KIT | KIT-Bibliothek | Impressum | Datenschutz

Improved Dynamic Obstacle Mapping (iDOMap)

Llamazares, Ángel; Molinos, Eduardo 1; Ocaña, Manuel; Ivan, Vladimir
1 Karlsruher Institut für Technologie (KIT)


The goal of this paper is to improve our previous Dynamic Obstacle Mapping (DOMap) system by means of improving the perception stage. The new system must deal with robots and people as dynamic obstacles using LIght Detection And Range (LIDAR) sensor in order to collect the surrounding information. Although robot movement can be easily tracked by an Extended Kalman Filter (EKF), people’s movement is more unpredictable and it might not be correctly linearized by an EKF. Therefore, to deal with a better estimation of both types of dynamic objects in the local map it is recommended to improve our previous work. The DOMap has been extended in three key points: first the LIDAR reflectivity remission is used to make more robust the matching in the optical flow of the detection stage, secondly static and a dynamic occlusion detectors have been proposed, and finally a tracking stage based on Particle Filter (PF) has been used to deal with robots and people as dynamic obstacles. Therefore, our new improved-DOMap (iDOMap) provides maps with information about occupancy and velocities of the surrounding dynamic obstacles (robots, people, etc.) in a more robust way and they are available to improve the following planning stage.

Verlagsausgabe §
DOI: 10.5445/IR/1000129146
Veröffentlicht am 29.01.2021
DOI: 10.3390/s20195520
Zitationen: 3
Web of Science
Zitationen: 1
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mess- und Regelungstechnik mit Maschinenlaboratorium (MRT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 1424-8220
KITopen-ID: 1000129146
Erschienen in Sensors
Verlag MDPI
Band 20
Heft 19
Seiten Art.Nr. 5520
Vorab online veröffentlicht am 26.09.2020
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page