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Abstract: Probabilistic predictions with machine learning are important in many applications.
These are commonly done with Bayesian learning algorithms. However, Bayesian learning methods
are computationally expensive in comparison with non-Bayesian methods. Furthermore, the data
used to train these algorithms are often distributed over a large group of end devices. Federated
learning can be applied in this setting in a communication-efficient and privacy-preserving manner
but does not include predictive uncertainty. To represent predictive uncertainty in federated learning,
our suggestion is to introduce uncertainty in the aggregation step of the algorithm by treating the set
of local weights as a posterior distribution for the weights of the global model. We compare our ap-
proach to state-of-the-art Bayesian and non-Bayesian probabilistic learning algorithms. By applying
proper scoring rules to evaluate the predictive distributions, we show that our approach can achieve
similar performance as the benchmark would achieve in a non-distributed setting.

Keywords: probabilistic machine learning; federated learning; Bayesian deep learning; predictive
uncertainty

1. Introduction

Modern end devices generate large amounts of data, which enables the widespread,
commercial application of machine learning (ML) algorithms. The data are distributed
over a large group of end devices and are commonly transferred to a central server, where
the learning of the ML models can be performed using the entire dataset. This poses two
problems: transferring the data may lead to high communication costs and the privacy
of the users may be compromised [1]. To counter these problems, ML can be performed
on-device, so that the data are kept localized on the device and are not uploaded to a
central server. The most prominent on-device ML methods are distributed learning [2,3],
gossip learning [4] and federated learning [5]. In this work, we focus on the application of
federated learning (FL) algorithms.

In FL, each end device learns from the local data, and a centralized server creates
a global model by aggregating the model weights received from the devices at regular
intervals. The global model is then sent back to the devices where the learning continues.
FL is typically applied when a large dataset is desired, but sharing data between users
is not possible or too expensive. In a distributed setting, data may not be independent
and identically distributed (IID) and a robust model should take uncertainty into account.
However, FL is not commonly applied to probabilistic models. In many applications,
uncertainty of estimations or predictions can be significant. Bayesian deep learning (BDL)
is commonly applied to account for uncertainty in neural networks (NNs) [6]. However,
BDL methods are computationally expensive in comparison to non-Bayesian methods and
hardware may as well be a limiting factor [7]. The inclusion of predictive uncertainty in
distributed settings should therefore be addressed.

In this work, we apply FL to generate a probabilistic model. Inspired by related work
on probabilistic predictions with NNs, we propose the learning of a probabilistic model

Entropy 2021, 23, 41. https://doi.org/10.3390/e23010041 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7306-8693
https://orcid.org/0000-0002-0870-7540
https://www.mdpi.com/1099-4300/23/1/41?type=check_update&version=1
https://doi.org/10.3390/e23010041
https://doi.org/10.3390/e23010041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23010041
https://www.mdpi.com/journal/entropy


Entropy 2021, 23, 41 2 of 13

through FL by introducing weight uncertainty in the aggregation step of the federated
averaging (FedAvg) algorithm. In that way, the end devices can calculate probabilistic
predictions but only have to learn conventional, deterministic models. This paper is orga-
nized as follows: In Section 2, we discuss probabilistic predictions with ML and give an
overview of related work. In Section 3, we present our method, FedAvg-Gaussian (FedAG).
In Section 4, we evaluate the performance of our method and compare the results to bench-
marks from related literature. Finally, Section 5 gives concluding remarks and an outlook.

2. Related Work

A probabilistic prediction (or stochastic prediction) is when the prediction takes the
form of a probability distribution, instead of a scalar value [8]. The application of ML
in this topic is of significant relevance. Probabilistic predictions are commonly used in
geology [9], electricity markets [10], urban water consumption [11], wind power [12], driver
behavior [13], vehicle dynamics [14] and electric vehicle driving range applications [15].
Two prominent probabilistic prediction methods are BDL and ensemble methods, on both
of which a summary was given by Ashuka et al. [16]. In BDL, the model parameters,
e.g., weights w, are random variables represented by probability distributions p(w). With a
dataset D, consisting of features x and target variable y, the posterior distribution for the
model weights can be derived using the Bayes’ rule, which states that the posterior distri-
bution is proportional to a prior probability p(w|α) multiplied with likelihood p(D|w, β)

p(w|D, α, β) ∝ p(w|α)p(D|w, β) , (1)

where α is a precision parameter for the prior distributions on weights w and β is a noise
precision parameter. For simplicity, we refer to the weight posterior distribution as p(w|D).
To make predictions for new, unseen data, the predictive distribution is obtained with

p(y|x,D) =
∫

p(y|x,D, w)p(w|D)dw . (2)

The exact computation of (1) and (2) is usually intractable due to the non-linearity of
NNs [17]. The integration over the posterior is commonly approximated with Monte Carlo
(MC) methods, such as Markov chain Monte Carlo (MCMC) or Hamiltonian Monte Carlo
(HMC) [6]. Alternative approximation methods are extended variational inference [18] and
cubature rules based on the unscented transformation [19].

A recent survey on BDL was given by Wang and Yeung [20]. Traditional Bayesian
neural networks (BNNs) do not scale well and the posterior p(w|D) is usually difficult to
calculate and sample from, but various approximation approaches have succeeded in creat-
ing probabilistic NNs. In variational inference (VI), the posterior p(w|D) is approximated
with a well-defined distribution Q(w|D) and variational free energy F is minimized to
minimize divergence between p(w|D) and Q(w|D) [21]. In Bayes by Backprop, the varia-
tional free energy is not minimized naïvely but approximately using gradient descent [22].
In probabilistic backpropagation (PBP), the posterior is determined with a calculation of a
forward propagation of probabilities followed by a backwards calculation of gradients [23].
Gal and Ghahramani use dropout to achieve a mathematical equivalent of a Bayesian
approximation without probabilistic weights [24]. Maddox et al. proposed SWA-Gaussian
(SWAG), where an approximate posterior distribution over NN weights is determined by
observing the stochastic gradient descent (SGD) trajectory during the learning process [25].

An established alternative to BDL is the use of ensembles to generate a probabilistic
prediction. Therefore, multiple scalar predictions are combined to infer a probabilistic
prediction. The predictions are either calculated with several different models or with a
single model with varying initial conditions or input data. In a statistical post-processing
of the ensemble predictions, a single probability density is derived [26]. A simple method
is fitting a probability distribution to the predictions, e.g., a normal distribution N (µ, σ2),
by setting µ equal to the ensemble mean and σ to the ensemble standard deviation [27].
Further techniques exist, such as the ensemble model output statistics (EMOS) method [28],
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which is common in the atmospheric sciences [29]. Numerical models, mechanistic models
and ML algorithms can all be used as individual predictors in the ensemble, but in this
work, we focus on the application of ML algorithms.

Deep ensembles are ensembles of NNs where each of the NNs predicts the parameters
of a predictive distribution, e.g., µ and σ, and the ensemble prediction is then a mixture of
Gaussians [7]. Snapshot ensembles are generated by taking snapshots of NN weights at
local minima during the training process, thus achieving an ensemble of NNs by training
a single NN [30]. Fast geometric ensembling also trains a single NN and explores the
weight space to find a set of diverse weight samples with minimal loss, thereby generating
an ensemble of NNs [31]. Depth uncertainty networks are ensembles of sub-networks of
increasing depth which share weights, thus needing only a single forward pass [32]. En-
sembles of other ML algorithms also exist, e.g., gradient boosting (GB) ensembles [33]. Out
of these ensemble methods, deep ensembles (DE) have recently shown the quite promising
results in terms of prediction performance. The nature of DE has a certain resemblance to
distributed methods, i.e., independent and parallel training of multiple NNs.

The learning of probabilistic ML models in a distributed and federated setting is
the central challenge of our work. In partitioned variational inference (PVI), federated
approximate learning of BNNs is presented [34]. Sharma et al. presented an extension of
PVI including differential privacy [35]. However, probabilistic predictions of continuous
variables are not implemented and we are therefore unable to use these methods as
benchmarks. Concurrent to our work, several articles on probabilistic FL were published.
Kassab and Simeone introduced distributed Stein variational gradient descent (DSVGD),
where non-random and interacting particles represent the model global posterior. Iterative
updates of the particles are performed on the devices by minimizing the global free
energy [36]. Al-Shedivat et al. proposed federated posterior averaging (FedPA), where the
devices use MCMC to infer approximations of the local posteriors, and the server computes
an estimate of the model global posterior [37]. Zhang et al. used FedAvg with differential
privacy to learn a Bayesian long short-term memory (LSTM) network, where Monte Carlo
dropout is applied to compute probabilistic forecasts of solar irradiation [38]. In the next
section, we propose our alternative method for the application of FL to probabilistic
ML models.

3. Federated Learning with Predictive Uncertainty

Our proposed method, FedAvg-Gaussian (FedAG), builds on the federated averaging
(FedAvg) algorithm [5]. In FedAvg, clients perform quick local updates on the weights,
which are then aggregated in a central server. In turn, the aggregated weights are then
returned to the clients for further learning. FedAvg does not consider predictive uncertainty.
However, before the weights are aggregated, information on their distribution over the
clients is known. Xiao et al. showed that during FL, client weights become increasingly
correlated but not closer to each other in terms of distance metrics [39]. This fact may be
a sign that the client weights are a good, approximate Bayesian marginalization, i.e., the
weigths represent multiple basins of attraction in the posterior [40]. In our algorithm, this
information is used to introduce weight uncertainty in the aggregation step of the FedAvg
algorithm. Therefore, a probabilistic model is approximated by treating the set of local
weights in the ensemble as an empirical posterior distribution for the weights of the global
model. Using the probabilistic model, inference is performed by calculating predictive
distributions for new, unseen data.

A pseudo-code for FedAG is shown in Algorithm 1. In the aggregation step, a prob-
ability distribution is fitted to the set of client weights. The choice of this distribution is
arbitrary, but for simplicity, we consider normal distributions in this work. Hence, the pos-
terior distributions are found by calculating the mean value µw and variance σ2

w of weights
w(k). In turn, the posterior distributions p(w|D) are returned to the clients. The clients use
the expected value, i.e., the mean value µw of the weight posterior distributions to further
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iterate local updates to the global model using their own data, but calculate probabilistic
predictions with p(w|D).

Algorithm 1 FedAvg-Gaussian (FedAG). C is the fraction of devices used in
each round, K is the total number of devices, Dk is the data observed by device
k, B is the batch size, E is the number of local epochs, η is the learning rate and l
is the squared loss function.

1 Server executes:
2 initialize w0
3 for each round t = 1, 2, ... do
4 m← max(C · K, 1)
5 St ← (random set of m clients)
6 for each client k ∈ St do
7 w(k)

t+1 ← ClientUpdate(k, p(wt|D))
8 end

9 p(wt+1|D)← N (µD(w
(k)
t+1), σ2

D(w
(k)
t+1))

10 return p(wt+1|D) to clients
11 end
12

13 ClientUpdate(k, p(wt|D)): // Run on client k
14 B ← (split Dk into batches of size B)
15 w← E(p(wt|D))
16 for each local epoch i = 1 to E do
17 for batch b ∈ B do
18 w← w− η∇`(w; b)
19 end
20 end
21 return w to server

As in FedAvg, the clients minimize the mean squared error (MSE). The client updates
are therefore fast and do not require extensions in order to learn a probabilistic model.
FedAG is therefore significantly less complicated than PVI, DSVGD and FedPA, which is
beneficial when resources such as computing performance and storage are limited. Addi-
tionally, the only target variable during training is µ, so that the amount of operations is
smaller in comparison to DE. Figure 1 shows an overview of the training process where
a network of end devices learns a probabilistic model. For wi, the clients return their
local updates, to which a normal distribution is fitted to generate a posterior probability
distribution p(wi|D). The distributions p(wi|D) constitute the weights of the NN with
input variable x, hidden units Hi, bias I and target variable ŷ. FedAG does not require
prior probabilities on the weights.

As mentioned in Section 2, an exact calculation of the integral in (2) for the predic-
tive distribution is generally intractable and some approximation is needed. We propose
two variations for our algorithm: ordinary Monte Carlo (OMC) and non-parametric boot-
strapping. In OMC, M sets of the weights are drawn from the posterior distributions to
calculate M scalar predictions ŷk for the target variable y [41]. It may seem strange to
draw sets of sample weights from a distribution created by aggregating sets of sample
weights. An alternative would be to use the sample weights from the clients directly to
calculate the predictions. In a sense, this resembles non-parametric bootstrapping to create
an ensemble [42]. In that way, ŷk are calculated directly from the client updates. In this
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work, we will use this latter sampling method. The predictive distribution is approximated
with a normal distribution N (µ̂y, σ̂2

y ):

p(y|x,D) =
∫

p(y|x,D, w)p(w|D)dw := N (µ̂y, σ̂2
y ) (3)

µ̂y ≈
1
M

M

∑
k=1

ŷ(x, w(k)) (4)

σ̂2
y ≈

(
1
M

M

∑
k=1

[
ŷ(x, w(k))

]2
)
− µ̂2

y , (5)

where ŷ(x, w(k)) is a prediction calculated with features x and weights w(k). In the case of
a linear model, the predictive distribution takes the form

p(y|x,D, α) = N
(

µT
wx, β−1 + x

[
σ2

wI
]
xT
)

, (6)

where β is a noise precision parameter for data D and is considered to be independent of
the distribution of the weights w, I is the identity matrix, µw and σ2

w are the mean and
variance of the weight posterior distribution p(w|D) [17].

...

wi

H1

H2

H3

I

ŷ

x

I

p(wi|D)p(wi|D)

p(w0|D)p(w0|D)

p(w1|D)p(w1|D)
p(w2|D)p(w2|D)
p(w3|D)p(w3|D)

p(w4|D)p(w4|D)

p(w5|D)p(w5|D)

p(w6|D)p(w6|D)
p(w7|D)p(w7|D)
p(w8|D)p(w8|D)
p(w9|D)p(w9|D)

Figure 1. A network of end devices learns a probabilistic model.

4. Experimental Evaluation

As commonly done in the field of ML, we validate our proposed method with empiri-
cal data. In this section, we describe our experiments and analyze the results. In Section 4.1,
we present a summary of proper scoring rules, which are necessary for the evaluation of
probabilistic predictions. In Section 4.2, we apply FedAG to toy regression data. Section 4.3
shows the setup of the empirical validations and in Section 4.4, we present the results.

4.1. Proper Scoring Rules

To appropriately evaluate probabilistic predictions, proper scoring rules are needed.
A scoring rule S is proper if

Ey∼P[S(P, y)] ≥ Ey∼P[S(Q, y)] , (7)
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where P is the true distribution of outcomes y and Q is the predictive distribution or any
other probability distribution [43]. The scoring rule is strictly proper if the equality holds
only when P = Q. Popular scoring rules for the prediction of continuous variables are the
logarithmic score L(F, y), the continuous ranked probability score (CRPS) and its gener-
alization, the energy score ES(F, y) [44]. In related work, negative log-likelihood (NLL)
has been favored as a performance indicator. NLL is equal to the negative logarithmic
score and is therefore also a proper scoring rule. Furthermore, NLL is unitless which is
advantageous when evaluating a model’s performance on different datasets.

A good prediction is well calibrated and sharp. Calibration is the statistical consistency
between the predictive distribution and the observation of the target variable. Sharpness
measures the concentration of the predictive distribution. NLL measures both calibration
and sharpness whereas root mean square error (RMSE) only measures calibration. Separate
measures for calibration and sharpness allow a more detailed comparison. The width
of a central prediction interval, e.g., 50%, was suggested by Gneiting and Raftery as a
measure for sharpness [44]. As all candidate algorithms in this work calculate a prediction
in the form of a normal distribution, the standard deviation appropriately measures the
sharpness by indicating the width of the central 68% prediction interval. This is also called
determinant sharpness (DS):

DS = det(Σ)1/2d , (8)

where Σ ∈ Rd×d is the covariance matrix of the predictive distribution and d is the dimen-
sion of the target variable. In our evaluation, we use the proper scoring rule NLL, as well
as RMSE and DS.

4.2. Regression with Toy Data

To analyze the performance of our method on simple data, we generate a one-
dimensional toy dataset as suggested by Hernández-Lobato and Adams [23]. In our anal-
ysis, 10 workers draw 16 independent examples from y = x3 + ε where ε ∼ N (0, 32).
Each worker trains a NN with a single hidden layer with 100 hidden units from these data
according to Algorithm 1. The data are sampled in the interval [−4, 4] but predictions are
calculated for the interval [−6, 6]. Figure 2 shows the resulting probabilistic predictions
after 1, 3 and 5 communication rounds. The results after t = 5 rounds show that FedAG can
calculate accurate probabilistic predictions with low but appropriate uncertainty for input
data close to the observed training data. For input data farther away from observed data,
the uncertainty is high. The prediction interval thus includes the ground truth, despite the
scarce training data, making the prediction superior to those calculated after rounds t = 1
and t = 3. The predictions after t = 5 rounds are similar to those reported by [7,23].
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Figure 2. Results on regression for toy data after 1, 3 and 5 rounds. The blue line represents the ground
truth, the orange points are exemplary observed noisy training data, the black line is the mean value of
the predictive distribution and the grey area demarcates a prediction interval containing ±3 standard
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Figure 2. Results on regression for toy data after 1, 3 and 5 rounds. The blue line represents the ground truth, the orange
points are exemplary observed noisy training data, the black line is the mean value of the predictive distribution and the
grey area demarcates a prediction interval containing ±3 standard deviations.
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4.3. Experiment Setup

For the empirical validation, we implemented our method with two models: a NN with
a single hidden layer and a linear regression model, denoted FedAGN=1 and FedAGN=0,
respectively, where N represents the number of hidden layers. We use the experiment setup
described by [23], which was also used by [7,24]. There, 10 datasets from the UCI Machine
Learning Repository are used [45]. Table 1 shows a summary of the corresponding datasets.
To ensure fair comparability to benchmark algorithms, the standard datasets are used.

Table 1. Summary of the UCI datasets for regression.

Datasets Observations Features

Boston Housing 506 13
Concrete Compression Strength 1030 8
Energy Efficiency 768 8
Kin8nm 8192 8
Naval Propulsion Power Plant 11,934 16
Combined Cycle Power Plant 9568 4
Protein Structure 45,730 9
Red Wine Quality 1599 11
Yacht Hydrodynamics 308 6
Year Prediction MSD 515,345 90

We compare the performance of FedAG to three benchmarks: Bayesian linear regres-
sion (BLR) [17], variational inference (VI) [21], and deep ensembles (DE) [7], all of which
are implemented in a non-distributed setting. We use Gaussian posteriors in VI and the
DE consists of 5 networks. The NNs trained using VI, DE, and FedAG all have the same
architecture with 50 hidden units with rectified linear unit (ReLU) activation functions in a
single hidden layer. For the Protein Structure and Year Prediction MSD datasets, 100 hidden
units are used. A 20-fold cross validation is performed to evaluate test performance, where
E = 40 passes over the available training data are done. For the Protein Structure dataset,
a 5-fold cross validation is performed and for the Year Prediction MSD dataset, the specified
split is used. The linear models, FedAGN=0 and BLR, are validated in the same manner.
In the federated setting, K = 10 devices are simulated with C = 1 and batch size B = 1.
K and C are chosen so that the amount of data per device is maximized, subject to the
condition that the number of devices is sufficiently large to enable an accurate approxima-
tion of the posterior distribution in the aggregation step. The training data are randomly
divided into K equally large shards, each of which is assigned to a simulated device. Hence,
each observation is uniquely assigned to one device.

The training of a linear model is a convex optimization and we expect that FedAGN=0
should need no more than t = 1 rounds to converge. On the contrary, the training of a NN is
usually a non-convex optimization and t > 1 rounds are therefore required for convergence
of FedAGN=1 in our setting. When each device has a limited amount of data, such as
in small datasets or when the number of devices is increased, an even higher number of
communication rounds might be required. Strong baselines in BDL are important and we
try to generate a fair basis for the comparison of FedAG and the benchmarks [46]. For BLR
and FedAGN=0, appropriate precision parameters for the variance of the target variable
are estimated using the variance of the training data. In addition, conjugate priors given by
unit Gaussians are used for the weight posterior distributions p(w|D) in BLR.

4.4. Results

With the experiment setup and proper scoring rules, we can evaluate the performance
of FedAG and the benchmarks. In the following, we present the results of the validation.
Table 2 shows the mean NLL and standard error for the algorithms on all dataset and
Table 3 shows the RMSE and standard error. The results for VI and DE are reported
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by [7,23], respectively. The entries in bold denote the best performing model(s), where the
performance is considered similar if the standard error intervals overlap.

Table 2. Mean NLL and standard error of the predictions. The entries in bold denote the best performing model(s).

Dataset BLR VI FedAG(t=1)
N=0 FedAG(t=5)

N=1
DE

Boston 3.07± 0.03 2.90± 0.07 3.02± 0.03 2.58± 0.06 2.41± 0.25
Concrete 3.78± 0.02 3.39± 0.02 3.76± 0.03 3.21± 0.04 3.06± 0.18
Energy 5.12± 0.05 2.39± 0.03 5.31± 0.06 2.07± 0.04 1.38± 0.22
Kin8nm 1.17± 0.04 −0.90± 0.01 1.03± 0.04 −0.87± 0.01 −1.20± 0.02
Naval Propulsion −3.55± 0.02 −3.73± 0.12 −3.45± 0.01 −3.21± 0.01 −5.63± 0.05
Power Plant 2.97± 0.01 2.89± 0.01 2.94± 0.01 2.92± 0.01 2.79± 0.04
Protein 3.07± 0.00 2.99± 0.01 3.08± 0.00 2.95± 0.00 2.83± 0.04
Red Wine 1.50± 0.07 0.98± 0.01 1.01± 0.03 0.99± 0.02 0.94± 0.12
Yacht 3.63± 0.05 3.44± 0.16 4.02± 0.07 1.92± 0.06 1.18± 0.21
Year Prediction 3.73± NA 3.86± NA 3.72± NA 3.66± NA 3.35± NA

Table 3. RMSE and standard error of the predictions. The entries in bold denote the best performing model(s).

Dataset BLR VI FedAG(t=1)
N=0 FedAG(t=5)

N=1
DE

Boston 4.87± 0.22 4.32± 0.29 4.96± 0.22 4.07± 0.18 3.28± 1.00
Concrete 10.58± 0.33 7.13± 0.12 10.52± 0.33 6.50± 0.20 6.03± 0.58
Energy 4.35± 0.14 2.65± 0.08 4.36± 0.14 2.02± 0.07 2.09± 0.29
Kin8nm 0.20± 0.00 0.10± 0.00 0.20± 0.00 0.10± 0.00 0.09± 0.00
Naval Propulsion 0.01± 0.00 0.00± 0.00 0.01± 0.00 0.01± 0.00 0.00± 0.00
Power Plant 4.74± 0.05 4.33± 0.04 4.56± 0.05 4.45± 0.05 4.11± 0.17
Protein 5.18± 0.02 4.84± 0.03 5.18± 0.02 4.63± 0.02 4.71± 0.06
Red Wine 0.65± 0.02 0.65± 0.01 0.65± 0.02 0.65± 0.02 0.64± 0.04
Yacht 9.12± 0.52 6.89± 0.67 9.12± 0.52 2.29± 0.15 1.58± 0.48
Year Prediction 9.51± NA 9.03± NA 9.51± NA 9.35± NA 8.89± NA

The performance of the two linear models, BLR and FedAGN=0 is similar. In 8 out of 10
datasets, FedAG(t=1)

N=0 performs similarly or slightly better than BLR in terms of NLL. BLR

significantly outperforms FedAG(t=1)
N=0 only in two datasets, the Energy Efficiency and Yacht

Hydrodynamics datasets, which are also two of the smallest datasets. Hence, each worker
only has access to a small amount of data. In 9 out of 10 datasets, the performance of
FedAG(t=1)

N=0 and BLR is almost identical in terms of RMSE.
In the results for NNs, the difference between the three algorithms, VI, FedAGN=1

and DE is somewhat significant. DE achieve the best results, followed by FedAG(t=5)
N=1 and

VI. In 8 out of 10 datasets, FedAG(t=5)
N=1 outperforms VI in terms of NLL and in 3 out of 10

datasets, the performance of FedAG(t=5)
N=1 approaches that of DE. In terms of RMSE, the

performance of FedAGN=1 and DE is similar in 5 out of 10 datasets. Further rounds (t > 5)
do not improve the results of FedAGN=1 significantly.

To further compare the performance of VI, DE and FedAGN=1 over the course of the
communication rounds, we look at the dataset Concrete Compression Strength, where the
performance of the methods is similar, and the dataset Yacht Hydrodynamics where DE
show a significant advantage in terms of NLL. Figure 3 shows the prediction performance
(NLL and RMSE) of the algorithms on these two datasets. In Figure 3a,b, FedAGN=1
outperforms VI already after t = 1 rounds, both in terms of NLL and RMSE. However,
FedAGN=1 reaches a certain saturation and cannot match the performance of DE, despite a
significant improvement in NLL and RMSE after t = 5 rounds. In Figure 3c,d, FedAGN=1
and VI show similar performance after t = 1 rounds. With increasing number of com-
munication rounds t, NLL and RMSE of FedAG improve. After t = 5 rounds, the results
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of FedAGN=1 and DE overlap, i.e., the algorithms achieve similar performance, though
DE still retains a slight advantage. In the initial round of FedAG, different devices might
find weights corresponding to different minima of the NN’s loss function, so that the
global model’s initial weight posterior distributions are not optimal. The loss function
of a NN with ReLU activation functions can be expressed as a polynomial function of
the weights in the network, whose degree is the number of layers, and whose number of
monomials is the number of paths from inputs to output [47]. We can therefore expect that
loss functions of small NNs have few local minima, and that the global minimum can be
found within relatively few communication rounds in FedAG. Accordingly, larger NNs
might require more communication rounds. On the two datasets in Figure 3, we observe
how the performance of FedAGN=1 gradually improves with increased rounds t. This can
also be observed on other datasets.
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Figure 3. Prediction performance of FedAGN=1, DE and VI in terms of NLL and RMSE on the datasets Yacht Hydrodynamics
and Concrete Compression Strength.

Another important property of the predictive distributions is their sharpness, which
we measure with determinant sharpness (DS). In Table 4, the mean DS of the predictive
distributions calculated with FedAG(t=5)

N=1 and DE are shown. Of the datasets that exhibit
similar performance in terms of NLL, Boston Housing and Concrete Compression Strength can
be predicted with greater sharpness by FedAG than DE, whereas DE’s predictions of Red
Wine Quality are sharper on average. In 7 out of 10 datasets, FedAG predicts on average a
sharper distribution than DE.

4.5. Computational and Communication Complexity

In addition to the predictive performance of the algorithms, their computational
and communication complexity is of significant importance. The candidate algorithms
have different computational complexity at training time and at testing time. The two
linear models, BLR and FedAGN=0, have the same structure and the same amount of
parameters. The predictive distributions can be computed analytically with (6) and no
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sampling is required. The NNs trained using VI, DE, and FedAG are, on the other hand,
more complex. VI and FedAG learn probabilistic NNs with Gaussian posterior, whereas
DE are ensembles consisting of deterministic NNs with scalar weights, but with two output
variables. VI maximizes a lower bound on the marginal likelihood of the NN. First, a Monte
Carlo approximation for the lower bound is computed, which is then optimized using
SGD. The computational complexity at training time is therefore higher in VI than in
DE and FedAG, where SGD is applied directly. VI and FedAG approximate predictive
distributions using Monte Carlo sampling from the posterior distributions. Contrarily,
DE only have to analytically compute the two output variables of the 5 networks in the
ensemble. Subsequently, the predictive distribution is approximated as a mixture of the
individually computed normal distributions. The computational complexity at testing time
is therefore higher in VI and FedAG than in DE.

The communication complexity of FedAG is different from that of FedAvg. FedAG
learns a posterior distribution for each weight of the model. Therefore, its communication
complexity is somewhat higher than that of FedAvg. If a Gaussian posterior is assumed,
each distribution is defined by its mean and standard deviation. Compared to FedAvg, the
global model has twice the amount of parameters. A single parameter can be assumed to
be a 32 bit floating-point value. For the NNs considered in this work (single hidden layer,
6–90 features, 50 or 100 hidden units), the total data size is in the range from 1604 B to
36,804 B in FedAvg and from 3208 B to 73,608 B in FedAG. The communication complexity
of sending the global model to the clients in FedAG can be up to two times higher than in
FedAvg, depending on the communication overhead. However, the client updates only
include scalar weights w, so the upload communication complexity in FedAG is the same
as in FedAvg.

Table 4. Mean determinant sharpness (DS) of the predictive distributions calculated with FedAG(t=5)
N=1

and DE.

Dataset FedAG(t=5)
N=1

DE

Boston 4.05 4.79
Concrete 6.37 7.07
Energy 2.16 2.67
Kin8nm 0.10 0.14
Naval Propulsion 0.01 0.02
Power Plant 4.30 5.48
Protein 3.88 4.59
Red Wine 0.79 0.69
Yacht 2.85 0.94
Year Prediction 11.12 7.85

4.6. Discussion

As each of the clients in FedAG only has access to a fraction of the dataset, we do
not expect it to out-perform the benchmarks BLR, VI and DE, which simultaneously have
access to the complete dataset. Nevertheless, the linear models BLR and FedAGN=0 attain
almost identical performance. Consequently, FedAGN=0 can be applied as an alternative to
BLR in federated, distributed settings. In the case of a non-linear model, the performance
of FedAGN=1 can generally compete with that of VI and approaches the performance of
DE on some datasets. Additionally, the sharpness of the predictive distributions calculated
with FedAG and DE is comparable. Hence, FedAGN=1 can be used as a probabilistic model
in a federated setting, achieving predictive performance comparable with state-of-the-
art non-federated and non-distributed methods. Further advantages of FedAG are the
retained privacy and communication efficiency [48]. Therefore, FedAG offers prediction
performance comparable with state-of-the art probabilistic ML algorithms in an efficient
and privacy-preserving manner.
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5. Conclusions and Future Work

Interest in the application of ML algorithms in distributed or federated settings is
increasing. There, predictive uncertainty is an important feature that needs to be addressed.
We presented FedAvg-Gaussian (FedAG), an efficient method for the learning of prob-
abilistic models in a distributed, federated setting. FedAG extends FedAvg to include
predictive uncertainty, by treating the set of local weights as a posterior distribution for
the weights of the global model. Therefore, predictive uncertainty can be represented in a
computation- and communication-efficient way, so that probabilistic on-device machine
learning is realized.

We used FedAG to learn two different models, a linear regression and a feed-forward
neural network with a single hidden layer. The performance of our method was eval-
uated on UCI regression datasets and compared to benchmark methods using proper
scoring rules. When implemented with a linear regression model, FedAG’s performance
is similar to that of a BLR. FedAG with a neural network can after t = 5 communication
rounds outperform VI on most datasets and its performance approaches that of DE on
several datasets.

Our future work includes several topics. FedAG could benefit from an aggregation
step more robust to outliers and adversarial attacks, such as in the methods Krum [49]
and Aggregathor [50]. Moreover, further work should aim to test the methods with real
federated data to analyze the effect of non-IID partitioning and stratified splits compared
to randomized splits [51]. For the personalization of the local models, different aggregation
and initialization methods can be applied. Evaluating such concepts in an asynchronous
federated learning environment might prove an important area for future research. Further-
more, larger neural networks and other deep learning architectures such as convolutional
neural networks can be applied and analyzed. Finally, our future research will aim to
benchmark FedAG against other novel federated learning concepts, such as partitioned
variational inference (PVI) [34], distributed Stein variational gradient descent (DSVGD) [36],
federated posterior averaging (FedPA) [37], and the combination of FedAvg and Monte
Carlo dropout [38].
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