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1. Introduction 
It is common knowledge that harmonic mode competition is a limiting factor, which hinders progress in the development of 
high-performance second-harmonic gyrotrons for a wide variety of modern applications, especially in the sub-terahertz-to-
terahertz frequency band [1-5]. That is the reason why suppression of the first-harmonic modes in gyrotron cavities 
presents a vital and topical issue. To solve this issue, a number of improved gyrotron cavities have been considered so far. 
Among them, to name just a few, are iris-loaded cavities [6-8], complex-cavities [9, 10], cavities with phase correctors [11] 
or output reflector [12], dielectric-coated [13] and corrugated [14, 15] cavities. А special type of improved gyrotron cavities 
involves coaxial cavities for second-harmonic gyrotrons [16-19]. In these cavities, mode suppression by losses is applied, 
relying on dissimilar sensitivity of different cavity modes to a coaxial insert.  

Coaxial gyrotron cavities can be roughly divided into two classes, depending on the kind of losses applied to 
discriminate against competing modes. The first (and widest) class of cavities, which also find use in first-harmonic 
gyrotrons [20, 21], employs nonuniform inserts to increase the diffraction losses of the competing modes [16, 18, 19]. The 
best-known example of such an insert is a down-tapered conducting rod with longitudinal subwavelength impedance 
corrugations [16, 22-24]. Additional improvement of selectivity properties of gyrotron cavities can be achieved for coaxial 
inserts with step nonuniformities, which make it possible to reduce the effective cavity length of competing modes [18, 19]. 
Such an improvement is particularly important for broadband second-harmonic gyrotrons [25-28], in which the risk of 
competition from high-order axial modes is high [3, 18]. The highly versatile method of mode discrimination in cavities of 
second-harmonic gyrotrons is that provided by a coaxial metal rod partially coated by a low-loss dielectric layer. As shown 
in [19], this method enables efficient suppression of all first- and second-harmonic competing modes having smaller caustic 
radii than that of the operating mode.  

Such beneficial property is also inherent in second class of coaxial cavities, which employ resistive (purely 
conducting) inserts to increase ohmic losses of the competing modes [16, 17, 23, 29]. Despite this benefit, such inserts, on 
the one hand, need to possess very low conductivity to ensure efficient suppression of high-order axial competing modes 
with high diffraction losses. On the other hand, the insert material must exhibit a high enough conductivity to behave like a 
conductor [30]. In practice, such a contradiction can severely constrain the choice of an appropriate resistive material for 
use in coaxial cavities of sub-terahertz second-harmonic gyrotrons. For such use, an alternative design solution in the form 
of a coaxial all-dielectric rod with moderate losses is considered in this paper. To be efficient, such a design solution 
requires the operating gyrotron mode to have relatively large caustic radius. A concrete example can be provided by the 
operating TE17,2 mode of the 0.39-THz second-harmonic gyrotron developed at the University of Fukui (FIR-UF) [4, 31]. 
Experiments show that the operating performance of this gyrotron is impaired by competition between the operating and 
first-harmonic modes. 

The paper is organized as follows. In Section II, the dispersion relation for quasi-TE modes near cutoff frequencies of a 
cylindrical metal waveguide loaded with a coaxial dielectric rod is derived. For these modes the influence of the dielectric 
loading on frequencies, ohmic losses, and field distribution is investigated. In Section III, the use of a coaxial dielectric 
insert with moderate losses is considered for efficient discrimination against competing modes in gyrotron cavities. Such a 
benefit of a dielectric loading is illustrated by the example of the cavity for the 0.39-THz second-harmonic gyrotron of FIR-
UF. In Section IV, the possibility of loss compensation in gyrotron cavities by ultralow-loss dielectric inserts is discussed. 
In the last section, the results of the investigation are summarized. 

 
2. Vacuum and dielectric modes 
In gyrotron cavities, the basis modes are orthogonal normal modes of a uniform waveguide. Therefore, first we consider a 
hollow cylindrical waveguide with constant radius R . The waveguide is made of a conducting material and incorporates a 
coaxial dielectric rod with radius iR  and complex relative permittivity   (Fig. 1). Assume that the waveguide 



eigenfrequencies are close to cutoff frequencies. In this case, a dielectric-loaded waveguide is characterized by weakly-
coupled TE and TM eigenmodes [32-34].  

Let us consider (quasi-) TE modes ( 1z zE H  ). In cylindrical coordinates  , ,r z , their fields can be written as  
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where    exp zf z ik z , zk  is the axial wavenumber, k c ,   is the mode angular frequency, c  is the speed of light 

in vacuum, 2 2 2
zk k k   , 2 2 2

d zk k k  ,  1 tanr i    , Rer  ,  0tan i r      is the loss tangent of the 

dielectric rod, i  is the real-valued effective conductivity of the coaxial insert, m  is the azimuthal mode index, 

     0m m mZ k r J k r A N k r      ,  mJ   and  mN   are the m -th order Bessel and Neumann functions, respectively, 

constants A , B  and 0A  are as yet unknown, the field factor  exp i t im    is assumed and omitted. 

To find the unknown constants we substitute  e r  and  zh r  into the boundary conditions  

 

s
z

e
Z

r Rh
 


, 

 
 

m d i

iz d m d i

e J k Rik

r Rh k J k R





   


 (2) 

 

where s cZ ikd   is the impedance of a conducting surface r R , (1 ) 2cd i d  ,  02d    is the skin-depth, and 

  is the wall conductivity [35]. 
This leads to the following dispersion relation: 
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which yields the complex eigenvalues   1 2mn ohmk R i Q    of TEm,n modes of dielectric-loaded waveguides near 

cutoff frequencies ( 2 2 1zk k  ) and is identical to that presented in [36]. Note that, in deriving (3), we reduce the 

continuity conditions for  e r  and  zh r  at the vacuum-dielectric interface ir R  to the one-side (impedance-like) 

boundary condition (2) [37]. In the limiting case of a coaxial rod made of high-conductivity material ( tan 1  ), one 

obtains  0ii     and 1   [30]. In this case, dispersion relation (3) takes the well-known form for an all-metal 

coaxial waveguide [29], while condition  0tan 1i r       imposes a lower limit on the conductivity i  for the 

resistive coaxial inserts considered in [16, 17, 23, 29]. It is obvious that this limit is linear with frequency. 
Our prime interest is in the effect of a lossy dielectric insert on the waveguide modes. Despite this, for completeness 

we first neglect dielectric losses ( tan 0  ). Fig. 2 demonstrates typical solutions of the characteristic equation (3) for a 
cylindrical metal waveguide loaded with a lossless coaxial dielectric rod. In this figure, the characters ,m n  and , dm n  are 

used to denote TEm,n modes of the dielectric-loaded waveguide in the extreme cases of 0iR   ( C   ) and iR R  

( 1C  ), respectively. In the calculations, the following parameters are used: 2.99R   mm, 6m  , 9r  , tan 0  , 
72.9 10    S/m (half the DC conductivity of OFHC copper). As may be seen from Fig. 2a, for 0iR   the solutions of 

the dispersion relation are eigenvalues of TE modes of a hollow cylindrical waveguide with finite wall conductivity, i.e. 

mn  are close to zeros mn  of the function  mJ    for 1sZ  . In this case, ohmic losses in the conducting wall are solely 

responsible for attenuation of guided modes. In the opposite extreme case iR R , equation (3) yields eigenvalues of a 

conducting cylindrical waveguide completely filled with dielectric, i.e. mn mn r   . In this case, dielectric losses are 

expected to make an additional contribution to mode attenuation. In the following, the eigenmodes of a dielectric-loaded 



waveguide will be called vacuum or dielectric modes, depending on whether their fields are mainly localized inside the 
vacuum ( iR r R  ) or dielectric ( ir R ) regions. Obviously, for 0iR   and iR R  we deal with pure vacuum and 

dielectric modes, respectively. 
As the radius ratio iC R R  starts to grow from unity and the volume of the dielectric rod decreases, the eigenvalues 

of dielectric modes increase and thereby approach those of vacuum modes. At the same time, the eigenvalues of vacuum 
TEm,n modes are slightly affected by the dielectric rod, provided that the rod radius iR  is distinctly smaller than the mode 

caustic radii ,m n mnR R m  . Exceptions are certain frequency ranges, where the eigenvalues of dielectric and vacuum 

modes approach each other. In these ranges, interaction between dielectric and vacuum modes takes place. Such mode 
interaction gives rise to TE modes in the form of a mixture of vacuum and dielectric modes.  

To illustrate this more clearly, we depict the field distribution (Fig. 3) for guided modes having eigenvalues, which are 
shown by symbols 1-4 in Fig. 2. Fig. 3a corresponds to the eigenvalue 1, which is close to 62 . In this case, the TE mode 

of the dielectric-loaded waveguide is the vacuum mode having an electromagnetic field, which is mainly concentrated 
inside the vacuum channel. Therefore, the ohmic Q-value of this mode is close to that of the TE6,2 mode of a hollow metal 
waveguide (Fig. 2b). Figs. 3c and 3d correspond to equal eigenvalues 3 and 4, which are attained for different radii iR . It 

can be seen that these eigenvalues belong to dielectric modes, which exhibit field concentration inside the dielectric rod. As 
a consequence, the electromagnetic fields of such modes have rather small amplitudes near the metal surface r R . For 
this reason, in the dielectric-loaded metal waveguide, dielectric modes are only slightly sensitive to wall conductivity and 
can have very low attenuation (Fig. 2b), provided that the loss tangent tan  is small enough. In this sense, these modes are 
similar to the so-called "inner mode", which is the eigenmode of an all-metal coaxial waveguide with a corrugated inner 
conductor which exhibits low ohmic losses in the outer waveguide wall [38]. The eigenvalue 2 arises from interaction of 
vacuum and dielectric modes. For this eigenvalue an electromagnetic field of the guided TE mode possesses properties of 
both vacuum and dielectric modes and thus has a distinct amplitude inside the entire volume of the waveguide (Fig. 3b). 
That is the reason why this mode intermediates in ohmic Q-value between the vacuum and dielectric modes (Fig. 2b). 

We next focus our attention on the ability of a coaxial rod made of a lossy dielectric to suppress guided TE modes. In a 
dielectric-loaded gyrotron cavity, these modes can compete with each other. The effect of loss tangent tan  on the ohmic 
Q-value of the dielectric-loaded metal waveguide is shown in Fig. 4a. It is not surprising that this effect is most pronounced 
for dielectric modes, which can be strongly damped even with a low-loss ( tan 0.01  ) dielectric loading. Therefore, even 
though these modes are additional competing modes introduced by the insert, they are less dangerous competitors than 
vacuum modes. To discriminate against the vacuum TEm,n modes of a dielectric-loaded gyrotron cavity one needs to make 
the radius iR  of the lossy dielectric rod close to or larger than their caustic radii ,m nR . In the next section, this property of a 

coaxial dielectric insert will be applied to discriminate against competing modes in the cavity of the 0.39-THz second-
harmonic gyrotron developed at FIR-UF for use in the collective Thomson scattering (CTS) diagnostics of fusion plasmas 
[4, 31].  

 
3. Mode discrimination 
The FIR-UF 0.39-THz second-harmonic gyrotron has been operated in the whispering-gallery TE17,2 mode which has a 
relatively large caustic radius 17,2 0.7R R . The gyrotron is originally equipped with a conventional hollow cylindrical 

cavity and has the following electron beam parameters: beam voltage 60bV   kV, beam current 10bI   A, pitch factor 

1.2 , and beam radius 0.195br   cm [4, 31]. The gyrotron cavity is made of copper and consists of input, central 

(main) and output sections having the lengths 1 5L   mm, 2 12L   mm, and 3 5L   mm and taper angles 1 1.5   , 

2 0  , and 3 3   , respectively. The radius R  of the cylindrical main section equals 2.99 mm. The assumed electrical 

conductivity 72.9 10    S/m of the cavity wall is one-half the DC value of ideal OFHC copper. The ohmic and 

diffractive quality factors of the operating mode in the cold cavity equal 10270 and 29870 q , respectively, where q  is the 

axial mode index. In simulations, we neglect the velocity spread of beam electrons [31] and rely on the self-consistent 
single-mode code KIPT [35]. 

Fig. 5 shows the starting currents of the operating and competing TE modes of the 0.39-THz second-harmonic 
gyrotron. It can be seen that the gyrotron features a relatively dense spectrum of competing modes. Among these 
competitors, first-harmonic modes look particularly dangerous. Besides it is important to keep in mind that the information 
provided by Fig. 5 is incomplete and gives no evidence of the hard-excitation regions for competing modes. In such a 
region, oscillation of a competing mode is possible, even though its starting current exceeds the operating beam current. 
According to experimental observations [4], in the 0.39-THz second-harmonic gyrotron, this is the case for the first-
harmonic TE4,3 mode, which is first excited in the hard-excitation region due to nonlinear interaction with the operating 
second-harmonic TE17,2 mode and then suppresses the operating mode. As reported in [31], this effect presents a "latent 
limiting factor for attaining higher power" of the 0.39-THz second-harmonic gyrotron and thus hinders its use in CTS 
diagnostics. Obviously, this limitation can only be overcome by suppressing all dangerous competing modes. As Fig. 5 
suggests, for the 0.39-THz second-harmonic gyrotron such modes are volume modes with relatively small caustic radii. 

To improve mode selection we propose to equip the cavity of the 0.39-THz second-harmonic gyrotron with a uniform 
dielectric rod characterized by moderate losses ( tan 0.1  ). Such a rod can be fabricated from commercial AlN-SiC (or 



BeO-SiC) ceramics, which can possess loss tangent in the wide range from 0.001 to 0.5 depending on volume fraction of 
SiC [34, 39, 40]. Benefits of these ceramics are vacuum compatibility and exceptionally high thermal conductivity, which 
make such dielectrics suitable for use in high-power vacuum devices [41, 42]. The radius of the lossy dielectric rod must be 
selected sufficiently small to have only a slight effect on the operating mode. The required value of iR  is determined by the 

mode caustic radius and depends on r  (Fig. 6). For definiteness, we set 9r   and tan 0.05  . In this case, Fig. 6 

suggests that the TE17,2 mode of the gyrotron cavity is slightly sensitive to a coaxial dielectric rod, provided that the 
condition 2.3C   is fulfilled. Under this condition, the fabrication imperfections and misalignment of the rod have little or 
no effect on the operating mode. It should be emphasized that even though the chosen parameters 9r   and tan 0.05   

of the dielectric material can only be considered as typical characteristics, our design consideration can be easily adjusted 
to an actual ceramic rod, once its complex permittivity is measured in the frequency range of interest. 

In general, for suppression of competing modes by a lossy coaxial rod in a gyrotron cavity it is reasonable to select iR  

as large as possible [16, 17, 23, 29]. For this reason, we first consider a uniform dielectric rod with 9r  , tan 0.05   

and constant radius 1.3iR   mm ( 2.3C   for 2.99R   mm). Table I demonstrates the influence of such a rod on the 

complex eigenvalues of a cylindrical metal waveguide with radius 2.99R   mm. Note that we henceforth use the same 
labeling of the waveguide modes for any iR  and are concerned only with those competing modes, which are capable of 

oscillating in the operating range of the 0.39-THz second-harmonic gyrotron. As may be seen from Table I, a lossy 
dielectric rod can well discriminate against competing modes with small caustic radii. To be more specific, the ohmic Q-
value of the most dangerous competing TE4,3 mode is reduced more than 300 times due to the presence of the designed 
coaxial insert in the cavity of the 0.39-THz second-harmonic gyrotron. An important point is that this effect is achieved for 
a dielectric rod with relatively small loss tangent. This opens up a wide variety of suitable dielectrics and offers 
opportunities for selection of the most appropriate material with desirable vacuum, mechanical, thermal and charging 
properties. Such a benefit distinguishes the proposed method of mode discrimination in gyrotron cavities from that 
provided by resistive rods [16, 17, 23, 29] for which the search for suitable metal-like materials can be a challenging task. 
Similar restriction is also inherent in a good-conducting coaxial cavity with an insert partially coated by a thin dielectric 
layer [19], which can only be made from a limited number of dielectric materials. Moreover, contrary to [16, 17, 19, 23, 
29], we propose to equip the gyrotron cavity with a uniform coaxial insert, which can be more easily fabricated to close 
tolerances and causes no or little mode conversion. Note that although the effect of mode conversion is well-known [43-
47], its influence on the beam-wave interaction in gyrotron cavities still remains poorly explored [48]. 

To investigate the beam-wave interaction in a dielectric-loaded gyrotron cavity we have modified the code KIPT in 
order to take into account the effect of a coaxial dielectric insert on cavity eigenvalues (see (3)) and coefficients of the 
beam coupling with the TEmn modes 

 

 2

2 2 2 2

0

2

m s b
mn R

Z k r
С

rdr m r 

 




  

 (4) 

 
where br  is the beam radius, s  is the number of cyclotron harmonic, d dr   . In the extreme case 0iR   and 

0sZ  , the coefficient (4) takes the well-known form      2 2 2 2
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     for a hollow cylindrical 

gyrotron cavity made of perfect electric conductor [49]. 
Fig. 7a shows the starting currents of the operating TE17,2 mode and competing modes of the 0.39-THz second-

harmonic gyrotron equipped with the dielectric-loaded cavity for 9r  , tan 0.05   and 1.3iR   mm. With reference to 

Figs. 5 and 7a, it can be seen that the lossy dielectric rod discriminates against all competing modes with the exception of 
those having large caustic radii. Moreover, among the remaining unsuppressed modes only the first-harmonic TE6,2 mode 
can be recognized as dangerous competitor. As may be seen from Table I, the lossy dielectric loading of the gyrotron cavity 
provides nearly a 100-fold decrease in the ohmic Q-value of this mode. Despite such a strong effect, the increased ohmic 
losses in the cavity of the 0.39-THz second-harmonic gyrotron are inadequate to completely suppress the high-order axial 
TE6,2 mode because of its low diffraction Q-value [28]. In theory, the most direct and clear way to discriminate against this 
competitor is to increase the loss tangent of the dielectric insert. This can be seen from Fig. 8. From Figs. 7a and 8 it 
becomes evident that the operating TE17,2 mode of the 0.39-THz second-harmonic gyrotron dominates over the remaining 
competing modes in a wide frequency range, provided that the loss tangent tan  is increased up to 0.07 for the dielectric 
insert with 9r   and 1.3iR   mm. In this case, the dielectric-loaded cavity for the 0.39-THz second-harmonic gyrotron 

meets the design goal, even though the increased dielectric losses still remain much lower than those usually employed to 
suppress parasitic modes in interaction structures and beam tunnels of gyro-devices [41, 42, 50, 51].  

Noteworthy also is another design solution. From the eigenfrequency analysis (see also Figs. 2 and 4a) follows that the 
ohmic losses of the first-harmonic TE6,2 mode can be increased by reducing the insert radius iR  below 1.3 cm. In this 

process, however, the ohmic Q-values of the less dangerous second-harmonic TE13,3 and TE14,3 modes increase, while the 
frequency of the strongly attenuated dielectric mode, which is henceforth designated as TE6,2d mode, approaches that of the 



TE6,2 mode (Fig. 2). A compromise can be reached for 1.18iR   mm ( 2.54C   for 2.99R   mm). For this insert, the 

ohmic Q-values of the TE6,2, TE6,2d, TE13,3 and TE14,3 modes can be found in Table I. As is seen from Fig. 7b, the resultant 
increase in the ohmic losses of the first-harmonic TE6,2 mode makes this mode non-oscillating in the operating region of the 
0.39-THz second-harmonic gyrotron. In this region, oscillation is possible for few second-harmonic competing modes. This 
problem, however, is believed to be not critical and can be avoided by a proper gyrotron start-up, e.g. for the fixed 
magnetic field 0 7.8B   T. Hence it follows that the alternative structure of a dielectric insert is also capable of removing a 

limitation on power increase in the 0.39-THz second-harmonic gyrotron for CTS diagnostics. This demonstrates that a 
coaxial dielectric rod with moderate losses provides a flexible means for efficient discrimination against competing modes 
in cavities of second-harmonic gyrotrons and can be easily optimized depending on design specifications on size and 
material of the coaxial insert. Besides it should be emphasized that a coaxial insert in coaxial-cavity gyrotrons usually 
extends from the gun region through the beam tunnel and the cavity [20, 21]. In such configuration, a lossy dielectric rod 
inserted into the beam tunnel may additionally offer a means of suppressing volume parasitic modes (e.g. TE0,n modes), 
which can sometimes deteriorate the gyrotron operation [50]. Such a bi-functional role of the coaxial dielectric loading may 
further improve the performance of sub-terahertz gyrotrons operated in second-harmonic modes. 

 
4. High-Q dielectric modes 
Of special note are also some fundamentally different capabilities, which can be offered by coaxial inserts made of 
dielectrics with ultralow losses. In the sub-terahertz frequency band, an example of such a dielectric is Chemical Vapor 
Deposition (CVD) diamond with 5.7r   [52] and loss tangents lying in the range from 63 10  to 52 10  [53, 54]. As is 

seen from Figs. 2 and 4a, dielectric modes of a metal waveguide with a ultralow-loss dielectric rod may have ohmic Q-
values, which are several orders of magnitude higher than those for TE modes of a hollow metal waveguide ( 0iR  ). This 

fascinating property can make high-Q dielectric modes particularly attractive as operating modes for broadband sub-THz 
gyrotrons, which suffer from extremely high ohmic losses in the cavity walls [25-27, 35]. For such a use in gyrotrons, 
however, the beam coupling with dielectric modes must be strong enough. At the same time, it might be supposed that this 
coupling is generally weak, since the fields of dielectric modes are mainly concentrated inside the dielectric insert (Figs. 3c 
and 3d), while a helical electron beam can only propagate inside the vacuum channel of the gyrotron cavity. To examine 
this supposition, we investigate the coefficient mnС  of the beam coupling with the TEm,n modes of a metal cylindrical 

waveguide loaded with a coaxial dielectric rod (see (4)).  
Fig. 4b shows a variation of Re mnС  along the eigenfrequency curve, which is depicted by the dashed blue line in 

Fig. 2, for several values of the beam radius  b i b ir R C R R   , where 0 1bC  . In this figure, Re mnС  is normalized 

by the maximal coefficient of the beam coupling with the TE6,2 mode of a hollow cylindrical waveguide. It can be seen that, 
in the case of beam interaction with dielectric modes, the beam-wave coupling coefficient Re mnС  can even exceed this 

maximum, provided that bC  is small enough and thus the beam radius br  is positioned relatively close to the radius iR  of 

the dielectric rod. In [36], a similar effect induced by a coaxial dielectric insert was shown to be responsible for 
strengthening the beam-wave coupling in cavities of high-harmonic large-orbit gyrotrons. Thus it may be inferred that, 
contrary to the expectations, strong coupling between a helical electron beam and dielectric modes is theoretically possible. 
This outcome gives promise that elimination of high ohmic losses in cavities of sub-terahertz and terahertz gyrotrons by 
ultralow-loss dielectric inserts can be feasible. To demonstrate the feasibility of such gyrotrons more conclusively, further 
extensive investigations are required. These investigations are currently under way.  

 
5. Conclusion 
The dispersion relation has been derived for TE modes guided near cutoff frequencies by a metal cylindrical waveguide 
loaded with a coaxial dielectric rod. Using this equation, the influence of the dielectric loading on complex mode 
eigenvalues has been investigated. Two types of guided TE modes have been shown to exist in the dielectric-loaded 
waveguide. One type involves vacuum modes, which originate from TE modes of a hollow cylindrical waveguide and can 
exist, provided that their caustic radii are distinctly larger than the radius of the coaxial dielectric insert. It has been shown 
that the fields of vacuum modes are mainly localized outside the dielectric insert, which slightly affects their ohmic losses. 
Modes of another type are dielectric modes. Their fields are concentrated inside the dielectric loading and decay towards 
the waveguide wall. Because of this property, ohmic losses of dielectric modes are little sensitive to losses in the 
waveguide wall and thus can be made extremely small or large, depending on the loss tangent of the dielectric loading. The 
ability of a lossy dielectric insert to suppress guided TE modes has been applied to discriminate against most dangerous 
competing modes in the cavity of the 0.39-THz second-harmonic gyrotron of FIR-UF. Simulations have shown that these 
competing modes can be strongly damped by coaxial dielectric rods of different constant radii, even though the dielectric 
losses employed are relatively low. This provides great flexibility in designing the coaxial inserts made from commercially 
available dielectrics for improved cavities of sub-terahertz second-harmonic gyrotrons. Such a design must take into 
consideration vacuum, mechanical and thermal properties of dielectric materials. 

In addition, it has been demonstrated that coaxial inserts made of ultralow-loss dielectrics can support dielectric modes 
of the gyrotron cavity with ohmic Q-values, which are several orders of magnitude higher than those for modes a hollow 
metal cavity. The coupling of these modes with a helical electron beam has been shown to be sufficiently strong, provided 



that the beam radius is placed close enough to the insert radius. This property, together with low attenuation, makes high-Q 
dielectric modes particularly attractive as operating modes for low-power broadband sub-terahertz and terahertz gyrotrons. 
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Fig. 1 Metal cylindrical waveguide loaded with a coaxial dielectric rod. 

 
 

 
Fig. 2 (a) Cutoff frequencies and (b) ohmic Q-values of the TE6,n modes of a cylindrical metal waveguide loaded with a 
coaxial dielectric rod ( 2.99R   mm, 9r  , tan 0  , 72.9 10    S/m). 

 
 

    
 

Fig. 3 Radial field structure inside a dielectric-loaded circular waveguide for TE modes with complex eigenvalues, which 
are shown by symbols a) 1, b) 2, c) 3, and d) 4 in Fig. 1. Here 6,2R  denotes the caustic radius of the TE6,2 mode. 

 
 

   
Fig. 4 (a) Ohmic Q-value and (b) normalized beam-wave coupling coefficients versus cutoff frequency of the TE6,3 mode 
(see dashed blue line in Fig. 1) for different tan  and bC , respectively 



  
Fig. 5 Starting currents of the operating TE17,2 mode and (a) first– and (b) second–harmonic competing modes of the 0.39-
GHz second-harmonic gyrotron [4, 31]. 

 
 

 
Fig. 6 (a) Cutoff frequency and (b) ohmic Q-value of the TE17,2 mode versus the radius ratio C  of a metal cylindrical 

waveguide loaded with a coaxial dielectric rod for different r  ( 2.99R   mm, tan 0.05  , 72.9 10    S/m). 

 
 

Table I 
Cutoff frequencies ( cf ) and ohmic Q-values ( ohmQ ) of TE modes of a dielectric-loaded waveguide for different iR  

( 2.99R   mm, 9r  , tan 0.05  ) 

 
 
 
 
 
 
 
 
 
 

 
 

  Ri  0 Ri  1.30 mm Ri  1.18 mm 
Mode Rm,n, mm fc,GHz Qohm fc,GHz Qohm fc,GHz Qohm 

17,2 2.085 389.06 10254 389.06 10079 389.06 10245 
14,3 1.674 398.97 13872 398.49 766 398.88 3601 
13,3 1.632 380.09 13849 379.30 466 379.90 1968 
4,3 0.943 202.37 12961 200.63 41 205.59 41 
6,2 1.529 187.25 10226 183.47 103 187.18 89 

6,2d 1.529   160.92 23 176.80 27 



 
Fig. 7 Starting currents of the operating and competing modes of the 0.39-GHz second-harmonic gyrotron equipped with 
the dielectric-loaded cavity for (a) 1.3iR   mm and (b) 1.18iR   mm ( 9r  , tan 0.05  ). 

 
 

 
Fig. 8 Effect of dielectric losses on the starting currents of the 0.39-THz second-harmonic gyrotron for 0 7.7B   T, 9r  , 

and 1.3iR   mm. 

 


