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Abstract: The industrial particle sensor market lacks simple, easy to use, low cost yet robust, safe
and fast response solutions. Towards development of such a sensor, for in-line use in micro channels
under continuous flow conditions, this work introduces static light scattering (SLS) determination
of particle diameter using a laser with an emission power of less than 5 µW together with sensitive
detectors with detection times of 1 ms. The measurements for the feasibility studies are made in
an angular range between 20◦ and 160◦ in 2◦ increments. We focus on the range between 300 and
1000 nm, for applications in the production of paints, colors, pigments and crystallites. Due to the fast
response time, reaction characteristics in microchannel designs for precipitation and crystallization
processes can be studied. A novel method for particle diameter characterization is developed using
the positions of maxima and minima and slope distribution. The novel algorithm to classify particle
diameter is especially developed to be independent of dispersed phase concentration or concentration
fluctuations like product flares or signal instability. Measurement signals are post processed and
particle diameters are validated against Mie light scattering simulations. The design of a low cost
instrument for industrial use is proposed.

Keywords: angular dependence; side-scattering; low laser power; particle size measurement;
recursion model

1. Introduction

In many industrial processes, such as production of colors, paints or abrasives, filtration,
emulsification, crystallization, precipitation as well as aerosol generation, monodisperse particles
are monitored [1–5]. Some of these processes, such as color or paint production, as well as aerosol
generation, are known for their explosion risk due the use of solvents or dust formation (explosive
class 20 or 21) [6–9]. In industrial production environments, where explosive concentrations of volatile
organics or dust occur, most instruments are not permissible due to the danger of ignitions and
explosions [9,10]. Many of the production environments grouped into this classification [6,11], allow
only laser class 1 [12], where laser power less than 1 mW can be used. Established particle size measuring
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instruments on the market do not employ such low power detection systems and instead focus on
reliable high quality off-line measurements of unknown products [13–16]. Comparable measuring
systems, which also measure light scattering over a range of angles, work with laser powers in the
5 mW range [17]. By applying prior knowledge to the measurement process, such as refractive
index, chemical composition or particle form, unknown characteristics (mean size, concentration, and
local and/or temporal distribution) of the particles can be determined using simplified instrument
arrangements. The unique features of this work are the possibility of on-line measurement of particle
size with very low laser power (5 µW) in combination with very fine measurement step size (2◦) in an
angular range between 20◦ and 160◦ together with the presented mathematical prediction model.

Furthermore, this measurement technology offers advantages for applications in the chemical and
pharmaceutical industries, as it uses low light input, reducing the probability that product alterations
occur during process measurement. In food engineering, for example, undesirable processes, such as
contamination from bacteria [18,19] and haze formation through proteins and polyphenols [20,21],
lead to turbidity of otherwise clear liquids and decreased product quality and shelf live. Early detection
of such impurities, using on-line or in-line systems, is therefore desired. Of particular advantage are
measuring designs which continuously provide results with in-line monitoring in micro channels,
which are optimized to save product, energy and experimental time during recapture development
and product optimization. One such example would be the in-line monitoring of silk fibroin during
self-assembly, whereby tunable production of 200 to 1500 nm protein microspheres, in the presence of
ethanol, is performed [22].

This work focuses on the use of static light scattering for particle size measurements. A wide range
of particle sizes can be measured using light scattering. In a typical experimental setup, electromagnetic
radiation of a precise wavelength is directed onto a sample and the scattered wave is analyzed with
a suitable detector [13]. The momentum and the energy difference between the scattered light and
the incident light are used to characterize the structure and dynamics of the particle being measured.
Since scattering techniques are non-destructive, they are well suited for in-line studies or on-line
studies after a dilution process [13].

There are four predominant methods using light scattering measurements: static light scattering
(SLS), dynamic light scattering (DLS), turbidimetry/nephelometry and diffractometry [13]. In this
work, the static light scattering measurement method is applied, which has been used for several years
in material analysis to determine the particle diameter or its shape [23–25]. With this measurement
method, particles within a range of diameters can be examined, from the sub-micrometer range
up to the millimeter range [23,26]. Caumont-Prim et al. for example use 3 selected angles [24],
and Li et al. use 6 angle in the 30–130◦ range [27], whereby measurements over 71 different angles in
an angular range between 20◦ and 160◦ are performed here. Various proposals have been presented to
perform particle size recognition using recursion algorithms, with multi angle measurement data and
a simulation database based on Mie simulations [24,27,28]. Additionally, UV VIS spectroscopy can be
used to estimate the particle size in situ [29,30]. Van Eerdenbrugh et al. for example, measure particle
size using UV-VIS for particles between 300 and 400nm [30], whereas in this work particle sizes are
measured in the range between 300 nm and 1000 nm.

This work presents a measurement methodology which enables the estimation of particle size
using an automated light scattering measurement system. A novel way to mathematically preprocess
the measured static light scattering signal is presented, for an approximation of particle size using
Mie theory. The developed method, based partially on MSE (mean square error) minimization,
compares positive and negative slope intervals of the scattered intensity between measurement and
simulation data to determine the particle diameter. The algorithm compares data of measured and
simulated light scattering based on the shape of the signal, and is independent of absolute intensity
values, finding matches between both sets of data despite large variations in magnitude not achievable
with least squares’ based methods.
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This proposed method allows different particle systems (validated here with silica and polystyrene)
to be characterized in-line, and has been tested over a range of diameters (from 300 to 1000 nm).
Customized photon multipliers (CPMs) are used together with extremely low laser power (under 5 µW).
In this work polystyrene and silica particles are used for the feasibility study due to their availability
in a monodisperse form. In order to estimate the particle size, the measured scattering patterns are
evaluated against Mie simulations conducted using MiePlot [31]. In order for the particle size to be
estimated, the physical behavior of light is employed, whereby light refracts when encountering solid
matter. Depending on the particle size and the difference between the refractive index of the particle
and that of the surrounding medium, the diffraction or scattering pattern is significantly different and
characterizable. In the past, light, neutron and X-ray scattering methods have been extensively cited in
other works where the structure and dynamics of particles and macromolecules in multicomponent
systems are investigated [13,25,32–42].

The objective of this work is to demonstrate the measurement of particle light scattering over a
continuous range of angles with a low power laser, thereby overcoming limitations resulting from
current particle size detection methodologies.

2. Materials and Methods

For on-line analytical particle characterization, a model is required for the scattering of light
by a sphere of a given radius and refractive index [33,43,44]. A solution to this problem has existed
for some time [44], however, it has only received practical use with the development of powerful
computation capacity [45]. The modelling simplification, known as Mie theory, is a mathematical
model that characterizes the scattering of light by particles when the particle size and wavelength of
light have similar order of magnitude [33,44,46]. Though it is now known as Mie theory, Debye [47] and
Lorentz [43] also deduced comparable solutions at the same time. For this reason, the names Mie–Debye
theory, Mie–Lorentz theory, Debye theory or Lorentz theory, appear today when researching aerosols,
suspensions or emulsions [25,48–50].

Mie scattering is based on a mathematical characterization of the electromagnetic scattering of a
plane wave when encountering a sphere. The incident plane wave and the scattered electromagnetic
field are described as a series of spherical wave functions. In this work, the simulation program MiePlot
is used [31], which is based on the works of Bohren and Huffmann [45]. The light scattering depends on
the incident light wave, the refractive indices of the scattering medium and of the surrounding system,
the scattering angle and the particle size. In the light scattering simulations, all quantities are kept
constant with exception of the particle size. These simulations are compiled to create a database which
serves as the basis for the particle size prediction method. For the surrounding medium, water is used
with a temperature of 20 ◦C. Each particle type has a corresponding refractive index. A wavelength
dependent refractive index being used since the refractive index varies with the wavelength of the
incident light. The refractive index values were taken from a database for silica and polystyrene [51]
and are summarized in Table 1.

Table 1. Wavelength dependent refractive index for silica and polystyrene [51].

Wavelength (µm) Silica Polystyrene

0.43584 1.4667 1.6170
0.47998 1.4635 1.6070
0.58756 1.4585 1.5916
0.70652 1.4551 1.5825

With MiePlot, the intensity versus scattering angel is simulated for a 532 nm light source, from 0◦

to 180◦ for particles diameters between 200 and 1100 nm in 10 nm step sizes. For each angle a moving
average of ±2.5◦ is formed in order to compensate for the angle of reception of the lens. Once the
relevant simulation parameters have been entered including the refractive indices for the particle and
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medium, the process of stepping through the required particle diameters is accomplished through the
use of a batch file as shown in Figure 1. MiePlot then saves the requested signals to a single file.Micromachines 2020, 11, x 4 of 16 

 

1  MiePlot 4100 batch file 
2  step 
3 radius 
4 0.1 0.55 0.005 
5 run  

Figure 1. Batch file for MiePlot to automate stepping through particle sizes for intensity versus 
scattering angle simulations. 

2.1. Approximation and Curve Fitting 

The size of the measured particles is determined by measuring the angle dependent intensity 
and comparing theory and experiment. The measurement signals are processed and thereafter 
evaluated in order to estimate particle size, which is predicted by the best fit. First the signal is 
approximated using sinusoidal functions [52]. This approximation aids in smoothing out the 
measurement signal and identifying signal features which can be used to estimate the particle size. 
Following the approximation, our proposed method is used to find the closest matching 
measurement signal from a database of light scattering simulations. 

Different models can be used to approximate measurement data depending on the type of signal. 
In order to increase the quality of fit, a model is first selected that best describes the signal, such as a 
linear, polynomial or sinusoidal models [53,54]. These models can be expressed by generalized 
functions. The aim of the approximation is to determine the coefficients so that the deviation from 
the measurement data points is minimal. A frequently used method is the least squares method. First, 
a system of Equations of the form Ax = B is created for this purpose, see Equation (1), in which the 
matrix A of the data points x1 to xn is multiplied by the coefficient matrix and is equated with the 
associated matrix B of the Y-values. 

ቌ𝟏 𝐱𝟏𝟏 𝐱𝟐…𝟏 …𝐱𝐧ቍ ∙ ቀ𝐚𝟏𝐛𝟏ቁ =  ቌ𝐲𝟏𝐲𝟐…𝐲𝐧ቍ (1) 

In the next step matrix A is transposed. The transposed matrix AT is multiplied by matrix A and 
matrix B to matrix C and D, respectively as shown in Equation (2). 

𝐀𝐓 ∙ 𝐀 = ൬ 𝟏 𝟏 … 𝟏𝐱𝟏 𝐱𝟐 … 𝐱𝐧൰ ∙ ቌ𝟏 𝐱𝟏𝟏 𝐱𝟐…𝟏 …𝐱𝐧ቍ = ൬ 𝐧 𝐱𝟏 + 𝐱𝟐 + ⋯ + 𝐱𝐧𝐱𝟏 + 𝐱𝟐 + ⋯ + 𝐱𝐧 𝐱𝟏𝟐 + 𝐱𝟐𝟐 + ⋯ + 𝐱𝐧𝟐൰ = 𝐂 
(2) 

𝐀𝐓 ∙ 𝐁 = ൬ 𝟏 𝟏 … 𝟏𝐱𝟏 𝐱𝟐 … 𝐱𝐧൰ ∙ ቌ𝐲𝟏𝐲𝟐…𝐲𝐧ቍ = ቀ 𝐲𝟏 + 𝐲𝟐 + ⋯ + 𝐲𝐧𝐱𝟏 ∙ 𝐲𝟏 + 𝐱𝟐 ∙ 𝐲𝟐 + ⋯ + 𝐱𝐧 ∙ 𝐲𝐧ቁ = 𝐃 

The calculated matrices C and D thus convert the system of Equations into Equation (3). 

𝐂 ∙ ቀ𝐚𝟏𝐛𝟏ቁ = 𝐃 (3) 

This system of Equations is solved using the Gaussian–Jordan algorithm or Cramer’s rule, 
whereby the fitting coefficients a1 and b1 can be determined. To quantify the quality of the fitting, 
the mean square error mean squared error (MSE) can be calculated (see Equation (4)). The MSE is 
composed of the sum of the squared differences of the measuring points yi and the corresponding 
approximation points 𝑦ො averaged over the number of measuring points n. 

𝐌𝐒𝐄 =  𝟏𝐧 ሺ𝐲𝐢 − 𝐲ොሻ𝟐𝐧
𝐢ୀ𝟏  (4) 

Figure 1. Batch file for MiePlot to automate stepping through particle sizes for intensity versus
scattering angle simulations.

2.1. Approximation and Curve Fitting

The size of the measured particles is determined by measuring the angle dependent intensity and
comparing theory and experiment. The measurement signals are processed and thereafter evaluated
in order to estimate particle size, which is predicted by the best fit. First the signal is approximated
using sinusoidal functions [52]. This approximation aids in smoothing out the measurement signal and
identifying signal features which can be used to estimate the particle size. Following the approximation,
our proposed method is used to find the closest matching measurement signal from a database of light
scattering simulations.

Different models can be used to approximate measurement data depending on the type of signal.
In order to increase the quality of fit, a model is first selected that best describes the signal, such as
a linear, polynomial or sinusoidal models [53,54]. These models can be expressed by generalized
functions. The aim of the approximation is to determine the coefficients so that the deviation from the
measurement data points is minimal. A frequently used method is the least squares method. First,
a system of Equations of the form Ax = B is created for this purpose, see Equation (1), in which the
matrix A of the data points x1 to xn is multiplied by the coefficient matrix and is equated with the
associated matrix B of the Y-values.

1 x1

1 x2

. . .
1

. . .
xn

×
(
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b1

)
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y1
y2
. . .
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 (1)

In the next step matrix A is transposed. The transposed matrix AT is multiplied by matrix A and
matrix B to matrix C and D, respectively as shown in Equation (2).
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(
1 1 . . . 1
x1 x2 . . . xn
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. . .
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 =
(

y1 + y2 + . . .+ yn
x1 × y1 + x2 × y2 + . . .+ xn × yn

)
= D

(2)

The calculated matrices C and D thus convert the system of Equations into Equation (3).

C×
(

a1

b1

)
= D (3)

This system of Equations is solved using the Gaussian–Jordan algorithm or Cramer’s rule, whereby
the fitting coefficients a1 and b1 can be determined. To quantify the quality of the fitting, the mean
square error mean squared error (MSE) can be calculated (see Equation (4)). The MSE is composed of



Micromachines 2020, 11, 911 5 of 16

the sum of the squared differences of the measuring points yi and the corresponding approximation
points ŷ averaged over the number of measuring points n.

MSE =
1
n

n∑
i=1

(
yi −

^
y
)2

(4)

The smaller the MSE, the greater the quality of fit. In order to compensate for measurement noise,
the measurement data points are approximated using a functionalized model. The functionalized
models used in this case are a series of sine Equations as shown in the following Equations (5) and (6).

f(x) = a1 × sin(b1 × x + c1) + const (5)

f(x) = a1 × sin(b1 × x + c1) + a2 × sin(b2 × x + c2) + const (6)

The appropriate function is selected by determining the minimum MSE. Typically, curves with
zero or one extremum can be modeled with a single sine (Equation (5)), whereas three or more extremes
require multiple sine functions (Equation (6)), which is the case for particles smaller than 650 nm.
In order to approximate larger particles and to improve the approximation of smaller particles, a total
of 5 sinusoidal functions are used, an example is shown in Figure 2. However, especially with small
particle sizes, care must be taken that the measurement curves are not overdetermined, since small
measurement outliers and fluctuations may be included in the approximation.

Sinus 2
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Figure 2. Approximation of measurement data by the sum of 2 and 4 sinusoidal terms.

Different methods can be used to compare curves in order to qualitatively determine the curve
with the highest agreement from a set of curves [27,28,55]. Here the derivatives of the curves will
be analyzed. The proposed method implements curve shape matching following a similar method
as Buchin et al. [56], where the curve is divided into intervals and positive and negative slopes
are compared.

In the first step of the comparison, the curves are partitioned and divided into two areas, one of
which includes the intervals Ip to Iq, in which the slope of the two curves have the same sign, while the
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other area is composed of the remaining intervals Ir to Is where the slopes have opposite sign. For each
of the two areas, each area is integrated over the respective intervals, see Equation (7). The variables
represent a measure for the congruence of the two curve.

asame sign = ass =

Iq∫
Ip

1∣∣∣∣ ∂y1
∂x −

∂y2
∂x

∣∣∣∣ (7)

aoposite sign = aos =

Is∫
Ir

∣∣∣∣∣∣ ∂y1

∂x
−
∂y2

∂x

∣∣∣∣∣∣
By forming the reciprocal, the variable ass increases as the difference between derivatives decreases,

i.e., higher agreement of the curves, whereby the positive effect is amplified. By computing Equation (7)
on all curves to be compared, two vectors containing the positive and negative congruence of each
curve is obtained. In the next step, two vectors are divided element wise to determine the overall
congruence, as shown in Equation (8). Where f is described in Equation (10). The variable asum has the
same dimensions as ass and aos.

asum =
ass,norm × fss

aos,norm × fos
(8)

Equation (9) shows Equation (8) in vector notation, where n corresponds to the number of curves
to be compared.
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To be able to compare the values ass and aos, the values within the vector are normalized to their
respective minimum and maximum. The minimum is not normalized however to zero, so that the
curve for which aos,norm is minimal does not result in division by 0. To further enhance the prediction
factors fss and fos are used, as shown in (8). These factors are formed from the number of intervals
with the same and opposite sign, Nss and Nos respectively, as shown in (10). The factor z describes a
number of power 10, where z is strictly greater than 10.

fss =
Nss

Nss + Nos
× z (10)

To determine the curve with the highest match, the maximum is simply found from the vector
asum. An example of curve comparison is shown in Figure 3.

Figure 4 provides a congruence diagram, allowing visualization of the agreement between the
fitted measurement curves and the simulation curves. The highest peak corresponds to the predicted
particle size.

In Figure 5 the logic for determining the congruence between the measurement and simulation
curves is illustrated. High congruence corresponds to equidirectional slopes in both the measurement
and simulation curves.
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2.2. Particle Systems

Two particle systems are used in the feasibility studies. Spherical Micromer® polystyrene
particles (PS), purchased from Micromod Partikeltechnologie GmbH (Rostock, Germany), with various
particle diameters ranging from 0.5 µm (PDI < 0.2, PDI = polydispersity index) to 2 µm (PDI < 0.2).
Spherical sicastar® silicate particles, sourced from Micromod Partikeltechnologie GmbH in Germany,
with particle diameters ranging from 0.5 µm (PDI < 0.2) to 1 µm (PDI < 0.2).

2.3. Experimental Setup

The following laboratory setup is used to demonstrate the particle characterization using a low
power laser. The design of the industrial instrument will differ from this design to reduce the number
of moving components and is described in the results section.

For the measurements, a laboratory setup was constructed to measure the light scattered at angles
ranging between 20◦ and 160◦, as shown in Figure 6. While measurement of only a few angles may be
sufficient for characterizing small particles in the Rayleigh range, measurements of larger particles in
the Mie range are often hindered by ambiguity due to aliasing of the increased number of peaks present.
To overcome this ambiguity, the measurements are made with a detector which can be adjusted in
2◦ increments over a range from 20◦ to 160◦ around the measurement cuvette, as shown in Figure 6.
The increased measurement resolution allows for particles scattering light throughout the Mie regime
to be characterized. A linear 532 nm laser module (CW532-005L, Roithner Lasertechnik, GmbH, Vienna,
Austria) with a nominal power of 5 mW is used. The laser was mounted at a 45◦angle to the scattering
field to capture both, parallel and perpendicular polarization. Various color filter foils from LEE Filters
Worldwide, USA are used for attenuation. The selected filter combinations are 2x 024 Scarlet for the
green laser with a final power of 4.1 µW [57]. The CPM CM 93YE provided by ProxiVision, are used as
detectors. The advantages of using these photon counters are the low background noise produced
of only three to ten counts per second, together with the maximum sampling rate of 15 megacounts
per second. This allows for measurements of high dynamic range (5 levels of magnitude), which are
simply not possible using comparatively noisy analog amplifiers. The CPMs are powered by a 5 V
power supply and provide the input signal to a quTools Time-to-Digital Converter, which is connected
to a PC via a USB interface. The measuring environment consists of a round glass cuvette with an
inner diameter of 1 cm, which is embedded in an aluminum casing. The overlap between the focus of
the laser and the detection area is below 1 mm3, thus easily adaptable to micro channels. The holder of
the glass cuvette is mounted on a rail which is attached to a laboratory lifting platform. Thus, the glass
cuvette has two degrees of freedom, displacement horizontally on the rail and vertically by adjusting
the laboratory lifting platform. The laser is mounted on a vertical rod, independent of the test table.

The laser can also be fitted with different filters for further attenuation. The sample liquid
is pumped from a storage container into the measuring chamber by means of a peristaltic pump.
The sample is introduced into the measuring chamber from below to avoid standing air bubbles.
Furthermore, the sample is constantly stirred to maintain homogeneity. The detector of the test
apparatus is mounted on a rotating axis driven by a stepper motor. The center of the detector lens is
located below the laser beam. The lens has a diameter of 12.5 mm and a focal length of 10 mm (FRP0510,
THORLABS, Newton, NJ, USA). The lens collects the scattered light which is then focused on a glass
fiber which is connected to the CPM. The distance between the lens and the center of the cuvette is
50 mm. The pivot point is located vertically below the center of gravity of the measuring cuvette.
The laser beam hits the measuring solution in the center of the glass cuvette and perpendicular to the
volume flow direction. In addition to measuring in a low light environment, the measuring apparatus
(laser, measuring cuvette, and detector) is completely enclosed during the measuring process to reduce
extraneous light influences on the measurements.
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3. Results

A CPM on a rotational axis was used to measure light scattering over a continuous range of
angles. Polystyrene particles of size 300 and 1000 nm, as well as silica particles of sizes 300 (310) nm,
500 (507) nm, 700 (681) nm, 900 (900) nm and 1000 (987) nm were measured (exact manufacturer
particle sizes are given in parentheses). Dispersions of 0.015 g/L of particle to distilled water were
prepared for the measurements. The results of the silica particle analysis are presented here, followed
by the results of the polystyrene particles.

Detailed analysis of the silica particles of diameter 681 nm are shown in Figures 7 and 8.
The particles were characterized accurately with a size of 690 nm. Figure 6a contains a representation of
the measurement signal with the sinusoidal fit function, which was described previously. Additionally,
95% confidence intervals are displayed, whereby the sample size was 65 measurements. Figure 7b
displays the simulation curve found to be most congruent with the measurement signal. Figure 7c
displays the expected simulation curve, known a priori. Figure 8 displays the vector asum, described
previously, which is the congruence of the measurement signal to each simulation, where a single peak
is present at approximately 700 nm.

The results presented in Table 2 are an overview of the characterization analysis of the measured
silica dispersions. The measured 310, 507, 681, 900 and 987 nm silica particles are accurately characterized
to within 6.5%.

Table 2. Overview of silica size characterization results.

Polarization Predicted Result (nm) Data Sheet (nm) Relative Error

Unpolarized 330 310 6.5%
Unpolarized 480 507 5.3%
Unpolarized 690 681 1.3%
Unpolarized 880 900 2.2%
Unpolarized 960 987 2.8%
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Figure 7. Particle size characterization for 681 nm silica particles (particle size displayed is rounded to 680).
Light scatter measured in 2◦ increments from 20◦ to 160◦. (a) Measurement and sinusoidal fit with 95%
confidence intervals shown in gray; (b) comparison to best fit result; (c) comparison to actual particle size.

200 300 400 500 600 700 800 900 1000 1100

particle diameter / nm

0

0.5

1

1.5

2

2.5

3

3.5

co
n

g
ru

en
ce

 /
 -

Figure 8. Overall congruence of 681 nm measurement to simulation database.

Polystyrene particles of sizes 500 and 1000 nm were also analyzed. The 500 nm particles are
accurately characterized as being 460 nm. Figure 9a displays a representation of the measurement
signal for 1000 nm with the sinusoidal fit function. A 95% confidence interval is also displayed,
whereby the sample size here was 55 measurements. When reviewing the analysis of the 1000 nm
particles, these are incorrectly characterized as 890 nm as shown in Figure 9b. In order to improve
the characterization, the number of local maxima in the measured signal are considered, and only the
simulations with similar number of extrema are used for characterization. These results are shown in
Figure 10. When using only the filtered potential particle sizes, the algorithm is able to narrow down
potential fits, more accurately estimating 990 nm. The corresponding simulation is shown in Figure 11
with the associated congruence in Figure 12. This demonstrates the importance of measuring with
high angular resolution in order to be able to resolve the individual peaks in the scattering signals.

The results presented in Table 3 are an overview of the characterization analysis of the measured
polystyrene dispersions. The measured 500 and 1000 nm polystyrene particles are accurately characterized
to within 8%.

Table 3. Overview of polystyrene size characterization results.

Polarization Predicted Result (nm) Data Sheet (nm) Relative Error

Unpolarized 460 500 8.0%
Unpolarized 990 1000 1.0%
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Figure 9. Particle size characterization for 1000 nm polystyrene particles. Light scatter measured in 2◦

increments from 20◦ to 160◦. (a) Measurement and sinusoidal fit; (b) comparison to best fit result with
95% confidence intervals shown in gray; (c) comparison to actual particle size.
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Figure 10. Overall congruence of 1000 nm measurement to simulation database.
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Figure 11. Particle size characterization for 1000 nm polystyrene particles after filtering simulation
database for signals with similar number of local extrema. Light scatter measured in 2◦ increments from
20◦ to 160◦. (a) Measurement and sinusoidal fit; (b) comparison to best fit result with 95% confidence
intervals shown in gray; (c) comparison to actual particle size. Using the signal feature of number of
local extrema allows confounding signals to be filtered out and prediction is improved.
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Figure 12. Overall congruence of 1000 nm measurement to simulation database after filtering for
signals with similar number of local extrema.
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4. Discussion and Future Work

Light scattering measurements of 310, 507, 681, 900 and 987 nm silica particles and 500 and
1000 nm polystyrene particles were performed and analyzed. The particle size prediction results
demonstrate that the silica particle sizes were characterized to within 6.5% and the polystyrene particles
to within 8%. These results may be further improved by measuring and simulating with a second
wavelength to decrease the number of potential particle size matches.

In particular, these results show the importance of using a high angular resolution when measuring
light scattering over a broad range of angles, otherwise aliasing of peaks occurs and false deductions
are made when interpreting the particle diameter, as was the case with the measurement of 1000 nm
polystyrene particles. Since 71 measurements between 20◦ and 160◦ with 2◦ angle increments were
taken, the number of peaks resolved in the signal could be leveraged to filter out unlikely particle
size candidates.

While this work obtains the mean particle size, a second iteration is planned whereby the particle
size distribution is estimated. The workflow entails first characterizing the mean particle size as
described here, followed by a second characterization whereby the measured signal is compared to
simulated Mie scattering signals with fixed mean particle size and increasing diameter distribution
width. In this way, the mean particle size as well as particle distribution are procedurally characterized.

Based on these results an approach for an industrial optical setup is proposed as seen in Figure 13.
The goniometer is replaced by a fiber bundle in order to remove the need to rotate a single optical
fiber around the measurement cuvette. The fiber ends are lined up next to each other in an arc,
whereby 71 fibers are needed. A rotating slit allows only one optical fiber to be exposed at a time and
forward photons to the cathode of the CPM. By adjusting the sampling rate of the CPM’s and the
rotational speed of the slit, a measured value can be recorded for each angle. With a slot rotation rate
of 20 Hz and a sampling rate of 20 kHz of the CPM’s and 71 fibers, several values per second per fiber
can be recorded facilitating measurement of changing particle sizes.

laser
glasfiber

par�cle in
cuve�e

sca�ering

sensor

rota�ng slit

CPM
with cathode

fiber
ends

fiber ends

rota�ng slit

Figure 13. (a) Fiber sensor in a semi circle form to detect scattered light over a range of angles and
forward it to the customized photon multiplier (CPM). Between the sensor and the CPM is a rotating slit
which allows only the signal from one fiber at a time to reach the CPM. (b) The fiber ends are placed next
to each other in an arc, and through each rotation of the slit the array of fibers is exposed sequentially.

An important consideration for the design of the industrial sensor is the small diameter of the
fibers and the amount of collected light. The laboratory setup used a 12.5 mm diameter lens, while the
optical fibers have a diameter of 1 mm. This results in an effective area-reduction of 156.25. To partially
compensate, the fiber ends will be placed at 20 mm from the measurement cuvette instead of 50 mm.
A minimum distance of 20 mm is required to ensure that all fibers can be placed next to each other.
The resulting scattered light intensity therefore increases by a factor of 6.25. The resulting light intensity
is therefore: 6.25/156.25 = 1/25 in the proposed design. The design continues to be feasible, since a
factor of 200 still remains before the currently used 5 µW exceeds the 1 mW limit.
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5. Conclusions

In this work we demonstrate that for an in-line cuvette based particle sizer, a laser power of only
5 µW and an integration time of 1 ms were sufficient for particle size measurement. By scaling the
power maximum up to the allowed 1 mW, a sampling rate of 20 kHz can be achieved. By overcoming
the need for high powered lasers for particle sizing, measurements in micro channels as well in
explosive environments and a combination of both become possible.

This was accomplished using a photon counting module able to measure photon scattering over
5 levels of magnitude. Side scattering was measured in an angular range between 20◦ and 160◦ around
the cuvette, whereby the optical probe of the detector in the test apparatus was rotated automatically
around the cuvette. The measurement took place in 2◦ and 5◦ incremental steps. In the proposed
industrial design, this setup will be replaced by a fixed angle arrangement and a rotating slit.

An algorithm is proposed and used to estimate particle diameter from scattering light measurements,
over a continuous range of angles, in the Mie regime. Since the methodology is only dependent on
the position of maxima and minima as well as slope, the evaluation is not dependent on absolute
intensity, and is unaffected by factors such as changes in concentration. Good prediction accuracy
was demonstrated for two particle systems, silica particles between 300 and 1000 nm and polystyrene
particles of 500 and 1000 nm. The importance of measuring over a continuous range of angles was also
demonstrated, reducing signal aliasing effects occurring when only few angles are measured. Based on
the presented results, a potential setup was introduced to implement a similar measurement system in
industrial environments, where explosion safety is necessary.
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