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Abstract In this work, we improve the semantic segmentation
of multi-layer top-view grid maps in the context of LiDAR-
based perception for autonomous vehicles. To achieve this
goal, we fuse sequential information from multiple consecu-
tive lidar measurements with respect to the driven trajectory
of an autonomous vehicle. By doing so, we enrich the multi-
layer grid maps which are subsequently used as the input of
a neural network. Our approach can be used for LIDAR-only
360° surround view semantic scene segmentation while being
suitable for real-time critical systems. We evaluate the bene-
fit of fusing sequential information based on a dense ground
truth and discuss the effect on different semantic classes.

Keywords Autonomous driving, sensor data fusion, semantic
grid map estimation.

1 Introduction

Environmental perception is a crucial task for many applications in
robotics and mobile systems. This is particularly true for highly dy-
namic environments in which human life is at stake, such as urban
scenarios. In these situations, autonomous driving systems heavily
rely on a robust and accurate environment interpretation and scene
understanding. Semantic segmentation plays a key role in efficient,
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meaningful and holistic scene representation. With the advent of
deep convolutional networks the task has received a lot of attention
in the last few years and has shown significant improvements. Many
well-developed network architectures are tailored to the image do-
main due to the data shortage in other domains.
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Figure 1.1: System overview including all input and output grid map types. By using
our grid map framework we transform lidar measurements into a multi-
layer grid map representation. The multi-layer grid maps are processed
by an image-tailored CNN to predict semantic grid maps.

Recently, Behley et al. [1] published SemanticKITTI, the first large
scale publicly available dataset which provides semantic segmenta-
tion for lidar measurements. The publicly available data consists
of more than 23.000 single shot lidar measurements with a point-
wise annotation distinguishing 28 semantic classes. By doing so the
authors also provide information about moving and non-moving ob-
jects for classes like vehicle or motorcycle. In a recent work, we [2]
consider the transformation of lidar point clouds into a top-view grid
map representation to approach an efficient top-view segmentation
of lidar measurements. The structured representation of grid maps
can be utilized by applying efficient, well-developed CNN architec-
tures from the image domain. In contrast, neural networks which
operate on unstructured point clouds often lack real-time capability.

A further advantage of the grid map representation is that it is
well-suited for sensor fusion applications. For instance, Nuss et
al. [3] fuse radar and laser measurements to estimate the dynamic
state of grid cells. Furthermore, Richter et al. [4] used grid maps as
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a common fusion structure for semantic information and different
range measurements. Besides the information fusion from different
sensors, grid maps can also be used to fuse sequential measurement
data from one sensor [5]. Another interesting work in this direction
was done by Wirges et al. [6] by training a neural network to esti-
mate dense multi-layer grid maps from single shot measurements.
The paper shows that this enrichment is improving the performance
of object detection algorithms.

This work investigates the fusion of sequential lidar measurements
in multi-layer grid maps in the context of top-view semantic grid
map segmentation.

2 Contribution

The presented work extends the basic ideas of [2] by making neces-
sary improvements and introducing a fusion concept which replaces
the single-shot approach and allows the use of sequential informa-
tion. The following overview points out the main contributions of
the paper:

* We extent our grid mapping framework so that it is capable of
combining information from multiple point clouds into one set
of grid maps. For each layer we implement a tailored fusion
strategy.

¢ We perform semantic grid map estimation using multi-layer
grid maps with accumulated features from the current and past
lidar measurements.

* We report the benefit of feature accumulation in multi-layer
grid maps for the task of semantic segmentation. By doing
so, we evaluate the improvements on a dense semantic ground
truth layer.

3 Multi-Layer Grid Maps

This section provides information about the generation and defini-
tion of our multi-layer grid maps.
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Figure 2.1: Comparison of our proposed feature aggregation pipeline and the initial, single-shot pipeline introduced in [2]. We
extended the initial grid map framework so that it is able to fuse point clouds recorded on different time stamps
into one grid map representation. As a requirement, we assume that the delta poses between the current pose and
past poses are known. By doing so, we enrich the multi-layer grid maps, which are later used as input for a CNN to
predict semantics.
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Definition of Layers

Our multi-layer grid map input consists of five layers, which store
the following features for each grid cell: The mean intensity, the
maximum detected height, the minimum detected height,the observ-
ability representing the amount of rays through each cell and the
minimum observable height with respect to all rays which crossed
the cell. The first three layers only carry information in grid cells
in which a lidar point is allocated. The information of the last two
layers is extracted by casting rays between the sensor origin and the
point detections to obtain dense layers in the observable area. In or-
der to facilitate parallel computation and account for geometric sen-
sor characteristics, all layers are first computed in polar coordinates
and subsequently remapped into a cartesian coordinate system. An
example for each layer can be found in figure 1.1.

Label Set and Data Set Split

We choose the label set and re-mapping strategy according to [2],
but further combine the two classes rider and two-wheeler as they
are hard to separate in the top view representation. This leads us
to the following set of semantic classes: vehicle, person, two-wheel,
road, side-walk, other-ground, building, pole/sign, vegetation trunk
terrain. The sequences 0-7 and 9-10 of semanticKITTI are used to
train the networks and the evaluation is conducted on sequence 8.

Grid Resolution and Sensing Range

The grid cell resolution is set to 10cm x 10cm. The region registered
in one grid map is chosen to be 100m x 50m with the sensor located
in the middle of the gird map. The grid maps are rotated such that
the ego vehicles driving direction points to the right of the grid map.

Feature Aggregation

For the fusion process we collect point clouds from past time stamps,
cast them to the grid map representation and transform them in the
coordinate system of the current vehicle pose. We only choose past
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Figure 3.1: Example for feature aggregation for the layer intensity (left) and maximum
detected height (right). The first row shows a single shot example, the
second row 3 fused frames, the third row 10 fused frames and the last row
20 fused frames.
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time stamps to have a causal system which could be applied in a
similar fashion on a real-world system like an autonomous car. In
order to be able to transform the past measurements into the coordi-
nate system of the current grid maps highly accurate vehicle poses
are required. We experienced that the poses of SemanticKITTI are
superior of the original KITTI poses [7] and hence, use the former.

A unique fusion strategy is implemented for each layer. Regard-
ing the intensity we calculated the average value for each grid cell
considering all available measurements. In contrast we calculate the
maximum value for the layer maximum detected height and the min-
imum value for the layers minimum detected height and minimum
observable height. For the observability layer we accumulated the
number of rays from each available measurement.

As the computation time for the grid mapping increases with an
increasing batch size of point clouds, the number of fused measure-
ments has to be well considered. Hence, we conduct and compare
experiments with different point cloud batch sizes. An advantage of
this approach is that the computational effort of the neural network
does not increase by the accumulation of multiple measurements in
the input grid maps.

Semantic Ground Truth

We create a dense semantic ground truth as it is described in [2].
After accumulating the semantic information of all surround poses
we register the most likely pose within each grid cell. Here, we do
not limit the amount of measurement but select all poses within a
given radius for the fusion of semantic information.

4 Experiments

For each experiment we used all five grid map layers and optimized
the network using the densely generated ground truth.

We conduct experiments comparing different state-of-the-art deep
learning architectures, tailored for image processing. In this paper,
all reported experiments are conducted using one architecture: the
Deeplab framework with the Xception backbone [8]. We train the
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networks using the full image resolution, a batch size of 2 and about
300.000 traing iterations. Besides the single shot experiments we
present results for 3, 5, 10 and 20 accumulated frames.

5 Evaluation

We evaluate our experiments using the novel SemanticKITTI data
set. Our models are trained to predict 11 classes which are par-
ticularly relevant for urban scene understanding. In this paper we
choose a dense ground truth which also takes the network’s predic-
tion for cells without a detection into account.

Table 1: Class-wise evaluation using a dense semantic top view ground truth based
on the 8 sequence of the semanticKITTI data set
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S F ST S E TS
1 10364 0.000 0.000 0.826 0.461 0.004 0.574 0.093 0.525 0.053 0.583 0.321
3 10.366 0.000 0.000 0.826 0470 0.105 0.555 0.113 0.579 0.051 0.591 0.332
5 10.392 0.000 0.000 0.820 0.487 0.089 0.580 0.138 0.611  0.064 0.647 0.348
10 |0.389 0.000 0.000 0.827 0.480 0.128 0.581  0.120 0.622  0.049 0.629 0.348
20 |0.377 0.000 0.000 0.831 0472 0.119 0.583 0.124 0.631 0.060 0.626 0.348

The quantitative evaluation is based on the Intersection over Union
(IoU) [9]. The mean Intersection over Union, mloU, is determined by

1

mloU =
K|

Y ToUy (5.1)

kek

where |K| is the the labelset’s cardinality and the per-class IoUy is
calculated by

I (5.2)

IoUy= ———,
k Tp, + Fp, + I,

with k being one of 11 classes. The quantitative results are shown in
Table 1. In figure 5.1 some qualitative results are displayed.
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6 Discussion

The experiments show that improvements can be achieved by the
aggregation of past measurements. The greatest benefit can be ob-
tained for the classes terrain, trunk and vegetation, parking and for
pole/sign. However the improvements of additional feature aggre-
gation seem to stagnate if more than 5 measurements are fused. We
can also review that even with the feature aggregation the classes
pedestrians and two-wheel can not be semantic segmented using the
multi-layer grid maps. Here we have no improvement compared to
the original paper.

7 Conclusion

We propose a framework to fuse information from sequential lidar
measurements in a multi-layer grid map representation. Our experi-
mental evaluations show the benefit of our approach in comparison
to a formerly introduced single-shot method. While we review that
an aggregation of past measurements brings a benefit, we also show
that adding more past measurements only improves the performance
to a certain extent.
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