High Entropy and Low Symmetry: Triclinic High-Entropy Molybdates

David Stenzel, Ibrahim Issac, Kai Wang, Raheleh Azmi, Ruby Singh, Jae-hoon Jeong, Saleem Najib, Subramshu S. Bhattacharya, Horst Hahn, Torsten Brezesinski, Simon Schweidler,* and Ben Breitung*

ABSTRACT: Metal molybdates constitute a promising class of materials with a wide application range. Here, we report, to our knowledge for the first time, on the preparation and characterization of medium entropy and high entropy metal molybdates, synthesized by an oxalate-based coprecipitation approach. The high entropy molybdate crystallizes in a triclinic structure, thus rendering it as high entropy material with the lowest symmetry reported so far. This is noteworthy because high entropy materials usually tend to crystallize into highly symmetrical structures. It is expected that application of the high entropy concept to metal molybdates alters the material’s characteristics and adds the features of high entropy systems, that is, tailorable composition and properties. The phase purity and solid solution nature of the molybdates were confirmed by XRD, Raman spectroscopy, TEM, XPS, and ICP OES.

INTRODUCTION

The high entropy concept has been a topic of scientific research since the end of the 20th century. The idea is to increase the configurational entropy \(S_{\text{config}}\) of a system so that the absolute value of the entropy dependent second term of the Gibbs–Helmholtz equation \((-T\Delta S)\) increases, which in some cases can lead to an entropy stabilization of the structure. The absolute value of \(S_{\text{config}}\) is solely dependent on the number of different elements and their stoichiometry (eq S1 of the Supporting Information). Upon increasing \(S_{\text{config}}\) by incorporating a multitude of elements in a single-phase structure, manifold interactions between the different elements emerge, which can be seen as a characteristic of high entropy materials. These interactions often lead to unexpected and exciting properties compared to similar binary or ternary compounds. Additionally, it is possible to tailor the properties by simply changing the stoichiometry or the incorporated elements. The high entropy concept was first applied to alloys (HEAs) and later to ionic structures. In 2015, Rost et al. synthesized the first entropy stabilized oxide and found clear signs of entropy mediated stabilization. They showed that reversible mixing and demixing of phases occurs when the temperature is increased and decreased, respectively. The single phase compound was thermodynamically favored only above a certain temperature, which is in agreement with the Gibbs–Helmholtz equation \((\Delta G = \Delta H - T\Delta S)\). Taking this into account, many high entropy materials can be described as metastable compounds that need to be quenched after high temperature synthesis to maintain a single phase structure. Today, there is a multitude of high entropy ceramics available, for example, oxides, borides, carbides, nitrides, sulfides, or silicides. Their properties facilitate possible applications in the areas of energy storage, magnetism, thermal and environmental protection, thermoelectricity, water splitting, and catalysis, to name a few. Apart from materials with simple anions, high entropy ceramics with complex anions like silicates \((\text{SiO}_3^{6-})\), disilicates \((\text{Si}_2\text{O}_7^{5^-})\), diphosphates \((\text{P}_2\text{O}_7^{6-})\), and dizirconates \((\text{Zr}_2\text{O}_6^{6-})\) have also been presented. Another class of interesting complex anions are the molybdates, which can form polyanions reaching from \(\text{MoO}_4^{2-}\) to \(\text{Mo}_6\text{O}_{26}^{4-}\) and to even more complex structures. Metal molybdates \(\text{MMoO}_4\) \(\text{(M: Ca, Fe, Co, Ni, Cd, Ba, etc.)}\) have attracted scientific attention because of their catalytic, optical, photoluminescent, electrochemical, and magnetic properties. For example, metal molybdates containing first row transition metals show promising catalytic properties because of the ability of the molybdenum ion and the respective transition metal ions to exist in multiple stable oxidation states. Their catalytic activity enables different processes such as the selective oxidation of methanol or the reduction of nitrophenol isomers. Apart from the catalytic properties, copper molybdate can be used as a photocatalyst, and iron molybdate exhibits interesting ferromagnetic properties at room temperature. Furthermore, metal molybdates show promise for application in (super)capacitors and batteries.
dates with "small" Mo numbers (e.g., MoO$_3$2−, Mo$_2$O$_5$2−, etc.) are composed of Mo6+ ions, tetrahedrally or octahedrally coordinated by oxygen ions (Figure S1). Compounds containing molybdates as anions often crystallize in structures of low symmetry. While FeMoO$_4$ shows a monoclinic (C12/m1) lattice, ZnMoO$_4$ forms a triclinic structure with the space group P–1 (Figure S1).29,30 Other examples are monoclinic MgMoO$_4$ and NiMoO$_4$ or triclinic CuMoO$_4$.31 Different methods have been used for the synthesis of transition metal molybdates, including hydrothermal/solvothermal coprecipitation, sonochemical, combustion, sol–gel, and solid state routes.24,25,27,32–35

Here, we present, for the first time, the transfer of the high entropy concept to the triclinic molydate system. So far, the symmetry of this compound class is the lowest ever reported for ionic high entropy ceramics. This is notable because high entropy materials usually tend to crystallize in highly symmetrical structures.2,36–38 Metal molybdates with multiple metals in equimolar ratios were synthesized by utilizing an oxalate based coprecipitation method, followed by calcination at elevated temperatures. This synthesis method offers the possibility to produce several grams of powder and can be readily scaled up because of its simple reaction parameters (aqueous solution nonoptimized regarding pH value; readily available, nontoxic, and cheap precursors; no need to refine the products after calcination, etc.). The resultant powders are stable in air and moisture and do not react when handled at ambient conditions. A phase pure triclinic structure (ZnMoO$_4$ type, P–1) was obtained for two different compositions, namely (MgNiCuZn)$_2$MoO$_4$ and (MgNiCuZnFe)$_2$MoO$_4$ where the metals, except Mo, are incorporated in equimolar amounts. We expect that the introduction of the high entropy concept into molybdates paves the way for the development of compounds with different elemental compositions and tailorable properties for various applications.

EXPERIMENTAL SECTION

Synthesis. Two different high entropy materials were synthesized and characterized, namely (MgNiCuZn)$_2$MoO$_4$ and (MgNiCuZnFe)$_2$MoO$_4$ which are termed MEMo (medium entropy molybdate) and HEMo (high entropy molybdate), respectively. For the MEMo, a mixture (all >99%, Alfa Aesar) of acetate salts (5 mmol each) and MoO$_3$ (20 mmol) was dissolved or dispersed (MoO$_3$) into 150 mL of deionized water. The solution was stirred for around 15 min at room temperature and then heated to 90 °C. Subsequently, oxalic acid (>99%, Merck KGA) solution (40 mmol in 50 mL of deionized water, molar ratio 1:1 in relation to the total metal concentration) was added dropwise at a rate of about 1 mL/min. The mixture was further stirred in a covered beaker for about 4 h at 90 °C. Then, the lid was removed to let the solvent evaporate overnight at the same temperature. The resulting solid was dried at 150 °C for 6 h and calcined for 4 h at 800 °C in air by using a muffle furnace, with subsequent quenching. The HEMo was similarly synthesized, but an adjusted molar ratio was used to acquire equimolar proportions of cations (4 mmol of each precursor added to 20 mmol of MoO$_3$) and FeCl$_2$ (>99%, Alfa Aesar) as additional precursor. An amount of about 4 g was obtained for both materials.

Structural Characterization. Powder X-ray diffraction (XRD) data were collected by using a Bruker D8 diffractometer with Bragg–Brentano geometry and Cu K$_{α1}$ radiation. Patterns were collected between 10° and 90° 20, with a step size of 0.02° and a scanning rate of 0.12°/min. Rietveld analysis was performed by using TOPAS Academics V5 software. The refinement was done with modifications to the elements and their proportion used in the respective samples, based on the structure type ZnMoO$_4$ (space group P–1, Z = 6).39 The instrumental intensity distribution was determined by employing a reference scan of SRM 1976b (strontium-free Al$_2$O$_3$ in a glassy matrix, particle size >2 μm, random orientation).

The elements were determined and quantified by inductively coupled plasma optical emission spectroscopy (ICP OES, ICAP 7600 DUO from Thermo Fisher Scientific). An amount of about 10 mg of the samples (weighing accuracy ±0.05 mg) was dissolved in 6 mL of hydrochloric acid, 2 mL of nitric acid, and 4 mL of sulfuric acid at 240 °C for 35 min by using a microwave oven (Speedwave Xpert from Berghof). Analysis of elements was accomplished with four different calibration solutions and an internal standard (Sc). Two or three major wavelengths of elements were used for calculation. The exact wavelengths can be seen in Table S1. The oxygen content was probed by the method of carrier gas hot extraction (CGHE). A commercial oxygen/nitrogen analyzer TC600 (LECO) was used. The maximum error margin for oxygen quantification is 0.7%.

The microstructure was analyzed via high resolution scanning electron microscopy (SEM, ZEISS Gemini Leo 1530). From the obtained images, the particle size and particle size distribution were determined by using the image processing program ImageJ.41 High resolution transmission electron microscopy (HR TEM), selected area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (in scanning TEM mode, STEM EDX) data were collected by using an FEI Titan 80 300 microscope, equipped with a CEOS image spherical aberration corrector, a HAADF STEM detector (Fischione model 3000), an EDAX SUTW EDX detector, and a Tridiem Gatan image filter. An accelerating voltage of 300 kV was used. The powder samples were dispersed on a lacey carbon coated copper grid and loaded onto an FEI double tilt holder.

Raman spectroscopy was performed by using a Renishaw inVia Raman microscope. A 100× objective was used to focus the laser with a wavelength 532 nm, an exposure time of 10 s, a power of 2 mW, a numerical aperture of 0.8, and a working distance of 0.26 mm. The power of the collimated laser beam was measured in the microscope without the objective and then corrected for the specific objective transmission (~80%). The system was calibrated in a standard way by using a gas discharge lamp, using a software implemented routine. The absolute wavenumber accuracy of the Raman peak positions after this procedure is within ±0.5 cm−1.

X-ray photoelectron spectroscopy (XPS) measurements were performed on a K Alpha+ instrument (Thermo Fisher Scientific) with a monochromatic Al Kα X ray source (1486.6 eV) and a spot size of 400 μm. The K Alpha+ charge compensation system was applied to prevent localized charge buildup during analysis using 8 eV electrons and low energy Ar ions. Data acquisition and processing were performed by using Thermo Advantage software.42 The spectra were fitted with one or more Voigt profiles. The binding energies are reported by considering the C 1s peak of hydrocarbons at 285.0 eV. The analyzer transmission function, Scofield sensitivity factors, and effective attenuation lengths (EALs) for photoelectrons were applied for quantification.43 EALs were calculated by using the standard TPP 2 M formalism.44 An error margin of ~10% is expected as quantification error for the Cu measurements.

RESULTS AND DISCUSSION

In this work, the synthesis and characterization of two multicomponent molybdates are presented: Mg$_{0.25}$Ni$_{0.25}$Cu$_{0.25}$Zn$_{0.25}$MoO$_4$ ((MgNiCuZn)$_2$MoO$_4$; medium entropy molybdate, MEMo) and Mg$_{0.25}$Ni$_{0.25}$Cu$_{0.25}$Zn$_{0.25}$Fe$_{0.25}$MoO$_4$ ((MgNiCuZnFe)$_2$MoO$_4$; high entropy molybdate, HEMo). The oxalate based coprecipitation method is a synthesis route enabling the preparation of triclinic high entropy molybdates. It can easily be scaled up to produce larger amounts of powder samples. Complex post treatments to form single phase structures, as known from other commonly used synthesis routes for high entropy materials, can be omitted. S\textsubscript{config} calculation for MEMo and HEMo yielded 1.39R and 1.61R, respectively, which renders them medium and high entropy materials (eq S1). This classification is based on the often used...
structures (MEMo and HEMo) contain MoO₄ tetrahedra, equally occupied by the metals (i.e., the sum is one). Both sublattice, it was assumed that the sites are completely and the results are given in Table S2. For the distribution and the highest symmetry possible. In addition, the HEMo shows an intensity distribution of the HEMo and MEMo match well with those reported for Cu₀.₂₅Zn₀.₇₅MoO₄. No other reflections were observed. Thus, it can be concluded that two phase pure triclinic materials were successfully synthesized. The refinement for both MEMo and HEMo is shown in Figure 1a,b, and the results are given in Table S2. For the distribution and calculation of the metal (M) occupancy on the cationic sublattice, it was assumed that the sites are completely and equally occupied by the metals (i.e., the sum is one). Both structures (MEMo and HEMo) contain MoO₄ tetrahedra, MO₆ octahedra, and trigonal bipyramidal MO₅ as characteristic building units (M = Mg, Ni, Cu, Zn, and Fe). Note that a parallel chain of MO₆ octahedra is arranged with connected trigonal MO₅ bipyramids and MoO₄ tetrahedra. As can be seen in Figure 1c, such a structure contains three dimensional channels through the lattice, which may positively affect the transport and/or charge storage properties. The elemental composition was determined by ICP OES and CGHE. Table 1 reveals the composition of both samples in units of at. %. The theoretical ratio of constituent elements (assuming MₓMoₓO₄) was nearly achieved. While for MEMo the ratio was M₀.₉₉Mo₀.₉₉O₄ the measurements on HEMo indicated a minor decrease in cation content (M₀.₉₇Mo₀.₉₆O₄). To achieve the highest S_(config) (see eq S1), it is necessary that all the transition metals are present in equimolar ratios. This prerequisite is achieved for both samples. The calculated formula based on the expected oxygen content of 4 is [Mg₀.₃₈Ni₀.₃₈Cu₀.₃₂Zn₀.₃₂]Mo₀.₉₉O₄ for the MEMo and [Mg₀.₃₈Ni₀.₃₈Cu₀.₃₂Zn₀.₃₂Fe₀.₀₂]Mo₀.₉₆O₄ for the HEMo. The morphology of the HEMo can be seen in Figure 2. The SEM micrograph in Figure 2a shows that the material consists of agglomerates of different sizes, built from primary particles. The agglomerates are mostly compact and their diameters range between 5 and 100 μm. The (primary) particle size distribution, calculated by measuring 200 individual particles, is shown in Figure 2b. They appear to be nonuniform in shape (Figure 2c) and it should be noted that the shape is also affected to some degree by grain growth. A similar structure was found for the MEMo (Figure S3). The average size of

![Figure 1. XRD patterns and related Rietveld refinement plots of (a) MEMo and (b) HEMo. (c) Model of the HEMo unit cell; the metal position can be occupied by Mg, Ni, Cu, Zn, or Fe (blue: O; orange: Mo; green: Mg; yellow: Ni; turquoise: Cu; dark green: Zn; red: Fe).](image)

Table 1. Overview of the Elemental Compositions

<table>
<thead>
<tr>
<th>element</th>
<th>MEMo [at. %]</th>
<th>HEMo [at. %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>4.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Ni</td>
<td>4.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Cu</td>
<td>4.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Zn</td>
<td>4.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Fe</td>
<td>3.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Mo</td>
<td>16.6</td>
<td>16.3</td>
</tr>
<tr>
<td>O</td>
<td>66.8</td>
<td>67.4</td>
</tr>
</tbody>
</table>

condition that $S_{\text{config}} > 1.5R$ (R being the ideal gas constant) must be achieved to produce a high entropy material. Another condition is the equimolar ratio of metal species. The crystal structure and phase composition of HEMo and MEMo were investigated by means of XRD and Rietveld refinement analysis. Figure S2 shows the XRD pattern of the triclinic reference material Cu₀.₂₅Zn₀.₇₅MoO₄ (ICSD 411380, ZnMoO₄ type, $P=1$) and the XRD patterns of the as prepared materials. The reflections of HEMo and MEMo match well with those reported for Cu₀.₂₅Zn₀.₇₅MoO₄. No other reflections were observed. Thus, it can be concluded that two phase pure triclinic materials were successfully synthesized. The refinement for both MEMo and HEMo is shown in Figure 1a,b, and the results are given in Table S2. For the distribution and calculation of the metal (M) occupancy on the cationic sublattice, it was assumed that the sites are completely and equally occupied by the metals (i.e., the sum is one). Both structures (MEMo and HEMo) contain MoO₄ tetrahedra, MO₆ octahedra, and trigonal bipyramidal MO₅ as characteristic building units (M = Mg, Ni, Cu, Zn, and Fe). Note that a parallel chain of MO₆ octahedra is arranged with connected trigonal MO₅ bipyramids and MoO₄ tetrahedra. As can be seen in Figure 1c, such a structure contains three dimensional channels through the lattice, which may positively affect the transport and/or charge storage properties. The elemental composition was determined by ICP OES and CGHE. Table 1 reveals the composition of both samples in units of at. %. The theoretical ratio of constituent elements (assuming MₓMoₓO₄) was nearly achieved. While for MEMo the ratio was M₀.₉₉Mo₀.₉₉O₄ the measurements on HEMo indicated a minor decrease in cation content (M₀.₉₇Mo₀.₉₆O₄). To achieve the highest S_{config} (see eq S1), it is necessary that all the transition metals are present in equimolar ratios. This prerequisite is achieved for both samples. The calculated formula based on the expected oxygen content of 4 is [Mg₀.₃₈Ni₀.₃₈Cu₀.₃₂Zn₀.₃₂]Mo₀.₉₉O₄ for the MEMo and [Mg₀.₃₈Ni₀.₃₈Cu₀.₃₂Zn₀.₃₂Fe₀.₀₂]Mo₀.₉₆O₄ for the HEMo. The morphology of the HEMo can be seen in Figure 2. The SEM micrograph in Figure 2a shows that the material consists of agglomerates of different sizes, built from primary particles. The agglomerates are mostly compact and their diameters range between 5 and 100 μm. The (primary) particle size distribution, calculated by measuring 200 individual particles, is shown in Figure 2b. They appear to be nonuniform in shape (Figure 2c) and it should be noted that the shape is also affected to some degree by grain growth. A similar structure was found for the MEMo (Figure S3). The average size of
primary particles is around 2.5 μm for both the HEMo and MEMo, and more than 65% of the particles are between 1 and 3 μm. The particle size distribution indicates that <5% of the particles are smaller than 1 μm or larger than 6 μm. It can be expected that other materials synthesized by using the same oxalate based coprecipitation approach will end up showing similar particle sizes. It is worth mentioning that there are also some nanoscale crystallites visible on the surface of the primary particles. Because of the relatively broad size distribution of agglomerates, it seems necessary to add a ball milling step before using the materials in specific applications.

Further microstructural details were obtained via TEM. Figure 3 shows HR TEM micrographs and the related SAED patterns of the MEMo and HEMo. Both materials show a high degree of crystallinity, as indicated by HR TEM (Figure 3a,b). Fast Fourier transforms (FFTs) of the respective areas are shown in the insets and support the observed triclinic structure. The distance between the visible diffraction planes in Figure 3a,b match with the values given in Figure 3c,d. The SAED reflections acquired from the corresponding areas of the HR TEM images correspond to the triclinic Cu0.25Zn0.75MoO4 structure, as explained in the section on XRD above. For the MEMo material, the (−101), (−210), and (−11−1) lattice planes could be indexed using the d spacing and angles shown in Figure 3c. Likewise, the (−1−10), (−100), and (−110) lattice planes were indexed for the HEMo material (Figure 3d). The zone axis of the SAED in Figures 3c and 3d is [121] and [001], respectively.

STEM EDX was performed to examine the elemental distribution. Figure 4 shows the mapping results for the HEMo material. The pixel size is 10 nm. All elemental maps were processed by using the corresponding K edge. By comparison of the results in Figure 4, it is apparent that all elements show a homogeneous distribution, even in nanometer level resolution. There is no notable segregation or clustering, which would lead to a decrease in the number of possible microstates and therefore lower the configurational entropy. A homogeneous distribution of all elements was also evident for the MEMo material (Figure S4).

Raman spectroscopy measurements were performed on the MEMo and HEMo because transition metal molybdates are known to be Raman active, and the spectra provide structural details on local molecular vibrations. Figure 5 shows the Raman spectra of MEMo and HEMo, with the shaded areas denoting regions of different vibrational modes. Region A reveals a characteristic band at 291−350 cm⁻¹, corresponding to the O−Mo−O bending, while those in region B (781−821 cm⁻¹) and region C (935−962 cm⁻¹) correspond to the antisymmetric and symmetric stretching modes of the MoO₄ tetrahedra, respectively. The different modes superimposed in region B indicate a noncentrosymmetric occupation of the MoO₄ tetrahedra; related softening of exclusion rules leads to appearance of different Raman bands. The broadening of bands in region C for MEMo is assumed to be due to structural disorder.

XPS was used to determine the oxidation states of the metals on the surface of the MEMo and HEMo. In Figure 6, the Mo 3d spectrum exhibits one spin−orbit doublet with Mo 3d₅/₂ at 232.6 eV and a doublet splitting of 3.2 eV for MEMo and HEMo. According to the binding energy and narrow full width at half maximum (FWHM: 1.1 eV) of the Mo 3d doublet, Mo
ions can be assigned to Mo$^{6+}$, supported by the literature.51-54 The binding energy of lattice oxygen is determined to be 530.7 eV, and very little carbonates or hydroxides are formed on the surface, according to the C 1s and O 1s spectra shown in Figure S5. The oxidation state of Mg, Zn, and Ni in the MEMo and HEMo is determined to be 2+. The Mg 1s and Mg 2p binding energies at 1304.1 and 50.0 eV, respectively (as well as Mg KLL with a binding energy of \sim304.2 eV), are indicative of Mg$^{2+}$ (Figure 6 and Figure S5).55-57 Figure 7 reveals that the Zn ions (with Zn 2p$^{3/2}$ binding energy of 1021.8 eV and Zn LMM kinetic energy of \sim988.6 eV) are in the oxidation state $^{2+}$.57,58 In Figure 6, the multiplet deconvolution of the Ni 2p$^{3/2}$ spectra is shown. The fit was realized with minor intensity ratio variations in multiplets of Ni$^{2+}$,57,59-62 The multiplet splitting effect of Ni ions and the difficulty of identification of their oxidation state solely based on the peak barycenter have already been reported.58,63,64

The spectra of Cu ions of the MEMo and HEMo in Figure 7 show a complicated structure. It is known that Cu$^{2+}$ ions in oxide materials can easily be reduced to Cu$^{+}$ and Cu0 by extended exposure to X rays; therefore, in these measurements, the Cu ions are probed at the start of the experiment with only 3 min of total X ray exposure to prevent degradation.58,65 Hence, we assume that the low binding energy peak of Cu 2p$^{3/2}$ (A932) at 932.5 eV (FWHM: 2.0 eV) can be attributed to either Cu$^{+}$ or Cu0. Note that binding energy values for Cu metal and Cu(I) oxide represent statistically similar values, and their differentiation can be done usually by considering the Cu LMM peak. However, the detailed evaluation of the X ray induced Cu Auger peaks in these materials is hampered by the overlap of low intensity Zn LMM peaks.58 This makes the speciation of the A932 peak based on the Auger parameter difficult. We carefully assign the A932 peak to Cu$^{+}$ because of its relatively large FWHM (2 eV) and appearance of the Cu L$_3$M$_4$,5M$_4$,5 peak at the kinetic energy of 916.4 eV, close to the value found for Cu(I) species.66 The middle main peak in the Cu 2p$^{3/2}$ spectrum (B935) with a binding energy of 934.7 eV (for MEMo) and 935.1 eV (for HEMo) is identified as Cu$^{2+}$, which also gives rise to the observed shake up satellite peaks in the spectrum. The origin of the third main peak (C937) at \sim936.8 eV is unknown. Note that we exclude the possibility of overlapping Fe LMM Auger because this peak is also present for the sample without Fe. Studies on the ratio of the satellite peak to main peak area in Cu(OH)$_2$ and CuO have shown values around 1.6 and 1.9, respectively.58 In case of the MEMo and HEMo, the ratio of satellites peak area to sum of peaks at \sim935 and \sim937 eV is \sim1.55, which is close to the ratio

Figure 5. Raman spectra of MEMo and HEMo. The colored regions denote different vibration modes. A: O–Mo–O bending; B: antisymmetric stretching of MoO$_4$ tetrahedra; C: symmetric stretching modes of MoO$_4$ tetrahedra.

Figure 6. XP spectra of MEMo (top) and HEMo (bottom) showing the Mo 3d, Ni 2p, Fe 2p, and Mg 1s peaks.
obtained for Cu(OH)$_2$. This leads us to speculatively attribute both B$_{35}$ and C$_{937}$ peaks to Cu$^{2+}$. In summary, the amount of Cu$^{1+}$ can be determined to be 15% and 21% of the total Cu ions for the MEMo and HEMo, respectively. Therefore, the average Cu oxidation state is estimated at Cu$^{1.8+}$ (Cu$^{1.85+}$ for MEMo and Cu$^{1.79+}$ for HEMo).

Finally, the Fe 2p spectrum of HEMo shows its doublet structure with broad peaks because of multiplet splitting and the presence of shake up satellites. The average oxidation state of the Fe ions, according to the presented multiplet splitting deconvolution of the Fe 2p$_{3/2}$ spectra in Figure 6, is close to 2.5+, considering the percentage of Fe$^{3+}$ (orange multiplets) and Fe$^{2+}$ (blue multiplets) is 50.7% and 49.3% of the total Fe ions, respectively. However, the overall oxidation state is slightly higher than the expected value of 2+. An overview of all oxidation states is presented in Table 2. It is known in the literature that Cu often takes lower oxidation states when combined with other transition metals in one compound, leading to an oxidation of the respective metal ion. We assume that this internal disproportionation (Cu$^{2+}$ + M$^{2+}$ → Cu$^{+}$ + M$^{3+}$) is also occurring in the MEMo and HEMo. Because Mg and Zn appear only in 2+ state, the possible reaction partners for Cu are Ni in the MEMo and Ni and Fe in the HEMo. To reduce the Cu$^{2+}$ in the MEMo to an average of Cu$^{1.85+}$, only 15% of the incorporated Ni must be oxidized, which might be difficult to resolve as explained above. The increased reduction of Cu in the HEMo can be attributed to the additional oxidation of Fe. Nevertheless, this mechanism alone cannot explain the oxidation of almost 50% Fe by reduction of ~20% Cu. We assume that cation vacancies lead to the higher than expected oxidation state of Fe, since otherwise, because of the necessity to maintain charge neutrality, other cations would have to compensate for the charge. Note that a reduction of Cu$^{2+}$ to Cu$^{+}$ by X-ray exposure, although the exposure time was minimized, cannot be fully excluded. Additionally, the described redox process for the MEMo is not straightforward and leaves some open questions. Nevertheless, we do not expect that all Cu$^{2+}$ reduction processes are derived from X-ray reduction; therefore, this might be the only possible option. ICP OES/CGHE results indicate that the HEMo incorporates more cation vacancies than the MEMo; the cation:anion ratio is slightly lower for the HEMo (meaning fewer cations per anion; therefore, vacancies must exist in the lattice). The measured surface stoichiometry agrees well with the bulk stoichiometry (Table S5 and Table 2).

Table 2. Overview of the Elemental Compositions from ICP OES/CGHE and Oxidation States from XPS

<table>
<thead>
<tr>
<th>element</th>
<th>MEMo</th>
<th>HEMo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>4.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Ni</td>
<td>4.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Cu</td>
<td>4.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Zn</td>
<td>4.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>Mo</td>
<td>16.6</td>
<td>16.3</td>
</tr>
<tr>
<td>O</td>
<td>66.8</td>
<td>67.4</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Two single phase high entropy materials, a medium and a high entropy molybdate, showing triclinic ZnMoO$_4$ type structure ($P\bar{1}$), were successfully produced by using a wet chemical based synthesis approach. These compounds show solid solution characteristics with homogeneously distributed metal cations (Mg, Ni, Cu, Zn, and Fe) and tetrahedral MoO$_4$ units. Both materials possess a high degree of crystallinity and long range order without any indications of the presence of secondary phases. The synthesis route allows for facile
upscaling and may pave the way for the easy preparation of novel classes of high entropy materials.

AUTHOR INFORMATION

Corresponding Authors

Ben Breitung — Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein Leopoldshafen, Germany; orcid.org/0000 0002 1304 3398; Email: ben.breitung@kit.edu

Simon Schweidler — Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein Leopoldshafen, Germany; orcid.org/0000 0003 4675 1072; Email: simon.schweidler@kit.edu

Authors

David Stenzel — Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein Leopoldshafen, Germany

Ibrahim Issac — Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein Leopoldshafen, Germany

Kai Wang — Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein Leopoldshafen, Germany

Raheleh Azmi — Institute for Applied Materials – Energy Storage Systems, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein Leopoldshafen, Germany

Ruby Singh — Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein Leopoldshafen, Germany

Jaehoon Jeong — Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein Leopoldshafen, Germany

Saleem Najib — Faculty of Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Subramshu S. Bhattacharya — Department of Metallurgical and Materials Engineering, Nano Functional Materials Technology Centre (NFMTC), Indian Institute of Technology Madras, Chennai 600036, India; orcid.org/0000 0002 6865 0822

Horst Hahn — Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein Leopoldshafen, Germany; orcid.org/0000 0002 4802 4336 263X

ACKNOWLEDGMENTS

H.H. acknowledges financial support from the Helmholtz Association and the German Research Foundation (HA 1344/43 1). D.S. and B.B. appreciate the support of EnABLES, a project funded by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 730957. This work contributes to the research performed at CELEST (Center for Electrochemical Energy Storage Ulm Karlsruhe) and was funded by the German Research Foundation under Project ID 390874152 (POLiS Cluster of Excellence). S.N. thanks the Christian Bürkert Foundation for funding. The authors acknowledge the support from the Karlsruhe Nano Micro Facility (KNMF, www.knmf.kit.edu), a Helmholtz research infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). Dr. Thomas Bergfeldt (from IAM AWP, KIT) is acknowledged for ICP OES and CGHE measurements. The authors thank Qingsong Wang for fruitful discussions.

REFERENCES

(7) Gild, J.; Braut, J.; Kaufmann, K.; Marin, E.; Harrington, T.; Hopkins, P.; Vecchio, K.; Luo, J. A High Entropy Silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Mater. Sci. 2019, 5 (3), 337–343.

Notes

The authors declare no competing financial interest.