KIT | KIT-Bibliothek | Impressum | Datenschutz

Symmetry of periodic waves for nonlocal dispersive equations

Bruell, Gabriele; Pei, Long

Abstract:
Of concern is the $\textit{a priori}$ symmetry of traveling wave solutions for a general class of nonlocal dispersive equations
$$u_t + (u^2 + Lu)_x = 0,$$ where $L$ is a Fourier multiplier operator with symbol $m$. Our analysis includes both homogeneous and inhomogeneous symbols. We characterize a class of symbols m guaranteeing that periodic traveling wave solutions are symmetric under a mild assumption on the wave profile. Particularly, instead of considering waves with a unique crest and trough per period or a monotone structure near troughs as classically imposed in the water wave problem, we formulate a $\textit{reflection criterion}$, which allows to affirm the symmetry of periodic traveling waves. The reflection criterion weakens the assumption of monotonicity between trough and crest and enables to treat $\textit{a priori}$ solutions with multiple crests of different sizes per period. Moreover, our result not only applies to smooth solutions, but also to traveling waves with a non-smooth structure such as peaks or cusps at a crest. The proof relies on a so-called $\textit{touching lemma}$, which is related to a strong maximum principle for elliptic operators, and a weak form of the celebrated $\textit{method of moving planes}$.

Open Access Logo


Volltext §
DOI: 10.5445/IR/1000129186
Veröffentlicht am 01.02.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 02.2021
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000129186
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 16 S.
Serie CRC 1173 Preprint ; 2021/5
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter traveling waves, symmetry, nonlocal dispersive equation, methods of moving planes
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page