
Binary Maps for Image Separation in
Iterative Neuronal Network Applications

Roman Lehmann, Stanislav Arnaudov, Markus Hoffmann,
and Wolfgang Karl

Karlsruhe Institute of Technology, Institute of Computer Engineering,
Kaiserstraße 12, 76131 Karlsruhe

Abstract Generating a series of images is an important task in
various fields of scientific research, e. g. Computational fluid
dynamics (CFD). In the past years, solutions based on deep
neural networks gained importance. In these tasks, it’s often
necessary to declare regions of interest in the image. Further-
more, the NN should only perform on these regions and the
rest should be ignored. With this paper, we propose an inno-
vative and easy method for implementing this behavior in the
field of CFD.

Keywords U-net, binary maps, generator, flow simulation

1 Introduction

Generating a series of images is an important task in various fields of
scientific research, e. g. Computational fluid dynamics (CFD). In the
past years, solutions based on deep neural networks gained impor-
tance [1], for example in applications where the results don’t need
to be fully accurate. For these tasks, it’s often necessary to declare
regions of interest (ROI) in the image to preserve constant regions
and concentrate the influence of the neuronal network on a specific
area. This becomes even more important in cases where results of
a neuronal network are used as an input again. We call these cases
iterative applications.

For CFD applications this issue is related to the sharp separation of
the simulation area and its boundary. It is essential that the fluid sim-
ulation does not ignore boundaries, like obstacles within the stream,

363

R. Lehmann et al.

and that these boundaries do not introduce false interferences into
the simulated stream. Using an image-to-image approach [2] to cre-
ate a sequence of simulation steps, an obvious idea to define a sharp
separation is the usage of binary maps. Such maps define a region
of interest within a picture with a true value for the corresponding
pixel and false otherwise. In combination with a neuronal network,
these maps can be used as an additional parameter track for the net-
work and as a filter for a post image processing step. We will show
that both applications are needed in order to get good predictions
for the simulation results with a sharp separation of the simulation
area and its boundary.

2 State of the art

The main task in our approach is an image-to-image translation. By
now the image-to-image translation through CNNs is well estab-
lished and has found numerous applications [3–6]. [2] has specifi-
cally stated how the ”community-driven research” has popularized
their work by applying it in different ways [7–9]. We see our work
as another demonstration of [2]. This time in the context of CFD.

The field of CNNs provides various approaches of handling with
ROIs. [10, 11] use different NNs for generating and applying the
ROIs. This leads to results with a probability, which is desired in
the given tasks, but not in ours. Other works like [12, 13] use binary
mask to define ROIs. But they use these mask as an pre image pro-
cessing step only. Our application of the binary map goes further
with respect to the combined application.

3 Methodology

The task is to build a network that can predict the next frame of a 2D
flow simulation based on the previous one. Our focus of this work is
on the boundaries of the simulation area, obstacles for example, and
their stability in iterative evaluations of the network. Each frame rep-
resents a time step of the simulation and consists of a three-channel
image. Two of the channels encode the velocity fields in x- and y-
direction and the third channel is the pressure field of the fluid. For

364

Binary Maps for Image Separation

this paper we did not construct a single holistic model that can han-
dle all the simulation’s parameters. Our effort is concentrated on
taking a relative simple model and investigate the influence of the
application of binary maps. We call this simple model the constant
model because we do not vary simulation parameters like the inflow
speed.

3.1 Simulation setup and data generation

The training data was generated by performing simulations of in-
compressible fluid flow around a rectangular object in a channel. The
simulations are modelled according to the Navier-Stokes equations
for in-compressible flow. Because we are interested in the image
representations of the simulations, we are dealing only with the 2D
case. Several boundary conditions describe the simulation setup:

• Inflow condition on the left side of the channel

• Outflow condition on the right side of the channel

• No-slip condition on the bottom and top side of the channel as
well as the sides of the object.

The simulation setup has three separate adjustable parameters: in-
flow speed g, fluid density ρ and fluid kinematic viscosity v. For the
constant model we took the simulation with ρ = 0.2, v = 0.0009 and
g = 1.5. The choice of the parameter is deliberate. The values are
chosen so that the Reynolds number [14] of the simulations in the
range of [90, 450]. We were interested whether the build models can
predict the emerging Kármán vortex street [15]. Thus, the Reynolds
numbers were chosen so that the effect can occur.

The simulations were performed numerically by solving the dif-
ferential equation describing the flow – the Navier-Stokes equations.
This was done with a numerical solver library – HiFlow3 [16] – that
works on the base of the finite element method [17]. The time step
for the solver was set to 0.035 seconds. This means a single time step
of the simulation corresponds to 0.035 seconds of physical time.

The numerical solver library on itself cannot be used to render the
simulation results to images. For this reason, we used ParaView [18]

365

R. Lehmann et al.

to load the simulation data and exported it as a sequence of images
in PNG format. We used the default ”Grayscale” color preset of
ParaView to visualize the results. Each frame of the simulation was
exported as three separate grayscale images. Finally, the images were
cropped to select a subset of the space that contains the object and
space behind it. For training the neuronal network, we rendered
1904 frames of the simulation (66 seconds of the simulated physical
time).

After all images were generated, a test-train split was created. The
split was done by random and resulted in 80% of the data was used
for training and the rest for testing.

The binary map was created be locating the obstacle and set the
size to the same length and width like the other images.

3.2 Training approach and network details

We based our generative models almost entirely on [2]. We use the
conditional GAN approach to train a generator network that can per-
form image-to-image translation. As explained in [2], the traditional
GAN method uses a random vector z as an input to the generator
network G to generate output y, G : z → y. Conditional GANs also
feed an input image x to the generator, G : x, z → y. [2] and [19]
suggest that in certain cases the usage of z can be usefully, but we
decided not to include for our generator as we want a deterministic
network. The discriminator network is modelled with the function
D : x, y→ v that evaluates the likelihood of y being a real image. To
note is that the discriminator network has access to the real image x
and tries to guess, if y is the real or generated output.

We adopt the objective function of the discriminator network and
we modify it slightly by leaving out the random vector z.

LcGAN(G, D) = (E[log D(x, y)] + E[log D(x, G(x))])/2
= (log D(x, y) + log D(x, G(x)))/2

(3.1)

where x is the input image and y is the target image. We leave out
the expected value calculation as we do not use the random vector
z in our loss function. In contrast to unconditional GANs, both the
generator and the discriminator network have access to the input

366

Binary Maps for Image Separation

image. The objective is divided by two to slow down the training of
the discriminator relative to the generator as suggested by [2].

The objective for the generator network is composed of two parts
— the value of the discriminator as well as a L1 distance loss between
the target and the predicted images. According to [2] the L1 loss
promotes less blurring and captures the low frequency details of the
images. The L1 loss is given by:

LL1(G) = E[‖y− G(x)‖1] (3.2)

The final object for the generator is thus:

G∗ = arg min
G

max
D
LcGAN + λLL1(G) (3.3)

For all models we used λ = 100 as done in [2].

3.3 Network architecture

For our generator we use the U-Net [20] variant proposed in [2].
It is a standard encoder-decoder [21] model with skip connections
between parts of the encoder and the decoder. Our network uses
blocks of layers of the form convolution-normalization-ReLu [22].
The encoder-decoder first downsamples the input till a bottleneck
layer is reached and what follows is an upsampling to the original
size of the input image.

For the discriminator, we follow the method of [2] and we use their
PatchGAN discriminator network. This is a convolutional network
that classifies patches of the input as real or predicted. To note is
that the whole image is given as an input. The majority of the results
in [2] show that patches of size 70 × 70 yield the best results but
in our case, the experiments showed otherwise. We, therefore, we
opted out for using patches of size 286× 286 pixels.

3.4 Training details

We trained the model with the generated dataset. When loading
the images in memory, we first resize them to an appropriated for a
network size of 1024× 256 (width × height). Then we apply random

367

R. Lehmann et al.

crops as well as add random noise to each channel of the images.
We do this to force the generator to learn the actual features of the
simulation and make over-fitting harder. To investigate the effect of
using a binary map to determine the obstacle. We developed four
different training:

• no-mask: no binary mask is used at all

• no-mask-after: the binary mask is multiplied to the input im-
age. The binary mask itself is also fed as additional input into
the generator network but not multiplied with the predicted
image.

• no-mask-before: only the predicted image is multiplied with
the binary image. No binary mask is fed into the network or is
multiplied to the input image.

• mask: the binary mask is multiplied to the input image. The
binary mask itself is also fed as additional input to the genera-
tor network. The predicted image is multiplied with the binary
image, too.

The binary map as additional input gives the network the informa-
tion where the obstacle is. The zeroed values can’t provide this in-
formation due the grayscaled image.

For the training procedure, we follow the standard approach in
[23]. With each mini-batch, we first optimize the discriminator and
then the generator with the discussed objectives. We use Stochastic
Gradient Descent [24] with the Adam optimizer [25] with a learning
rate of 0.0002 and standard momentum parameters β1 = 0.9 and
β2 = 0.999. The used batch size for the constant model was set to 3.
Those are relatively small numbers for batch sizes but [2] suggests
that the U-Net architecture benefits from small batches in image-to-
image translation problems.

The constant model was trained for 45 epochs and evaluated on
a single Nvidia GTX 980Ti GPU. The Implementation of the models
was done in PyTorch [26] python library for machine learning.

368

Binary Maps for Image Separation

4 Results

At this point we want to mention why the following results are show-
ing the beginning of the vortex street and not a fully distinctive tur-
bulent flow. The reason can be found in the training data and the
very short amount of time the vortex street needs to establish within
the stream. Therefore, the neuronal network is well-trained to pre-
dict the continuation of the distinctive turbulent flow but less highly
trained for the first simulation steps where the vortex street is estab-
lishing. That is why prediction problems have a higher impact on the
first steps and are therefore more visible in these images, although
the same problems can be observed in all simulation steps as shown
later on.

Figure 4.1: 1. Line: Step 1 and step 20 of a finite element simulation, 2. Line: Pre-
dicted step 1 and step 20 without the usage of the pressure field, 3. Line:
Predicted step 1 and step 20 with usage of the pressure field; No binary
mask used, x-velocity shown

We start with the mask-free prediction. Figure 4.1 shows what
happens: The obstacle vanishes within the stream and this has in
return a bad impact on the stream itself. Even adding more infor-
mation by using the pressure field of the stream in addition to the
velocity field for prediction isn’t a solution.

As the first step prediction seams to be useful, the intuitive next
development is to multiply every prediction with the binary mask
before using it iteratively as the new input data. Results for that are
shown in figure 4.2. One can see, that this idea also leads to insuffi-

369

R. Lehmann et al.

Figure 4.2: 1. Line: Step 1 and step 20 of a finite element simulation, 2. Line: Pre-
dicted step 1 and step 20 without the usage of the pressure field, 3. Line:
Predicted step 1 and step 20 with usage of the pressure field; Binary mask
used after prediction, x-velocity shown

cient results. Adding more information with the pressure field even
produces worse results with respect to the accuracy of the stream.

After observing that the simple post image processing step isn’t
the solution, we turned it the other way round and set the binary
map as an additional data stream for the neuronal network. The
idea here is that the network is able to learn the sharp separation
with the help of this map. In figure 4.3 it is obvious that this isn’t the
right way either.

Figure 4.3: 1. Line: Step 1 and step 20 of a finite element simulation, 2. Line: Pre-
dicted step 1 and step 20 without the usage of the pressure field, 3. Line:
Predicted step 1 and step 20 with usage of the pressure field; Binary mask
used within neuronal network, x-velocity shown

370

Binary Maps for Image Separation

Combining both approaches, adding the binary map to the neuronal
network and using it for post-processing the result, is the next logical
step at this point. Figure 4.4 shows, that this approach preserves the
obstacle perfectly and results in good predictions. There are relics
on the image, but they are very homogeneous and can be filtered
with common image processing steps like opening and closing. The
stream itself is in both predictions very close to the numerical simu-
lation.

Figure 4.4: 1. Line: Step 1 and step 20 of a finite element simulation, 2. Line: Pre-
dicted step 1 and step 20 without the usage of the pressure field, 3. Line:
Predicted step 1 and step 20 with usage of the pressure field; Binary mask
used combined, x-velocity shown

For a real quality quantification we used a measurement to com-
pare different images with the focus on the human observer. Imply-
ing that the result doesn’t have to be fully accurate, we used the Peak
Signal Noise Ratio (PSNR) as the metric. It is connected to the mean
square error (MSE) in the following way:

PSNR = 10 · log10

(
255

MSE

)
[decibel]. (4.1)

Higher values are connected to less observable differences, in general
a PSNR over 30 means that the human eye cannot detect any differ-
ence [27, 28]. We started the PSNR evaluation at simulation step 90
to show that even in the well-trained time steps of the simulation
where the vortex street is completely visible a relevant difference is
measurable. Figure 4.5 not only shows that the combined approach
results in the best predictions but also that a bad application of the

371

R. Lehmann et al.

Figure 4.5: Left: PSNR values for 20 iterative steps, starting with step 90, no pressure
field used; Right: Added pressure field.

binary map can result in even worse predictions than applying no
binary map.

5 Summary

Defining regions of interest with the help of binary masks for itera-
tive neuronal network applications like predicting CFD results is an
important issue for such predictions. As seen in figure 4.1 to 4.4 ap-
plying no binary mask leads to wrong results very quickly. Applying
only one approach — train the mask or using it as a post-processing
step — can preserve the obstacle but cannot avoid interferences on
the stream. Only applying both strategies results in appropriate pre-
dictions even when more information, like the pressure field, is used.
The PSNR values in figure 4.5 are showing that this is even true for
very well-trained parts of the simulation. This figure also demon-
strates that a wrong application of a binary mask can lead to worse
predictions than applying no mask at all. Therefore, we suggest a
combined application of a binary mask for iterative network appli-
cations with sharp separations of regions of interest.

References

1. O. Hennigh, “Lat-net: Compressing lattice boltzmann flow simulations
using deep neural networks,” 2017.

372

Binary Maps for Image Separation

2. P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” CoRR, vol. abs/1611.07004,
2016. [Online]. Available: http://arxiv.org/abs/1611.07004

3. B. Zhao, W. Yin, L. Meng, and L. Sigal, “Layout2image: Image gener-
ation from layout,” International Journal of Computer Vision, pp. 1 – 18,
2020.

4. Y. Liu, Z. Qin, Z. Luo, and H. Wang, “Auto-painter: Cartoon image
generation from sketch by using conditional generative adversarial
networks,” CoRR, vol. abs/1705.01908, 2017. [Online]. Available:
http://arxiv.org/abs/1705.01908

5. M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional
networks for mid and high level feature learning,” in 2011 International
Conference on Computer Vision, Nov 2011, pp. 2018–2025.

6. T. Park, M. Liu, T. Wang, and J. Zhu, “Semantic image synthesis with
spatially-adaptive normalization,” CoRR, vol. abs/1903.07291, 2019.
[Online]. Available: http://arxiv.org/abs/1903.07291

7. S. Moschoglou, S. Ploumpis, M. Nicolaou, A. Papaioannou, and
S. Zafeiriou, “3dfacegan: Adversarial nets for 3d face representation,
generation, and translation,” ArXiv, vol. abs/1905.00307, 2019.

8. B.-K. Kim, G. Kim, and S.-Y. Lee, “Style-controlled synthesis of clothing
segments for fashion image manipulation,” IEEE Transactions on Multi-
media, vol. 22, pp. 298–310, 2020.

9. S. S.-C. Chen, H. Cui, M. Du, T. Fu, X. S. Sun, Y. J. Ji, and H. Duh, “Can-
tonese porcelain classification and image synthesis by ensemble learning
and generative adversarial network,” Frontiers of Information Technology
& Electronic Engineering, vol. 20, pp. 1632 – 1643, 2019.

10. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption genera-
tion with visual attention,” in International conference on machine learning,
2015, pp. 2048–2057.

11. L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T.-S. Chua, “Sca-
cnn: Spatial and channel-wise attention in convolutional networks for
image captioning,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 5659–5667.

12. J. Dai, K. He, and J. Sun, “Convolutional feature masking for joint object
and stuff segmentation,” CoRR, vol. abs/1412.1283, 2014. [Online].
Available: http://arxiv.org/abs/1412.1283

373

R. Lehmann et al.

13. S. Eppel, “Setting an attention region for convolutional neural networks
using region selective features, for recognition of materials within glass
vessels,” arXiv preprint arXiv:1708.08711, 2017.

14. K. T. Trinh, “On the critical reynolds number for transition from laminar
to turbulent flow,” 2010.

15. T. v. Kármán, “Ueber den mechanismus des widerstandes, den
ein bewegter körper in einer flüssigkeit erfährt,” Nachrichten von
der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische
Klasse, vol. 1911, pp. 509–517, 1911. [Online]. Available: http:
//eudml.org/doc/58812

16. S. Gawlok, P. Gerstner, S. Haupt, V. Heuveline, J. Kratzke, P. Lösel,
K. Mang, M. Schmidtobreick, N. Schoch, N. Schween, J. Schwegler,
C. Song, and M. Wlotzka, “Hiflow3 – technical report on release
2.0,” Preprint Series of the Engineering Mathematics and Computing Lab
(EMCL), vol. 0, no. 06, 2017. [Online]. Available: https://journals.ub.
uni-heidelberg.de/index.php/emcl-pp/article/view/42879

17. G. Strang and G. Fix, An Analysis of the Finite Element Method. Wellesley-
Cambridge Press, 2008. [Online]. Available: https://books.google.de/
books?id=K5MAOwAACAAJ

18. J. Ahrens, B. Geveci, and C. Law, “Paraview :
An end-user tool for large data visualization,” En-
ergy, vol. 836, p. 717–732, 2005. [Online]. Available:
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:
ParaView:+An+end-user+tool+for+large+data+visualization$\#$0

19. X. Wang and A. Gupta, “Generative image modeling using style and
structure adversarial networks,” 2016.

20. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.
[Online]. Available: http://arxiv.org/abs/1505.04597

21. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006. [Online]. Available: https://science.sciencemag.org/content/313/
5786/504

22. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015. [Online]. Available: http://arxiv.org/abs/1502.
03167

374

Binary Maps for Image Separation

23. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
Eds. Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

24. J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a
regression function,” The Annals of Mathematical Statistics, vol. 23, no. 3,
pp. 462–466, 1952. [Online]. Available: http://www.jstor.org/stable/
2236690

25. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

26. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

27. D. Mehra, “Estimation of the image quality under different distortions,”
International Journal Of Engineering And Computer Science 8, 2016.

28. Y. Shiao, T. Chen, K. Chuang, C. Lin, and C. Chuang, “Quality of com-
pressed medical images,” Journal of digital imaging : the official journal of
the Society for Computer Applications in Radiology 20, 2007.

375

