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1. Introduction

Li-ion battery cells are in the focus of social interest due to their
wide field of application in all kinds of mobile devices as well as
electric mobility.

The temperature has large impact on the performance
and aging behavior of battery cells.[1,2] Inhomogeneities in

the temperature field lead accordingly to
an inhomogeneous current distribution
and thus again to changes in the heat
release which in interaction with the ther-
mal boundary condition results in a more
pronounced inhomogeneous temperature
distribution.[3]

Typically, thermal battery models are
developed in 2D or 3D.[4] As the thermal
processes are described by partial differen-
tial equations (PDE), these models are
mostly based on numerical methods such
as the Finite Volume Method (FVM) or
the Finite Element Method (FEM).[4,5] A
battery cell consists of a large number of
thin layers in a cell stack or jelly roll. In
common approaches, these thin layers
are resolved by the grid. This results in a
very fine grid and leads to a large number
of degrees of freedom which, in turn,
results in high computing times. For that
reason individual layers[6,7] or even, as

mentioned before, the whole cell stack are homogenized.[8,9]

The full homogenization of the stack to one block with a uniform
set of material properties represents the most widely spread
approach of modeling such thermal battery problems. As shown
in Queisser et al.,[7] the accuracy of the temperature field of this
fully homogenized (FH) approach is poor. Thus, there is the need
to find other approaches. One would be to lessen computing time
by dimensional reduction, but it has already been shown that a 3D
model depicts the temperature distribution best by far and should
therefore be addressed in the model development.[4] Therefore,
either the more detailed resolution of the stack structure,
e.g., using a partial homogenization (PH),[6,7] the full resolution
of each layer,[7,10] or new mathematical approaches are necessary.

These mathematical approaches can be either analytical or
numerical. One of the most used analytical methods is the
asymptotic homogenization, which is applied by Hunt et al.[11]

and Hennessy et al.[12] for electrochemical-thermal battery
modeling. They identified the characteristic length scales of
the battery, such as the particle called microscale, the electrode
called mesoscale, and the cell called macroscale, and, starting at
the microscale, they expanded the solution in a power series with
regard to this length scale parameters. By matching powers
of this parameters, they derived analytical equations for the
mesoscale and then for the macroscale variables.

Z. Veszelka, M. Gontscharow, Prof. W. Dörfler
Institute of Applied and Numerical Mathematics
Karlsruhe Institute of Technology (KIT)
Englerstr. 2, Karlsruhe 76131, Germany
E-mail: zoltan.veszelka@kit.edu

O. Queisser, Prof. T. Wetzel
Insitute of Thermal Process Engineering
Karlsruhe Institute of Technology (KIT)
Kaiserstr. 12, Karlsruhe 76131, Germany

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/ente.202000906.

© 2021 The Authors. Energy Technology published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.

DOI: 10.1002/ente.202000906

Thermal battery modeling is important for further battery development and
optimization. The temperature strongly influences the performance and aging
behavior. In the cell stack, electrochemical processes take place resulting in a
large amount of heat release, which, in turn, affects the temperature distribution.
Therefore, the main focus is on the cell stack, the most complex structure inside
the cell. In particular, the discontinuous and anisotropic material properties
represent a major challenge for simulations due to the layering. This work
proposes self-developed methods, based on the Finite Volume Method and the
Finite Element Method, taking on these challenges. First, for both methods the
functionality is verified and numerical convergence is validated. These, and also
classical methods, are compared based on test problems with a known analytical
solution in view of numerical errors as well as computing time. It if found that
their accuracy and efficiency depends strongly on the specific problem, which
makes their numerical investigation necessary and inevitable. Second, the
methods are evaluated on a specific battery problem. Their results are plausible
and correspond to the physical phenomena.
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Another analytical approach is used by Kim et al.[13] They
applied a multiscale, multidimensional (MSMD) approach to
an electrochemical–thermal battery model. Therein, they solved
the characteristic coupled equations on every scale and exchanged
parameters between the scales by averaging the solutions.

Numerical homogenization methods follow another approach.
Their goal is to solve the multiscale PDE without analytically deriv-
ing a homogenized equation for the meso- and macroscale.
Keeping sufficient accuracy they do not resolve, but neither neglect,
the fine scales. Thereby, at least two or even three spatial scales can
be connected. Examples for suchmethods are the Multiscale Finite
Element Method[14] and the Reduced Basis Method.[15]

A new approach to the application to battery simulation
models is the Heterogeneous Multiscale Method (HMM) which
is investigated in this work in more detail. Engquist[16] first intro-
duced this method and reviewed it later.[17] It is a general mathe-
matical framework for solving various multiscale problems. The
scales, typically a microscale and a macroscale, are coupled via
mathematical techniques. These constrain the microsolutions
so that they are consistent to the local macroscopic state.
Abdulle and Schwab[18] use FEM on both scales for a diffusion
problem on a rough surface, which leads to the Finite Element
Heterogeneous Multiscale Method (FE-HMM). Later Abdulle[19]

reviewed and extended it to standard elliptic problems and dis-
cussed the error analysis of the method. So far the method has
been applied to various problems, e.g., parabolic problems[20] or
to nonlinear monotone parabolic problems.[21]

It is noticeable that there are many different variants for the
mapping of peripheral components, e.g., tabs or housing, in
models.[4,8]

Up to now, we know of no publication that, for the case of
thermal modeling of battery cells, evaluates the errors with
respect to the spatial and temporal discretization.

In this work, different methods derived from the software
OpenFOAM, which uses FVM, and from the finite element
library deal.II, which uses FEM, are applied to a thermal battery
model. This model is introduced in Section 2. On the one hand,
for the FVM a newmethod is developed that will be introduced in
Section 3.2. On the other hand, for the FEM in Section 4.2, an
existing homogenization method is newly applied and further
developed to such a problem. Both methods are extended in
regard to deal with anisotropy, nonlinearity, the ability to release
heat, and the discontinuity of the material properties. In addition,
already existing standard methods were used for comparison.
These are described in Section 3.1 and 4.1, respectively. Then
in Section 5.1 and 5.2 the methods are applied to appropriate
test problems with known analytical solution to evaluate the
errors and computing times. In Section 5.3, the battery model
is investigated using these methods under various boundary
conditions. Finally in Section 6, a summary and concluding
remarks about future work and possible challenges are given.

2. Thermal Model

2.1. Thermal Transport

Thermal investigations of simulation models for batteries focus
on the analysis of the temperature distribution and thus the

solution of the transient, inhomogeneous heat transport
equation. Inside a 3D bounded domain Ω∶ ¼ ½0m, 0.0395m� �
½0m, 0.112m� � ½0m, 0.0074639m�⊂ℝ3, which depicts the bat-
tery, the temperature field T∶ℝ≥0 � ℝ3 ! ℝ≥0, t, x ↦ Tðt, xÞ,
represents the solution of the heat equation (Equation (1)).
The temperature T depends on the time variable t ≥ 0 and the
spatial quantity x in Ω. As the temperature is defined in
Kelvin, T maps into the nonnegative numbers (ℝ≥0). The further
parameters are defined in the same way. Two common
approaches to solve this equation are the FVM, explained in more
detail in Section 3, and the FEM, which will be described in
Section 4. All dependencies that are taken into account are shown
in the initial-boundary value problem

ρðxÞ ∂tðcpðx,TÞTðt, xÞÞ ¼ ∇ ⋅ ðλðx,TÞ∇Tðt, xÞÞ þQ
: 000
srcðxÞ (1)

Here ρ∶Ω ! ℝ>0 denotes the density, cp∶Ω�ℝ>0 ! ℝ>0 the
specific heat capacity, λ∶Ω�ℝ>0 ! ℝ3�3

>0 the thermal conductivity,
and Q

: 000
src∶Ω ! ℝ the volumetric heat source. The apostrophes

denote normalization of the quantity to the spatial dimension.
The normalization in terms of area is indicated by two apostro-
phes, in terms of volume by three. Apart from their dependency
on temperature and, especially for the thermal conductivity, on
the transport direction, the coefficients are material dependent
and therefore they are often discontinuous. This characteristic
will be investigated in Section 5.2, in which the convergence
behavior of different methods is discussed.

As initial condition, a uniform temperature Tinit is set to
298 K. The heat generation is calculated to an average value of
3W for the whole cell from experimental data acquired for a
pouch cell at a 3 C discharge cycle. It is then evenly distributed
to the active material layers. It is applied to the active material
parts of the cell and it is therefore discontinuous as well because
in the left components the heat release is set to 0W. Bernardi
et al.[22] present more detailed information about the dependen-
cies and thus the equations for calculating the heat release.

2.2. Thermal Boundary Conditions

There are three typical boundary conditions for thermal
problems [[23] Section E2]. The first one is a Dirichlet boundary
condition, where a temperature TBC can be set as

Tðt, xÞ ¼ TBCðt, xÞ ∀t > 0, x ∈ ΓD (2)

with the Dirichlet boundary ΓD ⊆ ∂Ω. Second, a Neumann
boundary condition specifies a heat flux Q

: 00
BC normal to the

boundary as

�λ ∂nTðt, xÞ ¼ Q
: 00
BCðxÞ ∀t > 0, x ∈ ΓN (3)

with the Neumann boundary ΓN ⊆ ∂Ω and the normal derivative
∂nT . Noteworthy, through a perfect isolated, called adiabatic,
system no heat is transferred. Therefore, it is determined by a
zero Neumann boundary condition. Third, a Robin boundary
condition represents a combination of the previous two boundary
conditions, in which the normal gradient of the temperature to
the boundary is set to Newton’s cooling law as
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�λ ∂nTðt, xÞ ¼ αðTðt, xÞ � TBCðt, xÞÞ ∀t > 0, x ∈ ΓR (4)

where α is the heat transfer coefficient and ΓR ⊆ ∂Ω is the
Robin boundary. These boundary conditions can also be
combined, and then each one is only valid on a part of the
boundary.

2.3. Model Geometry and Parameterization

The geometry of a pouch cell is composed of different stacked
layers, the anode and cathode tab as well as a casing, which is
made of a separator and an aluminum compound foil. The main
focus of these investigations is the layered stack. Due to that, all
remaining components are not considered further. In the stack,
unit cells consisting of a cathode current collector (CCC), an
active material (AM) layer, and an anode current collector
(ACC) are piled. Opposite to the common approaches of homog-
enizing the whole stack to one FH block, Queisser et al.[7]

describe an approach of PH, which is used to homogenize the
three layers anode and cathode coating as well as separator to
only one remaining layer. Using this homogenization approach,
the total number of layers in the stack of the chosen cell
can be reduced by almost one half and so 133 layers remain from
265 layers in the fully resolved cell. In Figure 1, a battery cell
consisting of 17 layers is visualized. The thermal conductivity
in z-direction is shown in Figure 2. Note that the visualization
tool shows a continuous linear interpolation of the discontinuous
function.

In the next step, the material layers in the model are parame-
terized using the data shown in Table 1.

3. Finite Volume Solvers

In Supporting Information A, the derivation of the FVM for the
linear problem—i.e. for temperature independent λ and cp—of
Equation (1) was shown. In the next sections, two methods based
on this derivation will be introduced. The first one is a standard
OpenFOAM solver and the second one is a self-developed
variant.

3.1. chtMultiRegionFoam

This standard OpenFOAM solver is capable of solving either
steady-state or transient heat transfer problems consisting of

Figure 1. Model geometry with 17 layers of cell stack of the battery cell with resolved cathode current collector (gray), anode current collector (copper),
and homogenized active material (blue).

Figure 2. Schematic illustration of the thermal conductivity λ in z-direction
for the 17 layers shown in Figure 1.

Table 1. Material properties of the layers in the cell stack from Queisser
et al.[7]

Density ρ
[kg m�3]

Specific heat capacity
cp [J kg

�1 K�1]
Thermal conductivity

λ∥ [Wm�1 K�1]
Thermal conductivity

λ⊥ [Wm�1 K�1]

ACC 8710.2 384.65 398.71 398.71

CCC 2706.77 897.8 236.3 236.3

AM 2094.302 1010.119 1.741 0.683
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both solid and/or fluid regions interacting with each other.[24]

Therefore, the consequence is an extensive communication
mechanism to even solve boundary layers in a fluid. Due to that
each domain is calculated separately exchanging the values of the
unknowns via specific interface conditions. In addition, so-called
nOuterCorrectors are implemented denoting the number of
cycles repeating a loop around the whole solving process within
one time step. This is comparable with an iteration loop consid-
ering the pressure correction using the PIMPLE algorithm,
which is a combination of SIMPLE and PISO algorithms [[25],
Section 7]. An advantage of this solver is the applicability to such
a problem with discontinuous material properties, even when
some features remain unused. This refers for the thermal battery
model in particular to the regions. Only solid regions are used,
but the nOuterCorrectors are still necessary through the discon-
tinuity due to the coupling of the many layers and thus many
regions.

3.2. layeredLaplacianFoam

In this section, the further developed solver
layeredLaplacianFoam based on the standard OpenFOAM solver
laplacianFoam will be introduced. This new solver is capable of
solving the nonlinear version of Equation (1) without splitting the
domain into subdomains for each component, meaning the
domain is considered as a whole. The coefficients are defined
with the help of functions that depend on the spatial coordinates.
The standard solver is able to solve equations of the form

∂tT � ∇ ⋅ ðDT∇TÞ ¼ ST (5)

DT and ST are the constant scalar diffusion coefficient and the
source term, respectively. For a detailed description of the solver,
see the study by Greenshields.[24]

To arrive at layeredLaplacianFoam, LaplacianFoam will be
modified and further developed because it only solves problems
of the form of Equation (5). In the first step, DT and ST are
replaced by a T-dependent variable that incorporates ρ and cp,
too. So DT will be replaced by

κðTÞ∶ ¼ λðTÞ
ρcp

(6)

and ST by

β∶ ¼ Q
: 000
src

ρcp
(7)

These quotients are well defined because the density and the
heat capacity are positive for each layer (cf. Table 1). Because they
are moreover scalar constants in each layer (cf. Table 1), κ can be
written inside the divergence operator.

The next step is to take care of the coefficients. Here,
Equation (1) is solved with constant scalar density, heat capacity,
and source term in each layer. The coefficient ρ is of the form

ρðxÞ ¼

8><
>:

ρACC, x ∈ ACC

ρCCC, x ∈ CCC

ρAM, x ∈ AM

(8)

and the same kind of definition is used for the heat capacity
cp and the heat source Q

: 000
src. The heat conductivity is defined

layerwise, too. In addition to its nonlinearity, it is anisotropic
as well. In this case, the coefficient has in each layer the form

λðTÞ ¼

0
B@

λxðTÞ 0 0

0 λyðTÞ 0

0 0 λzðTÞ

1
CA (9)

The nonlinear coefficient λx has in each layer the form

λx ¼ λx,0 þ λx,1T þ λx,2T2 þ · · · þ λx,7T7 (10)

λy and λz are defined analogously. In combination, this results
in a nonlinear polynomial in T in each component of the aniso-
tropic tensor for λ.

Next, an additional data file named layerProperties is created
that consists of all important parameter of the different layers,
such as thickness, density, heat capacity, coefficients of the non-
linear and/or anisotropic heat conductivity, and the order of the
layers. The solver reads this file at the beginning and uses the
data to compute the coefficients for Equation (1) as functions
of the spatial variable.

Therefore, it is necessary to assign each individual point
to a specific layer. Using a simple algorithm, the solver sums
up the thicknesses of the layers in the correct order until the
z-coordinate of the point is reached and it returns the appropriate
layer. This algorithm is then applied to the centers of the cells
and the coefficients for the whole mesh are defined. This results
in coefficients of the form shown in Equation (8).

The application to the cell centers is sufficient because, as
described at Supporting Information A, the OpenFOAM solver
uses the one point Gauss quadrature for numerical integration
and thus one value per cell is enough.

In the last step, the nonlinearity is resolved. As the initial
solver laplacianFoam only operates with linear problems, a
linearized approach has to be applied. Here, κ(T ) is evaluated
at time tn which leads to the linear equation

Tnþ1 � Tn

Δt
� ∇ ⋅ ðκðTnÞ∇Tnþ1Þ ¼ β (11)

for Tnþ1. This equation is solved as described in Supporting
Information A.

4. Finite Element Solvers

In the following we will apply the FEM to Equation (1)

ρðxÞ ∂tðcpðx,TÞTðt, xÞÞ ¼ ∇ ⋅ ðλðx,TÞ∇Tðt, xÞÞ þQ
: 000
srcðxÞ (12)

This standard derivation is presented in Supporting
Information B for convenience. In the next sections, two meth-
ods based on this derivation will be introduced. The first one is a
standard higher order FEM and the second one is a numerical
homogenization method.
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4.1. Higher Order FEM

In the case of higher order finite elements, the solution is approx-
imated by higher order polynomials on each cell of the decom-
position of the domain, in contrast to constants as in the FVM.
This leads to higher accuracy for the same resolution of the grid.

At the end of Supporting Information B, the bilinear form (18)
and the linear form (19)

BðTnþ1,φÞ∶ ¼
Z
Ω
ρ
cpðTnþ1ÞTnþ1 � cpðTnÞTn

Δt
φdx

þ
Z
Ω
λðTnþ1Þ∇Tnþ1 ⋅ ∇φdx

(13)

FðφÞ∶ ¼
Z
Ω
Q
: 000
srcφdx (14)

were derived, but the space V was not further specified. In this
section, Equation (1) will be solved using the finite element
spaces VpðT hÞ∶ ¼ fφh ∈ H1ðΩÞ∶φh

jK ∈ QpðKÞ ∀K ∈ T hg of
order p∈ {1,2,3} over an admissible decomposition T h of Ω with
step size h, see [[26], Section 2.5]. Here, H1ðΩÞ is the Sobolev
space of order 1, see [[27], Section 2.4], and QpðKÞ is the space
of polynomials with degree at most p in each coordinate variable
on the quadrilateral K, if Ω⊂ℝ2 and on the cuboid K, if Ω⊂ℝ3.
This choice for the decomposition is made because the finite
element library deal.II is used that is based on decompositions
into quadrilaterals and cuboids, respectively.

As stated in Supporting Information B, Equation (17)

Z
Ω
ρ
cpðTnþ1ÞTnþ1 � cpðTnÞTn

Δt
φdx

þ
Z
Ω
λðTnþ1Þ∇Tnþ1 ⋅ ∇φdx

¼
Z
Ω
Q
: 000
srcφdx ∀φ ∈ V

(15)

is solved with the undamped Newton method, see [[28], Section
14.2.7]. Defining ∂TBðTnþ1,h

k ,φhÞ as the derivative of T ↦
BðT ,φhÞ with respect to T at Tnþ1,h

k , the actual Newton iterate,
the equation for the Newton update δTnþ1,h

kþ1 reads

∂TBðTnþ1,h
k ,φhÞ

h
δTnþ1,h

kþ1

i
¼ �BðTnþ1,h

k ,φhÞ þ FðφhÞ ∀φh ∈ Vh
(16)

Then Tnþ1,h
kþ1 ∶ ¼ Tnþ1,h

k þ δTnþ1,h
kþ1 and Tnþ1,h∶ ¼ Tnþ1,h

kþ1 is
defined when δTnþ1,h

kþ1 is sufficiently small.

In the next step, δTnþ1,h
k ¼PM

i¼1 T
nþ1
i φp,h

i is defined using

the finite element basis functions φp,h
i ∈ Vp and uniquely

determined coefficients Tnþ1
i ∈ ℝ, i ¼ 1, : : : ,M. This is

inserted in Equation (16) and for φh ¼ φp,h
i , i ¼ 1, : : : ,M,

T̄nþ1∶ ¼ ðTnþ1
1 , : : : ,Tnþ1

M Þ ∈ ℝM and A ∈ ℝM�M the linear sys-
tem

ATnþ1 ¼ F (17)

with

Ai,j ¼ ∂TBðTnþ1,h
k ,φp,h

j Þ½φp,h
i �

¼ 1
Δt

Z
Ω
ρc0pðTnþ1,h

k ÞTnþ1,h
k φp,h

i φp,h
j dx

þ 1
Δt

Z
Ω
ρcpðTnþ1,h

k Þφp,h
i φp,h

j dx

þ
Z
Ω
λ
0 ðTnþ1,h

k Þφp,h
i ∇Tnþ1,h

k ⋅ ∇φp,h
j dx

þ
Z
Ω
λðTnþ1,h

k Þ∇φp,h
i ⋅ ∇φp,h

j dx

(18)

and

Fi ¼ �BðTnþ1,h
k ,φp,h

i Þ þ Fðφp,h
i Þ

¼ �
Z
Ω
ρ
cpðTnþ1,h

k ÞTnþ1,h
k � cpðTn,h

k ÞTn,h

Δt
φp,h
i dx

�
Z
Ω
λðTnþ1,h

k Þ∇Tnþ1,h
k ⋅ ∇φp,h

i dx þ
Z
Ω
Q
: 000
srcφ

p,h
i dx

(19)

follows. The integrals are computed with an appropriate Gauss
quadrature rule and the linear system is solved with the
Conjugate Gradient (CG) algorithm, see [[28], Section 11.3.4].

4.2. FE-HMM

As mentioned in the first part of Section 4, Equation (1) is solved
with a numerical homogenization method. This means in the
context of multiscale methods, that no analytically homogenized
equation is derived. The actual multiscale PDE is solved, but the
solution converges to the solution of the, in mathematical sense,
analytically homogenized equation,[29] i.e. to a problem that has
the same structure, but with coefficients that do not depend on
the microscale variable.

In this work, the FE-HMM, a general mathematical frame-
work for solving various multiscale problems is used. It uses
finite elements to realize the concept of the HMM.[16,17] The idea
is that the missing data on the macroscale are approximated by
the solution of appropriate microproblems on the microscale.
These data are in the case of the battery the homogenized heat
capacity and hat conductivity. The two scales are coupled via
mathematical techniques that assign the microproblems to the
macroproblem in a consistent way. The choice of the methods
on the different scales and the coupling between them are prob-
lem dependent and determine the exact method. For this
approach, the FEM, the Finite Difference Method, or the discon-
tinuous Galerkin method can be used. A reconstruction operator
or appropriate boundary conditions are examples for the cou-
pling, see [[16], Section 2.2] and [[19], Section 3.2], respectively.

As mentioned earlier, the FEM is chosen on both scales, which
leads to the FE-HMM. It was first introduced by Abdulle in the
study by Abdulle and Schwab[18] and was reviewed and extended
in the study by Abdulle.[19] Since then, it has been applied to var-
ious problems, among others, to parabolic problems in the study
by Ming and Zhang[20] or to nonlinear monotone parabolic prob-
lems in the study by Abdulle and Huber.[21] Later, the method
applied to quasilinear problems described in the study by
Abdulle and Vilmart[30] will be extended to such problems with
multiple discontinuous multiscale coefficients. The coupling of
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the two scales in the FE-HMM is realized through appropriate
boundary conditions, i.e. the boundary conditions of the micro-
problems are derived from functions on the macroscale.

In the next sections, the main components of FE-HMM
will be described based on [[30], Section 2] and [[31], Section 1.2].
Thereby, the application to the battery problem is directly
considered.

4.2.1. Quadrature Formulas

The most important component of the method is the quadrature
formula. On one side, as mentioned in Section 3, they are
used for the numerical integration of the weak forms—for
the macro- and microproblems—and on the other side the
quadrature points will be the centers of the microdomains
where the microproblems are solved. As the problem is
implemented in deal.II which works with quadrilateral elements,
let K̂ be the reference element of quadrilateral type. For a
quadrature formula fx̂j, ω̂jgJj¼1 with quadrature points x̂j ∈ K̂
and quadrature weights ω̂j, j ¼ 1, : : : , J, the following assump-
tions are made

ω̂j > 0, j ¼ 1, : : : , J, and
XJ
j¼1

ω̂jj∇ẑðx̂jÞj2 ≥ Cjj∇ẑjj2
L2ðK̂Þ

∀ẑ ∈ QpðK̂Þ and someC > 0

(20)

Z
K̂
ẑðxÞdx ¼

XJ
j¼1

ω̂j ẑðx̂jÞ

∀ẑ ∈ QqðK̂Þ for q ¼ maxð2p� 1, pþ 1Þ
(21)

These assumptions guarantee that the discrete system is
invertible and that integrals over polynomials up to order q
are integrated exactly. In this way, the optimal convergence
rates for the FEM with numerical integration are assured.
For the macroproblem, as well as for the microproblem, the
Gauss quadrature with two quadrature points in each coordi-
nate direction is chosen. In this way, bilinear functions can
be exactly integrated and that will be sufficient for the applica-
tion. For the reference quadrilateral K̂ ¼ ½�1, 1�2 in two space
dimensions, the quadrature points are ½�1=

ffiffiffi
3

p
, � 1=

ffiffiffi
3

p � and
all weights are equal to 1. The left and right part of Figure 3
show how the points are positioned in a macro- and microele-
ment, respectively.

4.2.2. Macro and Micro Finite Element Space

For the macro finite element space, the space VpðT HÞ with p¼ 1
and the macrodecomposition T H of Ω with step size H, as
described in Section 4.1, is used. In the application, the step size
H will be bigger than the width of the layers of the battery.

To define the micro finite element spaces, we need to describe
microdomains. As shown in Figure 3 on each macroelement
K ∈ T H, the Gauss quadrature points xKj

∈ K , j ¼ 1, : : : , 4,
are chosen and microdomains KδðxKj

Þ∶ ¼ xKj
þ δI with

I ¼ ð�1=2, 1=2Þ2 and δ> 0 are defined. δ will be described more
precisely later.

Let T h be a decomposition of a microdomain Kδj in
quadrilaterals with step size h. In the application hwill be smaller
than H, especially much smaller than the width of the layers.
Then the micro finite element space is

S1ðKδðxK ; jÞ, T hÞ
≔ fzh ∈ WðKδðxK ; jÞÞ∶zhjT ∈ Q1ðTÞ, ∀T ∈ T hg

(22)

where WðKδðxK ,jÞÞ is the space H1 on KδðxKj
Þ with periodic

boundary conditions. This space contains all functions which
are continuous and square integrable over KδðxKj

Þ, are bilinear
on each element T of the decomposition T h, and fulfill a periodic
boundary condition over KδðxKj

Þ. The exact boundary conditions
in Section 4.2.3 will complete the coupling of the problems.

4.2.3. Microproblem

Now the microproblems are defined with whose solutions the
macro bilinearform will be build. For each microdomain
KδðxKj

Þ let vh,aϵ , sK ,j be the solution ofZ
KδðxK ,jÞ

aϵðx, sÞ∇vh,aϵ, sK ,j ðxÞ ⋅ ∇zhðxÞdx ¼ 0

∀zh ∈ S1ðKδðxK ,jÞ, T hÞ
(23)

with the boundary condition vh,a
ϵ , s

K ,j � vHlin,K ,j ∈ S1ðKδðxK,jÞ, T hÞ.
Here, vHlin,K,jðxÞ ¼ vHðxK ,jÞ þ ðx � xK ,jÞ ⋅ ∇vHðxK,jÞ is the lineari-
zation of the macrofunction vH in xK ,j and s ¼ uHðxK ,jÞ is the
actual discrete solution at the quadrature node. This boundary
condition couples the macro- and microproblem and shows
how the microproblem depends on the macroproblem.

The solution of Equation (23) depends also on the coefficient
aϵ. This means that when the microproblems are solved, λ or cp is
inserted for aϵ. In addition to the space variable, it depends also

Figure 3. Components of the FE-HMM.

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2021, 2000906 2000906 (6 of 15) © 2021 The Authors. Energy Technology published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.entechnol.de


on the actual discrete solution at the quadrature node, which
leads to linear coefficients and not to nonlinear ones as λ
and cp are. This is permitted and justified by the fact that the
coefficients are quasilinear. The benefit is that linear instead of
nonlinear microproblems can be solved.

It is important to note that boundary conditions are only given
for vh,a

ϵ , s
K ,j � vHlin,K ,j. To solve Equation (23) ∫ KδðxK,jÞa

ϵðx, sÞ∇vHlin,K ,j ⋅
∇zhðxÞdx is subtracted from both sides of the equation and we
arrive atZ

KδðxK ,jÞ
aϵðx, sÞ∇ðvh,a ϵ, s

K ,j ðxÞ � vHlin,K,jðxÞÞ ⋅ ∇zhðxÞdx

¼
Z
KδðxK,jÞ

aϵðx, sÞ∇vHlin,K ,jðxÞ ⋅ ∇zhðxÞdx ∀zh

∈ S1ðKδðxK ,jÞ, T hÞ

(24)

This is the problem that is actually solved. To get vh,a
ϵ, s, vHlin,K ,j

is added to the solution.
As the step size h of the decomposition T h is much

smaller and the step size H of T H is bigger than the microscale
parameter, the domains KδðxKj

Þ⊂Ω are the only domains where
the microscale is resolved. So as mentioned in the introduction,
what happens on the microscale is considered without resolving
it everywhere. From that follows that fewer macro degrees of
freedom—compared with the higher order FEM—are needed.
In addition to that, as shown in the left part of Figure 3, the
microproblems to different quadrature points are independent
of each other. Therefore, the code is easily parallelizable and
scales nearly perfectly, see [[32], Section 4.1].

4.2.4. Macro bilinearform

Now the bilinear form of Supporting Information B,
Equation (18) will be modified using the microscale information.
In the first steps, the decomposition of Ω and a quadrature for-
mula are used, which results in

BðTnþ1,φÞ ¼X
K∈T H

�Z
K
ρ
cpðTnþ1ÞTnþ1 � cpðTnÞTn

Δt
φdx

þ
Z
K
λðTnþ1Þ∇Tnþ1 ⋅ ∇φdx

�

�
X
K∈T H

X4
j¼1

ωKj
ðρðxKj

Þ

� cpðTnþ1,xKj
ÞTnþ1ðxKj

Þ � cpðTn, xKj
ÞTnðxKj

Þ
Δt

φðxKj
Þ

þ λðTnþ1,xKj
Þ∇Tnþ1ðxKj

Þ ⋅ ∇φðxKj
ÞÞ

(25)

Now the parts which consist of macrofunctions are replaced
through integrals over the microdomains of the solutions of
the appropriate microproblems and the modified bilinear

form is defined with the solutions w
h,ð⋅Þ,uHðxK ,jÞ
K,j and v

h,ð⋅Þ,uHðxK ,jÞ
K ,j

of Equation (23) with appropriate coefficients and parameter
s ¼ uHðxK ,jÞ as

BHðuH;wH,vHÞ∶¼
X
k∈T H

X4
j¼1

ωK ,j

jKδðxK ,jÞj
�Z

KδðxK ,jÞ

�ρ
cpðuHðxK ,jÞÞwh,cp ,uHðxK ,jÞ

K ,j �cpðTn,HðxK ,jÞÞTn,H

Δt
v
h,cp ,uHðxK ,jÞ
K,j dx

þ
Z
KδðxK ,jÞ

λðuHðxK ,jÞÞ∇wh,λ,uHðxK ,jÞ
K ,j ⋅∇vh,λ,u

HðxK ,jÞ
K ,j dx

�
(26)

Analogously to the derivation in Section 4.1, the matrix and
right-hand side vector for the linear system can be defined.
During the assembling of the matrix, the contributions from
the microscale are computed “on-the-fly” on the corresponding
macrocells. This saves computation time and memory. For more
implementation aspects, see [[32], Section 3].

4.2.5. The Multiscale Method

With the help of Equation (26), the multiscale method is defined
as follows. Find Tn,H ∈ V1ðΩ, T HÞ with
BHðTn,H ;Tn,H , vHÞ ¼ FðvHÞ ∀vH ∈ V1ðΩ, T HÞ (27)

where FðvHÞ is the linear form in Supporting Information B,
Equation (19). The nonlinearities of the macroproblem are
resolved with the undamped Newton method which results
for the Newton update δTn,H

k with the actual solution Tn,H
k in

∂TBHðTn,H
k ;Tn,H

k , vHÞ � FðTn,H
k ; vHÞ½δTn,H

k �
¼ �BHðTn,H

k ;Tn,H
k , vHÞ � FðTn,H

k ; vHÞ ∀vH ∈ V1ðT HÞ
(28)

The linear system resulting from this equation is solved with
the CG algorithm.

5. Results

In the previous two sections, altogether six different methods—
the chtMultiRegionFoam, the layeredLaplacianFoam, three
higher order FEMs, and the FE-HMM—were introduced to solve
Equation (1). In Section 5.1, an error analysis including the dem-
onstration of optimal convergence order for the FE-HMM will be
shown. This will be done based on a stationary test problem with
multiple multiscale coefficients. After that the application of this
method to the battery problem will be presented. In Section 5.2,
the convergence of the other five methods will be shown,
their order of convergence will be computed, and they will be
compared regarding computation time and scaling with regard
to parallelization. For that a stationary elliptic test problem
with a discontinuous coefficient will be used. One reason for
the necessity of different test problems is that for the FE-
HMM a problem with multiscale coefficients is needed. Even
if this would be used for testing the other five methods, their
results would not converge to a homogenized solution as the
FE-HMM does, but to the unhomogenized solution, which
would make the comparison of all methods impossible. In
Section 5.3, all six methods will be applied to the thermal battery
problem.
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5.1. Results for the FE-HMM

5.1.1. Error Analyses

An important mathematical feature of the FE-HMM introduced
in the last section is that there exist a priori error estimates. That
guarantees that the method converges to the desired solution.
The aim is to characterize kT0 � THk, where T0 is the exact
solution of the homogenized problem, TH is the solution of
Equation (27), and the norm is the H1 or the L2 norm, which
are defined for a function f ∶Ω ! ℝ as follows

kf kL2ðΩÞ∶ ¼
�Z

Ω
jf ðxÞj2dx

�1
2
,

kf kH1ðΩÞ∶ ¼
�
kf k2L2ðΩÞ þ k∇f k2L2ðΩÞ

�1
2

(29)

It was shown in [[19], Section 3.3] and [[30], Section 3] that for
the problem with one multiscale coefficient the error estimates

kT0 � THkL2ðΩÞ ≤ CðH2 þ ðh=ϵÞ2Þ (30)

kT0 � THkH1ðΩÞ ≤ CðH þ ðh=ϵÞ2Þ (31)

hold. It will be confirmed numerically later that the results
are equally valid in the case of multiple multiscale coefficients.
From Equation (30) and (31) follows that optimal convergence
rates are achieved if the macro- and microgrid are refined
simultaneously in the L2 case and according to h � ffiffiffiffiffi

H
p

in
the H1 case. The sharpness of the estimates is illustrated on
the following equation, which is based on the example in [[30],
Section 5] and has the same structure as Equation (16) in
Supporting Information B for a fixed time. To consider such a
case is sufficient because it is known that the implicit Euler
method converges with order one in time.

� ∇ ⋅ ðaϵðx, uϵðxÞÞ∇uϵðxÞÞ þ bϵðx, uϵÞuϵðxÞ ¼ f ðxÞ
∀x ∈ Ω¼ ½0, 1�2

(32)

uϵðxÞ ¼ 0 ∀x ∈ ∂Ω (33)

with the ϵ-dependent coefficients

aϵðx,sÞ¼ 1ffiffiffi
3

p
 ð2þsinð2πx1ϵ ÞÞð1þsinðπsÞÞ 0

0 ð2þsinð2πx2ϵ ÞÞð2þarctanðsÞÞ

! (34)

bϵðx, sÞ ¼
�
1þ cos

�
4πx1
ϵ

��
ð2þ x1 cosðπsÞÞ (35)

and a right-hand side f that is chosen in such a way, that
u0ðxÞ∶ ¼ 8 sinðπx1Þx2ð1� x2Þ is the exact solution of the
homogenized equation

� ∇ ⋅ ða0ðx, u0ðxÞÞ∇u0ðxÞÞ þ b0ðx, u0ðxÞÞu0ðxÞ ¼ f ðxÞ
∀x ∈ Ω

(36)

u0ðxÞ ¼ 0 ∀x ∈ ∂Ω (37)

Here, the homogenized coefficients a0 and b0 are explicitly
computable as

a0ðx, sÞ ¼
�
1þ x1 sinðπsÞ 0

0 2þ arctanðsÞ
�

(38)

b0ðx, sÞ ¼ 2þ x1 cosðπsÞ (39)

For the computations ϵ¼ 10�4 is chosen. This is sufficient
because the smallest H will be much bigger than that.
Figure 4 shows the relative L2 error, i.e. the error divided by
the norm of the solution, when either H (Figure 4a) or h
(Figure 4b) is refined and the other parameter is kept fixed.
The error is plotted for h,H ¼ 1=2, 1=4, 1=8, 1=16, 1=32. It
can be observed that optimal convergence rates are only reached
if the macro- and micromeshes are refined simultaneously. In
the other cases, one part of the errors shown in Equation (30)
and (31), respectively, dominates the other. This is shown for
the L2 and for the H1 error in Figure 4c. Here, optimal conver-
gence rates are observed as stated in Equation (30) and (31).

5.1.2. Application to the Battery Problem and Implementation
Aspects

Now the previous sections will be summarized and the specific
application of the method to problem of Equation (1) on the
modeled battery geometry will be shown.

In Figure 5, a segment of the geometry is seen, which is the
mathematical macrodomain Ω. The macrostep size H is chosen
so that it is 2 times the width of the active material and the width
of each current collector layer. With this choice the resolution of
all layers is avoided, as it was done in Section 4.1. The microscale
parameter ϵ is the sum of the dimensionless thicknesses of the
three different layers. As it was pointed out at the beginning of
the section, the discontinuous periodic material coefficients are
the multiscale coefficients aϵ, bϵ.

As stated in Section 4.2.1, the Gauss quadrature with two
quadrature points in each direction is chosen, i.e. that there
are four quadrature points in each macrocell as it is shown in
the middle part of Figure 5. Around them the microdomains
Kδj are taken in a way that they contain parts from the active
material layers and from the current collector layers. This guar-
antees that both types of layer are considered. If the equation
would be solved with finite elements with step sizeH in the case
of the two-point Gauss quadrature rule, the coefficients would
only be evaluated in the active material layers, as it can be seen
in the middle part of Figure 5. This means that only an equation
with just one broad active material layer and no current collector
layers would be solved.

In the microdomains, a decomposition with step size h is used
which is small enough to sufficiently resolve the layers. In
Section 4.1, the step size of the entire decomposition was roughly
as small because there the layers had to be resolved everywhere.

5.2. Test Problem

To compare the two OpenFOAM methods and the higher
order FEM as a test problem, a steady-state diffusion problem
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with discontinuous coefficients is considered. Such a problem
can be seen similar to a spatial segment of one time step of
the battery problem. This is sufficient for the comparison
because on the one side only the convergence of the methods
will be demonstrated and the order of convergence for problems
with such coefficients will be shown and on the other side for
the battery problem the time steps will be chosen in a way
that the error is dominated by the spatial error and not by the
error caused by time discretization. So the following problem
for a given s ∈ ð0, πÞ is considered

�∇ ⋅ ðasðxÞ∇uðx, yÞÞ ¼ f ðx, yÞ ∀ðx, yÞ ∈ Ω∶ ¼ ½0, π�2 (40)

uð0, yÞ ¼ uexð0, yÞ (41)

uðπ, yÞ ¼ uexðπ, yÞ (42)

asðxÞ ∂yuðx, 0Þ ¼ asðxÞ ∂yuðx, πÞ ¼ 0 (43)

with

asðxÞ ¼
�
a1∶ ¼ 1, x < s

a2∶ ¼ 10, x ≥ s
(44)

and f ðx, yÞ ¼ asðxÞ sinðxÞ. This f is chosen such that the equa-
tion has the exact analytical solution

uexðx, yÞ ¼
�

sinðxÞ þ c1ðsÞx, x < s

sinðxÞ þ c2ðsÞðπ � xÞ, x ≥ s
(45)

(a)

(c)

(b)

Figure 4. Convergence rates of the FE-HMM for different refinements. a) L2 errors of the FE-HMM for H-refinement for fixed h. b) L2 errors of
the FE-HMM for h-refinement for fixed H. c) Errors for simultaneous refinement of h¼H.

Figure 5. Application of the FE-HMM.
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where the real coefficients c1ðsÞ and c2ðsÞ are chosen such that
the solution and the fluxes as ∂xu are continuous in s. Results
for s ¼ π=2 and s ¼ π=3 will be presented. Furthermore, the
choice for these values for s will be explained. For both
setups, the problem is solved with the CG algorithm for a
tolerance tol ¼ 10�12 and without parallelization. Under the
above assumptions c1ðπ=2Þ ¼ c2ðπ=2Þ ¼ 0 for s ¼ π=2 and
c1ðπ=3Þ ¼ 0.75, c2ðπ=3Þ ¼ 0.375 for s ¼ π=3 are found.

All computations were done on the single partition of the
BwUniCluster 2.0.[33] The computation times are the averages
of three runs to reduce the impact of deviations on the
results caused by the cluster. For the error and time measure-
ments N ¼ 8, 16, 32, : : : , 1024 cells per dimension are
considered, no parallelization is used and a preconditioner is
only applied for the time measurement of the FEM with p¼ 2
and p¼ 3. For the investigation of the scaling of the solvers with
respect to parallelization n ¼ 1, 2, 4, : : : , 32 cores were used.
In the plots p ∈ f1, 2, 3g stands for the finite element solver with
the respective order, lLF stand for layeredLaplacianFoam and
CHT for chtMultiRegionFoam.

At first, a look at the errors for the two different s values is
taken. According to [[26], Section 2.7] for the solution uh of the
FEM of order p for a sufficiently regular solution u, the estimates

jju� uhjjL2ðΩÞ ≤ Chpþ1, jju� uhjjL∞ðΩÞ ≤ Chpþ1 (46)

with a constant C> 0 are fulfilled, where h¼ 1/N is the cell size.
If the solution, its gradient, and the gradient of the right-hand
side are bounded, then according to [[27], Section 9.4] the finite
volume solution shows the error bounds

jju� uhjjL2ðΩÞ ≤ Ch, jju� uhjjL∞ðΩÞ ≤ Ch (47)

where the L2 norm is defined in Equation (29) and the L∞ norm
of a continuous function f is defined as follows

jjf jjL∞ðΩÞ∶ ¼ max
x∈Ω

j f ðxÞj (48)

This means that for the FEM solutions pþ 1 and for the two
FVM solutions 1 as the order of convergence is expected.

As shown in Figure 6a,b, these bounds can be observed in the
case of s¼ 0.5π. The two FVM solutions converge with order 1

and the FEM solutions with pþ 1. For p¼ 3 it is observed that the
error cannot improve further below 10�11, which is less than
what is needed in practice. For these computations, the tolerance
10�12 is used for the CG method, but the result will still be the
same for 10�15. Thus, this effect is due to the occurrence of
rounding errors. It can be concluded that all of the methods show
optimal convergence rates.

When observing the errors in the case s¼ 1/3π in Figure 7a,b,
it can be seen that the errors of all methods have the same
magnitude. Moreover, it can be recognized that they all converge,
but only the solutions of the FVMs converge with the theoretical
optimal order, while all the solutions of the FEMs are limited to
an order around one. The reason for this behavior lies in the reg-
ularity of the solution. Optimal convergence rates for the FEM (or
the FVM as well) are only reached, if the solution of the problem
is sufficiently regular. This is only the case for s¼ 0.5π because in
that case for all y ∈ ½0, π� ∂xuexð0.5π, yÞ ¼ cosð0.5πÞ ¼ 0 and so

�∇ða0.5πð0.5πÞ∇uexð0.5π, yÞÞ
¼ �a0.5πð0.5πÞΔuexð0.5π, yÞþ ∂xa0.5πð0.5πÞ ∂xuexð0.5π, yÞ
¼ �a0.5πð0.5πÞΔuexð0.5π, yÞþ ða2 � a1Þδ0.5π ∂xuexð0.5π,yÞ
¼ �a0.5πð0.5πÞΔuexð0.5π, yÞ

(49)

where δ is the Dirac measure. This means that in this case the
jump of the coefficient is invisible. This is not the case for all other
s-values, especially s¼ 1/3π. Here, the solution is continuous, but
not continuously differentiable, and so lacks regularity to observe
higher order convergence than 1. As for the finite volume case all
requirements are fulfilled, an average order of one is reached.
This leads to the conclusion that in the case of discontinuous coef-
ficients an optimal order of convergence can only be expected in
cases where additional requirements are fulfilled.

Moreover, it can be observed that the L2 and the L∞ error
show a zigzag shape. The reason for that lies in the position
of the discontinuity of the coefficient in the grid. In this case
it is x¼ π/3, which will never exactly coincide with cell bound-
aries and so two classes of decompositions are created. In one of
them all quadrature points of the cells at π/3 belong to the same
part of the domain and in the other π/3 separates them. These
classes belong to every second point in Figure 7a,b, respectively,
and each of them depicts an optimal convergence behavior.

(a) (b)

Figure 6. Errors of the different methods for s¼ 0.5π. a) L2-error. b) L∞-error.
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Further it can be seen that for x¼ π/3 the error of the p¼ 3
case is not lower as that of the p¼ 2 case. This is due to the irreg-
ularity of the problem. For such a problem, the FEMs of different
order provide similar errors. The reason for that is again the
location of the quadrature points as a Gauss quadrature of order
pþ 1 is used. For the p¼ 2 case, their positions are advantageous
which results in a lower error.

With regard to the battery problem, which also has discontin-
uous coefficients, this means that all of the methods will
converge, but statements about the order of convergence cannot
be made because the problem has no explicitly known analytical
solution.

Until now, only the errors of the methods were examined, but
no care was taken of the computation time, i.e. how long does
it take to achieve a given accuracy. Figure 8a shows the compu-
tation times of the methods. At first it can observed that
chtMultiRegionFoam has two order of magnitude higher compu-
tation times for the highest resolution than the other methods.
The reason for that lies in the structure of the solver. As men-
tioned in Section 3.1, it needs several loops to arrive
at the solution and these loops take more time. The
layeredLaplacianFoam has similar computation times as the

FEM with p¼ 1. This was expected because they have nearly
the same number of degrees of freedom, they do not need
any additional loops, as the chtMultiRegionFoam does, and they
use the same CG algorithm.

As mentioned in the first part of this section, a preconditioner
was only used for the cases p¼ 2 and p¼ 3. This results in simi-
lar computation times to case p¼ 1, despite the fact that they
have 4 and 9, respectively, times more degrees of freedom.
This leads to another important aspect of the methods which,
however, is not addressed any further in this work. This is
the influence of the preconditioners. Moreover, it is observed
that the methods without a preconditioner, except the FVMs
for small number of cells, scale cubically, or in the case of
chtMultiRegionFoam even faster, in the number of cells in
one spatial dimension, where the methods with a preconditioner
scale quadratically.

The reason for the nearly constant computation times for the
FVMs for a small number of cells is that apart from the assem-
bling of the matrix and solving the linear system the generation
of the output is included, too. For small cell numbers, the
generation of the output dominates the computation time in
OpenFOAM.

(a) (b)

Figure 7. Errors of the different methods for s¼ 1/3π. a) L2-error. b) L∞-error.

(a) (b)

Figure 8. a) Comparison of the computation time and b) scaling of the methods.
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The last aspect that is examined at the test problem is the
scaling regarding parallelization. The results are shown in
Figure 8b. Because all FEMs have the same structure, only the case
p¼ 3 is compared with the FVMs. It is observed that the
chtMultiRegionFoam and the FEM scale nearly optimal, i.e. if
the number of cores is doubled, the computation time nearly
halves, which is the best that can be expected. In the case of
the layeredLaplacianFoam, only a small reduction is observed.

5.3. Battery Problem

Now the six methods are applied to the linear 2D version of prob-
lem (cf. Equation (1)), i.e. Ω⊂ℝ2 and cp and λ, respectively, be
temperature independent. The integral heat source is again set to
overall 3W in the active material layers and in the current col-
lectors to 0W. A period of tend¼ 10 s with a time step Δt¼ 0.01 s
will be simulated again on 32 cores of the single partition of the
BwUniCluster 2.0.[33] As stated in Section 2, Tinit¼ 298 K will be
used as initial condition and the following three boundary value
problems will be considered: 1) Dirichlet boundary condition
with TBC¼ 273 K at the lower side of the
cell; 2) Robin boundary condition with TBC¼ 273 K and
a¼ 10Wm�2 K�1 at the lower side of the cell; and
3) Dirichlet boundary condition with TBC¼ 273 K at the left
and right side of the cell; where in all cases a zero Neumann
boundary condition will be applied to all other sides of the bat-
tery. In the following figures, HMM stands for the solution of the
problem with FE-HMM.

To compare the six methods, a reference solution with FEM of
order p¼ 3 and with about 5 million degrees of freedom is com-
puted. Regarding the discussions in Section 5.2, this method
gives the most accurate numerical solution among those pre-
sented here. At first, the reference solution for the three bound-
ary value problems will be presented. Then the six methods will

be compared based on the reference solution and along chosen lines
in space and time. Finally, the computation times of the solvers will
be compared. For all the comparisons, the case withDirichlet bound-
ary condition at the lower side of the battery is chosen. All other cases
would yield similar results because the boundary condition does not
change the structure of the methods. All methods, except the FE-
HMM, use a grid of around 150 000 cell elements.

Figure 9 shows the temperature distribution in the yz-plane
after 10 s for a Dirichlet boundary condition on the lower
side of the cell calculated with chtMultiRegionFoam. For the
Dirichlet boundary condition 273 K is applied while the initial
temperature is 298 K. Obviously, a temperature gradient forms
with the lowest temperature at the lower boundary and increas-
ing in z-direction up to 298 K at the upper side. In y-direction, no
difference can be recognized.

The temperature gradient is caused by the thermal transport to
the heat sink at the lower boundary. Apart from the stack, no
further battery component is mapped in the geometry, which
could induce a thermal bypass path, as shown in Queisser
et al.[7] This aspect and the adiabatic boundary conditions at
the both front sides of the cell lead to the result that no tempera-
ture gradient develops in y-direction.

In summary, the results for chtMultiRegionFoam and also for
the other methods, shown in Figure 9 as well as the two further
cases presented in Supporting Information C, are physically rea-
sonable, which again supports the plausibility of the methods.

For the comparison of the methods in space and time, a
Dirichlet boundary condition on the lower side of the cell is used.
The spatial comparison is done along a vertical line in the middle
of the cell. This choice is justified by the fact that in the consid-
ered case a zero Neumann boundary condition at the left and
right side of the battery is used, which results in a constant tem-
perature along a horizontal line, as it can be seen in Figure 9.
Figure 10 shows the temperature distribution at time t¼ 1 s

Figure 9. Temperature distribution of the cell stack for a Dirichlet boundary condition at lower side of the cell after 10 s solved with chtMultiRegionFoam.

(a) (b)

Figure 10. Temperature distribution over a vertical line through the middle of battery. a) t¼ 1 s. b) t¼ 9 s.
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and at t¼ 9 s, respectively. First, it can be observed that all meth-
ods capture the steps in the temperature distribution which occur
due to the discontinuities of the coefficients. These steps are
bigger in the case of the FE-HMM because there a coarser grid
is used. Moreover, it can be seen that at time t¼ 1 s all methods
are in good agreement with the reference solution, the FEM
solutions lie even on top of it, and the maximal deviation is
smaller than 1%, which occurs for the FE-HMM solution.
One reason for that is that this solution converges to the solution
of the mathematically homogenized problem, as mentioned in
Section 4.2, so a complete agreement cannot be expected. The
other reason for that is that this method uses only a fraction
of the number of cells than the other methods and so near
the boundary, where the gradient of the solution is higher,
the difference is bigger. With time these gradients get smaller
and so the error of the FE-HMM solution gets smaller, too. At
time t¼ 9 s it is only around 0.5%. The solutions with FEMs
and the solution of the chtMultiRegionFoam are for both times
in good agreement with the reference solution; the deviations are
nearly negligible. This is in agreement with the results of the test
problem in Section 5.2. The reason is that all methods, including
the reference solution, use the implicit Euler method with the
same time step for the temporal discretization and
so the error results mainly from the spatial discretization. The
only method where the error gets bigger with time is the
layeredLaplacianFoam, but also its maximum is only around
1%, which is acceptable.

Figure 11 shows how the error of the methods compared with
the reference solution propagates over time at fixed points in
space. It is observed that the solutions of the FEMs and the
solution of the chtMultiRegionFoam are for both points in good
agreement with the reference solution; they nearly lie on top of it,
i.e. that the error does not accumulate over time. The reason for
that is the same as explained earlier. The error of the
layeredLaplacianFoam is again bigger, but again only around 1%.

The last aspect, which is considered here, is again the compu-
tation time. The results for the first five time steps are shown
in Table 2. This shows that the results for the FEM and FVM
solutions of the battery problem are in agreement with the results
for the test problem, as shown in Figure 8a. This means
that the chtMultiRegionFoam has due to the loops
higher computation times than the other methods and the
layeredLaplacianFoam is faster than the preconditioned FEMs

with p¼ 2 and p¼ 3. In the case that a preconditioner is used
for the p¼ 1 case too, it is observed that it is faster than
layeredLaplacianFoam. The computation time of the FE-HMM
is approximately the same as that of the
layeredLaplacianFoam. The reason is that although it has a
smaller number of cells and so a smaller system matrix, the
microsimulations take time, too. It is important to note that
Table 2 only shows the times needed for the first five time steps.
As these times depend mainly on the number of CG steps
needed for the actual time step, they can change in time.
Figure 10 shows smaller changes in the solution in z-direction
with time. As a consequence, this results in a decreasing number
of CG steps and thus the relations shown in Table 2 remain valid.

6. Summary and Conclusion

In this work, different numerical methods for the thermal
simulation of the layered stack of lithium-ion batteries were
introduced and investigated. This stack consists of a large
number of thin layers, which leads to two possible approaches
for the applied methods. On the one hand, the standard
approach was considered. There, all layers were resolved
with methods based on standard numerical techniques
such as the FEM and the FVM. Higher order FEMs with p¼ 1,
2, 3 implemented in the finite element library deal.II,
the chtMultiRegionFoam, and the self-developed
layeredLaplacianFoam in OpenFOAM were considered. On
the other hand, a homogenization approach was followed. A
numerical method, the FE-HMM, was implemented in deal.II,
extended, and applied to the problem, which solves it without
resolving all layers with sufficient efficiency.

At first the convergence behavior of the altogether six methods
were examined on the basis of appropriate test problems. It was
shown that the FE-HMM converges with optimal order in the

(a) (b)

Figure 11. Temperature distribution for a given point in the middle of the battery over time. a) Z¼ 0.134. b) Z¼ 0.268.

Table 2. Average computation times of the first five time steps for each
method.

p¼ 1 p¼ 2 p¼ 3 lLF CHT HMM

Time 1.04 s 4.83 s 15.03 s 1.5 s 54.14 s 2.67 s
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case of appropriate refinement for problems with multiple
multiscale coefficients, such as the heat equation, which
describes the thermal behavior of the battery. For any higher
order method, the optimal order of convergence can only be
expected when the solution satisfies additional regularity
assumptions. If these assumptions are not met, the optimal
order of convergence in terms of unknowns can be obtained
when a posteriori error controlled h-refinement is performed.[34]

This means that results for problems with unknown regularity
have to be examined carefully. For the methods based on the
FVM, weaker assumptions on the solution are required, which
leads to an optimal convergence order in the case of discontinu-
ous coefficients, too. This has the consequence that, regarding
the error, the theoretically better FEMs lose their advantage
for the problem considered here, at least, without local mesh
refinement techniques.

Comparing the computation times it was observed that
chtMultiRegionFoam has much higher computation times than
the other methods because of the loops resulting from its struc-
ture. On the basis of the FEM cases p¼ 2 and p¼ 3, respectively,
it could be observed that other development aspects, such as pre-
conditioners, play an important role as well. In this regard, the
scaling behavior of the methods regarding parallel application
was considered, too. As most of the considered
methods resolve all layers of the battery, they have a huge
number of cells and degrees of freedom, for that parallelization
is inevitable. It turned out that all methods except the
layeredLaplacianFoam scale nearly perfectly. Altogether,
it is hard to evaluate the methods with regard to computation
time because many different aspects have to be considered.

Finally, the investigated methods were then applied to the bat-
tery problem with different boundary conditions. To be able to
compare them, a reference solution with a higher resolution was
computed. It was observed that, as expected on the basis of the
test problem, all methods converge along chosen lines in space
and at specified points over time. The computation times for the
battery are in agreement to what was observed for the test prob-
lem. It is important to note that, since FE-HMM is a homogeni-
zation method, its benefit regarding computation time rises with
the number of layers in the battery.

In future work, on the one hand, an electrical model should
be coupled to the existing thermal model. While the efficiency
gain by the current method already supports the practical
feasibility of such coupled electrothermal simulations, further
improvement of the computing time will allow for long-term
simulations, potentially even for aging modeling. On the
other hand, the applied numerical schemes and the errors from
resolving the time derivative should be investigated in more
depth and the FE-HMM should be adapted to facilitate using
it in FVM.

On the basis of the aforementioned considerations and
discussions, it can be concluded that there are a lot of possibili-
ties for the simulation of thermal processes in batteries, but
apart from the modeling the development and the rigorous
investigation of the numerical methods used for the simulations
are very important. As shown on the example of the test problem,
the lack of that can lead to insufficient convergence behavior and
long computation times.
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[25] J. Ferziger, M. Perić, Numerische Strömungsmechanik, Springer,
Berlin/New York 2008.

[26] D. Braess, Finite Elemente: Theorie, schnelle Löser und Anwendungen in
der Elastizitätstheorie, Springer-Verlag, Berlin/Heidelberg 2013.

[27] A. Quarteroni, Numerical Models for Differential Problems, Springer,
Berlin/New York 2017.

[28] M. Schatzman, Numerical Analysis, Clarendon Press, Oxford 2002.
[29] D. Cioranescu, P. Donato, An Introduction to Homogenization, Oxford

University Press, Oxford 1991.
[30] A. Abdulle, G. Vilmart, Math. Comput. 2014, 83, 513.

[31] W. E. P. Ming, P. Zhang, J. Am. Math. Soc. 2005, 18, 121.
[32] A. Abdulle, A. Nonnenmacher, Comput. Methods Appl. Mech. Eng.

2009, 37, 2839.
[33] Bwunicluster 2.0, https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0

(accessed: October 2020).
[34] R. Stevenson, Found. Comput. Math. 2007, 7, 245.
[35] F. Moukalled, L. Mangani, M. Darwish, The Finite Volume

Method in Computational Fluid Dynamics, Springer, Berlin/
New York 2016.

[36] P. Ciarlet, Handbook of Numerical Analysis, Vol. 7, Springer, Berlin/
New York 2000.

[37] J. Qwist, in CFD with OpenSource Software (Ed: H. Nilsson), http://dx.
doi.org/10.17196/OS_CFD#YEAR_2019 2019.

[38] D. Gallistl, C. Stohrer, Numerical Multiscale Methods, Technical
Report, KIT, Institute for Applied and Numerical Mathematics
2017.

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2021, 2000906 2000906 (15 of 15) © 2021 The Authors. Energy Technology published by Wiley-VCH GmbH

https://cfd.direct/openfoam/user-guide
https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0
http://dx.doi.org/10.17196/OS_CFD#YEAR_2019
http://dx.doi.org/10.17196/OS_CFD#YEAR_2019
http://www.advancedsciencenews.com
http://www.entechnol.de

	Impact of Numerical Methods in Thermal Modeling of Li-Ion Batteries on Temperature Distribution and Computation Time
	1. Introduction
	2. Thermal Model
	2.1. Thermal Transport
	2.2. Thermal Boundary Conditions
	2.3. Model Geometry and Parameterization

	3. Finite Volume Solvers
	3.1. chtMultiRegionFoam
	3.2. layeredLaplacianFoam

	4. Finite Element Solvers
	4.1. Higher Order FEM
	4.2. FE-HMM
	4.2.1. Quadrature Formulas
	4.2.2. Macro and Micro Finite Element Space
	4.2.3. Microproblem
	4.2.4. Macro bilinearform
	4.2.5. The Multiscale Method


	5. Results
	5.1. Results for the FE-HMM
	5.1.1. Error Analyses
	5.1.2. Application to the Battery Problem and Implementation Aspects

	5.2. Test Problem
	5.3. Battery Problem

	6. Summary and Conclusion


