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Abstract

In high energy particle physics, machine learning has already proven to
be an indispensable technique to push data analysis to the limits. So far
widely accepted and successfully applied in the event reconstruction at the
LHC experiments, machine learning is today also increasingly often part of
the final steps of an analysis and, for example, used to construct observables
for the statistical inference of the physical parameters of interest. This thesis
presents such a machine learning based analysis measuring the production of
Standard Model Higgs bosons in the decay to two tau leptons at the CMS
experiment and discusses the possibilities and challenges of machine learning at
this stage of an analysis. To allow for a precise and reliable physics measurement,
the application of the chosen machine learning model has to be well under
control. Therefore, novel techniques are introduced to identify and control the
dependence of the neural network function on features in the multidimensional
input space. Further, possible improvements of machine learning based analysis
strategies are studied. A novel solution is presented to maximize the expected
sensitivity of the measurement to the physics of interest by incorporating
information about known uncertainties in the optimization of the machine
learning model, yielding an optimal statistical inference in the presence of
systematic uncertainties.
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❈❍❆P❚❊❘ ✶

Introduction

Research in the field of high energy particle physics (HEP) is at the forefront of modern
data analysis due to the complexity and the massive amount of data from the experiments.
For example, the Compact Muon Solenoid (CMS) experiment integrated in the Large
Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN)
has recorded in 2016 to 2018 data with an integrated luminosity of 150 fb−1 [1]. The
data contains records of proton-proton collisions consisting of quadrillions of individual
particle interactions measured with millions of detector channels [2]. This translates into
exabytes of data ready to be analyzed by thousands of physicists around the globe.

Traditionally, the data is analyzed by isolating the interactions of interest with selec-
tion requirements on physical observables, e.g., the invariant mass of a decay system,
motivated by the underlying theory and knowledge about the detector. Milestones in the
development of the Standard Model (SM) of particle physics [3–8] have been achieved
with such analysis strategies, for example the W and Z boson discoveries in the 1980s [9,
10].

In the following twenty years, not only the hardware of HEP experiments got more
sophisticated but also the data analysis techniques evolved significantly. The community
increasingly incorporated multivariate methods in their data analysis, at that time con-
siderably driven by the TMVA project [11]. These developments resulted in the discovery
of the Higgs boson in 2012 [12, 13] powered by multivariate techniques, mostly boosted
decision trees. However, these techniques were primarily deployed in the intermediate
steps of the data processing such as the electron and tau identification [14–16] and less
in the final steps of a measurement, e.g., as observable for the statistical inference.

In the meantime, multivariate analysis techniques, now typically referred to as machine
learning (ML) techniques, experienced an explosively growing attention in industry and
research. Spectacularly visible in the massive improvements in the Large Scale Visual
Recognition Challenge [17] with convolutional neural network (NN) architectures like
AlexNet [18], the flexibility and applicability of ML started to flourish by expanding
the mindset of NNs to a framework of decomposable pieces resulting in an enormous
collection of new ML models.

This thesis studies and expands the application of such modern ML techniques to
data analysis in HEP. Nowadays, after a widespread acceptance of ML in the first
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Introduction

Figure 1.1: Summary of the measured signal strength modifiers with respect to the SM expec-
tation per production mode (left) and per decay mode (right) of the Higgs boson [19].

steps of the data analysis toolchain like identification and reconstruction of particles,
the community moves towards a more frequent application of ML also in the very-end
steps of a measurement like the usage of fully ML based observables as direct input
to the statistical inference. Since analysis in HEP is driven by precision and therefore
the best possible knowledge of all contributing factors to the measurement are a crucial
ingredient, heavily ML based analysis strategies pose new challenges to the analyzers. The
full control of the applied ML techniques becomes a fundamental element of data analysis
to be able to determine precisely the effects of statistical and systematic variations on
the measurement.

This effort requires the understanding of the dependence of the ML model on features in
the multidimensional input space. Chapter 3 discusses the state-of-the-art methods from
the ML community and puts them in context with the requirements of such techniques for
HEP analysis. A novel approach is presented to analyze the relevant dependencies of the
NN function on characteristics in the multidimensional input space with special emphasis
on the identification of higher-order features such as correlations between inputs.

Figure 1.1 shows the latest combined measurements from the CMS collaboration
of the production and decay rates of the Higgs boson based on data taken in 2016
with an integrated luminosity of 36 fb−1. Already at this stage, the measurements are
not anymore in the first place limited by the amount of data recorded, represented by
the statistical uncertainty, but by the known unknowns of the analysis, the systematic
uncertainties. The effect is even more pronounced in today’s analyses with data from
the full LHC Run 2 corresponding to 150 fb−1. This is demonstrated in chapter 2 for the
differential measurement of the production of SM Higgs bosons in the decay to two tau
leptons. Analyses in the future with data from LHC Run 3 and 4 with an anticipated
delivered integrated luminosity of 300 fb−1 and 3000 fb−1 are expected to intensify this
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development [20]. The projection raises the question how the existing analysis strategies in
HEP could be adapted to achieve in such scenarios the best possible physics measurement.
A possible approach to include the knowledge about systematic uncertainties in the design
of the analysis strategy is the usage of ML techniques, which explicitly allow to control
the dependence of the ML model on systematic variations. Chapter 4 reviews existing
methods and presents a novel technique to reduce the dependence of the NN function
to systematic variations in the multidimensional input space. A more direct approach is
optimizing the analysis strategy based on the expected sensitivity to the physics target of
interest. Chapter 5 studies techniques and their challenges to optimize with ML methods
the analysis strategy directly on the objective of the statistical inference, e.g., the variance
of a parameter of interest. A novel solution is presented to use information from binned
Poisson likelihoods with nuisance parameters to maximize the expected sensitivity of
the analysis resulting in an optimal statistical inference in the presence of systematic
uncertainties.
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Machine learning based analysis of the

production of Standard Model Higgs bosons in

the decay to two tau leptons

This chapter contains the physics background and the details about a ML based data
analysis strategy to perform a cross section measurement of the production of SM Higgs
bosons in the decay to two tau leptons at the CMS experiment. Special emphasis is put on
the event categorization and observables based on NNs, and the implications of the usage
of ML on the statistical inference, for example the treatment of systematic uncertainties.
The analysis is used as an example to discuss the challenges and their solutions to enable
a robust data analysis while taking advantage of modern ML methods.

2.1 The Compact Muon Solenoid experiment at the Large

Hadron Collider

The CMS experiment is located at CERN near Geneva and the Swiss-French border.
The particle detector is placed in one of the four interaction points of the LHC where
bunches of approximately 1011 protons collide at a rate of 40 MHz with a center of mass
energy of 13 TeV. The protons reach nearly the speed of light which is made possible
by the accelerator complex at CERN because previous state of the art accelerators such
as the Proton Synchrotron Booster (PSB), Proton Synchrotron (PS) and Super Proton
Synchrotron (SPS) can be used to preaccelerate the particles already at high energies
before injecting them into the LHC. Figure 2.1 shows an overview over the CERN
accelerator complex.

The CMS detector is built in layers around the interaction point, see figure 2.2 for a
transverse slice of the detector. The innermost part is the tracking system consisting of
layers of silicon pixel and strip detectors. Because each bunch crossing results on average
for LHC Run 2 in about 30 collisions with many individual particles per interaction [1],
detailed information about the path of the particles is crucial to reconstruct the events.
The tracker is capable to record the path of the charged particles with a spatial resolution
of a few µm. Due to the magnetic field of 3.8 T parallel to the beam pipes, the curvature
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the decay to two tau leptons

Figure 2.1: Overview over the CERN accelerator complex including the CMS experiment at the
LHC [21].

of the tracks can be used to measure precisely the transverse momentum of the charged
particles.

To reconstruct the full kinematic properties of the particles, also the energy has to be
measured. For this purpose, first the electromagnetic calorimeter (ECAL) and then the
hadronic calorimeter (HCAL) enclose the tracker, capturing electrons and photons in the
first and hadrons in the second subdetector. Both are scintillator detectors, the ECAL
is made from lead tungstate and the HCAL is made from plastic interleaved with brass.

From the known charged elementary particles, only muons can escape the first three
subdetectors because of their low interaction rate with matter. Therefore, the outermost
layer of the CMS detector, integrated into the return yoke of the magnet, is dedicated to
the detection of muons. Built from different detector types, drift tubes in the barrel region
and cathode strip chambers at the endcaps, the system provides additional information
about the muon momentum. Because muons are often a hint for interesting physics,
resistive plate chambers are used in addition to signal such events quickly to the trigger
system.

Because the CMS detector is subject to a bunch crossing at a rate of 40 MHz and a
full event has an information content after zero suppression of approximately 1 MB [2],
recording every event for further analysis would result in an unmanageable data rate of
about 40 TB s−1. To keep the interesting physics events, a two-stage trigger system is
deployed. The first stage is implemented using field programmable gate arrays (FPGAs)
based on information from the ECAL, HCAL and the muon system, deciding rapidly
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the decay to two tau leptons

Figure 2.2: Transverse slice of the CMS detector with traces of muons, electrons, photons and
hadrons traversing the subdetectors [22].

whether to pass the event to the second stage, the high level trigger (HLT), with a rate of
about 100 kHz [23]. The HLT is a computing farm performing an initial reconstruction of
the event including information from the tracking system, which allows to reject events
based on detailed requirements for the observed interactions, finally reducing the rate of
events written to the storage system to approximately 1 kHz [24].

Because of the shape of the CMS detector and the invariance of the decays in the
transverse plane to the beams, the preferred coordinate system used to analyze the
particle decays is cylindrical with the azimuth φ in the transverse plane to the colliding
bunches and the z direction along the beam pipe. To specify a polar angle θ, typically
the transformation called pseudorapidity is used, defined as

η = − log

(

tan

(

θ

2

))

. (2.1)

Further, commonly used is the metric ∆R as a measure of the distance between two
objects, which is given by

∆R =
√

∆φ2 + ∆η2. (2.2)

2.2 Production and decay of the Standard Model Higgs

boson

The SM Higgs boson is produced in three main production processes. Feynman graphs
of these processes are shown in figure 2.3. The cross section of the processes including

8



Machine learning based analysis of the production of Standard Model Higgs bosons in

the decay to two tau leptons

q

g

g

H

W/Z

W/Z

q

q

q

H

q

W∗/Z∗

q

q̄

W/Z

H

Figure 2.3: Feynman diagrams in leading order perturbation theory shown for the three main
production processes of the SM Higgs boson, from left to right and with decreasing cross section:
Higgs boson production from gluon fusion (ggH), Higgs boson production from vector boson
fusion (qqH) and Higgs boson production associated with vector bosons (VH) [25].

a Higgs boson can be compared to well established SM processes such as the Z boson
production in figure 2.4.

To understand the physical units of cross section and luminosity in context of data
analysis and ML, the numbers have to be translated to counts. For bunches containing
N particles each, an effective area A of the crossing and the frequency of the crossings
f , the luminosity is in first approximation given by L = fN2A−1. It should be noted
that the actual measurement and calibration of the luminosity at the CMS experiment is
far more complex and precise, e.g., taking into account the exact beam shape measured
with van der Meer scans [27]. The luminosity L can be interpreted as collisions per
area and time with the unit cm−2 s−1 and the integrated luminosity is given by

∫

t Ldt
with the unit cm−2. In HEP, the integrated luminosity is often specified with the unit
barn, which converts 10−28 cm−2 into 1 b. The LHC reached during the Run 2 period a
peak luminosity of about 2 × 10−34 cm−2 s−1 and delivered an integrated luminosity of
162.85 fb−1 to the CMS experiment, which recorded 150.26 fb−1 for physics analysis (see
figure 2.5).

Finally, to make the task to measure the cross section of the SM Higgs boson easily
understandable in terms of data analysis, table 2.1 shows the number of recorded events
available for analysis from the CMS experiment inclusively, for Z boson production and
the three main Higgs boson production processes shown in figure 2.3. The rates of the
processes are given as cross sections, typically with the unit barn, so that the integrated
luminosity multiplied with the cross section of the physical process of interest results in
the expected number of events in the dataset.

Because the analysis in this thesis studies the decay of the Higgs boson into two tau
leptons, the numbers in table 2.1 have to be multiplied with the fraction to this decay
mode to get an estimate for the expected Higgs events in the dataset. Table 2.2 shows
the fractions of the decay modes of the SM Higgs boson, which are so far experimentally
accessible at the LHC.

Finally, the decay products of the Higgs boson specified by the decay modes in table 2.2
decay in their final states eventually recorded by the CMS detector. For the ττ decay
mode being subject of this thesis, the fractions of the final states are shown in table 2.3.
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Figure 2.5: Integrated luminosity of proton proton collisions delivered by the LHC and recorded
by the CMS experiment during the Run 2 period from end of 2015 to end of 2018 [1].

Table 2.1: Shown are the cross sections and expected number of events inclusively [28], for
inclusive Z boson production [29], and the three main Higgs boson production processes ggH,
qqH and VH [30]. The values are rounded to the significant digits and given for the full Run
2 dataset of the CMS experiment with 150 fb−1 at a center of mass energy of 13 TeV such as
shown in figure 2.5.

Process Total Z ggH qqH VH

Cross section 69 mb 19 nb 49 pb 2 pb 2 pb
Expected number of
events for LHC Run 2

1 × 1016 3 × 109 7 × 106 3 × 105 3 × 105

Table 2.2: Fractions of the decay modes for the SM Higgs boson, which are so far accessible at
the LHC. The values are rounded to the significant digits [30].

Decay mode bb WW ττ ZZ γγ

Fraction 0.58 0.22 0.063 0.026 0.002

Table 2.3: Fractions of the final states for the ditau decay. The symbol τh denotes the hadronic
decay of the tau lepton. The values are rounded to the significant digits [31].

Final state τhτh eτh µτh eµ ee and µµ

Fraction 0.42 0.23 0.23 0.06 0.06
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2.3 Background processes and estimation methods

To measure the cross sections of the physical processes of interest, typically referred to as
the signal processes, data analysis in HEP is driven by the precise estimation of all pro-
cesses contributing to the data. This section describes the considered physical processes
with similar final states than the signal processes, and referred to as the background
processes, which are taken into account for the analysis described in this thesis. Figure 2.6
gives an example showing the invariant mass of the visible decay products of the ditau
system as showcase for the physical processes and estimation methods described in the
following.

Z → ττ The major process for the production of lepton pairs at the LHC is the Drell
Yan (DY) process [35]. Dominantly through the decay of a Z boson, a tau pair can be
produced with the main difference to a H → ττ decay being the invariant mass of the
ditau system. Since tau leptons decay always in association with at least one neutrino,
the possibilities to reconstruct the invariant mass of the ditau system are limited [36],
leaving the Z → ττ process as the most dominant and hardly reducible background
process.

The process can be fully estimated from simulation taking into account up to four
additional jets in the hard interaction. Also the tau embedding technique [32] can be
used to estimate the events partially from data improving in particular the description
of the jet related properties.

Z → ll Such as Z bosons can decay into tau pairs, also electron and muon pairs are the
result from the DY process. Although the final state is not the same as for the H → ττ
decay, misidentifications of quark or gluon induced jets, electrons, or muons as hadronic
tau decays can lead to such events ending up in the analysis selection.

The process can be simulated as part of the DY process including the Z decay to
genuine taus or partially estimated with data driven techniques. The contribution of
misidentified hadronic tau decays from jets can be derived from data using the FF
method [33, 34].

W + jets W bosons are frequently produced in proton proton collision at the LHC. In
association with an additional jet, the lepton from the W boson and the jet misidentified
as hadronic tau decay build the same signature than a decay of a genuine tau pair.

A possible estimation technique is the simulation with up to four additional jets or
the contribution can be fully described by the FF method.

tt Produced via gluon fusion and quark antiquark annihilation, top antitop pairs appear
commonly in proton proton collisions at the LHC. Because the top quark decays almost
exclusively via a W boson into a bottom quark, the ditop pair results in two W bosons,
which have a variety of decay modes to produce the signature of a ditau pair. The two
W bosons can either decay into a genuine tau pair or in a muon or electron and the

12



Machine learning based analysis of the production of Standard Model Higgs bosons in

the decay to two tau leptons

0 50 100 150

 mass / GeVτVisible di-

20000

40000

60000

80000e
v
e

n
ts

N
ττ→Z ll→Z )

h
τ→ll (jet→Z

)
h

τ→ (jettt tt )ττ (tt

W+jets )
h

τ→Diboson (jet Diboson

)ττDiboson ( QCD multijet Bkg. stat. unc.

Observed

CMS
Own work

 (2018, 13 TeV)-159.7 fb, inclusive
h

τµ

0 50 100 150

 mass / GeVτVisible di-

20000

40000

60000

80000e
v
e

n
ts

N

 embeddedτ→µ
h

τ→Jet ll→Z

tt Diboson Bkg. stat. unc.

Observed

CMS
Own work

 (2018, 13 TeV)-159.7 fb, inclusive
h

τµ

Figure 2.6: Invariant mass of the visible decay products of the ditau system in the µτh channel
with data taken in 2018 using background estimations from simulation except for the QCD
multijet process (left) and with the data driven estimation techniques tau embedding [32] and
the fake factor (FF) method [33, 34] (right).

same mechanisms than for W + jets and Z → ll can result in misidentified hadronic tau
decays.

Besides the full simulation of the process, the embedding and FF techniques can be
used to estimate from data the genuine tau decays and the misidentifications from jets.

QCD multijet The QCD multijet background summarizes remaining processes with
multiple jets in the final state leading to a misidentification of a hadronic tau decay.
Because the simulation is challenging, a precise data analysis has to estimate the contri-
bution from data. The FF method is suitable because the contribution originates from
misidentified jets. Another approach is the estimation of the QCD multijet process from
same signed ditau pairs in data and the subtraction of all known other processes, which is
possible because the QCD multijet process is in first order independent from the charge
of the reconstructed taus.

Minor background processes Minor background processes are diboson production
and the production of single top quarks, both potentially decaying with similar signa-
tures as the H → ττ process. As explained above, the misidentfication of jets and the
contribution of genuine taus can be absorbed into the embedding and the FF method.
Otherwise, the contributions are estimated from simulation.
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2.4 Event reconstruction and selection

An event at the CMS experiment is defined as the data of a single crossing of two
bunches of protons, which contain for LHC Run 2 on average about 30 collisions. This
section describes the necessary procedures to reconstruct from the detector signals the
physical objects, e.g., electrons, taus or jets, which are studied to draw conclusions about
the underlying physical processes. In a second step, the event selection reduces the
reconstructed data to the relevant events for the analysis of the physical process of
interest, in this analysis the decay of the SM Higgs boson.

2.4.1 Reconstruction

At CMS, the reconstruction of events is based on the particle flow (PF) algorithm [37]
combining information from all subdetectors in a holistic approach to a consistent set
of physical objects, namely electrons, photons, muons and neutral and charged hadrons.
These objects are further processed by dedicated algorithms to reconstruct composed
objects such as taus, jets and missing energy. The vertices of the collisions are determined
from the reconstructed tracks of the particles and the primary vertex is defined as the
vertex with the largest sum of the transverse momentum of all contributing physical
objects. All other collisions are called pileup.

Jets Jets are clustered with the anti-kt algorithm from the PF objects [38]. Further, the
jets are classified with the DeepJet approach based on deep convolutional and recurrent
NN architectures to determine the originating particle, which can be a light quark (up,
down and strange), a heavy quark (charm and bottom) or a gluon [39]. Jet tagging
specialized on discriminating jets from bottom quarks is in particular useful for this
analysis to identify events from the tt process.

Electrons The PF algorithm builds electrons with information retrieved from the
ECAL and the tracking system. To suppress misidentified electrons, a ML based iden-
tification algorithm is applied using boosted decision trees [14]. The approach uses
information from the reconstruction such as the track quality or the structure of the
energy deposits in the ECAL to reject particles such as photons and charged hadrons,
which are falsely reconstructed as electrons.

Muons Muons are reconstructed similar to electrons with a combination of information
from the tracking system and the muon subdetector. Because only muons pass the ECAL
and HCAL, the identification of genuine muons is very high with a rate above 99 % [40].

Taus Tau leptons require similar to jets an additional reconstruction on top of final state
objects from the PF algorithm. At the CMS experiment, the reconstruction algorithm
is called hadron plus strips (HPS) [41] where the strips refer to the clustered photons
and secondary electrons from π0 decays. The strips are combined with the reconstructed
charged hadrons to identify the decay mode of the hadronically decayed tau. The leptonic
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Table 2.4: Fractions of the leptonic and hadronic decay modes of the tau lepton rounded to the
significant digits. The symbol h± denotes a charged hadron [31, 41].

Decay mode Fraction

Leptonic decays 35.2
τ− → e−νeντ 17.8
τ− → µ−νµντ 17.4

Hadronic decays 64.8
τ− → h−ντ 11.5
τ− → h−π0ντ 25.9
τ− → h−π0π0ντ 9.5
τ− → h−h+h−ντ 9.8
τ− → h−h+h−π0ντ 4.8
Other 3.3

and hadronic decay modes and the respective fractions are summarized in table 2.4. Taus
are naturally difficult to distinguish from quark or gluon induced jets but also misclassified
from electrons and muons. Therefore a ML based multiclassification algorithm is designed
using a deep convolutional NN architecture [42].

2.4.2 Selection

Such as visible from table 2.1, the dataset of the CMS experiment has an enormous size,
also because the experiment serves many analyses and not only Higgs physics. For these
reasons, a preselection of relevant events is performed, enriching the dataset with the
processes of interest and reducing the dataset size significantly. Because the description
of the full analysis carried out on the three data taking periods 2016, 2017 and 2018 of
LHC Run 2 in the considered final states eτh, µτh, τhτh and eµ does not serve the focus
of this thesis, the following section is reduced compared to the full documentation given
in [43, 44]. An overview is given for the event selection of the data taking period of 2018
and the µτh final state, demonstrating the necessary procedures and the complexity for
such a measurement, even before performing any statistical analysis with the data.

The selection is performed on multiple levels. Events are globally selected by requiring
specific triggers fired at the time of data taking. Further, the event content is filtered with
selections on the reconstructed objects, like muons, taus and jets, before the objects are
identified which most likely result from the process of interest, here the decay of the Higgs
boson. These objects are used to reconstruct the full decay system and a final selection
is performed before the events enter the statistical inference, defining the dataset for the
specific decay channel of the Higgs boson.

Trigger Triggers are selected from the available set of triggers defined by the CMS
collaboration. The selection is performed based on the trigger path, which defines a
specific setting of fired triggers on the first trigger stage, additional filters and a valid
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object in the HLT reconstruction with additional requirements. In the µτh final state of
this analysis, the selections correspond, in first order, to events triggered by an isolated
muon with pT > 24 GeV or events with an isolated muon with pT > 20 GeV and a
hadronically decayed tau with pT > 27 GeV in |η| < 2.1. In addition, the objects that
caused the event to be recorded are required to match the respective objects of the offline
reconstructed Higgs boson decay in ∆R < 0.5.

Muons The muons available for analysis are cleaned by removing muons based on a set
of filters defined by the medium working point of the muon identification algorithm [45].
The requirements are based on the compatibility of the information from the tracking
system to the activated segments in the muon detector, the number of valid hits in the
tracker and the fit quality of the reconstructed track. Also the track of the muon has
to match the primary vertex within 4.5 mm in the transverse direction and 20 mm in
longitudinal direction. Finally, the muon is required to be isolated from photons and
neutral and charged hadrons in a cone of ∆R < 0.4, which is enforced by a threshold on
the sum of the additional transverse energy by these particles relative to the muon pT.

Taus The available taus reconstructed by the HPS algorithm are primarily cleaned by
the multivariate tau identification. The analysis uses for the classifier in the µτh channel
a tight working point for the discrimination against jets with about 40 % acceptance rate
and close to 0.1 % misidentification rate. The working points chosen for the separation
against electrons and muons perform with an acceptance rate of close to 99 % at a
misidentification rate of about 1 % and 0.01 %, respectively [42]. In addition, the tau is
required to have pT > 30 GeV and a distance of the track to the primary vertex below
20 mm in longitudinal direction.

Jets Jets are selected for the analysis if they fullfill the requirements pT > 30 GeV and
|η| < 4.7. In case the jet is identified by the multivariate jet tagger being the result of
a bottom quark, the kinematic requirements are set to pT > 20 GeV and |η| < 2.4. Jets
used in the analysis have to be separated from the muon and tau of the selected pair by
∆R > 0.5.

Pair building and final selection A valid pair of a muon and a hadronically decayed
tau is selected whereas in case of ambiguities pairs are preferred with better isolation
and higher transverse momentum. The muon and tau of the pair are required to have
opposite charge and being separated by ∆R > 0.5. Further, the transverse mass of the
muon plus the missing transverse energy have to be below 70 GeV to be independent of
the data driven FF method. Finally, the best pair is selected for further analysis if no
additional unmatched isolated electrons or muons are present in the event.
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2.5 Statistical inference

The statistical inference in this analysis compares the observation of the CMS experiment
with the expectation from the SM through selected observables resulting in the measure-
ment of the parameters of interest (POIs). The observables can be physical quantities
such as the invariant mass of the reconstructed Higgs boson but also abstract variables
like the output from a NN function. Because the procedures for the statistical inference
are independent from the chosen observables, the discussion about the selection of the
observables is continued in section 2.6. This section describes the statistical model and
methods used to determine the cross section of the Higgs boson from the data of the
CMS experiment in consideration of all known uncertainties.

2.5.1 Analysis objective

From the physics point of view the objective of the analysis is the cross section measure-
ment of the Higgs boson decaying into two tau leptons. The concept of a cross section
is translated to the statistical framework as the parameter µ called the signal strength
modifier, which scales the expected events for the SM H → ττ process linearly. In con-
sequence, the subject of the statistical inference is the parameter estimation of the POI
µ given as the bestfit value µ̂ and the according uncertainty σµ in units of standard
deviations. Previous measurements of the signal strength were µ = 0.78 ± 0.27 for the
evidence of H → ττ at the CMS experiment in 2014 [46] and µ = 1.09 ± 0.27 for the
discovery in 2018 [47].

For current analyses and measurements in the future, differential measurements become
experimentally accessible to probe the SM with higher granularity. The CMS collabora-
tion follows a framework recommended by the simplified template cross section (STXS)
working group [48, 49] in collaboration with the ATLAS experiment and theorists. The
collaboration has the purpose to specify phase spaces of the SM Higgs boson kinematic
properties in which a cross section measurement is testing the SM with minimal uncer-
tainties on the theory to maximize the sensitivity to the underlying physics. A further
advantage is the coordination of different analyses supporting a global combination of
differential measurements across experiments and final states.

In stage 0 of the STXS framework, the cross section measurement is split by the
production processes of the Higgs boson of which this analysis is sensitive to ggH, qqH
and VH. It should be noted that the measurement qqH also contains the events from VH in
which the vector boson decays hadronically. The statistical framework evolves accordingly
by replacing the inclusive POI µ with three dedicated parameters and the statistical
inference is performed with a multidimensional fit estimating all POIs concurrently. In the
next stage of the framework, STXS stage 1, the measurements are split by jet multiplicity
and the kinematic properties of the Higgs boson. Figure 2.7 gives an overview over the
subcategories for ggH and qqH. If the analyses are not sensitive to all categories in STXS
stage 1, the respective POIs can be merged by measuring the parameters combined into
a single POI.
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2.5.2 Statistical model

Most analyses published by the CMS collaboration are based on the concept of counting
experiments. The reason is that the probability density p(x|θ) of the observables x

given the parameters of the statistical model θ is not analytically known. Analysis
in HEP typically circumvents this problem with a full simulation of the experiment,
from the particle collision to the detector response, eventually sampling the distribution
p(x|θ). Because the simulation is computationally expensive and the number of simulated
events required to sample the distribution in a high dimensional space spanned by x

grows exponentially, the statistical model is built on a summary of x to reduce the
dimensionality of the problem. A suitable summary is a count with the observation k,
the expectation λ and the Poisson distribution

P(k|λ) =
λke−λ

k!
. (2.3)

In this space, the probability density is accessible because the expectation for the
counts is given by the simulation. For a single signal s and background b the expectation
is formulated as µs + b introducing the POI in the statistical model. Using Poisson
statistics, the likelihood function for a histogram with h bins is

L(θ) =
h
∏

i=1

P(di|µsi + bi) (2.4)

with the parameters θ = {µ}, the observed counts d and the expected counts of the signal
and background process s and b, respectively. The statistical model expands naturally
to multiple signal and background processes by adding additional terms and POIs to the
expectation of the Poisson distribution.

2.5.3 Systematic uncertainties

Finding the bestfit values for the POIs is not the actual complication for the statistical
inference in HEP but the challenge is the precise determination of the according uncer-
tainties. Uncertainties are split into two groups, statistical and systematic uncertainties.
The statistical uncertainties are naturally included in the likelihood function via the
Poisson distribution while systematic uncertainties require an extension of the statistical
model.

The statistical approach to include systematic uncertainties in the estimation of the
POIs is including additional parameters to θ, namely the nuisance parameters (NPs).
The concept is that the NPs can compensate the expectation for the signals, resulting
in an estimation of the POIs with an increased variance. Consequently, the physics
measurement has an increased uncertainty. A possible implementation of a systematic
uncertainty on the expectation of b is

L(θ) =
h
∏

i=1

P(di|µsi + ηbi) · C(η) (2.5)
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Figure 2.8: Lognormal distribution for various values of κ

with a given NP η and the constraint term C. In contrast to POIs, NPs are typically
constraint parameters of the statistical model and the apriori knowledge about the
probability that the NP takes a specific value in the bestfit configuration of θ = {µ, η}
is specified by the probability density C(η). Because the statistical inference of a typical
analysis in HEP is carried out with multiple hundreds of NPs, the probability density is
not specifically implemented for each NP but two groups of systematic uncertainties are
defined.

Similar to the example above, normalization uncertainties scale a process with a factor
η following the lognormal distribution

ClnN(η, κ) =
1√

2πη log κ
exp

(

−1

2

(

log η

log κ

)2
)

(2.6)

parametrized by κ representing the uncertainty on the yield. Figure 2.8 shows the dis-
tribution for various values of κ. This constraint is suitable for physics analysis because
the lognormal distribution is bound to positive values and therefore prevents unphysical
values for the NP which would result in negative counts [50].

More complex systematic uncertainties that scale not only the yield of a process
inclusively but may have an individual impact on each bin of the likelihood are called
shape uncertainties. The distribution of the NP is parametrized given three values per bin,
the expectations of the process at the nominal value I0 and expectations of the upshifted
and downshifted values I± due to the systematic uncertainty. The shifted values represent
the instantiations of the systematic uncertainty with the probabilities of ±1σ Gaussian
standard deviations and all other values are interpolated between these and the nominal
value. This concept is implemented in the likelihood using a normal distribution for
the constraint term C(η) and a transformation of the NP for the modification of the

20



Machine learning based analysis of the production of Standard Model Higgs bosons in

the decay to two tau leptons

expectation, for example for the background process given by

bi → I(I0, I+, I−, η) · bi. (2.7)

The interpolation can be implemented to be linear, however, a piecewise linear function
has a discontinuous first derivative causing difficulties with the minimization of the
likelihood based on gradient descent. Taking the requirements of a continuous first and
also second derivative into account the interpolation rule

I(I0, I+, I−, η) =















(I+/I0)η η > 1

1 +
∑6

i=1 aiη
i |η| < 1

(I−/I0)η η < −1

(2.8)

has proven being suitable [51]. It should be noted that for a normal distributed NP η
the extrapolations with |η| > 1 are again lognormal distributed because of (I±/I0)η =
eη log(I±/I0). Figure 2.9 shows the interpolation for different configurations of nominal
and shifted values.

2.5.4 Parameter estimation

The previous sections discussed how in such an analysis the statistical model is built.
Consequently, this section covers the procedure to infer from the model estimates for
the POIs including an uncertainty, or using a terminology more common to statistics, a
confidence interval.

The parameter estimation finds the set of best fitting values for all parameters of the
statistical model θ̂ with respect to the data in a global minimization of the negative
logarithmic likelihood (NLL) − log L(θ). Typically the NLL is minimized because many
multiplications of probabilities are numerically unstable and since the logarithm is a
monotonic function the minimization of the NLL results in the same values for θ̂. Using
the likelihood as objective function is sensible because the estimator is consistent and
efficient, which means that the estimate θ̂ converges with increasing sample size to the
truth values with a minimal variance.

More complex than measuring the best fit values of the POIs is the construction of an
according confidence interval. In the Neyman construction [52], the confidence interval
is determined from the inversion of an hypothesis test by evaluating the compatibility of
the best fit value of the POI, for example µ̂, to other possible values µ. Such as known
from Neyman and Pearson [53], the most powerful statistic for such an hypothesis test
is the likelihood ratio

λ =
L(µ, θ̂µ)

L(θ̂)
(2.9)

with θ̂µ being the best fit values of the parameters given a fix value for µ. The upper
and lower bounds µup and µdown correspond to the values of µ for which the distribution
of λ has the respective bound at λ(µ̂) for the interval of interest, for example a central
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(red crosses) used for the modeling of shape uncertainties. Shown is a comparison of the polyno-
mial interpolation (blue lines) from equation 2.8 compared to a piecewise linear extrapolation
(orange lines).
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Figure 2.10: An exemplary Neyman construction such as used to find the corresponding con-
fidence interval for the best fit value µ̂. The blue solid lines represent the interval of interest
for the distribution of the likelihood ratio λ with a fix value for µ. The confidence interval
is determined from the values for µ at which the measurement λ(µ̂) is at the upper or lower
bound of the interval, respectively.

interval covering a range equal to 1σ in standard deviations. Figure 2.10 visualizes the
Neyman construction with an example.

Because the Neyman construction is computationally expensive, the confidence inter-
vals are typically approximated using the theorems of Wilks [54] and Wald [55], which
proof that the distribution of the test statistic −2 log λ approaches with a suitably large
sample size and under the null hypothesis a χ2

k distribution with k degrees of freedom.
k is given by the difference in number of free parameters of the null hypothesis and the
alternative hypothesis, and hence for the example with the single POI µ the test statistic
follows a χ2

1 distribution, which is equal to a squared normal distributed random variable.
Consequently, the central confidence interval covering a range equal to nσ in standard
deviations is given by the two solutions for µ of the equation −2 log λ(µ) = n2. It should
be noted that if the requirements for the asymptotic case are fullfilled, the confidence
interval is symmetric because the profile of the test statistic −2 log λ is a parabola. Also
in the case of non parabolic NLL functions, such as often present in HEP analyses, it can
be shown that because of invariance properties of the likelihood ratio λ the approach is
still valid [56, 57].

To prevent a bias of the analysis, for example by reoptimizing bin edges or the choice
of the observables, the development is done blind to the data. This is possible due to the
usage of an Asimov dataset [58], which replaces the data with the nominal expectation.
In the case with the single POI µ shown in equation 2.5, the Asimov dataset is d = s + b

with µ = 1 representing the expectation from the SM.
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2.6 Observables and event categorization based on

multiclass neural networks

The analysis leverages multivariate analysis methods with the usage of multiclass classi-
fiers implemented with NNs. This section highlights the technical details and peculiarities
of the analysis strategy in the context of ML in contrast to [44], which focuses on the
physics results. An all inclusive technical documentation of the analysis is provided
by [43].

2.6.1 Overview

The NNs are set up as multiclass classifiers given as inputs information about the
event, the reconstructed Higgs boson system and additional jets. The input variables are
summarized in table 2.5. The outputs of the NNs are trained to predict the probability
that the event belongs to a specific class, which are designed to support the separation
between the dominant background processes and the signal processes of interest. With the
target to measure the differential cross sections in the STXS stage 1 framework, a single
class for each signal is the baseline. Because not all of these signals are experimentally
accessible, related and non distinguishable signals are merged for the NN training to
reduce the complexity of the task. In addition, each dominant background process is
assigned a dedicated class and eventually all remaining background processes are merged
into a miscellaneous class. A summary of the event classes is shown in table 2.6.

Assuming a successful training of the multiclass NN, the predictions cannot be put
directly into the statistical model such as described in section 2.5. The first issue is
that the output of the NN is a multidimensional observable and since high dimensional
spaces are only sparsely populated, a counting experiment is not possible. Second, the
statistical model allows to use each event only once, which would otherwise result in
double counting of observations and consequently falsifying the measurement. Taking
these restrictions into consideration, a suitable summary of the NN output is the usage
of the largest probability per event as observable. This transformation categorizes the
events and reduces the dimensionality R

N of the NN output to N scalar observables,
each dedicated to a separate event category. Double counting is naturally prevented
because the largest probability is defined only once per event. Figure 2.11 provides a
graphical overview over the analysis strategy from the input variables of the NN to the
final observables entering the statistical inference.

2.6.2 Neural network architecture and training procedure

The used NN architecture is a fully connected feed forward network with two hidden layers
and 200 nodes each [60]. The activation of the hidden layers is a hyperbolic tangent and
a softmax function is used for the output layer. The weights of the layers are initialized
with the Glorot algorithm [61]. For regularization during the training, dropout [62] with
a probability of 0.3 and an L2 regularization term [63] with a factor of 10−5 are applied.
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Table 2.5: Summary of the event properties used as input for the multiclass NNs. All variables
are used in all four decay channels unless stated otherwise.

Identifier Description

pt_1 pT of the first object in the pair, e.g., µ in µτh

pt_2 pT of the second object in the pair, e.g., τh in µτh

mTdileptonMET
Transverse mass of the dilepton pair including missing energy,
only used in eµ

jpt_1 pT of the leading jet with the highest pT

jpt_2 pT of the subleading jet with the second highest pT

njets Number of jets
nbtag Number of jets originating from a bottom quark, not used in eµ
mjj Invariant mass of the leading and subleading jet

jdeta Difference in η between the leading and subleading jet
dijetpt pT of the dijet system built from leading and subleading jet

m_sv
Invariant mass of the Higgs boson system reconstructed
with the SVFIT algorithm [36]

m_vis Visible mass of the Higgs boson system
pt_vis Visible pT of the Higgs boson system

DiTauDeltaR ∆R between the tau leptons of the Higgs boson system
ME_q2v1 MELA variable [59]
ME_q2v2 MELA variable

The loss function, in detail discussed in section 2.6.4, is optimized with respect to the
trainable parameters using the Adam optimizer [64] with a learning rate of 10−4.

Because the analysis has the target to maximize the sensitivity of the measurement, all
events should be used for the statistical inference, which is ensured by a two fold approach.
The overall dataset, including data and simulated events, is separated in two equal halves.
On each half a separate training and validation is performed using 75 % of the events for
the optimization of the model and the rest for the monitoring of the training progress.
The training is stopped if the loss does not improve on the validation split for 50 × 103

consecutive gradient steps eventually selecting the model with the lowest validation loss
for the testing and application on the other half of the dataset. The applied procedure
to calculate efficiently the gradients from the loss function is discussed in section 2.6.4.
Because each of the three data taking periods comes with a dedicated set of simulated
events due to changing detector conditions and each decay channel requires a separate
training due to the different event topologies of the final states, the two fold approach
results in 24 separate NNs and trainings for the full analysis. Section 2.6.5 presents
a solution for an unified NN training using conditional input variables to reduce the
complexity of the analysis.
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Table 2.6: Summary of the event classes used for the training of the NNs. The symbol pH
T

denotes the transverse momentum of the Higgs boson, Njets the number of jets and mjj the
invariant mass of the dijet system built from the leading and subleading jets. The signal classes
are the same in all decay channels and the background classes are adapted to the dominant
background processes.

Signal classes
Process Njets pH

T mjj

ggH ≥ 0 [200 GeV, 300 GeV] -
ggH ≥ 0 > 200 GeV -
ggH 0 < 10 GeV -
ggH 0 [10 GeV, 200 GeV] -
ggH 1 < 60 GeV -
ggH 1 [60 GeV, 120 GeV] -
ggH 1 [120 GeV, 200 GeV] -
ggH ≥ 2 < 60 GeV < 350 GeV
ggH ≥ 2 [60 GeV, 120 GeV] < 350 GeV
ggH ≥ 2 [120 GeV, 200 GeV] < 350 GeV
ggH ≥ 2 < 200 GeV > 350 GeV
qqH ≥ 2 < 200 GeV [350 GeV, 700 GeV]
qqH ≥ 2 < 200 GeV > 700 GeV
qqH ≥ 2 - < 350 GeV
qqH ≥ 2 > 200 GeV > 350 GeV

Background classes
Process Decay channels
Z → ττ eµ, eτh, µτh, τhτh

Z → ll eτh, µτh

tt eµ, eτh, µτh

Misidentifications from jet → τh eµ, eτh, µτh, τhτh

Diboson eµ
Miscellaneous eµ, eτh, µτh, τhτh
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Figure 2.11: Overview over the transformation of the input variables via the multiclass NN
with N classes to the final categories and observables entering the statistical inference

2.6.3 Performance evaluation

Before the trained NN is applied to the data, the success of the training is evaluated
on the respective second half of the training dataset. It should be noted that a single
metric to quantify the quality of the training is not strictly defined for a multiclass
classification task. Further, the analysis task, namely the differential measurement of
the H → ττ cross section, is not fully congruent with the training objective and is also
a multidimensional construct without a well defined scalar metric to measure the NN
performance. The congruency between the training objective and the analysis objective
is discussed in chapter 5 where a novel solution for a holistic ML based analysis strategy
is presented.

The chosen metric to validate the success of the NN training is the confusion matrix.
The matrix compares for each event class the fraction of the events being identified or
misidentfied by the NN. Summarized are the event weights to adjust for the importance
of simulated events and eventually the sum of all event weights are normalized per class
reflecting the training objective, which treats each event class with equal importance. Such
a confusion matrix can be normalized again for each predicted or true event class, yielding
the purity and efficiency of the respective classes. An examplary efficiency representation
of the confusion matrix is shown in figure 2.12.

2.6.4 Model optimization with event weights and imbalanced datasets

The training uses the categorical cross entropy (CE) as loss function

CE = −
B
∑

i=1

w(i)
N
∑

j=1

y
(i)
j log(p

(i)
j ) (2.10)
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Figure 2.12: The confusion matrix is normalized for each true event class yielding the efficiency
representation, which shows the respective values in percent. The matrix is evaluated for the
µτh channel and the 2016 data taking period. The solid black line separates the signal and
background classes.
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with the number of events B, the number of classes N , the predictions of the NN p

and the vector y with a one for the element corresponding to the true class and zeros
otherwise. The term w is used to encode the importance for the classification task for
each event contributing to the loss. The optimization of the CE can be understood as
the minimization of the NLL − log (

∏

i p(xi|yi)) with x being the NN inputs yielding a
strong motivation for this training objective in classification tasks. Chapter 5 discusses in
detail the suitability of the CE loss with respect to the analysis objective and alternative
solutions are proposed.

Traditionally, each gradient step is computed from a batch of B events randomly drawn
from the training dataset. Neglecting the weight term w, the importance of each event
class is then given by the frequency of respective events in the trainig dataset. Because
in HEP the simulated events are typically oversampled compared to the expectation in
data, for example the simulation of the signals, the frequency of a process in the training
dataset does not reflect the importance of the class. Therefore, the frequency of simulated
events has to be scaled down by a statistical weight to match the distribution in the
data. Further, the simulation is subject to corrections of the variable distributions being
implemented with statistical weights, for example in this analysis the reweighting of the
transverse momentum of the Z boson. These event weights have to be taken into account
in the NN training to model the classification task correctly. An exemplary distribution
of the event weights is presented in figure 2.13 showing that for a random sampling of
the batch the highly imbalanced training dataset with respect to the number of events
per class would result in an imprecise gradient for the less frequent processes, especially
the signal classes. Therefore, the batch is built by selecting from each class randomly
the same number of events providing a balanced precision for the optimization across all
classes. For the training of the NNs used in this analysis, 30 events per class are chosen.
In addition, the weights are normalized per class maintaining the relation between the
events but encoding an equal importance for each class in the NN training. The impact of
a balanced selection of events for the gradient computation is discussed in detail in [65].

2.6.5 Transfer learning with data driven training and conditional

inputs

Analysis in HEP deals with information from a variety of datasets which are not strictly
following the same underlying distribution. The two major domains are the data from
the experiment and the simulated events. But at the same time the detector conditions
change over time resulting in a varying ground truth of the data distribution, which
is covered by dedicated simulations for the different data taking periods. This section
presents the applied strategies to incorporate this information into the NN training.

To minimize the difference between simulation and data for the Z → ττ process, the
training uses only partially simulated events. The embedding technique takes Z → µµ
events from data, removes the detector hits from the muons and inserts instead the
simulation of two decaying taus [32]. This technique yields an improved description of
the Z → ττ process because complex objects in the event such as additional jets are
incorporated directly from data, successfully minimizing the required transfer learning
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Figure 2.13: Distribution of the event weights in the training dataset for the µτh channel from
the 2016 data taking period. Z → ττ refers to the dataset from embedded events and jet → τh

refers to the dataset from the FF application region. See section 2.6.5 for details about the
selection of the datasets. The inner and outer pie chart on the right show per class the number
of events and the sum of event weights, respectively. The differential signal samples reflecting
the STXS stage 1 framework are merged to the classes ggH and qqH.

between the source and target domain. An example for the improved event description
due to embedded events is shown in figure 2.14.

A more complex scenario is given by the QCD multijet process entering the analysis
with jet → τh misidentifications. Because suitable simulated events are not available due
to the complexity of the process, the only possibility to include this class of events in the
training is extracting information from the data. Since the NN training is performed fully
supervised, a subset of the data is used which is highly dominated by such events. The tau
identification is the major discriminator against events from tau misidentifications and
therefore a suitable dataset is built from events with a loose tau identification excluding
events required for the analysis. Because the selection does not only target QCD events
but all events from jet → τh misidentifications, this event class also includes events from
the tt and W + jets processes, which simulated events are consequently removed from
the training dataset. The task to minimize the difference of this dataset to the analysis
selection is part of the FF method [33, 34]. The FF method derives from additional
determination regions in data and simulation the probabilities that in the application
region, which is congruent with the selection described before, an event belongs to tt,
W + jets or QCD and corrects for events not originating from jet → τh misidentifications.
These probabilities are used as weights in the training to model the distribution of the
jet → τh dataset as close as possible to the target in the analysis. An example for the
contribution of the processes to the described selection in data is shown in figure 2.15.
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Figure 2.14: Comparison of embedded and fully simulated events exemplary shown for the
missing transverse momentum and the invariant mass of the leading and subleading jet [32]

The previously described measures minimize the differences between the datasets used
for the training of the NN and the data. But the knowledge about similarities also can
be incorporated in the training procedure to enable transfer learning between datasets.
Such an approach is followed in this analysis with an inclusive training of a single NN
for all data taking periods given additional boolean input variables specifying the period.
The usage of the condition information in the training allows to perform the analysis
with 8 NNs instead of 24, which reduces the complexity significantly and improves the
sensitivity up to 10 %. A detailed study is performed in [66].
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Figure 2.15: Composition of the data in the µτh channel from the 2018 data taking period as
a function of the transverse mass of the muon including the missing transverse energy. The
shown selection has a loose tau identification but is excluding events entering the analysis and
is used for the NN training to identify events with jet → τh misidentifications.

2.7 Robust multivariate analysis in the presence of

systematic uncertainties

This section discusses the challenges resulting from the usage of ML methods for the
observables and event categorization in the presence of systematic uncertainties and
presents techniques to maintain a robust and reliable analysis.

2.7.1 Challenges and strategies

Measurements in HEP are driven by a detailed understanding of the analysis from the
particle collisions to the statistical inference. Such as shown in section 2.5, all known
uncertainties are incorporated in the statistical model, which enables data analysis in
HEP to perform complex measurements with highest precision. Therefore, the major
effort of such an analysis is the precise understanding of the data, simulated events
and the according systematic uncertainties. At the same time, the major risk for an
analysis to draw incorrect or imprecise conclusions from the data is the absence of
uncertainties in the statistical model. Missing or underestimated uncertainties potentially
result in the interpretation of uncovered mismodelings of the expectation as a feature
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in the data caused by the physical process of interest. In the worst case an analysis
may falsely discover a new particle or falsely announce a deviation from the SM. The
traditional solution is a thorough study of the agreement between data and expectation
for all relevant marginal distributions of the dataset, for example the variables listed in
table 2.5, and for selections of the data with known compatibility in consideration of the
known uncertainties. In summary, the strategy is the comprehensive description of the
expectation for such control regions in the statistical model and the extrapolation of this
knowledge in the regions with signal expectation, which enables a precise interpretation
of the data.

This approach served well in numerous analyses with strategies that select the signal
region based on information from the marginal distributions. However, the extensive usage
of ML for the observables and event categorization amplifies the concerns about uncovered
mismodelings. Because ML methods are explicitly designed to exploit information from
the multidimensional input space and the additional gain in sensitivity compared to
selections based on the marginal distributions is a result of the sensitivity of the ML
method to higher order features in the data, the strategy to ensure a robust and reliable
analysis must be revised.

It should be noted that ML methods do not carry any systematic uncertainty by
themselves. After the training of the method, the free parameters of the model are frozen
and constant for the analysis. Therefore, any ML model, for example the NNs in this
analysis, can be treated as a function mapping the input space spanned by the input
variables to the output space of the predictions, which is not different from constructing an
invariant mass from the kinematic properties of particles. The differences to conventional
functions are the dimensionality of the input space potentially being of a considerably
higher dimension and the hidden relations between the input and output space. The
strategy and developments presented in this thesis address these new challenges with an
extended validation of the multidimensional input space and novel techniques to study
and control the dependence of the ML model on higher order features in the dataset.

2.7.2 Input space and model validation

To be sure that the outputs of the ML model are well described by the statistical model,
the description of the inputs has to be ensured for the N dimensional input space spanned
by the N input variables. Because the statistical model, such as introduced in section 2.5,
is based on a binned Poisson likelihood, a holistic approach to quantify the agreement of
the expectation and data is not possible. Therefore, the N dimensional space is separated
into subspaces, for example 1D subspaces equal to the marginal distributions or 2D
subspaces incorporating also the correlations between pairs of variables. These subspaces
can be summarized with counts such as required by the statistical model, allowing to use
statistical tests to quantify the agreement between expectation and data including all
uncertainties. A suitable statistical test is the saturated goodness of fit (GoF) test [67,
68].

The saturated GoF test is using the likelihood as test statistic normalized to the
likelihood of the saturated model. The saturated model has an expectation exactly equal
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Figure 2.16: Saturated GoF tests for the µτh channel carried out for the 1D subspaces of the
variables listed in table 2.5. The p values of the GoF test are shown in percent in the matrix
on the left and the results are summarized in the histogram on the right. The agreement is
tested for each variable with ten equally populated bins in data and the full statistical model
including systematic uncertainties. Testing with a χ2 test the null hypothesis that the p values
of the GoF tests are equally distributed (red dashed line) results in a p value of 0.14 quantifying
the good overall agreement.

to the data and therefore results in the maximum possible likelihood for the given
data yielding a suitable foundation for the test statistic [67]. The distribution of the
test statistic is sampled with pseudo experiments enabling the quantification of the
compatibility with the statistical model including systematic uncertainties. The test is
suited for the validation in higher dimensions because each bin of a multidimensional
histogram is treated independently, which avoids ambiguities of the result due to ordering.
The test results are summarized by setting a threshold on the p value, typically 5 %, and
counting the tests, which fail the requirement. The expectation for the 5 % threshold is to
observe at the maximum the same percentage of failing tests, indicating a good agreement
between the expectation and data for the studied subspaces of the dataset. Alternatively
the distribution of the p values from the GoF tests is expected to be equally distributed,
which can be tested statistically such as carried out in figure 2.16 and figure 2.17.

In practice, the approach poses two challenges. First, the number of tests increases
exponentially following the binomial coefficient N !

D!(N−D)! with N the number of variables

and D the dimension of the subspaces of interest. The number of tests in O(ND) yield
a computational challenge because the counts have to be computed from terabytes of
data for each data taking period and decay channel. Second, the curse of dimensionality
forces a coarse binning for higher dimensions or, in reverse, limits the dimensionality of
the testable subspaces given a fix granularity for the histograms.

Figure 2.16 shows exemplary results of the 1D GoF tests in this analysis evaluated
for the variables listed in table 2.5. According tests of the 2D subspaces are presented
in figure 2.17, which test in addition the correlations of variable pairs. Figure 2.17
summarizes 105 GoF tests for the µτh channel and the 2016 data taking period being
only 1

12 of the full Run 2 analysis. A full summary of the GoF test results can be found
in [43].

As obvious from the discussion, a brute force approach for the input space validation is
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Figure 2.17: Saturated GoF tests for the µτh channel and the 2016 data taking period carried
out for the 2D subspaces of the variables listed in table 2.5. The p values of the GoF test
are shown in percent in the matrix and the results are summarized in the histogram. The 2D
histogram as input for the statistical model is built with the same binning in each variable
than used for the 1D tests in figure 2.16 summing up to 100 bins per histogram. Testing with
a χ2 test the null hypothesis that the p values of the GoF tests are equally distributed (red
dashed line) results in a p value of 0.48 quantifying the good overall agreement.
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challenging. Therefore, the detailed understanding of the relations between the ML output
and the input space is an additional integral part of a practicable validation strategy
for ML based analyses. Chapter 3 is dedicated to this topic and presents techniques to
reveal the dependencies of the NN function on features in the input space introducing a
novel technique to analyze the dependence on selected subspaces. Such techniques allow
to focus the validation of the input space on the subspaces that contribute most to the
response of the model, which improves significantly the practicability of the discussed
strategy for a robust multivariate analysis.

In addition, a detailed analysis of the ML model is useful to verify the validity of the
learned relations itself serving as an additional protection against undiscovered mismodel-
ings. Due to the long history of data analysis in HEP and detailed predictions from theory,
the dominant variables contributing to the separation of signal and background processes
are known, which allows to identify unexpected features picked up by the trained model
and can trigger further investigations.

The technique to analyse the NN function based on a Taylor expansion is discussed
in detail in chapter 3. Figure 2.18 visualizes the dependence of the NN function on the
input variables in first order, revealing the dominant variables used by the NN for the
classification task. Table 2.7 summarizes the most influential features up to the second
order, which enables a more detailed insight into the NN function, e.g., the impact of
information hidden in the relations of variables. The Taylor expansion of NN functions
and the interpretation of the coefficients is extensively discussed in chapter 3.
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Figure 2.18: The sensitivity scores derived from the first order Taylor coefficients of a NN
trained for event categorization in the µτh channel. The matrix shows the values of the scores,
independently highlighted per row with the coloring. The solid vertical line separates the
conditional features providing information about the data taking period, see section 2.6.5. The
overview shows the importance of the (invariant) mass of the ditau system and the dijet system
such as made use of in previous H → ττ analyses [46, 47]. It should be noted that the variables
are not independent but carry similar information. For example, the information about two
or more jets being present in the events is not only carried by njets but also implicitly by
mjj, which is set to a default value for less than two jets. Similarly, the variables describing
the mass of the ditau system, m_vis and m_sv, carry to a large extent the same information,
giving the NN the choice during the training.

37



Machine learning based analysis of the production of Standard Model Higgs bosons in

the decay to two tau leptons
T

a
b

le
2

.7
:

T
h
e

se
n
si

ti
v
it

y
sc

or
es

d
er

iv
ed

fr
om

th
e

T
ay

lo
r

co
ef

fi
ci

en
ts

u
p

to
th

e
se

co
n
d

or
d
er

of
a

N
N

tr
ai

n
ed

fo
r

ev
en

t
ca

te
go

ri
za

ti
on

in
th

e
µ
τ h

ch
an

n
el

.
S
h
ow

n
ar

e
th

e
te

n
fe

at
u
re

s
w

it
h

th
e

la
rg

es
t

sc
or

es
re

p
re

se
n
ti

n
g

th
e

su
b
sp

ac
es

u
p

to
se

co
n
d

or
d
er

w
it

h
m

os
t

in
fl

u
en

ce
on

th
e

re
sp

ec
ti

ve
N

N
ou

tp
u
t.

T
h
e

ap
p

ea
ra

n
ce

of
th

e
co

n
d
it

io
n
al

va
ri

ab
le

s
2
0
1
6
,
2
0
1
7

an
d

2
0
1
8

(s
ee

se
ct

io
n

2.
6.

5)
in

d
ic

at
es

th
at

th
e

N
N

h
as

le
ar

n
ed

in
fo

rm
at

io
n

d
ep

en
d
en

t
on

th
e

d
at

a
ta

k
in

g
p

er
io

d
.

S
ec

on
d

or
d
er

co
ef

fi
ci

en
ts

w
it

h
th

e
sa

m
e

va
ri

ab
le

in
d
ic

at
e

th
e

d
is

cr
im

in
at

io
n

b
y

a
p

ea
k
in

g
d
is

tr
ib

u
ti

o
n
,

fo
r

ex
a
m

p
le

fr
eq

u
en

tl
y

a
p
p

ea
ri

n
g

fo
r

th
e

m
a
ss

va
ri

a
b
le

s
m
_
v
i
s
,

m
_
s
v

a
n
d

m
j
j
.

T
h
e

in
te

rp
re

ta
ti

o
n

o
f

th
e

co
ef

fi
ci

en
ts

is
ex

te
n
si

v
el

y
d
is

cu
ss

ed
in

ch
ap

te
r

3.
Z

→
τ
τ

je
t

→
τ h

tt
Z

→
ll

M
is

c.

m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

1.
83

m
_
s
v

m
_
s
v

3.
18

m
_
s
v

m
_
s
v

1.
81

m
_
v
i
s

m
_
v
i
s

1
2
.9

4
m
_
s
v

m
_
s
v

1
.6

9
m
_
s
v

m
_
s
v

1.
75

m
_
v
i
s

m
_
s
v

2.
93

m
_
v
i
s

m
_
s
v

1.
51

m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

2
.5

0
m
_
v
i
s

m
_
s
v

1
.5

0
j
d
e
t
a

m
j
j

1.
43

m
_
v
i
s

m
_
v
i
s

1.
10

m
_
v
i
s

m
_
v
i
s

0.
45

m
_
v
i
s

m
_
s
v

2
.2

9
m
_
v
i
s

m
_
v
i
s

0
.4

8
m
j
j

m
j
j

1.
37

m
j
j

m
j
j

0.
91

m
_
s
v

0.
28

m
_
s
v

m
_
s
v

1
.9

5
m
j
j

m
j
j

0
.4

7
m
_
v
i
s

m
_
s
v

1.
30

j
d
e
t
a

m
j
j

0.
82

m
_
s
v

2
0
1
7

0.
23

j
d
e
t
a

m
j
j

1
.8

0
j
d
e
t
a

m
j
j

0
.4

2
m
_
v
i
s

m
j
j

1.
20

m
_
s
v

0.
45

m
_
s
v

2
0
1
6

0.
22

m
_
v
i
s

p
t
_
v
i
s

1
.6

9
m
_
s
v

0
.2

3
m
j
j

D
i
T
a
u
D
e
l
t
a
R

1.
15

m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0.
44

m
j
j

m
j
j

0.
20

p
t
_
2

m
_
v
i
s

1
.6

7
m
_
s
v

j
p
t
_
2

0
.2

1
m
_
v
i
s

m
_
v
i
s

1.
10

p
t
_
2

m
_
v
i
s

0.
36

m
_
s
v

2
0
1
8

0.
20

m
_
v
i
s

m
j
j

1
.6

3
m
_
s
v

2
0
1
7

0
.2

1
p
t
_
1

D
i
T
a
u
D
e
l
t
a
R

1.
07

m
_
s
v

2
0
1
6

0.
35

m
_
v
i
s

0.
20

m
j
j

m
j
j

1
.5

7
m
_
s
v

2
0
1
6

0
.2

0
p
t
_
2

D
i
T
a
u
D
e
l
t
a
R

1.
04

m
_
s
v

2
0
1
7

0.
35

j
d
e
t
a

m
j
j

0.
17

p
t
_
1

m
_
v
i
s

1
.4

3
m
j
j

j
p
t
_
2

0
.1

8

gg
H

,
p

H T
[2

00
,3

00
]

gg
H

,
p

H T
>

30
0

gg
H

,
N

je
t

0,
p

H T
<

10
g
g
H

,
N

je
t

0
,
p

H T
[1

0,
2
0
0
]

g
g
H

,
N

je
t

1
,
p

H T
<

6
0

D
i
T
a
u
D
e
l
t
a
R

2
0
1
8

2.
64

m
_
v
i
s

2
0
1
7

1.
40

m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

9.
72

m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

5
.3

6
m
j
j

m
j
j

3
.7

0
D
i
T
a
u
D
e
l
t
a
R

2
0
1
6

2.
63

m
_
v
i
s

2
0
1
6

1.
40

m
_
v
i
s

m
_
v
i
s

7.
76

m
_
v
i
s

m
_
v
i
s

4
.5

2
j
d
e
t
a

m
j
j

2
.7

3
D
i
T
a
u
D
e
l
t
a
R

2
0
1
7

2.
62

m
_
v
i
s

2
0
1
8

1.
39

p
t
_
1

D
i
T
a
u
D
e
l
t
a
R

5.
71

j
d
e
t
a

m
j
j

3
.3

5
m
_
v
i
s

m
_
v
i
s

1
.3

6
m
_
v
i
s

2
0
1
8

2.
26

m
_
v
i
s

m
_
v
i
s

1.
33

m
j
j

m
j
j

5.
61

m
j
j

m
j
j

3
.2

0
j
p
t
_
1

j
p
t
_
1

1
.2

5
m
_
v
i
s

2
0
1
7

2.
26

2
0
1
6

2
0
1
7

1.
21

j
d
e
t
a

m
j
j

5.
52

p
t
_
1

D
i
T
a
u
D
e
l
t
a
R

3
.1

4
m
_
s
v

m
_
s
v

1
.2

2
m
_
v
i
s

2
0
1
6

2.
24

2
0
1
6

2
0
1
8

1.
20

p
t
_
1

m
_
v
i
s

5.
43

p
t
_
1

m
_
v
i
s

2
.9

7
m
_
v
i
s

m
_
s
v

1
.1

2
2
0
1
7

2
0
1
8

2.
23

2
0
1
7

2
0
1
8

1.
20

p
t
_
2

D
i
T
a
u
D
e
l
t
a
R

5.
36

p
t
_
2

D
i
T
a
u
D
e
l
t
a
R

2
.9

5
j
p
t
_
1

j
p
t
_
2

1
.0

6
2
0
1
6

2
0
1
8

2.
22

D
i
T
a
u
D
e
l
t
a
R

2
0
1
6

1.
10

D
i
T
a
u
D
e
l
t
a
R

D
i
T
a
u
D
e
l
t
a
R

5.
27

p
t
_
2

m
_
v
i
s

2
.8

9
p
t
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0
.9

4
m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

2.
22

D
i
T
a
u
D
e
l
t
a
R

2
0
1
7

1.
10

p
t
_
2

m
_
v
i
s

5.
20

D
i
T
a
u
D
e
l
t
a
R

D
i
T
a
u
D
e
l
t
a
R

2
.8

9
j
p
t
_
2

j
p
t
_
2

0
.8

7
2
0
1
6

2
0
1
7

2.
22

D
i
T
a
u
D
e
l
t
a
R

2
0
1
8

1.
09

d
i
j
e
t
p
t

D
i
T
a
u
D
e
l
t
a
R

4.
45

d
i
j
e
t
p
t

D
i
T
a
u
D
e
l
t
a
R

2
.2

5
m
j
j

j
p
t
_
2

0
.8

1

gg
H

,
N

je
t

1,
p

H T
[6

0,
12

0]
gg

H
,
N

je
t

1,
p

H T
[1

20
,2

00
]

gg
H

,
N

je
t

≥
2,
p

H T
<

60
,
m

jj
<

35
0

g
g
H

,
N

je
t

≥
2
,
p

H T
[6

0,
1
2
0
],
m

jj
<

3
5
0

g
g
H

,
N

je
t

≥
2
,
p

H T
[1

2
0,

2
0
0
],
m

jj
<

3
5
0

j
d
e
t
a

m
j
j

2.
08

m
j
j

m
j
j

1.
95

m
j
j

m
j
j

1.
06

p
t
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

1
.2

4
p
t
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

1
.5

7
m
j
j

m
j
j

2.
07

j
d
e
t
a

m
j
j

1.
82

m
_
s
v

m
_
s
v

0.
96

m
_
s
v

m
_
s
v

1
.2

3
m
_
s
v

m
_
s
v

1
.2

8
m
_
s
v

m
_
s
v

1.
93

p
t
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

1.
55

m
_
v
i
s

m
_
s
v

0.
86

m
_
v
i
s

m
_
s
v

1
.0

0
m
_
v
i
s

p
t
_
v
i
s

1
.1

7
p
t
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

1.
60

m
_
v
i
s

p
t
_
v
i
s

1.
33

m
_
v
i
s

m
_
v
i
s

0.
72

m
_
v
i
s

p
t
_
v
i
s

0
.8

2
m
j
j

m
j
j

1
.1

2
m
_
v
i
s

m
_
s
v

1.
48

j
p
t
_
2

j
p
t
_
2

1.
22

j
d
e
t
a

j
p
t
_
2

0.
69

m
j
j

m
j
j

0
.7

9
m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

1
.0

7
m
_
v
i
s

m
_
v
i
s

1.
09

j
d
e
t
a

j
p
t
_
2

1.
18

j
d
e
t
a

m
j
j

0.
68

p
t
_
v
i
s

p
t
_
v
i
s

0
.7

6
D
i
T
a
u
D
e
l
t
a
R

2
0
1
7

1
.0

3
p
t
_
v
i
s

p
t
_
v
i
s

0.
98

m
_
s
v

m
_
s
v

1.
14

p
t
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0.
64

m
_
v
i
s

m
_
v
i
s

0
.6

9
D
i
T
a
u
D
e
l
t
a
R

2
0
1
8

1
.0

3
m
_
v
i
s

p
t
_
v
i
s

0.
92

m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

1.
11

j
p
t
_
2

j
p
t
_
2

0.
64

D
i
T
a
u
D
e
l
t
a
R

D
i
T
a
u
D
e
l
t
a
R

0
.6

9
D
i
T
a
u
D
e
l
t
a
R

2
0
1
6

1
.0

2
D
i
T
a
u
D
e
l
t
a
R

D
i
T
a
u
D
e
l
t
a
R

0.
91

D
i
T
a
u
D
e
l
t
a
R

2
0
1
8

1.
02

m
j
j

j
p
t
_
2

0.
62

m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0
.5

4
D
i
T
a
u
D
e
l
t
a
R

D
i
T
a
u
D
e
l
t
a
R

1
.0

1
j
p
t
_
2

j
p
t
_
2

0.
84

D
i
T
a
u
D
e
l
t
a
R

2
0
1
6

1.
01

j
p
t
_
1

j
p
t
_
2

0.
51

j
d
e
t
a

m
j
j

0
.5

0
m
_
v
i
s

m
_
v
i
s

0
.8

7

gg
H

,
N

je
t

≥
2,
p

H T
<

20
0,
m

jj
>

35
0

q
q
H

,
N

je
t

≥
2,
p

H T
<

20
0,
m

jj
[3

50
,7

00
]

q
q
H

,
N

je
t

≥
2,
p

H T
<

20
0,
m

jj
>

70
0

q
q
H

,
N

je
t

≥
2
,
m

jj
<

3
5
0

q
q
H

,
N

je
t

≥
2
,
p

H T
>

2
0
0,
m

jj
>

3
5
0

m
j
j

m
j
j

0.
81

m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0.
45

j
d
e
t
a

m
j
j

1.
19

m
j
j

m
j
j

1
.1

2
D
i
T
a
u
D
e
l
t
a
R

2
0
1
8

1
.1

8
j
d
e
t
a

m
j
j

0.
80

p
t
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0.
41

m
j
j

m
j
j

1.
05

j
d
e
t
a

m
j
j

0
.5

5
D
i
T
a
u
D
e
l
t
a
R

2
0
1
7

1
.1

7
m
_
s
v

m
_
s
v

0.
43

D
i
T
a
u
D
e
l
t
a
R

2
0
1
8

0.
41

j
d
e
t
a

j
d
e
t
a

0.
41

m
_
s
v

m
_
s
v

0
.4

0
D
i
T
a
u
D
e
l
t
a
R

2
0
1
6

1
.1

7
m
_
v
i
s

m
_
s
v

0.
34

m
_
v
i
s

p
t
_
v
i
s

0.
41

m
j
j

0.
40

p
t
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0
.3

9
m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

1
.1

1
m
_
v
i
s

m
_
v
i
s

0.
26

D
i
T
a
u
D
e
l
t
a
R

2
0
1
6

0.
41

m
_
s
v

m
_
s
v

0.
36

m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0
.3

5
m
_
v
i
s

2
0
1
8

1
.0

2
p
t
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0.
26

D
i
T
a
u
D
e
l
t
a
R

2
0
1
7

0.
41

m
j
j

d
i
j
e
t
p
t

0.
35

m
_
v
i
s

p
t
_
v
i
s

0
.3

2
m
_
v
i
s

2
0
1
7

1
.0

1
j
p
t
_
1

d
i
j
e
t
p
t

0.
26

j
d
e
t
a

m
j
j

0.
40

m
j
j

j
p
t
_
2

0.
34

m
_
v
i
s

m
_
v
i
s

0
.3

1
m
_
v
i
s

2
0
1
6

1
.0

0
m
_
v
i
s

D
i
T
a
u
D
e
l
t
a
R

0.
26

m
_
v
i
s

m
_
v
i
s

0.
39

M
E
_
q
2
v
1

M
E
_
q
2
v
2

0.
32

m
_
v
i
s

m
_
s
v

0
.2

9
2
0
1
7

2
0
1
8

0
.9

8
m
_
v
i
s

p
t
_
v
i
s

0.
25

m
_
v
i
s

2
0
1
8

0.
37

d
i
j
e
t
p
t

D
i
T
a
u
D
e
l
t
a
R

0.
30

D
i
T
a
u
D
e
l
t
a
R

2
0
1
8

0
.2

8
2
0
1
6

2
0
1
8

0
.9

7
j
d
e
t
a

j
d
e
t
a

0.
22

m
_
v
i
s

2
0
1
7

0.
37

m
_
v
i
s

m
_
s
v

0.
30

D
i
T
a
u
D
e
l
t
a
R

2
0
1
7

0
.2

8
2
0
1
6

2
0
1
7

0
.9

7

38



Machine learning based analysis of the production of Standard Model Higgs bosons in

the decay to two tau leptons

2.8 Differential measurement of the Standard Model

H → ττ cross section

This section presents the results of the analysis with focus on the differential measurement
of the SM Higgs boson cross section in the STXS framework and discusses potential
improvements of the analysis strategy for future measurements.

Figure 2.19 shows the measurement of the signal strengths parameters associated with
the signals defined in the STXS framework and figure 2.20 shows the correlation of
these POIs. In addition, figure 2.21 presents the signal strength parameters scaled to the
actual cross sections. Figures visualizing the data and expectation being input to the
statistical inference in the µτh channel for the data taking period of 2018 are presented
in appendix A. The results show a tension with the expectation from the SM of 3σ in
Gaussian standard deviations for ggH events with no jets. This is an interesting finding
and future measurements and combinations have to show whether the deviation is of a
statistical nature or due to an actual physics effect, which is revealed in this analysis by
the unprecedented fine granularity of the measurement. The presented results confirm the
importance of the STXS framework, which fosters the combination of such measurements
with other analyses and enables to gain a maximum of sensitivity to new physics.

The measurements in the STXS framework facilitate the organized search for a physics
model, which supersedes the SM. The new model may be able to predict the existence of
further fundamental particles, for example such as part of the Minimal Supersymmetric
Standard Model (MSSM) [69–71], and could explain unsolved questions in physics, e.g.,
the existence of dark matter. Projects such as HiggsBounds and HiggsSignals [72–76] take
the measurements to perform an interpretation of the experimental results in terms of
the compatibility with other physics models, which is an important contribution to guide
the experiments to interesting analyses and measurements. These studies are also the
reason why the correlation of the POIs shown in figure 2.20 is highly important, because
this information enables in such applications the statistically sound interpretation and
combination of the measurements.

Figure 2.19 contains also valuable information with respect to the applied analysis
strategy. Even though the analysis measures concurrently 12 signals with cross sections
ranging from about 10 fb to 1000 fb, the results are not heavily dominated by the statistical
uncertainty. Stronger pronounced for the more frequent ggH process, the systematic
and theory uncertainties have a significant impact on the absolute uncertainty. This
finding means for future analyses that a substantial reduction of the absolute uncertainty
following 1/

√
N with an increasing number of events N can not be expected. Another

important ingredient is the discussion carried out in chapter 5, which presents the evidence
that the used ML based analysis strategy with the NNs trained on the CE loss is a powerful
approach to optimize the estimate of the POIs with respect the statistical uncertainty.
These points indicate that future analysis may not be able to improve dramatically with
respect the statistical component of the uncertainty but have to take into account all
contributing uncertainties to achieve further significant improvements.

Chapter 4 discusses in detail the usage of modern ML techniques to implement the
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Figure 2.19: Differential measurement of signal strength for the SM Higgs boson in the decay
to two tau leptons. The columns indicate the contribution of different uncertainty categories
to the total uncertainty. The categories are split into the statistical component, the theory un-
certainties, the bin-by-bin uncertainties and all other systematic uncertainties. The correlation
matrix of the POIs is shown in figure 2.20. [44]
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Figure 2.20: Correlation of the measured signal strength parameters presented in figure 2.19 [44]
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Figure 2.21: Differential cross section measurement of the SM Higgs boson in the decay to two
tau leptons. Adapted from [44].
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decorrelation of the NN function to any variation in the input space. These techniques
allow to easily remove the propagation of systematic uncertainties on the result of the
measurement. However, the examples in chapter 4 show that improving the actual analysis
objective, e.g., the absolute uncertainty of a POI, is highly non trivial. The optimization
is coupled between the statistical and systematic part of the uncertainty and manually
controlled by a hyperparameter. The examples show that the existence of a systematic
uncertainty does not guarantee that a decorrelation improves the analysis but potentially
even worsens the absolute uncertainty of the POI because the suppressed information
may be crucial for the separation of the signal and background processes. In summary,
the optimization problem is a complex tradeoff between all contributing uncertainties.

A possible solution to this optimization problem is discussed in chapter 5, which
proposes a computational efficient method to find an optimal tradeoff between all con-
tributing uncertainties. The differential formulation of the analysis objective, e.g., the
absolute uncertainty of the estimate of a POI, allows to converge to an optimal solution
with a balance between the statistical and systematic uncertainty. Shown in examples
in chapter 5, the optimization can result in a reduced absolute uncertainty compared to
the optimization purely based on the statistical component such as in typical ML based
analysis strategies. These novel strategies for analysis in HEP have the potential to offer
significant improvements for future measurements in the upcoming precision era of Higgs
physics at the LHC.
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Understanding the dependence of the machine

learning model on features in the input space

This chapter discusses the requirement for multivariate data analysis in HEP to be able
to reveal the dependence of the ML model on the features in the input space. Existing
solutions from the ML community are analyzed with respect to their suitability for the
usage in physics data analysis to ensure robust and reliable measurements. Finally, a
novel technique is presented, which allows to study the dependence of the NN function
on selected subspaces of the input space, tailored to the challenges posed by multivariate
data analysis in HEP.

3.1 About the special requirements for multivariate data

analysis in high-energy particle physics

Chapter 2 discusses in detail the required procedures to perform precise measurements in
HEP. A crucial aspect of the data analysis is the detailed understanding of all contributing
parts so that all uncertainties of the measurement can be reflected in the statistical model
enabling a reliable statement about the uncertainty of the result. Such as discussed in
more detail in section 2.7, a major concern regarding multivariate analysis in HEP is
the misinterpretation of data due to uncovered mismodelings in the expectation of the
statistical model. ML in the analysis strategy amplifies these concerns since the analysis
may be highly sensitive to mismodeled higher order features in the dataset because
methods such as NNs draw their performance explicitly from such features. The solution
is the thorough validation of the input space to validate the expectation of the statistical
model including all statistical and systematic uncertainties. A decisive role for such a
solution plays the ability to understand the relations between the multidimensional input
space and the outputs of the ML model to be able to guide the validation of the input
space. In addition, the sensitivity of the ML model to the features in the dataset can be
compared to the expectation from the knowledge about the detector and the underlying
theory, providing an additional layer of scrutiny.

The requirements set out above are not fully congruent with the targets of related
techniques and the literature in the ML community. Mainly driven by computer vision,
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Figure 3.1: An example usecase of techniques to understand the dependence of a ML model on
the inputs outside of HEP. The CheXNet model uses an input X-ray image (left) to classify
the pathology of the patient, e.g., pneumonia. Class activation maps [77] are used to attribute
the classification to the respective parts of the input image (right), which enables a validation
of the model response. [78]

the ML community focuses on the attribution of the model response to the single inputs.
An example is shown in figure 3.1, which attributes the classification of the X-ray image as
pneumonia positive to the respective parts of the input image adding valuable information
to validate the response of the ML model. The methods developed with such usecases
in mind focus on the full redistribution of the model response on the inputs and do not
foresee to analyze the impact of the correlation between inputs on the output, missing a
crucial piece of information for a differentiated validation strategy of multivariate analysis
in HEP.

The second difference is that most techniques from the ML community analyze a single
example of a population. For example in figure 3.1 the question is which part of this
specific image contributes most to the classification of the patient’s pathology, not what
makes an X-ray image revealing pneumonia in general. However, the data analysis in
this thesis operates on the full dataset, which sets the focus of such techniques to the
latter question and requires novel solutions or a suitable aggregation strategy for the
sensitivity analysis of single predictions.

Section 3.2 gives an overview over existing approaches from literature and provides
the context for the novel approach introduced in section 3.3 tailored to the challenges of
data analysis in HEP.

3.2 Overview over existing approaches

The interest in understanding precisely the mechanics of multivariate analysis techniques
is not a novel field and hence the literature provides many different solutions accumulated
over time. However, this section points out the most prominent approaches and discusses
why the capabilities of the methods are not fully covering the requirements for analysis
in HEP.
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One of the most prominent classic solutions to identify the most influential features in a
multivariate analysis is the principal component analysis (PCA) [79]. The PCA approach
transforms the coordinate system of the input space into a linearly uncorrelated one.
Next, the eigenvalues of the transformation matrix can be interpreted as the information
of the respective axis, revealing the most prominent features of the dataset. The issue
to be pointed out for this approach is that there is no guarantee that the ML method
will pick up any of the features during training. Following, PCA is not able to provide a
measure for the strength of the dependence between the input and output space of the
ML model, being a crucial input to rank the most influential features contributing to the
measurement.

Another frequently applied method to identify influential inputs of the ML model is the
leave-one-out approach. The technique chooses a metric, e.g., the area under the curve
(AUC) of a receiver operating characteristic (ROC), measures the influence of the inputs
by removing them one by one and retrains the ML model each time. Then, the least
influential input is dropped and the procedure is repeated until a single input is left. This
approach is picked as an example to point out that methods which modify the trainable
parameters of the model cannot guarantee that the model applied in the analysis has
the same dependencies such as identified by the respective method. In particular, the
issue is amplified by redundant information in the dataset, which offers multiple equally
efficient solutions for a task. Such a scenario is typical for HEP datasets, for example
due to shared information by the kinematics of constituents and the invariant mass of
the decay system.

The largest group of methods is based on the analysis of the gradient from the NN
output to the input variables. The underlying idea is that a large gradient tells that a
small change of the input has a large influence on the respective output, hence revealing
the influential features picked up by the ML model during training. The practicability
of such an approach is supported by the modern computing infrastructure used for the
implementation of NNs, which is based on computational graph libraries [80–82] natively
supporting the calculation of analytic gradients due to automatic differentiation. The
usage of information from gradients to explain decisions has shown to be applicable to
simple classifications tasks [83] early on and also has been adopted in computer vision
applications to identify the significant parts of an image with saliency maps [84]. A similar
approach is the identification of relevant inputs with redistribution rules propagating the
output of the NN back to the inputs [85], which is closely related to using the gradient
times the input as a measure of importance [86]. The method introduced in section 3.3
is also based on a gradient analysis, although the literature focuses on the explanation
of the NN response solely in terms of the input variables and does not take into account
the decomposition of the input space such as it is important for the application in this
analysis.

The interpretation of the decision of a NN model beyond the attribution to the plain
input variables is also performed by [87]. The technique is based on learning the linear
dependence between the activation of the nodes and a concept defined by a set of labeled
examples, enabling an explanation of the NN response in terms of any desired high level
feature. Even though not trivially applicable to the scenario in this analysis, the approach
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of the method is promising to achieve an easily understandable interpretation of decisions
taken by NNs.

3.3 Identifying the relevant dependencies of the neural

network function on characteristics of the

multidimensional input space

The following sections introduce a novel method to analyze NNs by decomposing the
NN function with respect to the subspaces of the multidimensional input space, which
enables a fine granular sensitivity analysis tailored for the use case in HEP. A dedicated
paper about this method was published in [88].

3.3.1 Method

The new method is centered around the idea to decompose the NN function f(x) with
a Taylor expansion and associate the coefficients of the decomposition with subspaces
of the input space. The decomposition is performed at each element of the dataset
D = {a1,a2, . . . ,aN } with size N , which represents the points in the input space being
of interest for the understanding of the NN. D is typically the test split of the available
dataset, although also a subset can be of interest, e.g., the analysis of the NN response
for a specific class of events. The choice of the examples in D defines the question asked
about the NN function because, for example, the dependence of the NN to the input
space for the signal class may be considerably different from the inclusive dependence.

The Taylor coefficients carry information about the dependence of the NN function in
the respective subspace of x. For example in the expansion up to the second order for
x = (x1, x2) at the point a given by

T (x) = f(a) + (x1 − a1)∂x1
f(a) + (x2 − a2)∂x2

f(a)

+
1

2!

(

(x1 − a1)2∂x1x1
f(a) + 2(x1 − a1)(x2 − a2)∂x1x2

f(a) + (x2 − a2)2∂x2x2
f(a)

)

= f(a) + (x1 − a1)tx1
+ (x2 − a2)tx2

+ (x1 − a1)2tx1x1
+ (x1 − a1)(x2 − a2)tx1x2

+ (x2 − a2)2tx2x2

(3.1)
the Taylor coefficient ti signals the sensitivity of the NN function f to the respective input
space. The symbols tx1

and tx2
represent the dependence of f to the one dimensional

input spaces and tx1x2
incorporates in addition information from the correlation between

x1 and x2 in the two dimensional subspace. The terms tx1x1
and tx2x2

are associated
with long range dependencies, explained with examples in the following sections.

It should be noted that due to ∂xf(cx) = c∂xf(x) the coefficients ti are only comparable
if the inputs are scaled to the same mean and variance. The standardization of the inputs
is a typical preprocessing technique in ML using the transformation x → (x − µ)/σ
with µ and σ being the mean and the standard deviation of x. Further, the higher order
coefficients require also a higher order differentiability of the NN function f , which may
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not be given since the optimization in ML is based on first order derivatives. A typical
example for an operation without a suitable second order derivative is the rectified
linear unit (ReLU) [89] max(x, 0) being suitable and computationally efficient for typical
ML applications but having an overall gradient of zero at second order. Therefore, an
alternative choice for the activation function is the hyperbolic tangent function.

Eventually, the coefficients ti are summarized over the examples in D to condense the
information to a set of scores indicating the dependence of the NN function f to the
respective subspace of the input space. A suitable aggregation is

〈ti〉 =

∑N
j=1wj |ti (aj)|
∑N

j=1wj

(3.2)

with w being the weights of the events in D. The sign of the coefficient ti carries the
information whether the respective subspace contributes to the increase or decrease of
the NN output, however, since a measure of importance is desired, the absolute value
is chosen. Further, the weights w are potentially renormalized to reflect the task of the
training, e.g., the classification of the classes with equal importance such as described in
section 2.6. To reflect the sensitivity of the NN with respect to the training objective,
the renormalized weights must be used for the computation of the aggregation.

3.3.2 Application on simple examples based on pseudo experiments

The suitability of the Taylor coefficients to perform a detailed analysis of the dependence
of the NN function on the input space is demonstrated with simple examples based on
pseudo experiments. The observations for the two classes signal and background are drawn
from multivariate normal distributions in two dimensions to define binary classification
tasks. The parameters of the multivariate normal distributions for each task are shown
in table 3.1. Simulated are 105 events, which are split in half for the optimization of
the NN and the monitoring of the training. The chosen NN architecture consists of a
single hidden layer with 100 nodes and hyperbolic tangent activations. The gradients are
computed on the first half of the training dataset and applied to the trainable parameters
using the Adam optimizer [64]. The loss function is the CE and the training is stopped if
the loss did not improve three times in a row on the second half of the training dataset.
The presented results from the analysis of the Taylor coefficients are computed on a
statistically independent dataset with 105 examples.

Figure 3.2 shows the distributions of the classes for the classification tasks and the
according sensitivities from the Taylor coefficients. In addition, figure 3.3 shows the
distribution of the derivatives in the input space up to the second order, revealing the
underlying information aggregated by the sensitivity scores 〈ti〉.

The task A is the most simple classification task, defined by two uncorrelated multi-
variate normal distributed classes with different means. The expectation is to find most
sensitivity for the marginal distributions of x1 and x2 with the same importance due to
the same distance on each axis, which is confirmed by the scores 〈tx1

〉 and 〈tx2
〉. Task B

reduces the distance of the means on the x2 axis by half, which halves accordingly the
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Table 3.1: Parameters of the multivariate normal distributions defining the binary classification
tasks of the simple examples demonstrating the analysis of the Taylor coefficients in different
scenarios

Task Mean Covariance
Signal (x1, x2) Background (x1, x2) Signal Background

A 0.5 0.5 −0.5 −0.5

(

1 0
0 1

) (

1 0
0 1

)

B 0.5 0.25 −0.5 −0.25

(

1 0
0 1

) (

1 0
0 1

)

C 0 0 0 0

(

1 0.5
0.5 1

) (

1 −0.5
−0.5 1

)

D 0.5 0.5 −0.5 −0.5

(

1 0.5
0.5 1

) (

1 −0.5
−0.5 1

)

E 0 0 0 0

(

0.5 0
0 0.5

) (

3 0
0 3

)

importance of the marginal distribution of x2 but keeps 〈tx1
〉 unchanged. To maximize

for example the importance of the two dimensional subspace related to the score 〈tx1x2
〉,

task C chooses for both classes the same mean but opposite correlations. Consequently,
the score related to the x1x2 subspace is most prominent. However, 〈tx1

〉 and 〈tx2
〉 remain

relevant, also in the case of the same mean of both distributions. The reasons are the
regions around (±2, 0) and (0,±2), where signal events can be separated from the back-
ground class solely with information from the marginal distribution of the respective axis.
The effect is clearly visible for task C in the first order derivatives ∂x1

f and ∂x2
f shown

in figure 3.3, which mark the regions with a high sensitivity to x1 or x2. In comparison,
the derivative ∂x1x2

f is most prominent around (0, 0) at the bulk of the distribution,
resulting in the largest score for 〈tx1x2

〉. Task C is a prime example for the visualization
of the potentially completely different sensitivity of the NN function to features in the
input space based on the region in the multivariate input space. The sensitivity scores
computed from the Taylor coefficients dissect successfully the dependencies of the NN
response to the input space, providing a detailed summary of the learned relations. Task
D combines the separation from the means in task A and the correlation in task C,
whose sensitivity analysis shows a similar picture than for task A but adds the expected
additional importance to 〈tx1x2

〉 due to the newly introduced correlations. Finally, task
E uses the same mean for both classes but chooses a different variance for signal and
background. The task is designed to visualize the meaning of the second order scores
〈tx1x1

〉 and 〈tx2x2
〉, which represent the sensitivity to more complex structures in the

marginal distributions. The difference with respect to the related first order scores is the
separability of the classes not by a single threshold but by the variance of the variable.
Figure 3.4 presents the development of 〈tx1x1

〉 for NNs trained on variations of task A,
which shows that this second order feature can be detected independently and scales as
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Figure 3.4: Variations of task A with an increasing variance of x1 for the signal class result
in the expected increased sensitivity of the NN function to the second order feature 〈tx1x1

〉,
whereas a similar sensitivity to all other features is maintained.

expected with the variance of x1.

3.3.3 Analysis of the learning progress

The sensitivity of the NN function is not only interesting in the case of a fully converged
NN but enables also an in depth analysis of the learning progress. Figure 3.5 shows
the sensitivity analysis carried out during the training on task D after each gradient
step, revealing interesting details about the training progress visible due to the rise in
sensitivity to the first and second order features. The figure uses as metric the AUC
of the ROC, which allows to estimate the success of solving the task at each step and
enables to visualize when the training stops to extract additional information from
the data to separate signal and background. The progress shows that the first order
features are learned quickly in only a few gradient steps leading already to most of
the separation between signal and background. A second rise in separation power is
accompanied by an increased sensitivity to 〈tx1x2

〉, indicating the successful usage of the
additional information hidden in the different correlations of the signal and background
events. At gradient step 339, the early stopping rule triggers since the validation loss has
not improved three times in a row, marking the convergence of the training. However,
longer training increases the sensitivity to the second order features, although without
a notable impact on the AUC. This finding allows to validate the expectation that
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Figure 3.5: The training is based on task D in figure 3.2 with the sensitivity analysis being
carried out after each gradient step. The AUC of the ROC is shown on the second axis to the
right measuring the success in solving the task. The vertical dashed line indicates the trigger
of the early stopping rule at gradient step 339 which marks that the validation loss has not
improved three times in a row.

simpler features like the separation in marginal distributions are learned first and more
complicated relations in higher order spaces such as differences in correlations require
more steps to be picked up by the NN. Also the analysis shows that it is favorable to use
early stopping to keep the dependence of the NN function on the input space as simple
as possible.

3.3.4 Application on an example from high energy particle physics

This section applies the sensitivity analysis leveraging the information hidden in the
Taylor expansion of the NN function on a more complex example from HEP. The example
is taken from the Higgs ML challenge [90], which represents a simplified search for the
SM Higgs boson in the final state of an electron or muon and a hadronically decayed
tau in events at the ATLAS detector, being closely related to the analysis discussed in
chapter 2. The dataset consists of 2.5 × 105 events for training and 5.5 × 105 events for
testing including labels for each event indicating the origin from a Higgs boson or a
background process. The background events are a mixture of the contributing processes
but not treated separately during training, which is set up as a binary classification task.
A third of the simulated events are signal events, which rate is scaled with event weights
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to the expectation of the SM. The chosen NN architecture and training procedure are the
same as for the simple example in section 3.3.2 but is using in addition the standardization
of the inputs with the (x− µ)/σ transformation.

The inputs are 30 variables ranging from the reconstructed invariant mass of the Higgs
boson DER_mass_MMC to the primary kinematic properties of the constituents in the final
state. From the 30 variables, 17 are primary variables and 13 are derived quantities,
marked in the variable names with PRI and DER, respectively. The list of variables with
the exact definitions and their physical meaning is given in [90] but can also be easily
inferred from the variable names, in which lep refers to the electron or muon and tau

to the hadronically decayed tau.
The results of the sensitivity analysis are shown in table 3.2, which lists the first and

last 20 ranks ordered by sensitivity and the respective contributing variables. The 30
input variables result in 495 sensitivity scores 〈ti〉 derived from the first and second order
Taylor coefficients. The distribution of the first and second order scores is visible on the
left in figure 3.6, which shows a steep fall. The slope indicates that the NN uses only a few
features to achieve most of the separation power to solve the binary classification task.
To prove this assumption, the NN is retrained once with only the variables contributing
to ranks above a threshold on the sensitivity score and again with all other variables
excluding the previous selection. The threshold is chosen as the middle point between
the largest and smallest sensitivity score at 1.523 × 10−3 and selects the first 11 ranks in
table 3.2. The right hand side of figure 3.6 shows the AUC of the ROC being identical for
the training on all variables and the subset of variables identified as the sensitive inputs,
which validates that the method identified the important features contributing to the NN
output. As expected, removing the important variables results in a degraded AUC score.
Taking the discussions in chapter 2 into consideration, the input space could be reduced
from 30 to 6 dimensions without a loss of performance but with a massively reduced
complexity of the input space validation. The sensitivity analysis reveals that the NN
function has a significant dependency on only 2 % of the 495 subspaces up to the second
order, which allows to perform a precisely targeted verification of the statistical model
enabling a robust analysis strategy. The first variable related to the azimuth appears at
rank 82 with a score of 12 % with respect to the first rank.

Figure 3.7 visualizes the placement of a subset of variables in the ranking. The figure
shows the cumulated count of a variable contributing to a sensitivity score from the first
to the last rank. Following, a rise early on indicates that the variable is often present
in the first ranks and therefore the uppermost line refers to the variable with most
impact. A normalized AUC is computed and shown in the legend, performing an efficient
aggregation of the information in the ranking with respect to the variable importance.
The AUC scores show that well known quantities contribute most to the separation of the
signal of the Higgs boson from the background processes, for example, the reconstructed
mass of the Higgs boson (DER_mass_vis and DER_mass_MCC) or the invariant mass of the
dijet system. On the contrary, variables associated with the azimuth contribute very little
to the separation power of the NN because collider events are invariant in the transverse
plane.

To provide additional detail, figure 3.8 shows the marginal distributions of the variables,
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Table 3.2: The results of the sensitivity analysis up to the second order with the first and last 20
ranks ordered by sensitivity and the corresponding contributing variables. It should be noted
that a single variable in a row indicates a sensitivity score from a first order Taylor coefficient
whereas all others are derived from second order coefficients.

Rank Variables 〈ti〉 × 10−3

1 DER_mass_vis DER_pt_ratio_lep_tau 3.061
2 DER_deltar_tau_lep DER_mass_vis 2.852
3 DER_mass_vis PRI_lep_pt 2.722
4 DER_deltar_tau_lep DER_pt_ratio_lep_tau 2.318
5 DER_pt_ratio_lep_tau PRI_lep_pt 2.182
6 DER_mass_vis DER_mass_vis 2.144
7 DER_mass_MMC DER_mass_vis 2.056
8 DER_deltar_tau_lep PRI_lep_pt 2.023
9 DER_mass_jet_jet DER_mass_vis 1.837

10 DER_mass_vis 1.806
11 DER_mass_MMC DER_pt_ratio_lep_tau 1.539
12 DER_mass_transverse_met_lep DER_mass_vis 1.478
13 DER_mass_jet_jet DER_pt_ratio_lep_tau 1.447
14 DER_deltar_tau_lep DER_mass_MMC 1.446
15 DER_pt_ratio_lep_tau 1.443
16 DER_mass_MMC PRI_lep_pt 1.438
17 DER_deltar_tau_lep DER_mass_jet_jet 1.366
18 DER_deltar_tau_lep 1.355
19 DER_mass_jet_jet PRI_lep_pt 1.337
20 DER_mass_MMC DER_mass_MMC 1.312

. . .
476 PRI_tau_eta PRI_tau_phi 0.020
477 PRI_jet_leading_pt PRI_met_phi 0.019
478 PRI_jet_leading_eta PRI_jet_subleading_eta 0.019
479 PRI_jet_leading_eta PRI_lep_phi 0.019
480 PRI_jet_subleading_phi PRI_lep_phi 0.019
481 DER_sum_pt PRI_tau_phi 0.019
482 DER_sum_pt PRI_met_phi 0.019
483 PRI_jet_num PRI_met_phi 0.018
484 DER_prodeta_jet_jet PRI_met_phi 0.018
485 PRI_lep_eta PRI_met_phi 0.018
486 DER_pt_tot PRI_met_phi 0.018
487 PRI_jet_subleading_phi PRI_met_phi 0.018
488 DER_sum_pt PRI_tau_eta 0.018
489 PRI_lep_eta PRI_tau_phi 0.018
490 PRI_jet_num PRI_lep_phi 0.017
491 PRI_jet_leading_eta PRI_lep_eta 0.017
492 PRI_jet_leading_eta PRI_met_phi 0.016
493 PRI_met_phi PRI_tau_eta 0.015
494 PRI_lep_phi PRI_tau_eta 0.015
495 PRI_jet_leading_eta PRI_tau_phi 0.014
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Figure 3.6: The left figure visualizes the distribution of the ranked first and second order features
with a steep fall of the respective sensitivity scores. The threshold at 1.523 × 10−3 is put in
the middle of the largest and smallest score and used to select the most influential variables.
The right hand side shows the ROCs for the training with all variables, only the variables
contributing to the ranks above the threshold and all other variables, successfully validating
that the sensitivity analysis has identified the most important features.

which contribute to the first 11 ranks in table 3.2 and the according two dimensional
distributions of their combinations. Each subfigure is labeled with the respective place-
ment in the ranking, which allows to relate the sensitivity of the NN function to features
in these spaces. It should be noted that the figure shows the input variables in the
transformed space after application of the x → (x − µ)/σ transformation, such as the
inputs are given to the NN function. Especially in more complex learning tasks, the
measured sensitivity of the NN output does not have to map strictly to a striking feature
in the input space because there is no guarantee that the NN has learned the perfect
classifier which reflects exactly the likelihood for finding signal or background. Therefore,
analyzing the relations between table 3.2 and figure 3.8 must be carried out with caution.
Nevertheless, all distributions of signal and background related to the first ranks show
a clear separation of the classes, which verifies that the NN has learned useful relations
to solve the classification objective. Examples which reveal prominent features that are
only accessible in the two dimensional subspace can be found in the subfigures related
to rank 1, 2 and 5, whereas for the presented two dimensional distributions with the
lowest sensitivity scores, see 17, 19 and 32, such features are not visible. Further, the
subfigure related to rank 6 is an example for the second order coefficient highlighted
in the study in figure 3.4, which is sensitive to information hidden in the variance of
overlain distributions.

To demonstrate the usefulness of the sensitivity analysis for the validation of the NN
model, the variables DER_mass_vis and DER_mass_MMC are replaced by normal distribu-
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Figure 3.7: Computed is the cumulated count of appearances of the respective variable in the
ranking in table 3.2 from the first to the last rank. The score in the legend represents the AUC
of the cumulated count normalized to the area of the figure given by 31 × 494.

tions. For the background events, the values are uncorrelated, however, the signal events
are fully correlated in these two variables. Such an error may happen by a mistake in
the variable assignment, but is also possible due to complex issues in the simulation. An
exemplary mistake is the usage of the same random seed to simulate the properties of
objects, which may introduce artificial correlations. It should be noted that this arti-
ficial feature is not visible by checking the marginal distributions, only by an analysis
of the two dimensional subspace. The training on this scenario gives an AUC of 0.96,
outperforming the training on the unaltered data significantly but the performance is
massively degraded on data without the correlation of the signal events, resulting in an
AUC of 0.84. However, the sensitivity analysis for this NN shows on the first rank the two
dimensional subspace of DER_mass_vis and DER_mass_MMC with a score of 3.1 × 10−2,
successfully identifying the cause of the apparent superior performance. Also, the score
is one magnitude larger than others, for example see table 3.2 as reference, clearly in-
dicating a striking feature in that subspace. The validation of the input space guided
by the sensitivity analysis of the NN function is able to identify the mismodeling in the
simulated events right away whereas in a generic validation strategy the subspace is only
one of many.
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Figure 3.8: Distribution of the preprocessed input variables, which contribute to the first 11
ranks in table 3.2 shown separately for signal (red) and background (blue). The main diagonal
elements of the grid show the marginal distributions and all other subfigures depict the two
dimensional distribution of the respective variable pairs. The numbers indicate the placement
in the ranking, whereas on the main diagonal in addition the ranking with respect to the first
order coefficient is given in the brackets.
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Controlling the dependence of the machine

learning model on systematic variations

This chapter discusses techniques which allow to gain a fine granular control over the
dependence of the ML model on the input space being important for data analysis in
HEP due to the presence of systematic uncertainties. Existing solutions are discussed and
a novel approach is presented, which allows the inclusion of information about variations
in the inputs space in the NN optimization, enabling robust and reliable measurements
with respect to systematic uncertainties.

4.1 About the necessity of full control over the machine

learning model for data analysis in high-energy

particle physics

In HEP, many use cases exist for applications, which require full control over the ML
model. An example from object reconstruction is jet tagging, which classifies reconstructed
jets for further analysis, for example with respect to the originating particle [39] or
advanced features like the jet substructure [91]. Such taggers are often required to be
invariant in specific properties of the object, e.g., the tagger for the jet substructure is
desired to be insensitive to the jet mass to reduce the impact of systematic uncertainties
in the background modeling [92–94]. However, the classification efficiency depends on
the jet mass, which is why the ML model develops the undesired dependency during
the training. Without special techniques to take control over the dependencies of the
ML model in a fine granular way, the only solution is the complete removal of the
corresponding information from the training. This simple solution raises in turn the issue
that the performance of the tagger might be heavily degraded. But more problematic
is that the complete removal of the information about the jet mass is complicated by
its correlations to other inputs such as the kinematic properties of the constituents.
Most of the methods discussed in section 4.2 and the novel approach in section 4.3 are
specialized on NNs and allow to control the dependence of the NN function on specific
features in the input space, which enables an optimization of the model that ignores
given information explicitly. Another use case being more closely related to the analysis
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presented in chapter 2 is the application of such techniques for the construction of ML
based observables being input to the statistical inference. Once the input space and the
statistical model are scrutinized with the validation strategy discussed in chapter 2 and
the techniques presented in chapter 3, potentially discovered mismodelings have to be
treated accordingly. A thinkable scenario is that a mismodeling is successfully identified
but a precise determination of the related uncertainties is not accessible, which forces the
analyst to remove the respective information from the analysis in favor of a more robust
measurement. A related scenario is the precise knowledge about a systematic uncertainty,
which impairs the sensitivity of the measurement significantly and in consequence an
improvement is expected from a less affected ML based observable, which reduces the
propagation of the respective uncertainty into the measurement. Chapter 5 discusses this
scenario extensively.

In summary, the availability of methods to control the dependency of the ML model
on the input space is a necessity for multivariate analysis in HEP to tackle challenges
posed by systematic uncertainties in the measurement. Techniques are required, which
are able to manipulate the dependency of the ML model to arbitrary variations in the
multidimensional input space, offering capabilities beyond the decorrelation against a
single input variable. Section 4.2 gives an overview over existing solutions and discusses
the challenges, which are addressed by the novel method introduced in section 4.3.

4.2 Overview over existing approaches

Frequently used for ML tasks in HEP are boosted decision trees (BDTs), which consist
of decision trees whose inputs are weighted in each training iteration with respect to
previous misidentifications to optimize the training objective. The reweighting during
the training can be modified to take into consideration besides the misidentification rate
also the uniformity of the classification with respect to a subspace of the input space [95,
96]. The technique can be used in HEP analysis to reduce the dependence of the BDT on
the observables of interest, successfully demonstrated in [97] with a Dalitz plot analysis.
A technical challenge is the application of the method because a custom implementation
of BDTs is required whereas the following NN based techniques can be implemented with
existing software validated by a large user base.

Based on NNs, the concept of adversarial neural networks (ANNs) [98] is suitable to
implement the penalty to variations in the input space. The idea is to train a second
NN with the objective to categorize the output of the actual classifier with respect
to the variation [99]. The capability of the adversary to perform the categorization is
introduced in the training objective as a minimax problem, forcing the actual classifier
to be invariant with respect to the variation. The NNs are trained in an alternating
manner with the trainable parameters fixed for the respective other NN. The approach
has been proven to be successful in HEP applications, for example to mitigate systematic
uncertainties in the search for new physics [100, 101]. However, the application of the
technique is challenging due to the instability of the minimax optimization [98, 102],
the large number of hyper parameters introduced by the second NN and the choices for
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the alternating training procedure. Further, the variations in the input space must be
available as modified datasets and cannot be given in the form of statistical weights,
which restricts the use cases in HEP substantially. Encoding the information about the
variations with statistical weights reduces the complexity of an analysis significantly
because an analysis in HEP typically processes a large amount of data, which makes the
reprocessing of modified datasets computationally expensive.

For these reasons, methods are desired with a smaller complexity than an approach with
ANNs, which also support the description of variations in the input space with statistical
weights. A solution satisfying these requirements is proposed in [103]. It solves the task
by introducing a penalty term in the training objective, which reflects a measure of
correlation between the NN output and the variation of interest. The method is shown to
achieve similar performance to an ANNs at the cost of a single additional hyperparameter
and improved convergence properties. Further, section 4.3 presents a novel technique
with similar properties based on the approximation of counts and histograms, which are
used to penalize the dependence of the NN response on variations in the input space.

Another group of methods implement the decorrelation to systematic uncertainties
implicitly by optimizing the analysis objective instead of including a penalty on a specific
variation in the input space. The analysis objective can be implemented with an approx-
imation of the signal significance [104, 105] or with the variance of the signal strength
based on the likelihood [106, 107]. Including systematic uncertainties in the objective
results in an optimization, which reduces the dependence on the systematic variations
in the input space if the objective improves with the mitigation. It should be noted that
the usefulness of an uncertainty mitigation with respect to the analysis objective is a
priori not known. However, the techniques based on the optimization of the analysis
objective include this tradeoff naturally in the training whereas methods with an explicit
penalty on the systematic variation must introduce a new hyperparameter. The number
of introduced hyperparameters are not manageable for complex analyses with hundreds
of systematic uncertainties, restricting the use case of methods, which penalize systematic
variations explicitly. Chapter 5 is dedicated to the optimization of the ML model on the
analysis objective and discusses the challenges and solutions.

4.3 Controlling the dependence of the neural network

function on systematic variations in the

multidimensional input space

This section introduces a novel method to control the dependence of the NN function to
variations in the input space, for example being useful for analysis in HEP to decorrelate
against physical observables or to reduce the impact of systematic uncertainties in the
measurement. A dedicated paper about this method was published in [108].
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4.3.1 Method

The goal of the new method described in this section is the construction of a loss function,
which penalizes the dependence of the NN function f(x) on variations x + ∆ from the
nominal input space x. The varied inputs x + ∆up,down can represent systematic shifts,
which define the systematic uncertainties in the statistical model in order to decorrelate
against the respective uncertainty, see section 2.5 for details. Another possible scenario
in HEP analysis is using different mass hypothesis for the definition of the variation
∆mass = xmass1

− xmass2
to suppress any kinematic bias in the measurement due to the

sensitivity of the NN to the observable.
Since one of the requirements for the method is the support of variations described

by statistical weights, the typical procedure to compare f(x) to f(x + ∆) are counts
and histograms. However, the mathematical operation of a count is not differentiable
on the bin edges and zero otherwise, which prohibits the computation of the analytic
gradient with automatic differentiation. Therefore, this method uses an approximation
for the count operation with a valid gradient. A suitable approximation is a Gaussian
function G with the standard deviation set to the half width of the bin and normalized
to max (G) = 1. Figure 4.1 visualizes the setup in one dimension, but a similar setup is
possible with a multivariate Gaussian for multidimensional histograms. The gradient of
G is well defined, peaking at the bin boundaries and zero at the bin center, which encodes
for the gradient with respect to the trainable parameters a large change for events on
the boundaries with a decreasing strength towards the center and in a distance to the
boundaries. It should be noted that the overall scale of the gradient is not of importance
since the gradient is scaled by the learning rate, which is a hyperparameter of the training
and typically dynamically adapted by the optimizer algorithm [64].

For N examples in the dataset {x1, . . . ,xN }, the count operation translates to Nk =
∑N

i=1 Gk (f (xi)), given the bins k in the histogram of the NN output f(x). The blurred
representation of the histogram can now be used to construct a mathematical expression,
which penalizes the variation of the NN with respect to the variations ∆. Chosen for this
method is the squared relative change of Nk with respect to the variation ∆ given by

Λ (x,∆) =
1

nk

∑

k

(Nk (f (x)) − Nk (f (x + ∆))

Nk (f (x))

)2

(4.1)

with the number of bins nk.
This formulation for the similarity of f(x) and f(x + ∆) can be appended to the

actual training objective, for example a classification task using the CE function, which
results in the loss function

LΛ = LCE + λΛ (4.2)

with the hyperparamter λ controlling the strength of the penalty.

4.3.2 Application on a simple example based on pseudo experiments

This section presents the proposed method using a simple example based on pseudo
experiments. The input space of the example is shown in figure 4.2, spanned by the
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Figure 4.1: Approximation of the bin function using a Gaussian function G with the standard
deviation set to the half width of the bin and normalized to max (G) = 1.

variables x1 and x2, and is populated by the two processes signal and background. In
addition, variations from the nominal distribution are introduced for the background
process, given by two discrete shifts x2±1 of the mean. These variations can be interpreted
as the ±1σ variations of a systematic uncertainty in context of a statistical model such
as described in section 2.5. It should be noted that the scenario is deliberately the same
as discussed in [99], which proposes the usage of ANNs to solve the same task.

The training task without consideration of the variations is the classification of the
signal and background process optimized with the CE function. The NN consists of two
hidden layers with 200 nodes each and ReLU activations [89]. The output layer has a
single node and the sigmoid activation function. The trainable parameters are optimized
on 5 × 104 examples, a batch size of 103 per gradient step and the Adam algorithm [64].
Once the training has not improved for five epochs in a row on a statistically independent
dataset of the same size, the training is stopped. Eventually, all results are evaluated on
a separate dataset with 105 examples. For the construction of the penalty term Λ, ten
equidistant bins are used in the range [0, 1] of the NN output and the hyperparameter
λ is set to 20. The variations are implemented with modified versions of the nominal
dataset, but the usage of statistical weights for the same purpose is demonstrated in
section 4.3.3.

The impact of the additional term Λ in the loss function is visualized in figures 4.3 and
4.4. Figure 4.3 shows the distribution of the NN output f for a training with only the
CE loss and the same distribution if the penalty term Λ is used in addition. The change
of the NN output with respect to these variations is minimized for the NN function fLΛ

,
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Figure 4.2: Simple example based on pseudo experiments with the input space spanned by the
variables x1 and x2. The training task is the classification of the classes signal and background

with the means ( 0 0 ) and ( 1 1 ), and the covariance matrices
(

1 −0.5
−0.5 1

)

and
(

1 0
0 1

)

,

respectively. The proposed method to control the dependence of the NN function on the input
space is studied using variations of the mean of the background distribution with x2 ± 1.

whereas fLCE
is strongly influenced by the variation of x2. The successful decorrelation

against the variation is visible in figure 4.4, which shows the distribution of the NN output
in the input space. For the training including the additional term Λ in the optimization,
the surface of the NN function is aligned with the direction of the shifts, which results in
a robust classifier with respect to the variations. Translated to the physics use case, the
NN function avoids the propagation of the systematic uncertainty to the output, which
provides a robust observable for a measurement. The figures can be compared to the
distributions in [99] using an ANN, which show a similar outcome.

A suitable metric to measure the impact of the decorrelation with respect to the
classification task is the AUC of the ROC, which is evaluated on the nominal dataset
and the instances with the variations. The ROCs on the dedicated datasets measure
the dependence of the classification on the actual instantiation of the variation in data.
Figure 4.5 shows large fluctuations in the AUC for the NN solely trained on the CE loss,
whereas the NN trained with the additional penalty term Λ has the same performance
in all cases but at the cost of a reduced separation power.

The impact of the hyperparamter λ is studied in figure 4.6. The figure shows for different
λ parameters the resulting classification boundary at f(x) = 0.5. Setting λ = 20, such as
used in the discussion before, fully decorrelates against the variations, but the method also
allows to control the dependence in a fine granular way. For example λ = 0.1 shows just
a slight rotation of the classification boundary. The NN function with λ = 0.5 rotates the
classification boundary further towards the fully decorrelated case, though the boundary
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Figure 4.3: Output distributions of the NN function f optimized with only the CE loss (left)
and the penalty terms Λ in addition (right). The band around the nominal distribution of
the background process shows the change of the NN response with respect to the introduced
variations.
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Figure 4.4: Distribution of the NN function in the input space for the training using only the
CE loss (left) and the penalty term Λ in addition (right). The markers show the means of the
nominal distributions and variations, such as labeled in figure 4.2.
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Figure 4.5: The ROCs are evaluated for the nominal dataset and separate datasets with the
variations, shown as the colored bands, with the NN only trained on the CE loss compared to
a training with the penalty term Λ applied in addition. The NN trained with the penalty term
has the same performance on all datasets.

has a kink at (−0.5, 2). This is explained by the mathematical constraints implemented
by the loss function with no strong penalty in phase spaces with little population of
any process. Therefore, the NN function shows in these regions effects from the weight
initialization and the statistical component of the simulated dataset. λ = 5 shows again
an increase in the decorrelation and is explicitly included to discuss another feature
due to the mathematical formulation of the loss function. Since the additional term Λ
consists of two components for the two variations and the fact that the optimization of
a NN rarely converges to a global minimum, only a weak penalty exists to prevent an
unequal decorrelation of multiple variations. The equal optimization of the two variations
could be strongly enforced by adding an additional term in the loss function, for example
(Λ(∆up) − Λ(∆down))2, but is also strengthened naturally with a large value for λ towards
the full decorrelation.

4.3.3 Application on an example from high energy particle physics

This section discusses the proposed method in context of a more complex example from
HEP. Similar to section 3.3.4, the dataset of the Higgs ML challenge is used. Details about
the dataset can be found in the referenced section and in [90]. In summary, the dataset
consists of simulated events described by 30 variables, which are used to classify the events
either as signal originating from a SM Higgs boson decaying into a lepton and a hadronic
tau or as background from a mixture of processes with a similar signature. In addition to
the original dataset, a systematic uncertainty is introduced resembling the finite accuracy
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Figure 4.6: The classification boundary of f(x) in the range [0.48, 0.52] is visualized in the input
space for various values of the hyperparameter λ. The boundaries overlay the distributions of
the signal and background classes in the nominal case. Figure 4.2 shows the input space with
the variations.

for the reconstruction of tau leptons in the detector. The example assumes a typical 3 %
uncertainty on the tau momentum pτ

T [109], which is named PRI_tau_pt in the dataset.
The ±1σ shifts are implemented with the transformation PRI_tau_pt · (1 ± 0.03) using
statistical weights. The propagation of the systematic uncertainty on correlated variables
such as the invariant ditau mass mττ (DER_mass_MMC) and the missing transverse energy

��ET (PRI_met) is visible in figure 4.7. To model correctly the migration effects in and
out of the event selection, only events with pτ

T > 25 GeV are used for the NN training
and the results, which is well above the 3 % variation of the minimal pτ

T of 20 GeV in the
original dataset.

The NN architecture is the same as for the simple example in section 4.3.2. The training
uses 75 % of the training dataset for the optimization of the trainable parameters with
the Adam algorithm [64] and a batch size of 103. If the loss does not decrease for ten
epochs in a row on the remaining dataset, the training is stopped. The loss function
consists of the CE function and the additional penalty term Λ with the hyperparameters
λ = 20 and 20 equidistant bins in the range [0, 1] of the NN output.

Figure 4.8 shows the distribution of the NN output for the training solely on the CE
function and the penalty term Λ in addition. The bands around the nominal distribu-
tions visualize the uncertainty of the NN output caused by the introduced systematic
uncertainty on pτ

T. A decorrelation of the NN response with respect to the systematic
uncertainty can be observed for the signal process. However, the distribution of the back-
ground events has an unchanged uncertainty band, which is explained by the dominant
normalization uncertainty for this process. Easily visible in figure 4.7, the background
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Figure 4.7: Example distributions of variables in the Higgs ML dataset for the signal (left) and
background (right) classes. The ratio below each figure compares the nominal distribution (grey)
to the ±1σ up (green) and down (orange) variations describing the systematic uncertainty on
pτ

T.

68



Controlling the dependence of the machine learning model on systematic variations

0.0 0.2 0.4 0.6 0.8 1.0

fLCE

100

101

102

103

104

105

106
C
ou

n
t

Signal

Background

0.0 0.2 0.4 0.6 0.8 1.0

fLΛ

100

101

102

103

104

105

106

C
ou

n
t

Figure 4.8: Distribution of the NN output for the NN function trained solely on the CE function
(left) and the penalty term Λ in addition (right). The band around the nominal distributions
are enlarged by a factor of 5 for improved visibility and show the change of the NN response
due to the introduced systematic uncertainty on pτ

T.

class has a steeply falling distribution directly at the boundary of the analysis selection at
pτ

T = 25 GeV, which causes a large number of events to migrate in and out of the selection.
On the contrary, the signal events peak with a distance to the boundary, which results in
a more pronounced shape altering effect of the systematic uncertainty. A crucial detail
about such decorrelation techniques is the fact that it is impossible to decorrelate against
normalization uncertainties since such variations cannot be mitigated by construction.
Therefore, the effect of the penalty term Λ in this example is expected to be mainly
visible for the signal process, which is the case in figure 4.8.

The effect of the decorrelation with the penalty term Λ can be more precisely studied
with a fit of the statistical model, which uses the NN output as observable. The con-
struction of the model follows the description in section 2.5 with an Asimov dataset, but
introduces two nuisance parameters ηnorm and ηshape for the systematic uncertainty on
pτ

T, which factorize the effects on the normalization and the shape. The normalization
effect is found to be 2.2 % and 7.6 % for the signal and background process, respectively.
It should be noted that this setup with two independent parameters is not fully correct
with respect the originally introduced systematic uncertainty, but allows to estimate
precisely the effect of Λ on the normalization and shape by studying the correlations
of the parameters ηnorm and ηshape with the signal strength µ. Both statistical models,
using fLCE

and fLΛ
as observable, have a correlation of ηnorm with µ of 35 %. However,

the parameter ηshape has a correlation of 55 % with µ in the case of fLCE
but just 5 % for

fLΛ
, which validates the successful decorrelation of the NN function using the penalty

term Λ.
The resulting significance of the signal process is shown in figure 4.9 for various values of
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Figure 4.9: Significance of the signal process with respect to various values of λ. The points
with λ = 0 and λ = 20 correspond to the two cases shown in figure 4.8. The bars are enlarged
with a factor of five for improved visibility.

λ. In contrast to the previous discussion, these results are retrieved with a single nuisance
parameter representing the systematic uncertainty. The bars visualize the outcome for
the significance if the statistical inference is applied on an Asimov dataset with the ±1σ
variation in the data compared to the nominal expectation indicated by the marker. The
statistical model itself stays the same for all experiments. A tradeoff is clearly visible
between the nominal significance and the variation thereof with the ±1σ instantiations of
the systematic variation in data. The highest significance of 6.7σ is continuously reduced
with increasing values of λ due to the removal of information from pτ

T, falling to 5.2σ at
λ = 20. But the reduced nominal significance comes with an increase in the robustness of
the measurement. The variation of the significance falls from 7.5 % at λ = 0 to 1.8 % at
λ = 20, successfully improving the reliability of the result with respect to the systematic
uncertainty.

To visualize the event selection performed by the NN, the upper panel in figure 4.10
shows the distribution of pτ

T inclusively and in a signal enriched region. The signal
enriched subsets are obtained from events with a NN output larger than 0.7, see figure 4.8
for reference. The distributions show for fLCE

large sculpting effects, especially for the
background process, which follows a signal like distribution. However, the distributions for
fLΛ

are close to the inclusive distributions, which validates that the NN has neglected the
information from the variable pτ

T to separate signal and background. In the lower panel
in figure 4.10, the procedure is repeated for the reconstructed invariant mass of the Higgs
boson mττ . For this variable a strong dependence of the NN output with respect to mττ

is visible for both trainings. The distributions for signal and background related to fLCE

are very similar in the signal enriched region, which shows that no residual information
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for the separation of the classes is left. But the same distributions in the signal enriched
region for fLΛ

can still be used to separate signal and background, although also a clear
separation to the inclusive background distribution is visible. This is explained by the
shared information between pτ

T and mττ being removed from the training by the penalty
term Λ, which enables the optimization to rely only on partial information of mττ .
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T and mττ for the signal and background class, shown inclusively
and in a signal enriched region defined by the NN output being greater than 0.7.
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Optimal statistical inference with model

optimization based on likelihood information

This chapter studies novel strategies for data analysis in HEP. Typical approaches
used in current HEP analyses are analyzed in order to identify the insufficiencies, which
lead to suboptimal results. Finally, a novel approach is introduced, which is based on the
optimization of a ML model using likelihood information and allows to find an optimal
observable in consideration of all statistical and systematic uncertainties. The capability
of the new method to perform data analysis with the statistically optimal sensitivity is
demonstrated with a simple example based on pseudo experiments and the suitability of
the approach in practise is shown with a more complex example in the context of HEP.

5.1 About the efficiency of data analysis in high energy

particle physics

A typical task of data analysis in HEP is the inference of the presence or absence of a
physical process in data by performing a search which may result in a discovery, or the
measurement of the cross section once the process is established. Most analyses, such as
those performed by the CMS and ATLAS collaborations at the LHC, solve these analysis
tasks by following the cut and count approach, which compares in selected spaces of the
dataset the compatibility of observed counts with the signal and background hypotheses.
The simple cut and count strategy has improved over the decades by using histograms
instead of single counts and a superior performance has been achieved with the usage
of multivariate analysis techniques such as BDTs and NNs for the event selection. This
strategy for data analysis in HEP is established since the early 2000s and led to the
discovery of the Higgs boson in 2012 [12, 13]. Further improvements have been observed
by using the output of such ML methods as the observable in the statistical inference
instead of using physically motivated quantities [44, 110–112]. The analysis described in
chapter 2 is one of this kind and shows an improved sensitivity compared to a cut based
strategy [113].

While analyzing the development of data analysis in HEP in the past, the question rises
why improved strategies were found repeatedly over years and the naturally following
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Figure 5.1: Overview over the typical strategy for data analysis in HEP, for example followed
by most analyses of the Higgs boson carried out by the CMS and ATLAS collaborations at
the LHC.

question is whether there is at the end an optimal strategy for data analysis in HEP. These
questions can be addressed by analyzing the typical data analysis strategy, visualized in
figure 5.1. Assuming that the data analysis is based on an initial dataset containing all
available information, the statistically optimal result could be achieved by performing
the statistical inference directly on this high dimensional dataset. Powerful statistical
tools are available with the Neyman Pearson lemma [53] and the theorem by Wilks
and Wald [54, 55], which promise an asymptotically optimal result. However, the key of
these statistical methods is the likelihood function, which is not available in this high
dimensional input space for analysis in HEP. Because the expectation in the statistical
model is derived with simulation, the complexity of today’s experiments and the curse
of dimensionality makes the derivation of probability distributions unfeasible in high
dimensional spaces. Therefore, the typical analysis strategy is heavily based on the
reduction of the dimensionality so that the statistical methods can be applied on a low
dimensional dataset. After the event selection, which picks the events to be considered in
the statistical inference, the first step of the dimensionality reduction is the selection or
crafting of sensitive observables. Driven by years of experience and detailed knowledge
about the detector and the underlying theory, the observables are designed to contain
as much information as possible about the process of interest. Besides the usage of high
level observables, the complexity of the problem is reduced further by summarizing the
information with histograms. Histograms are especially suitable for the dimensionality
reduction because the probability distribution of counts is well known and makes the
likelihood function easily accessible. At the end, the complexity of the initial dataset
containing approximately O(107) events described by O(100) variables is reduced to
O(10) histograms representing the probability density of O(1) high level observables.
The optimization of the analysis is typically carried out manually by studying the impact
of the free parameters in the analysis procedure, e.g., the choice of the observable or
the number of bins, on the result of the statistical inference. Since analyses in HEP are
build up blindly to the actual data using an artificial Asimov dataset [58], the iterative
optimization of the free parameters does not bias the result.

All inefficiencies of the previously described analysis strategy stem from the dimen-
sionality reduction. The selected high level observables may not carry all information
available in the initial dataset and also summarizing the information with histograms
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is subject to information loss. These inefficiencies can be addressed with more powerful
high level observables, for example the output of a NN, and a more fine granular binning
for the histograms. However, it should be noted that the optimal sensitivity of an analysis
is a priori not known and therefore no one can tell whether the current best analysis
strategy could still be significantly improved.

In addition to the challenges posed by the dimensionality reduction, data analysis
in HEP is subject to systematic uncertainties, which has direct implications on the
search for the optimal observables. An observable could be optimal with respect to
the properties predicted by theory but the experimental uncertainties may degrade the
sensitivity considerably. The number of systematic uncertainties, which contribute to a
typical HEP analysis, is in O(100), turning the task to find the best possible observable
highly challenging.

The previously discussed reasons contribute to the fact that no definite solution for
data analysis in HEP is established. Data analysis in HEP is very complex and offers
a large parameter space to optimize the specific analysis objective. The manual opti-
mization of these parameters increases the required time to develop such an analysis
substantially and does not promise an optimal solution. To tackle these conceptual is-
sues, the following sections discuss modern approaches for data analysis in HEP, which
promise asymptotically optimal results. A novel analysis strategy is proposed, which uses
modern ML techniques to optimize the free parameters of the system directly on the
result of the statistical inference, while taking into account all statistical and systematic
uncertainties. The proposed approach is not subject to excessive manual optimization,
yielding better and faster results from analyses in HEP. Section 5.2 gives an overview over
the current literature and existing solutions, which is followed by section 5.3 introducing
a novel approach to achieve the previously discussed goals. The novel method is studied
in section 5.3.2 using a simple example with pseudo experiments and in section 5.3.3
with a more complex example from HEP.

5.2 Overview over existing approaches

Various methods have been developed in the HEP community to improve the data
analysis procedure compared to the strategy discussed in section 5.1.

For the discovery of the Higgs boson, an innovative strategy was followed in the analysis
of the decay H → ZZ → 4l [12, 114]. The analysis strategy uses the matrix element
method [59, 115, 116], also known as MELA, to craft a powerful observable given by the
likelihood ratio, which reflects the probability that the observed kinematic configuration
of the two Z bosons originates from the signal process or the dominant background
ZZ/Zγ∗. As known from Neyman Pearson [53], the likelihood ratio is the most powerful
discriminator and therefore the dimensionality reduction from the kinematic properties
of the reconstructed Z bosons to the scalar response of the method is in theory optimal.
The observable is only optimal in theory because the detector effects have to be taken
into account, which can be done either with analytic approximations or by simulation.
The first solution affects the performance of the observable whereas the second solution
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requires significant computing resources. Another challenge is the computation of the
likelihood ratio, which is not trivial and therefore not available for all physical processes.
Further, the observable is only optimal with respect to the kinematic properties of the
decay products but does not include additional information such as the discriminators for
the object identification or other algorithms being part of the reconstruction. Although
the MELA approach is for these reasons in practise not optimal, the method provides
a powerful discriminator, which also has been exploited in HEP analyses as input to
subsequent ML methods, for example in [111] and in the analysis presented in chapter 2.

While the matrix element method computes the likelihood ratio directly using the
underlying theoretical model, another group of methods performs this task with infor-
mation from simulation. The advantage is the correct modeling of the detector response
and the possibility to include all available information, which promises a more accurate
and hence more powerful estimate of the likelihood ratio. In HEP, the likelihood in the
input space can not be derived analytically, but the simulation is able to generate events
from the probability distribution of the respective physics model. ML methods such as
NNs can be used to learn the likelihood function, which then serves as an approximation
of the intractable analytic form. First discussed in [117], this approach has been adopted
by a group of methods [118–121], which provide an optimal projection of the information
in the input space to a single observable. A challenge is the technical infrastructure to
carry out the training, which is addressed by [122] but optimized for phenomenological
studies. Also, the methods require a significant amount of simulated events, which poses
a computational challenge for complex simulations like the CMS detector. Further, the
methods are not explicitly designed to include systematic uncertainties, although addi-
tional parameters could be added to the simulation to reflect the systematic variations
in the input space. The applicability of these methods for analyses such as described in
chapter 2 is still limited because typically not all systematic variations are described by
explicit shifts in the input space but by statistical weights.

Another group of techniques puts the focus on the inclusion of systematic uncertainties
in the optimization of the dimensionality reduction. First proposed in [106, 107], NNs
can be used to learn a dimensionality reduction, which is optimal with respect to the
measurement. To achieve this goal, the training objective is aligned with the analysis
objective by using the performance of the statistical inference, for example the variance of
the POI, as the loss function. The challenge for likelihoods based on Poisson statistics is
the count operation, which has no suitable derivative to use automatic differentiation for
the optimization and therefore prohibits the convenient usage of modern NN frameworks
based on computational graphs. The method proposed in [106] solves the issue by using
the softmax function with a small temperature parameter as a replacement for the count
operation, which successfully enables again the computation of a valid gradient but uses an
approximation of a count as input to the Poisson statistics, which may affect the validity
of the statistical inference. In contrast to this solution, the novel method introduced in
section 5.3 keeps the count operation unchanged and makes an approximation solely for
the gradient.

In principle, any ML technique, which mitigates systematic uncertainties can be used
to construct a dimensionality reduction with improved properties compared to a train-
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ing only on the nominal dataset. Chapter 4 is dedicated to such techniques with an
overview over existing methods in section 4.2. Using such methods with many system-
atic uncertainties poses a practical challenge since every uncertainty introduces a new
hyperparameter, which must be tuned manually. The advantage of the novel technique in
section 5.3 is the implicit optimization of these parameters with respect to the analysis
objective, which significantly simplifies the usage for data analysis in HEP with O(100)
systematic uncertainties.

5.3 Optimal statistical inference in the presence of

systematic uncertainties using neural network

optimization based on binned Poisson likelihoods with

nuisance parameters

This section introduces a modern approach for analysis in HEP using NNs to find
the optimal dimensionality reduction, which is enabled by a novel solution to train
on information from the binned Poisson likelihood including nuisance parameters. The
approximated gradient for the count operation allows to keep the exact formulation of the
likelihood for the statistical inference and at the same time enables the optimization of the
NN function with respect to the analysis objective in consideration of all statistical and
systematic uncertainties. A dedicated paper about this method was published in [123].

5.3.1 Method

The analysis strategy powered by the techniques discussed in this section is based on
using the analysis objective, for example the variance of the POI, as loss function of the
NN optimization, which is then supposed to learn an optimal dimensionality reduction.
To enable the optimization with modern ML tools using automatic differentiation, the
likelihood L(θ) with the POIs and NPs θ is required to be analytically differentiable.
Although the statistical framework used in most HEP analyses at the LHC is based
on binned Poisson likelihoods, this property is not a requirement since the typical sta-
tistical tools are based on numerical differentiation [51, 56, 124]. However, numerical
differentiation is not suitable for the optimization of a NN since the derivative for each
parameter requires at least two evaluations of the likelihood, which is computationally
unfeasible for the typical number of trainable parameters in NN functions. To solve this
problem, it has to be taken care that the established statistical methods are still usable
with the novel analysis strategy, since the validation of new methods for the statistical
inference requires exhaustive studies by the HEP community to ensure reliable results.
The likelihood function

L(θ) =
h
∏

i=1

P(di|µsi + bi) (5.1)

with the data d, the signal and background expectations s and b with the signal strength
modifier µ, and the Poisson function P has only a single mathematical operation that
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is not analytically differentiable, which is the count operation used to fill the h bins of
the histogram. Although the summary statistic has to be a count to be usable with the
established methods for statistical inference using Poisson statistics, the computation of
the gradient itself for the training can be modified. Chosen is the gradient of the count
approximation already used in chapter 4, which is based on the Gaussian function G with
the standard deviation set to the half width of the bin and normalized to max (G) = 1.
Figure 4.1 visualizes the approximation. It should be noted that compared to the method
in chapter 4 only the gradient is replaced to enable the optimization of the NN parameters,
not the computation of the count itself in general.

All mathematical operations used to add NPs to the statistical part of the likelihood
in equation 5.1 are analytically differentiable, see section 2.5 for a detailed description of
the mathematics. To simplify the following introduction of the method, the parameters
in the likelihood θ = (µ, η) are reduced to the signal modifier µ as POI and the NP η.
The likelihood including the NP is given by

L(θ) =
h
∏

i=1

P(di|µsi + bi + η∆i) · N (η) (5.2)

with the systematic variations ∆ and the standard normal distribution N as constraint
term for the NP η. In case the systematic variation is not symmetric, the impact of the NP
on the expectation in the likelihood can be written as max (η, 0) ∆up + min (η, 0) ∆down.

The summary of the information in the dataset {x1, . . . ,xn} with n events described by
d variables is implemented using the NN function f(x,ω) with the trainable parameters
ω. Although the examples in the following are restricted to a one dimensional histogram,
the gradient approximation is also usable with a multivariate Gaussian function and k
output nodes for the NN f .

Since the performance of an analysis is typically measured in terms of the variance of
the estimate for the POIs, the optimization of the trainable parameters ω is performed
with respect to this metric to align the analysis objective and the objective of the NN
training. To do so, an analytically differentiable formulation of the variance of the POI
is required. In the statistical inference of a HEP analysis, the variance, or uncertainty,
of the estimate for the POI is retrieved by profiling the likelihood ratio, section 2.5 gives
additional details. Since the procedure of profiling the POI, which means minimizing at
each point of the likelihood scan all NPs, is not a closed analytic formula, an asymptotic
estimate for the variance is used given by the Fisher information [125]. The Fisher
information of the likelihood

Fij = E

[

∂2

∂θi∂θj
(− log L(θ))

]

(5.3)

can be used to estimate the variance of the estimate for any parameter in θ. To include
this approximation successfully in the method, the expectation denoted by E [. . . ] in
the formula is removed by using as data the Asimov dataset [58], which reflects the
median expected outcome of the measurement. Then, the variance of the estimate for
the parameter θi is given by

Vii = F−1
ii . (5.4)
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This holds true because the estimation of the parameters θ using the likelihood is
asymptotically efficient, which implies that the variance is close to the Cramer Rao
bound [126, 127]. Assuming that the first parameter in θ is the POI µ, the loss function
used to minimize the trainable parameters ω of the NN function f is V11.

It should be noted that the computation of the asymptotic variance does not require the
likelihood ratio but only the likelihood itself. The denominator in the general likelihood
ratio test is fixed to the global best fit, so that the logarithm and the derivative in
the Fisher information remove the constant completely, simplifying the implementation
compared to the profile of the likelihood ratio. Also not trivially visible is the mechanism,
which combines the information about the parameters in θ, for example for the element V11

related to the POI µ. The matrix inversion of Fij is the key element, which mathematically
combines the parameters and mixes the NPs with the POIs. Related to the example in
equation 5.2, this allows that an improved constraint of the NP η can reduce the variance
of the POI µ.

The question whether the optimization should be capable to find an optimal dimension-
ality reduction can be addressed by analyzing the potential inefficiencies. Assuming that
the optimization converges, two operations may reduce the efficiency of the summary
statistic. A possible degradation could happen if the NN with the chosen number of
outputs k and the trainable parameters ω is not capable to learn a sufficient statistic,
meaning that the dimensionality reduction from d to k is not lossless. Trivially visible
is that in the case of k → d, the NN function becomes a sufficient statistic, but most
interesting is the case with k = 1, which is the desired case to simplify the usage of the
method in practise. In general, a strong statement about the efficiency of the dimensional-
ity reduction given by the NN function f is not possible, but a very typical analysis case
in HEP can be discussed. Assuming an analysis, which has as objective to measure the
cross section of a signal process via the signal strength modifier µ obstructed by several
background processes, it can be shown that the NN function trained on the CE function
is a sufficient statistic if no systematic uncertainties are considered [66, 106]. The CE
function minimizes the statistical part of the likelihood, such as shown in equation 5.1,
with the setting of a binary classification task separating the signal from the sum of
the backgrounds. Therefore, the optimization of V11 without NPs in the likelihood is
expected to result in the same variance of µ than a training on the CE loss, which also
can be observed in the examples discussed in sections 5.3.2 and 5.3.3. Following, the
inclusion of NPs in the likelihood, see equation 5.2, implements just a modified version
of a case in which the NN function is already a sufficient statistic. The simple example
in section 5.3.2 has a tractable likelihood in the input space, which is used to show that
the proposed method reaches the optimal performance. Also well known is that a NN
with a sufficient complexity given by the number of trainable parameters ω can learn any
function. It should be noted that this discussion implies that typical ML based analysis
strategies based on classification objectives are already using an optimal approach with
respect to the statistical uncertainty of the analysis and all gain from this method stems
from the inclusion of the systematic uncertainties in the training objective. But with
increasing data statistics from the experiments delivered by Run 2 and 3 of the LHC,
analyses are expected to be increasingly dominated by systematic uncertainties, which
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Figure 5.2: Overview over the novel method introduced in section 5.3. The dimensionality of
the initial dataset with n events and d variables is reduced by a NN f to k observables, which
enter the binned Poisson likelihood with an histogram built by h bins. The approximation
of the gradient for the count operation allows to use automatic differentiation to optimize
the trainable parameters ω of the NN function f with respect to the variance of the POI µ.
The optimization takes into account the information about systematic uncertainties, which are
integrated in the likelihood with NPs.

makes the efficient inclusion of the information about systematic uncertainties in the
optimization of the analysis strategy an influential improvement. Another potential lossy
operation is the histogram. With an increasing number of bins h, the histogram converges
to the continuous description of the probability density of f , which is by construction
optimal. The examples in the following sections show that already very few bins can be
sufficient to reach an optimal result.

An overview over the method is given in figure 5.2, which can be compared to the
typical analysis strategy in figure 5.1. The novel method described in this section allows to
automatize the optimization of the free parameters in the analysis strategy with modern
ML methods, which results in better and faster results of HEP analyses. Additional
details about the application of the technique are presented in section 5.3.2 with a simple
example based on pseudo experiments and section 5.3.3 with a more complex example
from HEP.

5.3.2 Application on a simple example based on pseudo experiments

This section presents the capabilities of the proposed method with a simple example
based on pseudo experiments. The example uses a two dimensional input space spanned
by the variables x1 and x2, which is populated by the two classes signal and background.
Figure 5.3 shows the distribution of the classes in the input space, which are uncorrelated
multinominal Gaussian distributions with the means ( 0 0 ) and ( 1 1 ), respectively. The
example is enhanced by a systematic uncertainty on the mean of the background process
parametrized by the shifts x2±1, which represent the 1σ variations of the uncertainty. The
variations are implemented with duplicates of the dataset containing the applied shifts,
but a reweighting of the nominal dataset is also possible on the level of the histogram.
Further, the expectations of the processes are normalized with statistical weights to 50
signal and 103 background events in the dataset, which represents a typical scenario in
a HEP analysis of a rare physical process.

The applied NN consists of a single hidden layer with 100 nodes and ReLU activa-
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Figure 5.3: Distributions of the signal and background classes in the input space with a sys-
tematic uncertainty on the mean of the background process parametrized by the shifts x2 ± 1,
which represent the 1σ variations of the uncertainty.

tions [89]. The output layer has a single node with a sigmoid activation, which limits
the range of values to (0, 1). The trainable parameters are initialized with the Glorot
algorithm [61] and optimized with the Adam optimizer [64]. The gradients for the op-
timization are computed on a dataset with 105 samples and the training is stopped if
the loss does not improve on an independent validation dataset of the same size for
100 gradient steps in a row. The model with the smallest validation loss is used for all
following results, which are computed based on another independent dataset consisting
of 105 samples. An improved convergence has been observed if the model is trained first
only on the statistical part of the likelihood, which is done in this example for 30 gradient
steps.

Because this example has a tractable likelihood in the input space, the statistically
best possible result for the measurement of the signal strength modifier µ is known.
Figure 5.4 shows the profile of the likelihood ratio with the optimal constraint of the
POI found as µ = 1.0+0.37

−0.35. The profile is always computed twice, once with only the
statistical uncertainty and again with the systematic uncertainty in addition, which
visualizes the impact of the systematic uncertainty on the result. It should be noted that
the profile shows the median expected result enforced by the used Asimov dataset, which
also explains that the best fit value of µ is always at 1.0.

In addition to the optimal result shown in figure 5.4, a NN is trained with the CE
loss on a binary classification task. To encode the probability of signal and background
correctly, the CE loss is computed with sample weights, which encode the expected rate
of the processes. Eight bins are used for the histogram, which counts are the inputs for
the estimate of the signal strength modifier µ. Such as discussed above, the expectation
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Figure 5.4: Profile of the likelihood defined in the input space with only the statistical uncertainty
(blue) and the systematic uncertainty in addition (orange), which represents the statistically
best possible estimate for the POI µ.

is that this analysis strategy is optimal with respect to the statistical uncertainty of the
scenario. As known from the optimal solution in figure 5.4, the best possible estimate of
the POI in consideration of only the statistical component of the likelihood is µ = 1.0+0.34

−0.32.
The top row in figure 5.5 shows the distribution of the NN output, the NN function
in the input space and the profile of the likelihood ratio. The profiles reveal that the
CE approach achieves an almost optimal performance with respect to the statistical
uncertainty given by µ = 1.0+0.35

−0.33 but is massively degraded by 32 % to µ = 1.0+0.45
−0.44 if

the systematic uncertainty is considered in the statistical inference. The NN function in
the input space shows the expected decision plane, which is aligned with the separation
by the means of the signal and background distributions.

A similar performance is expected by the analysis strategy with the NLL based loss
function but without including the systematic uncertainty in the training. In this scenario,
the CE loss and the NLL loss optimize the same target, which is shown in the middle
row of figure 5.5. The profile of the likelihood ratio gives results very similar to the CE
approach, which confirms the expectation. However, the distribution of the NN function
has a different shape, which shows that the training has found a different solution with
a very similar outcome for the estimate of µ. Also the NN function in the input space
is not perfectly aligned along the diagonal such as visible for the CE loss. These effects
have no impact on the variance of the estimate for µ, because the regions close to the
border of the shown input space are only sparsely populated.

If the systematic uncertainty is included in the NLL loss, the variance of the estimate for
µ improves significantly. The bottom row in figure 5.5 shows the results. The constraint of
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µ = 1.0+0.39
−0.36 is just 4 % worse than the best possible result in figure 5.4. This confirms that

the strategy allows to achieve an asymptotically optimal result with full consideration of
all statistical and systematic uncertainties. The NN function in the input space shows that
the decision plane is slightly rotated towards the x2 axis, which is a partial decorrelation
against the systematic uncertainty on the mean of the background process in x2. In
contrast to the decorrelation techniques discussed in chapter 4, this method automatically
optimizes the impact of the systematic uncertainty on the analysis objective without
additional hyperparameters. The correlation of the POI µ to the NP η is reduced from
64 % to 13 % comparing the CE approach with the training on the NLL based loss
including the systematic uncertainty. The effect is also visible in the distribution of the
NN output in figure 5.5, which shows for the NLL approach small systematic uncertainties
in the sensitive bins.

5.3.3 Application on an example from high energy particle physics

The example from HEP presented in this section makes use of the dataset from the
Higgs ML challenge, which implements a search for the SM Higgs boson in the decay to
a ditau pair with a lepton and a hadronic tau in the final state. The dataset is described
in detail in section 3.3.4 and in [90]. In summary, the dataset consists of about 6 × 105

simulated events with 30 variables each. From the 30 variables the missing transverse
energy ��ET (PRI_met), the visible mass mlτ

vis (DER_mass_vis), the transverse momentum
of the reconstructed Higgs boson pH

T (DER_pt_h) and the distance in the pseudo rapidity
of the leading and subleading jets ∆ηjet,jet (DER_deltaeta_jet_jet) are selected. The
distributions of the variables are shown in figure 5.6 for the signal and the background
classes, which consist of a mixture of the contributing physical processes. The selected
variable ��ET is not an input to the NN but the three other variables span the input space.
The variable ��ET is used to implement a systematic uncertainty described by the shifts

��ET ·(1.0±0.1), which represents a 10 % uncertainty on the scale of the missing transverse
energy. The impact of the variations on the signal and background expectations are shown
in figure 5.6. The variations are chosen as described because only the contribution of
a systematic uncertainty, which does not affect the normalization of the process can
be mitigated. The introduced systematic uncertainty does not have any normalization
effect and therefore the proposed method is expected to have a strong impact on the
measurement of the signal strength modifier µ. Further, the missing transverse energy
is on purpose not an input to the NN to present a more complex example in which the
source of the systematic uncertainty is not a direct input to the training but has to be
inferred implicitly via the correlation to the other variables. Statistical weights are used
to describe the systematic variations in the input space, which proves the capability of
the method to integrate such information and presents a computationally more efficient
solution than duplicates of the nominal dataset. Finally, the dataset is reduced to only
those events, which have all of the selected variables defined. The signal expectation is
scaled by a factor of two, which results in 244.0 and 35140.1 (106505 and 131480) weighted
(unweighted) events for the signal and background process, respectively. Inclusively, the
ratio of signal to background is 1 to 144, which represents a realistic scenario in HEP
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Figure 5.5: The simple example based on pseudo experiments is evaluated for a training on
the CE loss (top row), the NLL loss without systematic uncertainty (middle row) and the
NLL loss including the systematic uncertainty (bottom row). Each scenario is studied with
the distribution of the NN output (left column), the NN function in the input space (middle
column) and the profile of the likelihood ratio considering only the statistical component of
the likelihood and the systematic uncertainty in addition (right column).
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similar to the analysis described in chapter 2.
The study is carried out with the same NN architecture and training procedure than

in section 5.3.2 using two thirds of the dataset for training and validation and the rest
for the following results. The training and validation splits the respective subset of
the data again in half and the expectation of the signal and background processes are
scaled with statistical weights to the inclusive expectation to model the correct statistical
uncertainties in the likelihood. For the inputs of the NN, the transformation (x−x)/σ(x)
with the mean x and the standard deviation σ(x) is applied to standardize the value
ranges of the variables.

Figure 5.7 shows the same scenarios than for the simple example in section 5.3.2, which
use the CE loss, the NLL loss with only the statistical uncertainty in the training and the
NLL loss including the systematic uncertainty. Because an optimal solution is not known
due to the intractable likelihood in the input space, the CE loss represents with the
estimate µ = 1.0+0.69

−0.69 the baseline for the comparison to the proposed method. However,
to validate that the strategy based on the classification objective results as expected
in an optimal result with respect to the statistical component of the likelihood, the
profiles of the likelihood ratio can be compared to a training on the NLL loss without the
systematic uncertainty. Figure 5.7 shows a close match between the two scenarios with the
characteristic gap between the profiles with and without the systematic uncertainty in the
statistical inference. The training on the NLL loss including the systematic uncertainty
gives an estimate of µ = 1.0+0.61

−0.60, which improves the result from the CE approach by
13 %. The comparison of the profiles shows again that the proposed method successfully
performs a trade off between an estimate of µ being only influenced by the statistical
uncertainty and an improved result in consideration of the systematic uncertainty. Similar
to the simple example, the correlation of the POI µ to the NP η drops from 69 % in the
scenario with the CE loss to 4 % for the training on the NLL loss including systematic
uncertainties.

To study the impact of the number of bins on the proposed method, figure 5.8 shows
for different number of bins the correlation of the POI µ with the NP η and the constraint
of the POI µ. Compared to the training on the CE loss, the NLL based training shows
a reduced correlation in all configurations from two to 64 bins. An improvement in the
correlation of µ with η is visible up to eight bins, which indicates that two and four bins
do not offer enough degrees of freedom to achieve the same performance as eight bins or
more. In terms of the analysis objective, the constraint of the POI µ, the novel method
has a stable average improvement of 10 % compared to the CE approach, which indicates
that the NLL loss makes best use of the available information in all configurations.
Also notable is that the difference between the statistical inference with and without
consideration of the systematic uncertainty has a constant average distance of 0.18 for
the CE loss and about 0.01 for the proposed method. However, it should be noted that
the statistical model in an actual HEP analysis also contains contributions that take into
consideration the uncertainty on the expectation from simulation. These uncertainties
are introduced by the finite statistics of the simulated events, which prevent that the
constraint of µ scales with many bins such as visible in figure 5.8. Typically an analysis
tries to use as little bins as possible to optimize the description of the contributing
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Figure 5.6: Selected variables of the Higgs ML dataset for the signal (left) and background (right)
process. Each subplot shows the ratio of the systematic variation implemented by�ET ·(1.0±0.1)
to the nominal expectation.
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Figure 5.7: The example from HEP is evaluated for the CE loss (top row), the NLL loss without
systematic uncertainty (middle row) and the NLL loss including the systematic uncertainty
(bottom row). Each scenario is studied with the distribution of the NN output (left column) and
the profile of the likelihood ratio considering only the statistical component of the likelihood
and the systematic uncertainty in addition (right column).
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the CE approach and the training on the NLL based loss including the systematic uncertainty.
It should be noted that the number of bins is the same in the training of the NLL loss and for
the estimate of µ based on the resulting histogram.

processes, which improves the reliability of the analysis and the result of the statistical
inference due to the reduced systematic uncertainties.
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Conclusion

This chapter presents in section 6.1 a summary of this work and discusses in section 6.2
possible future fields of research with respect to the topics discussed in the previous
chapters.

6.1 Summary

Beyond any doubts, machine learning (ML) has become an indispensable tool in high
energy particle physics (HEP) to achieve the best possible results in the analysis of
experimental data. The success of ML in data analysis in HEP pushes the usage of
modern multivariate techniques to the limits and finds application in almost every step
of the analysis strategy. Especially if ML is used to perform the event selection or to
create observables for the statistical inference, hidden dependencies of the ML model
on the high dimensional input space pose novel challenges to ensure robust and reliable
results for precise physics measurements. At the same time, modern ML powers novel
strategies for data analysis in HEP promising highest sensitivity to the physics of interest.

Such an analysis using neural networks (NNs) for event selection and final observables is
presented in chapter 2, which has the objective to study the decay of the Standard Model
(SM) Higgs boson into two tau leptons in data from the Compact Muon Solenoid (CMS)
experiment at the Large Hadron Collider (LHC). The procedures to realize a precise
measurement of the inclusive and differential cross sections in the simplified template
cross section (STXS) framework [48] is described with focus on the implications of the
massive usage of ML techniques on the statistical inference in presence of systematic
uncertainties. The ML based analysis strategy led to the most precise measurements of
the SM Higgs boson cross sections in the decay to tau leptons [44] with a significantly
improved sensitivity compared to traditional analysis strategies [113]. Figure 6.1 presents
the results of the differential measurement, which is an invaluable resource to constrain
the theoretical framework of the SM and beyond.

Chapter 3 puts focus on the challenge to validate the input space and the used ML
model for such an analysis strategy. A novel method is introduced, which allows to
understand the dependence of the NNs on the features in the multidimensional input
space [88]. The capability of the technique to identify and quantify the importance of
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Figure 6.1: Differential measurement of the SM Higgs boson cross section in the STXS framework
extracted from data of the CMS detector at the LHC [44]

higher order features, such as correlations between variables, on the NN output is crucial
to find the subspaces of the input space with highest importance. This enables efficient
validation strategies to quantify the agreement between expectation and data in the high
dimensional input space, which ensures the detection and sufficient coverage of potential
mismodelings. Such a validation strategy is applied in the analysis described in chapter 2
and contributes significantly to the robustness and reliability of the measurement.

Known features in the input space, which are not desired to contribute to the analysis
result, are challenging to mitigate with multivariate techniques, which are in principle
sensitive to any information in the presented dataset. In consequence, novel techniques
are required, which allow to control the dependence of the ML model on features in the
input space. Chapter 4 presents a novel technique for NNs to control the information,
which contributes to the optimization of the model during the training and allows to
suppress in a fine granular way any feature in the high dimensional input space [108].
The proposed method introduces only a minimal set of additional hyperparameters and
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is simple to integrate with typical objectives in HEP analyses such as the separation of
physical processes in data.

Going a step further, chapter 5 discusses the efficiency of today’s data analysis strategies
in HEP and proposes a novel approach to reach a statistically optimal result. Based on
modern ML methods, the introduced analysis strategy combines the analysis objective
with an automatic optimization of the dimensionality reduction required to build the
statistical model for the inference of the parameters of interest (POIs) [123]. The key
development is the formulation of an analytical derivative of the count operation, which
allows to use automatic differentiation with modern computation frameworks and enables
the usage of binned Poisson likelihoods in the training objective. An example with a
known likelihood in the input space is used to demonstrate that the analysis strategy
reaches asymptotically the optimal sensitivity. Further, a more complex example presents
the application of the method in a typical data analysis scenario from HEP and finds in
the presence of systematic uncertainties a superior sensitivity to the physics of interest.

6.2 Outlook

Chapter 2 presents a differential measurement of the SM Higgs boson in the decay to
two tau leptons in the STXS framework, which has the purpose to unify comprehensively
differential measurements and targets the combination of results across analyses and
experiments. The analysis strategy discussed in chapter 2 is highly optimized on such
STXS measurements and has set a reference for the next decade, in terms of the physics
results but also with respect to the applied data analysis techniques.

Looking towards Run 3 and 4 of the LHC, future analyses of data from the experiments,
such as CMS and ATLAS, will be heavily challenged to gain from the increased integrated
luminosity of 300 fb−1 and 3000 fb−1, respectively [20]. The pileup of additional proton
proton collisions is expected to increase from approximately 30 proton proton interactions
today to over 130 interactions for a typical event during the high luminosity LHC phase
in Run 4 [128]. This development increases substantially the systematic uncertainties
of future measurements compared to the additional sensitivity gained by the growing
number of recorded events. In context of the analysis of the SM Higgs boson, the data
recorded from Run 3 and 4 are intended to be used to perform measurements at the
highest precision to test the predictions of the SM with all available information. These
upcoming analyses will be significantly stronger impaired by systematic uncertainties
than the analysis discussed in chapter 2, which will require novel strategies for the analysis
of the data to perform the best possible measurements.

Certainly, modern ML techniques will play an important role to achieve these goals.
The novel techniques introduced in chapter 3 and 4 allow to identify and control the
dependence of the ML model on features in the input space and therefore enable robust
measurement in the presence of systematic uncertainties. Although such methods are
crucial for ML based analyses with reliable results, these methods do not necessarily
promise an analysis with an optimal sensitivity to the physics of interest. Chapter 5
discusses the efficiency of typical analyses in HEP and identifies the parts of today’s ML
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based analysis strategies, which allow to improve the results. The results from chapter 5
are highly promising and show the optimal use of the experimental data enabled by the
integration of the knowledge about the systematic uncertainties of the experiment.

An important question is whether, or how, such novel data analysis techniques can be
safely used for data analysis in HEP. Analyses in HEP are driven by precision and statis-
tically sound results, which allow to guide the experimental field with multibillion dollar
experiments in the right direction. The question to be answered is whether the inclusion
of systematic uncertainties in an automatic optimization of the analysis strategy affects
the reliability of the statistical inference. A possible scenario is a ML based observable
entering the statistical inference, which is tuned to mitigate exactly the systematic varia-
tions such as modeled in the expectation of the statistical model but is in reality highly
sensitive to the actual variations in data. This problem is very similar to the overfitting
problem in ML, which describes the problem that an overtrained ML model is getting
sensitive to the statistical fluctuations in the training dataset but eventually does not
generalize well to new data. This could mean for novel techniques, which include the
knowledge about systematic variations in the training, that two different estimates of
the systematic uncertainty are required to guarantee the generalization of the learned
relations to new data. Finding a safe strategy to apply such novel ML based data analysis
techniques, which make use of the knowledge about systematic uncertainties is an im-
portant field of study, but currently not followed by many researchers around the globe.
Because of the discussed points, HEP is for good reasons a conservative scientific field
with respect to ML based analysis strategies and the adoption of novel methods may
take years to be validated and accepted. However, to extract all possible information out
of the precious data from past and upcoming runs of the LHC, the efforts to study such
optimized analysis strategies cannot start soon enough and present a rich scientific field
for the future.

92



❆PP❊◆❉■❳ ❆

Data and expectation in the µτh channel for the

data taking period of 2018

The following figures present the data and expectation in the µτh channel for the data
taking period of 2018, which are input to the measurement of the cross section in the
STXS framework. The results of the measurement, which combines all available data of
the LHC Run 2 are discussed in section 2.8.
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Figure A.1: Data and expectation in the µτh channel for the data taking period of 2018 in the
background categories
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Figure A.2: Data and expectation in the µτh channel for the data taking period of 2018 in the
Higgs boson production from gluon fusion (ggH) categories
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Figure A.3: Data and expectation in the µτh channel for the data taking period of 2018 in the
ggH categories
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Figure A.4: Data and expectation in the µτh channel for the data taking period of 2018 in the
Higgs boson production from vector boson fusion (qqH) categories
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