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Abstract Continuous quality monitoring is essential for auto-
mated production systems and efficient manufacturing. Laser
welding processes are a key technology for many industrial
applications and must fulfill high-quality requirements. Var-
ious influencing factors can lead to defects in the weld seam,
which impair the functionality and quality of the end prod-
uct. Therefore, a reliable quality assurance is a prerequisite for
high product quality in welding processes. An indicator for
an unstable situation in welding processes is the occurrence
of spatter on the component. Thus, the detection of spatter
can serve as a significant signal for defective weld seams. This
article proposes the detection of spatter based on a camera im-
age taken with an industrial camera, which is usually already
integrated in the laser system. Due to the large variance of
weld seams in image-based analysis, algorithms with a high
degree of generalization are required. Using convolutional
neural networks (CNN) and semantic segmentation the cam-
era image is analyzed and classified pixel by pixel. The CNN
is trained in a multi-class approach in order to recognize the
weld seam as well as the spatter as result classes. The segmen-
tation map constitutes the classification result. The results of
the deep learning algorithms are evaluated by different meth-
ods and conclusions about their prediction quality are made.

Keywords Laser welding, semantic segmentation, u-net,
quality assurance, spatter detection
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1 Introduction

Laser welding is a key technology in many industrial applications.
Due to various advantages, like the possibility to create narrow but
deep welding seams and the contactless assembly at highest process-
ing speed, the procedure is more and more used in industry [1, 2].
Remote-controlled laser welding with scanner optics can be inte-
grated as process step in an automated production system and is
thus becoming increasingly relevant [3]. To ensure a high welding
quality, continuous process monitoring is essential [3, 4].

Various influencing factors can lead to defects in the weld seam,
which impair the quality and functionality of the end product and of-
ten result in safety-relevant risks. In the context of quality assurance,
the presence of spatter on the component can be used as an indicator
of an unstable situation in the welding process, as its occurrence is
closely related to the quality of the weld seam [5, 6]. Spattering is
the ejection of melt droplets from a molten bath [4]. There are differ-
ent types of spatter phenomena that can occur during laser welding.
In [7] the formation of spatter and different types of spatter was in-
vestigated and a system for categorizing spatter formation was pro-
posed. The effects of droplet ejection from the weld metal can result
in a weld seam with underfill, undercuts, craters, blowholes or erup-
tions that can negatively affect weld properties [7]. Spatter detection
therefore serves as a significant signal for defective welds.

As spatters represent height deposits, they can be easily and
clearly detected by means of optical coherence tomography (OCT)
(figure 3.1a and 3.2a). Just simple image processing algorithms ap-
plied on the depth maps such as threshold analysis are necessary.
Even if the evaluation of the sensor data is simple and unambigu-
ous, the use of the sensor in this application case has disadvantages.
In order to use the OCT sensor, it must first be installed and set up
explicitly for quality monitoring on the system. The sensor, which
is already expensive to purchase, generates additional effort through
calibration procedures and increases the complexity and cost of the
overall construction of the system and optics.

By observing the welding process in real time, spatter can be de-
tected as it occurs. In [8], for example, the welding process is mon-
itored by an external high-speed video camera which is sensitive in
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the ultraviolet and visible wave length range and captures dynamic
images of laser welding plume and spatter directly during the weld-
ing. The number and size of the spatters were calculated by using
image processing technology and defined as characteristic features.
Furthermore, the use of an external high-speed camera for near in-
frared (IR) measurements was tested. A direct comparison of the
images showed, however, that the measurement in UV light and vis-
ible light was more suitable for spatter detection [4].

In [9] a setup with a CMOS camera directly at the laser optics
is proposed for monitoring the welding process. To get significant
images of the weld pool an additional laser for confocal illumination
is used and a bandpass filter is placed in front of the camera. Based
on the generated images, approaches for scanning the contour of
the melt lake and an approach for spatter detection using outlier
classification were presented [9].

In comparison to the system setup of the approaches introduced
above, an industrial camera is usually already integrated in the sys-
tem. The camera image is used for example to detect the position
of components before welding. However, it is difficult to analyze
the weld seams based on images using conventional image process-
ing methods. Even faultless welding seams show a high variance,
so that the image processing algorithm for spatter detection must be
adapted by experts for each welding process.

Compared to conventional image processing algorithms, deep
learning methods tolerate natural deviations in complex patterns.
Convolutional neural networks (CNN) offer the advantage that they
can be adapted to new procedures without expert knowledge by
training procedures, which has already led to very good results. For
example in [10] an auto-encoder is used to learn relevant features
from the input data. They use a deep neural network to extract
salient and low-dimensional features from the high-dimensional
laser welding data.

This article proposes the detection of spatter directly after the
welding process using the camera image, which does not contain
any information about the height profile. Due to the large variance of
weld seams in image-based analysis, algorithms with a high degree
of generalization are required. The experimental setup is described
in section 2 , which is split into the generation and explanation of the
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data basis, as well as the analysis and classification of the camera im-
age. In section 2.1, the structure of the neural network is described in
more detail and in 2.2 the evaluation methods are further specified.
The results are discussed in section 3. A conclusion with a summary
of the described algorithms is given in section 4.

2 Experimental setup

The data analysis is performed on 18 mm long weld seams, which
connect two sheets with each other. For this study we carried out
welding experiments on different materials and with different con-
figurations. The occurrence of spatter as well as the quality of the
weld seam depends strongly on the welding parameters. During
the experiment we varied the laser power between 4 kW and 6 kW,
created a gap between the sheets and induced a defocusing of the
scanner optics. This influenced the process in such a way that spat-
ter and also unstable weld seams were produced.

Immediately after welding we took a grayscale camera image with
an industrial camera and scanned the height profile of the seam area
with an OCT sensor. Both sensors are mounted directly on the weld-
ing head and run coaxially with the laser beam path through the
beam focusing optics. To get a better camera view, a lighting ring is
attached to the scanner optic. By recording both camera and OCT
data on a weld seam, the reliable information about the occurrence
of spatters can be derived from the height information and used
as ground truth. This enables an evaluation of the accuracy of the
camera-based prediction, even in cases where the spatters may not
be intuitively visible in the camera image.

2.1 Network architecture

A semantic segmentation approach was chosen to evaluate the seam
and to recognize spatters in the camera image. The architecture of
the convolutional network is based on the u-net architecture [11].
The network learns the structure of the weld seam and the proper-
ties of the spatter class in the convolution layers and can thus per-
form a correct assignment of the image areas. The u-net architecture

320



Camera-based spatter detection in laser welding

relies on the strong use of data augmentation. Data augmentation
is essential to teach the network the desired invariance and robust-
ness properties for training with only a few training data sets [11].
Since labeling in semantic segmentation is time-consuming and error
prone, it is useful to work with a small amount of training datasets
especially in industrial applications. The previously generated data
set is enlarged by rotation, vertical and horizontal shift, vertical and
horizontal flip, adjustment of the brightness range, zoom and shear,
which also improves the robustness of the training. In general, the
images were only cut to the seam area during pre-processing and
left in their original condition for better performance. Four different
classes were defined as output. One class covers the background,
another the weld seams welded with optimal parameters, the third
class unstable weld seams and the fourth class the spatters.

The network architecture has been reduced in size compared to the
original u-net. It is recommended to keep the number of trainable
parameters in the architecture low, especially since industrial pro-
cess images have less variability and less complex properties. In the
downsampling the network architecture contains six convolutional
layers and three max-pooling layers that each reduce the resolution
by a factor of two. Each convolutional layer is followed by an ex-
ponential linear unit (ELU), which increases the convergence rate
during learning. The ELU was proposed by Clevert et al. [12] as
a self-normalizing layer that extends and improves the commonly
used ReLU activation. It helps to prevent the Dying-ReLU problem,
since it’s derivative is different from zero for negative values. Sev-
eral other studies have shown improvements in training and results
as well. Our tests confirm these results, which is why we use the
ELU function in the network architecture. The number of feature
channels is doubled per downsampling step similar to the original
u-net architecture. After the corresponding upsampling a final layer
with a 1x1 convolution followed by a softmax activation is used to
map each feature vector to the desired number of classes.

The model is not pretrained, but the Xavier Glorot uniform initial-
ization method is used to initialize the weights [13].
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2.2 Evaluation

Training approaches with two different loss functions were evalu-
ated. The first approach uses the weighted categorical cross entropy
loss (WCCE) and the other the weighted dice coefficient loss func-
tion.

Since the number of pixels per class is very different and espe-
cially the less important background class contains most pixels, the
weighting in the loss function generates better results. The pixel ratio
values of the different classes are as follows: background: 82%, seam
welded with optimal parameter: 6.3%, unstable weld seam: 11.6%
and spatter 0.1%. In comparison, the frequency of occurrence of the
classes in all images is follows: background: 100%, stable weld seam:
33.3%, unstable weld seam: 66.6% and spatters 86%.

The class weight has been defined to give priority to the evalu-
ation of the weld seam and also to force the detection of spatter.
We choose a weighting of 0.1 for the background, 0.25 each for sta-
ble weld seam and unstable weld seam and 0.4 for the spatter class.
Attention must be paid to ensure that the weighting does not penal-
ize the most common class (background) too much, otherwise some
pixels will no longer be classified. Therefore a good ratio for the
weightings must be found.

The neural network was trained with a training data set of 251 im-
ages. 74 images are of weld seams welded with optimal parameters,
while the other 177 images show weld seams that establish the dif-
ferent defect classes. For labeling the camera images depth data on
basis of the OCT data are used as ground truth. With the knowledge
of the height information all spatters can be recognized and labeled.
The weld seams and spatters were marked (optimally welded seams
in green, defective weld seams in blue and spatters in red, see figure
3.1c and figure 3.2c). With a good setting of the laser parameters, far
fewer spatters are produced than with poorly selected parameters.
Therefore, spatter occurs more often with defective welds than with
good ones.

A quarter of the training data was used as validation data set.
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3 Results

After training of 184 epochs with 150 steps per epoch, a batch size
of 20 and the use of the weighted dice coefficient loss function a
training error of 0.13 and validation error of 0.23 was achieved. The
weighted dice coefficient loss function provides better results than
the WCCE approach.

To evaluate the result the weighted dice coefficient loss, also
known as the Sørensen-dice coefficient or F1 score, is used too.
Therefore, we use the function

Loss function = 1− dice (3.1)

with

dice =
2 | X ∩Y |
| X | + | Y | (3.2)

where | X | and | Y | are the cardinalities of the two sets.

The dice value is calculated for each individual class, weighted
with the respective class weighting and then added up.

The loss value on the test data set is 0.27. If only the spatter class
is taken into account, a loss value of 0.32 is achieved. It must be
considered that the spatters contain only very few pixels compared
to the total image and that these cannot always be labeled exactly on
basis of the ground truth.

Figure 3.1 and figure 3.2 show examples of segmentation maps
predicted by the neural network trained with the weighted dice co-
efficient loss function. In both examples the spatters were detected,
and the welding seam was correctly classified as being welded with
optimal parameters or as a weld of poorer quality. In figure 3.1(a)
the weld seam and three spatters are shown in an image generated
from the height profile of the OCT sensor. In figure 3.1(b) the cor-
responding camera image of the same weld with spatter is shown.
The grayscale image is analyzed using a deep learning approach and
classified with pixel-level semantic segmentation according to weld
seam and spatter. The result is shown in figure 3.1(c). The detected
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(a) (b) (c) (d)

Figure 3.1: (a) image generated on the depth data on basis of the OCT sensor, (b)
camera image, (c) overlay image with the predicted segmentation map,
(d) detected spatters

seam is labeled in green, while the spatters are labeled in red. Figure
3.1(d) shows the detected spatters counted for the comparison with
the ground truth. Corresponding to figure 3.1 the different pictures
of an error seam are shown in 3.2. In this case the detected seam is
labeled in blue, because it is a weld seam of poor quality.

However a better comparison is provided by the number of de-
tected spatters in the image compared with the number of spatters
in the ground truth. In this evaluation approach the precisely la-
beled pixels are not important, only the amount of detected spatters
is taken into account. With a test data set of 102 images, an average
deviation of 0.41 spatters per image was observed. The number of
spatters was correctly detected in 77 of the images. In the other cases
either not all spatters were detected or discoloration in the sheet or
on the welding seam was also classified as spatter. The ratio be-
tween the two error cases is quite balanced. The highest deviations
were caused by the test sets containing many spatters. With 5 mis-
classifications, these are very significant in the average result value.
In figure 3.3 the classification result of the test data set is shown in
a more detailed way. The number of spatter in the ground truth is
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(a) (b) (c) (d)

Figure 3.2: (a) image generated on the depth data on basis of the OCT sensor, (b)
camera image, (c) overlay image with the predicted segmentation map,
(d) detected spatters

compared to the number of spatter in the prediction. The two cases
in which 5 spatter were not detected are shown in the bottom two
lines at ground truth 10 and 11. But more decisive for the weld seam
evaluation are the cases in which a picture is classified as spatter-free
despite spatter in the ground truth, or the other way round in which
spatters are detected in a picture that has no spatter in the ground
truth. These cases would lead to false conclusions about the seam
quality and should therefore be avoided. In our test data set spat-
ters were classified on two images although there were none in the
ground truth and once no spatter was found on the test image al-
though the ground truth indicated two small spatters. These values
are shown in figure 3.3 at ground truth 0 and prediction 1 and the
other case at ground truth 2 and prediction 0.

In our Test dataset of the 102 test images, too few spatters were
detected on 13 images and too many spatters on 12 images.
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Figure 3.3: Comparison of the number of spatter in the ground truth and the predic-
tion in the test data set

4 Conclusion

In this paper an approach for spatter detection in a laser welding
process with an industrial camera was presented. This was achieved
by using a semantic segmentation approach to slim down the image
features and classify the image pixel by pixel. Even with a small
training data set all spatters could be correctly classified on 75% of
the images from the test data set. Only on 3 out of 102 test images
no spatter was detected in spite of existing spatters in the ground
truth, or spatter was detected on images that actually contained no
spatter. This results in an effective error rate with wrong conclu-
sion of 2.9%. This result proves that quality monitoring is possible
with a simple system setup. The setup of a fixed industrial cam-
era is mostly standard in laser welding due to seam position control
or other functions required for welding. This means that process
monitoring can be done without additional hardware and the result-
ing costs or installation work. This aspect should not be ignored
when implementing a system in industry. In addition, neither high-
resolution images nor complex pre-processing algorithms were used,
which would require longer processing time and higher computing
power. Promising results were achieved on the industrial data set,
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which justifies an image-based quality assessment using deep learn-
ing in the industrial environment.
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