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ABSTRACT Mixed-Criticality (MC) systems have emerged as an effective solution in various industries,
where multiple tasks with various real-time and safety requirements (different levels of criticality) are
integrated onto a common hardware platform. In these systems, a fault may occur due to different reasons,
e.g., hardware defects, software errors or the arrival of unexpected events. In order to tolerate faults in MC
systems, the re-execution technique is typically employed, whichmay lead to overrun of high-criticality tasks
(HCTs), which necessitates the drop of low-criticality tasks (LCTs) or degrading their quality. However,
frequent drops or relatively long execution times of LCTs (especially mission-critical tasks) are not always
desirable and it may impose a negative impact on the performance, or the functionality of MC systems.
In this regard, this article proposes a realistic MC task model and develops a design-time task-drop aware
schedulability analysis based on the Earliest Deadline First with Virtual Deadline (EDF-VD) algorithm.
According to this analysis and the proposed scheduling policy based on the new MC task model, in the
high-criticality (HI) mode, when an HCT overruns and the system switches to the HI mode, the number of
drops per LCT is prohibited from passing a predefined threshold. In addition, to guarantee the real-time
constraints and safety requirements of MC tasks in the presence of faults (assuming transient faults in
this article), a corresponding scheduling mechanism has been developed. According to the obtained results
from an extensive set of simulations, which have been validated through a realistic avionic application,
the proposed method improves the acceptance ratio by up to 43.9% compared to state-of-the-art.

INDEX TERMS Mixed-criticality system, fault-tolerance, mission-critical tasks, drop-aware schedulability
test, scheduling policy.

I. INTRODUCTION
Mixed-Criticality (MC) systems are getting more attention
due to their broad range of applications in various industries,
e.g., medical devices and avionics [1], [2]. In these systems,
based on the integration of different tasks with different types
of deadlines, safety and certification requirements, a level
of criticality is assigned to every MC task [2]–[5]. In this
regard, a set of industrial standards, e.g., DO-178B [6], has
been introduced with five levels of safety, i.e., A, B, C, D,
and E, (A and E provide the highest and the lowest levels
of safety, respectively), which is illustrated in Table 1 [3],
[7], [8]. As shown in this table, occurrence of a failure in
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tasks with various criticality levels has a different impact
on the system [9], [10]. To guarantee the system’s safety,
the Probability-of-Failure-per-Hour (PFH) (which is adopted
by safety standards) is determined for all the criticality
levels [8], [11]. These MC tasks from different criticality
levels are executed on common hardware platforms, which
could be single ormulti-core. Avionic systems are an example
of single-core MC systems, in which tasks are executed on a
single-core processor [3], [8], [12].

From anMC system operational perspective, these systems
can operate in different criticality modes. Initially, the system
operates in the low-criticality (LO) mode, in which all the
tasks must be executed before their deadlines. However,
if, for instance, a failure has happened in High-Criticality
Tasks (HCTs) and the execution time of at least
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TABLE 1. DO-178B safety requirement.

one HCT exceeds its Worst-Case Execution Time (WCET),
these tasks will overrun and the system switches to the
high-criticality (HI) mode. In this situation, if we do not drop
or degrade Low-Criticality Tasks (LCTs), the deadline of
HCTs (such as safety-critical tasks) may be missed, which
can lead to catastrophic consequences [2]–[5], [8], [13].
Nevertheless, the frequent deadline misses or service degra-
dation of some LCTs, such as mission-critical tasks (MCTs),
may have a negative impact on the other HCTs and MCTs
themselves, and consequently on the entire system and may
prevent the system from accomplishing its mission correctly.
Hence, in the HI mode, limiting the number of frequent drops
per LCT is a big challenge.

For instance, consider an MC system whose mission is
to capture images in specific time intervals. In this appli-
cation, the engine operation (i.e., the function that ensures
the safe execution of the operation) and the operation of
capturing images are considered as the HCTs and LCTs,
respectively [5], [14]. Accordingly, if the system switches
to the HI mode, due to the execution of HCTs, the exist-
ing scheduling methods may frequently drop LCTs or sus-
pend them for a long time, which is not acceptable for
a system whose main mission is capturing images. There-
fore, the number of allowable drops for every LCT must be
restricted in such MC systems. On the other hand, to guaran-
tee the safety and correctness of executing MC tasks before
their deadlines, it is crucial to exploit fault-tolerance tech-
niques in designing MC systems [15]. Therefore, scheduling
MC tasks by realizing reliability considerations is one of the
major challenges in satisfying real-time system requirements
in the presence of faults [7], [14], [16].

There have been many studies on MC systems, which
have focused on the feasibility of schedules and meeting the
timing constraints in both HI and LOmodes. In order to guar-
antee the correct execution of HCTs before their deadlines
in the HI mode, previous studies have provided techniques,
where they discard LCTs [4], [10], [17]–[21] or degrade
them [2], [22]–[28]. In this regard, to degrade LCTs, two
approaches have been provided: 1) Decreasing the LCT’s
WCET, and 2) Increasing the LCT’s period. However, none
of these algorithms can be applied to MC tasks, because they
should not be frequently dropped or postponed for a long
time [1], [3], [5], [12]. On the other hand, some papers present
priority-based scheduling algorithms for non-MC systems in
which tasks have priority [29], [30]. Although the researchers
have proposed methods to not drop tasks with lower priorities
frequently, but they cannot guarantee the safety requirement
of the tasks in safety-critical systems. In addition, they have
considered oneWCET for each task that wastes the processor

capacity (i.e., space) and cost, which are not acceptable for
today’s embedded systems [1]. Therefore, heuristics in these
papers cannot be applied to MC systems.

Inspired by the recent works, in this article, we have
considered fault-tolerant MC embedded systems, in which
tasks are HCTs or LCTs. MC tasks can be safety-critical,
mission-critical or non mission-critical. Since safety-critical
tasks are vital and their failure has a more devastating effect
thanmission-critical ones, we consider safety-critical tasks as
HCTs, while mission-critical and non-critical tasks as LCTs.
It is worth mentioning that in the LO mode, all types of tasks
have to be executed unobstructedly. In case of exceeding the
WCET of HCTs, the system switches to the HI mode, where
the deadline of all HCTs must be met under any circum-
stances to avoid catastrophic consequences. In this regard,
LCTs may be dropped, while some LCTs, i.e. MCTs, should
not be frequently dropped. In addition, service degradation is
not acceptable for this type of tasks.

To resolve this issue, we have proposed FANTOM
(FAult ToleraNt Task-DrOp Aware Scheduling For Mixed-
Criticality Systems), a novel technique, which is based on
a new MC task model and scheduling analysis of MC
tasks with different criticality levels, low-critical and high-
critical, by considering safety requirements. In FANTOM,
the schedulability analysis is conducted in an off-line manner
in order to guarantee that all tasks with different criticality
levels are executed properly before their deadlines in the
presence of faults and based on the operational mode of
MC systems. Thus, the main objective of FANTOM is to
execute the majority of the LCTs in the HI mode by consid-
ering a maximum allowable number of drops for every LCT.
In addition, we guarantee the safety requirement of all
MC tasks in both LO and HI modes. This is despite the
fact that most of the related works are not able to guarantee
it in the HI modes. Furthermore, the proposed method can
schedule more task sets (i.e., it has a higher acceptance ratio)
as compared to similar works [8]. In summary, the main
contributions of this work are:
• A new MC task model in which LCTs are dropped con-
sciously in the HI mode (i.e., by introducing a maximum
allowable number of drops for every LCT).

• A novel technique (FANTOM) based on the proposed
MC task model and the scheduling policy in the
HI mode, in which an MC task schedulability analysis is
developed by considering safety requirements and fault
tolerance.

To the best of our knowledge, FANTOM is the first
study of its kind, which considers the scheduling analysis of
MC tasks in order to prevent frequent drops of LCTs in the
HI mode by assigning a pre-defined threshold to them, while
the safety requirements of tasks are guaranteed.

The rest of this article is organized as follows. In Section II,
we review the related works. In Section III, the models
and assumptions, which have been considered are discussed.
The problem statement and motivational example are pre-
sented in Section IV. In Section V, we describe FANTOM
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TABLE 2. Summary of state-of-the-art approaches.

in detail, while our experimental results have been described
in Section VI. Finally, we conclude our paper in Section VII.

II. RELATED WORKS
Many studies in the context ofMC systems have only focused
on proposing techniques in the field of task scheduling in
different operational modes. Since our focus is on single-core
processors, we only consider the works presented for MC
with a similar scope. Table 2 summarizes the recent works
with different targets. As can be seen, a number of works
have focused on the feasibility of schedules and meeting
the timing constraints in both HI and LO modes (row 1-3).
Some of the proposed algorithms are based on the Earliest
Deadline First with Virtual Deadline (EDF-VD) [4], [5], [7],
[10], [20], [24], [28], Early-Release EDF (ER-EDF) [2], [22]
or Fixed-Priority (FP) [17], [31]. A large number of papers
of this field and their algorithms have been reviewed in [1].
Most of the existing MC scheduling algorithms discard LCTs
when the system switches to the HI mode (shown in row 1).
This operation causes serious service interruptions for LCTs.
Row 2 shows the papers that try to increase the QoS of
LCTs in the HI mode [18]–[21]. Researchers in [18], [21]
have concentrated on MC systems that they try to drop a
specific number of LCTs in the HI mode. However, they
do not guarantee to not drop LCTs frequently. In addition,
the recent studies [2], [22]–[28], have provided techniques to
improve the minimum service level of LCTs in the HI mode
by reducing theWCET of LCTs in the LOmode or increasing
their period in the HI mode (row 3). Indeed, they degrade the
service level of LCTs that the minimum service level would
be guaranteed by their techniques. However, the common part
of all of the previous methods is their consideration on an
MC model in which LCTs are dropped or degraded when
the system switches to the HI mode. Thus, none of these
algorithms can be applied to MC tasks that LCTs could not
be frequently dropped or postponed for a long time.

Some research works have addressed both fault toler-
ance and scheduling analysis in MC systems, as shown
in rows 4-6. In these papers, some techniques, e.g.,
re-execution, check-pointing and replication are used to tol-
erate faults. The methods in [32]–[36] have used Vestal task
model [12], in which all LCTs are dropped in the HI mode
(row 4). Hence, they did not guarantee the safety require-
ment and they just improve the reliability. Besides, a few
papers [15], [37] have improvedQoS of LCTs in the HImode,

while considered fault-tolerance and safety requirement
(row 5). Although Caplan et al. in [37] have tried to increase
QoS of LCTs in the HI mode or when a fault occurs in HCTs
in the LO mode, they may drop LCTs in the LO mode
and also in the HI mode frequently, which is not accept-
able, especially for MCTs. On the other hand, researchers
in [8], [11] estimate theWCETof eachHCT in each criticality
level by obtaining the number of re-executions to guarantee
safety requirements; their method drops or degrades LCTs
in the HI mode (row 6). Although their method of estimating
WCET in each criticality level is used in our paper, degrading
or dropping LCTs in a frequent manner without any restric-
tions in the HI mode (which was used in all previous works)
is not desirable and may negatively affect the safety and even
leading into catastrophic consequences.

From the perspective of fault-tolerant control of the sys-
tems, in general since the fault occurrence is common in
many applications, reliability management becomes impor-
tant [38]. Besides, applying the fault-tolerance techniques
may limit a system implementation and degrade its per-
formance. In general, previous research works in the field
of fault-tolerant control can be classified into two cat-
egories – passive design approaches and active design
approaches [39], [40]. Although active approaches increase
the performance of a system, they have some limitations
and may not control the safety-critical systems in a certain
period of time, at runtime [39]. Therefore, since we target the
MC systems and performance degradation for HCTs are not
admissible, passive design approaches are more appropriate
for MC systems. Hence, in passive approaches, the system
is designed to achieve the acceptable performance for the
system in both non-faulty and faulty behaviors [40].

Some research works [29], [30] have presented scheduling
algorithms for priority-based systems, which are non-MC
systems (row 7). These algorithms try to execute all
high-priority tasks and most low-priority tasks. However,
these methods that execute most of the lower priority
tasks, are not suitable for systems with safety-critical tasks
(i.e., which have high-priority) and MCTs (i.e., which have
lower priority), due to the possibility of frequent drops in
MCTs. In addition, all these papers have considered one
WCET for each task. The WCETs are calculated by differ-
ent tools, which can be optimistic or pessimistic. If opti-
mistic WCET is considered for the tasks, the deadline
of the tasks with higher priorities may be missed and
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a catastrophic consequence may happen. If they consider
pessimistic WCETs, the processor capacity usage, cost and
power would be wasted, which is not acceptable in today’s
embedded systems. Therefore, these algorithms cannot be
applied to MC systems.

In this work, we propose a realistic MC task model and
analyze its schedulability based on the EDF-VD algorithm.
In this model, some LCTs (i.e., MCTs) cannot be frequently
dropped, and service degradation is not acceptable for these
tasks. Further, the safety requirements of all types of tasks are
guaranteed in both operational modes, LO and HI.

III. SYSTEM MODEL AND DEFINITION
In this section, we describe our system model. At first,
we present our MC task model, the system operation
during runtime, and we outline the fault model and the
fault-tolerance technique. Then, we explain the scheduling
algorithm used in this article. As we used several symbols
and notations, Table 3 provides a list of them, used in this
article, for easy following.

A. TASK MODEL
In this article, we have considered a task set, which consists
of n independent periodic tasks running on a single-core
processor. Since some of the MC systems require a high
level of safety due to their timing requirements [41], we have
exploited criticality levels similar to what was defined in [3],
in which each criticality level has a requirement based on
the deadline and safety requirements. In this regard, two
criticality levels have been considered: 1) high, and 2) low.
A portion of the tasks are HCTs, which could be considered
as the safety-critical tasks, while the other tasks are LCTs,
which can be classified to a lower level as mission-critical or
non-mission-critical. In our system model, every task (τi) is
defined as:

τi = (ζi,Ci,Ti, di, δi) (1)

where ζi denotes the criticality level of the tasks
(i.e., high-critical or low-critical). Ti and Ci denote the period
and WCET of the task τi. The deadline of a task (di) is equal
to its period [42]. According to the criticism of anMC system
formal model, which is mentioned in [16], and [41], dropping
LCTs (except for non-criticality tasks) in favor of HCTs is not
a suitable protection mechanism in industrial applications.
Hence, dropping LCTs (except for non-criticality tasks) is not
permitted in industrial applications, but depending on the type
of the application, some of the LCTs (i.e., MCTs) could be
dropped. In this regard, frequent dropping or postponing their
execution for a long time in the HI mode is not appropriate.
Thus, we have introduced and assigned a new parameter δ
for every task, which limits the minimum interval between
two consecutive drops, that is set to (δi× Ti). Since dropping
HCTs is prohibited, we have set δHCT = ∞, which means
that no dropping is allowed for HCTs. In addition, some LCTs
are non-critical or non-mission critical, and dropped in the
HI mode. Therefore, we define δ = 1 for these tasks. Based

TABLE 3. A list of used notations used in this article.

on the application, the value of δ for each HCT is determined
by designer.

B. INDUSTRIAL SAFETY STANDARD DEFINITION
There are various safety standards used in industries, such
as DO-178B [6] for avionics, and ISO 26262 [43] for road
vehicles. These standards define different levels of safety for
functions, called Safety Integrity Level (SIL) for automotive
domains and Design Assurance Level (DAL) for avionics
domain [16], [41]. As mentioned in Section I in detail, five
levels are defined in DAL, A, B, C, D, and E, that A and E
provide the highest and the lowest levels of safety, shown
in Table 1. Besides, SIL is introduced in four levels in which
SIL-1 has the lowest level and SIL-4 has the highest level.
The ability of avoiding harm or damage is more crucial
in higher SIL/DAL. In terms of the condition upon fail-
ure in different levels, SIL-4 can be considered equivalent
to DAL-A, and correspondingly, SIL-1 is equivalent
to DAL-D [16]. In this article, we target avionic applications
with the defined safety levels of DAL and the PFH value for
each level.

C. FAULT MODEL, FAULT-TOLERANCE AND SAFETY
REQUIREMENTS
Transient faults are the most common faults in embedded
systems [35], [44], [45]. If a fault occurs, it may lead to
exceeding of the WCET (Ci) and if an HCT is not executed
correctly before its deadline due to the fault, it may cre-
ate catastrophic consequences [8], [16], [41]. Accordingly,
we have considered a probability factor (fi) (Probability of
Failure (PoF)), which indicates the probability of an unsuc-
cessful execution of a task due to transient hardware/software
faults [46]. Hence, occurrence of a fault in a system is inde-
pendent of the criticality levels of tasks or criticality modes
of the system. Indeed, a fault occurs due to the hardware
component defects, electromagnetic interference, etc. [39],
[46], [47]. In addition, the PFH has been exploited in this
article to measure the safety of the system. The PFH repre-
sents the rate of the average system failures in an hour [8],
[11], [46]. According to safety standards, PFH estimates the
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failure probability of safety functions in each of the criticality
levels [8], [46]. As shown in Table 1, five criticality levels of
the exploited DO-178B safety standard, i.e., A, B, C, D and
E have been illustrated and the PFH values for all of these
levels have been determined. Since the re-execution is one
of the most common methods used for fault tolerance [48],
in our systemmodel, we have used re-execution of the tasks to
tolerate faults and improve the system’s reliability according
to Table 1. The number of re-executions for each criticality
level of tasks, high and low, in each mode to guarantee safety
requirement is obtained by using the value of PFHs, which
will be discussed later in Section V. In this regard, to probe
the occurrence of transient faults, after the execution of each
task, its correctness will be checked by an error detection
mechanism [46], which its time overhead is added to the
task’s WCET. Therefore, it will be considered as part of
the WCET.

D. MC TASKS ANALYSIS
In this section, we analyze the MC tasks from the WCET
perspective. As previously mentioned, every LCT may be
mission-critical or even it could have lower safety levels
than MCTs. For the last one, these tasks are similar to soft
real-time tasks, which their deadline misses may be accept-
able and has less or no impact on the safety [3], [5], [14].
On the other hand, the well-known Vestal task model con-
siders several WCETs for HCTs according to the mode of
the system. Researchers in [16] and [41] have rejected this
model due to the importance of MC industrial applications in
which more than one WCET is not acceptable. Indeed, two
estimations ofWCETs (pessimistic and realistic) in the Vestal
task model is not practical in industrial standards. Therefore,
in order to estimate WCET, we have exploited the proposed
mechanism in [8]. In this task model, oneWCET is estimated
and then, the WCET of each task in each criticality level
will be obtained according to the safety standard. In addition,
the re-execution of the tasks has been used in order to tolerate
transient faults. Accordingly, this technique will have a direct
impact on the execution time of the tasks. Consequently,
the number of re-executions for every task to guarantee its
safety requirement would lead into specified WCET for each
criticality level [8]. Hence, any of the jobs in both LCTs and
HCTs, requires maximum nζ times (ζ = LCT or HCT) to be
executed with regards to safety requirements (Cζi = nζ ×Ci)
[8]. In the worst-case of executing all nζ times, it may cause
the system to be overloaded. Therefore, n′HCT where n′HCT <
nHCT , has been defined for HCTs, to give the system this
ability to switch to the HI mode in case of not having the
correct response ready after executing any HCT for n′HCT
times (CLO

i = n′HCT × Ci, ζi = HCT ). In addition, when
the system switches to the HI mode, LCTs may be dropped
in order to pave the way for HCTs to be correctly executed in
this mode until the system switches back to the LO mode in
a safe manner. The details of computing the WCET for each
mode operation will be explained in Section V-A.

E. MC SYSTEM OPERATION
Regarding the operation of an MC system, at the first stage,
the system begins its operation in the LO mode and all the
tasks will be executed by their WCET in the LO mode.
As discussed in previous sections, in this LO mode, all tasks
(HCTs and LCTs) are scheduled with their specified number
of re-execution, which is obtained by using the value of their
PFH level. If any of the HCTs overrun their specified time in
the LO mode (for example, due to occurrence of the faults),
the system will switch to the HI mode. In this case, while
the safety and the schedulability of the system are preserved,
all HCTs and most of the LCTs (according to our policy)
will be executed by their WCET in the HI mode and the
non-criticality tasks will be dropped. Hence, in this HI mode,
HCTs are planned to schedule with their maximum number
of re-execution, obtained based on their PFH. The system
remains in the HI mode until all the ready HCTs in the queue
have been executed in the core. Afterward, the system can be
safely switched back to the LO mode.

F. EDF-VD ALGORITHM FOR MC TASK SCHEDULING
To schedule MC tasks in the single-core processor, we need
a scheduling algorithm. We use the existing MC scheduling
technique, EDF-VD. The complete analysis of the EDF-VD
scheduling algorithm was presented in [14] for the first time.
The authors have considered a dual-criticality system, which
defines two levels of criticality for its tasks. The main contri-
bution of that paper is that it has decreased the deadlines of
HCTs by multiplying the actual deadline by x (0 < x < 1).
The resulting deadline is called a virtual deadline. This policy
would provide a higher priority for HCTs in the scheduling
algorithm. When the system is in the LO mode, the virtual
deadlines will be used for HCTs in the EDF scheduler and
also all of the HCTs will be executed before their deadlines.
Nevertheless, when the system switches to the HI mode,
the actual deadlines of HCTs will be used in the EDF sched-
uler and all of the LCTs will be dropped. In this article,
we apply the EDF-VD algorithm to the task set in a single-
processor. The task scheduling has been done according to
our policy. An appropriate interval of x and the required
conditions for the EDF-VD algorithm for scheduling a given
set of MC tasks are presented in Section V-C.

IV. PROBLEM OBJECTIVES AND MOTIVATION
In this article, we propose a new MC task model and provide
a task-drop aware scheduling analysis for it. Four objectives
have been set to be achieved in this article: 1) All of the MC
tasks should be executed by their deadlines in the LO mode,
2) In cases that the system switches to the HI mode, all of
the HCTs should be finished before their specified deadline,
3) It should be guaranteed that the MCTs should not be
frequently dropped (indeed, they should be executed before
their deadlines by defining a new parameter in the HI mode,
which limits their number of drops), and 4) The non MCTs
(also known as non-criticality tasks) will be dropped in the
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FIGURE 1. Different schedules for the MC task set example within the interval [0, 24].

HI mode due to the deadline meeting of HCTs and MCTs.
In the following, a motivational example will be discussed
in which a task set containing all types of tasks has been
considered.

A. MOTIVATIONAL EXAMPLE
In this section, we are going to give a motivational example
based on Fig. 1 to clarify the problem and our solution
for limiting the number of frequent drops per LCT. In this
regard, assume that a single-core executes five MC tasks
(τ1, τ2, τ3, τ4, τ5). The timing parameters of each task are
shown in Table 4. As mentioned in Section III-A, the dead-
lines of the tasks are set to their periods. Each instance (job)
of a task τi must be executed in the task time period and
as a result, the task generates a sequence of jobs during its
execution. In Fig. 1, activated job sequences for each task
are shown by downward arrow. Furthermore, for showing
the k’th instance (job) of a task τi, we use notation J (i, k).
In this example, the first two tasks (τ1, τ2) are HCTs (from
level A in Table 1) while others are LCTs. LCTs consist
of both MCTs, which are from the levels {B,C} in Table 1
and non-MCTS from level {D,E}. In addition, we assume
that MCTs should not be dropped frequently in the HI mode
due to the occurrence of catastrophic consequence (which
we discussed in previous sections). Hence, in this example,
we focus on our scheduling policy and we can suppose that

TABLE 4. Example of MC task set.

the measurement of the execution time will be accomplished
after applying the fault-tolerance technique [8]. In addition,
in this example, all of the tasks should comply with their
specified time budget (CLO

i in the LO mode and CHI
i in

the HI mode) to be executed correctly. Our task set is able
to be scheduled under EDF-VD [7] (for more information,
the reader is referred to Section III-F). Also, the virtual
deadlines (d̂i) of the HCTs are computed and mentioned
in Table 4 (virtual deadlines are less than the actual deadlines
and provide a higher priority for HCTs). For simplicity of
this example, we round the virtual deadlines into acceptable
integers. Suppose that, when the first job of the τ1 (which is
denoted as J(1,1)) is being executed, due to the occurrence
of a fault, the system switches to the HI mode. As shown
in Fig. 1, the system switches at timeslot 3 in this example.

The operation of the EDF-VD scheduling algorithm (by
considering task killing) to the task set under [14] and [8]
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has been shown in Fig. 1(a). Whenever the system switches
to the HI mode, the active jobs of LCTs will be dropped
until the system would safely switch back to the LO mode
(at time 9 in Fig. 1(a) when there is no active HCT). Accord-
ing to Fig. 1(a), the active jobs of LCTs, which are MCT (τ4)
(J(4,2) and J(4,3)) are dropped twice, which is not tolerable
for these tasks (according to the Table 4, this task can be
dropped once in each δ4 × T4 in the HI mode).
On the other hand, consider a situation that MCTs (τ3, τ4)

would not be dropped in the HI mode. Actually, the execution
of these tasks becomes as important as the execution of HCTs.
Therefore, τ5 as an LCT is the only task, which is dropped
in the HI mode. Similar to the previous example, EDF-VD
algorithm is applied to the task set. Based on Fig. 1b, when the
system switches to the HI mode, according to the EDF-VD
policy, the first job of HCT τ2 (J(2,1)) is not executed in its
predefined period and it will miss its deadline at time 24.
Such scenarios of task scheduling may cause catastrophic
consequences due to deadline missing of HCTs.

Now, consider a parameter δi for LCTs. When the system
switches to the HI mode due to the execution time of HCTs,
LCTs will be dropped in every δi to create slack time for the
HCTs to be executed before their deadlines. According to
Fig. 1c, when the system switches to the HI mode, the first
job of the MCTs τ3, and τ4 are dropped, which are J(3,2),
J(4,2). Consequently, all of the HCTs will be executed in
this HI mode. Hence, since δ5 = 1, it would be always
dropped in the HI mode. At the same time, by employing this
technique, theMCTs would not be frequently dropped, which
is desirable.

V. PROPOSED METHOD: FANTOM
In this section, we briefly introduce the quantification of
MC tasks in Section V-A. Then, in Section V-B, we define
MC task utilizations and based on them, we present the
scheduling analysis technique for the proposed MC task
model (FANTOM) in Section V-C and V-D. In the end,
a general design-time scheduling algorithm is presented in
Section V-E, in which all essential conditions that must be
guaranteed are determined.

A. SAFETY QUANTIFICATION
Independent from the level of criticality, any of the jobs
in the tasks are executed up to ni times to guarantee their
safety requirements with regards to PFHs, which is presented
in Table 1 and Section III-D [8], [11]. Here, nHCT and nLCT
are the maximum required re-execution times based on the
PFH of both high- and low-criticality levels. However, in the
worst-case, if jobs execute ni times to satisfy the safety
requirements, it may cause the system to be overloaded (i.e.,
Usys > 1) and lead the system to be unschedulable. Further,
another time constraint n′HCT (n′HCT < nHCT ) has been
defined for HCTs, that causes the system to operate without
being overloaded. In addition, this time constraint gives the
system this ability to switch to the HI mode when the correct
response is not ready (e.g., due to a fault occurrence) after

executing it for n′HCT times. In this case, we use our proposed
drop-aware policy for LCTs to guarantee the safe execution
of HCTs. Hence, n′HCT is the highest possible value that
causes the system to be schedulable in the LO mode. Now,
the WCET in each criticality level is computed as follows:
• LCTs: CLO

i = CHI
i = nLCT × Ci

• HCTs:

{
CHI
i = nHCT × Ci

CLO
i = n′HCT × Ci

According to [8], the values of nHCT and nLCT for tasks
in the same level of criticality is computed by solving the
Eq. (2), which has exploited the PFH (probability-of-failure-
per-hour, which we previously defined) of LCTs and HCTs
based on Table 1. Hence, for each level, the value of PFH is
the same from one hour to the next hour. Also, in Eq. (2),
the HP is the hyper period of all tasks. Since the unit of the
pfh(ζ ) is hour, the HP′ represents the hyper period, in the
unit of hour [8]. In this equation, max(bHP−ni×CiTi

+ 1c, 0)
represents the maximum number of execution rounds for task
τi in the hyper period (0,HP]. Moreover, as we presented
in section III-C, fi is a probability factor, which indicates
the probability of an unsuccessful execution for a task due
to transient faults (i.e., PoF). So, f nii represents that a task
is executed ni times in the worst case to have successful
execution but it fails in all executions. Therefore, the failure
probability per hour for each criticality level (pfh(ζ )) can
be calculated by Eq. (2) [8]. As can be realized from this
equation, by increasing the value of nζ (ζ = HCT or LCT),
pfh(ζ ) is decreased. Therefore, the minimum value of nζ for
each criticality level is computed when pfh(ζ ) ≤ PFHζ .

pfh(ζ ) =
(
∑
τi∈τζ

max(bHP−nζ×CiTi
+ 1c, 0)× f nii )

HP′
(2)

In the next step, as we discussed, the value of n′HCT has to
be computed in a way that the system would be schedulable
and all the safety requirements are met. As we mentioned
before, all LCTs should be executed correctly before their
deadline in the LO mode. Hence, by assigning nLCT to LCTs,
the number of re-executions for HCTs in the LOmode (n′HCT )
to have the schedulable system will be computed by solving
Eq. (3) that pfh(LO) < PFHLO [8].

pfh(LO)

=
(1−

∏
τi∈τHCT

(1− f
n′i
i )max(b

HP−n′i×Ci
Ti

+1c,0))× w(∞,HP)

HP′
(3)

In this equation, the maximum number of execution rounds
for HCT τi in each hyper period ([0,HP]), that in each round,
it is executed n′HCT times, ismax(b

HP−n′HCT×Ci
Ti

+1c, 0). Since
in the LOmode, HCTs are not executedmore than n′HCT times
to guarantee task schedulability, the probability that no job of
HCTs executes more than n′HCT times in each hyper period is

bounded by P =
∏
τi∈τHCT

(1 − f
n′HCT
i )max(b

HP−n′HCT×Ci
Ti

+1c,0))
that all HCTs are executed successfully in maximum n′HCT
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times and no LCT is dropped. Therefore, the probability
that LCTs are dropped is 1 − P. Due to the characteristics
of our system, the maximum PFH for LCTs, w(∞,HP),
is defined and computed differently from what was defined
in [8]. To compute this function, we should obtain the maxi-
mum number of executions for each task that can be done in
one hyper period. Normally, this number is accommodated

by max{
⌊
HP−nLCT×Ci

Ti
+ 1

⌋
, 0}. Due to the newly defined

parameter (δi) for the tasks, this round number is obtained
and used in function w(HP) as:

w(δ,HP) =
∑

τi∈τLCT

max((b
HP− nLCT × Ci

Ti
+ 1c

−b
HP− nLCT × Ci

Ti × δi
+ 1c), 0)× f nLCTi (4)

To find the maximum pfh for LCTs in Eq. (3) that
pfh(LO) < PFHLO, parameter δi for each LCT in Eq. (4)
should be infinitive. It means, no LCT would be dropped in
the LOmode. Therefore, as can be seen in Eq. (3), the value of
n′HCT is independent of the values of δi of LCTs that is used in
Eq. (4). It should be noted that all HCTs have the same value
of n′HCT for their execution in the LO mode.

B. MC TASKS UTILIZATION BOUNDS DEFINITION
In this section, we present the different utilization bounds for
MC tasks, which are used in the task scheduling. Based on the
description of safety requirements presented in Section V-A,
the utilization of task j at level k is defined as ukj = (Ck

j )/Tj,
in which, if task j is an LCT, Ck

j = nLCT × Cj and if task j is
an HCT, Ck

j = nHCT × Cj with k: LO, and Ck
j = n′HCT × Cj

with k: HI. According to this definition, the low and high
bound of utilization for different modes of task τj will be
represented as uLOj and uHIj , respectively. Thus, the low-level
and high-level utilization of HCTs and also the low bound
utilization of LCTs are defined as follows:{

ULO
HCT =

∑
ζj=HCTs u

LO
j

UHI
HCT =

∑
ζj=HCTs u

HI
j

(5)

ULO
LCT =

∑
ζj=LCTs

uLOj (6)

Theorem 1: Due to the execution of some LCTs, in the
HI mode, the high bound utilization is presented as follows:

UHI
LCT =

∑
ζj=LCTs u

LO
j ×

(δj−1)
δj
= uHIj (7)

Proof: Since we have to guarantee the correct execution
of all HCTs in the HI mode, few LCTs will be dropped in this
mode. Therefore, we need to consider the jobs of LCTs that
are released in this HI mode. Due to the intended feature of
LCTs, one job could be dropped in every δj job instances in
the HI mode. Accordingly, for these tasks, δj − 1 jobs must
be executed among δj jobs (i.e., if we have a period of time
δj× Tj, LCTs are executed for a time equal to CHI

j × (δj− 1)

in this period, uHIj =
CHIj ×(δj−1)

δj×Tj
). Also, we have assumed that

for each LCT, the value of CLO
j is equal to CHI

j . Therefore,
the high bound utilization is rewritten as follows, which is
lower than ULO

LCT (for each LCT, uHIj = uLOj ×
(δj−1)
δj

< uLOj ):

UHI
LCT =

∑
ζj=LCTs

(
CHI
j × (δj − 1)

Tj × δj
= uLOj ×

(δj − 1)
δj

= uHIj )

(8)

�
Hence, in equality (7), if δj = 1 for an LCT, then the

utilization of this task j in the HI mode (uHIj ) would be equal
to 0. In other words, these tasks are not executed in the
HI mode and then, FANTOM uses task dropping for these
LCTs with δj = 1 (such as non-MC tasks) in the HI mode
due to our proposed policy.

C. SCHEDULING ANALYSIS
To guarantee the correct execution of MC tasks before their
deadlines, several conditions have to be met at design time.
We investigate the MC tasks schedulability in different sys-
tem behaviour as:
• Guaranteeing the task schedulability in the LO mode.
• Guaranteeing the task schedulability in case of mode
switching and then, in the HI mode.

• Guaranteeing the task schedulability while the EDF-VD
scheduling algorithm is used.

The conditions for each item are explained in detail in this
section. In the end, the last condition based on the system
utilization is presented in Section V-D. As mentioned before,
at run-time, the MC system initially operates in the LO mode
under EDF-VD. In FANTOM, when the system switches to
the HI mode, with respect to the execution of HCTs, the first
job of LCTs will be dropped. These LCTs will be dropped
periodically in an interval equal to δj×Tj until the system is in
the HI mode. In the meantime, all the HCTs will be executed.
Hence, if the mission of an LCT is more important that other
LCTs, the value of δ for this LCTwould be higher. The details
are as follows.

1) CONDITIONS TO GUARANTEE TASK SCHEDULABILITY IN
THE LO MODE
By using the notations and definitions, we can easily express
that MC task sets are schedulable under EDF if the following
condition is guaranteed in a core in the LO mode.

ULO
HCT + U

LO
LCT ≤ 1 (9)

As we have mentioned, due to using the EDF-VD algo-
rithm, deadlines of HCTs will be downscaled by a multiplica-
tion factor x in the LOmode. Hence, the low bound utilization
of HCTs (ULO

HCT ) would be downscaled by 1/x. Based on the
EDF-VD algorithm [14], due to the executing of LCTs in the
HI mode by using the parameter δ, we provide a problem
formulation.

The following condition (which is obtained by the mod-
ification of the inequality (9)) is sufficient to schedule all
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FIGURE 2. LCTs scheduling solution in both modes by dropping one job
every δi in task τi in the HI mode .

of the tasks by the EDF-VD algorithm in the LO mode [7].
As mentioned, ULO

HCT =
∑
ζi=HCT

nHCT×Ci
Ti

. Since di = Ti,
and the virtual deadline d̂i = x × di is used for HCTs in the
LO mode to schedule tasks, therefore the utilization of HCTs
in the LO mode is

ULO
HCT
x that is used for task schedulability

test.

ULO
HCT

x
+ ULO

LCT ≤ 1 (10)

2) CONDITIONS TO GUARANTEE TASK SCHEDULABILITY IN
THE HI MODE
Since the MC systems must work successfully in the
HI mode, we introduce a theorem and conditions to guar-
antee the deadline meeting of both HCTs and LCTs in the
HI mode. Before introducing a new theorem, we explain how
the new parameter δ is used. As depicted in Fig. 2, when
the system switches to the HI mode, the demand requested
for core computation time by the tasks is increased. In such
critical situations, the first job of the LCTs is dropped and
consequently, one job of each τi is dropped every δi until the
system switches back to the LOmode. These generated slacks
are used to execute HCTs in the HI mode. With this value
of δ for each task, we determine a theorem for ensuring that
both HCTs and LCTs (with δ > 1) are scheduled within their
deadlines, in the HI mode.
Theorem 2: The sufficient establishing condition for exe-

cuting both HCTs and LCTs in the HI mode is presented
in inequality (11), in which, in the worst case, the system
remains in the HI mode for the whole hyper period. In this
inequality, the HP is the hyper period of HCTs and LCTs with
δ > 1 in a processing unit.∑

ζj∈HCT b
HP
Tj
c × CHI

j

HP

+

∑
ζj∈LCT ,δj>1(b

HP
Tj
c − b

HP
Tj×δj
c)× CHI

j

HP
≤ 1 (11)

Proof: Due to the execution of HCTs and LCTs in the
HI mode, assume that the first task, which starts its execu-
tion is an HCT and this task causes the system to switch
to the HI mode. In the worst case, the system remains in
the HI mode for the whole hyper period. In this HI mode,

the maximum time interval in which HCTs are executed in
one HP (TIntervalmaxHCT ) is as:

TIntervalmaxHCT =
∑

ζj∈HCT

b
HP
Tj
c × CHI

j (12)

In addition, due to the execution of LCTs in the HI mode
and the nature of these tasks, this maximum time interval that
LCTs can be executed in one HP (TIntervalmaxLCT ) is as:

TIntervalmaxLCT =
∑

ζj∈LCT ,δj>1

(b
HP
Tj
c − b

HP
Tj × δj

c)× CHI
j (13)

Accordingly, if these two types of tasks need to be
schedulable by the EDF algorithm in the HI mode before
their deadlines, the following inequality must be guaranteed
(TIntervalmaxHCT + TInterval

max
LCT ≤ HP).∑

ζj∈HCT

b
HP
Tj
c × CHI

j +
∑

ζj∈LCT&δj>1

(b
HP
Tj
c−b

HP
Tj × δj

c)× CHI
j

≤ HP (14)

By dividing the both sides of this inequality by HP,
the inequality (11) will be obtained. Inequality (11) is the
establishing condition for the schedulability of the tasks. �
According to the EDF-VD algorithm, there are some sce-

narios in which the inequality (10) has been satisfied, while
HCTs in the HI mode have missed their deadline. Hence,
a condition should be considered and satisfied in order to
guarantee the schedulability of all of the HCTs and LCTs
(based on parameter δ) in their specified deadlines by the
EDF-VD in the HI mode. Besides, there is a scenario that
a task is released before mode switching while its deadline
is after mode switching and does not finish its execution
yet, called carry-over job [4], [20], [21]. To consider the
carry-over problem, the following sufficient condition has
been expressed (To know about the proof of this condition,
the reader is referred toAppendixA,which is the same lemma
and has the same proving flow presented in [20], [28]).

UHI
HCT + (1− x)× UHI

LCT + x × (ULO
LCT ) ≤ 1 (15)

While the inequalities (15) and (11) are not necessary (just
sufficient), the necessary condition would be driven when the
sum of the utilization of LCTs (i.e., MCTs) and HCTs in the
HI mode are higher than 1 or to guarantee the correct execu-
tion of jobs of each task before their individual deadlines in
this HI mode. Thus, the necessary condition for scheduling
both HCTs and LCTs by the EDF algorithm in the HI mode
and being executed correctly before their deadlines, is the
following condition.

UHI
HCT + U

HI
LCT ≤ 1 (16)

3) CONDITIONS TO GUARANTEE TASK SCHEDULABILITY
WITH EDF-VD ALGORITHM
Now, we present the value of x to obtain the virtual deadline
by multiplying the actual deadline by x. Then, we present
a new condition based on the previous conditions and the
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EDF-VD algorithm. By considering the inequalities (10)
and (15), it could be concluded that the value of x (d ′j = x×dj)
is obtained through the inequality (17).

ULO
HCT

1− (ULO
LCT )

≤ x ≤
1− (UHI

HCT + U
HI
LCT )

(ULO
LCT ))− U

HI
LCT

(17)

Based on the interval for x in this inequality, and according
to expression (18), the EDF-VD algorithm chooses the small-
est value for x [7]. In addition, as explained before, we use
the fault tolerance technique, re-execution, to guarantee the
correct execution of all tasks within their safety requirements
based on Table 1 in any circumstance. To show how the
parameters such as safety requirements and virtual deadlines,
affect each other, we can rephrase the value of x as follows.
In this expression, when a task is executed and a fault occurs,
it needs to to be re-executed for a maximum of (nζj−1) times
to guarantee its safety requirement that ζj is LCT or HCT .
Hence, the value of x is independent from δj. As mentioned
in Section V-A, the values of parameter δj has no effect on
computing n′HCT (based on Eq. (3), (4)).

x ←
ULO
HCT

1− (ULO
LCT )

H⇒ x ←
n′HCT ×

∑
j∈HCT Cj/Tj

1− (nLCT ×
∑

j∈LCT Cj/Tj)
(18)

In addition to the mentioned conditions, another condition
is required to guarantee that the task set would be schedulable
by EDF-VD. In this regard, the upper bound utilization of the
systemwill be computed by exploiting the condition (17), and
represented as:

ULO
HCT

1− ULO
LCT

≤
1− (UHI

HCT + U
HI
LCT )

ULO
LCT − U

HI
LCT

⇐⇒ ULO
HCT × (ULO

LCT − U
HI
LCT )

≤ (1− UHI
HCT − U

HI
LCT )

×(1− ULO
LCT )⇐⇒ UHI

HCT

≤ 1− UHI
LCT −

ULO
HCT × (ULO

LCT − U
HI
LCT )

1− ULO
LCT

(19)

According to inequality (19), the upper bound utilization
of HCTs in the HI mode (UHI

HCT ) is obtained. If this condition
is satisfied, the given task set is schedulable by the EDF-VD
algorithm under the conditions in FANTOM.

Generally, inspired by the presented conditions, the condi-
tion that should be investigated in a core to guarantee that a
task set is schedulable under EDF-VD algorithm in FANTOM
are inequalities (11) and (20). Condition (20) is obtained by
using inequalities (9) and (19).

max(ULO
HCT + U

LO
LCT ,U

HI
HCT + U

HI
LCT

+
ULO
HCT × (ULO

LCT − U
HI
LCT )

1− ULO
LCT

) ≤ 1 (20)

D. SYSTEM UPPER BOUND UTILIZATION
In this section, we present the system upper bound uti-
lization in order to enable MC tasks to be schedulable by
the FANTOM. In the end, we present the last condition that
must be guaranteed. We nominate Up as an upper bound for
the task set, which should be schedulable in both HI and LO
modes. This bound is defined as follows:

Up = max(ULO
HCT + U

LO
LCT ,U

HI
HCT + U

HI
LCT ) (21)

We have explained that the condition (17) is sufficient
for the task sets to be schedulable by the EDF-VD algo-
rithm. Hence, by using conditions (17) and (21), the fol-
lowing expression could be derived. Here, our goal is to
find the Up, which still satisfies the following expression.
Thereby, we have:

ULO
HCT

1− ULO
LCT

≤
1− (UHI

HCT + U
HI
LCT )

ULO
LCT − U

HI
LCT

(22)

Since we have ULO
HCT + ULO

LCT ≤ Up ⇒ (ULO
HCT ≤ Up −

ULO
LCT and alsoUHI

HCT +U
HI
LCT ≤ Up ⇒ 1−(UHI

HCT +U
HI
LCT ) ≤

1− Up:

Up − (ULO
LCT )

1− (ULO
LCT )

≤
1− Up

(ULO
LCT )− U

HI
LCT

(23)

This condition will be satisfied if and only if:

(ULO
LCT )

2
− ULO

LCT × (1+ UHI
LCT )+ 1+ Up × (−1

+UHI
LCT ) ≥ 0 (24)

Accordingly, if Eq. (25) is met, expression (26) will be
obtained according to the expression (24) (which is always
true for each of the low-criticality utilization in [0, 1)).

1+ Up × (−1+ UHI
LCT ) =

(1+ UHI
LCT )

2

4
(25)

(ULO
LCT −

1+ UHI
LCT

2
)2 ≥ 0 (26)

By simplification of Eq. (25), it will turn into:

Up =
3+ UHI

LCT

4
(27)

Accordingly, it could be concluded that the upper
bound (Up) depends on the utilization of the LCTs in
the HI mode. It means, (Up) depends on the parame-
ter of δj, which is different for each LCT (UHI

LCT =∑
j∈LCTs ((δj − 1)× Cj)/(δj × Tj)). Since the Up is the uti-

lization bound of the system, which is run on a single-core
processor, the maximum value of it is 1. In the case of
ULO
LCT + U

LO
HCT < UHI

LCT + U
HI
HCT , then, Up = UHI

LCT + U
HI
HCT .

Therefore, according to equality (27), in addition to inequal-
ity (19), another condition and upper bound for UHI

HCT should
be checked to guarantee the schedulability of a task set in the
HI mode, if we have ULO

LCT +U
LO
HCT < UHI

LCT +U
HI
HCT , which

is:

UHI
HCT ≤

3(1− UHI
LCT )

4
(28)
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E. A GENERAL DESIGN TIME SCHEDULING ALGORITHM
Now, we review the proposed approach algorithm at
design-time and showwhich of the presented conditions need
to be checked. The pseudo code of our scheduling algorithm
has been illustrated in Algorithm 1, which explains the mech-
anism of the schedulability test. In summary, at the beginning
and according to Eq. (2), we calculate the re-execution pro-
files for each task (either high or low). Also, we calculate
the minimum re-execution profiles for HCTs through Eq. (3)
(line 1). Subsequently, the utilizations are calculated (line 2).
In addition, we calculate the maximum re-execution profiles
for HCTs through schedulability test (line 3). If the maximum
re-execution profile is more than the minimum one, we select
this amount as n′HCT and consequently, the utilization of
HCTs in the LOmode is calculated. Otherwise, the algorithm
will return a false value (lines 4-8). According to Algorithm 1,
at the first stage, FANTOM evaluates the utilization bound in
both LO and HI modes. If they are less than 1, it means the
task set can be scheduled by the EDF in both modes (lines
10-13). Otherwise, the inequality (11) is evaluated in order
to check whether both of the HCTs and LCTs with δj > 1
(which areMCT), are executed in the HImode or not. In addi-
tion, the two mentioned conditions in inequality (20) and also
Eq. (28) in case of ULO

LCT + U
LO
HCT < UHI

LCT + U
HI
HCT , will be

evaluated to test the schedulability of the task set (line 15).
If all the conditions are met, the virtual deadline coefficient
will be assigned with the minimum value (line 16). Hence,
the virtual deadlines of HCTs will be obtained by using the
mentioned value in Eq. (18). Then, the sufficient condition
of Eq. (15) is checked (line 17). If this equation is satisfied
and the algorithm returns the true value, the task set will be
scheduled by the EDF-VD algorithm (in which, all LCTs
will be dropped in every δj in the HI mode (lines 18-20)).
On the other hand, if none of the conditions are met, the task
set cannot be scheduled and the algorithm will return a false
value (lines 22, 25).

VI. EXPERIMENTAL RESULTS
In this section, the experimental results of the FANTOM are
validated through extensive simulations on two case stud-
ies from avionics domain presented in [8] and [49]. Then,
we evaluate the impact of MC task’s parameter variations in
the schedulability test of the task sets.

A. FLIGHT MANAGEMENT SYSTEM
1) FIRST CASE STUDY
Avionic Real-Life applications have been used in different
papers to evaluate their presented methods [3], [8], [12].
To evaluate our method, we use the FMS application intro-
duced in [8], which consists of 7 tasks from level B and
4 tasks from level C (Table 1). We consider the tasks from
level B as HCTs and the tasks from level C as the MCTs.
Therefore, there are no non-critical tasks in this task set.
We can also define different values for the PoF of each task.
To evaluate this part, this parameter is assumed to be 10−5

Algorithm 1 Design-Time Scheduling Method Pseudo Code
Schedulability Test(Task Set)
1: (nLCT , nHCT ) are obtained by Eq. (2) & (n′HCT ) by

Eq. (3)
2: (UHCT ,UHI

HCT ,U
LO
LCT ,U

HI
LCT ) ← Util_Computation

(taskset,nLCT , nHCT )
3: n′2 = sup {max(n × UHCT + ULO

LCT ,U
HI
HCT + UHI

LCT +
n×UHI×(ULO

LCT−U
HI
LCT )

1−ULO
LCT

) ≤ 1};

4: if n′HCT < n′2 then
5: n′HCT = n′2
6: else
7: return ‘‘The task set is not schedulable’’
8: end if
9: (ULO

HCT )← Util_Computation (taskset,n′HCT )
10: if UHI

HCT + U
HI
LCT ≤ 1 & ULO

HCT + U
LO
LCT ≤ 1 then

11: T̂i← Ti for all tasks
12: Schedule Task set with EDF Algorithm
13: return ‘‘The task set is schedulable’’
14: else
15: if Eq. (11) & Eq. (20) are satisfied & [(ULO

LCT +

ULO
HCT < UHI

LCT + UHI
HCT & Eq. (28)) or (ULO

LCT +

ULO
HCT ≥ U

HI
LCT + U

HI
HCT )] then

16: x← is computed by Eq. (18)
17: if Eq. (15) is satisfied then
18: T̂i← Ti × x for each high-criticality task
19: Schedule Tasks with modified EDF-VD
20: return ‘‘The task set is schedulable’’
21: else
22: return ‘‘The task set is not schedulable’’
23: end if
24: else
25: return ‘‘The task set is not schedulable’’
26: end if
27: end if

[8], [11]. In addition, the value of the skip parameter for all
LCTs is considered to be δ = 4. According to Eq. (2) and (3),
the number of re-executions for all of the tasks is calculated
and set to nLCT = nHCT = 3 and n′HCT = 2, respectively,
to guarantee the safety requirements of the tasks without task
killing and service degradation. Fig. 3 represents the impact
of FANTOM on the system schedulability. As shown in this
figure, by increasing n′HCT , the utilization of the system will
be increased due to the HCTs low utilization increment in
inequality (20). In addition, the system will no longer be
schedulable when n′HCT > 2. On the other hand, by increas-
ing n′HCT (the redundancy for HCTs needs to be increased),
the PFH of LCTs will be decreased and consequently, the sys-
tem’s safety could be improved. In essence, the probability of
mode switching would be decreased and as a result, the LCTs
will be dropped less likely. Hence, by assigning n′HCT = 2,
PFH of LCTs will be 10−10 and the utilization will be 0.95,
which is less than 1.
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FIGURE 3. FANTOM implementation for FMS application: case study 1.

2) SECOND CASE STUDY
Here, we investigate a set of real tasks, in which, HCTs
have the safety requirement of level A. There is a case study
for FMS application, introduced in [49], which consists of
four tasks, three tasks from level A (responsible for execut-
ing the necessary control steps and essential for a reliable
flight behaviour), and one task from level B (responsible
for detecting the objects). For this example, the number of
re-executions is set to nHCT = 3, nLCT = 1 and n′HCT = 2,
respectively. By having the same setting as the previous case
study, Fig. 4 depicts the impact of FANTOM on system
schedulability and LCT’s PFH. As shown, the system is not
schedulable for n′HI > 2. Therefore, by assigning n′HI = 2,
PFH of LCT is 10−9 (<10−7) and UMC = 0.96.

FIGURE 4. FANTOM implementation for FMS application: case study 2.

In general, the safety requirement of HCTs/LCTs affects
the number of re-executions (nHCT / nLCT ), and consequently,
the utilization and the number of re-executions for HCTs
in the LO mode (according to Eq. (3)) are changed. Hence,
according to the Eq. (2), the number of re-executions for
HCTs and LCTs depends on the task properties, such as
WCET, PFH and the number of tasks in each level. For
example, for the same number of tasks and WCET for each
task, if PFH is changed from 10−7 to 10−9 for the tasks’ level,
the number of re-execution may be increased to guarantee the
safety requirement.

B. EXPERIMENTAL SETUP AND EXTENSIVE RESULTS
In the following, the FANTOMhas been evaluated by exploit-
ing random MC task sets. These sets have been generated
through the provided technique in [7], [8]. As an input
parameter, the system’s utilization (Ubound ) is obtained as
equality (21), which should be less than 1. At the beginning,
theUbound for the generated tasks are set to zero (i.e., the task
system is initialized to be empty) and afterward, new tasks
will be added to the task set in a random manner to increase

the Ubound until a certain value (Ubound is increased with
steps of 0.05). The period (T ) and utilization of the tasks
are generated uniformly within the range of [10, 100] and
[0.01, 0.1], respectively. According to conditions, for each
data-point (i.e., Ubound ) in the range of [0.05, 1], 1000 task
sets are generated and evaluated from the schedulability and
fault occurrence perspectives. In the end, the ratio of task sets,
which were deemed as schedulable, will be reported.

In the established simulations, we have considered HCTs
from level A, LCTs from level B to E in which, MCTs from
level B or C, and nonMCTs from level D and E. Furthermore,
the value of the parameter (δ) is randomly generated between
one and the maximum amount of this parameter for LCTs.
As the maximum amount of this parameter is considered to
be determined by the designer, we investigate the results by
varying the maximum amount in the range of [2,16] in the
next subsection (Section VI-B1).

The efficiency of FANTOM has been investigated through
extensive simulations and its comparison with the pro-
vided algorithms in [8] and [15]. As we mentioned before,
researchers in [8] use EDF-VD to schedule the tasks. Also,
researchers in [15] use the FP scheduling algorithm that is
based on applying Response Time Analysis (RTA). In this
regard, our observations are categorized into five subsections.
There are some graphs relating to the results in which the
y-axis represents the fraction of schedulable task sets, which
is called acceptance ratio, and the x-axis represents utiliza-
tion. It should be noted that since the Ubound shows the
utilization of task sets before applying the fault tolerance
technique and calculating the utilization in the LO and HI
modes, the maximum utilization bound that the task set is
schedulable has a small amount in graphs.

1) EFFECT OF VARYING LCT’s PARAMETER (δ)
At the beginning, we evaluate the effects of varying max-
imum value of the newly defined parameter (δ) for LCTs.
As a result, according to Fig. 5, by reducing the maximum
value of parameter δ, the acceptance ratio will be slightly
improved. The reason is that, in the case of increasing this
parameter, the utilization of LCTs in the HI mode will be
increased due to Eq. (7). Therefore, the system schedulability
will be decreased considerably according to inequality (20).
Ifmax(δ) = 1, it means all LCTs are non-critical and dropped
in the HI mode. Indeed, there is noMCT in the system. In this
case, the acceptance ratio of the proposed approach is the

FIGURE 5. Acceptance ratio with varying the parameter (δ) for LCTs.
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same as the acceptance ratio of the method, proposed in [8],
in which all LCTs are dropped when the system switches to
the HI mode. Indeed, there is no restriction for the system
safety when none of LCTs are relevant to it. Hence, the signif-
icance of the proposed method is when there are some MCTs
in the system and in this case, the proposed method performs
better than [8].

In the rest of this article, we consider max(δ) = 4 to show
the efficiency of our proposed method.

2) ACCEPTANCE RATIO OF SCHEDULABLE TASK SETS
We further compare the fraction of task sets, which could
be scheduled under FANTOM, the traditional fault tolerant
EDF-VD algorithm [8], and fault-tolerant FP algorithm [15].
This fraction is defined as the acceptance ratio. Researchers
in [8] have considered both task killing and service degrada-
tion for LCTs in the HI mode. We use task killing of LCTs by
considering the QoS of LCTs and execute them as much as
possible in theHImode to have a fair comparison. In addition,
researchers in [15] have striven to increase the QoS of LCTs
in the HI mode, which we examine here. Accordingly, in this
subsection, we have assumed that 40% of them are HCTs
and 60% are LCTs that 30% of LCTs are considered as
MCTs and the remaining 30% are non-MCTs (with δ = 1).
In should be noted, a task set is schedulable if all tasks can
be scheduled in the LO mode, and then after switching to
the HI mode, all HCTs would be executed and also, LCTs
cannot be frequently dropped. As shown in Fig. 6, when the
utilization of the system is smaller than 0.225, the tasks are
always schedulable by both algorithms, which use EDF-VD.
By increasing the utilization bound, the proposed algorithm
could always schedule the task sets as long as the utilization
is smaller than 0.275. Furthermore, Fig. 6 explains that the
proposed algorithm can improve the acceptance ratio by up
to 43.9% and 65.9% compared to the traditional fault tolerant
EDF-VD algorithm [8] and fault tolerant FP algorithm [15],
respectively. Since the EDF-VD is used in both our proposed
method and [8], in the rest of paper, we show the effectiveness
of our proposed method in comparison with [8].

FIGURE 6. Acceptance ratio of FANTOM with max(δ) = 4 in comparison
with methods of [8] and [15].

3) EFFECTS OF USING FAULT-TOLERANCE TECHNIQUES
Now, we compare our proposed fault-tolerant scheme with
the case when there is no fault-tolerant mechanism in the sys-
tem. Indeed, we compare to a traditional non-MC scheduling
algorithm in which the regular EDF algorithm is presented

and applied in many previous studies [50]. Using the fault
tolerance techniques such as re-execution to guarantee the
system’s reliability and safety requirement has timing over-
heads, which is a common practice [46]. However, since the
MC systems are safety-critical, its correct operation through-
out a complete time interval is crucial even in the case of
fault occurrence to prevent catastrophic consequences [51].
Fig. 7 depicts that the proposed approach preserves the PFH
of MCTs, and HCTs, to less than 10−7 and 10−9 (introduced
in Table. 1), respectively, in any Ubound that the system
is schedulable. In comparison, the traditional scheme has
severely damaged the system’s safety, which is not desirable.
It should be noted that, as mentioned in subsection VI-B2,
the system is not schedulable for Ubound ≥ 0.6. Therefore,
the results of the PFH for bothMCTs andHCTs are not shown
for Ubound ≥ 0.6.

FIGURE 7. Safety requirement guarantee for the system with and without
fault consideration.

4) EFFECTS OF HCT RUN-TIME BEHAVIORS (P(CLO))
In this subsection, we evaluate the effect of changing the
run-time behaviors of HCTs on the acceptance ratio. P(CLO)
denotes the probability that HCTs execute with their WCET
in the LO mode (CLO

i ) (As discussed before, HCTs may
overrun and use their WCET in the HI mode). It can be
seen that if the inequalities (11) and (20) are satisfied offline,
the task set will be schedulable in both criticality modes.
Hence, the schedulability of the task set is not affected by
the variation of P(CLO) in run-time.

5) EFFECT OF VARYING PoF FOR TASK INSTANCES
We evaluate the impact of varying PoF (f ) on the system
schedulability. Here, we assumed that 40% of tasks are HCTs
and 70% of the tasks are LCTs (30% MCT with 1 < δ ≤ 4,
and 30% non-MCTs with δ = 1). As shown in Fig. 8,
the acceptance ratio increases as (f ) decreases from 10−5

to 10−7 and also from 10−7 to 10−9 in both our proposed
method and the method proposed in [8]. The reason is that
decreasing f means using a more reliable platform to have
a safer system. However, the acceptance ratio of our pro-
posed method is always better than the result of the proposed
method in [8].

6) EFFECTS OF TASK MIXTURES WITH
VARYING P(HCT) AND P(MCT)
Now, we evaluate the effect of HCT distribution variation on
the acceptance ratio. P(HI ) denotes the ratio of HCTs to all
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FIGURE 8. Acceptance ratio with varying the PoF, and max(δ) = 4.

of the generated tasks. Here, in each scenario, we assume that
the ratio of MCTs to all of the generated tasks is constant
and the ratio of non-MCTs to all will be varied. Fig. 9 shows
that the acceptance ratio improvement becomes pronounced
when there are fewer HCTs in a task set (i.e., when P(HCT)
is decreased). Because, when there are more HCTs in a task
set, there will be less number of system switches to the HI
mode and even by occurrence of a mode switch, the system
will be switched back after a relatively short period of time.
Consequently, the HI and LOmodes will overlap less in time.
In addition, LCTs would fail less. This reasoning can also be
obtained by exploring the condition (20). Besides, the same
trend is found for [8], except that the proposed schemes
always perform better than [8].

FIGURE 9. Acceptance ratio with varying P(HCT).

Similar to the above case, in Fig. 10, we evaluate how the
number of MCTs affects the acceptance ratio. We assume
that the ratio of HCTs to LCTs is constant and the ratio of
the MCTs to non MCTs in the task set is the only varying
parameter. In addition, the distribution of HCTs in a task set
has been considered as a constant value (0.3). According to
equality (27), since the upper bound utilization may be influ-
enced by the MCTs, the acceptance ratio will be changed.
According to Fig. 10, it is evident that we would have a

FIGURE 10. Acceptance ratio with varying P(MCT).

noticeable amount of improvement as the utilization ofMCTs
is reduced. Decreasing the number of MCTs in a task set can
cause a reduction of utilization and consequently, more tasks
can be scheduled.

To this end, based on the results, we can conclude that
by minimizing the ratio of HCTs and MCTs in a task set,
the upper bound will be maximized. In addition, the accep-
tance ratio of schedulable tasks would be increased by
decreasing the task’s PoF (i.e., more reliable hardware plat-
form is used).

VII. CONCLUSION
In this article, we presented a new Mixed-Criticality (MC)
task model and then analyzed task-drop aware scheduling
for uni-processor MC systems and also, guarantee the safety
requirements of MC tasks in the presence of faults. Existing
tasks in these systems have different criticality levels from
both real-time and safety perspectives. In some MC systems,
some low-criticality tasks should not be frequently dropped
in the High-Criticality (HI) mode to prevent catastrophic
consequences. Therefore, by defining a new parameter that
is determined by designers, we propose a task-drop aware
scheduling analysis based on the EDF-VD to schedule both
types of tasks in the HI mode. This parameter specifies the
minimum interval between two consecutive drops in this
mode. We analyzed the results by varying different param-
eters in the system, and obtained that the proposed method
improves the acceptance ratio by up to 43.9% compared to
state-of-the-art.

As future research, we would consider multi-core sys-
tems to use different fault tolerance techniques and more
efficient MC task scheduling algorithms and obtain better
performance. In addition, we will evaluate the method on a
real platform.

APPENDIX A
PROOF OF EQUATION (15)
As we mentioned, there are some scenarios in which,
the inequality (10) has been satisfied while HCTs in the
HI mode have missed their deadline. The other condition to
guarantee the scedulability of all HCTs and most of LCTs by
our policy in their specified deadlines by the EDF-VD in the
HI mode (Eq. 15), is as follows:

UHI
HCT + (1− x)× UHI

LCT + x × (ULO
LCT ) ≤ 1

Proof: To prove this inequality, suppose that τ1 is an
HCT with release time a1 and deadline d1 and causes the
system switches to the HI mode at time t1. Besides, τ2 is an
HCT that its deadline is missed at time t2 while the system
is in the HI mode (0 < t1 < t2). In addition, suppose that
ηi is the cumulative execution time of each task τi in [0, t2].
By this definition, we nominate t1 < (a1 + x(t2 − a1)).
To prove this, consider that the absolute deadline of the
HCT τ1 is d1 and its virtual deadline is (a1 + x(d1 − a1)).
As can be seen, τ1 is overrun at time t1 and continue to
finish its execution completely before its deadline d1, which is
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less than t2 (d1 ≤ t2). Thus:

H⇒ t1 < (a1 + x(d1 − a1)) < (a1 + x(t2 − a1).

Aswe proposed, when the system switches to the HI mode,
we drop the first job of each LCT τi and then, they would be
dropped every δi times as long as the system is in the HImode.
If an LCT with release time ai and deadline di, is released
before time t1, while its deadline di is after t1 (ai < t1 < di),
it is called carry-over job of LCTs. For these carry-over jobs,
we have, di < (a1 + x(t2 − a1). To prove, it is obvious that
the maximum cumulative execution time of an LCT τi is (di−
ai)uLOi and it happens when the task can finish its execution
before t1. It means before overrunning of HCT τ1. Since the
EDF-VD algorithm is used for task scheduling, then, di ≤
x × d1 H⇒ di ≤ a1 + x(d1 − a1). Since we have d1 < t2,
therefore:

H⇒ di ≤ a1 + x(t2 − a1).

Lemma: For any LCT τi:

ηi ≤ (a1 + x(t2 − a1))× uLOi + (1− x)(t2 − a1)× uHIi .

To prove, let’s consider two cases; LCT τi is releasedwithin
interval (t1, t2] or it is not.
• Case1 (task τi is released within the time interval
(t1, t2]):
- With carry-over job (t1 < di): The maximum cumu-
lative execution time of LCT τi within the time interval
[0, t2] is ηi ≤ (ai − 0)× uLOi + (di − ai)× uLOi + (t2 −
di)× uHIi H⇒ ηi ≤ di × uLOi + (t2 − di)× uHIi .
Since, we mentioned above, di < (a1+ x(t2− a1)), then
ηi ≤ (a1+x(t2−a1))×uLOi +(t2−(a1+x(t2−a1)))×u

HI
i

H⇒ ηi ≤ (a1+x(t2−a1))×uLOi +(1−x)(t2−a1)×u
HI
i

-No carry-over job (di < t1): The maximum cumulative
execution time of LCT τi within the time interval [0, t2]
is ηi ≤ (t1 − 0)× uLOi + (t2 − t1)× uHIi .
We mentioned that t1 < (a1 + x(t2 − a1)). Therefore,
ηi ≤ (a1+x(t2−a1))×uLOi +(t2−(a1+x(t2−a1)))×u

HI
i

H⇒ ηi ≤ (a1+x(t2−a1))×uLOi +(1−x)(t2−a1)×u
HI
i

• Case 2 (task τi is not released within the time interval
(t1, t2]): It means, the maximum cumulative execution
of these tasks is ηi ≤ (di − 0)× uLOi . Now, we have two
cases, di ≤ t1 and di > t1. for the first one, since we
mentioned, t1 < (a1 + x(t2 − a1)), and as we know that
di ≤ t1, then ηi < t1 × uLOi H⇒ ηi ≤ (a1 + x(t2 −
a1)) × uLOi H⇒ ηi < (a1 + x(t2 − a1)) × uLOi + (1 −
x)(t2−a1)×uHIi . Now, for the case of di > t1, we proved
that di < (a1 + x(t2 − a1)). Thus: ηi < di × uLOi H⇒

ηi ≤ (a1 + x(t2 − a1)) × uLOi H⇒ ηi < (a1 + x(t2 −
a1))× uLOi + (1− x)(t2 − a1)× uHIi
Since we calculate the cumulative execution of tasks
in the time interval [0, t2], there are some LCTs with
δ = 1, which are executed in the time interval of [0, t1].
Therefore, the maximum cumulative execution of these
tasks is ηi ≤ (t1−0)×uLOi . Since t1 < (a1+x(t2−a1)),
then ηi ≤ (a1 + x(t2 − a1))× uLOi .

In addition, the maximum cumulative execution of HCTs
in the time interval [0, t2] can be computed as ηi ≤

a1
x ×

uLOi + (t2− a1)× uHIi . It should be mentioned that, HCTs are
executed with their virtual deadline in the time interval [0, a1]
and since, the HCT τ1 overrun and the system switches to the
HI mode, all tasks after a1 will be executed by their actual
deadline.

Now, let H denotes the cumulative execution of all tasks in
the time interval [0, t2]. Thus,

H ≤

∑
ζi∈LCTs & δ=1

(a1 + x(t2 − a1))× uLOi

+

∑
ζi∈LCTs & δ>1

(a1 + x(t2 − a1))× uLOi

+(1− x)(t2 − a1)× uHIi

+

∑
δi∈HCTs

a1
x
× uLOi + (t2 − a1)× uHIi

H⇒ H ≤ (a1 + x(t2 − a1))× ULO
LCT |

δ=1

+(a1 + x(t2 − a1))× ULO
LCT |

δ>1
+ (1− x)(t2 − a1)

×UHI
LCT +

a1
x
× ULO

HCT + (t2 − a1)× UHI
HCT

H⇒ H ≤ (a1 + x(t2 − a1))× ULO
LCT + (1− x)(t2 − a1)

×UHI
LCT +

a1
x
× ULO

HCT + (t2 − a1)× UHI
HCT

H⇒ H ≤ a1 × (ULO
LCT +

ULO
HCT

x
)+ x(t2 − a1)× ULO

LCT

+(1− x)(t2 − a1)× UHI
LCT + (t2 − a1)× UHI

HCT

As presented in Eq. 10, (ULO
LCT +

ULO
HCT
x ) ≤ 1, then:

H ≤ a1 + x(t2 − a1)× ULO
LCT + (1− x)(t2 − a1)× UHI

LCT

+(t2 − a1)× UHI
HCT

Hence, H is the maximum cumulative execution of all
tasks. As we mentioned, τ2 is one of these tasks that its
deadline is missed. Therefore, H would be greater than t2 (the
time, which τ2 misses its deadline).

a1 + x(t2 − a1)× ULO
LCT + (1− x)(t2 − a1)× UHI

LCT

+(t2 − a1)× UHI
HCT > t2 H⇒ x(t2 − a1)

×ULO
LCT + (1− x)(t2 − a1)× UHI

LCT

+(t2 − a1)× UHI
HCT > t2 − a1

H⇒ x × ULO
LCT + (1− x)× UHI

LCT + U
HI
HCT > 1

Therefore, we must have the following inequality to guar-
antee that no HCT misses its deadline in the HI mode.

x × ULO
LCT + (1− x)× UHI

LCT + U
HI
HCT ≤ 1
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