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A B S T R A C T   

Three-dimensional thermal mapping from aerial images can be used in energy audits. Tie points that define the 
location of object points in a 3D space for reconstructing a 3D model, also include thermal information, which 
plays an important role in energy audits. However, it is often harder and less accurate to extract common features 
and determine tie points from low-resolution thermal images. It is more effective and accurate to use high- 
definition RGB images to determine tie points and fuse the RGB and thermal information. In this study, we 
investigate how to utilize high-definition RGB images that allow for more accurate tie point detection, how 
different flight configurations affect tie point data fusion, and how tie point data fusion performance can be 
improved. We propose a tie points’ thermal and RGB data-fusion framework to create district-level thermal 
mapping to solve such problems. This paper aims to evaluate how different flight configurations affect the results 
of the proposed data fusion approach. Flight configurations include different camera altitudes (60 m and 35 m), 
distinct camera angles (45 degrees and 30 degrees), diverse flight path designs (mesh grid and Y path), and 
various building styles (campus buildings and city buildings). 

We find the following results in this paper: (1) higher flight altitude is not suggested for our data fusion 
approach; (2) a 30-degree thermal camera angle is suggested for roof inspection, while a 45-degree thermal 
camera angle is suggested for façade inspection when using the tie point data fusion approach; (3) a Y flight path 
performs better than a mesh grid path; and (4) our tie point data fusion approach performs better in traditional 
European city buildings than in modern campus buildings. We also demonstrate that pixels in the thermal im
ages’ central area can more accurately represent thermal information than pixels around the image edges for tie 
point data fusion. Additionally, our studies show that images taken at the edges of mapping areas have more 
errors. Thus, it is crucial to enlarge the survey area to obtain more accurate possible results.   

1. Introduction 

The reduction of greenhouse gas emissions and energy consumption 
is currently a high priority for many countries and organizations. The 
European Union (EU) has set a goal of cutting at least 40% of greenhouse 
gas emissions (from 1990 levels) and increase energy efficiency by 
32.5% more before 2030 [1–3]. Individual countries also have set their 
own goals. The U.K. passed The 2008 Climate Change Act [4], one of the 
world’s first comprehensive frameworks of laws on climate change [5]. 
Germany also drafted The Climate Action Law in 2019 to guarantee that 
the nation achieves its national and European climate targets [6]. As a 

part of the law, their Climate Action Plan 2050 calls for making the na
tion’s building stock largely climate neutral [6,7]. These actions are a 
clear sign that measures are being taken to improve energy efficiency. 

As buildings comprise up 35% of Germany’s total energy consump
tion [8], auditing energy performance and improving energy efficiency 
to reduce consumption have become increasingly important. To save 
energy use in buildings, it is important to understand the building en
velope that separates the conditioned and unconditioned building 
environment [9,10]. In terms of a single building, an efficient envelope 
can maintain the conditioned environment. For example, an envelope 
with fewer leaks reduces the heating or cooling load and prevents such 
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loss through walls and roofs. It has been demonstrated that increasing 
the efficiency of building envelopes is a low investment and high-return 
plan [11]. 

However, auditing energy performances and improving energy effi
ciency should not be limited to single buildings. Although it is common 
to deploy a district heating network for residential and commercial 
buildings, disadvantages exist due to issues related to the topologies of 
such networks. Plants generate heat and supply it to subnetworks, while 
several groups of buildings connected to these sub-networks consume 
heat. Buildings connected to different sub-networks are not influenced 
by each other, but buildings connected to the same subnetwork are 
dependent. Thus, energy performance audits require a global view and 
must take entire communities into consideration. Many approaches 
improve the performance of energy audits and save building energy, 
such as fan pressurization (blower door test), ultrasound, and ther
mography, [12–15]. However, unfortunately, these approaches have 
some limitations. Fan pressurization requires people to vacate indoor 
rooms to conduct experiments, which is impractical for occupied rooms. 
Ultrasound cannot precisely determine where energy loss comes from. 
Thermography is a method used to detect surface temperature values of 
building envelopes to measure energy loss [16–18]. Researchers have 
also used thermal images to reconstruct 3D thermal mapping models to 
allow users to comprehensively audit, simulate and make decisions 
regarding a building’s energy performance. However, it is not possible 
to conduct energy audits on a group of several individual buildings in an 
entire district within a short time using existing approaches. Addition
ally, certain buildings areas are difficult to reach, such as roofs and fa
cades of high-rise buildings. Therefore, to broaden the survey scope and 
reduce labor costs, this paper introduces a study that proposes to deploy 
automated fly-past surveys. In the proposed approach, unmanned 
aircraft systems (UASs), also known as drones, deploy mounted infrared 
thermal (IRT) cameras to collect data. UAS images are then used to 
reconstruct 3D models with photogrammetry technology, which allows 
city and building managers to fully audit an entire district, construct 3D 
as-is building energy models, and conduct energy simulations and di
agnostics [19]. 

Currently, technologies that utilize optical images (RGB images) 
acquired from UASs to reconstruct 3D point clouds or mesh models in 
large areas are available, but the technologies that utilize thermal im
ages for model reconstruction leave much to be desired. Thermal 
photogrammetry faces several challenges for large areas in particular: 
(1) a lower resolution of thermal images [20,21], (2) a trade-off between 
accuracy and efficiency [22], (3) the effect of environmental conditions 
for data collection [23,24]; and (4) the object-to-camera distance. Many 
studies have planned to improve the performance of thermal mapping 
model recreation by avoiding the shortcomings of thermal images 
[24,25], but these studies have split and separately processed RGB in
formation from thermal information and thus failed to make full use of 
high-definition RGB images that allow for more accurate tie point 
detection and high-quality point cloud/mesh model reconstruction 
during the mapping process. Several benefits of leveraging high- 
resolution RGB images exist to improve the performance of thermal 
model reconstruction. First, the same or a smaller number of high- 
resolution RGB images can boost the performance of thermal photo
grammetry compared to the use of only thermal images [24]. A reduc
tion in the number of required images decreases both the data collection 
and processing time, which can better meet the efficiency requirements 
of energy audits for an entire district-level investigation. Second, the 
ambient temperature has less influence on RGB photogrammetry such 
that the amount of sunlight and shade do not dramatically change. It has 
been demonstrated that some building components may have wider- 
ranging colors in RGB images but single thermal values [22,26]. The 
single thermal value of a large building component (e.g., a flat roof) is a 
considerable problem for model reconstruction. A monotonous thermal 
value can cause large undifferentiated areas resulting in reconstructions 
that lack useful information. A sparse point cloud model cannot provide 

enough information for an energy audit. Fortunately, RGB images usu
ally can reconstruct a dense point cloud model. With these facts, we 
leveraged high-resolution RGB images to improve the performance of 
thermal model reconstruction for the approach proposed in this paper. 

To reconstruct a 3D model, existing photogrammetry algorithms 
detect all potential feature points in images. A common feature point 
that can be clearly identified in two or more images can then define the 
location of a 3D object point called a reference point or a tie point. Tie 
points are extremely important because they contain essential feature 
information for reconstructing a 3D mapping model, such as geographic 
coordinates and color information of objects. Tie points can also include 
thermal information when reconstructing a thermal mapping model. 
However, the drawback of thermal images is that low resolution 
compared to RGB images makes tie points’ thermal information detec
tion more difficult [27]. Therefore, studies on fusing tie points’ thermal 
and RGB information are vital. Our study uses high-resolution RGB 
images to create a mapping model and then add thermal information to 
the tie points in the RGB mapping model. Thus, the tie points are 
detected by high-resolution RGB images and include thermal informa
tion. This tie point data fusion procedure might be impacted by data 
collection approaches such as flight altitudes, camera angles, and flight 
patterns, and it produces various results when surveying a range of 
buildings. The study described in this paper examines these factors and 
analyzes how various UAS flight configurations influence the perfor
mance of tie point data fusion and how data fusion performances differ 
when surveying distinct building styles. This paper also aims to provide 
suggestions for data collection and strategies for data processing to 
improve the tie point data fusion approach. 

The rest of this paper is organized as follows. In Section 2, related 
work is summarized. In Section 3, proposed research methods are pre
sented. The results of four different experiments under varying condi
tions with test factors are described in Section 4, followed by their 
evaluation and discussion in Section 5 and the conclusion and future 
work in Section 6. 

2. Related work 

2.1. Data collection approaches 

In the past few years, aerial surveys have dominated the market in 
auditing large areas. For example, Iwaszczuk et al. 2016 used oblique 
airborne thermal infrared images taken from helicopters to extract and 
register textures onto a premade 3D BIM model [28,29]. Martinez et al. 
2006 [30] used autonomous helicopters to audit building energy. 
However, aerial surveys, including those facilitated by helicopters and 
airplanes, require a large amount of labor and time. In addition, build
ings in investigated areas may be vulnerable under helicopters and 
airplanes. Today, unmanned aircraft systems (UASs) have become one of 
the most popular tools for data collection in the field of 3D capturing of 
buildings and construction site surveying for both indoor and outdoor 
structures [31–33]. For example, Kim et al. 2019 [31] operated drones 
over a construction site to efficiently gather data. Hamledari et al. 2017 
[33] implemented computer vision algorithms on drone images to 
automatically detect components of indoor partitions such as studs, 
insulation, electrical outlets, and the state of drywall work. This infor
mation allowed updating of the 4D BIM schedule and progress 
information. 

Another popular method is the use of mobile mapping systems 
(MMSs) and scanning from a vehicle, known as an unmanned ground 
vehicles (UGVs) [19,34,35], and researchers have also combined UGV 
and UAS techniques [36]. Park et al. 2019 [36] demonstrated that 
construction site areas were difficult to explore from the ground level. 
They used a UAS over a construction site to generate a model that then 
created an optimal path for a mobile robot. Their approach was designed 
to reduce human interference in comprehensive data collection and to 
frequently monitor and update to provide the most effective decision- 



making. For data collation in which an UGV is not feasible, portable 
mobile mapping (PMMS), such as GeoSlam Zeb-Revo has proved to be 
more effective. Dewez et al. 2017 [37] used a Zeb-Revo handheld mobile 
laser scanner to map underground cavities, and Rodriguez-Martin et al. 
2018 [38] used a Zeb-Revo to map 3D models in hospital machine 
rooms. 

2.2. Photogrammetry and thermal mapping modeling 

Imagery data collected through UASs or UGVs can be processed by 
photogrammetry to reconstruct a 3D mapping model that uses a series of 
paired images for further analysis. Finding correspondence is the first 
step in photogrammetry, a process that detects common features in 
distinct but overlapped images. Common features are attributes that 
describe the same objects in distinct images. There are two widely used 
algorithms for common feature detection, scale-invariant feature 
transform (SIFT) [39] and speeded-up robust features (SURF) [40]. The 
SIFT algorithm recognizes an object in one of the reference images and 
compares its features to others to locate matching features based on the 
Euclidean distance of their feature vectors. SURF conducts the same 
process of locating candidate matching features, but it is based on 
different calculations. Although SIFT is superior to SURF when images 
have different scales, SURF has a better result when images are blurry. 
Additionally, SURF is three times faster than SIFT [41]. After candidate- 
matching features are found, a random sample consensus (RANSAC) 
[42] is utilized to remove incorrectly matched outliers. Next, detected 
and filtered feature points determine corresponding points in the 3D 
space. Since these 3D points tie the images together, they are defined as 
tie points. The final step involves structure from motion (SfM) [43–45] 
in which a 3D spatial point cloud model is reconstructed from 2D 
reference images. If a mesh model is needed, the triangulation algorithm 
can convert the given point cloud model into a consistent polygonal 
(mesh) model [46]. 

UASs- and UGV-based RGB and thermal photogrammetry have been 
widely used. Related works are summarized in Table 1 and show two 
types of studies: mapping from 2D data and from 3D data. Mapping RGB 
or thermal models from 2D data refers to using a series of paired images 
RGB or thermal images to reconstruct 3D models by photogrammetry 
algorithm. Mapping from 3D data refers to using both a LiDAR (3D laser 
scanning) tool and an RGB or thermal camera. As Laguela Lopez et al. 
2014 [47] described, upper façade parts and roofs cannot be investi
gated using UGVs. Additionally, fewer studies have focused on thermal 
mapping modeling for energy audits at a large district level using UASs. 

Thermal mapping photogrammetry allows researchers to detect 
thermal leakages [24,25,63,64], and they have used quantitative and 
qualitative approaches in their studies. Quantitative approaches have 
included (1) R-value and U-value measurements [65], (2) moisture 
content identification [66]; and (3) a calculation of the percentage of 
areas with thermal anomalies. Qualitative approaches have included (1) 

classification of walls, glazing, and windows; (2) thermal bridge iden
tification; (3) air leakage inspection; (4) moisture inspection; and (5) 
HVAC and electrical systems presentation [24]. However, all of these 
studies have been limited to single buildings, and they failed to consider 
tradeoffs between efficiency and accuracy when auditing building en
ergy using UASs for an entire district. To improve the performance and 
efficiency of thermal 3D mapping model reconstruction, it is necessary 
to consider the several issues summarized in Table 2. Researchers are 
aware of these facts as well as the differences between RGB cameras and 
thermal cameras. As a result, they have tested various factors related to 
data collection, such as different flight paths, camera angles, and flight 
altitudes that influence the performance of reconstructing thermal 
mapping models [22]. However, the traditional thermal mapping 
approach only uses thermal images without the full benefit of high- 
resolution RGB images to support modeling. Many researchers are 
exploring an effective method to fuse both thermal and RGB 
information. 

2.3. Data fusion approaches 

Research conducted on the fusion of thermal information and RBG 
information has produced three primary methods to perform geometric 
registration between thermal images and 3D models: 2D-2D (image to 
image) matching, 2D-3D (image to model) matching, and 3D-3D (model 
to model) matching [59]. Related studies are as follows: 

2.3.1. 2D-2D 
Ham et al. 2013 [27] tested several traditional algorithms, including 

SIFT, Affine-SIFT (ASIFT) and SURF to register visible images through 
thermal images captured from different cameras. Although these algo
rithms were commonly used for thermal-thermal or visible-visible pairs, 
their studies showed that the traditional algorithms performed relatively 
poorly for thermal-visible pairs. To improve performance, Weinmann 
et al. 2014 proposed using a shape-based matching algorithm for 2D-2D 
image registration [68]. González-Aguilera et al. 2012 [69] extracted 

Table 1 
3D Model reconstruction.  

Data 
sources 

Mapping from 2D data Mapping from 3D data 

UASs RGB model (Clarkson et al. 2017 
[48]; Chen et al. 2019 [49]; Chen 
et al. 2020 [50]; Park et al. 2019 
[36]) 
Thermal model (Iwaszczuk et al. 
2016 [34]; Maset et al. 2017 [51]; 
Bayomi et al. 2019 [52]; Hou et al. 
2021 [53]) 

RGB model (Kim et al. 2013 
[53];Xu et al. 2015 [54]; Campos- 
Taberner et al. 2016 [55]; 
Castagno et al. 2018 [56]) 
Thermal model (Ilehag et al. 
2018 [57]) 

UGVs RGB model (Yamaguchi et al. 
2018 [58]; Park et al. 2019 [36]) 
Thermal model (Lopez et al. 2014 
[47]; Lin et al. 2019 [59]) 

RGB model (Chen et al. 2018 
[60]) 
Thermal model ( 
Laguela et al. 2011 [61]; 
Borrmann et al. 2012 [62];  

Table 2 
Issues may improve the performance and efficiency of thermal model 
reconstruction.  

Number Issue Description 

1 Camera 
resolution 

Higher resolution thermal cameras, that perform 
better than 640 × 512, are not broadly available in 
the retail market. Lower resolution cameras are 
unable to capture sufficient thermal information and 
do not enable algorithms that could detect common 
features from overlapped images to reconstruct high- 
definition 3D models. 

2 Distance and 
angle 

The distance between the object and the cameras 
[13], as well as the incident angle (the angle between 
a ray reflected on a surface and the normal line), and 
image viewing angle should also be considered [67]. 
This is necessary because when taken from distinct 
angles, thermal images facing the same target might 
capture different temperature values and introduce 
potential errors [22]. 

3 Experiment 
time 

The time and duration of thermal cameras use could 
influence results. Many studies have suggested that 
data collection should be conducted in the early 
morning and late afternoon, and specifically on 
cloudy days [23,24]. 

4 Flight time Similar to the way in which an RGB model 
photogrammetry performance is influenced by light 
and shade, thermal model photogrammetry 
performance is influenced by objects’ temperature 
values. RGB images representing building’s 
appearance cannot be changed over short time spans, 
but thermal images representing the surface 
temperatures of buildings can change in short time 
spans. Thus, relevant thermal images must be taken as 
quickly as possible.  



common features in the thermal images and the range images (converted 
from a LiDAR point cloud model) and registered thermal images (2D) 
with range images (2D). 

2.3.2. 2D-3D 
Weinmann et al. 2014 conducted a random sample consensus 

(RANSAC) for registering 2D-3D correspondences [68]. Their research 
showed relatively good performance indoors. Iwaszczuk et al. 2016 used 
many airborne thermal images to perform linear feature matching when 
conducting 2D-3D fusion and considered the uncertainty of 3D model 
reconstruction. Lin et al. 2019 [59] pointed out the lack of research 
focusing on data acquisition that uses a handheld thermal camera and 
focused on the fusion of thermal images with RGB 3D point cloud models 
for façade energy audits. The authors then proposed an approach to 
reduce thermal disagreements, caused by misalignments, for the same 
object points provided by several associated images. Their methods 
showed good results for both geometric registration accuracy and 
thermal registration accuracy. Lin et al. 2018 [70] also focused on fusion 
of selected thermal textures with 3D mesh models. Their research 
demonstrated that the Gaussian filter performed better than a texture 
voting strategy. However, the authors’ handheld approach was not 
feasible for mapping a larger area. Lagüela et al. 2013 [71] registered a 
3D point cloud model with 2D images based on linear 3D features from 
3D model and 2D line segments from images. 

2.3.3. 3D-3D 
Wiens et al. 2019 [72] summarized two important tasks when pro

cessing point cloud data, surface estimation, and point cloud registra
tion. They proposed a new approach, the likelihood method, which was 
considered competitive with the popular iterative closest point (ICP) 
method. The authors’ method reduced the predictive mean squared 
error by 18%. Hoegner et al. 2016 and Stilla et al. 2009 [63,73] focused 
on registering a thermal point cloud onto an RGB point cloud, thus 
meeting the prerequisite that thermal and RGB point clouds should 
register at the closest points. However, it was difficult to minimize the 
distance between two point clouds since the thermal image had lower 
resolution when compared with the RGB images. Additionally, two re
constructions for thermal point clouds and RGB point clouds were based 
on two mutually exclusive series of thermal images and RGB images 
respectively, which could not guarantee the registration accuracy for 
two mutually independent point clouds. Alternatively, Truong et al. 
2017 [74] used a fixed relative pose relation between RGB cameras and 
thermal cameras as a reference point for the ICP to enhance the regis
tration between the thermal point cloud and the RGB point cloud. 

3. Research methods 

3.1. Research architecture 

This study framework consisted of four steps: (1) data collection, (2) 
camera calibration and image registration, (3) data fusion process, and 
(4) evaluation. Fig. 1 illustrates the research method workflow. 

Our first step was to investigate the influence of four factors related 
to distinct flight configurations of data collection and influences of 
diverse building styles on our data fusion approach. Specifically, the 
goal was to explore the conditions under which the data fusion approach 
performs better. These four factors included the three factors related to 
flight configurations: (1) different camera altitudes, (2) distinct camera 
angles, and (3) diverse flight paths and (4) a factor related to diverse 
building styles that refers to various architectural styles of buildings in 
urban areas (see Fig. 1, Step 1). After running these data collection 
conditions using the four factors, we compared and analyzed the per
formances of the data fusion approach using various testing factors. 

The second step was designed to pre-process the images taken before 
they were used for reconstructing models. In this step, both thermal 
images and RGB images needed to be undistorted to reduce the errors 

during the 3D model reconstruction. After removing the distortion, we 
registered and overlapped the thermal images onto the RGB image so 
that each pixel in the thermal images could find its related pixel in the 
other RGB images for photogrammetry and further the data fusion 
process. 

In the third step, we introduced the proposed data fusion approach 
procedure. The RGB images were utilized to reconstruct high- 
performance 3D models using photogrammetry algorithms. At the 
same time, the tie points were recorded while the models were recon
structed. Since the second step included the process using algorithms to 
overlap thermal images onto RGB images, the tie point RGB information 
was replaced by thermal information in corresponding overlapped 
thermal images. As shown in Fig. 1, the table in Step 3 is an example. The 
table headings record each tie point’s space coordinates, X, Y, and Z; 
color information, R, G, and B; and the thermal information, which is 
represented in grayscale. This procedure allowed for the construction of 
models with data fusion of tie points’ thermal and RGB information. 
Next, the procedure was repeated for all different conditions using the 
four test factors. 

In the fourth step, we introduced methods to evaluate the data fusion 
approach under varying conditions with various testing factors. The 
evaluation methods included (1) simple average value, (2) earth 
mover’s distance, and (3) a mean square errors (MSE) evaluation for 
images. These evaluations were based on examining errors that were 
potentially introduced by simultaneously replacing RGB pixels with 
thermal pixels. The first method calculated the mean value of the po
tential errors, the second method analyzed the frequency distribution of 
the errors, and the third method evaluated the errors from the thermal 
image perspective. All three evaluations were used to examine the ex
periments conducted under varying conditions to determine how well 
the data fusion approach performed in each of the four factors. We 
introduced each step in the following paragraphs. 

3.2. Data collection 

The UASs used in this study consisted of three parts: (1) the main 
body, (2) the data collection system, and (3) the controller. First, the 
main body consisted of an aircraft and a gimbal. Second, a FLIR DUO Pro 
R camera was used in the data collection system. This camera has both a 
thermal lens and an optical RGB lens in a single integrated package. The 
RGB image has a 4000 × 3000 resolution with a field of view (FOV) of 
56◦ × 45◦ (horizontal x vertical), and the thermal image has a 640 × 512 
resolution with a FOV of 45◦ × 37◦. One of the benefits of using the FLIR 
DUO Pro R is that both thermal and RGB images can be obtained with 
one flight task, and the gap between thermal lens and RGB lens is shorter 
than if using two separate cameras, which can reduce the uncertainties 
for image registration. Algorithms have been developed and used to 
overlap thermal images onto the RGB images for image registration. The 
third part was the controller that remotely met all experiment re
quirements for the data collection, as it had been used to operate GPS 
systems in both aircraft and cameras. The GPS system was not only used 
for automatic flight, but also to record georeferencing image data. Such 
data allowed the 3D reconstruction software to precisely re-calculate 
image positions and reduce errors [75,76]. 

The data collection step utilized UAS hardware to explore the in
fluence of various factors related to distinct flight configurations of data 
collection and diverse building styles on the data fusion approach. There 
were four factors of data collection: (1) different camera altitudes, (2) 
distinct camera angles, (3) diverse flight paths, and (4) various building 
styles in urban areas. First, the camera altitude test included 35 m and 
60 m. Although the altitude should be higher than the highest buildings 
in the tested area. it should not be too high, as the results could be 
inaccurate. Therefore, the altitudes were tested at 35 m and 60 m, which 
were 1.5 times and 3 times higher than the highest building over the 
tested area. Second, the camera angles determined how much infor
mation could be detected from the buildings, especially the façade 



Fig. 1. Research method workflow.  



information. In this study, two distinct camera angles of 45 and 30 de
grees were tested. The angles were between the camera view line and the 
vertical axis (see Fig. 1, Step 1). Third, the diverse flight path included 
the mesh grid and Y path. The commonly used flight path design was a 
mesh grid in which the drones flew facing four directions, north, south, 
east, and west. A new contrasting flight path, the Y path, was also used in 
which the drone flew in only three directions for example, north, 
southeast, and southwest with the same front and side overlap param
eters. It was confirmed that the Y path could save flight time when 
compared with the mesh grid while producing the same data quality 
[22]. Finally, the fourth comparison was the data collection conducted 
on various building styles. We collected data on a campus in Germany 
that included offices, laboratories and workshop buildings separated by 
lawns, roads, parking lots, and wide sidewalks that were relatively far 
from each other. In addition, other data collection was conducted within 
a dense urban city district in Germany where the buildings were four-to- 
six stories high and built close together. 

Images taken from the varying conditions with the four various 
factors were used to conduct the data fusion approach, and the perfor
mances of the data fusion approach were compared and analyzed. The 
four experiments presented in Section 4 were tested under varying 

conditions defined by the abovementioned four factors. 

3.3. Camera calibration and image registration 

The images taken during the data collection were pre-processed in 
this step, including (1) camera calibration, and (2) image registration, 
before they were used for reconstructing models. Camera calibration 
was necessary because of distortions in the thermal and RGB images that 
affected the 3D model reconstruction quality. In addition, image regis
tration was important because thermal images were necessary to accu
rately replace RGB images in the proposed data fusion approach. 

First, we used camera calibration to correct distorted images and 
improve the performance of the photogrammetry. Due to tangential and 
radial distortion, images could display objects incorrectly. This problem 
could be solved through camera calibration that estimates intrinsic and 
extrinsic parameters. Assuming that P was a point in the 3D space and p 
was a point in an image, formula (1) explained the projection from 3D 
point P to 2D point p. In Eq. (1), K was called the camera intrinsic matrix, 
which denoted transformation from the 3D camera coordinates system 
to the 2D image coordinates system. It was written as Eq. (2), whereby α 

kf, β lf, k and l dealt with pixel unit transformation, and θ was the 

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Camera calibration and image registration.  



angle between the x-axis and y-axis in the image coordinate system. The 
center of an image did not need to be at (0, 0); it could have been at 
position (x0, y0). In formula (1), R and t were the extrinsic parameters, 
which denoted the rotation and transformation from the 3D world co
ordinates system to a 3D camera coordinates system [77,78]. 

p K [R | t] P (1)  

K

⎡

⎢
⎢
⎣

α αcotθ x0

0
β

sinθ
y0

0 0 1

⎤

⎥
⎥
⎦ (2) 

Distortions of RGB and thermal images obtained from the cameras 
were automatically corrected by calculated intrinsic and extrinsic pa
rameters. Fig. 2 (a) and (b) show the process of calibrating the camera. 
The thermal camera captures different levels of infrared light. Materials 
with different emissivity emit different levels of infrared light for 
detection by thermal cameras, therefore the chessboard made of a hol
low tin foil sheet in cardboard was used for camera calibration, resulting 
in the solid areas being darker than the hollow areas in images. Fig. 2 (a) 
shows the camera calibration on the thermal images, and Fig. 2 (b) 
shows the camera calibration on the RGB images. 

Second, image registration allowed thermal images to be aligned 
onto RGB images at the pixel level, which accurately replaced corre
sponding RGB pixels with thermal pixels in the data fusion process, 
Although the thermal and RGB images were taken from the same angles, 
altitude, and at the same time, the thermal and optical lens packed in the 
FLIR Duo Pro R did not perfectly overlap, and thus the image registration 
between the two associated thermal and RGB images was still necessary. 
As shown in Fig. 2 (c)–(f), common feature points (highlighted using 

blue dots) on the chessboard detected from thermal and RGB images 
could be used for image registration. Feature points on the thermal 
images (images on the left of Fig. 2 (c)–(f)) were in one matrix space and 
corresponding feature points on the corresponding RGB images (images 
on the right of Fig. 2 (c)–(f)) were in another matrix space. The trans
formation between the two matrix spaces could be calculated and then 
used to transform all thermal image matrix spaces to RGB image matrix 
spaces for registration. 

3.4. Data fusion process 

We took images under varying conditions in the first step and pre- 
processed images in the second step to reconstruct models and detect 
tie points. To reconstruct a 3D model, the algorithm detected all po
tential feature points in all images as presented in Section 2. Tie points 
that were clearly identified in two or more images defined the location 
of an object point in a 3D space. There are several well-established 
software programs to process photogrammetry including Pix4D, Agi
soft, and DroneDeploy. However, none of these programs provided an 
application programming interface (API) that supported a user’s 
extended development. Fortunately, ContextCapture from Bentley [79] 
recorded all generated intermediate files for extended programming and 
thus enabled the algorithm to record all the tie points’ locations in the 
3D space and the source images where they were detected. This function 
was leveraged to fuse thermal information with RGB information and to 
evaluate the tie point data fusion performance. 

First, we assumed there were (m) visible RGB images {V(1),V(2),…… 
V(m)} and correspondingly m thermal images {T(1),T(2),……T(m)} taken 
with a drone. Visible images were then used to reconstruct a 3D point 
cloud model similar to the blue building icon shown in Fig. 3 by 

Fig. 3. Data fusion procedure.  



ContextCapture. All visible images were used to reconstruct (n) tie 
points in a 3D point cloud file, noted {TP(1),TP(2),……TP(n)}, blue solid 
dots shown in Fig. 3, and every tie point in a 3D point cloud contained 
some pixel information from various images, noted point-image pairs 
{{TP(1) : (V1,T1)……, (Vk(1),Tk(1))},{TP(2) : (V1,T1)……, (Vk(2),Tk(2))},……, 
{TP(n) : (Vany number,Tany number.)……, (Vk(n),Tk(n))}}. Since every tie point 
had a different total number of associated images, we used k(1), k(2)…… 
k(n) to distinguish this number. Also, different tie points might be asso
ciated with the same or various images, so we assumed that associated 
images for TP(n) started with any number. 

ContextCapture processed and provided several intermediate files 
that consisted of (1) tie points’ positions, (2) visible source images’ 
relevant position for the tie points, and (3) pixel positions and color 
information for their corresponding tie points that were stored in an 
XML file. Later, these files facilitated the replacement of all RGB images 
used for reconstructions with registered thermal images taken from the 
same position with the same angle. Next, visible color information for 
each tie point was fused with corresponding registered thermal infor
mation from source images. Finally, each tie point received different 
thermal values from various relevant thermal images. These relevant 
thermal images’ corresponding RGB images facilitated the reconstruc
tion of tie points. The irrelevant RGB images that did not contribute to 
reconstructing tie points, as well as the irrelevant thermal images, were 
automatically eliminated by ContextCaptures. 

An example of the tie points is represented as {TP(1) : (V1,T1)……, 
(Vk(1),Tk(1))}. TP(1) was reconstructed by k(1) number of visible images 
{V1,……Vk(1)}. If we replaced all visible images with thermal images 
{T1,……Tk(1)}, the points would receive different thermal values from 
the relevant thermal images. Thermal values were pixels in thermal 
images, noted as {pixTP(1)

(1),……pixTP(1)
(k(1)), }. Therefore, the mean 

value xTP(1) and the standard deviation (SD) value, SDTP(1) of received 
thermal values for TP(1) were calculated, as elaborated in Eqs. (3) and 
(4). The mean value xTP(1) was defined as the final thermal value (FTV) of 
the tie point. Each tie point received various thermal values from various 
relevant thermal images. However, it was important to point out that the 
various relevant thermal values for one tie point are supposed to be 
identical, because the tie point represents the same object. In other 
words, a tie point’s final thermal value (FTV) should have been the same 
as the thermal values it received from thermal images, noted as xTP(1)

pix(1)
TP(1) …… pix(k(1) )

TP(1) . Additionally, a tie point’s SDTP(1) was sup
posed to be 0. 

xTP(1)

∑k(1)
i 1pix(i)TP(1)

k(1)
(3)  

SDTP(1)

∑k(1)
i 1

⃒
⃒
⃒
⃒pix(i)TP(1) xTP(1)

⃒
⃒
⃒
⃒

2

k(1)

√
√
√
√
√

(4) 

Finally, the mean values 
{

xTP(1) , xTP(2) ,……xTP(n)

}

and SD values 

{SDTP(1),SDTP(2),……SDTP(n)} for all n tie points were calculated, and a 
graph of the frequency distribution of the SD values was generated. This 
tie point data fusion approach was repeated, and multiple SD distribu
tions under varying conditions with various factors were obtained. 

3.5. Evaluation 

We selected three widely used evaluation methods: (1) the simple 
average value (SAV), (2) the earth mover’s distance (EMD), and (3) the 
mean square errors (MSE) evaluation for images. SAV is an essential 
statistical method, EMD is commonly used to measure distance between 
two distributions, and the MSE is generally used to assess the average of 
squares of errors. There are other methods measuring the differences 
between two distributions, such as the Kullback-Leibler divergence 

(KLD) and the Jensen–Shannon divergence (JSD). However, KLD was 
not symmetric and could not be strictly considered as a metric [80,81], 
while JSD was not sensitive to small changes in datasets [80]. Therefore, 
EMD was used in this study. 

Since multiple SD distributions were obtained under varying condi
tions, these selected evaluation methods were all used to explore 
different performances of the tie point data fusion approach under 
varying conditions. 

3.5.1. Simple average value (SAV) 
Performance of the data fusion approach was first evaluated through 

a frequency distribution analysis of the SD values by calculating the 
simple average value (SAV) of all SD values. As shown in Eq. (5), we had 
(n) tie points and corresponding (n) SD values noted as {SDTP(1),SDTP(2), 
……SDTP(n)}. σ represents the average of all SD values. 

σ

∑n

i 1
SDTP(1) , SDTP(2) ,……SDTP(n)

n
(5) 

The calculated value was defined by Eq. (5) as a test value, σtest. As 
shown in Fig. 3, each tie point’s SD value was calculated based on pixels 
from various images. For example, SDTP(1) for TP(1) was calculated based 
on the corresponding k(1) number of pixels in k(1) number of various 
images (one pixel per image). Each tie point’s corresponding pixel in 
various images referred to the same object. Therefore, the k(1) number of 
pixels had the same thermal value, to be precise, the ideal value for 
SDTP(1) was supposed to be 0. Similarly, other (n-1) SD values {SDTP(2), 
……SDTP(n)} were also 0. Furthermore, the ideal value σideal for the SD 
values’ distribution should have also been 0. Unfortunately, due to er
rors caused by the distance between cameras and objects and by 
acquisition angles, the thermal images presented different values for the 
same object. Thus, σtest was not 0. Comparing σtest to σideal, smaller σtest 

demonstrated that the method by which we replaced RGB information 
with thermal information in a model performed better under corre
sponding conditions. 

3.5.2. Earth Mover’s distance (EMD) 
In this evaluation method, the frequency (probability) SD values’ 

distribution obtained from Section 3.4 is defined as a test distribution, 
and the distribution consisting of ideal SD values is the ideal distribu
tion. Ideal distribution is described as all tie points individually 
receiving equal temperature values from thermal images, meaning that 
all points respectively had an SD value of 0. As shown in Fig. 4, the 
distribution in (a) is one possible test distribution while (b) is the ideal 
distribution. The horizontal axis represents all observed possible SD 
values in the distribution, and the vertical axis represents the number of 
tie points with the given SD values. 

This evaluation measuring the discrepancy (similarity) between the 
two distributions is different than the first evaluation presented in 
Section 3.5.1. It requires that the two distributions have the same fre
quency (probability) space, which means that as long as observed 
possible SD values in the test distribution have a non-zero value of 
number of tie points having the given SD values, the corresponding SD 
values in the ideal distribution should also have a non-zero value of 
number of tie points. However, the ideal distribution just had the fre
quency (probability) of a 0 SD value, and the number of tie points with 
other observed possible SD values was null. As shown in Fig. 4 (b), the 
red arrow indicates a bar showing the number of tie points with an SD 
value of “0.” The ideal distribution needed a slight adjustment to fill the 
vacancy of the observed possible SD values in which the number of tie 
points was null. Thus, in order to use the evaluation methods introduced 
in this section, we had to maintain the same frequency (probability) 
space between the test distribution and the ideal distribution. The 
adjustment allowed a frequency of every ideal distribution’s possible SD 
value, except the SD value of “0,” to add one. As shown in the detailed 
image in the rectangle in Fig. 4 (b), the number of tie points that had 



observed possible SD values (except the SD value of 0) were all 1 s (non- 
negative as expected) instead of 0 s. This idea was to steal the frequency 
mass, which is similar to the add-one smoothing statistical method (also 
called Laplace smoothing) [82,83]. The test SD values’ distributions 
conducted under varying conditions were compared with the ideal SD 
values’ distribution to determine the performances. 

The distribution comparison metric used in this study was EMD [84]. 
Intuitively, two distributions can be perceived as a collection of blue 
bins for test distribution, and a collection of red bins for ideal distribu
tion (see Fig. 4). Bins or class intervals were equal parts into which a 
fixed total range of a data set is divided. If the test distribution contained 
a mass of earth fully spread in these blue bins and the other as a 
collection of empty red bins in which each bin’s capacity was the height 
of the bin, the EMD then measured the least amount of work needed to 
fill the red bins with earth from blue bins. This explains why we adjusted 
the ideal distribution’s space, since the plan was to have the same 
number of blue and red bins. 

Assume that the test and ideal SD values’ distributions were A and B. 
A had m bins noted as A {(a1,wa1), (a2,wa2),……, (am,wam)} in which 
ai was the blue bin and wai represented the weight of earth in the blue 
bins; whereas B had n red bins with B {(b1,wb1), (b2,wb2),……, (bn, 
wbn)} in which bi was the red bin and wai represented the capacity of red 
bins. Imagine moving a mass of earth from one of the A’s bins into one or 
some of B’s bins, and let D [di, j] as the distance between bins aiand bi. 
Now, the one-time earth transportation was defined as F [fi, j] in which 
fi, j was the weights of earth moved between aiand bi. The cost of this 
transportation was the product of weight fi, j and distance di, j. The goal 
was to minimize the overall cost of moving all earth from blue bins to red 
bins, as shown in Eq. (6). 

min
∑m

i 1

∑n

j 1
fi,jdi,j (6) 

However, the Eq. (6) was not unlimited. It was subject to the 
following constraints, from Eq. (7) to Eq. (10). First, transportation 
could only flow from distribution A to B and not vice versa, as shown in 
Eq. (7). 

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n (7) 

The amount of earth moved from the A bin to the B bin could not 
exceed the capacity of the corresponding blue bins, as shown in Eq. (8). 

∑n

j 1
fij ≤ wai, 1 ≤ i ≤ m (8) 

The amount of earth moved from the A bin to the B bin could not 
exceed the capacity of the corresponding red bins, as shown in Eq. (9). 

∑m

i 1
fij ≤ wbj, 1 ≤ j ≤ n (9) 

The total amount of earth moved from all A bins to all B bins could 
not exceed the minimum value between the total bin capacity of A and B, 
as shown in Eq. (10). This amount was the total flow. 

∑m

i 1

∑n

j 1
fi,j min

{
∑m

i 1
wai,

∑n

j 1
wbj

}

(10) 

Once the abovementioned linear optimization problem was solved, 
the optimal flow F [fi, j] was found, and the EMD was defined as 
normalizing the work by the total flow, as shown in Eq. (11). 

EMD (A,B)

∑m

i 1

∑n

j 1
fi,jdi,j

∑m

i 1

∑n

j 1
fi,j

(11) 

A higher EMD value score represents a larger difference between the 
test and the ideal distribution. Therefore, EMD could be used to compare 
different test distributions under varying conditions with the ideal dis
tribution in order to determine which test distribution is more similar to 
the ideal distribution, thus indicating under which test condition the tie 
points fusion method performs better. 

3.5.3. MSE evaluation for images 
In contrast to the first two evaluation methods that focused on 

evaluating tie points, the third evaluation method focused on evaluating 
thermal images. Thermal images were compared with their relevant tie 
points in the 3D model reconstructed by RGB images. In the data fusion 
approach (Section 3.4), each tie point received various thermal values 
from the k relevant thermal images among all m thermal images for 
example, {TP(1) : (V1,T1)……, (Vk(1),Tk(1))} for the first tie point of the n 
tie points received thermal values from k(1) relevant thermal images. 
Thus, the mean value was defined as the final thermal value (FTV) for 
example, xTP(1) for the first tie point calculated in Eq. (12). Each tie point 
in tie point data fusion had its final thermal value (FTV). 

xTP(1)

∑k(1)

i 1
pix(i)TP(1)

k(1)
(12) 

The tie point received several thermal values from the pixels in 
several images, and in reversing that process, several such pixels in one 
thermal image can find several related tie points in a 3D model. This is a 
many-to-many relationship. The differences between the thermal values 
of pixels in the thermal images and their relevant tie points’ final 

Fig. 4. Test distribution and ideal distribution.  



thermal value (FTV) are due to the data fusion method in varying con
ditions. Such differences can be calculated in Eq. (13), which is called 
the mean square error (MSE). If the FTV is a measurement for a tie point, 
the MSE is a measurement for an image. A detailed explanation of the 
MSE for one thermal image is as follows. As previously mentioned, the 
tie point data fusion approach was evaluated in different experiments 
under varying conditions. Assume each experiment had m thermal im
ages and thus m MSE values. Assume for every MSE value of every 
thermal image, it had l relevant tie points. For example, MSE(1) had l(1) 

relevant tie points that corresponded to l(1) pixels in this image; pix was 
then used to denote the value of a pixel in a thermal image. As shown in 
Fig. 3, for example, pixTP(1)

(1) represented a pixel in the first thermal 
image with a relevant tie point TP(1). Similarly, pixTP(2)

(1) represented 
another pixel in the first thermal image with a relevant tie point TP(2). 
Finally, pixels, {pixTP(1)

(1), pixTP(2)
(1)……pixTP(l(1) )

(1)}, in the first thermal 
image can be used to calculate MSE(1), as defined in Eq. (13). 

MSE(1) 1
l(1)

∑l(1)

i 1

[

pix(1)TP(i) xTP(i)

]2

(13) 

There were m MSE values for each experiment. The average of the 
total MSE values for one experiment, MSE, maximum and minimum 
value among all m MSE values MSEmax and MSEmin could be calculated 
by Eqs. (14), (15), and (16). If MSE is a measurement for one image, then 
MSEmax, MSEmin, and MSE are measurements for one experiment. 

MSE
1
m

∑m

i 1
MSE(i) (14)  

MSEmax max
{

MSE(1) ,MSE(2) ,……,MSE(m)
}

(15)  

MSEmin mim
{

MSE(1) ,MSE(2) ,……,MSE(m)
}

(16) 

In summary, the datasets were run with various tested factors dis
cussed in Step one through the approach explained in Section 3.4. The 
various tested factors included: (1) altitude comparison (60 m and 35 
m), (2) camera angle comparison (45 degrees and 30 degrees), (3) flight 
path design comparison (mesh grid and Y path), and (4) comparison of 
various building styles in urban areas (a campus with sparsely spaced 
buildings and a dense city area). The three evaluation methods included: 
(1) the simple average value, (2) the earth mover’s distance, and (3) an 
MSE evaluation for images. There methods were used to measure and 
compare the performance of the proposed tie point data fusion approach 
under the four different data acquisition testing factors previously 
described. 

4. Experiments 

IRT for energy audits usually has a requirement for temperature 
differences, which is at least 10 ◦C (18 ◦F) between indoor and outdoor 
[13]. In order to meet this requirement, we conducted our research on 
university campuses and in a city center in the winter in Karlsruhe, 
Germany. Houses are well insulated in Germany. The average recom
mended temperature there was 17 ◦C (63 ◦F) for indoor living, and the 
outdoor temperature was 5 ◦C (23 ◦F) at 7 AM when we conducted our 
experiments. This temperature difference met the requirement as pre
viously described. All experiments we conducted in this study are 
explained in the following sections. Each of the four different experi
ments corresponds with one of the four test data collection factors as 
stated in the previous paragraph. After conducting each experiment, the 
performances were evaluated. 

4.1. Experiment 1: altitude comparison 

We tested two different altitudes, 35 m and 60 m, in experiment 1. As 
described in the research method section, we calculated the first two 

evaluation methods, the SAV and EMD values, for these two flight alti
tudes and the results are summarized in Table 3. In Table 3, the condi
tion of each experiment with various test factors is abbreviated in the 
header. For example, “Campus_45◦_Mesh_35m” represents the corre
sponding experiment that was conducted on a campus with a camera 
angle of 45 degrees, a flight altitude of 35 m, and a mesh grid flight path. 
Therefore, “Campus_45◦_Mesh_35m” (Column 1) and “Cam
pus_45◦_Mesh_60m” (Column 2) were two experiments conducted and 
abbreviated as “35 m” and “60 m” in experiment 1. The rest of the 
columns are for additional experiments described in Sections 4.2, 4.3, 
and 4.4. 

The first and second columns show that using an altitude of 60 m to 
collect data for tie point data fusion can introduce errors because of the 
higher SAV and EMD values. A possible explanation is that the higher a 
drone flies, the further a thermal sensor is from the objects, and thus, 
accurately detecting thermal values becomes more difficult. 

Fig. 5 shows the SD values’ distributions for these experiments, and 
(a) shows the SD values’ distribution for a flight altitude of 35 m. The x- 
axis in Fig. 5 (a) represents all possible SD values, and the y-axis rep
resented the number of tie points with the corresponding given SD 
values. For example, 10,494 tie points, the greatest number of tie points, 
had SD values ranging from 0.3–0.4 in Fig. 5 (a). Fig. 5 (b) shows the 
same SD distribution as Fig. 5 (a) and is visualized with various colors. 
As described in the research method, each tie point had a different 
number of k of related thermal images, for example TP(1) had k(1) 

number of related thermal images. The color coding changed with k. If 
number k ranged from 0 to 5, it was blue. If k ranged from 5 to 10, it was 
red, and if more than 10, it was green. Similarly, Fig. 5 (c) and (d) show 
the two SD distributions for a flight altitude of 60 m. Comparing Fig. 5 
(a) and (c), we observe that the highest numbers of tie points were 
10,494 and 3544 for the 35 m experiment and for the 60 m experiment, 
which respectively fell between 0.3 and 0.4 of possible SD values for the 
35 m experiments, and between 0.7 and 0.8 for the 60 m experiment. A 
distribution of the 35 m visually moved closer to the vertical axis than a 
distribution of the 60 m. This also demonstrated that the 35 m experi
ment performed better. The rest of the figures are for additional ex
periments described in Sections 4.2, 4.3, and 4.4. 

4.2. Experiment 2: camera angle comparison 

In experiment 2, we examined two distinct camera angles 30 degrees 
and 45 degrees while all other flight configurations remained the same. 
The SD distribution of these experiments can be seen in Fig. 5, and the 
numerical data are summarized in Table 3. In this experiment, the two 
criteria, SAV and EMD values, for the two different camera angles were 
not consistent as shown in Table 3. For example, the 30-degree flight 
configuration (Column 3), when compared to the 45-degree flight 
configuration (Column 2) had higher EMD values, but lower SAV values. 
More evaluation criteria were then needed to allow the comparison of 
the performances for the 30-degree and the 45-degree experiments. 

In Fig. 5, (e) and (f) the two distributions for the 30-degree camera 
angle are shown. Similarly, Fig. 5 (c) and (d) show the two distributions 
for the 45-degree camera angle. We found that the number of tie points 
having more than 5 related thermal images (k ≥ 5) was greater in the 45- 
degree experiment than in the 30-degree experiment. One possible 
explanation is that deploying the camera at 45 degrees allowed the 
detection of more facade details where more feature points can be 
recognized. The research targets in this experiment were modern 
buildings with fewer decorations and details on their flat roofs. Since the 
3D model and tie points were reconstructed and detected by RGB im
ages, features on facades were more heterogeneous and easier for al
gorithms to detect when compared to the less-diverse features on flat 
roofs. 



4.3. Experiment 3: flight path comparison 

In experiment 3, we tested two different flight paths: a mesh grid and 
a Y path. The evaluation numerical data for these experiments are 
summarized in Table 3, and the tie points SD distributions are found in 
Fig. 5. In Table 3, a mesh grid flight path (Column 3) had higher SAV and 
EMD values. In Fig. 5, (e) and (f) are the two distributions for the mesh 
grid flight path. Similarly, (g) and (h) are the two distributions for the Y 
path. Compared with Fig. 5 (e) and (g), we can see highest numbers of tie 
points are 9253 and 4477 for the mesh grid experiment and the Y path 
experiment, which respectively fell between 0.3 and 0.4 of possible SD 
values for the former experiment and between 0.2 and 0.3 for the latter 
experiment. The distribution of the Y path visually moved closer to the 
vertical axis than the distribution of the mesh grid. This observation 
demonstrates that the Y flight path is closer to the ideal distribution. 

4.4. Experiment 4: comparison of various building styles in urban areas 

In experiment 4, we tested two distinct urban areas with two 
building types. Our experiments were conducted on a campus area 
where the modern buildings were constructed relatively far away from 
each other in a spacious area (shown in Fig. 6 (a)), and in a city area with 
traditional and closely built European architectures in a dense urban 
area (shown in Fig. 6 (d)). The magnified images in Fig. 6 (b) and (e) 
showed tie points with the RGB information reconstructed and detected 
by the RGB images for the campus experiment and the city experiment, 
respectively. The magnified images in Fig. 6 (c) and (f) showed tie points 
fused with thermal information from thermal images for the campus 
experiment and the city experiment, respectively. The dark purple color 
represents a lower thermal value, and the lighter yellow color represents 
a higher thermal value in Fig. 6 (c) and (f). 

The experiment statistics are summarized in Table 3 and their SD 

Table 3 
Statistics of evaluation criteria of different experiments conducted with varying test factors.  

Abbreviation of each experiment Campus_45◦_Mesh_35m Campus_45◦_Mesh_60m Campus_30◦_Mesh_60m Campus_30◦_Y_60m City_45◦_Mesh_60m 

Abbr. in Experiment 1 35 m 60 m – – – 
Abbr. in Experiment 2 – 45◦ 30◦ – – 
Abbr. in Experiment 3 – – Mesh Grid Path Y Path – 
Abbr. in Experiment 4 – Campus – – City 
SAV 1.36849 1.74714 1.26505 1.15278 1.18603 
EMD Value 0.56933 0.8608 0.93317 0.70301 0.58232  

Fig. 5. The distributions of SD values for the different experiments.  



values’ distributions are found in Fig. 5. In Table 3, the comparison 
between the campus area (Column 2) and the city area (Column 5) show 
that data fusion errors were generally fewer when conducting research 
in the city area, because of the smaller SAV and EMD values. European 
traditional buildings in cities are more complex in terms of architectural 
details than modern campus buildings with features that the algorithms 
more easily detected. Thus, fewer errors were introduced in the city 
experiment. In Fig. 5, (c) and (d) show distributions for the campus area. 
Similarly, Fig. 5 (i) and (j) show distributions for the city area. Distri
bution for the city experiment in Fig. 5 (i) was closer to the ideal 

distribution than that of the campus experiment as demonstrated by 
Fig. 5 (c). 

4.5. MSE values 

As described in Section 3, each experiment was conducted with m 
pairs of thermal and RGB images. After we fused the tie points’ RGB 
information with the thermal information, we calculated all m MSE 
values for the m thermal images, based on the fused tie points. The MSE 
values of each experiment are summarized in Table 4. According to 

Fig. 5. (continued). 



Table 4, “Campus_45◦_Mesh_60m” had the highest MSE value and 
Campus_30◦_Mesh_60m had the lowest MSE value. 

During the collection of the thermal and RGB images pairs, we 
recorded their GPS information. Therefore, we were able to draw a 
heatmap that graphically represents the m MSE values. In the heatmaps 
shown in Fig. 7, the coordinates are the thermal image GPS coordinates 

(the gray dots) and the values are the image MSE values. Color coding 
represents different values. The brighter color, hot yellow spots repre
sent higher MSE values, while the transparent blue color represents 
lower MSE values. Examples can be seen in Fig. 7. Fig. 7 (a), (b), (c), (d) 
and (e) are the five MSE heatmaps for the experiments “Cam
pus_45◦_Mesh_35m,” “Campus_45◦_Mesh_60m,” 

(a) Campus Area: Completed RGB Point Cloud Model (d) City Area: Completed RGB Point Cloud Model

(b) Campus Area: RGB Tie Points Model (e) City Area: RGB Tie Points Model

(c) Campus Area: Thermal Tie Points Model (f) City Area: Thermal Tie Points Model

Fig. 6. Various mapping areas.  

Table 4 
MES evaluation statistics of different experiments conducted with varying test factors.  

Abbreviation of each experiment Campus_45◦_Mesh_35m Campus_45◦_Mesh_60m Campus_30◦_Mesh_60m Campus_30◦_Y_60m City_45◦_Mesh_60m 

MSEmax 221.31286 214.53633 60.29066 632.37457 188.73010 
MSEmin 0.00754 0.01038 0.02433 0.00779 0.00000 
MSE  7.73743 13.19546 3.73976 6.32774 6.69587  



“Campus_30◦_Mesh_60m,” “Campus_30◦_Y_60m,” and “Cit
y_45◦_Mesh_60m.” As can be seen in Fig. 7, all cases have a common trait 
in that high MSE areas are at the edges of areas of interest where the 
images were taken. 

5. Discussion 

5.1. SAV and EMD value analysis 

Considering the thermal image quality, Rahaghi et al. 2019 argued 
that the accuracy of stitched-image edges was important [85]. Hoegner 
et al. 2009 found that features seldom matched at the edges of the im
ages in a thermal mapping model [63]. It has been confirmed that the 
accuracy of recorded temperature values might vary depending on pixel 
location in thermal images [86]. The pixels in the center of a thermal 
image usually yield a more accurate temperature record than pixels in 
corners or edges. Therefore, thermal information from corners and edges 
of images that are projected onto a 3D point cloud might result in more 
errors. The thermal images T(m) shown in the upper right corner of Fig. 3 
illustrate the concept of the corners and edges of thermal images. In T(m), 
70% of the thermal image’s pixels were in the center, and the rest were 
in corners or edges. 

Eliminating a proper number of corner or edge pixels could reduce 
errors, but if too many pixels were eliminated, accuracy would be 

difficult to guarantee. For an extreme example, tie points could only 
receive one thermal value from one thermal image. In order to deter
mine a proper pixel-maintenance percentage, the ratios of a certain 
number of tie points to the total number of tie points in all experiments 
under varying conditions conducted in the study are plotted in Fig. 8. 
The number of tie points was decided by the numbers of thermal values 
that tie points can receive. The numbers of received thermal values were 
0–5, 5–10, and 10-more. The experiments under varying conditions 
were: (1) Campus_45◦_Mesh_35m, (2) Campus_45◦_Mesh_60m, (3) 
Campus_30◦_Mesh_60m, (4) Campus_30◦_Y_60m, and (5) Cit
y_45◦_Mesh_60m. The horizontal axes represent the percentage of pixels 
in the thermal images used in the different experiments. Six cases were 
tested: 100%, 90%, 80%, 70%, 60%, and 50%. In the same experiment, 
models and tie points were created and detected using the same RGB 
images, and the percentage of pixels used for the tie point data fusion 
only referred to the thermal images. For example, a 100% case meant 
that all the thermal images were used for the data fusion approach and a 
70% case meant that 70% of the pixels in the thermal images were used 
for the data fusion approach. The vertical axes represent the ratio of the 
number of tie points to the total number of tie points as previously 
discussed. In Fig. 8 (a), (b), and (c), the numbers of received thermal 
values were 0–5, 5–10, and 10–more, respectively. As shown in Fig. 8, if 
the scatter dots were connected with solid lines and the dashed regres
sion lines were drawn to fit dots between the 100% and the 70% case, 

(a) Campus_45° _Mesh_35m (b) Campus_45° _Mesh_60m

(c) Campus_30° _Mesh_60m (d) Campus_30° _Y_60m

Fig. 7. Heatmaps of MSE values.  



the slopes of the lines after the 70% case then suddenly changed. To be 
precise, the slopes increase in Fig. 8 (a) and decrease in Fig. 8 (b) and (c). 

We also plotted the evaluation of the tie point data fusion approach 
in different experiments using various pixel percentages in the thermal 
images (see Fig. 9). The horizontal axes represent the pixel percentage in 
the thermal images used in different experiments. A vertical axis in Fig. 9 
(a) represents the SAV evaluation, and in Fig. 9 (b) it represents the EMD 
evaluation. These two figures show a similar trend to the three figures in 

Fig. 8, indicating that 70% of the pixels mark a watershed. To be precise, 
reducing pixels in the corner and using no fewer than 70% of the pixels 
in the center of the thermal images to conduct the tie data fusion 
approach could increase accuracy, because the SAV and the EMD values 
are decreasing. However, if the SAV and EMD values started to plunge 
when continuously reducing pixels, it meant that the tie points received 
far fewer thermal values, and the results could be inaccurate. Based on 
these discussions, 70% is the proper pixel-maintenance percentage. . 

Fig. 7. (continued). 

(a) The number of received 
thermal values: 0–5

(b) The number of received 
thermal values: 5–10

(c) The number of received 
thermal values: 10–more

Fig. 8. Changes of three ratios with different maintenance pixel percentages.  



For the flight altitude, as seen in Fig. 8, we concluded that if the 
drone flew higher, such as, the red, gray, and yellow lines with altitudes 
of 60 m, the tie point percentages with five or more related numbers of 
thermal images would be lower when compared to the other lines. This 
observation confirms that using high flight altitude could reduce the 
ability of photogrammetry algorithm to detect more tie points derived 
from the RGB images. Therefore, fewer thermal images were linked to 
the tie points. As seen in Fig. 9, red, gray, and yellow lines generally 
have higher SAV and EMD values than the other lines. This observation 
demonstrates that a higher flight altitude could introduce more errors 
than a lower flight altitude. The potential explanation was that if the 
drone flew higher, the thermal sensors would be further from the ob
jects, which could then reduce the thermal sensor performances. Rakha 
et al. 2018 summarized the current research and showed that it was 
important to investigate the altitude at which the UAS flew [87]. Our 
study shows the relation between flight altitude and data collection 
accuracy. 

For camera angles, as seen in Fig. 8, blue lines and green lines are 
shown for the 45-degree experiments that had more tie points with five 
or more related numbers of thermal images than the red lines and gray 
lines for the 30-degree experiments. This observation indicates that 45 
degrees could enhance the possibilities for tie points to find more ther
mal image sources. We speculate that a 45-degree camera angle can 
capture more façade detail areas than a 30-degree angle. Features on 
facades are easier to detect because shapes and characteristics are more 
diverse than those found on roofs. For example, there are many com
ponents on façades, such as a variety of shapes of windows and doors. 
The study by Hoegner et al. 2009 had a similar observation that most 
feature points in their model were detected at the window edges [63]. 
When tie points are easier to detect, more thermal image sources could 
be linked to the tie points. As demonstrated in Fig. 9, both the blue and 
green lines generally have lower EMD values. The green line also has the 
lowest SAV, but the blue line does not correspondingly have a lower 
SAV. Therefore, these observations support the idea that although a 45- 
degree camera angle might introduce fewer errors, it would not neces
sarily perform better than a 30-degree camera angle. More evaluation 
criteria are needed. 

As for flight paths, as seen in Fig. 8, the Y path (gray line) received 
more thermal values from thermal images than the mesh grid path (red 
line). According to Fig. 9, the Y path experiment had both a lower SAV 

and a lower EMD value compared to the mesh grid experiment, and thus 
the Y path performed better than the mesh grid path in the proposed tie 
point data fusion approach. 

For a comparison of various building styles in urban areas, as shown 
in Fig. 8, the tie points in the city model (green line) received more 
thermal values from images than those in the campus model (yellow 
line). According to Fig. 9, the tie-point SD values’ distribution for the 
city model had a lower SAV and a lower EMD value than the distribution 
for the campus model. A potential explanation for this observation could 
be the discrepancy of architectural styles. Modern buildings on campus 
are simple with flat roofs, while European traditional urban buildings 
are more complex with many designs on the façades and roofs. There
fore, features on traditional buildings’ facades and roofs were easier to 
detect with the algorithms, and since the features were precisely 
captured, the tie points were more accurate, and fewer errors were 
introduced in this experiment. 

5.2. MSE analysis 

MSE is a widely used approach to estimate the changes between a 
test case and a target case. Lin et al. 2019 [59] fused thermal imagery 
with point cloud models and MSE was used to evaluate the differences 
between the models and the images. Wiens et al. 2019 used MSE to 
evaluate corresponding points in two models [72]. Hoegner et al. 2016 
[88] projected a 3D point cloud back to the thermal images using 
recorded camera settings. The quality was measured by comparing the 
differences of the back projection in different cases using MSE. The MSE 
evaluation method was used in our study to calculate the errors between 
tie points in the models and pixels in thermal images. 

We determined 70% as the proper percentage of pixels to be main
tained as discussed in Section 5.1. Therefore, the MSE evaluation was 
repeated for all the experiments using just 70% of pixels in the thermal 
images. First, Table 5 summarizes the highest and lowest MSE values 
among all thermal images and the average MSE of all thermal images 
used for each experiment. Table 5 presents a comparison of two cases: 
the whole images’ pixels used for the experiments and 70% thermal 
images’ pixels used in the experiments. The table demonstrates that in 
the 70% case, the average MSE values were reduced in all experiments. 
Second, each model and tie points in each experiment were created and 
detected by m pair of thermal and RGB images. For example, {MSE100

(1) , 

(a) SAV (b) EMD Values

Fig. 9. Changes in SAV and EMD values with a different pixel-maintenance percentage.  



MSE100
(2) ,……MSE100

(m) } was used to denote the MSE values for each ther
mal image in the experiment in which whole pixels in thermal images 
were used to fuse thermal information with the tie points’ RGB infor
mation, and {MSE70

(1),MSE70
(2),……MSE70

(m)} was used to denote MSE 
values for each thermal image in the experiment in which 70% of the 
pixels were used to conduct the tie point data fusion. The differences 
were then calculated between the two cases and {MSEdiff

(1) MSE100
(1) 

MSE70
(1),MSEdiff

(2) MSE100
(2) MSE70

(2),……MSEdiff
(m) MSE100

(m) MSE70
(m)} was 

used to denote the differences of the thermal images’ MSE values. If 
MSEdiff

(i) was positive, it meant that the 70% case reduced the error. As 
shown in Table 5, the ratios of the number of positive MSEdiff

(i) values to 
the number of all MSEdiff

(i) values are around 78%, which meant that many 
thermal images’ MSE values were reduced by using 70% of the pixels to 
conduct the data fusion approach. Additionally, a higher MSEdiff

(i) sig
nifies that 70% of cases performed better. To visualize the MSEdiff

(i) values, 

heatmaps of MSEdiff
(i) values were also drawn for different experiments. As 

shown in Fig. 10, the brighter color, hot yellow spots represent higher 
MSEdiff

(i) values while the transparent blue color represents lower MSEdiff
(i) 

values. The GPS coordinate information of the flight path is the same as 
that in Fig. 7. Therefore, to make the figures easier to read, the flight 
paths are not shown in Fig. 10. In general, the contours of the mesh grid 
and Y flight path are obvious in each figure, since almost 78% of the 
images in each experiment have positive MSEdiff

(i) values. In particular, 
the thermal images’ MSE values at the survey-area edges covered by the 
drone are reduced more than other MSE values of thermal images, 
because the MSE values’ differences are larger. 

In summary, it became clear that larger data collection areas, as well 
as the use of 70% thermal image pixels would yield higher accuracy 
results in this study. 

Table 5 
Comparison between using whole thermal images and using 70% of pixels in thermal images for MES evaluation.  

Abbreviation of each experiment Campus_45◦_Mesh_35m Campus_45◦_Mesh_60m Campus_30◦_Mesh_60m Campus_30◦_Y_60m City_45◦_Mesh_60m 

Whole Thermal Images 
MSEmax 221.31286 214.53633 60.29066 632.37457 188.73010 
MSEmin 0.00754 0.01038 0.02433 0.00779 0.00000 
MSE  7.73743 13.19546 3.73976 6.32774 6.69587 

70% of Pixels in Thermal Images 
MSEmax 436.84775 283.00235 230.32526 632.37457 177.23818 
MSEmin 0.00000 0.00000 0.02887 0.00000 0.00000 
MSE  5.66219 10.78289 2.92376 5.79497 5.03659 

Ratio of Number of positive MSEdiff
(i) to Number of 

all MSEdiff
(i) 

80.6% 78.9% 82.3% 74.8% 78.8%  

(a) Campus_45° _Mesh_35m (b) Campus_45° _Mesh_60m

(c) Campus_30° _Mesh_60m (d) Campus_30° _Y_60m

Fig. 10. Heatmaps of differences of every MSE value (MSEdiff) between 100% of cases and 70% of cases.  



5.3. Error analysis and limitations 

There are some errors that might influence the fusion approach ac
curacy. First, errors might be introduced by the thermal camera, which 
detects different levels of infrared light. The accuracy of temperature 
values captured by thermal cameras might be influenced by materials 
with different emissivity rather than their thermal behavior. These er
rors are not controllable. Second, errors might have occurred during 
data collection. Our accuracy is related to camera and angle distances 
between the normal ray of the point cloud surface and the normal ray of 
the cameras, which can result in different thermal records for the same 
target. As our data fusion approach presents, the various relevant ther
mal values for one tie point are supposed to be identical. However, 
because of this type of error, there is still variance between the thermal 
values. 

There are also some limitations in this study. First, the general per
formance evaluation criteria were not robust enough to examine 
different flight angles’ influence on the performance of the data fusion 
approach, which is due to inconsistent results when such performances 
were examined. Additionally, although we defined a mean value from 
relevant thermal values for one tie point as its final thermal value, it is 
better to consider other calculations rather than simple average values. 
Second, we used images taken from 45-degree and 30-degree camera 
angles separately; as such, the varieties in performance by combining 
these different camera angles should be investigated. Also, these ex
periments were complex and conducted with limited combinations of 
test factors; therefore, other camera angles in addition to 45 and 30 
degrees should be examined. Third, the flight altitude factors tested in 
this study were discrete rather than continuous. Other flight altitudes 
should also be examined. 

6. Conclusions and future work 

In this study, we proposed the first use of the tie point data fusion 
method. We tested the method under varying conditions to consider four 
test factors including altitudes, camera angles, flight paths, and com
parisons of building styles in urban areas. This focus was not only to 
understand the performance of the proposed approach under varying 
conditions, but also to provide suggestions for future data collection. 

Several important conclusions can be drawn from this study. (1) This 
research demonstrated that using high flight altitudes could reduce the 
ability of tie points to link to more thermal images. (2) The number of tie 
points, which had the number of k (number of associated thermal im
ages) greater than 5 in the 45-degree experiment was greater than the 
number of tie points in the 30-degree experiment. The 30-degree 
experiment also diminished the possibilities for tie points to find more 
thermal image sources. (3) A Y flight path that was not used in previous 
research performed better than the mesh grid flight path for the tie point 
data fusion approach. (4) This research demonstrated that the data 
fusion approach performed better when surveying the traditional urban 
European buildings than when surveying modern buildings on a 
campus. (5) The studies showed that images taken from the edge of the 
survey areas often introduced more errors as our study illustrated in the 
heatmaps. (6) Eliminating the proper number of pixels in the corners can 
reduce data fusion errors, and the pixels in the center of a thermal image 
usually yield a more accurate record. Considering the accuracy after 
testing different cases, maintaining 70% of pixels in the central thermal- 
image area is recommended. The research also for the first time vali
dated that 70% of pixels in the thermal images can reduce MSE values of 
those images located at the edge of the data collection area, as discussed 
in Section 5.2. 

Based on these findings and discussions in this paper, we have some 
suggestions for researchers who plan to use the proposed tie point data 

Fig. 10. (continued). 



fusion approach. (1) Choose a proper flight altitude that is higher than 
the highest building in the mapping area, but not higher than 1.5 times 
the highest building. In our experiment, 1.5 times the highest building is 
an altitude of 35 m and introduced more errors, thus flight altitudes 
should be lower than 1.5 times the highest building. (2) Selection of 
camera angles should be based on survey requirements. If the users’ 
interests are roofs, 30-degree camera angles are recommended, but if the 
users’ interests are façades, 45-degree camera angles are better. (3) The 
Y flight path is recommended for tie point data fusion. Our study for the 
first time used Y flight path, and it proved to perform better than the 
mesh grid flight path. (4) Broadening the data collection area to avoid 
inaccuracies is recommended, as well as using only 70% of pixels in the 
thermal images and eliminating the pixels at the edges of thermal images 
as we proved in the discussion. 

In the future, several research topics need to be further investigated. 
First, it will be necessary to refine our evaluations based on the tie points 
of captured objects such as building roofs, façades, trees, and the 
ground, because distinct sub-groups of the point clouds have different 
distances from the cameras, and various angles exist between the normal 
ray of the point cloud surface and the normal ray of the cameras. The 
different distances and angles might influence the results as we dis
cussed in the error analysis. Based on these facts, the SD values’ distri
bution of tie points that belong to distinct sub-groups are expected to be 
distinct. Thus, a detailed performance analysis of the data fusion 
approach is required. Further, this study only focused on tie point data 
fusion because of its importance for reconstructing a mapping model. 
Data fusion for all points in a point cloud model should also be studied. 
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