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ABSTRACT: Among the pool of Power to X technologies, plasmas show high
potential for the efficient use of intermittent renewable energies. High efficiencies
of CO, conversion have been reported while using microwave plasmas at vacuum
conditions which are, however, not suitable for CO, mitigation at industrial scales.

Here we show that ultrafast pulsation of microwaves allow significant improve

ments of energy efficiencies during CO, splitting at atmospheric pressure as
compared to continuous wave operation of the microwave source. Moreover, by the

interrogation of the plasma with time resolved optical emission spectroscopy we

can, for the first time, observe the evolution of the vibrational and rotational

temperatures and define a time window where nonequilibrium can be expected at
the beginning of the pulse of an atmospheric CO, microwave plasma. In spite of

the evidence of nonequilibrium in our system, thermal mechanism appears to

dominate the CO, dissociation. It is shown that a fine control of the energy
deposition in the plasma is possible with ultrafast pulsation of the microwave

Thermal or vibrational mechanism?
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energy supply.

teaching us the importance of addressing challenges

early and based on science.' According to the
Intergovernmental Panel on Climate Change (IPCC) global
warming is already happening and we have around three
decades left to drastically reduce our greenhouse gas emissions
and remain in the target scenario of 1.5 °C above preindustrial
levels, set in the Paris Agreement.” The prescription to achieve
this target involves measures such as increasing the efficiency
of the everyday energy use, actively removing carbon dioxide
from the atmosphere and reducing our consumption of fossil
fuels while shifting either to renewable energies or to nuclear
energy. The latter finds nowadays decreasing acceptance due
to high potential risk and high system cost including
deconstruction and waste disposal and storage. The
intermittency and increasing availability of renewables in the
energy mix create, however, the need for technologies that
store the excess energy produced during one period and save it
for another.” However, the dimension of the problem calls for
not only technologies propelled by renewable energy but also
technologies that are scalable and sustainable. Precisely for
these reasons, recent efforts have been put in the commonly

E arly in the 21st century, the COVID 19 pandemic is

known Power to X technologies. One example of such
technologies considers capturing CO, from point sources or
directly from the atmosphere and subsequently transforming it
into valuable products such as fuels and chemical precursors
using renewable electrical energy."™®

In particular, plasma technology offers the possibility of
dealing with an intermittent availability of electricity by
instantaneously switching on or off the process.” Moreover,
an efficient chemical conversion of thermodynamically stable
molecules such as CO, is possible with plasmas.”'? In these
possibilities, the green electricity based plasma assisted con
version of CO, into synthetic fuels is increasingly being
explored as a promising approach for mitigation of CO,
emissions and for energy storage.”'"'*> A key figure of merit



Scheme 1. Schematic Representation of CO, Splitting in an Atmospheric Microwave Plasma Torch under Ultrafast Pulsation
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Figure 1. CO, atmospheric plasma sustained with continuous (CW) and pulsed microwave with different pulse ¢,, and interpulse t,; times.
(a) and (b) show conversion and efficiency versus specific energy input (SEI) and duty cycle (DC) at 15 slm gas inflow. Guides for the eye
for CW and ¢, = 2 ps are shown with dark blue and green thick solid lines, respectively. The gray rectangles in (a) and (b) highlight the data
plotted in (c) and (d). Small insets show schematically the pulse form for the lowest and highest SEI (c) and (d) show the conversion and

efficiency for three inflows and P_,, ~ 94 W (DC = 0.4) as a function of t,, and f,g. The solid lines are guides for the eye and the dashed lines
correspond to CW data at 15 slm.
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to consider in the use of renewable energy is efficiency. CO, - CO + L0,
Microwave sustained plasmas have been defined as the most 2 (R1)

promising ones with record efficiencies for CO, splitting CO,+ 0 - CO+ 0, (R2)

(reactions R1 and R2) up to 90%, albeit the experimental
13-16

The ruling hypothesis behind highly efficient CO, splitting

details were not fully given. in microwave plasmas is the preferential vibrational excitation



of the CO, molecule, which leads to its dissociation.'” This
route requires a high vibrational—translational (VT) non
equilibrium, which is achieved when low pressures, low gas
temperature, and high power densities plasmas are produced.'®
At pressures of typically 100 mbar and above, thermal
dissociation has been recently demonstrated as the predom
inant mechanism for CO, dissociation in microwave
plasmas."”~*" On the basis of these findings, precise power
deposition and temperature control are necessary in the plasma
and afterglow to achieve efficient CO, conversion. Yet, in order
to achieve high efficiencies, most of the experimental and
modeling reports deal with the use of a vacuum, which allows
researchers to reach easily nonequilibrium.””~>’ Low pressure
operation is, however, undesirable for future large scale
deployable technology for CO, conversion because of high
device volume requirements and energy costs to enable high
throughput.

Looking to extend the potential benefits of microwave
plasma activation to the atmospheric pressure realm, ultrafast
pulsation of the microwave field as a means to manage the
efficiency of CO, splitting is proposed in this Letter (Scheme
1). Indeed, power pulsation has the potential to create VT
nonequilibrium states during suitable on times””>'~** and
decrease energy deposited in the plasma and therefore improve
the efficiency by selecting suitable off times.”>*”*"~

Here, we report the first known time resolved experimental
observation of VT nonequilibrium in atmospheric CO,
microwave plasmas. We follow the vibrational and rotational
temperature evolution of the plasma species with nanosecond
time resolution Optical Emission Spectroscopy (OES). The
plasma size and shape are investigated with a short gated
ICCD camera. To analyze the effect of pulsations on the
reaction, we followed the composition and efficiency changes
as a function of energy supplied per single CO, molecule
(specific energy input) with in line gas analytics. The specific
energy input (SEI) reads as

SEI = Pabs'Vm

1}inpll\rA
where v;,, is the CO, gas flow, Py, is the mean microwave
power absorbed in the system and is proportional to the duty
cycle, DC = t,,/(t,, + tog) (see the Supporting Information),
V., is the molar gas volume set to 24.47 L/mol, and N, is the
Avogadro constant. Thus, SEI depends on both ¢, and f.
times, which were systematically varied throughout the
experiment. In addition, the efficiency is expressed as follows:

_ rAHY
~ SEI

where AHY is the reaction enthalpy, which is 2.93 eV/
molecule for reaction R1, and y is the molar degree of CO,
conversion into CO.

The experiments are performed in a custom setup that
comprises a compact coaxial plasma torch and an advanced
solid state microwave generator that enables independent
control of pulse time (t,,) and interpulse time (f,4) in the
range 50 ns to 200 us, as well as the frequency within the range
2.4-2.5 GHz (additional details in the Supporting Informa
tion). Throughout the experiment in the pulsed regime, the
peak power and microwave frequency were kept at 220 W and
2.45 GHz, respectively. In the CW regime, the power was
scanned from 220 W down to 80 W (the minimum power at

which the plasma can be sustained). Panels a and b of Figure 1
show the CO, conversion and efficiency as a function of SEI
for different pulse duration, varied between 0.5 and 50 us.
Plots ¢ and d show the results at fixed SEI (i.e., fixed DC) with
variation of pulse widths down to 50 ns for different gas flows.

Power pulsation promotes conversions and -efficiencies
better than those found in the continuous microwave mode.
At SEI ~ 0.1 eV/molecule, the conversion with pulsation
almost doubles the one measured in the continuous wave
(CW) mode. The conversion initially increases gradually with
the energy provided to the molecules, but after a certain SEI
level, it starts to saturate. This stabilization of the conversion
with SEI can be explained by the influence of the
recombination mechanisms during dissociation, which in
creases with SEI and is promoted by the atmospheric pressure
of our system.'”'® Yet, the observed saturation effect is much
less pronounced in the pulsed mode compared to that in the
CW mode. Interestingly, the efficiency behaves as expected if
either vibrational activation or (thermal) quenching was
present. We can see that energy efficiency peaks at a maximum
of B & 27% obtained for a SEI = 0.077 + 0.014 eV/molecule
and 0.25 < DC < 04. This concave behavior has been
described by some works as characteristic of reactions under
vibrational activation.”® Efficiency maxima have also been
reported when experiments include fast quenching to control
the evolution of thermal dissociation.'®**

Two important observations have to be underlined. First, in
the pulsed mode it is possible to sustain the plasma at lower
SEI compared to the CW mode; i.e., the operation window
increases (CW plasma dies away at SEI < 0.07S eV/molecule).
Second, at very short energy interruptions compared to the
pulse length, when t4 < t,, (see Figure la,b at maximum
SEI), the pulsations still promote the CO, conversion, though,
energetically, such a plasma (DC & 0.95) is almost equivalent
to the CW (DC = 1) plasma. This can be related to the
changes in power coupling due to variation in residual electron
densities left over from the previous pulse™ that leads to a
reduction of electron temperatures down to a range where
vibrationally driven dissociation is more efficient."”

The optimal pulse parameters were found for three different
gas flows by varying the t,, and t, times at fixed DC =~ 0.4
(Figure 1c,d). The maximum conversion and efficiency are
found for pulse and interpulse lengths in the ranges 2.0—5.0 s
and 3.0—7.5 us, respectively. The independence of this
optimum on the gas flow is due to the much longer time
scales of gas flow dynamics as compared to the power
pulsations. The found optimum can be explained by a trade off
between optimal gas cooling (quenching), which deteriorates
toward shorter f g times, and optimal gas treatment, which, at
too long f. times, tends to be less efficient because the gas
residence time in the reactor becomes comparable with t ; (see
the Supporting Information). Additionally, too much drop in
electron density would result in a harder ignition.

Yet, the question remains: which phenomena are actually
controlling the presently reported behavior of CO, dissociation
in atmospheric pressure plasma? To answer this question, we
looked along the pulse at the nanosecond scale using both
ultrafast imaging and OES (see the Supporting Information for
details). As the efficiency peaked in pulse durations between 2
and 3 ps and duty cycles between 0.25 and 0.40, a pulse
duration of 2.5 s and interpulse time of 7.5 us (DC = 0.25)
were chosen for this investigation.
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Figure 2. Fast imaging of CO, plasma performed with an iCCD camera gated with 25 ns. (a) Reference data for continuous wave (CW)
plasma with 220 and 90 W (lowest stable CW plasma) of input microwave power. (b) Selected plasma images whose acquisition times are
schematically related to the microwave pulse timing. (c) Maximum light intensity above background is given in black (left axis). Plasma

expansion in axial and cross direction taken at fixed intensity level relative to minimal size of plasma (t = 9.5 ps). Parameters: P

to, = 2.5 pis, tog = 7.5 ps, DC = 0.25, and gas flow rate of 12 slm.

Interestingly, the volume of plasma sustained with a mean
power of 53 W (=P,,.,'DC) is much larger than the one in CW
mode at 90 W (Figure 2a,b). Thus, a much larger volume of
CO, is treated in the pulsed mode, which explains the increase
of CO yield as observed in Figure la. Before the pulse, a weak
light remaining from the previous pulse due to recombination
processes in the plasma afterglow is registered. After switching
on the power, both plasma intensity and plasma axial and cross
dimensions increase rapidly and by 130 ns attain the local
maximum (see Figure 2c). Given that the expansion in the
axial direction is additionally contributed by axial flow, which is
constant in both on and off phases, the expansion in cross
section better characterizes the modulated microwave power.
For the same reason, the relative expansion in cross section is
much larger than the expansion in the axial direction. After 150
ns, both the emission pattern and the intensity decrease
gradually and stabilize after about 1 us. Once the power has
been switched off, the light intensity and the dimensions of the
emitting pattern fall abruptly by factors of 20 and S,
respectively. Interestingly, this fall is followed (after about 60
ns) by a short intense flash of light, which can be explained by
an ion recombination event.”> Within the off phase, the
afterglow intensity and its size remain negligible until the
following pulse.

To characterize the state of VT nonequilibrium, the acquired
emission spectra are used to obtain the vibrational (T,y) and
rotational (T,,,) temperatures by fitting of the molecular bands
of CO and C, species with synthetic spectra using
MassiveOES”"*" (see the Supporting Information). Figure 3a
shows the evolution of the OES spectra together with Ty, and
T, along the 2.5 us pulse. In the following analysis, rotational
and gas temperatures are assumed equivalent (T, & T,) due

eak = 220 W,

to subnanosecond rotational—translational relaxation at
atmospheric pressure.”” For the first time in atmospheric
microwave plasma, two distinct regimes were observed along
the energy pulses for the selected conditions: a nonequilibrium
regime existing at the beginning of the pulse and a thermal
equilibrium regime when the pulse surpasses approximately 1.6
us of duration. This observation implies that longer pulses
would not then maintain nonequilibrium. VT nonequilibrium
is observed at the onset of the power pulsing with T/ T\ & 2
(see also Figure S7). After 75 ns, the vibrational temperature
determined from the first two vibrational states of the CO
(B'T*) is already 6900 K and then stays relatively constant
along the pulse (7000 K < Ty, < 8000 K). This prompt
vibrational activation can be attributed to an efficient CO
vibrational excitation by electron collisions.” Simultaneously,
rotational (or gas) temperature starts at T,,, &~ 3500 K and
stays constant until around 1 ps. After this time, the gas
temperature increases and after the pulse surpasses around
1.6 us the plasma reaches VT equilibrium. This correlates with
the increase in light intensity after &1 ys observed in Figure 2c.
After the pulse, the rotational and vibrational temperatures
start cooling down and 0.8 us later attain =5700 K, which
corresponds to a thermal quenching of ~2 X 10° K/s, which is
in the optimal range to preserve the reaction species.'’
However, at later postdischarge times, this high cooling rate
deteriorates; thus, the gas cools down to temperatures not less
than or equal to 3500 K as observed at the beginning of the
next pulse. Further temperature monitoring was not feasible
given the drop of plasma emission below the detection limit for
after pulse times longer than 0.6 ys.

As mentioned earlier, eflicient use of renewable energy is
decisive for Power to X technologies such as plasma assisted
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Figure 3. Dynamics of microwave CO, plasma emission and related rotational (T,,) and vibrational (T,;,) temperatures (a) in pulsed regime
with t,, = 2.5 ps, t,g = 7.5 ps and a gas flow rate of 12 slm. (b) and (c) show the typical emission spectra dominated by CO Angstrom bands
and by C, Swan bands before and after thermalization, respectively. The thick solid line in (a) indicates the microwave pulse. The evolution
of integral emission within the 450—520 nm spectral range and the intensity of a carbon atomic line are plotted in (d) on the same time

scale.

CO, conversion. The temperature evolution suggests (when
applying the Kirchhoff's law for enthalpy correction) that the
efficiency is overestimated by the use of standard reaction
enthalpies.*” In the future, a more accurate approach should
take into account this fact for warm plasmas. But, which regime
favors an efficient CO, splitting into CO in the present
experiments at atmospheric pressure? Thermal equilibrium or
nonequilibrium? To determine which temperature range suits
best for CO production at the high gas temperatures observed,
thermodynamic calculations with the National Aeronautics and
Space Administration (NASA) computer program Chemical
Equilibrium with Applications (CEA)*' were performed
(Figure S8). The model shows that CO concentration is
highest within the 3000—6000 K range. This agrees with the
CO band dominated spectra observed in this temperature
interval (Figure 3b) before equilibration (75—1625 ns). Such
band indicates electron impact dissociation and excitation
processes of CO, and CO. However, after thermal
equilibration within 1625—3325 ns, the CO band dominated
emission is fully replaced by C, Swan band emission (Figure
3c) thus evidencing a change in chemistry. The transition from

CO to C, dominating spectra was also reported recently for
experiments with CW microwave plasmas where pressure was
scanned from low to moderate vacuum by D’Isa et al."” They
observed that once the VT equilibrium is reached with
temperatures Ty, & T, ~ 6000 K, the energy from the plasma
is spent on thermal dissociation of CO into C and O.*" In the
present experiments, thermal dissociation of CO is also evident
not only from the C, emission spectrum but also from a
pronounced C emission peak around 494.3 nm (second order
spectrum of the C (2p 'S— 3s 'P) atomic transition) whose
amplitude in pulse (Figure 3d) correlates nicely with the
thermodynamic calculations (see Figure S8). Such observa
tions are related to an excessive power density deposited in the
plasmas. Thus, remaining inside the nonequilibrium regime
with a gas temperature that thermodynamically favors CO
production increases the energy efficiency of the process.
Therefore, even at the low SEI and consequently low
conversion obtained here, the ultrafast pulsation of microwave
plasmas is a very promising tool to promote the conversion
and efficiency of CO, splitting into CO in atmospheric



pressure systems owing to its ability to control energy
deposition modes and gas heating.
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