (L/h).

TMP =
Pinter−vessel + PC

2
− Pperm , (2)

where TMP represents the transmembrane pressure, Pinter-vessel is the pressure after the UF
membrane (bar), PC is the pressure in the concentrate stream (bar), and Pperm is the relative
pressure of the permeate side (0 bar)

R =

(
1− ECP

ECF

)
× 100 % , (3)

where R represents the recovery (%), ECP and ECF represent the electrical conductivity of
permeate and feed (µS/cm), respectively.

Y =

(
QP
QF

)
× 100 % , (4)

where Y represents the recovery (%), QP and QF represent the flowrate of permeate and
feed stream (L/h), respectively.

SEC =
Ppump

QP
, (5)

where SEC represents the specific energy consumption (kWh/m3), Ppump is the electrical
power of pump motor (W).

2.3. Solar Energy and “Solar Days”

Solar irradiance data with 1-s resolution were collected via an irradiance sensor
(meteocontrol; SI-12-TC, Germany) at the KIT Solar Park—a 1-MW PV system located on
the KIT campus in Karlsruhe, Germany (latitude: 40◦00′33.73”, longitude: 82◦4′15.98” E)—
and used as the input for the SAS. The SI data were converted into a current–voltage (I–V)
curve via the built-in Sandia formula [60], while the module temperature was provided via
an external temperature sensor.
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There were two different settings for the SAS for the experiments conducted using i)
batteries and ii) SCs (as well as the battery-less reference directly coupled with the pump).
Both configurations rely on simulated PV panels with a 500-W maximum point power (Pmp)
under standard solar radiation conditions (SI = 1000 W/m2) and a module temperature of
25 ◦C. The SAS parameters used for battery configurations were set as follows: Vmp = 75.2 V
(voltage at maximum power) and Imp = 6.6 A (current at maximum power), with a fill
factor (FF) of 75% and a relative temperature coefficient of the maximum power (Pmp)
−0.41%/◦C. For the SC configurations, the SAS was used to simulate the output of an
array of five 100-W silicon PV modules (Sunmodule SW100 Poly [61]) connected in a
series. These PV modules resulted in a high system voltage at the maximum power point
(Vmp = 188 Vdc) that could be used to charge the SCs. The PV module specifications—Pmp,
FF and temperature coefficient—were kept the same as mentioned above, along with the SI
used as inputs for the SAS. The FF is defined as the ratio of the Pmp of the solar cell to the
product of the open-circuit voltage (VOC) and short-circuit current (ISC) and is essentially a
measure of the efficiency of PV modules. The temperature coefficient affects the output
power of the PV panels, such that, as the temperature of the PV panel increases, the output
power decreases. Note that the PV settings for the batteries were based on those used
for previous SC experiments [40]; however, here, the PV area was scaled up by 25% in
order to get a higher current and maintain the same voltage; hence, four PV panels were
connected in a series to obtain a PV power of 500 W. The SAS combines all of these inputs
to determine the PV power output at all times of the day.

The SI data were chosen to represent very different levels of fluctuations that occurred
within one year of data (2016) —namely, (i) a “sunny day” (5 May), (ii) a “partly cloudy
day” (26 May) and (iii) a “very cloudy day” (13 October), as illustrated in Figure 2A. To
demonstrate the impacts of SI on the performance of the system without Li-ion batteries, the
PV output power on the three “solar days” is plotted in Figure 2B. The module temperature
data is presented in Figure 2C for further comparisons. Note that the measurements can be
slightly different from real weather conditions due to the occurrence of dust or shadows
on the PV panels. On the “partly cloudy day”, several sharp drops in the SI occurred in
the periods around 8:30, 11:00–13:00 and 14:30. The timeframe of these fluctuations in the
SI was typically seconds to minutes. The SI on a “very cloudy day” exhibited periods of
large fluctuations as thick clouds passed overhead from 7:30 to 14:30, and subsequently,
the already low SI dropped steadily from 14:30 to 15:30. The “sunny day” illustrated a
typical SI in the range of 100–900 W/m2. The SI does not reach 1000 W/m2 due to the
season in this latitude (beginning of May in Germany) and the temperature exceeding
25 ◦C (see Figure 2C). It can be seen from Figure 2B that the maximum PV power output
maintains ~400 W when it reaches the maximum SI, and the power saturation occurs at
SI > 800 W/m2. Note that saturation is defined as the state when no more PV power can be
used. The testing durations on “very cloudy”, “partly cloudy” and “sunny” days were 8 h
30 min, 9 h and 11 h, respectively—the latter two being significantly longer, as May is closer
to the summer equinox (21 June). It should be noted that all experiments commenced after
7 a.m., when the SI > 300 W/m2, in order to have adequate power to start the system and
produce permeate.

When these varied “solar days” were reflected in a regional climate, a rough and
simplified estimation of the distribution of the three different weather conditions was
carried out based on an 18-month research campaign in Tanzania 2012–2014 [62]. The “very
cloudy day” (daily average solar irradiance of 4 kWh/m2/d, assuming 10 h of sunshine)
was an indicator for a typical day in the rainy seasons, of which there are two in Northern
Tanzania, with an amount of rainfall from 50–200 mm per month. The “short” rainy season
occurred from mid-November to mid-January, while the “long” rainy season was from
March to May. The “sunny day” (average solar irradiance of 7 kWh/m2/d, assuming
10 h of sunshine) was indicative of the performances during the dry season. Hence,
seven months of each year were estimated to encompass the dry seasons in Northern
Tanzania. Consequently, the annual solar irradiance was added up to 2070 kWh/m2/y,
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which roughly agrees with previously published annual solar irradiance values (the city
of Arusha exhibited an annual solar irradiance of 2420 kWh/m2/y) [63]. Therefore, for
this location, roughly 210 days were estimated to be “sunny days”, and the rest of the
days were “very cloudy days”. However, it needs to be noted that this is a very rough and
simplified estimate as an example, and the distribution of solar days is very dependent on
local weather conditions.

Figure 2. Variations of the amount of sunlight (plotted as (A): solar irradiance, (B): PV power and
(C): temperature) as a function of time on different “solar days”, illustrating a “sunny day”, “partly
cloudy day” and “very cloudy day”. Data were taken from the KIT Solar Park on 5 May 2016,
26 May 2016 and 13 Oct 2016, respectively.

2.4. Lithium-Ion Batteries Sizing

In order to estimate the capacity that is required for batteries to supplement the PV
output power under a worst-case scenario (“very cloudy day”) and to bring it up to the
amount generated under a best-case scenario (“sunny day”), the total additional energy
required for one solar day (Etot) is calculated in Equation (6):

Etot =
∫

Psunnydt−
∫

Pvery cloudydt, (6)

where Psunny and Pvery cloudy represent the PV output power (W) on a “sunny” and a “very
cloudy” day, respectively, while t is the operation time (h) over the entire day. The estimated
total additional energy required during one solar day was calculated to be ~1.5 kWh
(marked in Figure A1 in Appendix A.1).

An equation that is commonly used to determine the battery capacity and that
accurately selects and sizes the battery pack for the stand-alone system is given by
Equation (7) [64]:

Cx =
Etot

Vdc
· Taut

DoDmax
, (7)
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where Cx is the required battery capacity (Ah) at a specified discharge rate x, Etot is the total
energy required over one day, as mentioned above (Wh), Vdc is the dc nominal voltage (V),
Taut is the number of days of autonomy and DoDmax is the maximum depth of discharge of
the battery (%). Assuming the battery voltage = 24 V, Taut = 1 (assuming that there will
always be some power generated by the PV panels, even during a worst-case scenario like
on a “very cloudy day”) and DoDmax = 80%, the total battery capacity is calculated to be
~84 Ah (energy capacity of 2 kWh). Hence, two batteries connected in parallel exhibit a
voltage of 24 V and a nominal battery capacity of 100 Ah (energy capacity of 2.4 kWh), and
the discharge rate x is calculated to be 0.2 C, assuming the maximum required discharge
current from the pump is 20 A (detail found in the datasheet [65]).

2.5. State-of-Charge Estimation

One way of expressing the energy storage capacity of a battery is via the SOC. An
alternative way to represent the capacity is the DoD, which is most frequently applied
when discussing the lifetime of a battery after repeated use. The SOC indicates the amount
of capacity available in the battery as a fraction of the total nominal capacity, while the
DoD indicates the usage of the battery capacity as a fraction of the initial total nominal
capacity. Here, the initial SOC was varied in order to simulate having a battery bank with
a range of energy storage capacities. The initial SOC of the Li-ion batteries was calculated
based on the VOC method that was used by Baccouche et al. [66] at the beginning of each
experiment. The SOC-VOC characteristics of a Li-ion cell were divided into eight segments
by approximating the piecewise linear curve, with each segment expressed as a linear
relationship, as shown in Equation (8):

SOC = f (Voc) = a·Voc − b, (8)

where the varying coefficients a and b (%/V) are dependent on the VOC intervals [66,67].
Assuming a single lithium-ion cell has a VOC of 3.6 V [68], the equation is adapted with a
factor of 7 to have an output voltage of 24 V. The VOC was firstly measured, and then, the
initial SOC was calculated based on this method, which was implemented in a computer
running LabVIEW. The calculations of the SOC during the experiments were estimated by
the Coulomb counting method [66]:

SOC = SOC0 +
1

Qrated

∫ t0+τ

t0

Ibdτ·100 (9)

where SOC0 is the initial SOC, Qrated is the rated capacity of the battery (Ah; here, higher
than Cx), Ib is the current of the battery (A), t0 is the initial time (h) and τ is the time interval
of charging/discharging (h).

2.6. Supercapacitors Energy Buffering and Charge Controller

For the final experiments conducted in this work, SCs were applied as the other
energy storage option in the PV-membrane system to buffer short-term fluctuations and
intermittency on the “partly cloudy day”. A charge controller based on preset voltage
thresholds (Vpump_off, Vpump_on, Vcharging_off and Vcharging_on) was designed to control the
state of both the pump (on/off) and the SCs (charging/discharging). Full details about
the charge controller and flow chart detailing all the operational states can be found in
a previous paper [40]. In the present work, the difference of the charge controller is that
the charge off/on thresholds were activated in order to control the depths of the charging
and discharging of SCs throughout the whole day. In order to avoid previously reported
conflicts with the built-in MPPT of the pump [40], a positive temperature coefficient (PTC)
lamp was connected in a series with the pump to increase the inner resistance. The variable
resistance was used to buffer the sudden changes caused by the built-in MPPT between
the SCs and SAS. This leads to an average power loss of ~50 W via the PTC lamp on this
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solar day; thus, ultimately, an improved control system is required in the future that does
not induce such a large loss.

2.7. Experimental Design

Experiments were carried out to evaluate the impacts of Li-ion battery storage on the
system performance when incorporating fluctuations and intermittency (different “solar
days”), focusing on the impact on water production and SEC. Particularly, on the “partly
cloudy day”, the final tests were conducted with SCs to enable comparisons with the results
of the batteries. The experiments conducted are specified below:

(i) Operation on the “partly cloudy day”: The system performance using the BW30
membrane (5-g/L NaCl feedwater) on the “partly cloudy day” was determined to
examine the directly coupled system performance (no energy storage) when subjected
to real weather conditions. Comparisons of the system performance—in particular,
the permeating production and SEC—were made between the reference (directly
coupled without energy storage) and fully charged Li-ion batteries on that day.

(ii) Operations on other “solar days”: The experiments (using the BW30 membrane and
5-g/L NaCl feedwater) were conducted with and without fully charged batteries
(100% SOC) on the “very cloudy” and “sunny” days to evaluate the impacts of
batteries on the dynamic characteristics of the PV system when subjected to different
solar conditions.

(iii) Operation with different battery capacities: The initial SOC varied over a wide
range (70%, 50%, 40%, 30% and 20%) and was tested on the “partly cloudy day” to
investigate how the PV-membrane system would respond if it was equipped with a
smaller capacity battery bank—in particular, with respect to the SEC, permeating EC
and production. The varied initial SOCs correspond to the energy storage capacities
of 1.7, 1.2, 1, 0.7 and 0.5 kWh of the Li-ion batteries.

(iv) Comparison between Li-ion batteries and SCs: To examine the impacts of different
energy storage technologies on the PV-membrane system, the system performances
were compared when equipped with SCs and a charge controller and fully charged
Li-ion batteries on the “partly cloudy day” with the same PV power rating.

3. Results and Discussion
3.1. Operation Carried out on the “Partly Cloudy Day” (With and without Fully
Charged Batteries)

To demonstrate the effects of adding one day’s worth of energy storage to the water
production and SEC to the PV-membrane system, comparisons of the system performance
on the “partly cloudy day” were performed as shown in Figure 3. When batteries were
used, the motor power consumption remained constant around 350 W throughout the
entire period (Figure 3A, black curve). This is ~20 W higher than the motor power when no
batteries were implemented in the system during the middle of the day (Figure 3A, grey
curve). This occurred, because the pump was always seeking to extract the desired current
from the power source (both PV and batteries). Hence, the discharging current of the
batteries was added to the PV current to supply the pump. As a result, the batteries were
discharged continuously throughout the day, resulting in the drop of the SOC from 100% to
20% (Figure 3B). Comparing the maximum PV output power (light blue in Figure 3A) and
the pump power, this resulted in ~50 W power losses in the additional electronics—namely,
the batteries (efficiency of 96% [65]), DC/DC converter (efficiency of 88% [69]) and charge
controller (efficiency of 98% [70]). This resulted in a total efficiency of power delivery to
the pump motor of 83%. A further reason for high power consumption is that the motor is
supplied with a constant voltage of 48 Vdc when connected to batteries. This relatively low
voltage limits the ability of the pump motor to start [71] and also draws a higher current,
which, in turn, reduces the motor efficiency further and results in greater resistive losses.
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Figure 3. Performance of the PV-membrane system shown, firstly, with fully charged battery storage (100% initial state-
of-charge (SOC), black curves) and, secondly, the reference system without energy storage (grey curves) on the “partly
cloudy day”: (A) power, (B) SOC, (C) transmembrane pressure of UF membrane (TMPUF), (D) transmembrane pressure
of RO membrane (TMPRO) (E) flux of RO membrane (fluxRO), (F) flux of UF membrane (fluxUF), (G) retention/recovery,
(H) permeate electrical conductivity (EC), (I) production and (J) specific energy consumption (SEC).

As a result, the low system efficiency leads to a low TMPRO and, hence, a RO flux (black
curve in Figure 3C,D). In comparison, the TMPRO and RO flux (grey curve in Figure 3C,D)
followed the same trend as the changes in the SI when the system was operated without
batteries. This is due to the driving force that change with the variations of the SI for the
desalination process by providing the hydraulic pressure needed to overcome the osmotic
pressure of the feedwater, hence affecting the recovery and retention that are controlled by a
mass transfer at low pressure (grey curve in Figure 3E) and ultimately result in fluctuations
in the permeate EC (grey curve in Figure 3F) and SEC (grey curve in Figure 3H).

Further, it can be seen from the weather conditions on the “partly cloudy day” that
the motor power (grey curve in Figure 3A) directly followed the changes in SI when no
batteries were deployed. It dropped to 0 W several times during periods of fluctuations and
intermittency due to the lack of energy from the PV panels, resulting in system shutdowns.
The impact of adding batteries was clearly reflected in the TMP and flux (black curve in
Figure 3C,D), where the operation was very constant due to the fact that power could be
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drawn from the batteries continuously throughout the day. Overall, the recovery of ~30%
(Figure 3G) resulted in an average permeate EC of 294 µS/cm (Figure 3H (World Health
Organization guideline value of 1000 mg/L (1700 µS/cm) [72]) and SEC of ~4 kWh/m3

(Figure 3J).
Another concern for the system operations is the potential brine disposal, which is a

crucial environmental issue and, in more concentrated seawater applications, may comprise
up to 33% (worst case) of the total cost of the seawater desalination process [73]. In large-
scale seawater desalination plants, brine is commonly discharged into the sea, with costs
ranging from US$ 0.05/m3 to US$ 0.3/m3 [74,75], causing significant environmental issues
on marine ecosystems [73]. In small-scale brackish water desalination plants, brine can be
discharged into the sewer system (if available), with disposal costs between US$ 0.3/m3

and US$ 0.7/m3 [74,75]. For inland plants, deep-well injection and evaporation ponds
are suitable brine disposal choices, with a wide range of costs (US$ 0.5–10/m3) [74,75],
respectively. Land applications are mainly used for low brackish water brine volumes,
as well as the availability of suitable land and groundwater conditions, which cost in the
range of US$ 0.7–2/m3 [74,75]. In this work, the relatively low recovery of low-pressure
RO or NF membranes assures a low salinity concentrate stream, and the possibilities for
using the disinfected waste stream for washing and livestock watering can result in zero
concentrate generation, depending on the feedwater quality [58]. A general guide for
groundwater salinity and stock tolerances in South Australia has been reported [76]. For
example, it is noted that the requirements to maintain the conditions of sheep and beef
cattle are up to 21,600 and 8300 µS/cm, while the maximum values for health growth are
10,000 µS/cm and 6700 µS/cm, respectively [76]. Hence, a concentrate stream can be used
for these purposes when the value remains at a level below these limits. In summary, fully
charged batteries enabled an increase of production by ~16%, from 664 to 767 L/d, with
the water quality also improving by just over 3%, from 304 to 294 µS/cm. The average
parameters are summarized in Table 1 in Section 3.3.

Table 1. The overall average performance of the photovoltaic (PV)-membrane system with/without batteries over the three
“solar days”. FluxRO: flux of RO membrane, TMPRO: transmembrane pressure of RO membrane, SOC: state-of-charge and
EC: electrical conductivity.

Solar Day
Initial
SOC
(%)

Avg.
FluxRO

(L/m2·h)

Avg.
TMPRO

(bar)

Avg.
Perm. EC
(µS/cm)

Avg.
Retent.

(%)

Perm.
Prod.
(L)

Avg.
SEC

(kWh/m3)

Full-Power
Duration
(hh:mm)

Partly
cloudy

20 7.3 6.6 328 96.2 402 4.8 1:55
30 7.4 6.7 336 96.0 443 4.7 3:02
40 9.0 7.2 335 95.9 557 4.5 5:09
50 9.9 8.2 330 95.9 669 4.4 7:22
70 11.8 8.9 287 96.3 725 4.1 8:16
100 12 9.4 274 96.4 767 4 9:20
Ref. 10.7 8.4 310 96.3 663 3.7 –

Very cloudy 100 11.8 9.4 274 96.3 646 4.1 8:00
Ref. 7.3 6.5 347 95.9 396 4.6 –

Sunny 100 11.3 9.1 290 96.4 892 4.3 11:00
Ref. 10.2 8.2 353 95.8 770 4.0 –

3.2. Operations on Other “Solar Days” (With and without Fully Charged Batteries)

The aim of this section is to investigate the effects of very different solar radiation
conditions on the system performance, again both in the directly coupled configuration and
with fully charged batteries. Figure 4 indicates the cumulative permeate water production
and permeate EC and SEC of the PV-membrane system over the “very cloudy” and the
“sunny” days. From the top two graphs of Figure 4, it can be seen that, when incorporating
the batteries into the system, the motor power was maintained constantly at 350 W through-
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out the day, despite two different weather conditions (Figure 4A,F). This was ~20 W higher
than the motor power without batteries present in the system during the middle of the day.
This is for the same reasons as discussed in the previous section, 3.1 (Figure 3A). When
comparing the values at which the motor power is saturated with that from the “partly
cloudy day”, it was observed that the saturation in Figure 4A,F was more pronounced. It
can be found that the saturation occurred at a SI > 800 W/m2, where the shortest duration
appeared on the “partly cloudy day” (see Figure 2B). Furthermore, a high temperature
(above 40 ◦C; see Figure 2C) also resulted in a low PV voltage (~10 V lower when reaching
saturation), hence reducing the power input to the pump (see Figure 2).

Figure 4. Cumulative performance of the PV-membrane system with/without (grey curves) fully charged battery storage
(100% initial SOC, black curves) on the “very cloudy day” (left graph) and “sunny day” (right graph) in terms of (A,F) the
motor power and SOC, (B,G) TMPRO, (C,H) production, (D,I) permeated EC and (E,J) SEC.

On the “very cloudy day”, the performance with batteries improved as follows:
production increased by 81% from 395 to 714 L/d, the average permeate EC was im-
proved by 27% from 347 to 274 µS/cm and the average SEC was reduced by 17 % from
4.8 to 4.1 kWh/m3 as well. Again, the average parameters are summarized in Table 1
in Section 3.3. Additionally, on the “sunny day”, as is shown in Figure 4H, it was noted
that the permeate production without batteries was lower in the morning due to the low SI;
then, it approached the same level as the case with the batteries at 4:00 p.m. This occurred
during the time periods (9:30 to 15:15) when the TMPRO without batteries exceeded the
TMPRO with batteries (see Figure 4G). This is due to the fact that the directly coupled
PV-membrane system exhibited a higher efficiency, as discussed above, thus producing a
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much higher permeate for most of the day (from 9:30 to 15:15) at SI > 800 W/m2. Amongst
these three “solar days”, the SEC with batteries on the “sunny day” exhibited the highest
value. This occurred as the high-average SI was capable of providing a higher current
to the pump from the PV and a small current from the batteries, hence slowing down
the discharging rate of the batteries (a fraction of ~20% of the current supplement to the
pump when the SI reached the maximum value during the middle of the day). Thus, the
batteries played a minor role in producing sufficient permeate throughout the day, but
losses were still encountered, resulting in an increase of the SEC. It indicated the likelihood
of system redundancy by involving an additional device. The performance on the “sunny
day” indicated that the water production increased from 770 to 892 L/d, the permeate EC
improved from 353 to 290 µS/cm and the average SEC increased from 4.0 to 4.3 kWh/m3.
This represented an improvement in the water production by 15.8% and average permeated
EC by 17.8%, respectively (see Table 1 in Section 3.3).

From the operation of the system with/without batteries over the three different days,
it can be concluded that batteries play a significant role in smoothing fluctuations and
intermittency, reducing shutdown events of the pump and improving the water quantity
and quality. These results are not surprising, given the fact that Li-ion batteries exhibit a
high efficiency and energy intensity. Nevertheless, the main drawback was the expense
of increasing the cost of the system due to its special packaging and internal overcharge
protection circuits, which ultimately affected the cost of the water (discussed in Section 3.4).
This is anticipated to reduce over time as the technology matures.

3.3. Operation with Different Energy Storage Capacities

The next task was to evaluate the impacts of different energy storage capacities—
realized by varying the initial SOC of the battery bank—on the PV-membrane system
performance when operated throughout the “partly cloudy day”, with a particular focus on
the SEC and permeate production. The results can be seen from Figure 5, which starts with
the batteries at an initial SOC of 50%. The batteries were capable of providing full power
to the pump for 7 h 20 min (see Figure 5A) before reaching the limits of their capacities.
Thus, after 14:00, the pump was directly subjected to the fluctuations in the SI and repeated
attempts at charging and discharging of the batteries. This was compared to a pump that
was operated at full power for 9 h 20 min with fully charged batteries (see Figure 3A).
As indicated in Figure 5B, a positive current value represented the PV-membrane system
source current via photocurrent generation (Ipv), while a negative current occurred during
the discharging of the batteries. From the beginning of the day until around 14:00, the
batteries were discharged continuously at a maximum current up to 20 A (see Figure 5B).
This corresponded with the decline of the SOC to 0% at 14:15 (Figure 5D). Subsequently,
oscillations occurred due to the batteries reaching the lower threshold of DC/DC converter
(20 V). Then, the PV membrane started charging the batteries and caused the shutdown
of the pump. These power fluctuations were encountered due to the charge controller
not being able to power the pump and charge the batteries simultaneously, indicating a
system shortcoming that needs to be improved for future research. The flux and TMP of the
RO membrane followed the same pattern as the pump discussed above (see Figure 5E,F).
Overall, the system produced 669-L permeate, which was comparable with the production
(663 L) when the system was operated without batteries. The SEC was increased by
15.9% from 3.7 to 4.0 kWh/m3. Hence, it is recommended to use batteries with an initial
SOC > 50% (energy capacities > 1.2 kWh) to further enhance the water quality and quantity.
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Figure 5. The performance of the PV-membrane system equipped with batteries at a 50% SOC on the “partly cloudy day”,
indicating (A) the pump power, (B) battery current, (C) battery voltage, (D) SOC, (E) FluxRO, (F) TMPRO, (G) production
and (H) SEC. Note that the black curves on graphs (A), (E) and (F) are the moving average values of 10 points, while the
grey curves are the original measurement data from the sensors.

The impacts of different energy storage capacities (varied SOC) on the PV-membrane
system—in particular, the average SEC and water quality and quantity—are presented in
Figure 6. It can be clearly seen that the water production declined with the decrease of the
initial battery SOC (see Figure 6A). Compared to the reference, the increase of the water
production started at an initial SOC > 50%. The average permeate EC was less affected by
the SOC (see Figure 6B) due to the dense membrane with high retention (BW30) used in
these experiments. The SEC (see Figure 6C) was increased with the decrease of the SOC,
indicating that the lower SOC reduced the flux and increased the SEC. It is perhaps intuitive
that the SEC is expected to return to the state of the reference case after the batteries are
empty. However, this will only happen when the batteries are no longer coupled with
the pump so that they do not have the same voltage potential, avoiding the repeatable
attempts of the charging and discharging behaviors.
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Figure 6. Key performance indicators of the PV-membrane system as a function of the initial energy
storage capacity of the batteries (different SOC) on the “partly cloudy day”: (A) water production,
(B) permeate EC and (C) SEC. Note that the Ref. represents the directly coupled system performance
(without batteries), as discussed in Section 3.1.

The remaining performance graphs of the PV-membrane system in terms of the
varied initial SOC (70%, 40%, 30% and 20%) are provided in Appendix A (Figures A2–A5)
for further comparisons. In order to have a clear overview of the system performance
when batteries are present in terms of the varied energy storage capacities over the three
“solar days”, the overall average performance values are summarized in Table 1. The
improvements of the production and water quality were discussed above. The SEC of the
reference exhibited the highest value on the “very cloudy day”, which is likely attributed
to (i) the flux decreasing instantaneously with a significant reduction in the power input
due to large fluctuations of the SI (not shown in graphs), (ii) the reduction of the flux to
0 L/h·m2 due to insufficient effective pressure for producing permeate and (iii) several
shutdown events occurring due to insufficient power to achieve the system pressure, which
resulted from large variations of the SI, hence causing the slow recovery (resilience) of the
system to be able to produce adequate permeate due to the input power discontinuity [77].
The average retention and permeate EC indicated no big differences, due to the tight
membrane with high retention used being more resilient to variations in the permeate
quality [77].

Once batteries were added, the influence of changing the energy capacity (varied
initial SOC from 100% full down to 20% full) on the “partly cloudy day” became more
apparent. The permeate production gradually increased from 402 to 767 L due to the pump
drawing the power through the batteries and PV source, enabling the pump to run at full
power during the entire period. This can be seen from the full-power duration that is shown
in Table 1. On the contrary, the average SEC declined from 4.8 to 4.0 kWh/m3 as the system
spent more time operating on full power. The average values of the RO flux exhibited the
same trends as the permeate production. When comparing the SEC with fully charged
batteries and the directly coupled reference case, it was found that, for the “sunny” and
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“partly cloudy” days, the reference SEC was lower than with the batteries. However, for
the “very cloudy day”, the reference SEC was significantly higher. This underlines the role
of incorporating Li-ion batteries to gain more permeate as a result of providing constant
power vs. the additional power that the pump consumes in terms of the fluctuations in
the SI. It highlights the design of systems with a focus on energy consumption and the
enhancement of the water quality and quantity, which can be achieved at the expense of
system efficiency and the potential of underutilizing the energy storage units.

From the experiments conducted above, it can be seen that further improvements of
the charge controller to avoid power fluctuations need to be carried out. For example, a
buck-boost converter needs to be designed to control the bidirectional power from the PV
and batteries to improve the system performance. Moreover, the system performance can
be improved by connecting the batteries in a series to have a higher voltage output (48 Vdc),
eliminating the need of the DC/DC converter, as the pump indicates a wide operating
voltage range (30~300 Vdc). In this case, the lower limit voltage of the batteries was not
constrained at 20 V, which avoided repeatable charging and discharging behaviors. Further,
the power loss was reduced due to less electronics deployed in the system. The minor
disadvantages are: (i) this battery configuration increases the failure rate if one battery is
dysfunctional, resulting in a voltage collapse and the battery pack turning off [78], and
(ii) careful cell matching is required for connections in a series, especially when drawing
heavy loads [78]. Therefore, a trade-off between a robust long-term system operation and
performance needs to be determined.

3.4. System Performance Comparisons of Batteries and SCs

The final important result can be drawn from the comparisons of the system perfor-
mance when equipped with batteries or SCs, as indicated in Figure 7. It is worth noting that
these two system setups have the same PV power rating (500 W), but the PV voltage set-
tings are different due to the voltage constraints between the SCs and batteries (discussed
in Section 2.6).

The power consumption of the motor pump with batteries remained constant around
350 W (black curve in Figure 7A), as in the previous experiments discussed above. The
pump with batteries worked at a constant voltage of 48 Vdc (see Figure 7B), and the PV
provided the photocurrent (see Figure 7D) to the pump as required. Meanwhile, the
batteries were capable of providing a continuous current to the pump during the entire day
(see Figure 7E) due to high energy storage capacity (2.4 kWh), whereas the motor power
with SCs largely followed the changes in the SI trend (plotted earlier in Figure 2). This is
due to the fact that the pump with SCs operated in terms of the PV voltage (controlled by
preset voltage thresholds, as discussed in Section 2.6; see grey curves in Figure 7C) and
mainly extracted the current from the PV, hence resulting in a higher power consumption
of the pump. In addition, a PTC lamp was connected in a series with the pump to increase
the inner resistance, which buffered the sudden changes caused by the built-in MPPT
between the SCs and SAS (with the resistance values throughout the day provided in
Figure A7). However, this was at a cost of an average power loss of ~50 W on this solar
day. As indicated in Figure 7E, the SCs were discharged promptly at the beginning of the
day. During the periods of 11:00 to 12:30, when large fluctuations occurred, the SCs started
discharging to the pump for energy buffering, with the SOC dropping to ~85%, which was
limited by the preset voltage threshold settings (Vcharging_off) to prevent deep discharging of
the SCs, and hence, a big voltage drop of the pump can be avoided. This was implemented
on the charge controller settings, as the pump always extracts the maximum power from
the power sources (both PV and SCs); consequently, the SCs cannot step in for energy
buffering when encountering the next large fluctuation. As a result, the pump with SCs
worked continuously (no shutdown events), despite the occurrence of large fluctuations.
The benefits of eliminating the shutdown events were reducing the potential damage to
the pump and RO membrane [79], as well as improving the permeate water quality and
quantity [30].
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Figure 7. Performance of PV-membrane system with fully charged Li-ion batteries (black curve) compared to the system
with SCs and the charge controller (grey curve) on the “partly cloudy day”, and the results shown for (A) the motor power,
(B) voltage of pump (VPump), (C) voltage of PV equipped with battery (VPV_Battery), (D) current of PV equipped with battery
(IPV_Battery), (E) SOC, (F) TMPRO, (G) fluxRO, (H) permeate EC, (I) permeate production and (J) SEC.

The desalination performance of the PV-membrane system was determined by the
SOC of the energy storage components, which were dependent on the availability of the
power from the PV. The TMPRO (Figure 7C), which was the driving force, determined the
RO flux (Figure 7E) and permeate EC (Figure 7F). Furthermore, as the permeate production
with SCs approached the same value as the batteries (see Figure 7G), it indicated that
the system with SCs produced much higher permeate for most of the day. The SEC with
batteries was much lower than the value with SCs, suggesting that less energy was required
to produce a unit of clean water. When compared to the directly coupled system without
SCs (see Figure A6), the use of SCs to buffer those fluctuations resulted in a 9% increase
in water production and 13% improvement in the SEC. As discussed in Section 3.1, the
improvement of the batteries was due to the improved power quality supplied to the
membrane system as a result of providing energy and constant power over the entire day.
The water quantity increased by 16% with the Li-ion batteries (energy capacity of 2.4 kWh)
when compared to the reference. It can be anticipated that there is a region where the Li-ion



Appl. Sci. 2021, 11, 856 20 of 29

batteries overlaps with SCs if the batteries have small capacities (such as ~1 Ah providing
five min of power to the system). Therefore, it is recommended to employ Li-ion batteries
instead of SCs as energy storage units in this PV-membrane system due to their high energy
intensities, charge/discharge cycles and reduced costs per kW.

It is intuitive that increasing the size of the energy storage units would provide power
for longer periods of fluctuations. This would be a trade-off between the benefits of
increasing the storage time vs. the added cost of the energy storage capacity. As indicated
in a recent report, the capital cost of SCs was estimated to be relatively stable at US$
1600/kWh [80]. The cost of Li-ion batteries reached US$ 135/kWh in 2020 and is projected
to fall below US$ 100/kWh in 2024. This was attributed to the technological advancements
and economies of scale [81]. The operation and maintenance (O&M) costs of the SCs were
~US$1/kW-yr [80], while the O&M costs of the Li-ion batteries were in the range of US$
6-14/kW-yr in 2017 [82], with further cost reductions anticipated, to attain US$ 8/kW-yr by
2025 [80].

Further work is required to (i) choose a better version of the charge controller for
batteries with high voltage outputs, such as 48 Vdc, (ii) sense the preset voltage slopes
for the charge controller to avoid the prompt discharging of SCs at the start of the day
and (iii) examine the effects of integrating Li-ion batteries and SCs on the PV-membrane
system performance and the overall improvements in water quality and quantity. An
energy management system is required to distribute the energy flow among the pump,
batteries and SCs to provide higher water quality and quantity.

4. Conclusions

The suitability of two different electrical energy storage options—Li-ion batteries
and SCs—to improve the water quantity of a PV-membrane system was investigated and
compared to a battery-less performance. The tests with/without energy storage were
conducted under varied weather conditions using high-temporal-resolution (one-s) SI data.
The addition of one day’s worth of energy storage (2.4 kWh) Li-ion batteries enabled the
full-power operation of the pump for 8–11 h over the three “solar days”, which exhibited
different levels of fluctuations in solar irradiance. Consequently, the fully charged batteries
allowed a 15–80% increase in the permeate production and a 3–27% increase in the permeate
quality. The average permeate quality with/without Li-ion batteries all fulfilled the WHO
guidelines, which highlights the good system design and appropriate choice of membrane
and PV array sizing. In particular, the effects of varied energy storage capacities on the
PV-membrane system on the “partly cloudy day” were investigated. It was found that
the improvement of water production occurred at an initial SOC higher than 50% (energy
capacity of 1.2 kWh), while the lower initial SOC and, therefore, the low energy storage
capacity caused a system shutdown after fully discharging due to repeated attempts of
charging and discharging behaviors. Finally, the system performance comparisons on the
“partly cloudy day” between the additions of Li-ion batteries and SCs were studied. The
use of SCs for short-term energy buffering resulted in a 9% increase in water production
and 13% improvement in the SEC. This was compared with Li-ion batteries for providing
long-term power, which resulted in a 16% increase in water production and an 8% increase
in the SEC.

In summary, Li-ion batteries are an interesting energy storage option for PV-membrane
systems, due to their high energy intensity, large number of charging/discharging cycles
and their steadily decreasing costs. When considering long-term system operations for
periods up to 20 years in remote regions, the option of oversizing the PV array and allowing
for a directly coupled PV-membrane system potentially offers a more reliable solution.
Further investigations on this sizing approach and the associated life cycle costs need
to be carried out. Moreover, the option of combining SCs and Li-ion batteries should
be examined, which would enable the short-term delivery of large amounts of power
(buffering) and longer-term energy storage. This approach would require further research
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and development on a suitable energy management system to distribute the energy flows
required.
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Appendix A.

Appendix A.1. The Calculation of the Total Amount of Energy Required from the Batteries (Etot)

The Etot is the integrated area between the “very cloudy” and “sunny” days. This
is used to estimate the amount of energy that needs to be supplied from the batteries to
supplement the PV power generated under the worst-case conditions (the “very cloudy
day”) and to increase this to the amount generated under the best-case conditions (the
“sunny day”), as indicated in Figure A1.

Figure A1. Total amount of energy required (Etot) over the entire day, indicating the energy capacity
required from the batteries.
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Appendix A.2. The Performance of the PV-Membrane System at 70% of the SOC on the “Partly
Cloudy Day”

The additional performances of the PV-membrane system with the Li-ion batteries at
a 70% SOC (energy capacities of 1.7 kWh) are presented here as supplementary results for
Section 3.3.

Figure A2. The performance of the PV-membrane system on the “partly cloudy day” equipped with batteries at 70% SOC,
indicating (A) the motor power, (B) battery current, (C) battery voltage, (D) SOC, (E) RO flux, (F) TMPRO, (G) production
and (H) SEC. Note that the black curves on graphs (A), (E) and (F) are the moving average values of 10 points.

Appendix A.3. The Performance of the PV-Membrane System at 40% of the SOC on the “Partly
Cloudy Day”

The additional performances of the PV-membrane system with the Li-ion batteries at
a 40% SOC (energy capacities of 1 kWh) are presented here as supplementary results for
Section 3.3.
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Figure A3. The performance of the PV-membrane system on the “partly cloudy day” equipped with batteries at 40% SOC,
indicating (A) the motor power, (B) battery current, (C) battery voltage, (D) SOC, (E) RO flux, (F) TMPRO, (G) production
and (H) SEC. Note that the black curves on graphs (A), (E) and (F) are the moving average values of 10 points.

Appendix A.4. The Performance of the PV-Membrane System at 30% of the SOC on the “Partly
Cloudy Day”

The additional performances of the PV-membrane system with the Li-ion batteries at
a 30% SOC (energy capacities of 0.7 kWh) are presented here as supplementary results for
Section 3.3.

Figure A4. The performance of the PV-membrane system equipped on the “partly cloudy day” with batteries at 30% SOC,
indicating (A) the motor power, (B) battery current, (C) battery voltage, (D) SOC, (E) RO flux, (F) TMPRO, (G) production
and (H) SEC. Note that the black curves on graphs (A), (E) and (F) are the moving average values of 10 points.
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Appendix A.5. The Performance of the PV-Membrane System at 20% of the SOC on the “Partly
Cloudy Day”

The additional performances of the PV-membrane system with the Li-ion batteries at
a 20% SOC (energy capacities of 0.5 kWh) are presented here as supplementary results for
Section 3.3.

Figure A5. The performance of the PV-membrane system on the “partly cloudy day” equipped with batteries at 20% SOC,
indicating (A) the pump power, (B) battery current, (C) battery voltage, (D) SOC, (E) RO flux, (F) TMPRO, (G) production
and (H) SEC. Note that the black curves on graphs (A), (E) and (F) are the moving average values of 10 points.

Appendix A.6. Performance of the Directly Coupled PV-Membrane System without SCs on the
“Partly Cloudy Day”

The additional performances of the directly coupled PV-membrane system without
SCs are presented here as supplementary results for Section 3.4.
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Figure A6. The directly coupled PV-membrane system performance on the “partly cloudy day” without SCs, indicating (A)
the solar irradiance, (B) motor power, (C) TMPRO, (D) FluxRO, (E) production and (F) SEC.

Appendix A.7. Varied Resistances of the Positive Temperature Coefficient Lamp Coupled in a Series
with the Pump

An additional PTC lamp was connected to minimize the effects of a built-in MPPT on
the charge controller and SCs.

Figure A7. Varied resistances with the PTC lamp connected in a series with the feed pump in the
PV-membrane system, indicating (A) solar irradiance (W/m2) and (B) resistance (Ω).
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22. Aybar, H.Ş.; Akhatov, J.S.; Avezova, N.R.; Halimov, A.S. Solar powered RO desalination: Investigations on pilot project of PV
powered RO desalination system. Appl. Sol. Energy 2010, 46, 275–284. [CrossRef]

23. Shen, J.; Mkongo, G.; Abbt-Braun, G.; Ceppi, S.L.; Richards, B.S.; Schäfer, A.I. Renewable energy powered membrane technology:
Fluoride removal in a rural community in northern Tanzania. Sep. Purif. Technol. 2015, 149, 349–361. [CrossRef]

24. Robinson, R.; Ho, G.E.; Mathew, K. Development of a reliable low cost RO desalination unit for remote communities. Desalination
1992, 86. [CrossRef]

25. Mathew, K.; Dallas, S.; Ho, G.E.; Anda, M. Solar-Powered Village Water Supply System from Brackish Water. In World Renewable
Energy Congress VI; Pergamon Press: Oxford, UK, 2000; pp. 2061–2064. [CrossRef]

26. Thomson, M.; Infield, D. Laboratory demonstration of a photovoltaic-powered seawater reverse-osmosis system without batteries.
Desalination 2005, 183, 105–111. [CrossRef]

27. Dallas, S.; Sumiyoshi, N.; Kirk, J.; Mathew, K.; Wilmot, N. Efficiency analysis of the Solarflow—An innovative solar-powered
desalination unit for treating brackish water. Renew. Energy 2009, 34, 397–400. [CrossRef]

28. Thomson, M.; Miranda, M.S.; Infield, D. A small-scale seawater reverse osmosis system with excellent energy efficiency over a
wide operating range. Desalination 2002, 153, 229–236. [CrossRef]

https://www.iea.org/reports/world-energy-outlook-2019
http://doi.org/10.1002/ppsc.201800462
http://doi.org/10.1002/ente.201600728
http://doi.org/10.1016/j.desal.2017.10.046
http://doi.org/10.1016/j.watres.2015.02.032
http://www.ncbi.nlm.nih.gov/pubmed/25770440
http://doi.org/10.1016/j.seppur.2015.07.023
http://doi.org/10.1016/j.rser.2017.07.047
http://doi.org/10.1016/j.apenergy.2019.113524
https://etip-pv.eu/publications/fact-sheets/
http://doi.org/10.1016/j.desal.2018.05.025
http://doi.org/10.1038/s41545-018-0020-z
http://doi.org/10.3390/ijerph15091913
http://doi.org/10.1016/j.desal.2019.01.003
http://doi.org/10.1016/j.watres.2017.11.027
http://www.ncbi.nlm.nih.gov/pubmed/29174829
http://doi.org/10.1016/j.desal.2016.09.014
http://doi.org/10.1016/j.watres.2018.09.056
http://www.ncbi.nlm.nih.gov/pubmed/30317037
http://doi.org/10.1021/acssuschemeng.6b02455
http://doi.org/10.1016/j.desal.2019.114217
http://doi.org/10.1016/j.desal.2017.03.009
http://doi.org/10.1038/s41545-018-0026-6
http://doi.org/10.1016/j.desal.2008.07.019
http://doi.org/10.3103/S0003701X10040080
http://doi.org/10.1016/j.seppur.2015.05.027
http://doi.org/10.1016/0011-9164(92)80020-A
http://doi.org/10.1016/B978-008043865-8/50439-6
http://doi.org/10.1016/j.desal.2005.03.031
http://doi.org/10.1016/j.renene.2008.05.016
http://doi.org/10.1016/S0011-9164(02)01141-4


Appl. Sci. 2021, 11, 856 27 of 29

29. Miranda, M.S.; Infield, D. A wind-powered seawater reverse-osmosis system without batteries. Desalination 2002, 153, 9–16.
[CrossRef]

30. Park, G.L.; Schäfer, A.I.; Richards, B.S. The Effect of internittent operation on a wind-powered membrane system for brackish
water desalination. Water Sci. Technol. 2012, 65, 867–874. [CrossRef]

31. Bilton, A.M.; Kelley, L.C.; Dubowsky, S. Photovoltaic reverse osmosis—Feasibility and a pathway to develop technology. Desalin.
Water Treat. 2012, 31, 24–34. [CrossRef]

32. Ruiz-García, A.; Nuez, I. Long-term intermittent operation of a full-scale BWRO desalination plant. Desalination 2020, 489.
[CrossRef]

33. Park, G.L.; Schäfer, A.I.; Richards, B.S. Renewable energy powered membrane technology: The effect of wind speed fluctuations
on the performance of a wind-powered membrane system for brackish water desalination. J. Membr. Sci. 2011, 370, 34–44.
[CrossRef]

34. Park, G.L.; Schäfer, A.I.; Richards, B.S. Renewable energy-powered membrane technology: Supercapacitors for buffering resource
fluctuations in a wind-powered membrane system for brackish water desalination. Renew. Energy 2013, 50, 126–135. [CrossRef]

35. Richards, B.S.; Park, G.L.; Pietzsch, T.; Schäfer, A.I. Renewable energy powered membrane technology: Brackish water desalination
system operated using real wind fluctuations and energy buffering. J. Membr. Sci. 2014, 468, 224–232. [CrossRef]

36. Soric, A.; Cesaro, R.; Perez, P.; Guiol, E.; Moulin, P. Eausmose project desalination by reverse osmosis and batteryless solar energy:
Design for a 1m3 per day delivery. Desalination 2012, 301, 67–74. [CrossRef]

37. Gür, T.M. Review of electrical energy storage technologies materials and systems: Challenges and prospects for large-scale grid
storage. Energy Environ. Sci. 2018, 11, 2696–2767. [CrossRef]

38. Gee, A.M.; Robinson, F.V.P.; Dunn, R.W. Analysis of Battery Lifetime Extension in a Small-Scale Wind-Energy System Using
Supercapacitors. IEEE Trans. Energy Convers. 2013, 28, 24–33. [CrossRef]

39. Sufan, M.; Rahim, N.A.; Aman, M.M.; Tan, C.K.; Raihan, S.R.S. Sizing and applications of battery energy storage technologies in
smart grid system A review. J. Renew. Sustain. Energy 2019, 11, 014105. [CrossRef]

40. Li, S.; Voigt, A.; Schäfer, A.I.; Richards, B.S. Renewable energy powered membrane technology: Energy buffering control system
for improved resilience to periodic fluctuations of solar irradiance. Renew. Energy 2020, 149, 877–889. [CrossRef]

41. Olabi, A.G.; Onumaegbu, C.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Al-Alami, A.H. Critical Review of Energy
Storage Systems. Energy 2020, 11, 2696–2767. [CrossRef]

42. Herold, D.; Neskakis, A. A small PV-driven reverse osmosis desalination plant on the island of Gran Canaria. Desalination 2001,
137, 285–292. [CrossRef]

43. Bouhadjar, S.I.; Kopp, H.; Britsch, P.; Deowan, S.A.; Hoinkis, J.; Bundschuh, J. Solar powered nanofiltration for drinking water
production from fluoride-containing groundwater– A pilot study towards developing a sustainable and low-cost treatment plant.
J. Environ. Manag. 2019, 231, 1263–1269. [CrossRef]

44. Alghoul, M.A.; Poovanaesvaran, P.; Mohammed, M.H.; Fadhil, A.M.; Muftah, A.F.; Alkilani, M.M.; Sopian, K. Design and
experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system. Renew.
Energy 2016, 93, 101–114. [CrossRef]

45. May, G.J.; Davidson, A.; Monahov, B. Lead batteries for utility energy storage: A review. J. Energy Storage 2018, 15, 145–157.
[CrossRef]

46. VARTA: VARTA Pulse /Pulse Neo. Available online: https://www.varta-storage.com/fileadmin/varta_storage/downloads/
products/energy/varta-pulse/Datasheet_VARTA_pulse_en_17.pdf (accessed on 16 May 2020).

47. Vega-Garita, V.; Hanif, A.; Narayan, N.; Ramirez-Elizondo, L.; Bauer, P. Selecting a suitable battery technology for the photovoltaic
battery integrated module. J. Power Sources 2019, 438. [CrossRef]

48. Alexander, D. Li-Ion Batteries for Transportation Applications. Available online: https://www.batterypoweronline.com/blogs/
li-ion-batteries-for-transportation-applications/ (accessed on 29 September 2020).

49. Mueller, S.C.; Sandner, P.G.; Welpe, I.M. Monitoring innovation in electrochemical energy storage technologies: A patent-based
approach. Appl. Energy 2015, 137, 537–544. [CrossRef]

50. Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew.
Sustain. Energy Rev. 2018, 89, 292–308. [CrossRef]

51. Tan, N.M.L.; Abe, T.; Akagi, H. A 6-kW, 2-kWh Lithium-Ion Battery Energy Storage System Using a Bidirectional Isolated DC-DC
Converter. In Proceedings of the 2010 International Power Electronics Conference, Sapporo, Japan, 21–24 June 2010.

52. Weniger, J.; Tjaden, T.; Quaschning, V. Sizing and grid integration of residential PV battery systems. IEEE Trans. Energy Convers.
2019, 34, 562–571.

53. Glavin, M.E.; Chan, P.K.W.; Armstrong, S.; Hurley, W.G. A Stand-Alone Photovoltaic Supercapacitor Battery Hybrid Energy
Storage System. In Proceedings of the 2008 13th International Power Electronics and Motion Control Conference (EPE-PEMC
2008), Poznan, Poland, 1–3 September 2008.

54. Bludszuweit, H.; Fandos, J.M.; Domínguez, J.A.; Llombart, A.; Sanz, J. Simulation of a Hybrid System Wind Turbine-Battery-
Ultracapacitor. Renew. Energy Power Qual. J. 2005, 1, 254–259. [CrossRef]

55. Mehr, T.H.; Masoum, M.A.S.; Jabalameli, N. Grid-Connected Lithium-Ion Battery Energy Storage System for load levelling
and Peak Shaving. In Proceedings of the Australasian Universities Power Engineering Conference, AUPEC 2013, Hobart, TAS,
Australia, 29 September–3 October 2013.

http://doi.org/10.1016/S0011-9164(02)01088-3
http://doi.org/10.2166/wst.2012.912
http://doi.org/10.5004/dwt.2011.2398
http://doi.org/10.1016/j.desal.2020.114526
http://doi.org/10.1016/j.memsci.2010.12.003
http://doi.org/10.1016/j.renene.2012.05.026
http://doi.org/10.1016/j.memsci.2014.05.054
http://doi.org/10.1016/j.desal.2012.06.013
http://doi.org/10.1039/C8EE01419A
http://doi.org/10.1109/TEC.2012.2228195
http://doi.org/10.1063/1.5063866
http://doi.org/10.1016/j.renene.2019.12.033
http://doi.org/10.1039/C8EE01419A10.1039/c8ee01419a
http://doi.org/10.1016/S0011-9164(01)00230-2
http://doi.org/10.1016/j.jenvman.2018.07.067
http://doi.org/10.1016/j.renene.2016.02.015
http://doi.org/10.1016/j.est.2017.11.008
https://www.varta-storage.com/fileadmin/varta_storage/downloads/products/energy/varta-pulse/Datasheet_VARTA_pulse_en_17.pdf
https://www.varta-storage.com/fileadmin/varta_storage/downloads/products/energy/varta-pulse/Datasheet_VARTA_pulse_en_17.pdf
http://doi.org/10.1016/j.jpowsour.2019.227011
https://www.batterypoweronline.com/blogs/li-ion-batteries-for-transportation-applications/
https://www.batterypoweronline.com/blogs/li-ion-batteries-for-transportation-applications/
http://doi.org/10.1016/j.apenergy.2014.06.082
http://doi.org/10.1016/j.rser.2018.03.002
http://doi.org/10.24084/repqj03.270


Appl. Sci. 2021, 11, 856 28 of 29

56. Bansal, A.K.; Holzer, W.; Penzkofer, A.; Tsuboi, T. Absorption and emission spectroscopic characterization of platinum-octaethyl-
porphyrin (PtOEP). Chem. Phys. 2006, 330, 118–129. [CrossRef]

57. Dupont: FilmTec Fiberglassed Elements for Light Industrial Systems. Available online: https://www.dupont.com/products/
filmtecbw304040.html (accessed on 29 September 2020).

58. Schäfer, A.I.; Broeckmann, A.; Richards, B.S. Renewable energy powered membrane technology. 1. Development and characteri-
zation of a photovoltaic hybrid membrane system. Environ. Sci. Technol. 2007, 41, 998–1003. [CrossRef]

59. Richards, B.S.; Capão, D.P.S.; Schäfer, A.I. Renewable energy powered membrane technology. 2. The effect of energy fluctuations
on performance of a photovoltaic hybrid membrane system. Environ. Sci. Technol. 2008, 42, 4563–4569. [CrossRef]

60. Pristash, S.R.; Corp, K.L.; Rabe, E.J.; Schlenker, C.W. Heavy-Atom-Free Red-to-Yellow Photon Upconversion in a Thiosquaraine
Composite. ACS Appl. Energy Mater. 2020, 3, 19–28. [CrossRef]

61. Sunmodule SW 100 Poly RGP. Available online: https://www.boutiquesolaire.fr/Docs/Solarworld/SW_poly_100-24.pdf (ac-
cessed on 9 June 2020).

62. Aschermann, G.; Jeihanipour, A.; Shen, J.; Mkongo, G.; Dramas, L.; Croue, J.P.; Schafer, A. Seasonal variation of organic matter
concentration and characteristics in the Maji ya Chai River (Tanzania): Impact on treatability by ultrafiltration. Water Res. 2016,
101, 370–381. [CrossRef] [PubMed]

63. Photovoltaic Geographical Information System. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/#MR (accessed on 8
December 2020).

64. Australian Standard. Australian Standard: AS 4509.2-2002 Stand-Alone Power Systems—System Design Guidelines; Council of
Standards Australia: Sydney, Australia, 2002; Available online: https://www.planetarypower.com.au/info/ausstd4509_2.pdf
(accessed on 17 July 2020).

65. Cheng, Y.Y.; Fückel, B.; Khoury, T.; Clady, R.G.C.R.; Tayebjee, M.J.Y.; Ekins-Daukes, N.J.; Crossley, M.J.; Schmidt, T.W. Kinetic
Analysis of Photochemical Upconversion by Triplet−Triplet Annihilation: Beyond Any Spin Statistical Limit. J. Phys. Chem. Lett.
2010, 1, 1795–1799. [CrossRef]

66. Baccouche, I.; Jemmali, S.; Mlayah, A.; Manai, B.; Amara, N.E.B. Implementation of an Improved Coulomb-Counting Algorithm
Based on a Piecewise SOC-OCV Relationship for SOC Estimation of Li-Ion Battery. Int. J. Renew. Energy Res. 2018, 8, 178–187.

67. Baccouche, I.; Jemmalil, S.; Manai, B.; Chaibi, R.; Amaral, N.E.B. Hardware Implementation of an Algorithm Based on Kalman
Filter for Monitoring Low Capacity Li-Ion Batteries. In Proceedings of the 7th International Renewable Energy Congress (IREC),
Hammamet, Tunisia, 22–24 March 2016; pp. 1–6.

68. Schulze, T.F.; Schmidt, T.W. Photochemical upconversion: Present status and prospects for its application to solar energy
conversion. Energy Environ. Sci. 2015, 8, 103–125. [CrossRef]

69. Mean Well: 500 W Single Output DC-DC Converter. Available online: https://www.meanwell-web.com/content/files/pdfs/
productPdfs/MW/SD-500/SD-500-spec.pdf (accessed on 24 June 2020).

70. Dilbeck, T.; Hanson, K. Molecular Photon Upconversion Solar Cells Using Multilayer Assemblies: Progress and Prospects. J. Phys.
Chem. Lett. 2018, 9, 5810–5821. [CrossRef]

71. Cowern, E. The Highs and Lows of Motor Voltage. 2000. Available online: https://www.ecmweb.com/design/article/20901278
/the-highs-and-lows-of-motor-voltage (accessed on 29 June 2020).

72. World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017;
Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 29 June 2020).

73. Panagopoulos, A.; Haralambous, K.J.; Loizidou, M. Desalination brine disposal methods and treatment technologies—A review.
Sci. Total Environ. 2019, 693, 133545. [CrossRef]

74. Mansour, S.; Arafat, H.A.; Hasan, S.W. Brine Management in Desalination Plants. In Desalination Sustainability: A Technical,
Socioeconomic, and Environmental Approach; Elsevier: Amsterdam, The Netherlands, 2017; pp. 207–236.

75. Ziolkowska, J.R.; Reyes, R. Prospects for Desalination in the United States—Experiences From California, Florida, and Texas. In
Competition for Water Resources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 298–316. [CrossRef]

76. Fact Sheet 32: Salinity of Groundwater in SA. Available online: https://catalogue.nla.gov.au/Record/4941705 (accessed on 18
December 2020).

77. Boussouga, Y.-A.; Richards, B.S.; Schäfer, A.I. Renewable energy powered membrane technology: System resilience under
solar irradiance fluctuations during the treatment of fluoride-rich natural waters by different nanofiltration/reverse osmosis
membranes. J. Membr. Sci. 2021, 617, 118452. [CrossRef]

78. Rüdiger, M.; Fischer, S.; Frank, J.; Ivaturi, A.; Richards, B.S.; Krämer, K.W.; Hermle, M.; Goldschmidt, J.C. Bifacial n-type silicon
solar cells for upconversion applications. Sol. Energy Mater. Sol. Cells 2014, 128, 57–68. [CrossRef]

79. McBride, R.; Morris, R.; Hanbury, W. Wind Power A Reliable Source for Desalination. Desalination 1987, 67, 559–564. [CrossRef]
80. Mongird, K.; Fotedar, V.; Viswanathan, V.; Koritarov, V.; Balducci, P.; Hadjerioua, B.; Alam, J. Energy Storage Technology and Cost

Characterization Report; Pacific Northwest National Lab.: Richland, WA, USA, 2019. Available online: https://www.energy.gov/
sites/prod/files/2019/07/f65/Storage%20Cost%20and%20Performance%20Characterization%20Report_Final.pdf (accessed on
24 November 2020).

http://doi.org/10.1016/j.chemphys.2006.08.002
https://www.dupont.com/products/filmtecbw304040.html
https://www.dupont.com/products/filmtecbw304040.html
http://doi.org/10.1021/es061166o
http://doi.org/10.1021/es703157n
http://doi.org/10.1021/acsaem.9b01808
https://www.boutiquesolaire.fr/Docs/Solarworld/SW_poly_100-24.pdf
http://doi.org/10.1016/j.watres.2016.05.022
http://www.ncbi.nlm.nih.gov/pubmed/27288671
https://re.jrc.ec.europa.eu/pvg_tools/en/#MR
https://www.planetarypower.com.au/info/ausstd4509_2.pdf
http://doi.org/10.1021/jz100566u
http://doi.org/10.1039/C4EE02481H
https://www.meanwell-web.com/content/files/pdfs/productPdfs/MW/SD-500/SD-500-spec.pdf
https://www.meanwell-web.com/content/files/pdfs/productPdfs/MW/SD-500/SD-500-spec.pdf
http://doi.org/10.1021/acs.jpclett.8b02635
https://www.ecmweb.com/design/article/20901278/the-highs-and-lows-of-motor-voltage
https://www.ecmweb.com/design/article/20901278/the-highs-and-lows-of-motor-voltage
https://www.who.int/publications/i/item/9789241549950
http://doi.org/10.1016/j.scitotenv.2019.07.351
http://doi.org/10.1016/b978-0-12-803237-4.00017-3
https://catalogue.nla.gov.au/Record/4941705
http://doi.org/10.1016/j.memsci.2020.118452
http://doi.org/10.1016/j.solmat.2014.05.014
http://doi.org/10.1016/0011-9164(87)90269-4
https://www.energy.gov/sites/prod/files/2019/07/f65/Storage%20Cost%20and%20Performance%20Characterization%20Report_Final.pdf
https://www.energy.gov/sites/prod/files/2019/07/f65/Storage%20Cost%20and%20Performance%20Characterization%20Report_Final.pdf


Appl. Sci. 2021, 11, 856 29 of 29

81. Statista Research Department: Lithium-ion Battery Pack Costs Worldwide between 2011 and 2020. 2020. Available online:
https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/ (accessed on 24 November 2020).

82. Aquino, T.; Roling, M.; Baker, C.; Rowland, L. Battery Energy Storage Technology Assessment. 29 Novermber 2017. Prepared
for the Platte River Power Authority by HDR/Omaha, Nebraska. 2017. Available online: https://www.prpa.org/wp-content/
uploads/2017/10/HDR-Battery-Energy-Storage-Assessment.pdf (accessed on 24 November 2020).

https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/
https://www.prpa.org/wp-content/uploads/2017/10/HDR-Battery-Energy-Storage-Assessment.pdf
https://www.prpa.org/wp-content/uploads/2017/10/HDR-Battery-Energy-Storage-Assessment.pdf

	Introduction 
	Water Scarcity 
	Directly Coupled PV-Membrane System 
	Energy Storage Options for Small-Scale PV Systems 
	System Control with Energy Storage Options 
	Research Needs 

	Materials and Methods 
	PV Membrane System Description 
	Water Quality and Membrane Type 
	Solar Energy and “Solar Days” 
	Lithium-Ion Batteries Sizing 
	State-of-Charge Estimation 
	Supercapacitors Energy Buffering and Charge Controller 
	Experimental Design 

	Results and Discussion 
	Operation Carried out on the “Partly Cloudy Day” (With and without Fully Charged Batteries) 
	Operations on Other “Solar Days” (With and without Fully Charged Batteries) 
	Operation with Different Energy Storage Capacities 
	System Performance Comparisons of Batteries and SCs 

	Conclusions 
	
	The Calculation of the Total Amount of Energy Required from the Batteries (Etot) 
	The Performance of the PV-Membrane System at 70% of the SOC on the “Partly Cloudy Day” 
	The Performance of the PV-Membrane System at 40% of the SOC on the “Partly Cloudy Day” 
	The Performance of the PV-Membrane System at 30% of the SOC on the “Partly Cloudy Day” 
	The Performance of the PV-Membrane System at 20% of the SOC on the “Partly Cloudy Day” 
	Performance of the Directly Coupled PV-Membrane System without SCs on the “Partly Cloudy Day” 
	Varied Resistances of the Positive Temperature Coefficient Lamp Coupled in a Series with the Pump 

	References

