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Kurzzusammenfassung 
 
Die Einführung von batterieelektrischen Fahrzeugen (E-Pkw) gilt als eine wichtige Maßnahme 
zur Emissionsverringerung im Straßenverkehr. Gewerbliche Flotten in Deutschland bilden 
hierfür einen vielversprechenden Markt. Um dieses Potential zu realisieren, ist sowohl eine 
techno-ökonomische Optimierung als auch eine ökologische Bewertung über den 
Lebenszyklus erforderlich. Das Ziel der Dissertation ist es, hierfür ein methodisches 
Rahmenwerk zu liefern.  

Die kumulative Dissertation besteht aus fünf Artikeln, die sich den einzelnen Bestandteilen des 
Rahmenwerks widmen und großteils auf Technologie- und Nutzungsdaten aus eigenen 
Messungen aufbauen. Der erste Artikel, Schücking et al. (2016) [Paper I], ist eine technische 
Analyse. Sie untersucht den realen Energieverbrauch von E-Pkws im Vergleich zu 
konventionellen Fahrzeugen und identifiziert optimale Betriebspunkte. Die Ergebnisse heben 
den Einfluss verschiedener Faktoren auf den Energieverbrauch als wichtige Komponente 
detaillierter techno-ökonomischer und ökologischer Betrachtungen hervor. Der zweite und der 
dritte Artikel haben einen techno-ökonomischen Fokus. Sie beschäftigen sich mit der Frage, 
wie E-Pkws einen schnelleren wirtschaftlichen Break-even im Vergleich zu konventionellen 
Fahrzeugen erreichen können. Der zweite Artikel, Schücking et al. (2017) [Paper II], stellt 
Ladestrategien vor, welche eine höhere Auslastung der E-Pkw ermöglichen und damit zu 
geringen Gesamtkosten im Vergleich zu konventionellen Pkw führen können. Unsicherheiten 
in Fahrprofilen und Energieverbrauch begrenzen die Anwendbarkeit dieser Strategien. Der 
dritte Artikel, Schücking & Jochem (2020) [Paper III], knüpft hieran an. Er schlägt ein 
zweistufiges stochastisches Optimierungsmodell zur Minimierung der Investition und 
Betriebskosten eines E-Pkw unter Berücksichtigung dieser Unsicherheiten vor. Neben der 
stochastischen Betrachtung ist auch die Abwägung zwischen Batteriekapazität und 
Ladeleistung in der Investitionsentscheidung ein neuer Beitrag zur Forschung. Im Kontext der 
stochastischen Optimierung werden ein Hidden Markov Modell zur Generierung komplexer 
Fahrprofile und eine neue Szenario-Reduktionsheuristik als methodische Weiterentwicklungen 
angewandt. Artikel vier und fünf liefern eine ökologische Bewertung. Die empirischen Daten 
sowie der Fokus auf den deutsch-französischen Grenzverkehr zeichnen beide Artikel aus. Der 
vierte Artikel, Ensslen et al. (2017) [Paper IV], konzentriert sich auf die E-Pkw Nutzungsphase. 
Er verdeutlicht den Einfluss unterschiedlicher Strommixe und Ladezeitpunkte auf die CO2-
Emissionen und Reduktionspotentiale. Der fünfte Artikel, Held & Schücking (2019) [Paper V], 
betrachtet verschiedene ökologische Wirkungskategorien (wie z.B. Klimawandel, Versauerung 
Eutrophierung) über den gesamten Lebenszyklus mittels eines modularen Screening-Modells. 
Die Ergebnisse unterstreichen den Einfluss der Batterie und der Nutzungsphase auf die 
ökologische Gesamtbilanz. Dem übergreifenden Forschungsziel folgend, zeigen die 
Ergebnisse der einzelnen Artikel in ihrer Kombination, dass die Optimierung des 
wirtschaftlichen Nutzens auch die ökologischen Vorteile erhöhen kann. Die ex-ante Ermittlung 
der optimalen Batteriekapazität sowie ein hoher Betriebsgrad erhöhen nicht nur die 
Wettbewerbsfähigkeit von E-Pkw, sondern beschleunigen unter bestimmten Voraussetzungen 
auch den ökologischen Break-even in einem Großteil der betrachteten Wirkungskategorien. 
Die Eigenschaften, die gewerbliche Anwendungen aus wirtschaftlicher Sicht zu einem 
vielversprechenden Einführungsmarkt für E-Pkws machen, können damit auch die 
angestrebten ökologischen Vorteile unterstützen. 
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Abstract 
 
The introduction of battery electric vehicles (BEVs) is considered an important measure to 
reduce emissions from road transport. The commercial vehicle market in Germany forms a 
promising introductory market. However, the widespread substitution of internal combustion 
engine vehicles (ICEVs) by BEVs is still hindered by technical restrictions and higher 
investment. Under the goal of a rapid BEV introduction ramp-up to support emission reduction 
targets, the techno-economic optimization of BEV investment and operations becomes 
strongly intertwined with the environmental evaluation. The aim of this thesis is to provide a 
methodological framework, which helps to identify essential conditions, prerequisites, and 
measures required for a joint economic and environmentally beneficial deployment of BEVs in 
commercial applications. 
 
This thesis consists of five papers, which introduce individual components of the framework 
and are largely based on technology and usage data from own measurements. The first paper, 
Schücking et al. (2016) [Paper I], is a technical analysis. It examines the real energy 
consumption of BEVs compared to internal combustion engine vehicles (ICEVs) and identifies 
optimal operating points. The results highlight the influence of various factors on energy 
consumption, which is a key input for a detailed techno-economic optimization and 
environmental evaluation. The second and third paper have a techno-economic focus. They 
deal with the question of how BEVs can achieve a faster economic break-even compared to 
ICEVs. The second paper, Schücking et al. (2017) [Paper II], presents charging strategies that 
allow a higher utilization of the BEVs and thus can lead to lower total costs compared to ICEVs. 
Uncertainties in mobility patterns and energy consumption limit the applicability of these 
strategies. The third paper, Schücking & Jochem (2020) [Paper III], follows up on this. Taking 
these uncertainties into account, the paper proposes a two-stage stochastic optimization 
model to jointly minimize the investment and operating costs of a BEV. In addition to the 
stochastic approach, the inclusion of the trade-off between battery and charging capacity in 
the investment decision is a new contribution to the research. In the context of stochastic 
optimization, a hidden Markov model for the generation of complex driving profiles and a new 
scenario reduction heuristic are applied as methodological enhancements. The fourth and fifth 
paper provide the environmental evaluation. The empirical utilization data as well as the 
emphasis on Franco-German border traffic characterize both papers. The fourth paper, 
Ensslen et al. (2017) [Paper IV], focuses on the utilization phase. It highlights the influence of 
different electricity mixes and charging times on carbon dioxide (CO2) emissions and reduction 
potentials. The fifth paper, Held & Schücking (2019) [Paper V], assesses several 
environmental impact categories (e.g. global warming potential, acidification potential, and 
eutrophication potential) over the entire life cycle using a simplified modular screening model. 
The results underline the strong influence of the battery and the utilization phase on the overall 
environmental impact. In line with the overarching research objective, the results of the 
individual papers combined indicate that the optimization of the economic benefit can also 
increase the environmental benefits. The ex-ante determination of the optimal battery and 
charging capacity as well as a high degree of operation not only increase the competitiveness 
of BEVs, but under certain conditions can also accelerate breaking-even in several 
environmental impact categories. The characteristics that make commercial applications from 
an economic point of view a promising introduction market for BEVs can thus also support the 
achievement of the desired ecological benefits.  
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Part A - Overview article 
 

1. Introduction 
Transport causes almost a quarter of all greenhouse gas (GHG) emissions in Europe, and it is 
the main root of local air pollution in cities (European Commission, 2016). The international 
efforts to reduce GHG emissions and limit the Global Warming Potential (GWP) have led to 
the Accord de Paris where it was agreed to hold “(…) the increase in the global average 
temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the 
temperature increase to 1.5 °C (…)” (United Nations, 2015). However, on several measures 
required to reach that goal, such as guidelines for a common carbon market, the members of 
the international community have so far not reached an agreement (UNFCCC, 2019). Next to 
the GWP, the negative impact of local air pollution has become an important topic in public 
and political discussions. Although slight improvements are noted in Germany, the high levels 
of nitrogen oxides and particles in city centers lead to continuous warnings from the European 
Commission and can ultimately lead to legal proceedings and fines (Umweltbundesamt, 2018). 
In other parts of the world, such as China and India, local air pollution from transportation is 
far worse, contributing to the heavy smog that causes widespread health problems (Forbes, 
2017; The New York Times, 2020).  
 
Enabled by the recent progress in battery technology, the electrification of road transport is 
seen as a promising way to decrease local as well as global emissions (Creutzig et al., 2015; 
IEA, 2019; Jochem, Doll, & Fichtner, 2016). A combination of mobility and energy transition 
with an increasing share of renewable energies is key (Jochem, Babrowski, & Fichtner, 2015; 
Sohnen, Fan, Ogden, & Yang, 2015; Wietschel et al., 2019). Hence, the European Commission 
has put the policy areas of clean energy and sustainable mobility at the core of the European 
Green Deal (European Commission, 2020). Amongst other targets, the investment plan seeks 
a 90% reduction of transport emissions by 2050 (European Commission, 2019). In line with 
this goal, the German federal and state governments also try to accelerate the replacement of 
internal combustion engine vehicles (ICEVs) by battery electric vehicles (BEVs) through 
regulatory changes, short-term tax incentives, and direct premiums (Bundesregierung, 2016). 
With 83.175 registered BEVs in Germany at the end of 2019, it has been clear for some time 
that the initial target of one million BEVs by 2020 will not be reached (KBA, 2019b; Zeit Online, 
2018). Therefore, the federal initiatives have been expanded further as part of the 
Klimaschutzprogramm 2030, e.g. with the increase of the direct premiums for BEVs from 
4,000 € to 6,000 € (BMWi, 2020). Moreover, local driving bans on Diesel vehicles are being 
executed to improve local air quality in city centers (Bundesverwaltungsgericht, 2018; Stadt 
Stuttgart, 2019). Governments of other countries go as far as announcing future bans on new 
registrations of ICEVs, e.g., Norway by 2025 or France by 2040 (The Guardian, 2017).  
 
With increasing battery capacities, higher charging power, and falling prices the technical 
substitution potential, as well as the economic profitability of BEVs, is improving. Despite the 
advances in lower operational costs and the ongoing political support BEVs still have 
significant disadvantages compared to ICEVs that confine their current adoption by 
commercial and private users (Ensslen, Ringler, Jochem, Keles, & Fichtner, 2014). The main 
technical and economic hurdles for a widespread introduction are the limited range, the longer 
recharging time, and the purchase price (Globisch & Dütschke, 2013; Hacker et al., 2011; 
Sierzchula, 2014).  
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Commercial transport is increasingly considered to be the more promising introduction market 
for BEVs (The Economist, 2018). In comparison to privately owned vehicles, commercial ones 
have a faster turnover rate (Nesbitt & Sperling, 2001). For commercial use cases, the technical 
restrictions are less problematic because mobility patterns show lower variance and are more 
predictable. ICEVs can also be used in mixed fleets for trips above the maximum range 
(Ketelaer, Kaschub, Jochem, & Fichtner, 2014). Studies show that the technical specifications 
of the first mass-market BEV models were already sufficient to cover most of the mobility 
demand of various commercial use cases (Gnann, Plötz, Kühn, & Wietschel, 2015; Hacker, 
von Waldenfels, & Mottschall, 2015; Ketelaer et al., 2014; Plötz, Gnann, Kuehn, & Wietschel, 
2013). Due to the growing battery capacities over recent years the technical substitution 
potential is constantly increasing (Lutsey, Grant, Wappelhorst, & Zhou, 2018). The maximum 
range of BEVs is predicted to rise to 800 km in the next ten years (Thielmann et al., 2020). 
Additionally, the higher annual mileage of commercial vehicles allows taking more advantage 
of the lower operating costs facilitating an earlier break-even relative to an ICEV (Gnann, Plötz, 
Kühn, et al., 2015; Ketelaer et al., 2014; Plötz et al., 2013). Even though commercial vehicles 
only make up 10.8% of the total registered vehicles in Germany with 63.6% of all annual new 
registrations they are a crucial introductory market (KBA, 2019b, 2019a). To accelerate the 
introduction of commercial BEVs in Germany, the coalition agreement of the current federal 
government includes an extraordinary depreciation allowance for commercial BEVs in addition 
to the existing short-term tax incentives and direct premiums (Bundesregierung, 2018). This 
extraordinary depreciation allowance has been increased and expanded until 2030 
(Handelsblatt, 2019). The technical and future economic advantages of BEVs, the public 
incentive schemes, and the risk of a local or total ban of ICEVs raise the need for organizations 
to evaluate the techno-economic potential and environmental impact of BEVs.  
 
Even though research has assessed the techno-economic optimization and environmental 
impact of BEVs extensively, the publications usually focus on one or the other field of research. 
With the objective of a rapid BEV introduction ramp-up to support traffic emission reduction 
targets, both fields of research become strongly intertwined. To the best of the author’s 
knowledge, no publication offers a holistic framework of methodical approaches to evaluate, 
simulate, and optimize the case-specific utilization as well as the whole life cycle of commercial 
BEVs from an economic and an environmental perspective.  
 
Moreover, in the individual fields of research, techno-economic optimization and environmental 
impact of BEVs, there are still gaps. A large amount of literature with an economic focus has 
been dedicated to forecasting the (commercial) market penetration of BEVs using or combining 
econometric, discrete choice, agent-based simulation, system dynamics or integrated 
assessment models (Jochem, Gómez Vilchez, Ensslen, Schäuble, & Fichtner, 2018). Many of 
these rely on the total cost of ownership (TCO) approach in some form. Only a limited number 
of studies takes a more incremental TCO approach by optimizing the investment and operation 
of BEVs in specific commercial use cases (Davis & Figliozzi, 2013; Feng & Figliozzi, 2013; 
Hiermann, Puchinger, Ropke, & Hartl, 2016; Kuppusamy, Magazine, & Rao, 2017; Sassi, 
Cherif, & Oulamara, 2015). Even fewer are based on real BEV utilization data (Lebeau et al., 
2015), even though they can have a significant influence on the technical and therefore 
economic substitution requirements. Furthermore, these approaches neglect the specific effect 
of uncertainties in the input data from utilization or the potential benefits of optimizing the trade-
off between battery and charging capacity in the investment decision. Concerning the 
environmental impacts, several studies have assessed the direct emissions in operation or 
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provide a full life cycle assessment (LCA) (Helmers & Weiss, 2017; Nordelöf, Messagie, 
Tillman, Ljunggren Söderman, & Van Mierlo, 2014). The use of case-specific BEV utilization 
data can notably improve the results since they are highly sensitive to different utilization 
parameters. However, only a few include the data of specific commercial use cases (Held et 
al., 2016; Muneer et al., 2015). For both the assessment of the direct carbon dioxide (CO2) 
emissions and saving potentials, as well as the LCAs case-specific studies based on long-term 
utilization data, are missing from the literature (Egede et al. 2015).  
 
Two objectives for this thesis can be derived from the research gaps described above: firstly, 
it aims to fill the identified gaps in the individual fields of research, techno-economic 
optimization and environmental impact of BEVs, based on detailed empirical data and to 
combine existing methods into new methodical advancements to do so. Secondly, the thesis’s 
additional goal is to bring the two fields of research together. Considering the dependencies in 
the results of the two fields of research allows drawing general conclusions for the essential 
conditions, prerequisites, and measures required for a joint economic and environmentally 
beneficial deployment of BEVs in commercial applications. 
 
Table 1 provides an overview of the five papers, which constitute the new research presented 
in this thesis including the specifically addressed research questions, applied methodology, 
and assessed use cases. The papers presented in this thesis are distinguished into three 
subject areas. Subject area 1 has a technical focus and consists of Schücking et al. (2016) 
[Paper I]. It offers a detailed technical analysis of the BEVs’ energy consumption in long-term 
deployment and uses the empirical data to calibrate a vehicle dynamics model. Subject area 
2 has a techno-economic focus containing two papers that follow the aim of increasing the 
BEVs’ competitiveness. Schücking et al. (2017) [Paper II] focuses on the operations and 
presents empirical evidence and conceptual suggestions of how in use cases with a high 
degree of predictability the BEVs’ utilization and therefore their competitiveness can be 
increased through charging strategies. Schücking & Jochem (2020) [Paper III] takes a broader 
approach by introducing a two-stage stochastic program that optimizes the investment 
decision and the operational costs considering uncertainties in energy consumption and the 
detailed technical constraints set by a BEV. Subject area 3 delivers the analysis of the direct 
CO2 emissions and life cycle environmental impacts for BEVs in commercial applications. 
Ensslen et al. (2017) [Paper IV] focuses on utilization and calculates time-dependent CO2 
emission reduction potentials based on empirical BEV charging profiles. 
Held & Schücking (2019) [Paper V] evaluates the whole life cycle from an environmental 
perspective and provides an LCA covering the stable impact categories based on a simplified 
screening approach. In total, all papers present an interdisciplinary approach to evaluate, 
simulate, and optimize the case-specific utilization of commercial BEVs from an economic and 
environmental perspective by offering a holistic framework of methodical approaches (Figure 
7). The energy consumption of the BEVs and the commercial mobility profiles are the center 
of the framework. They set the basis as essential technical requirements for the following 
detailed economic and environmental assessment. The research in this thesis is to a large 
extent based on newly recorded empirical utilization data (mobility profiles and energy 
consumption), which is evaluated and used to calibrate the applied technical, techno-
economic, and environmental models.  
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Table 1: Overview of the five research papers presented in this thesis
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The thesis is divided into three parts. Part A offers an introduction to BEVs and commercial 
transport. Based on previous research, it proposes a framework for identifying promising 
commercial use cases. Furthermore, it provides an overview of the current state of research 
and illustrates the gaps in the literature in terms of content and methodology. Also, Part A gives 
an overview of how the five research papers add new methodical approaches and empirical 
insights attempting to fill the identified gaps. It concludes by pointing out interconnections 
between the results of the papers, stating the limitations, and providing links and outlook for 
future research. Part B consists of the five papers constituting the research of this thesis. Part 
C acts as a further appendix to the research papers. It provides additional details concerning 
data, data processing, and modeling, as well as parts of the program source code. 
  

2. Commercial electric mobility 
Ups and downs characterize the history of BEVs over the last 150 years. It started with an 
early success story followed by a sharp decline and many years of only minor importance. The 
first experimental BEV was built in 1834, more than 50 years before the first ICEV (Chan, 
2013). As the first commercial applications, electric taxis were introduced in New York City in 
1897 and Germany in 1904 (Chan, 2013). At the turn of the 19th to the 20th century, 38% of all 
automobiles in the US were powered by electricity and only 22% by gasoline with the rest 
powered by steam (Guarnieri, 2012). The advantages over other drivetrain technologies were 
the same as today: no gear shift, no exhaust, and easy to start as well as recharge. With the 
discovery of vast crude oil reserves and the development of the electrical starter, ICEVs 
became cheaper and more convenient to operate. As a result, BEVs gradually disappeared 
after 1920 (Guarnieri, 2012). Sporadic initiatives to reintroduce the technology failed over the 
years. Only the invention of high power and high energy battery technologies in combination 
with increasing environmental awareness and the decline in crude oil reserves started the 
comeback of BEVs to the mass market in 2010 around 100 years after their first peak. 
 

2.1 Battery electric vehicles and charging infrastructure 
This thesis defines BEVs as four-wheel passenger cars (European Directive 2007/46/EG class 
M1) or light-duty vehicles (European Directive 2007/46/EG class M1) for which the traction 
battery is the only form of energy supply. Hence, it excludes all two-wheelers, utility vehicles, 
and other forms of BEVs as well as vehicles with other (additional) forms of energy storage. 
Therefore, hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), range-
extended electric vehicles (REEVs), and fuel-cell electric vehicles (FCEVs) are not subject of 
this thesis.  
 
The BEV’s components can be distinguished into three basic categories: powertrain, energy 
storage, and glider (Hill, Varma, Harries, Norris, & Kay, 2012). Figure 1 illustrates the 
arrangements of the essential components.  
 
Powertrain  
The central components of the powertrain are the electric motor (EM), the DC/AC-inverter, and 
the control system. The EM has distinct advantages over an internal combustion engine (ICE). 
It generates a high initial torque, less noise, and is more energy-efficient (MacLean & Lave, 
2003). Additionally, the EM can be turned into a generator to recuperate the mechanical energy 
when braking that is stored back into the battery. Mainly two construction designs for the EM 
are used in today’s BEVs: the permanently excited synchronous machine (PSM) and the 
asynchronous machine (ASM) (Leidhold, 2015; Linssen et al., 2012; Mock, 2010). Both have 
their advantages and disadvantages. The PSM has the advantage of higher energy efficiency 
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and power density, while the ASM has a simpler mechanical construction and can operate in 
a broader speed range without requiring a gear shift (Leidhold, 2015; Linssen et al., 2012; 
Mock, 2010). One disadvantage of the PSM is that it requires rare earth elements for their 
permanent magnets and the increasing demand strains the limited supplies that are already 
subject to export restrictions (Desai, 2018). Both motor types require a 3-phase alternating 
current (AC) input that needs to be transformed by the DC/AC-inverter from the direct current 
(DC) provided by the battery. It regulates the frequency and power input into the EM (Linssen 
et al., 2012).  
 

 
Figure 1: Basic schematics of a battery electric vehicle (own illustration following Leidhold (2015)) 

 
Additional to the powertrain there are other critical electric components: the onboard charging 
unit as well as the DC/DC-converter and auxiliaries (Linssen et al., 2012). The onboard 
charging unit converts the 1- or 3-phased AC provided by the charging station in DC at the 
battery voltage level (Linssen et al., 2012; Yilmaz & Krein, 2013)1. The DC/DC-converter 
transforms the battery voltage to 12 V required by the auxiliaries. The auxiliaries, such as light, 
power steering, and wipers, play an essential role in the BEV’s energy consumption (Neubauer 
& Wood, 2014). Most challenging for the BEVs is the climatization of the passenger cabin. It 
can take up to 4 kW of additional power demand (Helms et al., 2013; Linssen et al., 2012; 
Tober, 2016).2 Due to the limited battery capacity, it is a definite disadvantage in comparison 
to an ICEV. Especially, since ICEVs heat the passenger cabin with waste heat from the ICE. 
As a result, researchers and manufacturers are working on new, more efficient technologies, 
especially heat pumps, to reduce the auxiliaries’ power demand (MAHLE, 2019; Mitsubishi, 
2017; Qi, 2014).  
 
Battery 
The traction battery as energy storage is the heart of a BEV. Its properties determine the 
performance potential of the whole vehicle. Five fundamental properties for batteries are listed 
in the literature for assessing and comparing technologies: peak power and power density, 

 
1 Yilmaz & Krein (2013) offers an extensive review over the different design alternatives of BEV on-board chargers. 
2 Helms et al. (2013) and Tober (2016) provide a measured progression of more efficient heating and cooling power demand 
depending on the outside temperature for different current BEV. 
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energy capacity and energy density, durability, costs, and safety (Axsen, Kurani, & Burke, 
2010). It remains a challenge to develop a technology that performs well in all of these five 
categories (Gerssen-Gondelach & Faaij, 2012). 
 
Large format lithium-ion (Li-ion) cells have emerged as the dominant technology for vehicle 
traction batteries over the past years and are predicted to dominate in the nearer future 
(Thielmann, Sauer, & Wietschel, 2015; Thielmann et al., 2020; Yong, Ramachandaramurthy, 
Tan, & Mithulananthan, 2015a)3. In Li-ion batteries cells, oxidation-reduction reactions 
between the cell electrolyte and electrodes create the current (Cluzel & Douglas, 2012; 
EASE/EERA, 2017). The characteristics of their active elements limit the theoretical maximum 
performance (Julien, Mauger, Vijh, & Zaghib, 2016). In most current cells the anode is made 
of graphite while the cathode consists of different Lithium-metal-oxides, e.g., NCA, NMC or 
LFP (Graf, 2013; Thielmann et al., 2020).  
 

 
Figure 2: Battery technologies for different vehicle types (own illustration following Lamp (2013))  

Li-ion batteries are used in BEVs for their superiority in power and energy density (Yong et al., 
2015a). Their advantages over other current technologies are usually depicted in the Ragone 
diagram (Julien et al., 2016). The power density is responsible for vehicle dynamics. The 
battery needs to provide enough power to master different driving situations. The energy 
density and capacity determine the BEV’s range. The values for power and energy density 
communicated in the literature and by manufacturers must be compared cautiously. 
Gravimetric and volumetric values can be distinguished as well as the aggregation levels cell 
or battery system. For example, the gravimetric energy density values on a system level are 
around 80% of the cell level values (Lamp, 2013). The relation of power to energy P/E is an 
essential characteristic of a traction battery. As can be seen in Figure 2, with all the energy 

 
3 Tesla vehicles form an exception. They use a large number of small format Li-ion cells (Thielmann et al., 2015). 
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required for the propulsion coming only out of the battery, BEVs require more energy density 
in comparison to PHEVs or HEVs. Future advances in Li-ion batteries like silicon anodes or 
new technologies like lithium-sulfur, lithium-air, and solid-state batteries are developed to 
increase the energy and power density beyond the technological boundary of Li-ion 
(Bloomberg, 2019a; Lamp, 2013; Yong, Ramachandaramurthy, Tan, & Mithulananthan, 
2015b). 
 
Li-ion battery durability and their aging process impose a challenge for their implementation in 
BEVs. The irreversible aging mechanisms of Li-ion cells are complex and influenced by a 
multitude of factors. The aging leads to a capacity decrease and an internal resistance 
increase. Cyclical and calendar aging can be distinguished. In most studies, both are 
considered to be additive (Hoke, Brissette, Smith, Pratt, & Maksimovic, 2014). Cyclical aging 
depends on the ways and intensity of use while calendar aging mostly depends on time and 
cell temperature. Detailed descriptions of the underlying electrochemical processes and the 
influence of charging power levels, State of Charge (SOC), temperature, depth of discharge, 
and others as well as different modeling approaches, can be found in the literature (Barré et 
al., 2013; Pelletier, Jabali, Laporte, & Veneroni, 2017; Vetter et al., 2005). One example of the 
influence of charging power levels is that loads lead to an increased likelihood of lithium plating 
on the anode, which can ultimately destroy the separator resulting in short circuits and potential 
thermal runways (Chandrasekaran, 2014; Kim, Albertus, Cook, Monroe, & Christensen, 2014; 
Offer, Yufit, Howey, Wu, & Brandon, 2012). Also, charging the battery at high and low SOC 
levels can cause unwanted secondary reactions and chemical effects. This effect can be worse 
than more frequent cycling in mid-range SOC levels (Agubra & Fergus, 2013; Ecker et al., 
2012; Lunz, Yan, Gerschler, & Sauer, 2012; Vetter et al., 2005). Therefore, as one measure 
to slow down the aging process batteries in BEVs only use a certain net proportion of the 
available gross capacity (Hacker et al., 2015; Kley, 2011).  
 
The cost of Li-ion batteries is considered one of the central barriers hindering the wide-spread 
introduction of BEVs (see chapter 2.3). However, in recent years, the prices have decreased 
to lower levels than predicted at the start of the decade (Nykvist & Nilsson, 2015; Thielmann 
et al., 2015). In 2017, a survey of more than 50 companies put the market price on the battery 
level at $209 per kWh coming down from around $1,000 per kWh in 2010 (Chediak, 2017). In 
2019 the average prices have fallen to $156 per kWh (Bloomberg, 2019b). Reaching a cost 
level of $150 per kWh on battery level is commonly considered as the breaking point for broad 
commercialization (Nykvist & Nilsson, 2015). This point will presumably be reached soon, as 
battery prices are predicted to fall below $100 per kWh by 2024 (Bloomberg, 2019a). 
 
In terms of safety, Li-ion cells also show shortcomings. First and foremost, they have no 
intrinsic safety mechanism (Fuchs, Lunz, Leuthold, & Sauer, 2012). A complex Battery 
Management System (BMS) is required to avoid overstressing the highly reactive materials 
into a thermal runaway. Also, active cooling can be required as part of the security measures 
to remove the heat generated by the internal resistance during charging and driving. 
 
Despite the listed shortcomings, Li-ion batteries currently offer the best-balanced option for 
use as energy storage in BEVs. The further development of new technologies, such as Lithium-
sulfur, Lithium-air or Lithium solid-state batteries, which promise higher energy and power 
densities, could lead to solutions that show a better overall performance in the five fundamental 
properties. However, so far the alternative technologies are only tested under laboratory 
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conditions and based on current projections will fulfill the technical and economic requirements 
only by 2030 (Bloomberg, 2019a; Thielmann et al., 2015). 
 
Efficiency 
The overall efficiency of the BEV is vital from an economic as well as environmental point of 
view. Here, the powertrain, the onboard charging unit, and the battery are the most critical 
components. The powertrain efficiency directly translates into a range increase. Table 2 lists 
individual values for the components from empiric measurements (Apostolaki-Iosifidou, 
Codani, & Kempton, 2017; Helms et al., 2013; Landau et al., 2017) and a literature review 
(Kasper, 2015; Travesset-Baro, Rosas-Casals, & Jover, 2015). The range of values underlines 
the variation between different technologies as well as the dependence on the voltage and 
current levels. This variance is especially noticeable for the onboard charging unit. For 
example, a charging unit optimized for high voltages and currents can perform poorly at low 
battery voltage and currents with an efficiency of only 0.12 (Apostolaki-Iosifidou et al., 2017). 
The battery efficiency is relevant for charging, propelling the BEV forward, and recuperating 
the energy back into the battery. The losses occur in the electrical connections of the cells as 
well as over their internal resistance. Li-ion batteries are characterized by a high (dis-)charging 
efficiency (Table 2).  
 
Table 2: Efficiency of mechanical and electrical BEV components 

Component Efficiency 
Charging efficiency (onboard charging unit 
and cables)  

0.12 - 0.831 

0.842 
0.86 - 0.913 

Battery 
 

0.962 
0.92 - 0.964 

0.90 - 0.995 (input) 

0.93 - 0.985 (output) 
DC/AC-inverter 0.95 - 0.974 

0.96 - 0.985 
Electric motor 0.87 - 0.954 

0.81 - 0.955 
Electric generator 0.82 - 0.955 
Transmission (fixed) 0.93 - 0.984 

0.89 - 0.985 

Differential 0.92 - 0.984 
Sources: 1 Apostolaki-Iosifidou et al. (2017), 2 Helms et al. (2013), 3 Landau et al. (2017),  3 Kasper (2015), 4 Travesset-Baro et 
al. (2015) 

 
When discussing the efficiency of BEVs and comparing it to ICEVs, it is crucial not only to 
include the different components but also to distinguish the boundaries of the energy carrier. 
Four different points of measurement can be distinguished: tank-to-wheel (TTW), grid-to-wheel 
(GTW), plant-to-wheel (PTW), and well-to-wheel (WTW) (Figure 3). TTW only considers the 
efficiency of the energy conversion from the battery to the tires. GTW includes the losses that 
occur when charging the battery from the grid. PTW additionally considers the losses during 
energy conversion and transport. WTW is the most holistic approach considering the whole 
value chain starting with the resources. When comparing the efficiency to other drivetrain 
technologies, different boundaries must be considered. The TTW efficiency of a BEV is 
important when estimating its range based on the battery capacity. From an economic point of 
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view, the GTW efficiency of a BEV is comparable to the TTW efficiency of an ICEV since it 
measures the energy paid. From an environmental perspective, the PTW efficiency of a BEV 
is equal to the TTW of an ICEV since it includes the emissions caused by the conversion from 
the primary energy carrier. 

 
Figure 3: Efficiency measurement points of the BEV in the energy system (Ensslen et al., 2017) 
 

Charging infrastructure 
The charging infrastructure, in the following called electric vehicle supply equipment (EVSE), 
can be distinguished into four categories by their accessibility: private, semi-private, semi-
public, and public (NPE, 2013). Private charging is installed at households, semi-private stands 
for charging at the workplace that is only open for employees, semi-public defines charging for 
example at a shopping center or a car park that is open to customers, and public charging 
requires on openly accessible infrastructure build on public land.  
 
Table 3: Charging modes (IEC/DIN EN 61851) 

Mode Outlet Current 
output 

Present maximum 
current and voltage 
output in Germany 

Connection & communication 

1 Standard 
outlet 

AC  1-phase, 230 V, max. 
16 A 

A direct passive cable connection to 
the BEV  

2 Standard 
outlet 

AC  1-phase, 230 V, max. 
16 A  

A semi-active connection; in 
Germany, it is found in combination 
with a standard outlet. In this case, 
the cable has an integrated 
regulation and communication 
device including an In-Cable Control 
and Protection Device (EN 62752) 
(Landau et al., 2017)  

3 Wallbox, 
Charging 
station 

AC  1-phase, 230 V, max. 
16 A 
3-phase, 400 V, max. 
32 A 

An active direct cable connection to 
the BEV, communication between 
the BEV and the EVSE by wire, 
allows controlled charging and 
potentially vehicle to grid (v2g) 

4 Charging 
station 

DC 600 V, max. 125 A An active direct cable connection to 
the BEV, communication between 
the BEV and the EVSE by wire, 
allows controlled charging and 
potentially vehicle to grid (v2g) 
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The technical charging standards for conductive charging have been established and modified 
over recent years standardizing charging modes, plugs, and communication. The 
IEC/DIN EN 61851-1 distinguishes four different conductive charging modes (NPE, 2013). The 
countries’ grid voltage and current level restrictions usually limited the maximum specifications. 
Table 3 presents the charging modes applied in Germany. Mode 1, that has practically 
disappeared for safety reasons, and Mode 2 are used in combination with standard power 
outlets. In Germany with 1-phase 230 V and a maximum AC of 16 A the charging power is 
limited to 3.7 kW. Mode 3 can be used for 1-phase and 3-phase AC charging. The maximum 
power in most presently used charging systems is limited to 22 kW (32 A at 400 V). Even 
though, as can be seen in Table 4, the most commonly used Type 2 plug works up to 62 A 
(IEC/DIN EN 62196-2). Mode 4 specifies DC charging that allows currents up to 400 A. 
However, the current combined charging system (CCS) (IEC/DIN EN 62196-3) and CHAdeMO 
system plugs limit it to 125 A (Table 4). Presently, there is an effort to increase the maximum 
DC fast charging power to 450 kW and the first charging stations are publicly available in 
Germany (Porsche, 2020). This increase requires raising the board net and battery voltage to 
around 800 V as well as cooling of the cables and plugs (Schäfer, 2018). The cables are cooled 
(or heated) with a glycol-water mixture (Schwierz, 2017). The standardization for the 
communication between the BEV and EVSE for mode 3 and 4 are laid out in the 
ISO/IEC 15118 Road vehicles - Vehicle to grid communication interface. However, it has not 
yet been implemented beyond BEV prototypes. 
 
Inductive charging which eliminates the power cord is seen as a safer, more convenient 
alternative and significant technical development for future BEVs (Li & Mi, 2015; Yilmaz & 
Krein, 2013). Even though the underlying technology was developed a long time ago, wireless 
BEV charging has so far only been implemented in research projects and vehicle prototypes 
(Fortum, 2019; Panchal, Stegen, & Lu, 2018; Rajashekara, 2013). Especially the insufficient 
power rating, the distance between transmitter and receiver, the misalignment, the costs, the 
manufacturing complexity as well as the lack of norms and standards still pose challenges (Li 
& Mi, 2015; Rajashekara, 2013; Yilmaz & Krein, 2013). Nevertheless, customers prefer it (Fett, 
Ensslen, Jochem, & Fichtner, 2017). Therefore, it will most likely play an essential role in the 
future, especially in combination with autonomous vehicles. 
 

Table 4: Charging plug systems (IEC/DIN EN 62196) 

Plug system Current output Present maximum current and voltage 
output 

Type 2 AC 1-phase, 230 V, 70 A (limited to 16 by the grid) 
3-phase, 400 V, 62 A  

Combined charging 
system (CCS)  
 

DC 850 V, max. 125 A 

CHAdeMO DC 500 V, max. 125 A 
 
Battery swapping is considered an alternative and faster approach to conductive or wireless 
charging. However, since the early rise and spectacular fall of the company Better Place which 
wanted to introduce standardized swapping stations for passenger cars it has more or less 
disappeared from the public discussion (Blum, 2017; The New York Times, 2013). The 
required level of universal standardization, as well as the additional investment in batteries and 
swapping stations, are considered the two main reasons that hinder a widespread 
implementation. However, in transportation research, it remains a commonly discussed 
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concept. Especially for large delivery or taxi fleets with similar vehicles and a high degree of 
utilization, it is considered a potential alternative. Several optimization approaches for 
planning, locating, routing, and managing battery swapping stations can be found in the 
literature (Almuhtady, Lee, Romeijn, Wynblatt, & Ni, 2014; Kuppusamy et al., 2017; Mak, Rong, 
& Shen, 2013; Schneider, Thonemann, & Klabjan, 2017; Widrick, Nurre, & Robbins, 2018). 
Also, there are recurring attempts to introduce battery swapping in everyday life, e.g. the 
Chinese BEV manufacturer NOI has installed 18 swap stations in China (SAE, 2019). 
However, no scalable operating or business model has yet been established. 
 

2.2 Commercial vehicle market and mobility patterns 
Commercial transport is usually defined either by the type of vehicle owner or the purpose of 
the trip. Basing the identification of a commercial tour on the vehicle owner is more 
straightforward to implement since only the registration data is required (Gnann, Plötz, Funke, 
& Wietschel, 2015). However, it is often inconclusive since people commonly use company 
cars privately and private vehicles are used for business trips. Hence, setting the purpose as 
identification criteria delivers a more precise identification. This approach follows the definition 
of commercial transport as all trips by individuals within their occupation (Schwerdtfeger, 1976; 
Steinmeyer, 2007). A more detailed definition states that in “commercial transport goods, 
news, and people are carried from one place to a destination in the execution of economic, 
public service or official activities” (Wermuth et al., 2012). It can be divided into passenger 
transport and the transport of goods. From a top-down perspective, the distinction by 
registration is the only suitable choice while from a bottom-up approach with detailed data 
available it is possible to differentiate by purpose. 
 
The publicly available database of the German Federal Motor Transport Authority (KBA) shows 
that commercial vehicles only make up for a small portion of the total number of registered 
vehicles, but they have the dominant share of first-time registrations. In Germany, of the 
57.3 million vehicles registered in 2018 47.1 million were passenger cars (KBA, 2019b). Of 
these, only 10.8% were commercially registered (KBA, 2019b). On average 63% of 
commercially registered vehicles are company cars, while 37% are fleet vehicles (Hacker et 
al., 2011; Plötz et al., 2013). In 2018, 3.43 million new passenger cars were registered for the 
first time of which 63.9% had a commercial registration (KBA, 2019a). This relation has only 
seen small fluctuations over recent years (Radke, 2017). 
 
Table 5: Major mobility studies in Germany 

 KiD MiD MOP 
Focus Commercial transport 

patterns (up to 3.5 t) 
Private mobility 
patterns 

Private mobility 
patterns 

Year 2002, 2010 2002, 2008, 2017 Annually since 1994 
Method Questionnaire Questionnaire Questionnaire 
Duration One day (spread out 

through a whole year) 
One day (spread out 
through a whole year) 

One week (September 
till December 2016) 

Dataset 2010: 
76,798 vehicles 
173,054 trips 

2017: 
156,420 households 
316,361 people 
960,691 trips 

2017: 
1,881 households 
3,867 people 
71,977 trips 

Detailed data 
set description 

Wermuth et al. (2012) Aust et al. (2019)  Ecke et al. (2019) 
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Several publicly funded surveys have recorded representative samples of mobility behavior in 
Germany (Table 5). The detailed micro data allows bottom-up studies. Their results can be 
scaled to the total market. Most notably are the three surveys Vehicles in Germany (KiD), 
Mobility in Germany (MiD), and the Mobility Panel (MOP). Since MiD and MOP analyze the 
mobility patterns of people and households, trips with a commercial purpose or taken by 
company car are also included. The KiD focuses solely on commercial vehicles as a unit of 
analysis and includes metadata concerning the vehicles and companies. The use of 
commercial vehicles in Germany strongly differs between the economic sectors according to 
the maximum and average daily distances traveled, the number of daily trips as well as their 
registration numbers, stock, and average holding periods (Gnann, Plötz, Kühn, et al., 2015; 
Ketelaer et al., 2014). This heterogeneity underlines the requirement of a case-specific 
analysis. 
 

2.3 Potential and challenges of commercial electric mobility 
Commercial transport shows notable differences to private vehicle use, which makes it more 
advantageous for an early BEV adoption. In general, commercial fleets are an attractive first 
market for the introduction of new vehicle technologies (Nesbitt & Sperling, 2001). Current 
numbers confirm that the commercial market is promising for the introduction of BEVs. 
Although the share of commercial owners in new electric vehicle registrations has fallen to 
61.6% in 2018, the majority of all BEVs in Germany are still registered commercially (KBA, 
2019b; Statista, 2019). Based on socio-economic research nine reasons can be stated to 
explain this observation (Barfod, Kaplan, Frenzel, & Klauenberg, 2016; Gnann, Plötz, Funke, 
et al., 2015; Ketelaer et al., 2014; Plötz et al., 2014; Robinson, Blythe, Bell, Hübner, & Hill, 
2013): 
 
1. Commercial mobility patterns are usually more regular than private ones and therefore 

enable an easier substitution assessment. 
2. The future mobility patterns can be better predicted based on usually available data and 

a scheduling tool or fleet manager usually does the planning.  
3. In mixed fleets trips over the maximum BEV’s range can be done by an ICEV. 
4. Commercial vehicles have higher daily mileages than private ones, which allow better 

utilization of the lower operational costs. 
5. Organizations are more likely to use TCO calculations for investment decisions and 

therefore account for the advantages of lower operational costs. 
6. Commercial vehicles have a much faster turnover rate than private vehicles with an 

average holding period of 3-4 years. 
7. Own infrastructure can be installed at the organization’s premises avoiding the need to 

rely on public charging. 
8. Organizations can benefit from the positive public image and apply methods like carbon 

accounting to measure and present a positive environmental impact on the public. 
9. BEVs can also be used indoors and in sensitive areas, e.g., when ICEVs are potentially 

banned from inner cities or night deliveries. 
 
The simplicity, safety, reliability, and driving dynamics as well as being an early adopter are 
considered additional arguments for introducing BEVs into commercial fleets (Globisch & 
Dütschke, 2013; Hacker et al., 2011; Plötz et al., 2014; Sierzchula, 2014).  
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However, socio-economic surveys have identified several technical, operational, and 
economic barriers that hinder the widespread introduction of BEVs in commercial fleets. From 
a technical point of view, the charging time and the limited battery capacity are rated negatively 
(Globisch & Dütschke, 2013; Hacker et al., 2011; Sierzchula, 2014). Also, operational barriers 
need to be taken into consideration (Wikström, Hansson, & Alvfors, 2016). From an 
organizational perspective, fleet management that trains new users and considers the 
technical restrictions of charging and capacity is required. These technical and organizational 
barriers can be overcome. Managers of larger fleets perceive the limited range and the 
introduction of new processes already as less problematic (Plötz et al., 2014). Moreover, 
research shows that fleets with BEV experience show a higher perceived operational ease 
(Kaplan, Gruber, Reinthaler, & Klauenberg, 2016). However, the economic barrier of the higher 
investment is not overcome that quickly. The investment decision is not only based on cost, 
but it is usually the most relevant criterion (Barfod et al., 2016; Globisch & Dütschke, 2013; 
Hacker et al., 2011).  
 
This thesis defines five identification criteria as a framework to find commercial use cases that 
have a high chance of an economically beneficial BEV introduction under the current 
technological and economic conditions. The criteria are designed to get the best possible use 
out of the above listed nine reasons. Applying these criteria reduces the impact of the existing 
technical, organizational, and economic barriers. In Table 6, the five criteria and the reasoning 
behind them are presented. 
 
Table 6: Criteria list to identify suitable commercial use cases for BEV introduction 

No Identification criteria Reasoning 
1. The predictability and regularity 

of the mobility patterns should 
be high. 

The high predictability ensures that the technical 
requirements can be assessed ex-ante to a high 
degree of certainty. The low variability means that 
the battery capacity technically required for a full 
substitution is regularly utilized to a high degree. 

2. The driving profiles should 
consist of short but frequent 
trips. 

Short trips require only a small battery meaning a 
smaller investment. The high frequency leads to 
high mileages which allows greater utilization of 
the lower operating costs.  

3. The vehicles should be used 
exclusively for one specific 
purpose. 

Deploying vehicles for one specific purpose, e.g., 
the execution of a service, increases the 
predictability of the mobility demand. 

4. The deployed vehicle types 
should come from segments in 
which BEVs are available. 

Most BEVs currently available on the market can 
be assigned to the mini, small or compact car 
segment. For use cases in which vehicles from 
these segments are usually deployed the user can 
already choose from a range of different models.  

5. There should be space on the 
organization’s premises to set 
up own EVSE. 

Due to the still limited available public charging 
infrastructure users cannot rely on their availability 
in terms of location and time. Therefore, 
depending only on its own EVSE can ease the 
introduction of BEVs. 
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These five criteria provide a first indication of which use cases are potentially suitable for an 
economic beneficial BEV deployment. A more detailed techno-economic replaceability 
analysis is indispensable and should be performed bottom-up and based on empirical data. 
The use of commercial vehicles differs distinctively between the different economic segments 
concerning the average and spread of daily travel distances and the number of trips (Ketelaer 
et al., 2014). Accordingly, differences in BEV adoption across industrial sectors and depending 
on the travel needs can be identified (Kaplan et al., 2016). One problem with assessing the 
BEV substitution potential based on the mobility studies such as the KiD is that it relies on one 
day of data recording and therefore harbors the danger of overestimating the market potential 
(Gnann, Plötz, Funke, et al., 2015). A longer time frame allows studying the individual regularity 
of the mobility patterns more thoroughly (Neubauer, Brooker, & Wood, 2012). Different studies 
have analyzed the substitution potential based on long-term empiric input data of commercial 
driving profiles in research projects (e.g., Hacker et al., 2015; Wagner et al., 2011).4 One 
example of a more extensive database is the publicly available REM2030 data. It consists of 
91.422 trips made by 630 commercial vehicles mainly used for commercial purpose recorded 
with a GPS logger over an average of three weeks (REM2030, 2015). In contrast to KiD, it is 
not representative but focuses on applications that promise an early BEV substitution potential 
(Plötz et al., 2013).  
 
Several commercial mobility use cases show characteristics that make an early introduction of 
BEVs likely. BEVs can technically fulfill over 87% of the three-week REM2030 driving demand 
profiles (Gnann, Plötz, Funke, et al., 2015). Plötz et al. (2014) predict that in 2020 for 3-5% of 
all newly registered commercial vehicles BEVs would lead to a lower TCO than ICEVs. 
Exemplary applications identified by bottom-up analysis that promise early widespread 
introduction of BEVs are social, security, delivery, and postal services (Hacker et al., 2015; 
Ketelaer et al., 2014; Wagner et al., 2011).  
 
In this thesis, three use cases are selected for a detailed analysis based on the five defined 
selection criteria: the commuting of shift workers (between France and Germany), business 
trips between two plants (in France and Germany), and the home nursing service. Table 7 lists 
the identification criteria for the three use cases. All three are analyzed under the premise that 
the mobility patterns of commercial vehicles and commuters do not change through the 
introduction of BEVs. 
 
Table 7: Identification criteria for the three use cases 

Identification 
criteria 

Commuting of 
shift-workers 

Business trips 
between plants 

Home nursing 
service 

The predictability 
and regularity of 
the mobility 
patterns should be 
high. 
 
 
 
 

The fixed shift 
schedule and the 
constant groups 
provide entirely 
predictable and 
highly regular 
mobility patterns. 

The route is fixed. 
The timing of the 
trips can vary 
throughout the 
workday making the 
patterns less 
predictable and 
regular. 

The routes and the 
timing of the tours 
and trips can 
change. However, 
the area of operation 
is usually restricted, 
and two demand 
peaks occur during 
the day.  

 
4 An extensive overview of different studies focusing on specific commercial transport applications can be found in Gnann, 
Plötz, Funke, et al. (2015). 

15



 

The driving profiles 
should consist of 
short but frequent 
trips inside the 
possible range. 

Commuters usually 
live within a certain 
radius of the plant. 
They travel two trips 
per day with enough 
time for recharging 
on both ends. 

The distance 
between the two 
plants should be 
small enough for 
frequent daily trips. 
Fast charging is 
required to ensure 
high availability. 

The trips from one 
patient to the next 
patient are short and 
the overall tours 
usually in BEV 
range. Two tours per 
day are common 
which may require in 
between charging. 
 

The vehicles 
should be used 
exclusively for one 
specific purpose. 

At workdays, the 
minivans are only 
used for commuting. 

The vehicles are 
exclusively used by 
the employees to 
travel between the 
sites. 

The vehicles are 
only used for home 
nursing services. 
Sometimes the 
employees take the 
vehicles home 
overnight.  
 

The deployed 
vehicle types 
should come from 
segments in which 
BEVs are available. 
 

A few OEMs offer 
BEV in the minivan 
segment.  

Several OEMs offer 
BEV in the compact 
car and a few in the 
minivan segment. 

Several OEMs offer 
BEV in the mini and 
subcompact car 
segment. 

There should be 
space on the 
organization’s 
premises to set up 
own EVSE. 

EVSE can be 
installed at the 
company parking lot 
and the homes of 
the workers. 

EVSE can be 
installed at both 
sites. 

EVSE can be 
installed at the 
required parking lot 
of the central office 
and if necessary, 
also at the homes of 
the employees.  

 
The commuting of shift-workers as the first use case is selected since it fulfills four out of the 
five criteria. The mobility patterns are highly predictable and show almost no variations in timing 
and route. The working travel remains identical, the workers must arrive and leave at fixed 
times according to their work schedule, and the rolling system allows the use of one BEV by 
more than one group, increasing the frequency of travel. The investigated commuter groups 
have one-way distances of 60 to 80 km. With a frequency of traveling twice a day, the annual 
mileage lies above 30,000 km leading to high utilization of the lower operating costs. Also, the 
EVSE can be installed at home and work. The only limitation is that currently, not many 
manufacturers offer BEV minivans. An additional benefit of the cross-border commuting 
investigated in this thesis is that based on the rotating 24 h shift schedule it allows the 
comparison of electricity mixes at different times of the day and between the two countries. In 
general, commuting is widespread in Germany (Figure 4). Over 60% of all employees in 
Germany commute to work with an average one-way distance of 16.8 km; 1.3 million people 
have one-way commuting distances over 150 km (Pütz, 2017). 68% of commuters use a car 
(Statistisches Bundesamt, 2017a). However, from a strict purpose perspective commuting 
does not fall under commercial transport, even though company cars are used frequently and 
are sometimes, as in the presented case, provided as a full service by the employer. 
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Figure 4: Commuting distances and networks in Germany (Pütz, 2017) 

The business trips between two plants are chosen as an example of a use case on a fixed 
route with uncertain timing and frequency of travel. Hence, the predictability and regularity 
decrease significantly in comparison to the commuting of shift workers. Additional challenges 
in planning and operation arise. If required the fixed-route allows the installation of EVSE at 
both ends, but fast charging infrastructure is required to ensure a high BEV availability. In 
contrast to the commuter use case in the required compact car segment several BEV models 
are available allowing to choose the best fitting technical and economical option. The 
presented empirical case study has a one-way trip distance of 70 km. On average the 
employees make one tour every other day leading to an annual mileage of around 17,000 km, 
which is significantly less than the commuter BEVs. Quantifying the commonness of this use 
case is difficult. Nevertheless, due to historical development and location restrictions, 
companies often operate different sites nearby which can be covered by current BEVs without 
intermediate charging. 
 
The home nursing service is chosen as the third use case. It stands as an example of a general 
commercial use case. Both the route and timing of the mobility patterns vary which makes the 
assessment of the techno-economic BEV deployment more challenging and suggests a 
stochastic approach. The home nursing service was selected since previous studies have 
shown that with an annual average mileage of 16,719 km, 17 single trips per day, and long-
time parking overnight it is especially suitable for the early introduction of BEV (Ketelaer et al., 
2014). In contrast to other commercial applications and private users due to the frequent short 
trips, it disproportionately benefits from higher charging power and shows a high economic 
potential (Gnann, Plötz, Kühn, et al., 2015; Wagner et al., 2011). With its near-zero profit 
margins, the effective utilization of resources and cost reduction potentials are of high 
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importance (Milburn, 2012). Already, a wide range of BEV models is available in the mini or 
subcompact car segment. Due to the above-stated reasons, several providers have already 
introduced BEV to their fleets, mostly within publicly subsidized projects (APD, 2015; Block & 
Glinka, 2014; Goebel, 2015; Verholen, 2017). With 13,300 providers, over 350,000 employees, 
and around 700,000 patients in need of home care in 2015 it is a very common use case in 
Germany (Statistisches Bundesamt, 2017b). Despite its potential and scale this use case in 
particular, as well as service vehicles in general, are rarely in the focus of transportation 
research (Milburn, 2012; Yavuz & Çapar, 2017). 
 
Amongst the reasons stated above, the three use cases were mainly chosen in their 
combination for two reasons. Firstly, they can be distinguished by an increasing degree of 
uncertainty in their mobility patterns. Secondly, they differ in their annual mileages allowing a 
comparison between the potential economic and environmental benefits of a high degree of 
utilization. For both, with the high predictability, regularity, and annual mileages the commuting 
of shift workers provides an almost ideal use case for the deployment of BEV. However, less 
regular and predictable mobility patterns, as well as lower annual mileages, are far more 
common. Therefore, business trips and home nursing services are also investigated to 
illustrate the challenges of uncertainty in mobility patterns and the effects of lower annual 
mileages on the economic and environmental evaluation. 
 

3. Literature review and identified research gaps 
In this thesis, the evaluation, simulation, and optimization of commercial electric mobility are 
separated into two perspectives, the techno-economic and the environmental. As generally 
valid in both research fields, the results are highly sensitive to utilization input data. 
Uncertainties can play a significant role, especially in the techno-economic analysis, but are 
often only indirectly implemented through scenarios and sensitivities or completely neglected 
in transport modeling (Jochem, 2016). Methodical approaches are always simplifications of the 
underlying significantly more complex systems. Hence, the taken assumptions, the local and 
system boundaries, the time resolution and horizon, the input data, as well as the level of 
technical detail significantly influence the results. For the assessment of the techno-economic 
potential as well as the environmental impacts, this must be considered when interpreting the 
input data. Usually, studies either take a microscopic view, which allows the drawing of specific 
conclusions or a macroscopic focus, which allows more general conclusions, but is less 
representative of a single-use case. 
 

3.1 Techno-economic studies 
Even though the price is not the only customer decision criterion, a widespread introduction of 
BEVs requires a favorable cost structure. In BEV research, the total cost of ownership (TCO) 
is commonly used to assess the economic potential and comparable break-even because it 
includes all expenses over the product lifetime and not just the initial price. It is applied as a 
supporting tool to understand the actual cost of a particular good or service (Ellram, 1995). It 
is usually used in combination with discounted value methods. The literature presents detailed 
introductions to the concept and history of the TCO and its use for BEV valuation (Kley, 2011). 
The TCO is commonly applied in the context of an economic comparison of BEVs to other 
technologies because the higher purchase price and the lower operational costs are both 
accounted for. Furthermore, it is already widely used in real-life commercial vehicle purchase 
decisions (Plötz et al., 2013). Overall, previous TCO studies focussing on the techno-economic 
potential of BEV can be classified by their methodology, perspective, transport data, energy 
model, the inclusion of battery aging, EVSE (alternatives) and load shifting or vehicle to grid 
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(v2g), as well as by the scope and extent of their results. Table 8 gives an exemplary overview 
of the classification of previous studies.  
  
Most commonly TCO is used as part of market diffusion models, but also for the evaluation 
and forecast of specific use cases and less commonly as the basis for cost optimization. 
Different methodical approaches exist to predict BEVs’ market penetration (Al-Alawi & Bradley, 
2013; Jochem, 2016). The approaches can be classified into econometric models with 
disaggregated data and agent-based simulation models as bottom-up approaches, 
econometric models with aggregated data, system dynamics, and integrated assessment 
models with general equilibrium models as top-down approaches as well as hybrid models that 
combine bottom-up and top-down approaches (Jochem et al., 2018). Most studies that assess 
the technical and economic substitutability focus on private users since they represent by far 
the larger share of the car market. For Germany, a few include or exclusively assess the market 
diffusion potential for commercial fleets (Gnann, Plötz, Kühn, et al., 2015; Hacker et al., 2015; 
Plötz et al., 2013; Richter & Lindenberger, 2010; Wagner et al., 2011).  
 
Most studies using TCO build on simulation as methodology, fewer evaluate specific use cases 
or use optimization to assess the techno-economic potential. With a few exceptions, the 
simulation often includes some form of future extrapolation based on different input parameter 
developments (Table 8). Since the BEV numbers are increasing only slowly, the empirical 
database likewise is still limited. Only a few studies have evaluated first-hand data from BEV 
use cases (Muneer et al., 2015; Neubauer et al., 2012; Wagner et al., 2011). Optimization is 
commonly applied to various fields of BEV related planning and operating.  
 
Energy system models are used to assess charging strategies from the perspective of a fleet 
manager (Iversen, Morales, & Madsen, 2014; Lan et al., 2012; Škugor & Deur, 2015a, 2015b; 
Xiaohua Wu, Hu, Moura, Yin, & Pickert, 2016), a grid operator (Atia & Yamada, 2015; 
Honarmand, Zakariazadeh, & Jadid, 2014; Pantoš, 2011) or a vehicle aggregator (Arnoldt, 
Klarner, Ritter, & Warweg, 2016; Baringo & Sánchez Amaro, 2017; Donadee, Ilić, & 
Karabasoglu, 2014). Examples from transportation research are the routing of BEVs (Goeke 
& Schneider, 2015; Nejad, Mashayekhy, Grosu, & Chinnam, 2017; Schneider, Stenger, & 
Goeke, 2014; Sweda, Dolinskaya, & Klabjan, 2017; Yavuz & Çapar, 2017), the allocation of 
(fast-)charging stations (Hwang, Kweon, & Ventura, 2017; Kuby & Lim, 2005; Lim & Kuby, 
2010; Sadeghi-Barzani, Rajabi-Ghahnavieh, & Kazemi-Karegar, 2014; Tran, Nagy, Nguyen, & 
Wassan, 2018; Xiang et al., 2016; Zhu, Gao, Zheng, & Du, 2016) or the planning and operation 
of battery swapping stations (Almuhtady et al., 2014; Mak et al., 2013; Schneider et al., 2017; 
Widrick et al., 2018). However, optimization is only rarely applied considering both the 
investment and operation of the BEV. The few existing studies show a heterogeneous research 
focus. They analyze the competitiveness of electric delivery trucks (Davis & Figliozzi, 2013; 
Feng & Figliozzi, 2013), fleet size and mix vehicle routing problems (Hiermann et al., 2016; 
Lebeau et al., 2015; Sassi et al., 2015), fleet renewal for electric taxis with battery swapping 
stations (Kuppusamy et al., 2017) or suitable charging infrastructure and cost minimal battery 
capacities for private users (Kley, 2011; Lin, 2014). Some of these incorporate detailed 
technical models or analyze the effect of different scenarios. However, none of these models 
consider uncertainties in the utilization data even though several studies have shown their 
importance when optimizing BEV utilization charging from the perspective of the vehicle user 
or fleet manager (Iversen et al., 2014; Kley, 2011; Lan et al., 2012; Lin, 2014; Škugor & Deur, 
2015a, 2015b; Widrick et al., 2018; Wu et al., 2016), the grid operator (Atia & Yamada, 2015; 
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Honarmand et al., 2014; Pantoš, 2011) or a vehicle aggregator (Arnoldt et al., 2016; Baringo 
& Sánchez Amaro, 2017; Donadee et al., 2014; Wei & Guan, 2014; Wu & Sioshansi, 2017). 
 
The type, level of detail, and recording period of the transport data have a significant impact 
on the appropriate techno-economic assessment approaches. The literature provides detailed 
theoretical overviews of different transport models, their history, and their use for BEV 
assessment (Jochem, 2016). Depending on the quantity and quality of data both top-down and 
bottom-up approaches incorporating a TCO analysis can be found in the literature. Assumed 
average annual miles and daily traveled distances are sufficient for basic assessments, and 
consequently most studies use them (Table 8) (Wu, Inderbitzin, & Bening, 2015). The 
consideration of recorded data can increase the accuracy. High time and spatial resolution 
allow for a bottom-up analysis (Gnann, Plötz, Funke, et al., 2015; Kley, 2011; Plötz et al., 2013; 
Wagner et al., 2011). This type of data is usually only available for commercial users (Jochem 
et al., 2018). Different types of empirical data can be found in the literature. Most studies are 
based on ICEV data under the assumption that the mobility patterns will not change. Some 
studies use representative mobility studies based on target dates (Kley, 2011; Windisch, 
2013). Others rely on long-term data of conventional fleets (Gnann, Plötz, Funke, et al., 2015; 
Greaves, Backman, & Ellison, 2014; Neubauer et al., 2012; Plötz et al., 2013).5 Only a few 
base their analysis on empirically logged BEV movement data (Muneer et al., 2015). Spatial 
information such as how many vehicles are parked at a destination at one point in time is more 
critical for grid purposes or larger commercial fleets. Most studies neglect the uncertainties in 
mobility patterns.  
 
A resilient TCO analysis of a BEV requires the inclusion of a technical model. The inclusion is 
essential since the technology of BEVs imposes notable restrictions. Especially the 
consideration of energy consumption, and battery aging is imperative due to their influence on 
the utilization potential. Even with the continuously increasing battery capacities of new BEV 
models, the maximum range on one battery charge is still less than on one tank filling of a 
common ICEV (Lutsey et al., 2018; Thielmann et al., 2020). Recharging requires more time 
than refilling at the gas station (Pelletier, Jabali, & Laporte, 2016). Therefore, the specific 
usability is much more sensitive to the actual energy consumption. Like ICEVs, the actual 
energy consumption has a strong influence on the TCO. In some studies, the estimation of 
energy consumption relies on standard driving cycles, e.g. the new European driving cycle 
(NEDC). These usually underestimate the real energy consumption (Muneer et al., 2015; 
Rangaraju, De Vroey, Messagie, Mertens, & Van Mierlo, 2015; Saxena, Gopal, & Phadke, 
2014; H. Wang, Zhang, & Ouyang, 2015; Wu, Freese, Cabrera, & Kitch, 2015). Others account 
for it by assuming more substantial load levels and adding the auxiliary load (Bickert, Kampker, 
& Greger, 2015; Kley, 2011; Van Vliet, Brouwer, Kuramochi, Van Den Broek, & Faaij, 2011). 
Several studies implement their own mechanical vehicle dynamics model to predict energy 
consumption more thoroughly based on driving dynamics, resistances, efficiencies, and the 
use of auxiliaries. Some studies go more into detail and include an SOC progression model in 
their assessment. Others have measured empirical energy consumption (Saxena et al., 2014; 
Travesset-Baro et al., 2015; H. Wang et al., 2015; Wu et al., 2015). Only very few studies 
incorporate empiric energy consumption values into a techno-economic assessment (Muneer 
et al., 2015). The empirical values provide the possibility to evaluate and calibrate the 
theoretical models. Another important argument for including a detailed technical model is the 
impact of aging that depends on the way, intensity, and duration of use. Most TCO studies 

 
5 The advantages of using long-term data are stated in chapter 2.3. 
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simplify battery aging by neglecting the effects of a fading capacity during the utilization and 
only consider the required replacement of the battery system based on cycle or calendar life 
(Neubauer et al., 2012; Neubauer & Wood, 2014; B. Wang, Xu, & Yang, 2014).  
 
The battery capacity and the maximum charging power are two key technical parameters that 
can be varied to assess the potential degree of substitution. The higher the battery capacity, 
the higher the degree of substitution (Kley, 2011; Lin, 2014; Neubauer et al., 2012). Alternative 
forms of mobility can be included which can be used when the range is insufficient (Lin, 2014). 
This approach is more sensible for individual long-haul journeys of private users than 
commercial use cases. For private users, the charging time in contrast to the battery capacity 
has little impact on the substitutability since the vehicles are parked most of the time (Greaves 
et al., 2014). For commercial fleets, integrated charging management is more critical (Ketelaer 
et al., 2014). Most studies set both the charging power and battery capacity as exogenous 
variables with only a few forming an exception. Hiermann et al. (2016) and Lebau et al. (2015) 
include different vehicle alternatives with battery capacity, payload, recharging rates, and 
energy consumption. Sassi et al. (2015) also include the charging power level as a decision 
variable with time-dependent charging costs. Lin (2014) endogenously identifies the cost-
minimal range of BEV for private users based on battery price, electricity, and limitation cost. 
Wagner et al. (2011) implement an iterative algorithm to identify the required battery capacity 
endogenously accounting for the weight increase and higher energy consumption on empiric 
drive profiles. They also vary the charging power and show that for many commercial use 
cases 20 kWh battery capacity and 3 kW charging power is enough. In this study, only meals 
on wheels, the home nursing service, and taxis gain notably through higher charging power.  
 
Most of the studies that incorporate a TCO approach draw similar conclusions in terms of 
relative competitiveness, break-even points, and sensitivities. Under average utilization 
scenarios, the TCO of BEVs is still higher than of comparable ICEVs (Wietschel et al., 2019). 
TCO studies on the first generation of mass-market BEVs show that they required an annual 
mileage of around 30,000 km to break even in Germany (Hacker et al., 2015; Kasten, Zimmer, 
& Leppler, 2011; Richter & Lindenberger, 2010). The average annual mileage for a commercial 
vehicle in Germany is 20,000 km. For other countries, these results varied due to the different 
fuel and electricity prices but were mostly in a range between 20,000 and 35,000 km (Feng & 
Figliozzi, 2013; Sharma, Manzie, Bessede, Brear, & Crawford, 2012; Tseng, Wu, & Liu, 2013; 
Windisch, 2013). The sensitivity analysis and the scenarios show that the results are highly 
sensitive to battery prices as well as the utilization input parameters such as energy prices and 
consumption (Gnann, Plötz, Funke, et al., 2015; Wu et al., 2015). Positive developments such 
as the rapidly falling battery prices can have an accelerating effect on the market penetration 
rate (Hacker et al., 2015; Nykvist & Nilsson, 2015; Plötz et al., 2013). Based on declining 
battery prices, price parity was forecasted to happen most likely between 2025 and 2029 
depending on the vehicle segment (Soulopoulos, 2017; Wu et al., 2015). However, battery 
prices are decreasing faster than projected. Therefore, newer predictions state that price parity 
will be reached by 2022 to 2024 (Bloomberg, 2019b; Thielmann et al., 2020). By 2030 with an 
annual mileage of 15.000 km the TCO of a BEV is predicted to be 5-23% lower than the 
cheapest comparable ICEV (Kasten, 2018). 
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Optimizing the charging and integrating the vehicles into the energy system has the potential 
to lower the TCO. Under flexible tariffs, load shifting can reduce the electricity costs, especially 
when charging can be postponed to night time (Kristoffersen, Capion, & Meibom, 2011; Škugor 
& Deur, 2015b). Further integration of BEVs into the energy system by selling energy back at 
high prices, providing grid services or participating in the secondary control reserve market6 is 
at the current state of markets and regulations less favorable, especially if the efficiencies and 
battery aging are considered (Bishop, Axon, Bonilla, & Banister, 2016; Gunter et al., 2016). 
 
In summary, the literature focusing on the techno-economic assessment of BEVs allows three 
key observations. Firstly, the overview of previous studies shows that the TCO can be 
combined with other methods for various research purposes from top-down and bottom-up 
perspectives. Secondly, the results of the various approaches show that detailed utilization 
data is vital since the results are highly sensitive to mobility patterns and energy consumption 
and the utilization varies distinctively between different commercial applications. Thirdly, it can 
be observed that most studies address market diffusion and only a small number focuses on 
evaluating real BEV use cases or optimizing investment and operation of BEVs. These 
approaches are often missing detailed technical models and neglect the effect of uncertainties 
in the critical utilization data even though it has been shown that uncertainties in the input data, 
e.g., stochastic mobility patterns, can have a significant impact on operational optimization. 
 

3.2 Environmental impact studies 
The environmental impact assessment of BEVs in comparison to other technologies, mostly 
ICEVs, has become a common scientific research topic in recent years (Helmers & Weiss, 
2017; Nordelöf et al., 2014). To evaluate the environmental impacts of BEVs beyond the direct 
evident benefit of no tailpipe emissions a wide range of different research questions has been 
addressed. On a high-level, past studies can be distinguished along two dimensions: the 
included emissions and pollutants and the covered vehicle life cycle phases (Figure 5).  
 
Potential CO2 or GHG emission savings from the deployment of BEVs in comparison to ICEVs 
is a frequent topic in the scientific and public discussion. Therefore, many studies address this 
issue. Some focus only on the utilization phase of the vehicles (Campanari, Manzolini, & Garcia 
de la Iglesia, 2009; Doucette & McCulloch, 2011; Faria et al., 2013; Jochem et al., 2015; 
Ketelaer et al., 2014; McCarthy & Yang, 2010; Muneer et al., 2015). This approach allows 
comparing the tailpipe emissions from ICEVs to the indirect emissions from the BEVs based 
on the electricity mix as well as indicating the potential benefits of load-shifting. Different 
methods can be applied to quantify the CO2 of BEV emissions during utilization (Jochem et al., 
2015). Some studies expand the focus from the utilization by including cradle-to-gate 
processes (Plötz, Funke, & Jochem, 2017; Robinson et al., 2013; Sharma, Manzie, Bessede, 
Crawford, & Brear, 2013) or expanding the analysis on the whole vehicle life cycle (Bickert et 
al., 2015; Chatzikomis, Spentzas, & Mamalis, 2014; Ellingsen, Singh, & Strømman, 2016; 
Garcia, Freire, & Clift, 2017; Ma, Balthasar, Tait, Riera-Palou, & Harrison, 2012; Yazdanie, 
Noembrini, Heinen, Espinel, & Boulouchos, 2016). Quantifying the CO2 emissions over the life 
cycle constitutes a carbon footprint analysis (Ausberg et al., 2015). In these, the environmental 
impact is usually expressed in CO2-eq., which is mainly the result of CO2, CH4, and N2O 
emissions (Helms et al., 2011). 
 

 
6 Due to the communication required between the coordinating system, the charging stations, and the BEVs the secondary 
control reserve with 30 s reaction time is currently assumed to be the best suitable for BEV integration (Gunter et al., 2016). 
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Figure 5: Overview literature on the environmental assessment of BEVs 

 
However, next to GHGs other emissions and pollutants can be attributed to the BEV life cycle. 
Hence, studies include these, e.g. volatile organic compounds (VOC), carbon monoxide (CO), 
nitrogen oxides (NOx), particulate matter (PM), and sulfur dioxide (SO2), in their utilization 
assessment (Donateo, Ingrosso, Licci, & Laforgia, 2014; Donateo et al., 2015). Holistic 
approaches, which cover the whole vehicle life cycle from raw material extraction and material 
production, transport, part manufacturing, and product assembly, product utilization, 
maintenance, up to recycling and disposal for the different emissions, pollutants, are more 
frequent. A few studies only assess the emissions and pollutants over the full life cycle (Kim et 
al., 2016; Rangaraju et al., 2015). More commonly, the Life cycle Assessment (LCA) has 
established itself as the dominantly used method for attributing the effects of the pollutants and 
emissions over the full life cycle to different environmental impact categories (Figure 6). The 
LCA is an elaborated and standardized approach that considers the impacts of a functional 
unit during all life cycle stages. The idea of the LCA originates from an initiative by the Club of 
Rome in 1972 (Jolliet, Saadé-Sbeih, Shaked, Jolliet, & Crettaz, 2016). Over the years, different 
initiatives have continuously developed this approach until it was first transformed into DIN 
norms in 1997 (Hauschild, Rosenbaum, & Olsen, 2018). The DIN EN ISO 14040 & 14044 were 
last updated in 2006 and provide an internationally agreed-upon standardized framework for 
conducting an LCA (Klöpffer, 2014). The number of LCA studies analyzing BEVs has only 
increased recently. Between 2011 and 2015 approximately a quarter of all publications that 
analyzed potential environmental benefits from BEV introduction included other environmental 
impact factors than the GWP (Helmers & Weiss, 2017). The main argument of including other 
impact categories is to uncover potential problem shifting or rebound effects from GWP to other 
impact categories (Egede, Dettmer, Herrmann, & Kara, 2015; Ellingsen et al., 2014). 
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Figure 6: Life cycle Assessment of a BEV (Held & Schücking, 2019) 

It is an ongoing discussion, which additional environmental impact factors should be included 
in the LCA of a BEV. Some studies focus on impact factors, such as acidification potential 
(AP), eutrophication potential (EP), summer smog, and fine particulates that are significantly 
influenced by utilization (Held et al., 2016; Helms et al., 2011). Others include up to 18 impact 
factors expanding the number of factors for example by separating the EP into freshwater 
eutrophication potential (FEP), marine eutrophication potential (MEP) and terrestrial 
eutrophication potential (TETP), by including depletion potentials, e.g. fossil depletion potential 
(FDP), ozone depletion potential (ODP), and metal depletion potential (MDP), as well as 
toxicity potentials, e.g. human toxicity potential (HTP) (Bicer & Dincer, 2017; Cox, Mutel, Bauer, 
Mendoza Beltran, & van Vuuren, 2018; Ellingsen et al., 2014; Hawkins, Singh, Majeau-Bettez, 
& Strømman, 2013a; Helmers, Dietz, & Hartard, 2017; Singh, Guest, Bright, & Strømman, 
2014). Moreover, some studies include the primary energy demand (PED) which allows 
comparing the overall energy efficiency of the different technologies (Cox et al., 2018; Dunn, 
Gaines, Kelly, James, & Gallagher, 2015; Held et al., 2016; Helms et al., 2013; Yazdanie et 
al., 2016). The number of impact categories illustrates the complexity of providing a final 
positive or negative answer concerning the environmental impact of BEVs in comparison to 
other powertrain alternatives.  
 
In addition to the two dimensions stated above, environmental BEV studies can also be 
distinguished by their perspective and approach (Table 9). A few publications take a 
macroscopic perspective by combining the overall environmental assessment with market 
diffusion models (Garcia et al., 2017; Jochem et al., 2015; Ketelaer et al., 2014; Singh, 
Ellingsen, & Strømman, 2015; Yabe, Shinoda, Seki, Tanaka, & Akisawa, 2012). Most 
publications take the microscopic view. These studies compare different technologies on 
vehicle level under varying conditions (Bauer, Hofer, Althaus, Del Duce, & Simons, 2015; Cox 
et al., 2018; Hawkins et al., 2013a; Hawkins, Singh, Majeau-Bettez, & Strømman, 2013b; Held 
et al., 2016; Helms et al., 2013; Notter et al., 2010a; Tagliaferri et al., 2016). Most papers with 
either a macroscopic or a microscopic perspective are simulations based on average data 
(Table 9). Some also predict future developments based on scenarios (Bauer et al., 2015; Cox 
et al., 2018; Jochem et al., 2015; Ma et al., 2012; McCarthy & Yang, 2010; Singh et al., 2015; 
Tagliaferri et al., 2016). Only a few studies evaluate detailed empirical BEV utilization data or 
specific use cases (Donateo et al., 2014, 2015; Faria et al., 2013; Ketelaer et al., 2014; Muneer 
et al., 2015; Rangaraju et al., 2015; Robinson et al., 2013). 
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Conducting an environmental assessment, especially a carbon footprint analysis or an LCA, 
for a BEV requires a large amount of different inventory data which provides challenges in 
comparison and the need for standardization. For cradle-to-gate and end-of-life (EOL), there 
are a few publications that provide detailed first-hand BEV specific databases and descriptions 
of processes for the life cycle inventory (LCI) (Cerdas, Egede, & Herrmann, 2018; Dunn et al., 
2015; Ellingsen et al., 2014; Kim et al., 2016; Notter et al., 2010a, 2010b). Due to the high 
diversity in data and the increasing importance of the issue, there are attempts to establish 
standardized frameworks concerning guidelines, methods, assumptions, and data for BEVs 
based on the International life cycle data system (ILCD)7 (Cerdas et al., 2018; Del Duce et al., 
2013; Del Duce, Gauch, & Althaus, 2016). Besides the LCI different life cycle impact 
assessment (LCIA) characterization models exist. Most focus on mid-point indicators that 
measure scientifically describable impacts, e.g., ReCiPe, CML 2002, Eco-Indicator or 
IMPACT2002+ (Ausberg et al., 2015; Huijbregts et al., 2017; Rosenbaum et al., 2017). In 
contrast to the upstream and downstream life-cycle processes, the input parameters and 
processes for the utilization phase are more transparent since primary data can be directly 
recorded. However, as stated above only very few studies evaluate specific use cases based 
on first-hand data. Especially in terms of a full LCA, a detailed analysis of site-specific use 
cases based on long-term empirical values is missing from the literature (Egede et al., 2015). 
 
The results of previous environmental BEV studies show the same overall tendencies but vary 
significantly on a more detailed level (Helmers & Weiss, 2017; Nordelöf et al., 2014). The 
different scopes, system boundaries, inventories, and research assumptions explain the 
divergence. Table 9 provides an exemplary overview and classification of recent publications 
addressing the environmental impact of BEVs. The key utilization input parameters for all 
environmental studies are the vehicle and battery parameters, the user behavior and mobility 
patterns, and the electricity mix (Cox et al., 2018; Egede et al., 2015; Ellingsen et al., 2014).  
 
Due to the deviations of the real energy consumption from the one measured on the NEDC for 
all drivetrain technologies, it is crucial to rely on realistic mechanical simulations or empirical 
values when calculating the environmental impact of utilization. This procedure is particularly 
relevant for BEVs where the auxiliaries, which are not considered in standard driving cycles, 
can have a strong influence on energy consumption (see chapter 2.1). However, several 
studies rely on the standardized energy consumption values stated by the manufacturers since 
or simulated based on the NEDC (Ellingsen et al., 2016; Hawkins et al., 2013a, 2013b; 
Tagliaferri et al., 2016). Others attempt to simulate more realistic values by using the 
Worldwide harmonized Light vehicles Test Procedure (WLTP) (Bauer et al., 2015; Cox et al., 
2018; Garcia et al., 2017). Some studies add the additional demand of the auxiliaries to their 
simulations (Bauer et al., 2015; Bickert et al., 2015; Cox et al., 2018; Faria et al., 2013; Li, 
Zhang, & Li, 2016). Only some papers use empirical data recorded at BEV or EVSE level for 
the environmental assessment (Donateo et al., 2014, 2015; Helmers et al., 2017; Plötz et al., 
2017; Rangaraju et al., 2015; Robinson et al., 2013). Of these, some include other pollutants 
than CO2 (Donateo et al., 2015; Rangaraju et al., 2015) and even less conduct a full LCA (Held 
et al., 2016; Helmers et al., 2017). None of these incorporate use case-specific long-term 
empirical values as input for a full LCA or a detailed assessment of the CO2 emissions from 
utilization. 
 

 
7 The European Commission initiated the International Life-cycle Data System (ILCD) as a database of life-cycle inventory data 
and a series of methodological guidelines to guide consistent, and quality assured LCA data and studies (EC-JRC, 2010). 
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The studies conclusively show that the indirect emissions resulting from the used energy 
carrier in utilization take a significant influence on the environmental impact of BEVs (Helmers 
& Weiss, 2017; Nordelöf et al., 2014). The electricity mix is the largest source of variability in 
the prognosis of future LCA development (Cox et al., 2018). It is vital to compensate for the 
higher cradle-to-gate environmental impacts from BEV (Hawkins et al., 2013a, 2013b). To 
illustrate the sensitivities towards the electricity mix studies compare the influence of different 
energy markets (Doucette & McCulloch, 2011; Egede et al., 2015; Faria et al., 2013; Woo, 
Choi, & Ahn, 2017), average mixes and individual renewable energy sources (RESs) (Held et 
al., 2016; Helmers et al., 2017; Helms et al., 2013; Muneer et al., 2015), different regional grids 
(Macpherson, Keoleian, & Kelly, 2012), as well as an electricity system with or without a high 
storage capacity (Garcia et al., 2017). The electricity mix can also vary between seasons or 
the time of day especially for countries with a large share of volatile RESs (Donateo et al., 
2015; Jochem et al., 2015; Rangaraju et al., 2015; Robinson et al., 2013). When the time of 
charging varies throughout the day hourly disaggregated data of the electricity mix becomes 
essential. Since the effect of hourly disaggregated electricity mixes influences the emissions, 
the controlled delay of the charging into a period of a less emission-intensive electricity mix, 
called load shifting, can significantly reduce the emissions (Jochem et al., 2015; Rangaraju et 
al., 2015). However, just shifting the load to times with less energy demand does not 
necessarily lower the environmental impact, especially when, as in Germany today, coal is 
used to cover a significant proportion of the baseload. Despite the potential benefits, only a 
few studies include timely disaggregated input data (Garcia et al., 2017; McCarthy & Yang, 
2010; Sharma et al., 2013). Even fewer studies contain the empirical time of charging data 
(Donateo et al., 2014, 2015; Rangaraju et al., 2015; Robinson et al., 2013). Concerning the 
electricity mix, another important distinction between the average and the marginal mix is 
required especially in the context of load shifting. Marginal emissions are the ones that are 
additionally caused by the last connected consumer. Depending on the energy source they 
are likely to be more emission-intensive than the average mix (Jochem et al., 2015; Ma et al., 
2012; McCarthy & Yang, 2010). It is an on-going discussion of whether and under which 
circumstances environmental impact studies should consider the average or marginal mix. 
There is a strong argument that if the load is shifted the marginal mix should be chosen since 
the additional demand is consciously created. 
 
The results of the BEV environmental impact assessments are regularly put into context by 
comparing them to other technologies such as ICEVs, HEVs, PHEVs or FCEVs. In 
comparison, the environmental impacts of BEVs from cradle-to-gate exceed those of ICEVs in 
many impact categories due to the higher energy requirements for cell production as well as 
due to the extraction and production of the particular materials (Cox et al., 2018; Egede et al., 
2015; Hawkins et al., 2013a, 2013b; Held et al., 2016; Kim et al., 2016). Some of the higher 
environmental impacts can be compensated through comparable lower emissions and fewer 
pollutants during operations. Some studies illustrate this effect of compensating the initial 
higher offset with a break-even analysis over the lifetime mileage (Bickert et al., 2015; Cox et 
al., 2018; Ellingsen et al., 2016; Held et al., 2016). This approach provides a good illustration 
of the potential compensation and the influence of the operating grade on the overall 
environmental performance of BEVs. Depending on the research settings, the break-even 
points vary. The GWP break-even under the carbon-intensive German average electricity mix 
lies between 60,000 and 125,000 km and at around 40,000 km when relying on an electricity 
mix from RESs (Bickert et al., 2015; Held et al., 2016). Depending on the type of car under the 
European electricity mix the break-even points lie between 20,000 and 110,000 km (Ellingsen 
et al., 2016). For other impact categories, the results differ. Especially for the acidification 
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potential (AP) due to the high emissions in the material extraction and processing of active 
materials no significant improvement is reached over a lifetime (Held et al., 2016). Again, an 
extensive analysis based on long-term empirical data is missing. 
 
In summary, the literature overview on environmental impacts and emissions of BEVs allows 
several conclusions. The differences between the studies underline the complexity of the issue 
and the importance to distinguish scope, system boundaries, and input data clearly. Even 
though the utilization takes a high influence on the environmental impacts of BEVs, most 
publications neglect specific use cases and long-term empirical energy consumption values. 
They rely on general assumptions concerning lifetime mileage and mixed route profiles (urban, 
interurban or motorway) not considering the substitution potential of BEVs in detail. The few 
papers that use actual data from BEV deployment either lack a full LCA or do not focus on 
specific use cases. 
 

3.3 Research gaps in the literature 
For the techno-economic as well as the environmental evaluation and optimization of BEVs 
there are notable gaps in the literature. These underline the need for further research 
presented in this thesis’s research papers. Since BEVs had only recently been introduced to 
the mass market when the research started, there was limited data available concerning their 
real performance in utilization. Due to the sensitivity of the techno-economic and environmental 
results on the utilization parameters, including this data sets the research on a more solid 
foundation and provides new insights into the economic and environmental beneficial 
deployment of BEVs. 
 
From a techno-economic point of view concerning the current state of BEVs, two different 
strategies have the potential to accelerate BEV introduction into commercial applications.  
Both strategies were developed under the condition of full ICEV substitutability without 
changes in individual mobility behavior. Considering a fixed BEV endowment, the first strategy 
is to increase the operating grade inside the set technical boundaries, which increases the 
competitiveness by making greater use of the lower operating costs. This approach 
demonstrated by specific commercial use cases has not been presented in the literature. 
Considering a flexible BEV endowment, the second strategy is to minimize the investment and 
operational costs in a comprehensive TCO optimization model. Current studies on electric 
vehicles’ TCO often neglect two important factors that influence the investment decision and 
operational costs: firstly, the trade-off between battery and charging capacity; secondly the 
uncertainty in energy consumption. Jointly optimizing investment and cost of operations under 
uncertainty requires a stochastic approach. In the literature, several stochastic approaches 
can be found that optimize BEV operations taking uncertainties into account. However, to the 
best of the author’s knowledge, an approach that jointly minimizes the investment and 
operational costs for BEV under uncertain energy consumption is missing  
 
From the environmental perspective, various impact factors and, as a consequence thereof, 
the environmentally beneficial deployment of BEVs are highly sensitive to the operational 
conditions. Firstly, this applies to the assessment of timely disaggregated CO2 emissions 
resulting from BEV operations. The detailed assessment requires combining long-term case-
specific empirical input data, e.g., the mobility patterns, the energy demand, and the exact 
charging time with data from different electricity markets. Secondly, several environmental 
impacts resulting from the full BEV life-cycle are directly dependent on the circumstances of 
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utilization. The electricity mix and energy efficiency are directly related to the emissions from 
the operation. As indicated in the literature, favorable conditions and a high degree of utilization 
can lead to a comparable break-even over the BEV life-time in several impact categories. 
There is a gap concerning this kind of commercial case-based LCA in the literature. Most 
previous publications neglect specific use cases, make general assumptions on lifetime 
mileage, and do not consider case-specific technical substitution restrictions of BEVs in detail. 
Both approaches could provide vital contributions to the literature since they allow the drawing 
of specific conclusions concerning the environmental impacts of BEVs and provide 
recommendations for their environmentally beneficial deployment.  
 
After unifying the stated gaps in the literature an overall research question arises: based on 
case-specific utilization data what are the critical conditions, prerequisites, and measures 
required for a joint economic and environmentally beneficial deployment of BEV in commercial 
applications? 
 

4. Contribution and organization of the thesis  
This thesis follows a holistic approach to assess the potential of BEVs in commercial fleets. It 
addresses the overall research question and individual gaps in the literature stated above by 
presenting methodical approaches for optimizing the techno-economic potential and 
evaluating the environmental impacts of BEVs deployed in commercial fleets and used by 
commuters. The research in all papers is based on empiric utilization data recorded over an 
extensive period of different BEVs, ICEVs, and EVSEs. This detail and the quality of empirical 
data allow a detailed techno-economic and environmental analysis. In summary, the papers 
present an interdisciplinary approach to evaluate, simulate, and optimize the utilization of 
commercial BEVs. 
 
The presentation of the five research papers’ methodical approaches, main results, and 
contributions are separated into three subject areas (Table 1). Subject area 1 consists of 
Schücking et al. (2016) which has a technical focus. Subject area 2 consists of Schücking et 
al. (2017) and Schücking & Jochem (2020) which both have a techno-economic focus. Subject 
area 3 focuses on the environmental impacts of BEVs with the papers Ensslen et al. (2017) 
and Held & Schücking (2019). These five papers build a holistic framework of methodical 
approaches to optimize the techno-economic potential and evaluate the environmental impacts 
(Figure 7).  
 
One set of papers (Paper I, II and IV) sets the focus solely on the use of BEVs answering 
technological, economic or environmental research questions. Schücking et al. (2016) 
assesses the empiric energy consumption of BEVs in deployment. The processed data and 
the calibrated vehicle dynamics model are vital contributions to the other studies presented in 
this thesis. Schücking et al. (2017) develops charging strategies that can be applied to 
increase the utilization of BEVs and facilitate a faster economic break-even under the given 
technical restrictions. The newly developed key performance indicators (KPIs) of the mobility 
patterns help to illustrate the differences in the two use cases presented. They can also be 
used to assess the potential of increased utilization in other commercial applications. Ensslen 
et al. (2017) focuses on the utilization from an environmental perspective. It simulates the time-
dependent CO2 emissions from BEV in cross-border operation building on high-resolution 
mobility and electricity mix data. The results indicate the influences of the regional mixes and 
point out the CO2 emission reduction potentials in BEV operation. 
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Figure 7: Overview framework of methodical tools applied in this thesis 

 
The other set of papers (Paper III and V) take a more holistic approach by expanding the 
system boundaries to the whole life-cycle of the BEVs. Addressing the identified gap of a 
missing comprehensive TCO optimization approach that jointly considers both the trade-off 
between battery and charging capacity and uncertainty in energy consumption in the 
investment decision and operational costs Schücking & Jochem (2020) proposes a two-stage 
stochastic program. It minimizes the TCO of a commercial electric vehicle under uncertain 
energy consumption induced by mobility patterns and outside temperature. The optimization 
program is solved by sample average approximation (SAA). Based on practical experience, 
the study assumes that only limited information on mobility patterns, e.g. from a logbook, is 
available in everyday commercial mobility applications. Therefore, a hidden Markov model 
(HMM) is introduced as an approach for generating mobility scenarios that provide suitable 
input for a detailed energy consumption model based on limited empirical data. Furthermore, 
the paper presents a new scenario reduction heuristic to facilitate a more efficient 
approximation of the optimal TCO value based on the key first-stage decision variables and 
the output performance of the scenarios. All things considered, several methodical approaches 
and small advancements are newly combined into a comprehensive stochastic TCO 
optimization framework. Held & Schücking (2019) provides a full LCA based on the long-term 
empirical data suggesting conditions for an environmentally beneficial deployment of BEVs 
based on a simplified screening model. Even though the two papers assess the overall life 
cycle, detailed long-term case-specific data is paramount for both methodical approaches.  
 
In their combination, all five papers address the overall research questions and contribute 
valuable insights into the conditions, prerequisites, and measures required for a joint economic 
and environmentally beneficial deployment of BEV in commercial applications. 
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The five papers originate from research undertaken by the author in the capacity as an 
assistant in the research group Energy and Transport at the Institute for Industrial Production 
(IIP) and at the Battery Technical Center (previously Competence E), which are both entities 
of the Karlsruhe Institute of Technology (KIT). In relation to the existing literature, the five 
research papers in this thesis combine several existing methods into new approaches that are 
applied based on unique long-term empirical data. Furthermore, Paper III also introduces an 
HMM-based approach for predicting commercial mobility patterns and develops a new 
scenario reduction heuristic that allows approximating the solution of the proposed two-stage 
stochastic approach more efficiently by considering the key first-stage decisions and output 
performance of the individual scenarios. To the best of the author's knowledge, each paper, 
as well as all of them combined, provide a new contribution to the field of commercial BEV 
research. The papers include a comprehensive literature review addressing not only the 
domain but also methodology as well as a detailed empirical data collection process. The 
complex issues were analyzed in cooperation with co-authors who provided valuable input 
especially concerning the methods and data for the environmental assessment. The central 
techno-economic ideas and applied methods, as well as the literature reviews, the data 
analysis, and the preparation and discussion of the results, were to the most substantial extent 
provided by the author of this thesis. 
 

4.1 Subject area 1: Technical analysis of the BEVs’ energy consumption 
The following part summarizes the contribution, applied methods, used data, and key results 
of the technical paper in the subject area 1. 
 
Paper I Influencing factors on specific energy consumption of electric vehicles in extensive 
operations (M. Schücking et al., 2016) presents a detailed technical energy consumption and 
efficiency model for BEVs. The vehicle dynamics model is calibrated based on long-term 
empirical measurements of the commuter and business trip use cases supplemented with 
detailed measurements on a dynamometer. Especially the intensive use with monthly mileages 
over 3,000 km and the horizon of over 2.75 years provided a unique data set. The results 
underline the influence of speed level and variance as well as the influence of the auxiliaries’ 
power demand. On the one hand, a higher travel speed increases the loss to drag and 
therefore the specific energy consumption. On the other hand, under the assumption of 
constant power demand by the auxiliaries during a trip, a higher average speed leads to a 
lower auxiliaries’ impact on the specific energy consumption. Depending on the vehicle type 
and auxiliaries’ power demand, these opposing effects lead to a minimum value between 22 
and 42 km/h for specific energy consumption, which determines the longest possible trip 
without recharging. As the results show, this is not necessarily the operating point where BEVs 
are most competitive compared to ICEVs, which usually lies at lower average speeds. 
However, the worst-case energy consumption determines the substitution potential, which is 
more sensitive to the higher use of auxiliaries at lower speeds. The results suggest that a 
higher average speed, which allows the constant operation on longer routes and therefore 
increases the annual mileage, can overcompensate the losses in relative efficiency. This study 
underlines the complexity of the technical substitution assessment as well as the requirement 
of considering the influence of mobility patterns and outside temperatures on energy 
consumption. 
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4.2 Subject area 2: Techno-economic evaluation and optimization 
The following paragraphs present the research questions, applied methods, used data, and 
critical results for the two techno-economic papers in subject area 2.  
 
Paper II Charging strategies for economic operations of electric vehicles in commercial 
applications (M. Schücking et al., 2017) presents and discusses five BEV charging strategies 
during an early stage long-term field test from 2013 to 2015 in the French-German border 
region. The primary objective of the charging strategies is to propose conceptual suggestions 
and provide empirical evidence for increasing the BEV’s utilization to a high operating grade 
within the technological restrictions. The research distinguishes itself from others not only by 
the taken approach but also based on the intensive use of the deployed vehicles which drove 
more than 450,000 km and the inclusion of DC fast charging. Both were unique characteristics 
when the research was conducted. The purpose of the high utilization is to benefit from the 
lower operational cost and to facilitate a faster economic break-even. Three of the charging 
strategies focus on commuting shift workers while the other two strategies focus on business 
trips. For four out of five presented charging strategies, the inclusion of DC fast charging is 
indispensable. Based on the case studies five KPIs are developed. These indicators allow a 
straightforward assessment of commercial mobility profiles according to economic potential. 
The results indicate that a prudent mix of conventional and DC fast charging allows a high 
annual mileage while at the same time limiting avoidable harmful effects on the battery. Overall, 
the results demonstrate that the higher predictability of the commuting use case in comparison 
to the business trips allows finer tuning of charging strategies. The uncertainty concerning the 
timing of the trips significantly limits the appliance of simple strategies to increase utilization 
indicating that for less predictable use cases the inclusion of uncertainty in mobility patterns in 
the investment decisions and operations is indispensable. 
 
Paper III Two-Stage stochastic program optimizing the total cost of ownership of electric 
vehicles in commercial fleets (Maximilian Schücking & Jochem, 2020) addresses this issue by 
proposing a two-stage stochastic program that minimizes the TCO of a commercial electric 
vehicle under uncertain energy consumption induced by mobility patterns and outside 
temperature. In contrast to the first paper in subject area 2, it does not increase the utilization 
of a given BEV but sets the battery and charging capacity as variables for the investment 
decision, which both form a trade-off. Four major contributions are made in this paper. Firstly, 
an overall investment and operations choice formula, which considers battery capacity, 
charging capacity, and uncertain energy consumption under the constraints of a detailed 
technical BEV model is developed. Secondly, the stochastic mobility patterns are predicted 
based on limited empirical time-series data by training and using an HMM for scenario 
generation. Thirdly, three scenario reduction heuristics, one of which is a newly developed 
advancement, are compared to identify the one that most efficiently approximates the optimal 
value of the two-stage stochastic model. Fourthly, the newly developed approach is applied to 
a home nursing service case study, which, despite being a common mobility application, has 
received little research attention. The results show the large influence of the uncertain mobility 
patterns on the optimal solution. Concerning the methodology, the results of the home nursing 
service case study demonstrate that using HMM is a suitable way to model stochastic mobility 
patterns. Moreover, the results indicate that the inclusion of the first-stage decision variables 
and the overall output performance in the scenario selection process can improve the solution 
approximation efficiency. In the case study, by including the trade-off between battery and 
charging capacity the TCO can be reduced by up to 3.9%. The introduction of variable energy 
prices can lower energy costs by 31.6% but does not influence the investment decision in this 
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case study. Overall, this study provides valuable insights for real applications to determine the 
techno-economic optimal electric vehicle and charging infrastructure configuration. The model 
is easily transferable to other commercial mobility applications that promise early BEV 
introduction such as security, delivery or postal services. 
 

4.3 Subject area 3: Environmental evaluation 
The following part reviews the research questions, applied methods, used data, and critical 
results of two papers in subject area 3. 
 
Paper IV Empirical carbon dioxide emissions of electric vehicles in a French- 
German commuter fleet test (Ensslen et al., 2017) presents the results from measuring the 
time-dependent electricity consumption of BEVs during driving and charging. It contributes to 
the discussion concerning the quantification of real CO2 emission reduction potentials. Three 
research questions are addressed in this paper. Firstly, how much energy was charged and 
consumed by the BEVs on the individual trips during the commuter fleet test and to what extent 
does this amount depend on the chosen measurement points or assessment method (e.g., 
GTW, TTW, NEDC)? Secondly, what are the CO2 emissions caused by the BEVs considering 
the time-dependent national PTW CO2 emissions and the different assessment methods? 
Thirdly, how high are the real CO2 emission reduction potentials of different BEV use cases 
based on the previous results? The high-resolution empirical data originates from the use case 
of shift workers commuting between France and Germany from March to August 2013. 639 
individual charging events were recorded. The study matches the vehicle data on electricity 
consumption to the disaggregated electricity generation data with time-dependent national 
electricity mixes and corresponding CO2 emissions with an hourly temporal resolution. The 
results indicate that charging in France causes only about 10% of the CO2 emissions compared 
to Germany. In Germany, the carbon intensity is more diverse and depends on the time of day 
or season. Solely based on the German electricity mix the specific emissions of the use case 
are higher than the European fleet target for 2022 of 95 g CO2/km. The results confirm that 
delayed charging can reduce electric vehicle-specific CO2 emissions by shifting the load into 
periods with high shares of renewables, i.e., particularly into afternoon hours, when the sun is 
shining or into windy periods. At the presented high utilization level this requires the installation 
of higher maximum charging powers. Reducing the CO2 emissions, the utilization phase is an 
essential step in the effort to cut the overall environmental impact of BEVs.  
 
Paper V Utilization effects on battery electric vehicle life-cycle assessment: A case-driven 
analysis of two commercial mobility applications (Held and Schücking 2019) conducts an LCA 
to investigate the environmental impact categories GWP, AP, EP, and PED as an indicator for 
the depletion of nonrenewable energetic resources from BEVs deployed in the cross-border 
commuter and business trips use cases. The paper analyzes the effect of the high operating 
grade, different energy mixes on both sides of the border, and vehicle types on the lifetime 
environmental impact as well as the respective break-even points to ICEVs. The research is 
based on empirical powertrain and GPS data. The approach follows the standardized LCA 
framework. However, since no car manufacturer was directly involved in this study for 
exchanging specific inventory data on the vehicle and powertrain components in a consistent 
level of detail, a simplified internal LCA screening model approach is applied to estimate the 
environmental impacts from production and the EOL of the investigated vehicle types. 
Depending on the level of detail and quality of available data, the parameterization of the 
screening model allows a comprehensive adjustment of the vehicle specifications as well as 
for single components according to their technical properties. The LCA software GaBi is used 
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for the screening model with access to the detailed LCA database. In the LCIA, all the 
emissions are classified according to their environmental effects, and the emissions are 
summarized using the CML2001 as a characterization model. The findings of this article 
indicate that regular and predictable mobility patterns in combination with high vehicle 
utilization are favorable conditions for an environmentally beneficial deployment of BEVs. 
These characteristics allow tailoring the battery capacity to the requirements and avoiding an 
unnecessary offset from production. When charging the vehicles with electricity from RESs, 
the high operating grade utilizes the comparatively lower environmental impacts per kilometer. 
A high lifetime mileage allows breaking-even to comparable ICEVs in most investigated impact 
categories. Since regular and more predictable mobility patterns, as well as a high operating 
grade, are commonly found in commercial applications, these are especially suitable for 
replacing ICEVs with BEVs from an environmental perspective. 
 

5. Summary and outlook for future research 
BEVs have the potential to play a vital role in the decarbonization of our future transportation 
system. This thesis presents an interdisciplinary framework of methodical approaches 
consisting of five scientific papers that evaluate, simulate, and optimize the economic benefits 
and environmental impact of commercial and commuter BEVs. Combined they answer the 
overall research question: what are the essential conditions, prerequisites, and measures 
required for a joint economic and environmentally beneficial deployment of BEV in commercial 
applications? The presented framework can be applied to assess and optimize the potential 
economic and environmental benefits of BEVs deployed in specific commercial applications 
based on long-term utilization data. 
 
In their results, the five papers confirm previous research, address open gaps in the existing 
literature and suggest methodical advancements. As a technical analysis, Schücking et 
al. (2016) focuses on the empirical energy consumption of BEVs and presents a calibrated 
vehicle dynamics model. The paper demonstrates the effect of speed and outside temperature 
on the actual energy consumption. The results underline that a resilient BEV dynamic model 
or detailed empirical utilization data is a central component for bottom-up economic and 
environmental analysis of potential BEV benefits. The two techno-economic papers present 
two different bottom-up approaches for assessing the individual BEV’s deployment potential 
and facilitating a faster economic break-even. Schücking et al. (2017) focuses on the 
utilization. The new empirical insights and conceptual suggestions show that under high 
predictability and, with the inclusion of DC fast charging, a high operating grade can be reached 
allowing for a faster economic break-even. However, increasing uncertainty in the mobility 
patterns limits the potential benefits of this cost optimization strategy. To address this issue, 
Schücking & Jochem (2020) develops a more holistic TCO approach to minimize the 
investment and operational cost of a BEV under the consideration of uncertainty in energy 
consumption due to mobility patterns and outside temperature. The results of the home nursing 
service case study demonstrate the benefit of the stochastic approach. Both techno-economic 
papers advocate the importance of taking an incremental approach when assessing the BEV 
substitution potential. The two papers focusing on the environmental impacts of BEVs in the 
cross-border commuter case and business trips emphasize the influence of the electricity mix, 
the operating grade, and the battery capacity on the overall environmental performance. The 
specific focus on the quantification of real CO2 emission reduction potentials during utilization 
presented in Ensslen et al. (2017) shows the timing and potential delaying of the charging can 
lead to notable emission savings. Held & Schücking (2019) expand these results by 
highlighting the importance of the utilization phase on the environmental impact over the whole 
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life cycle. The paper shows that a high utilization can lead to an environmental break-even in 
most but not all the evaluated impact categories.  
 
Following the overall research ambition, the results of the individual research papers allow 
overall overarching conclusions concerning the economic and environmental beneficial 
deployment of BEVs, specifically in commercial applications. Two essential criteria defined in 
this thesis to identify commercial applications with a high potential for a beneficial economic 
deployment "The predictability and regularity of the mobility patterns should be high.” and “The 
driving profiles should consist of short but frequent trips.” also increase the likeliness of an 
environmentally beneficial BEV introduction. Allowing for an ex-ante assessment of the 
required battery and charging capacity and avoiding unused excess battery capacity reduces 
not only the investment but also the significant environmental burden resulting from the cradle-
to-gate and EOL processes. Aiming for a high operating grade in combination with electricity 
from RESs not only facilitates a faster economic but also environmental break-even in several 
impact categories. Therefore, the utilization characteristics that make many commercial 
vehicle applications a promising introduction market for BEV from an economic perspective 
(Gnann, Plötz, Kühn, et al., 2015; Plötz et al., 2013), can also lead to significant environmental 
benefits resulting from BEV introduction when combined with electricity from RESs. Increasing 
the deployment of BEVs in commercial applications also benefits the introduction of BEVs by 
private users since the commercial market provides an essential lever to the private market 
(Brand, Cluzel, & Anable, 2017; Plötz et al., 2014). 
 
The presented research is subject to various limitations. The specific limitations are listed in 
the individual research papers. This paragraph summarizes the general limitations that arise 
from the case-based approach followed in this thesis. To a large extent, the research presented 
in this thesis is based on specific use cases and the recorded empirical data. Transferring them 
from the use case level into a broader context must be done cautiously. The cross-border 
commuting of shift workers is a unique use case. Even though commuting by car is very 
common in Germany, it is usually done by private or company cars which are also used for 
other purposes reducing the regularity and limiting the predictability. Also, in this thesis the 
thermal battery management is neglected in the presented technical BEV models. Under 
intensive use and high charging loads, which are vital to the presented models, the battery 
temperature can become a restriction resulting either in higher energy consumption through 
the need for active cooling or a restriction of charging power to avoid overheating. The latter 
effect was observed in the commuter case study. Furthermore, the analyzed BEVs were from 
an early generation. Recent technological advances already show increases in component 
efficiencies, lower load requirements by the auxiliaries, and increased battery energy and 
power densities as well as significant decreases in battery and vehicle prices. These 
technological and market maturity advances increase BEV competitiveness from an economic 
as well as environmental point of view.    
 
Future research could apply the developed methodical approaches to other use cases, 
address the stated limitations, expand the presented models, as well as combine the economic 
and environmental analysis into one methodical approach. The validity of the proposed 
methodical approaches can be tested by applying them to other use cases based on current 
BEV technology and different mobility patterns. A future methodical advancement lies in the 
combination of the different methodical approaches presented in this thesis into one model. 
One potential approach could be to combine the environmental impacts of an LCA with the 
TCO in a multi-objective (stochastic) optimization. Multi-objective optimization could have 
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effects on the results for the optimal battery and charging capacity depending on the monetary 
valuation or weighting factors. The investment in charging capacity, for example, has the 
potential to reduce the environmental impacts by lowering the battery capacity and shifting the 
charging to times with a low emission electricity mix. An alternative approach could be to 
conduct a life cycle sustainability assessment (LCSA), which consists of an LCA, life cycle 
costing (LCC), and a social life cycle assessment (SLCA). The results of future research can 
potentially accelerate the growing market penetration of (commercial) BEVs further and 
minimize the associated environmental impact.  
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Abstract 

The sensitivities of electric vehicle (EV) energy consumption become significant when operating at long 

distances. This study analyzes these sensitivities based on empirical data of seven EV over 2.75 years with 

individual monthly mileages above 3,000 km and a specifically adopted energy consumption model. The 

results underline the influence of average speed, the distribution of speed and the auxiliaries as well as their 

opposing effects. It is demonstrated that the point of lowest specific energy consumption is not necessarily 

identical to the point where EV are most competitive compared to conventional internal combustion engine 

vehicles. 

Keywords: EV (electric vehicle), energy consumption, demonstration, fleet  

1 Introduction 

The economic break-even for electric vehicles (EV) in comparison to internal combustion engine vehicles 

(ICEV) can be reached in most countries through a high mileage based on their lower energy costs. Due to 

the limited charging speeds and battery capacity for most currently available EV this requires operating them 

at their upper technical boundary. In this context assessing and forecasting their actual energy consumption 

is key. Empirical studies have shown that empirical energy consumption is usually higher than proclaimed 

by the manufacturers based on standardized driving cycles for EV [1–6] and for ICEV. This depends on 

various factors, e.g. driving profiles, driver behavior, battery technology, and the auxiliaries, which leads to 

specific energy consumption minima between 30 and 40 km/h depending on EV type and other conditions 

[7–9]. However, the possibility of energy recuperation changes the sensitivities of EV energy consumption 

in comparison to ICEV.  

In this line of research we present the results of a long-term demonstration project, where seven EV were 

deployed with the goal to reach an economic break-even. The EV were provided to commuting shift workers 

and for business trips between two sites in France and Germany. The route profiles can therefore be 

characterized as mostly inter-urban with a significant share of motorways, which does not represent the usual 

deployment field of EV. However, both applications offer the potential to reach high mileages. In fact the 

monthly average mileage per EV in this field-test was above 3,000 km and required the regular use of DC 

fast charging.  

58



EVS29 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium           2 

2 Method & Data  

In order to identify influencing factors and investigate the energy consumption sensitivity three steps were 

taken. Firstly, the long-term empirically measured energy consumption was evaluated. The changes in state 

of charge (SOC) values between the start and end of one trip proved unreliable by showing high sensitivities 

to factors such as temperature and load profiles. Therefore, to calculate the energy consumption for each trip 

(𝐸𝑇𝑟𝑖𝑝, eq. 1) the recorded sum of the average values of battery current (𝐼𝐵𝑎𝑡) and voltage between (𝑈𝐵𝑎𝑡) 

two data points multiplied by the time difference (∆𝑡𝑖,𝑖−1) was taken. In the next step the specific energy 

consumption for each trip (𝐸𝑇𝑟𝑖𝑝,𝑠𝑝𝑒𝑐, eq. 2) was calculated by dividing the total energy consumption by the 

distance covered (𝐷𝑇𝑟𝑖𝑝). 
 

𝐸𝑇𝑟𝑖𝑝,𝑡𝑜𝑡𝑎𝑙 = ∑
(𝐼𝐵𝑎𝑡,𝑖−𝐼𝐵𝑎𝑡,𝑖−1)

2
×

(𝑈𝐵𝑎𝑡,𝑖−𝑈𝐵𝑎𝑡,𝑖−1)

2

𝐸𝑛𝑑
𝑖=𝑆𝑡𝑎𝑟𝑡+1 × ∆𝑡𝑖,𝑖−1        (1) 

𝐸𝑇𝑟𝑖𝑝,𝑠𝑝𝑒𝑐 =
𝐸𝑇𝑟𝑖𝑝

𝐷𝑇𝑟𝑖𝑝
                (2) 

 

In the following analysis average monthly values were taken. This was done due to the observed high 

variance of energy consumption for the individual trips on identical routes, most likely depending on factors 

such as time of day, direction of travel, or current driver, etc., which are not investigated in this study. 

Secondly, to analyze the observed effects average driving profiles for both EV types were created based on 

recorded data (e-Wolf Delta 2 Route 1 and Nissan Leaf Route 7). Identical to the data loggers as the constant 

equidistant time difference between two data points for the e-Wolf Delta 2 20 s and for the Nissan Leaf 1 s 

was taken. These artificial diving profiles were put into an individual adjusted theoretical energy 

consumption model considering the specific efficiency values of the powertrain components (Fig. 2), which 

were provided by the manufacturers and validated by putting the EV on the dynamometer (Fig. 1) and 

comparing to values from the literature [10], as well as the individual recuperation algorithms. 

 

 
Figure 1: Range of efficiency for Delta 2 powertrain (measured in 11 km/h and 70 Nm intervals) 

 

Figure 2: EV powertrain with average measured component efficiency at recorded speed values 
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The developed energy consumption simulation model distinguishes two driving states at different points of 

time during the trip (index 𝑘): taking electric energy from the battery for propelling the EV forward (𝑃𝑘,𝑒𝑙.𝑠𝑢𝑝, 

eq. 4) and recuperating electric energy back into the battery (𝑃𝑘,𝑒𝑙.𝑟𝑒𝑐, eq. 5.1 – 5.3). For both driving states 

an individual powertrain efficiency (𝜂𝑝𝑡,𝑠𝑢𝑝, 𝜂𝑝𝑡,𝑟𝑒𝑐) is considered dependent on speed (𝑣), torque (𝜏), and 

Temperature (𝑇). The required power at the wheels (𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠, eq. 3) is the sum of the power for acceleration 

(𝑃𝑘,𝑎𝑐𝑐.), the power necessary to climb an ascending slope (𝑃𝑘,𝑐𝑙𝑖𝑚𝑏) as well as the power to overcome the 

rolling resistance (𝑃𝑘,𝑟𝑜𝑙𝑙.𝑟𝑒𝑠) and drag (𝑃𝑘,𝑑𝑟𝑎𝑔). It is calculated based on the current speed (𝑣), the change 

in speed (�̇�), the additional load (𝑚), and the road gradient (𝛼). The energy required for acceleration as well 

as to climb an ascending slope can potentially be recuperated, while the one used to overcome rolling 

resistance and drag is lost. The equations for the recuperation below exemplary show the calculation for the 

e-Wolf Delta 2 based the specific design of the algorithm: only recuperating energy above the speed of 

20 km/h (eq. 5.1) and only up to a maximum of 22 kW battery charging power (eq. 5.3). The power demand 

or supply for each point in time of the driving cycle was added to the power demand of the auxiliaries (𝑃𝑘,𝑎𝑢𝑥), 

which was then multiplied by the equidistant time difference (∆𝑡𝑘,𝑘−1 ), added up, and divided by the 

temperature dependent battery efficiency (𝜂𝑏𝑎𝑡) to calculate the total energy consumption for a single trip 

(𝐸𝑇𝑟𝑖𝑝, eq. 6). To get the specific energy consumption (𝐸𝑇𝑟𝑖𝑝,𝑠𝑝𝑒𝑐, eq. 7) the total energy consumption was 

again divided by the covered distance (𝐷𝑇𝑟𝑖𝑝). To validate the model the results of the total energy 

consumption as well as the progression for different individual trips were subsequently compared to the 

energy consumption empirically measured confirming the accuracy of the developed model for the analyzed 

EV types.  
 

𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 = 𝑃𝑘,𝑎𝑐𝑐.(𝑣, �̇�, 𝑚) + 𝑃𝑘,𝑐𝑙𝑖𝑚𝑏(𝑣, 𝛼) + 𝑃𝑘,𝑟𝑜𝑙𝑙.𝑟𝑒𝑠(𝑚, 𝑣, 𝛼) +  𝑃𝑘,𝑑𝑟𝑎𝑔(𝑣)         (3) 

𝑃𝑘,𝑒𝑙.𝑠𝑢𝑝 = 𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 × 
1

𝜂𝑝𝑡,𝑠𝑢𝑝(𝑣,𝜏,𝑇)
           (4) 

𝑃𝑘,𝑒𝑙.𝑟𝑒𝑐 = 0     𝑖𝑓  
∑ 𝑣𝑘

𝑘+1
𝑖=𝑘−1

3
< 20 𝑘𝑚/ℎ        (5.1) 

𝑃𝑘,𝑒𝑙.𝑟𝑒𝑐 = 𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 × 𝜂𝑝𝑡,𝑟𝑒𝑐(𝑣, 𝜏, 𝑇)     𝑖𝑓 𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 × 𝜂𝑝𝑡,𝑟𝑒𝑐(𝑣, 𝜏, 𝑇)  ≤ 22 𝑘𝑊    (5.2) 

 

𝑃𝑘,𝑒𝑙.𝑟𝑒𝑐 = 22 𝑘𝑊     𝑖𝑓 𝑃𝑘,𝑤ℎ𝑒𝑒𝑙𝑠 × 𝜂𝑝𝑡,𝑟𝑒𝑐(𝑣, 𝜏, 𝑇)  > 22 𝑘𝑊     (5.3) 

    (6) 

𝐸𝑇𝑟𝑖𝑝,𝑠𝑝𝑒𝑐 =
𝐸𝑇𝑟𝑖𝑝

𝐷𝑇𝑟𝑖𝑝
                (7) 

 

In this study the developed simulation model was mainly used to investigate the effects of auxiliaries and 

drag in relation to travelling speed. Since the EV were deployed on constant routes and the individual driver 

was unknown, influence factors such as driving style, or drivers experience were excluded in this study. Also 

the vehicle load influencing the power to overcome the rolling resistance as well as the power required for 

acceleration was only estimated with the average number of passengers. It was the only way, because for 

privacy reasons for the individual trips there was no data available at which points on the route the workers 

where embarking or disembarking the EV or how many workers were using the EV for a business trip. To 

specifically examine the sensitivities to drag and the use of the auxiliaries of the energy consumption in 

relation to the average driving speed for both EV types the speed values of the created average driving profiles 

were put into the model and varied proportionally. 

Thirdly, to not only study the relation to average speed, but also to investigate the effects of a greater 

distribution of speed values the recorded data of the Nissan Leaf was analyzed, by comparing the standard 

deviation of the speed values to the specific energy consumption and the average speed. The Nissan Leaf 

was taken since the data logger had a higher measurement resolution and therefore allowing a more precise 

calculation of the statistical distribution. The empirical and simulated values for the total and specific energy 

consumption are based on a tank-to-wheel (TTW) system boundary. 

𝐸𝑇𝑟𝑖𝑝 =
1

𝜂𝑏𝑎𝑡(𝑇)
[ ∑ (∆𝑡𝑘,𝑘−1 × (𝑃𝑘,𝑒𝑙.𝑠𝑢𝑝

𝐸𝑛𝑑

𝑘=𝑆𝑡𝑎𝑟𝑡+1

+ 𝑃𝑘,𝑎𝑢𝑥)) + ∑ (∆𝑡𝑘,𝑘−1 × (𝑃𝑘,𝑟𝑒𝑐

𝐸𝑛𝑑

𝑘=𝑆𝑡𝑎𝑟𝑡+1

+ 𝑃𝑎𝑢𝑥))] 
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Both EV types in the project were chosen based on the technical and user specific requirements of the two 

applications. The main technological selection criteria were the possibility of DC fast charging, sufficient 

battery capacity to ensure a one-way trip even under restrictive conditions, and cycle stability under the 

intensive and frequent use of DC fast charging. In addition to the technological requirements the EV needed 

to fit the demands of the travelers concerning size and comfort. According to these criteria only two EV 

models were available at that time: the e-Wolf Delta 2 (and the updated EVO-version) for the commuters 

and the Nissan Leaf for the business trips. The technical specifications can be found in Table 1. 

 

Table 1: Technical specification of the deployed EV (Source: Technical datasheet provided by manufacturers) 
 e-Wolf Delta 2 e-Wolf Delta 2 (EVO) Nissan Leaf 

Number of EVs deployed 3 3 1 

Specific energy consumption (NEDC) [Wh/km] 187 200 173 

Max. motor power output [kW] 90 90 80 

Cabin heating Biodiesel Biodiesel Battery 

Nominal battery capacity [kWh] 24.20 32.00 24.00 

Real battery capacity [kWh] 22.26 29.44 20.85 

Battery chemistry Li-ion NMC Li-ion NMC Li-ion G/LMO-NCA 

Drag coefficient  0.31 0.31 0.285 

Frontal area [m2] 3.32 3.32 2.6 

Vehicle mass [kg] 1,660 1,650 1,525 

 

All EV were equipped with data loggers connected to the CAN bus recording powertrain and GPS data. For 

the e-Wolf Delta 2 EV amongst others the following powertrain and GPS data was recorded: date and time, 

parameters of the high-voltage-battery, such as voltage, battery current, medium cell temperature, and SOC, 

speed and odometer based on axis turning, GPS height, GPS odometer, GPS speed, GPS position latitude 

and longitude. For the Nissan Leaf a data logger directly connected via Bluetooth to the on-board diagnostic 

system (OBD) was installed. This allowed detailed access to a wide range of powertrain data, e.g. battery 

currents, voltages, temperatures, SOC, charging status as well as GPS data. Over the duration of 2.75 years 

for the seven EV over 450,000 km were logged. Additionally the EV were set on a dynamometer to assess 

their energy consumption and power train efficiency under controlled conditions. 

 

3 Results 

In order to investigate the effect of the influence factors on the specific energy consumption the results 

presented in the following are the recorded energy consumption values, the simulated effects of drag and 

auxiliaries in relation to average speed, and the consequence of a higher speed variance in the driving profile.  

 

3.1 Long-term specific energy consumption 

As first step of identifying influence factors the values for the long-term energy consumption are analyzed. 

Even though all EV were deployed on constant routes, for the two applied EV types significant differences 

in the energy consumption over the time of use can be observed (Fig. 3). For the specific energy consumption 

of the e-Wolf Delta 2 vehicles differences between the routes and time of year can be detected. As one reason 

for the variations between the routes the different shares of inter-urban and motorway route parts can be 

stated. Route 4 is mostly motorway and shows the highest average speed of all commuter routes with 60 km/h 

also leading to the highest specific energy consumption. Concerning the fluctuations a clear identification of 

causing factors is more difficult. Sometimes one worker being on holiday changes the route of the commuting 

group and therefore the specific energy consumption varies. Some fluctuations however can be explained by 

the changes in outside temperature. Especially between November 2014 and March 2015 an increase in 

specific energy consumption for almost all e-Wolf Delta 2 of around 20 Wh/km can be observed. Since the 

heating for the e-Wolf Delta 2 is done with Biodiesel the increase cannot be directly explained with an 

increase in auxiliary demand. Further analysis indicated that in the cold months the increase can be explained 

by a combination of battery chemistry and battery management design: Lower outside temperatures also cool 

down the battery temperature leading to a higher battery’s inner resistance which decreases battery efficiency. 

Additionally the battery management system reduces the recuperation power depending on the current cell 

temperature to avoid potentially harming effects on the cell chemistry by charging with higher currents. The 
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energy instead is lost through mechanical breaking, leading to a higher specific energy consumption. Other 

potential factors can be a more frequent use of specific auxiliaries such as headlights, wipers, and cabin fan. 

Secluding it should be noticed that on average the specific energy consumption lies around 235 Wh/km, 

which is significantly higher than the NEDC value stated by the manufacturer (Table 1).  

The Nissan Leaf, due to the lower weight and better aerodynamics in comparison shows lower specific energy 

consumption, with the lowest point at 150 Wh/km (Fig. 3), which even lies below the NEDC value stated by 

the manufacturer (Table 1). On the other hand it shows a much higher variance between winter and summer. 

Even though different reasons for this increase in months of lower average temperatures can be adduced, the 

data shows that the cabin heating, that takes energy from the battery instead of an additional heating device, 

has the biggest influence. A maximum value of close to 4 kW was recorded for cabin heating power taken 

from the battery. This indicates the significant influence of the cabin heating on the specific energy 

consumption even at the relatively high average speed: At the measured average speed of around 70 km/h 

for the business trips the full heating power of 4 kW leads to an additional specific energy consumption of 

57 Wh/km, which is an increase of 33% to the NEDC. Under these circumstances short term test 

measurements on urban routes showed specific energy consumption values up to 280 Wh/km.  

 

 

Figure 3: Measured monthly average specific energy consumption of the RheinMobil EV 

 

3.2 Effect of drag and auxiliaries on specific energy consumption 

The results of the specifically for both EV types developed energy consumption simulation model for the 

averaged recorded empirical driving profiles with proportionally varied speed values clearly underline the 

reverse effects of the auxiliaries and drag in relation to average speed on the specific energy consumption. 

Figure 4 shows the total specific energy consumption taken from the battery depending on the average speed 

for both EV types and two levels of auxiliary demand. The auxiliaries’ power demand levels of 1.1 kW as 

average and 4 kW as maximum were chosen according to the recorded values. At the same level of 

auxiliaries’ power demand the energy consumption at low average speeds for both EV types is very similar. 

With an increase in average speed the difference between the two curves increases. At higher average speeds 

the discrepancy between the different auxiliary demand levels diminishes. The progression of the curves 

illustrates the relatively changing influence of auxiliaries and drag at different speed levels. At a constant use 

of 1.1 kW auxiliaries under these driving conditions the minimum specific energy consumption lies at 22 for 

the Delta 2 and 28 km/h for the Leaf. The maximum auxiliaries’ power demand of 4 kW leads to a minimum 

of specific energy consumption at 38 or 42 km/h respectively.  
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Figure 4: Energy consumption model e-Wolf Delta 2 and Nissan Leaf based on average empiric driving profiles  

 

3.3 Effect of speed variance on energy consumption 

Furthermore the empirical results suggest that even at high average speed values the distribution has an effect 

on the specific energy consumption that should not be neglected. Figure 5 shows the relation of specific 

energy consumption and recuperation to the standard deviation of the speed values for one trip as well as its 

relation to average speed. Even for the limited range of average speed values from 56 to 73 km/h, due to the 

constant mostly inter-urban and motorway driving profile the, clear correlations can be detected. The specific 

energy consumption as well as the specific recuperation increases with a higher standard deviation of speed 

values. The increase in recuperation does not fully compensate the increase, which is understandable due to 

efficiency rates, imperfect driving, and the quadratic with speed increasing losses due to drag. Therefore the 

specific net energy consumption increases with a higher speed variance. The data also shows that with a 

higher average speed the standard deviation of speed values for one trip decreases. This has to be interpreted 

carefully since the EV was deployed on a fixed route and therefore cannot be accounted to changes in the 

route profile, but might be the effect of traffic density or driving style.  

 

 

Figure 5: Measured effects of speed volatility on specific energy consumption and recuperation Nissan Leaf 

 

4 Discussion & Outlook 

The empirical results and the adapted theoretical model underline the importance of a careful EV energy 

consumption assessment and forecast. They specifically demonstrate the opposing effects of auxiliaries and 

drag at different average speed levels on the specific energy consumption. Furthermore, they substantiate 

that not only the average speed, but also the volatility of speed and therefore the amount and amplitude of 
acceleration and deceleration processes has a significant impact. The ramifications of these influencing 
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factors become particularly relevant when operating EV on fixed routes at their upper technical boundary, 

with the goal of reaching an economic break-even.  

Considering the presented influence factors in the context of economic deployment from a technological 

point of view the maximum specific energy consumption even under the most challenging circumstances 

must be low enough to allow a full one way tour on a single battery charge. As the empirical results (cf. 

Fig. 3) and the simulation results (cf. Fig. 4) show a changing use of auxiliaries plays a significant role when 

it comes to variations in energy consumption on constant routes – even more so at lower average speeds. 

They can lead to a high variance between specific energy consumption in winter (represented by a high 

auxiliary energy demand) and milder temperatures. Therefore, the worst case assumption, the constant 

maximum energy demand of the auxiliaries, has to be taken as restriction limiting the maximum distance. In 

this context the TTW energy consumption is relevant variable, since the EV battery capacity sets the limit. 

The empirical and simulation results further suggest that the presented influencing factors have a direct effect 

on the point where EV deployment is most economical in comparison to ICEV. An intuitive approach would 

be to identify the point of the comparable highest relative energy efficiency. The values in Table 2 show 

energy consumption values measured by ADAC for identical vehicles with different means of propulsion. 

They indicate that the point of most comparable energy efficiency between EV and ICEV is not necessarily 

identical to the EV specific consumption minimum. It rather lies at low speeds on inner-city routes 

characterized by frequent starts and stops. The values in Table 2 however do not consider a variation in 

auxiliary energy demand. As the results of this field-test show, to provide a more comprehensive analysis, 

the variance in energy consumption based on the auxiliary demand must be taken into consideration. This is 

especially true for the effects of an additional energy demand for passenger cabin heating. For ICEV the 

required energy can be taken from the excess heat of the combustion process and is not increasing the total 

energy consumption. Therefore, from an economic point of view the realistic long-term average energy 

consumption including all relevant influencing factors has to be taken for EV ICEV comparison. Regarding 

the system boundary in this context the ICEV fuel consumption needs to be compared to the EV grid-to-

wheel (GTW) energy consumption, since this way also losses occurring in the charging process, which are 

hence payed for when charging the EV, are included. 

When considering the worst-case energy consumption as technological limitation for the one way distance 

and the realistic long-term average energy consumption as basis for economic valuation it can be deduced 

that the point of the highest comparable energy efficiency just based on the energy required for propulsion 

might not be the best for EV deployment when aiming for the fastest economic break-even. On the contrary 

the results indicate that deploying EV on constant routes profiles with higher average speeds accrues 

Table 2: Empiric TTW consumption EV & ICEV (Source: ADAC EcoTest Data base, last accessed 01.03.2016) 

 NEDC ADAC EcoTest    

  Average Average Inner-city Inter-urban Motorway   

Smart fortwo electric drive (55 kW) 15,1 19,0 13,2 17,1 26,8 [kWh/100km] 

Smart fortwo (gas, 52 kW) 4,1 5,1 5,5 4,5 6,3 [l/100km] 

Energy saving EV vs. ICEV1 57% 56% 72% 55% 50%  

VW e-up! (60 kW) 11,7 13,7 10,4 11,6 18,6 [kWh/100km] 

VW up! (gas, 55 kW) 4,7 5,5 5,9 4,1 6,4 [l/100km] 

Energy saving EV vs. ICEV1 71% 71% 79% 67% 66%  

VW e-Golf (85 kW) 12,7 18,2 12,7 16,3 25,1 [kWh/100km] 

VW Golf (diesel, 77 kW) 3,8 4,5 5,1 3,9 5,3 [l/100km] 

Energy saving EV vs. ICEV1 66% 59% 75% 57% 52%  

Nissan e-NV200 (80 kW) 16,5 21,8 11,5 21,8 32,4 [kWh/100km] 

Nissan NV200 (diesel, 81 kW) 5,5 6,2 6,3 5,0 8,0 [l/100km] 

Energy saving EV vs. ICEV1 69% 64% 81% 56% 59%   

1 neglecting the losses occurring during EV charging, which should be considered for an economic comparison 
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advantages that can redeem the lower comparable energy efficiency. The lower maximum specific energy 

consumption at full use of auxiliaries means that the EV can be deployed constantly on routes with longer 

one way distances. This increases the possible maximum annual mileage and hence the multiplier for 

reaching the economic break-even. As the values in Table 2 show the loss in relative efficiency between 

inner-city and inter-urban or even motorway route profiles is not high and the relative efficiency still lies 

above 50%. Therefore, increasing the annual mileage through longer one-way distances has the potential to 

more than compensate the losses in relative efficiency. When operating on a system with flexible EV 

deployment under predictable conditions the maximum energy consumption has only be considered under 

the current conditions and therefore the utilization of the economic potential could be increased further.  

Considering the research method, setting, and focus of this field-test, transferring the findings and 

conclusions into a broader context must be done cautiously. Several limitations can be identified that could 

be addressed in future research. The empirical results are limited to the two analyzed EV types and are 

restricted for deployment on constant routes with average speed ranges between 55 and 75 km/h. This 

especially limits the validity for the influence of speed variance, which should be investigated in detail for 

urban profiles. Also under these conditions with more frequent starts and stops and a potentially higher share 

of energy recuperation the driving style can also play a more significant role. Furthermore, the volatility of 

auxiliary use is based on the changes in German climate conditions throughout the year. In other climate 

zones these effects might be stronger or less relevant. Lastly, the results of this case study can only indicate 

a potentially different way of thinking about economic EV deployment when considering the current state of 

technology. No direct empirical comparison of ICEV and EV deployment under identical conditions over a 

longer time frame is presented. To verify the presented suggestions this should be done while varying the 

route profiles between inner-city and motorway and carefully considering the right energy measurement 

system boundaries.  
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When substituting conventional with electric vehicles (EV) a high annual mileage is desir-
able from an environmental as well as an economic perspective. However, there are still
significant technological limitations that need to be taken into consideration. This study
presents and discusses five different charging strategies for two mobility applications exe-
cuted during an early stage long-term field test from 2013 to 2015 in Germany, which main
objective was to increase the utilization within the existing technological restrictions.
During the field test seven EV drove more than 450,000 km. For four out of five presented
charging strategies the inclusion of DC fast charging is indispensable. Based on the empir-
ical evidence five key performance indicators (KPI) are developed. These indicators give
recommendations to economically deploy EV in commercial fleets. The results demon-
strate that the more predictable the underlying mobility demand and the more technical
information is available the better the charging strategies can be defined. Furthermore,
the results indicate that a prudent mix of conventional and DC fast charging allows a high
annual mileage while at the same time limiting avoidable harmful effects on the battery.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The electrification seems to be a very promising way to cut future CO2 emissions from road transport (Creutzig et al.,
2015). This is especially true if the underlying electricity demand of electric vehicles (EV) is generated by carbon-free energy
resources (such as wind or solar energy) (Ensslen et al., 2017; Jochem et al., 2015; Sohnen et al., 2015). Furthermore, EV show
potential to reduce the oil dependency of western societies and decrease local emissions in urban areas, i.e. noise and local
air pollutants such as SOx, particle matters, CO and NOx (Jochem et al., 2016). Concerning both aspects, a high life-time mile-
age is desirable to fully utilize the EV emission saving potential (Stella et al., 2015).

However, EV are still a new technology and therefore face some hurdles that are currently limiting their market success
considerably (Ensslen et al., 2014). Two of those hurdles are the limited range of current vehicles (about 150 km) and their
purchase prices that are considerably higher than the ones of their internal combustion engine driven counterparts (ICEV)
(Dumortier et al., 2015). In commercial transport both limitations are easier to overcome than for private passenger car
applications (Ketelaer et al., 2014). This is mainly due to the fact that for many applications trips are more predictable, single
trips above the maximum range are more easily replaced by conventional cars, and the high purchase price of EV can be
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negated by the higher annual mileage of commercial cars due to the lower variable costs of EV operation compared to ICEV
(Bickert et al., 2015; Gnann et al., 2012; Plötz et al., 2015; Sierzchula, 2014).

Therefore, for environmental as well as economic motives the aim of this study is to increase the number of trips and
hence the annual mileage of EV in commercial fleets. One essential part is the development of specific charging strategies
that allow a high operating grade. These include the usage of fast charging infrastructure in order to show an economic
advantageous application of current EV compared to conventional vehicles in an empirical field test (a detailed description
of the research aim can be found in Section 2.4). The field test with several cross-border commuters from Alsace (France) to
Karlsruhe (Germany) lasted from early 2013 till the end of 2015. The research project behind was comprised of two different
user groups: the first were fixed car-pooling commuter groups that travelled on average 75 km one-way from their homes in
France to work in Germany; the second were employees on business trips during the day between two plant sites around
70 km apart, one in Germany and one in France. The EV were equipped with data loggers tracking battery as well as GPS
data to allow a detailed technological and economic analysis.

The article is structured as follows: the second section provides an overview of the existing literature focusing on charg-
ing strategies, economic reasons as well as limitations of fast charging. It illustrates the gap in the literature and states the
underlying research aim. The third section introduces the research project RheinMobil and the method by explaining the
research design, setting and data collection. The fourth section is divided into five subsections; each describes and analyzes
a different charging strategy that was implemented for the two mobility applications. The fifth section discusses the pre-
sented strategies in reference to the literature and introduces key performance indicators (KPI) for comparison. It also
includes a small Total Cost of Ownership (TCO) analysis as well as a discussion of the technological implications. The last
section concludes by summarizing the results, outlining the limitations and suggesting topics for future research.
2. Literature review

There are two main perspectives in the literature on the impacts of charging EV. One comprehensive focus deals with the
impact on the electricity system (1) and the second focus considers the impact on the vehicle and the battery (2). There are
several dimensions for focus (1). Some studies take a macroscopic point of view by looking at the impact on the electricity
load and the resulting implications on the power plant portfolio and electricity grid (Babrowski et al., 2014; Camus et al.,
2011; Dharmakeerthi et al., 2014; Hadley and Tsvetkova, 2009; Hahn et al., 2013; Harris and Webber, 2014; Jansen et al.,
2010), another emphasis is on additional emissions caused by electricity generation based on the timely distribution of
charging (Bickert et al., 2015; Donateo et al., 2015; Ensslen et al., 2017; Jochem et al., 2015; Khoo et al., 2014; Muneer
et al., 2015; Rangaraju et al., 2015; Sohnen et al., 2015; Thompson et al., 2011), still others aim on maximizing the input from
(local) renewable energies (Atia and Yamada, 2015; Kier and Weber, 2015; Pantoš, 2011; Škugor and Deur, 2015; Wu et al.,
2016). These topics are sometimes connected to different charging technologies such as controlled charging or even vehicle-
to-grid (V2G) systems, providing virtual energy storage for grid services in the local electricity system (Bishop et al., 2016;
Kristoffersen et al., 2011; Tomić and Kempton, 2007). The second focus (2) is on vehicles and their batteries. Previous studies
investigate the development of an optimized charging strategy from an EV perspective considering factors such as the state
of health (SOH) of the battery, cost optimized charging, including V2G, and parking time (Bashash et al., 2011; Neubauer
et al., 2012). Other studies go even more into battery-related technical details by evaluating the charging and discharging
behavior of the battery packs or even of individual cells (Kim et al., 2014; Onda et al., 2006; Rahimian et al., 2011).
2.1. Charging strategies for EV

The understanding of the term charging strategy presented in this study differs from the one commonly used in the lit-
erature. In previous studies ‘‘charging strategy” is mostly applied in terms of timing the charging event (from an electricity
grid perspective). Three options are mainly discussed: instant charging (uncontrolled charging), controlled charging (load
and time), and V2G. The idea of controlled charging mainly focuses on avoiding load peaks and improving the electricity
market efficiency by offering load shift potentials (flexibilization of electricity demand/demand response) (Axsen et al.,
2011; Babrowski et al., 2014; Kang and Recker, 2009). Some studies analyze the real charging behavior of EV users in the
context of timing, distribution, and type of charging (Khoo et al., 2014; Sun et al., 2015a, 2015b). Other ‘‘charging strategies”
focus on sustaining a high SOH of the battery (Lunz et al., 2012). Our perspective starts from a mobility application that is
focused on increasing the annual mileage of EV in order to replace mileage of ICEV. Therefore, not only the time and power of
charging, but also the location is highly relevant.

Currently, many authors assume that charging takes place at home, at work or at other public electric vehicle supply
equipment (EVSE) (Axsen et al., 2011; Neubauer et al., 2012; Speidel and Bräunl, 2014). The configuration of the EVSE varies
between locations and countries depending on charging power, grid connections, and other technological standards (Azadfar
et al., 2015). Previous research suggests that for first-time EV users, home charging is most convenient and most probable –
especially for households in rural areas, in suburbs or for people with access to city parking garages. However, charging at
work or in public is also seen as realistic. Consequently recharging at work or public places leads to less demand for charging
at home (Kang and Recker, 2009; Neubauer et al., 2012).
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Developing a suitable charging strategy is highly dependent on the ratio of driving to parking time and the constraints set
by customers, EV and the grid (Hahn et al., 2013). Lunz et al. (2012) suggest the following order of priorities: first, the vehicle
owner’s interest, second, grid stability, and as third priority grid support. The vehicle owner’s interest is a combination of
ensuring that the EV meets the personal mobility needs combined with economic aspects such as sustaining the battery
SOH as well as personal attitude and further interests (Graham-Rowe et al., 2012). Concerning the ratio of driving to parking
time many studies of conventional driving patterns or EV user behavior indicate that particularly privately used EV are not in
use most of the time and are therefore available for charging; in average more than 22 h per day (Guille and Gross, 2009), or
80–96% of their lifetime (Camus et al., 2011; Lunz et al., 2012; Speidel and Bräunl, 2014). The EV spend more time than tech-
nologically required for the charging process at the EVSE (Speidel and Bräunl, 2014), and the charging time therefore has in
average little impact on the EV feasibility (Greaves et al., 2014).
2.2. Economic advantages and reasons for fast charging

The high production costs of EV at the time of the field test in 2013, which were essentially the consequence of high bat-
tery prices (Plötz et al., 2013), have motivated research effort to identify and quantify potential savings in EV operations. In
the context of charging some propose that potential economical savings lie in the use of V2G load shifting potentials during
parking time. Simulations based on real driving patterns, different dynamic tariffs, and electricity market prices show that
the potential cost reductions through controlled charging and V2G might reduce the TCO of EV in the future (Bunce et al.,
2014; Dallinger et al., 2011; Ensslen et al., 2014). Even though commercial applications of EV seem to be more convenient
there are only a few studies in this field, especially with empirical EV data (Kier and Weber, 2015; Škugor and Deur, 2015;
Tomić and Kempton, 2007). In terms of driving patterns, Robinson et al. (2013) show in their investigation of over 30,000 EV
trips that commercially used pool vehicles have the highest amount of daily trips, but also the shortest trips on average. This
underlines the technical and economic potential for EV in commercial fleets.

Besides using potential savings through controlled charging, maximizing the availability and durability of the EV, to
achieve a high annual as well as lifetime mileage might increase the competitiveness of commercial EV for some applica-
tions. The lower variable costs (fuel costs per km) (Alexander and Davis, 2013; Linssen et al., 2012; Plötz et al., 2013) are
mainly based on the higher efficiency of EV and the spread of fuel and electricity prices, which differ considerably between
countries (cf. Table 1). In some countries, e.g. Norway, the benefits amount to 15 Euro-Ct/km. Furthermore, the costs for
maintenance are seen to be 50–60% lower compared to ICEV (Alexander and Davis, 2013; Richter and Lindenberger,
2010). However, due to limited long time experience there is still a high uncertainty in the real maintenance costs of EV.

One way to increase the availability of EV is the implementation of fast charging. Fast charging in the context of this paper
is defined as C-rates of 1 C or higher. The C-rate stands for the relation of the applied charging current to the battery cell’s
capacity: e.g., for battery cells with a capacity of 40 Ah a charging current of 120 A means a C-rate of 3. According to IEC
61851-1 there are three different charging modes that are able to deliver charging power that goes beyond the standard
single-phased outlet, which in Germany has a maximum charging power of max. 3.7 kW (one phase 16 A/230 V). In Germany
two of them are used for passenger cars. In mode 3 the EV is charged with alternating current (AC). For passenger cars this is
usually limited to 22 kW (three phases 32 A/400 V) charging power. In mode 4 the EV is charged with direct current (DC),
allowing maximum charging currents of up to 400 A. Besides some exceptions, the few in 2013 available EV that were
equipped with DC charging technology allowed a maximum charging power of 50 kW. For EV with battery capacities around
20 kWh (at that time most common in the market), AC charging with 22 kW leads to a charging rate of around 1 C, and 2 C
for 50 kW DC charging. As a result a complete recharge would take 1 h or 30 min respectively (Bashash et al., 2011). Disad-
vantages of fast charging are the significant increase of investment for the EVSE (Neubauer et al., 2012), as well as the stron-
ger impact and stress placed on the battery cells, which could harm them in the long run.
2.3. Challenges of fast charging for the Li-ion battery

One of the major problems at higher C-rates is the increased likeliness of lithium plating occurring on the anode. Plated
lithium can destroy the separator resulting in short circuits and possible thermal runaways. Several studies have been
reported dealing with these effects (Chandrasekaran, 2014; Kim et al., 2011, 2014; Offer et al., 2012; Onda et al., 2006;
Vetter et al., 2005).

Fast charging also increases ageing effects depending on various battery conditions. Battery degradation can have many
causes, some of the key factors are the depth of discharge (DOD) and temperature (Fernández et al., 2013). At high and low
SOC, due to chemical effects and secondary reactions, high currents stress cells more than in the mid SOC range (Agubra and
Fergus, 2013; Broussely et al., 2005; Ecker et al., 2012; Vetter et al., 2005). Furthermore, high SOC is far worse for battery
health than cycling (Lunz et al., 2012; Vetter et al., 2005). Too high or too low temperatures can also harm the cells (critical
values depend on the cell chemistry and set-up). Higher charging currents lead to measurably higher local heating, which
can result in a departure from the temperature range for ideal performance. A detailed explanation of ageing is beyond
the scope of this article, but the potentially harmful effects underline the limitations and consequences of using fast charging
to increase EV availability.
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Table 1
Fuel costs for EV and ICEV in selected countries for 2013 (based on data from Dudenhöffer et al. (2014), IEA (2014), OECD (2015), and Wagner (2014)).

Variable cost (EV, Industry) [Euro-Ct/km] Variable cost (EV, Household) [Euro-Ct/km] Fuel costs (ICEV, gasoline) [Euro-Ct/km]

Canada 1.347 1.599 8.580
China 1.309 1.686 8.905
France 1.899 2.913 12.415
Germany 2.551 5.840 12.740
India 1.515 1.667 8.125
Japan 2.958 4.112 13.000
Norway 1.101 2.379 16.445
US 1.033 1.836 6.305
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Even though fast charging is potentially harming the SOH of the battery, the time-limiting requirement by vehicles users
is a serious challenge for the deployment of EV. Therefore, the US government has gone as far as setting 6 C as an objective
for future charging standards (Chandrasekaran, 2014).

2.4. Research aim

From the ecological as well as the economic point of view, a high annual EV mileage, resulting in emission and potential
cost savings, is desirable when substituting ICEV with EV. On the other hand, there are the above-mentioned technological
limitations that need to be taken into consideration. Therefore, this study proposes conceptual suggestions and provides
empirical evidence from a long-term field test in Germany of how charging strategies for EV that enable a high annual mile-
age under the technological restrictions can be implemented, assessed, and optimized based on different KPI. The concepts
developed and conclusions drawn are based on real charging and mobility data as well as experience gathered in the devel-
opment and execution of five different charging strategies in two mobility applications.
3. Research method and data

In order to answer the proposed research questions this paper takes a holistic experimental research approach, analyzing
the development and application of different charging strategies according to their operational implications in two commer-
cial applications. The field test was part of the research project RheinMobil, which itself was part of a greater publicly sub-
sidized initiative financed by three different German Federal Ministries (Transport, Economics, and Research). RheinMobil
itself was financially supported by the Federal Ministry of Transport and Digital infrastructure, which took no influence
on the study design, data collection, analysis and interpretation of data. Its main objective was to demonstrate how EV
are able to technologically and economically substitute ICEV and to maximize environmental benefits in commercial day-
to-day operations: commuting and business trips (Stella et al., 2015). For this reason, three companies and two research
institutions launched the project together in 2013. In order to demonstrate an economical application of EV, the annual mile-
age should be high enough to compensate for the higher investment in purchasing the car. Accordingly, one key part of
RheinMobil was the development and adaption of charging strategies that enable these high annual mileages and allow
to prove the reliability of EV components under stringent conditions.

3.1. Research setting

RheinMobil focused on two different mobility applications: the commuting of car-pooling shift workers and internal busi-
ness trips of employees between two plant sites. The two applications were selected according to a distinctive set of
conditions:

� Firstly, the deployment and routing of the vehicles is constant.
� Secondly, the distance of a one-way trip does not exceed the realistic maximum range of the EV.
� Thirdly, short recharging cycles allow for more than one or two trips per day on the selected routes.

Fulfilling these criteria ensures on the one hand that the EV offer an adequate range for the selected application, and on
the other hand that, due to the high mobility demand on the route, a high operating grade and therefore mileage per year can
be achieved. For both reasons it is essential that the routes travelled remain more or less constant and that the frequencies of
use and charging time are almost completely predictable.

In the first mobility application, the commuting of shift workers in established car-pool groups provides a sensible appli-
cation for an economically feasible e-mobility transport solution. Different studies have already identified the high potential
of EV for commuting (Brunnert, 2012; Linssen et al., 2012; Richter and Lindenberger, 2010; Tomić and Kempton, 2007). Our
application fulfills the criteria of fixed travel times and routes: the groups leave and arrive at regular times based on the shift
schedule and they keep to their usual commuting routes. Furthermore, all parking places are equipped with EVSE and the
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commuting distances are rather long, on average 75 km one-way (cf. Table 2). This leads to an annual mileage for a single
shift worker of about 36,000 km.

In the second mobility application, the business trips of employees between two production sites, not all of our set criteria
are met. Trips are in this case less predictable, the user groups change and also the time of use varies. This creates uncer-
tainty for charging times. Nevertheless, the route remains (more or less) constant and distances are similar, on average
70 km. One single trip per workday leads to an annual mileage of about 34,000 km.

All EV in the project were chosen according to technological and user specific requirements of the two applications. The
first main condition was that batteries had to have sufficient capacity to ensure that even under restrictive conditions such as
cold temperatures the EV would still be able to travel at least one way without the need of recharging. The second main con-
dition was DC fast charging. In Germany at the starting time of the project, in 2013, the only available technology for DC fast
charging (mode 4) was with the CHAdeMO system with a charging rate of up to 50 kW. Besides the sufficient range and
option to fast charge, the EV were also selected according to the installed cell technology. The battery cells needed enough
cycle stability under the planned fast charging conditions to sufficiently allow the proposed intensive use of fast charging
without quickly showing significant capacity losses. In addition to the technological requirements the EV needed to fit
the demands of the travelers concerning size and comfort. Since the commuters travelled in groups of up to seven people
and the employees on business trips were travelling in groups of one to four people the EV had to have at least that amount
of seats (cf. Table 2). The only two EV that were fulfilling these conditions and were available in Germany in early 2013 were
the e-Wolf Delta 2 and the updated EVO-version for the commuters and the Nissan Leaf for the business trips. In total seven
EV were deployed in the field test. The detailed technological data for both EV can be found in Table 3.

Besides the differences listed in Table 2, the applications can be distinguished from each other by their different require-
ments on charging technology. Similar to the EV, the conductive charging infrastructure was selected according to the tech-
nological requirements set by the two different mobility applications. In the case of commuting, EV can be deployed without
the necessity of fast charging EVSE. Both time spans at home and at work are sufficient for conventional full charging cycles.
However, during the field test it became necessary to install a fast charging station at the plant site in order to create the
potential to increase the annual mileage significantly (c.f. Table 4).1 This goes hand in hand with a developed car sharing prin-
ciple between all commuting groups, which is described in Section 4.1 below. For the business trips between the two plant sites
the time span is heterogeneous and mostly not sufficient for conventional charging; in particular, usual meetings with durations
of less than two hours do not mesh with the conventional charging technology. Accordingly, on both ends DC fast charging EVSE
was installed right from the beginning (c.f. Table 4).
3.2. Data collection

During the field test the EV were equipped with data loggers. The e-Wolf Delta 2 data loggers (VIKMOTE VX 20, Vikinge-
gaarden) were connected directly to the CAN-bus of the vehicle and constantly send their data via UMTS to the online server
data base. With timely equidistant data points, the following vehicle and GPS data was recorded: date and time, voltage in
the 12 V-battery, voltage in the low voltage-circuit, several parameters of the high-voltage-battery, such as voltage, mean
cell voltage, battery current, medium cell temperature, and SOC, as well as remaining range, speed and odometer based
on axis turning, GPS height, GPS odometer, GPS speed, GPS position latitude and longitude, and address according to GPS.
The data can be ascribed to the individual cars and user groups. The data logger was active while the ignition was switched
on as well as during charging processes. For the data collection of the Nissan Leaf two different approaches were taken.
Mainly a conventional online platform provided by the OEM to review the energy consumption and operation of the EV
was used. This database shows the current SOC, the remaining range, and whether the vehicle is currently charged or
not. Additionally, it lists historical data such as trips made, distances travelled, energy consumed by the engine, energy con-
sumed by the auxiliaries, energy recuperated through regenerative breaking and travel time. To record the charging curves
as well as to assess the accuracy of the online data for a five-month period an extra data logger directly connected via Blue-
tooth to the EVs on-board diagnostic system (OBD) was installed. This allowed detailed access to a wide range of additional
data, e.g. battery currents, voltages, temperatures, SOC, SOH, charging status as well as GPS data. From early 2013 to the end
of 2015, over 450,000 km of fully electrically driven mileage as well as over 5000 conventional and 650 DC fast charging
events were logged.
4. Charging strategies for an economical application of electric commercial cars

In the following we present and evaluate five different charging strategies, which allow a significant increase of the EV
operating grade. The first three (1.1–1.3) refer to the commuting application: the first solely relying on conventional AC
charging, the other two including DC fast charging for achieving a higher annual mileage. The remaining two charging strate-
gies (2.1 and 2.2) belong to the business trip application.
1 Since the e-Wolf EV had a board voltage above 600 V, for which both DC-fast standard charging plugs CHAdeMO and CCS are not certified, e-Wolf built a
special charging station, which worked on the open source CHAdeMO protocol, but used the Harting plug, which comes from railway technology and is certified
up to 1000 V.

71



Table 2
Overview of the two selected mobility applications.

Application 1: Commuting of car-pooling shift workers Application 2: Business trips between sites

User group Employees in shift production All employees
User per EV 5–7 people 1–4 people
Fixed user group Yes, fixed group(s) per EV No, changing each trip
Time of use Around the clock, 7 days a week 7 am to 8 pm, 5 days a week
One-way distance 75 km 70 km
Average speed 55 km/h 71 km/h
EV 3 e-Wolf Delta 2, 3 e-Wolf Delta 2 (EVO) 1 Nissan Leaf
Charging locations Home and at work Both plant sites
Charging infrastructure 12 standard outlets (max. 3.7 kW) 1 standard outlet (max. 3.7 kW)

1 e-Wolf CHAdeMO (max. 30 kW) 2 S CHAdeMO (max. 50 kW)

Table 3
Technological data of the applied EV.

Technical data e-Wolf Delta 2 e-Wolf Delta 2 EVO Nissan Leaf

Number of deployed EV 3 3 1
Traction battery capacity (nominal) 24.2 kWh 32 kWh 24 kWh
Traction battery voltage (max.) 720 V 720 V 360 V
Cell technology Li-ion NMC Li-ion NMC Li-ion LMO-NCA
Energy consumption (NEDC) 187 Wh/km 200 Wh/km 173Wh/km
Maximum range (NEDC) 154 km 165 km 175 km
Peak performance 90 kW 90 kW 80 kW
Cabin heating Bio-Diesel Bio-Diesel HV-Battery
Vehicle mass (empty) 1666 kg 1650 kg 1525 kg
AC charging power (nominal) 2.6 kW 2.5 kW 2.3 kW
AC plug type Type 2 (EN 62196-2) Type 2 (EN 62196-2) Type 1 (SEA J1772)
AC charging mode Mode 1 Mode 1 Mode 2
DC charging power Up to 30 kW Up to 30 kW Up to 50 kW
DC communication protocol CHAdeMO CHAdeMO CHAdeMO
DC plug type Harting Harting CHAdeMO
Data logger On-board CAN and GPS Logger On-board CAN and GPS Logger Online overview, On-board OBD and GPS

Table 4
Technical parameters of fast charging EVSE installed in the project.

e-Wolf EW-DC-30 Siemens CP3000

Input voltage 3-phased 340–460 V AC 3-phased 400 V AC
Input current 64 A 80 A
Efficiency <95.5% <94%
Output voltage 500–700 V DC 50–500 V DC
Output current Max. 50 A Max. 120 A
Output power Max. 30 kW Max. 50 kW
Plug type Harting CHAdeMO
Communication protocol CHAdeMO CHAdeMO
DC charging mode Mode 4 (IEC 61851-1) Mode 4 (IEC 61851-1)
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4.1. Charging strategies for commuting shift workers

The three charging strategies applied for the commuting case can be directly connected to the premises set by the shift
schedule as well as the travelling routes and times. In the current shift system, the car-sharing groups leave their home
roughly two hours before the start of the shift, drive about 75 km to the plant and pick up colleagues on the way. They arrive
about 30 min before the start of the shift at 6 am, 2 pm, or 10 pm. Each shift lasts 8 h and after the shift they immediately
start their journey back to their homes where they arrive about one and a half hours later. Each new charging strategy rep-
resents an increase in the possible annual mileage.
4.1.1. Strategy 1.1: Relying on conventional charging (mode 2) only for one user group per EV
The first charging strategy was developed based on the technological data of the charging processes (mode 2), the energy

consumption of the EV and the shift schedule of one commuter group. With 8.5 h at work and 12.5 h at home available for
recharging (cf. Fig. 1) and an effective measured power after considering charging losses of around 2.30 or 2.19 kW respec-
tively (c.f. Fig. 2 and Table 5), the theoretical maximum energy that can be recharged at work is about 18.7 kWh and
27.5 kWh at home. With a measured average energy consumption of about 230 Wh/km (NEDC is 187/200Wh/km, c.f.
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Fig. 1. Illustration of the commuting charging strategy 1.1.

Fig. 2. Conventional AC charging curves of the e-Wolf Delta 2 and Delta 2 EVO.
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Table 3) the maximum distance that can be covered by a recharge at work is about 81 km. The average distance of a one-way
journey lies at around 75 km and the energy consumption therefore is 17.25 kWh, which requires about 8 h of recharge.
Accordingly, for each EV deployed one conventional charging point is required on each end of the route. The calculations
show that during the working shift almost the whole time is required for charging. At home only around 2/3 of the available
time is needed for charging. With this charging strategy an annual mileage around 36,000 km a year can reached. Based on
the average distance of 75 km the total charging time is about 16 h (66.7%), the total driving time is 3 h (12.5%), and finally
the idle time equals 5 h (20.8%). The complexity for the vehicles users of this strategy is very simple since it did not involve
switching EV or using different charging technologies.

4.1.2. Strategy 1.2: Using fast charging to enable three or four user groups to share two EV
In order to increase the annual mileage, it becomes necessary to assign more than one commuter group to each EV. Based

on the shift schedule, three or four groups that work different shifts are required to share two EV amongst them. While the
travel distances and the time for recharging at the plant remain constant, the time available for recharging at home changes:
once a group arrives at home another group uses the EV to get to their next shift. The available charging time is reduced to
4.5 h. Fig. 3 illustrates the strategy 1.2 by showing the driving and charging schedule over three days for one EV and three
user groups.

The shorter available charging time at home requires the installation of DC fast charging at the plant site. Calculating with
an effective conventional AC charging rate of 2.19 kW (cf. Fig. 2) and the energy consumption of about 17.25 kWh per trip, it
becomes obvious that the reduced charging time at home, in which only about 9.9 kWh can be recharged, is insufficient. As
can be seen in Fig. 4 both the Delta 2 and Delta 2 EVO cannot constantly operate under these requirements. While the Delta 2
can accomplish only one round-trip, the Delta 2 EVO comes to an end after three round-trips. Only the fast charging infras-
tructure at the plant site allows sustainable operation of this strategy.

Based on the charging power and duration of the DC fast charging process as well as the energy consumption of the EV the
charging strategy 1.2 was elaborated (cf. Fig. 3). The reduced charging time of 4.5 h is compensated by the use of fast charg-
Table 5
Data conventional AC charging curves of the e-Wolf Delta 2 and Delta 2 EVO.

e-Wolf Delta 2 e-Wolf Delta 2 EVO

SOC span 0–100% 0–100%
Charging time for a full recharge [h] 11.78 15.60
Max. effective charging power at outlet [kW] 2.58 2.50
Max. effective battery charging power [kW] 2.30 2.19
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Fig. 3. Illustration of the commuting charging strategy 1.2.

Fig. 4. Development of SOC for strategy 1.2 with and without DC fast charging station.
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ing at the plant. With the maximum effective charging power of about 26 kW and a maximum time of 2.5 h for a full
recharge (c.f. Fig. 5 and Table 6) the parking time at the plant is more than sufficient. Therefore, the time lacking for recharg-
ing at home can be more than compensated through DC fast charging at work. In this strategy the Delta 2 EVO’s battery
capacity of 32 kWh is sufficient to ensure that there is enough energy remaining for the way to the plant, including a satis-
factory additional energy reserve. This operation schedule leads to an annual mileage of between 54,000 km (for three
groups sharing two cars) and 72,000 km (for four groups sharing two cars) per EV. The total charging time is either 13.5 h
(56.25%, day 1) or 7.5 h (31.25%, day 2). The total driving time per day is constant with 4.5 h (18.75%). In the remaining 6
or 12 h the EV is neither being charged nor used, respectively. The number of conventional and fast charging events is dif-
ferent for the two days. During day one, two fast and only one conventional charging events are started; on day two, two
conventional and one fast charging event take place, on average 1.5 per day. Even though on average the number of charging
events is equal, distinctly more energy is effectively recharged through fast charging. In 1.5 charging events 36.9 kWh are
recharged by DC charging and only 14.84 kWh through conventional charging. All the groups using the EV have to work
in different shifts as can be seen comparing day 1 and day 2 in Fig. 3. Hence for the two EV shared by the three or four com-
muting groups only one fast charging outlet is required.

4.1.3. Strategy 1.3: Using fast charging to enable three or four user groups to share one EV
Charging strategy 1.3 provides the opportunity to increase the annual mileage of the EV even further. The underlying

model allows three of four different shift groups to continually share one EV as follows: (i) the first group drives to work,
arrive about 30 min before the start, and immediately charge the EV; (ii) the second group leaves the plant 30 min later
and travels back home, where the EV has 4.5 h for recharging until (iii) the third group takes it to drive to the plant and after
a recharge of 30 min hands it over again to the first group, and so on. Fig. 6 illustrates an EV on two consecutive days
deployed in this model.

Under the field test conditions strategy 1.3 could not be implemented. The idea of this strategy was developed before the
start of the project. With an average distance of 75 km per journey, an average energy consumption of 230Wh/km, and
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Fig. 5. DC fast charging curve of the e-Wolf Delta 2 EVO.
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charging times of 0.5 or 4.5 h respectively the model proved unsustainable. As can be seen in Fig. 7, after the second recharge
at home the energy stored in the battery is insufficient to drive the EV back to the plant.

Reducing the average commuting distance can make the charging strategy and the underlying occupancy model sustain-
able. Reducing the average distance has two positive effects. Firstly, the shorter distance reduces the energy consumption per
trip. Only 11.5 kWh are required for a 50 km journey. Secondly, a shorter distance also reduces the travelling time from 1.5 to
1 h and therefore enhances the available time span for recharging at home from 4.5 to 5.5 h (cf. Fig. 6).

At an average distance of 50 km the charging strategy 1.3 becomes sustainable. The required energy per trip of 11.5 kWh
can be charged conventionally at home, where the maximum recharge in 5.5 h is 12.1 kWh, and at work, where the maxi-
mum recharge in the 30 min is 13.5 kWh. Due to the fact that the DC fast charging power is significantly reduced at high SOC
(cf. Fig. 5) the charging status of the EV never again reaches 100% SOC. After a few trips the process with its fixed time slots
for charging stabilizes by utilizing the higher available DC charging power. Then the SOC range lies between 51%
(16.34 kWh) and 89% (28.44 kWh) (cf. Fig. 7). This way of deployment leads to an annual mileage of around 100,000 km.
The total charging time per day is 18 h (75%) and total driving time 6 h (25%) respectively. For this strategy the number
of fast and conventional charging events started per day is 3 each. In these 36.3 kWh is charged conventionally and
32.7 kWh is recharged through DC fast charging. Since all the groups participating have to work in different shifts, again
one DC fast charging EVSE is required.
4.2. Charging strategies for business trips between plants

For the business trips application there was no fixed schedule available to fit the charging strategy to. The groups consist
of up to four people which travel between the two plant sites that lie 70 km apart (cf. Table 2). For these trips the EV was
accessible from 8 am until 8 pm. The available time for charging on both ends could only be estimated with an average dura-
tion of 2 h, i.e., the average duration of one meeting or the time frame between the arrival of one group and the departure of
the next.
4.2.1. Strategy 2.1: Solely relying on fast charging
Strategy 2.1 was developed by taking into account the technological data of the charging process, the energy consump-

tion, and the required availability. A complete AC charge (mode 2) lasts up to 10 h. The effective charging power measured at
the outlet is about 2.3 kW, and the effective charging power of the battery is 2.1 kW (cf. Fig. 9 and Table 7). With the avail-
able charging times during the day of about two hours between trips, the conventional 2.1 kW charging does not provide a
sustainable solution for this strategy. Hence, at both plant sites the installed DC fast charging EVSE with 50 kW peak charging
power was used. However due to local grid limitations the charging power in France was limited to 20 kW. Under ideal con-
ditions the 50 kW fast charging process is ended by the Nissan Leaf’s battery management system (BMS) after reaching
around 90% SOC at about 30 min. Independent from the charging power and the SOC level, the DC fast charging process
is ended by this vehicle’s BMS after one hour latest. In both cases a manual restart is possible (cf. Fig. 10 and Table 8).
Table 6
Data DC fast charging curve of the e-Wolf Delta 2 EVO.

e-Wolf Delta 2 EVO

SOC span 0–100%
Charging time for a full recharge [h] 2.30
Max. effective charging power at outlet [kW] 30.00
Max. effective battery charging power [kW] 26.04
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Fig. 6. Illustration of the commuting charging strategy 1.3 (distance 50 km).

Fig. 7. Development of SOC for strategy 1.3 for 75 and 50 km average distance.
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Fig. 8 illustrates the strategy’s timeline for two example days, the first with one and the second with two trips and retours
per day. By doing 1.5 trips on average per day, which was roughly the number of total trips before the deployment of the EV,
the result would be an annual mileage of around 50,000 km. With one hour per tour, one hour (20 kW) in France and 30 min
(50 kW) in Germany per charge, this leads on average to three hours of driving, 2.25 h of charging, and 18.75 h of idle time
per day (cf. Fig. 8).

During operation two problems occurred with this charging strategy. Both can directly be linked to the exclusive use of
DC fast charging and the fact that this vehicle version’s BMS automatically limits the fast charging process to one hour latest
(cf. Fig. 10). The first problem was the fading of the battery’s capacity: after only about 4000 km the vehicle’s SOH display
indicated a considerable decrease. The reason identified for this fast capacity fade was the missing passive balancing of the
individual battery cells’ voltage. The passive balancing process takes time; since the charging process is ended by the EV after
one hour at the latest, there was no time for passive balancing of the battery. The second problem with the autonomous
switch-off was an insufficient charging level. Due to SOH considerations depending on the temperature the charging power
is automatically reduced by the BMS. The forced switch-off after one hour lead in extreme situations to an insufficient SOC to
ensure a safe journey back. Based on these problems with the execution of charging strategy 2.1, strategy 2.2 was set up.
Fig. 8. Illustration of the business trip charging strategy 2.1.
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Fig. 9. Conventional AC charging curve of the Nissan Leaf.
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4.2.2. Strategy 2.2: Relying on fast charging for the day and conventional charging (mode 2) at night
Charging strategy 2.2 includes not only fast charging during the day, but also conventional AC charging overnight (cf.

Fig. 11). This addresses both problems that occurred in strategy 2.1: the conventional charging overnight provides more than
enough time for passive balancing voltage levels of battery cells. After the introduction of overnight conventional AC charg-
ing, the SOH remained constantly at the reset level. The AC charging also allows preconditioning of the EV. The Nissan Leaf
can be heated or cooled before use in the morning by energy taken directly from the power grid, which in turn increases the
range of the vehicle. The new charging strategy ensures that even under low temperatures all the requirements concerning
functionality and availability are met, while at the same time protecting the SOH. In this charging strategy the average time
of driving and fast charging per day remains constant at 3 or 2.25 h respectively. However, about 12 out of the remaining
18.75 h are now used for recharging, balancing, and preconditioning.

5. Discussion

The outcomes of this field test provide evidence for an ecologically and economic sensible application of EV. Furthermore,
they support previous findings and claimed concepts, but also provide new insights and conceptual suggestions for the opti-
mal outlay of EV charging strategies for a predetermined mobility application. The presented charging strategies are based
on three types of input factors originating from the charging processes, the deployed EV, and the mobility applications.

Contrary to most studies investigating charging behavior and strategies, for the five presented strategies the charging
places and times are predetermined by the underlying application. The charging points considered (at plant sites and at pri-
vate homes) concur with current empirical research studies, which show that most EV are charged at home and at work;
public charging plays a less important role (Robinson et al., 2013; Skippon and Garwood, 2011).

In the literature, the main distinction with regard to the timing of charging relates to the electricity market. Therefore, the
start of the charging process relative to the arrival and the time of day are focused on. With all five presented strategies,
which try to maximize the annual mileage, there was significantly less flexibility in timing of the charging process compared
to most other applications (Franke and Krems, 2013; Robinson et al., 2013). Considering the distribution of charging events
during the day, the commuter strategies lead to an almost even distribution due to the 24 h rolling shift schedule. For the
business trips most charging events happen during the day, which on a greater scale would mean putting additional elec-
tricity demand on the grid during peak times.

5.1. Key performance indicators to assess and compare EV charging strategies

To our knowledge the analysis of charging strategies at this level of detail is new in current literature. To characterize and
compare the five different charging strategies it became clear that using only the ratio of driving time to parking time as can
be found in other studies (Camus et al., 2011; Lunz et al., 2012; Speidel and Bräunl, 2014) was insufficient. Therefore, this
study proposes five KPI using different technical dimensions: the average daily distance travelled, the average idle time
Table 7
Data conventional AC charging curve of the Nissan Leaf.

Nissan Leaf

SOC span 0–100%
Charging time for a full recharge [h] 10.26
Max. effective charging power at outlet [kW] 2.32
Max. effective battery charging power [kW] 2.10
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Fig. 10. DC fast charging curves of the Nissan Leaf.
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per day, the average ratio of driving to charging hours per day, the average ratio of fast to conventional charging events per
day, and the average ratio of energy charged through fast and conventional charging per day.

The comparison of these key indicators amongst the five strategies illustrates the individual advantages and shortcomings
(cf. Table 9). The increase in the daily distance travelled between the commuting strategies 1.1, 1.2, and 1.3 does not lead to a
constant reduction of idle time. On the contrary, due to the introduction of fast charging, the average idle time actually
almost doubles from 5 to 9 h in strategy 1.2. However, in strategy 1.3 the EV virtually have no idle time. Between 1.2 and
1.3 even though the daily distance covered increases by almost 50% and the number of charging events increases from 3
to 6, due to a more balanced charging distribution the ratio of driving to charging time decreases and less energy is recharged
through fast charging in total as well as relative to the amount conventionally charged. The highest amount of idle time and
the highest ratio of driving to charging can be found in the business travel strategy 2.1, where on average the EV is charged
faster than it is discharged through driving. This combination illustrates the reasoning behind the adaptation from 2.1 to 2.2:
not only is the objective of high availability fulfilled, but also the potential degeneration of battery cells is limited. Since the
EV is not used overnight, the fast charging can be combined with conventional charging, even if it is mainly done for balanc-
ing and preconditioning. Three of the five strategies have an average daily distance of over 200 km, but differ significantly in
the remaining values of their key indicators. Strategy 2.2 has the lowest amount of idle time, but strategy 1.2 is more bal-
anced between conventional and fast charging. These examples illustrate that the KPI individually are insufficient to char-
acterize and evaluate a charging strategy. In combination they can serve as a sufficient basis for comparing and evaluating
charging strategies based on constant mobility applications.

Comparing the time distribution of charging and driving in the different strategies to the values in the literature it
becomes evident that even in the strategies with high annual mileage, driving only makes up a small proportion of the total
time of day. The values in this study lie between 3 h in strategy 1.1 (12.5%) and 6 h in strategy 1.3 (25%). Accordingly, 75–
87.5% of the day consist of charging and idle time. Compared to the 91.7% (22 h) by Guille and Gross (2009), the 95% by
Camus et al. (2011), and 96.15% by Speidel and Bräunl (2014) the values reached are significantly lower. A comparison of
these values has to be done carefully, since the distribution of charging and driving time is highly dependent on the average
speed and therefore average discharge power. Nevertheless, in this project, even when travelling 300 km per day, most of the
time the EV stands still.

5.2. Lessons learned

The conclusions drawn from evaluating the charging strategies, the adaptations made in the process, and the KPI intro-
duced reveal three distinctive outcomes concerning the nature of the underlying application, the required input parameters,
and the choice of charging power.

The differences in the charging strategies between the commuting and the business trips show that, the more predictable
the underlying mobility application the better the charging strategy can be adapted to it. Based on the fixed shift schedule for
commuters all the charging times were fully predictable. Therefore, the timing of the charging and the required charging
power could be chosen accordingly. Since for the business trips the duration of meetings or the departure of the next group
Table 8
Data DC fast charging curves of the Nissan Leaf.

Nissan Leaf (20 kW) Nissan Leaf (50 kW)

SOC span 0–100% 0–100%
Charging time for a full recharge [h] <1.5 <1.0
Max. effective charging power at outlet [kW] 20 50
Max. effective battery charging power [kW] 18.4 47.5
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Fig. 11. Illustration of the business trip charging strategy 2.2 including AC charging overnight.

Table 9
Key performance indicators of the presented charging strategies.

Key performance indicators (daily average) Strategy 1.1 Strategy 1.2 Strategy 1.3 Strategy 2.1 Strategy 2.2

Distance travelled �150 km �225 km �300 km �210 km �210 km
Idle time 5 h 9 h 0 h 18 h 6 h
Ratio of driving time to charging time 0.19 (3 h/16 h) 0.43 (4.5 h/10.5 h) 0.33 (6 h/18 h) 1.33 (3 h/2.25 h) 0.21 (3 h/14.25 h)
Ratio of started fast charging to conventional

charging events
0 (0/2) 1 (1.5/1.5) 1 (3/3) undef. (1.5/0) 1.5 (1.5/1)

Ratio of energy recharged through fast and
conventional charging

0 (0/34.5) 2.49 (36.9/14.85) 0.90 (32.7/36.3) Only fast
charging

Conventional mainly
for balancing
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was unknown, during the day the maximum charging power was always applied, even though it places more strain one the
battery and the grid. A higher predictability not only leads to a less excessive use of fast charging, but also opens up the pos-
sibility for including other objectives such as decreasing the degradation of the battery or providing services to the electricity
grid.

The field test indicates that in addition to the characteristics of the underlying mobility application, such as the starting
and ending points, the travel times and distances covered, two factors need to be considered when developing a charging
strategy: the features of the charging curve and the real (temperature and driving style dependent) energy consumption.

The comparison of the five charging curves presented in this study indicates that three characteristics are essential to
develop a sustainable charging strategy: the maximum charging power, the duration of a full recharge, and the shape of
the charging curve. The conventional AC charging curves for both EV types are similar, differing only slightly in their shape
(cf. Figs. 2 and 9), whereas the charging power remains constant relative to the maximum charging power. Hence, the max-
imum charging power can be taken as a reliable indicator to simulate the recharge process. The DC fast charging curves on
the other hand show a different progression (cf. Figs. 5 and 10). Therefore, for including fast charging in a sustainable charg-
ing strategy it is not sufficient just to rely on the nominal maximum charging power (C-rate) – the shape and the total dura-
tion of the charging process also need to be considered. This is illustrated by strategy 1.3: since the higher charging power is
only available at lower SOC, even though the strategy is sustainable the SOC value never rises above 90% (cf. Fig. 7). Accord-
ingly, various EV manufacturers provide not only estimations for a full fast charging recharge, but also for the duration of an
80% recharge. Strategy 1.2 shows that for an optimal charging strategy two distinct charging levels are not enough: the con-
ventional charging is insufficient, but the fast charging requires far less time than the 8.5 h available. To allow the setting of a
flexible charging power in a predetermined range could even further benefit the system. Concerning the application-specific
real EV energy consumption, the results of this field test emphasize that real consumption can be significantly higher than
values based on the New European Drive Cycle (NEDC) stated by the manufacturers depending on various factors, such as
route profile, driving behavior, or the use of auxiliaries (Lorf et al., 2013; Muneer et al., 2015; Travesset-Baro et al., 2015;
Wu et al., 2015). For the present field test the high occupancy rate of the EV (about 5 people per EV in average) and high
average speed of around 55 km/h can be identified as one reason for the observed discrepancy.
5.3. Technological and economic implications

Considering the charging strategies and the market technology available at the time of the field test, it becomes evident
that with high utilization of EV the cycle life of the battery cells becomes an issue. Apart from the standard degradation of
parts such as tires, brakes, etc., the battery ages in intensive use. Over the course of a year the strategies in use lead to a dif-
ferent number of charging events as can be seen in Table 10. The DOD for each trip is considered constant for each strategy,
since the travelled distances do not change. Applying a higher number of charging cycles allows a higher (daily) mileage, but
due to cyclical effects it also affects battery life (Neubauer et al., 2012). Many battery cell manufacturers state a ten year life-
time based on calendar life and at least 3000 full charge and discharge cycles before reaching their end of life at 80% capacity
(Azadfar et al., 2015; Kley, 2011). For the presented charging strategies and the associated DOD per trip, neglecting effects
due to fast charging or different SOC levels regarding the cell chemistry, which goes beyond the scope of this work, the esti-
mated cycle life of 3000 cycles varies from 4.2 to 11.1 years. As can be seen from these values in Table 10 the calendar life of
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Table 10
Prediction of cycle life in different charging strategies.

EV e-Wolf Delta 2 EVO Nissan Leaf

Strategy 1.1 1.2 1.3 2.1 2.2

Annual mileage �36,000 km �72,000 km �100,000 km �50,000 km �50,000 km
Number of conventional charging events per year 500 500 1000 Passive balancing
Number of fast charging events per year 500 1000 750 750
Total charging events per year 500 1000 2000 750 750
SOC range used (in stable conditions) �46–100% �23–100% �51–90% �32–100% �32–100%
Depth of discharge per trip (Energy consumed/capacity) 54% 54% 36% 58% 58%
Number of full charging cycles per year (Charging events⁄DOD) 270 540 720 435 435
Estimated cycle life (based on 3000 cycles) 11.1 years 5.6 years 4.2 years 6.9 years 6.9 years
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the battery of ten years and beyond plays no significant role, since for all but one charging strategy the predicted cycle life
values are distinctly lower than the calendar life. The actual SOC range used on both trip directions indicates that for all
strategies there is potential to avoid high and low SOC levels (cf. Table 10). Due to the fact that at these levels it is more likely
that harmful chemical side reactions occur, it is always good to avoid these states. This could prolong the battery life, but it
requires external control of the EV BMS to limit the maximum SOC.

Evaluating the technologically possible annual and EV lifetime mileage from an economic point of view, the deployment
of EV in the considered mobility applications can potentially become less costly than the use of ICEV. Various studies have
compared and discussed the TCO of EV and ICEV (Plötz et al., 2013; Tseng et al., 2013; Windisch, 2013). In general, the TCO is
influenced by two kinds of factors: technological factors and regional factors. Technological factors are for example the price
and durability of the EV, especially that of the battery cells, or the basis of comparison to the ICEV, e.g. engine power. Regio-
nal factors can be energy prices, taxes, incentives, and other market circumstances, which are dependent on the respective
country (Feng and Figliozzi, 2013; Plötz et al., 2013; Sharma et al., 2012). Considering the high sensitivity of a TCO analysis to
these various factors no definite statements can be made based solely on the annual or lifetime mileage of an EV. In partic-
ular due to a lack of empirical evidence and fast technological progress, the residual value of the battery and therefore a suc-
cessful market penetration of EV is still uncertain (Plötz et al., 2013). However, taking the annual or lifetime mileage can
serve as an indicator for potential competitiveness. Various TCO analyses have shown that despite the savings in variable
costs at current market prices and production processes, an annual mileage of 20,000 km, which is about the average of
the German commercial fleet (Wermuth et al., 2012), is insufficient to reach an economic break-even in comparison to ICEV
in Germany (Plötz et al., 2013). Hacker et al. (2015) calculate that in 2014 the barrier lies at 30,400 km in an optimistic sce-
nario; Richter and Lindenberger (2010) estimate that for Germany in 2020 at least 27,000 km annual mileage is required
while Kasten et al. (2011) even state a required annual mileage of 34,750 km in 2020 to break even. For the US market
Feng and Figliozzi (2013) come to the conclusion that for commercial vehicles the competitiveness starts at 16,000–
22,000 miles (25,750–35,400 km), depending on the conditions; Tseng et al. (2013) state a total of around 150,000 miles
(241,000 km) over a lifetime of ten years for passenger cars. For the Australian market Sharma et al. (2012) show that a mile-
age of 150,000 km in ten years under the current conditions is insufficient. For France Windisch (2013) calculate a minimum
of 30,000 km per year for seven years leading to a total of 210,000 km as break-even point. However, based on the average
EU market conditions Faria et al. (2013) come to the conclusion that for the Nissan Leaf an annual mileage of 20,000 km in
8–9 years is sufficient to become competitive. The high discrepancy in the results illustrates the difficulty of feasibility
statements solely based on mileage. Comparing all the listed mileages to the annual as well as lifetime mileages that can
potentially be reached with the presented charging strategies and technology at hand, it becomes evident that the values
in this study are significantly higher than the break-even values that can be found in the literature. This clearly indicates
that the presented charging strategies can distinctly contribute to a potentially competitive EV use in commercial
applications.
6. Conclusion

This study adds new empirical insights and conceptual suggestions to the EV charging literature by presenting and dis-
cussing charging strategies for two commercial mobility applications with constant mobility demand and fixed routes: the
commuting of shift workers and business trips of employees. The five charging strategies, which were developed to increase
the economic feasibility and therefore the annual mileage of EV in two mobility applications, were tested in a French-
German field test from early 2013 to the end of 2015. During this time over 450,000 km were travelled by the seven EV
deployed. First and foremost, the results demonstrate how specifically developed and adapted charging strategies can lead
to a high annual mileage by relying on more than one level of charging power. In particular, the inclusion of DC fast charging
with charging rates of 1 C or higher is shown to be indispensable when trying to reach a high EV operating grade. Neverthe-
less, the results also provide indications that there are limits to fast charging, that to avoid unnecessary damage to the bat-
tery cells it should only be applied when required by the underlying mobility demand. To illustrate and assess charging
strategies five KPI are suggested. They can also be applied to evaluate and compare different charging strategies, by for
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example revealing an avoidably high amount of idle time as a consequence of an unnecessarily frequent use of fast charging.
The results further reveal that the more predictable the underlying mobility application the easier the charging strategy can
be adapted accordingly. For this adaptation the empirical examples suggest a range of input parameters required for devel-
oping a balanced charging strategy, such as the features of the charging curve and the real energy consumption of the EV in
use. Overall, the results and discussion underline how important a carefully designed charging strategy is for technological,
environmental and economic sensible EV deployment and that charging time under the condition of high mobility demand
becomes a critical component on the way to feasible EV deployment.

Considering the research method, setting, and focus of the study, the transfer of the findings and conclusions into a
broader context must be carried out carefully. Limitations lie especially in the research method: the early stage long-term
field test of two mobility applications served with two different types of EV is insufficient for a broad generalization. The
results show that particularly the technological features of EV have a strong influence on the charging strategies. The charg-
ing curves for example, which are a substantial part, are highly dependent on the EV individual BMS, and thus they vary for
each EV. All charging curves presented in this study are recorded under ideal circumstances. Our experience in the project
shows that especially under high or low battery temperatures the BMS lower the charging power of both conventional and
DC fast charging processes to avoid harming the battery cells.

Based on the results future research could expand into three directions. Firstly, it could take the presented field test as an
empirical starting point for developing an optimization model of charging patterns comparable to Bashash et al. (2011).
However, instead of only using one charging power level to balance the annual mileage with the cost of cycle ageing it could
allow for more levels of charging power. As indicated by the used SOC range (cf. Table 10) for most charging strategies the
battery capacity could be reduced, which could lower the production costs. However, there is a trade-off with increasing age-
ing effects. Hence, a different approach with a fixed target mileage could allow different levels of battery capacity as addi-
tional decision variables in the optimization model. Secondly, the presented mobility applications show highly predictable
demand patterns. However, for many commercial applications and private users the demand per vehicle is less predictable.
Therefore, future research could also expand the detailed analysis of charging strategies by including stochastic models for
optimization similar to Iversen et al. (2014) or Škugor and Deur (2015). Thirdly, the field test could be expanded based on the
available detailed data by an analysis of the thermal behavior and thermal limits of DC fast charging in EV deployment, espe-
cially when there is no active cooling of the cells. Last but not least, the EV and battery technology is improving fast. There-
fore, similar field tests could be conducted with future EV generations and compared to this early stage set up.
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ABSTRACT  

The possibility of electric vehicles to technically replace internal combustion engine vehicles 

and to deliver economic benefits mainly depends on the battery and the charging 

infrastructure as well as on annual mileage (utilizing the lower variable costs of electric 

vehicles). Current studies on electric vehicles’ total cost of ownership often neglect two 

important factors that influence the investment decision and operational costs: firstly, the 

trade-off between battery and charging capacity; secondly the uncertainty in energy 

consumption. This paper proposes a two-stage stochastic program that minimizes the total 

cost of ownership of a commercial electric vehicle under uncertain energy consumption and 

available charging times induced by mobility patterns and outside temperature. The 

optimization program is solved by sample average approximation based on mobility and 

temperature scenarios. A hidden Markov model is introduced to predict mobility demand 

scenarios. Three scenario reduction heuristics are applied to reduce computational effort 

while keeping a high-quality approximation. The proposed framework is tested in a case 

study of the home nursing service. The results show the large influence of the uncertain 

mobility patterns on the optimal solution. In the case study, the total cost of ownership can be 

reduced by up to 3.9% by including the trade-off between battery and charging capacity. The 

introduction of variable energy prices can lower energy costs by 31.6% but does not 

influence the investment decision in this case study. Overall, this study provides valuable 

insights for real applications to determine the techno-economic optimal electric vehicle and 

charging infrastructure configuration. 

 

Keywords:  

Battery electric vehicle; Total cost of ownership; Stochastic programming; Hidden Markov 

model; Scenario reduction 

 

1. Introduction 

Almost a quarter of all greenhouse gas emissions in Europe are caused by transport, which 

is also the main contributor to local air pollution in cities [1]. These two negative impacts have 

become a dominating topic in public and political discussions. The introduction of electric 

vehicles (EVs) is propagated as one promising way to decrease local and global emissions 

from road transport [2,3]. However, the current market success of EVs is developing slowly. 
 

Due to their characteristics, commercial applications have the potential to overcome the 

three main remaining techno-economic disadvantages of EVs in comparison to internal 

combustion engine vehicles (ICEVs). These are their limited range, the duration of 

recharging, and the higher purchase price. Research on commercial transport has shown 

that the range of current EV models is suitable for most tours and that lower variable costs 

for operation might outbalance the higher purchase prices of EVs [4,5]. Therefore, 

commercial transport, which results in higher annual mileage than privately owned vehicles, 

is considered a promising introductory market since it also has more predictable regular 

mobility patterns and faster turnover rates [4,6,7]. Its share in the registration of new 
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passenger cars is substantial; in Germany it amounts to approximately 65% [8]. 
 

Due to the limited range and duration of recharging, a detailed analysis of the underlying 

mobility patterns is required when assessing the substitution potential of EVs. Mobility 

patterns have a strong impact on energy consumption as well as on the timeslots available 

for charging. Hence, they have a strong effect on the investment decision concerning the 

required battery capacity and the charging capacity of the electric vehicle supply equipment 

(EVSE) as well as the operational costs. Next to the mobility patterns, the outside 

temperature can also significantly influence the actual energy consumption. Both are subject 

to uncertainties [9–11]. These sources of uncertainty should be considered in investment 

planning. Evaluating the influence of the mobility patterns requires detailed information on 

individual driving tours. However, for most commercial vehicle operations, only little 

information is available and data on complete driving patterns in high time resolutions are 

scares. To the best of the authors’ knowledge, the existing literature lacks a comprehensive 

methodical framework for jointly optimizing the investment decision and operational costs of 

an EV while considering the empirical uncertainties of energy consumption and available 

charging times during operation based on limited time-series data. 
 

This paper attempts to fill this gap by proposing a two-stage stochastic program in 

combination with a detailed technical EV model which ensures the full technical 

substitutability in the investment decision while minimizing the total cost of ownership (TCO) 

of the vehicle and charging infrastructure. The stochastic program is solved by sample 

average approximation (SAA). A hidden Markov model (HMM) is introduced to generate the 

required stochastic input parameters based on limited empirical time series data. To reduce 

computational effort while keeping a good approximation of the optimal value, a newly 

developed adaptation of an existing scenario reduction heuristic is proposed. This is tested in 

a case study of the home nursing service. With 13,300 providers, over 350,000 employees, 

and around 700,000 patients needing home care, it is an important and common use case in 

Germany [12]. 

1.1 Related work 

In the literature, the optimization of the technical configuration and TCO of EVs in 

commercial fleets has been rarely addressed, so far. In the smart home context, several 

studies assessed the EV investment for private customers [e.g. 13,14]. Table 1 compares 

different studies that focus on commercial fleets. The generalized research focus of these 

studies is the competitiveness of different vehicle technologies based on fleet size and 

vehicle routing optimization. Hiermann et al. [15] specifically focus on the methodical 

advancements of these optimization approaches to include specific EV characteristics such 

as charging times.  
 

All papers listed in Table 1 consider EV investment as part of the optimization, as can be 

seen in line 2. Most of them also evaluate the effect of different battery capacities (line 3). 

They do so either by comparing different available EV models [16,18] or by introducing a 

finite number of exemplary vehicles [15,17]. All of these papers consider battery capacity as 

an exogenous parameter and not an endogenous decision variable. Assumed that the 

previously deployed ICEVs are fully substituted, an exogenous given battery capacity may 

only lead by chance to a cost minimal EV investment choice or require the individual 

assessment of all possible parameter values. Furthermore, only Davis & Figliozzi [16] include 

battery aging in their analysis by evaluating different replacement scenarios (line 4). 

However, they do not consider battery aging in their model as a constraint that decreases the 

actually available battery capacity during utilization. 
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Most of the studies consider the vehicle and the required EVSE investment, as shown in 

line 5. They do so either indirectly by including costs for public charging [15] or directly 

through the investment of own charging or battery swapping stations [17–19]. As part of the 

investment decision, two papers compare fast charging and swapping stations (line 6). None 

of the studies compares the effect of variable charging capacities directly. Four papers 

consider the required charging time as can be seen in line 7. They do so in a simplified way 

by assuming a constant charging power and completed charging (i.e. a state of charge 

(SOC) of 100%) at the end of each charging process). However, partially recharging during 

empirical operations is often observed and might provide a significantly more economical 

solution. None of the studies investigate the optimization potential that focuses on the trade-

off between the investment in battery and charging capacity (line 8). 

 

 Davis & 
Figliozzi 

2013 
[16] 

Hiermann 
et al. 2016 

[15] 

Kuppusamy 
et al. 2017 

[17] 

Lebeau 
et al. 
2015 
[18] 

Sathaye 
2014 
[19] 

Our 
contribution 

(1) Commercial 
application 

Delivery 
trucks 

Delivery 
trucks 

Taxi 
fleet 

Delivery 
vehicles 

Taxi 
fleet 

Home 
nursing 
service 

(2) EV investment       
(3) Variable battery 
capacity ( ) ( ) ( ) ( )   

(4) Battery aging 
model ( )     ( ) 

(5) EVSE 
investment 

 ( )     

(6) Variable 
charging capacity 

  ( )  ( )  
(7) Flexible state of 
charge (SOC) 
model 

 ( ) ( ) ( ) ( )  
(8) Trade-off 
between investment 
in battery and 
charging capacity 

      

(9) Detailed energy 
consumption model       

(10) Empirical 
mobility patterns ( )   ( )   
(11) Impact of 
uncertainty (mobility 
patterns & outside 
temperature)  

      

Table 1 Outline of previous research on configuration and cost optimization of EVs in commercial applications (ratings in 
brackets mean that the aspect is only considered to a limited extent) 

 

Two papers consider detailed technical energy consumption for the EVs (line 9), but only rely 

on a limited empirical data base (line 10). The other papers assume constant consumption 

levels. Davis & Figliozzi [16] estimate the energy consumption based on driving cycles and a 

detailed vehicle dynamics model. Lebeau et al. [18] specifically expand the new methodical 

approach by Hiermann et al. [15] by an energy consumption model. The authors identify this 

as the central missing component. Therefore, they add a linear regression model based on 

the input data from one vehicle with trip duration and temperature as input variables. Even 

though research has shown that mobility patterns and outside temperature have a strong 

influence on energy consumption as well as available charging times and are subject to 
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uncertainty, none of the presented studies consider the impact of this uncertainty on the 

investment decision and operational costs in their model, as shown in line 11. 
 

Solely focusing on the operation of EVs, the effect of uncertain mobility demand on the 

optimization potential is a commonly researched topic. [e.g. 20–23]. Since these studies 

focus on the utilization, the battery and charging capacity are set as exogenous parameters. 

This allows the use of dynamic programming or optimal control for optimization. These 

approaches cannot be applied when also considering the investment as part of the 

optimization. Kley [24] proposes a potential solution by incorporating the dynamic 

optimization into a TCO model for privately owned EVs. This study evaluates the TCO for 

different battery and charging capacity scenarios, which are again set as exogenous 

parameters. Jointly optimizing investment and cost of operations under uncertainty requires 

an alternate methodical approach.  
 

Two-stage stochastic programs are commonly applied in the context of one-time investment 

decisions [25,26]. The method is based on the fundamental assumption that the decision 

itself has no influence on the sources of uncertainty [27]. SAA has been established as a 

standard way to approximate the expected cost function by a finitely discrete set of 

scenarios, that reflect the observed uncertainty [28,29]. The stochastic program is 

transformed into a deterministic equivalent with the scenarios representing possible 

realizations in the decision-making horizon. The complex nature of the underlying uncertainty 

distribution can require the inclusion of many scenarios. Here, scenario reduction, in which 

the original set of scenarios is approximated with a smaller representative subset, can be 

used to limit the computational burden while keeping a high quality of the solution [30]. This 

approach of a stochastic program with SAA and scenario reduction can be applied to jointly 

optimize the investment decision and operational costs while taking the uncertain energy 

consumption into account and without risking exaggerated computing times. 
 

A subsequent methodical challenge lies in the generation of the required stochastic mobility 

patterns as input scenarios for the stochastic program. For the generation of stochastic 

driving patterns different temporal distributions, e.g. Weibull, Gamma, and log-normal 

distribution, are put forward and compared in the literature with inconclusive results [31–33]. 

Moreover, for vehicle dynamics, the Markov property has been validated [34] and Markov 

chains are applied to model driving cycles on empirical driving patterns [35,36]. However, 

using Markov chains for modeling driving patterns requires a fine temporal data resolution of 

speed and acceleration values. This information is rarely available in real-world commercial 

applications.  
 

Hidden Markov models (HMMs) can be applied when only limited time-series information is 

available. Examples of application areas are natural phenomena [37,38], financial markets 

[39,40], or predictive maintenance [41,42]. An HMM is a white box method which has the 

advantage of a clear mathematical structure and has proved its value in modeling dynamic 

systems under uncertainty [43]. HMMs can outperform exponential, Weibull, log-normal, and 

exponential mixture models [38,44]. An HMM has been applied to model simple EV driving 

patterns by Iversen et al. [45]. To the authors’ knowledge, this methodology has never been 

applied to model commercial driving tours. 

1.2 Contributions and structure of this study 

As illustrated in the literature review and Table 1, to the best of the authors’ knowledge, there 

is a gap in the current literature: The body of literature lacks a comprehensive methodical 

framework for optimizing investment choice and operational costs when introducing EVs in 
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commercial applications that also considers detailed technical EV characteristics and the 

uncertain actual energy consumption and available charging times during operation. 
 

The study at hand attempts to fill this gap by presenting a two-stage stochastic program, 

which allows optimizing both the investment decision (first-stage) and expected operational 

cost (second-stage) for commercial EVs under different sources of uncertainty. The 

investment decision includes the trade-off between battery and charging capacity. The 

stochastic program builds on a detailed technical EV model containing energy consumption, 

charging load-curves, and battery aging. Based on the literature, the mobility patterns and 

outside temperature are included as key sources of uncertainty for the actual energy 

consumption and available charging times. Amongst others, detailed information on mobility 

patterns is required as input to the technical EV model. However, based on their practical 

experience, the authors assume that only limited information on mobility patterns, e.g. from a 

logbook, is available in everyday commercial mobility applications. Therefore, an HMM is 

introduced as an approach for generating mobility scenarios. Furthermore, the paper 

presents a new scenario reduction heuristic to facilitate a more efficient approximation of the 

optimal TCO value. All things considered, several methodical approaches and small 

advancements are newly combined into a comprehensive TCO optimization framework. 
 

This framework is applied to a home nursing service case study. Despite being a common 

mobility application, the home nursing service, as are other services, is rarely in the focus of 

transportation research [46,47].  
 

In conclusion, the major contributions of this paper are:  
 

1. Developing an overall investment and operations choice formula, which considers battery 

capacity, charging capacity, as well as uncertain energy consumption and available 

charging times under the constraints of a detailed technical EV model. 

2. Predicting the stochastic mobility demand patterns based on limited empirical time-series 

data by training and using an HMM for scenario generation. 

3. Comparing three scenario reduction heuristics, one of which is a newly developed 

advancement, to identify the one that most efficiently approximates the optimal value of 

the two-stage stochastic model. 

4. Applying the newly developed approach to a home nursing service case study, which, 

despite being a common mobility application, has received little research attention. 

 

The remainder of this paper is structured as follows: Section 2 proposes the two-stage 

stochastic TCO program, introduces the HMM used for scenario generation, and describes 

the three applied scenario reduction heuristics. Section 3 outlines the set-up of the case 

study. Section 4 presents the results as well as their discussion and critical appraisal. 

Section 5 concludes the paper with a summary and an outlook for future work. 

2. Two-stage stochastic program with scenario generation 

The techno-economic optimization of the EV investment and operation is based on a TCO 

approach. TCO goes beyond the initial price to understand the true cost of buying a 

particular good or service [48]. It is commonly used for EV assessment to ponder the higher 

purchase price against the savings in operational costs in comparison to ICEV. Implementing 

the framework provided by Götze and Weber [49] the target group of this study are 

commercial fleet operators and the techno-economic assessment follows a cost-based 

approach. In this study, only battery electric vehicles are considered. Fig. 1 provides an 

overview of the model and data input. 
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Fig. 1 Structural overview of the proposed techno-economic optimization model 

2.1 Two-stage stochastic program 

This paper proposes a two-stage stochastic program with multi-periodic costs to account for 

the uncertainty in the actual energy demand during the one-time investment decision. This 

approach allows optimizing the TCO by jointly minimizing the costs of the first-stage decision 

(investment in EV and EVSE) and the expected costs of the second-stage decisions (vehicle 

usage costs). The SAA method is applied to approximate the expected costs of the second-

stage decisions. In the SAA method, a random finite sample of the stochastic input 

parameters is generated based on the underlying probability distribution. In the case at hand, 

this sample consists of mobility and temperature scenario sets. These scenarios are used to 

approximate the expected objective function value of the second-stage costs. For the 

probability of occurrence of the individual scenarios, a uniform probability distribution is 

assumed. As a result, the stochastic program is transformed into a deterministic equivalent 

specified by the sample. Applying deterministic optimization techniques can then solve the 

problem. 

2.1.1 Objective function 

Battery and charging capacity are set as the two key technical investment choices. When 

minimizing the TCO on condition that the mobility requirements will fully be met, the 

investments in battery and charging capacity form a trade-off. A large battery capacity 

enables many tours on one charge; a high charging capacity allows for faster recharges 

between the tours and hence, a smaller battery can be sufficient. The gross battery capacity 

𝐵𝐶𝐴𝑃𝐺 is set as the first-stage decision variable. For each of the charging capacity 

alternatives c, the model is solved individually to avoid quadratic constraints in the piecewise 

linear approximated flexible load curves. The second-stage decision variables charging 
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power 𝑃
𝑡,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑐𝑟𝑔

 and state of charge 𝑆𝑂𝐶
𝑡,𝑠𝑚𝑜𝑏,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡  pertain to the charging decisions during 

operations in each period 𝑡 under the realization of the scenarios for mobility demand 𝑠𝑚𝑜𝑏 

and ambient temperature 𝑠𝑡𝑒𝑚𝑝, which are considered stochastically independent. 

 

Indices 

𝑇 set of time periods in the planning horizon  

𝐴 set of years in the planning horizon 
𝐶 set of EVSE types distinguished by charging capacity 

𝑆𝑚𝑜𝑏 set of mobility demand scenarios 

𝑆𝑡𝑒𝑚𝑝 set of temperature scenarios 

Deterministic parameters 

𝐼𝑁𝑉𝑎0𝑐
𝐸𝑉 one-time EV and EVSE investment [€] 

𝐼𝑁𝑉𝑉 EV net purchasing price without battery [€] 

𝐼𝑁𝑉𝑐
𝐸𝑉𝑆𝐸  EVSE net purchasing price of charging station type 𝑐 [€] 

𝐼𝑁𝑆𝑇𝑐
𝐸𝑉𝑆𝐸  net installation cost of EVSE charging station type 𝑐 ∈ 𝐶 [€] 

𝐼𝑁𝑉𝑎0
𝑏𝑎𝑡 net purchasing price battery [€] 

𝑝𝑟𝑎
𝑏𝑎𝑡 specific net battery price on a system level in year 𝑎 ∈ 𝐴 [€/kWh] 

𝑅𝑉𝑎,𝑐
𝐸𝑉𝑆𝐸 residual value of the EVSE in year 𝑎 ∈ 𝐴 [€] 

𝑐𝑎
𝑏𝑎𝑡𝑟𝑒𝑓

 net battery refurbishment cost in year 𝑎 ∈ 𝐴 [€/kWh] 

𝑓0.7
𝑏𝑎𝑡𝑆𝐿 factor battery second-life value level of the current market price  

𝛼, 𝛽1, 𝛽2, 𝛽3 
regression parameters of the residual value (𝛼 constant, 𝛽1 age, 𝛽2 

monthly distance, 𝛽3 purchase price) 

𝑖 interest rate  
𝑑 time resolution (duration of one period) [ℎ] 

𝐴𝐸𝑉𝑆𝐸𝑑 EVSE depreciation time [a] 

𝑝𝑟𝑡
𝑒𝑙 electricity price in period 𝑡 ∈ 𝑇 [€/kWh] 

𝑐𝐸𝑉𝑚𝑎 EV maintenance cost [€/km] 

𝑐𝐸𝑉𝑡𝑎𝑥 EV annual tax [€] 

𝑐𝐸𝑉𝑖𝑛𝑠 EV annual insurance cost [€]  

𝑓𝐸𝑉𝑆𝐸𝑚𝑎 
factor indicating the annual EVSE maintenance cost as a proportion of 
the purchase price 

𝑃𝑐
𝑚𝑎𝑥𝑐𝑟𝑔

 charging capacity of EVSE type ∈ 𝐶 [kW] 

𝑅𝑃𝑐 
remaining battery capacity that sets of charging capacity reduction of 
EVSE type 𝑐 ∈ 𝐶 [kWh] 

𝑓𝐸𝑉𝑔𝑛 
factor battery net of gross capacity available for charging and 
discharging 

𝜂𝑐𝑟𝑔 overall charging efficiency from the grid to battery 

𝐸𝐶𝑒𝑙 
EV specific energy consumption depending on 𝐵𝐶𝐴𝑃𝐺 , 𝐷𝑆

𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

and 

𝑇𝑒𝑚𝑝𝑡,𝒔𝒕𝒆𝒎𝒑
𝑎𝑚𝑏  [kWh/km] 

𝑤𝑏𝑎𝑡𝑐𝑎𝑝 factor for warranted battery capacity at the end of the first-life 

𝑤𝑏𝑎𝑡𝑑𝑖𝑠𝑡 warranted distance before the end of the first-life [km] 

𝑤𝑏𝑎𝑡𝑡𝑖𝑚𝑒 warranted time before the end of the first-life [a] 

�̂�𝑗𝑘(𝑡) 
maximum-likelihood estimator of the transition probabilities of the 
discrete inhomogeneous Markov model 

𝑛𝑗𝑘(𝑡) number of historic observations for starting a tour at time 𝑡 ∈ 𝑇 

𝐵 number of parameters in the hidden Markov model 

𝐻 number of hidden states in the hidden Markov model 

𝑂 number of observations in the hidden Markov model 
𝐿 log-likelihood of the training data for a specific hidden Markov model 

𝑞𝑚 number of key first-stage decision combinations in the FSWC heuristic 

𝑞 target number of scenarios in the FSWC heuristic 
𝑝𝑟𝑐𝑜𝑛𝑠𝑡 net electricity wholesale price in the base case [€/kWh] 

𝑝𝑟∅,2014
𝐸𝑃𝐸𝑋 𝑆𝑃𝑂𝑇 annual average of the electricity wholesale price [€/kWh] 

𝑝𝑟𝑡,2014
𝐸𝑃𝐸𝑋 𝑆𝑃𝑂𝑇 hourly electricity wholesale price at time 𝑡 ∈ 𝑇 [€/kWh] 

𝑀 number of scenarios generated by Monte-Carlo simulation 

𝛿 risk level assessing Monte-Carlo simulation confidence 

𝜀 accuracy of estimated mean from Monte-Carlo simulation results  
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Table 2 Nomenclature  

 
 

The objective function represents the TCO with the investment 𝐼𝑁𝑉𝑎0𝑐
𝐸𝑉, as well as the 

expected operational costs 𝐶𝑜𝑝(𝑠𝑚𝑜𝑏 , 𝑠𝑡𝑒𝑚𝑝), and residual value 𝑅𝑉𝑎,𝑐
𝐸𝑉(𝑠𝑚𝑜𝑏). By applying 

SAA, the objective function is written as sum of the investment, as first-stage decision, and 

the expected second-stage costs as the calculated average of all scenarios.  

𝑚𝑖𝑛
𝑐 𝜖 𝐶

 𝐼𝑁𝑉𝑎0𝑐
𝐸𝑉 + ∑ 𝑝𝑠𝑚𝑜𝑏  𝑝𝑠𝑡𝑒𝑚𝑝  (𝐶𝑜𝑝(𝑠𝑚𝑜𝑏 , 𝑠𝑡𝑒𝑚𝑝) − 𝑅𝑉𝑎,𝑐

𝐸𝑉(𝑠𝑚𝑜𝑏))𝑠𝑚𝑜𝑏∈𝑆𝑚𝑜𝑏, 𝑠𝑡𝑒𝑚𝑝∈𝑆𝑡𝑒𝑚𝑝   (1) 

 

For the one-time investment, the net purchase prices for the vehicle (without the battery) 

𝐼𝑁𝑉𝑉, the battery 𝐼𝑁𝑉𝑎0
𝑏𝑎𝑡, the EVSE 𝐼𝑁𝑉𝑐

𝐸𝑉𝑆𝐸, and the net costs for installation 𝐼𝑁𝑆𝑇𝑐
𝐸𝑉𝑆𝐸 are 

considered. 

 

𝐼𝑁𝑉𝑎0𝑐
𝐸𝑉 = 𝐼𝑁𝑉𝑉 + 𝐼𝑁𝑉𝑎0

𝑏𝑎𝑡 + 𝐼𝑁𝑉𝑐
𝐸𝑉𝑆𝐸 + 𝐼𝑁𝑆𝑇𝑐

𝐸𝑉𝑆𝐸       (2) 
 

Functions 

𝐶𝑜𝑝(𝑠𝑚𝑜𝑏 , 𝑠𝑡𝑒𝑚𝑝) 
total operational costs depending on the mobility 𝑠𝑚𝑜𝑏  and 
temperature scenario 𝑠𝑡𝑒𝑚𝑝 [€] 

𝑅𝑉𝑎,𝑐
𝐸𝑉(𝑠𝑚𝑜𝑏) 

total residual value of EV and EVSE in year 𝑎 ∈ 𝐴 depending on the 

mobility scenario 𝑠𝑚𝑜𝑏   [€] 

𝑅𝑉𝑎
𝑉(𝑠𝑚𝑜𝑏) 

residual value of the vehicle without battery in year 𝑎 ∈ 𝐴 depending 

on the mobility scenario 𝑠𝑚𝑜𝑏   [€] 

𝑅𝑉𝑎
𝑏𝑎𝑡(𝑠𝑚𝑜𝑏) 

residual value of the battery in year 𝑎 ∈ 𝐴 depending on the mobility 

scenario 𝑠𝑚𝑜𝑏   [€] 

𝐷𝐼𝑆𝑇(𝑠𝑚𝑜𝑏) total mileage traveled depending on the mobility scenario 𝑠𝑚𝑜𝑏 [km] 

𝑤𝑎
𝑢𝑐𝑎𝑝(𝑠𝑚𝑜𝑏) 

battery state of health in year 𝑎 ∈ 𝐴 depending on the mobility 

scenario 𝑠𝑚𝑜𝑏   

𝐶𝐸𝑉𝐸𝑁(𝑠𝑚𝑜𝑏 , 𝑠𝑡𝑒𝑚𝑝) 
energy cost depending on the mobility 𝑠𝑚𝑜𝑏  and temperature scenario 
𝑠𝑡𝑒𝑚𝑝 [€] 

𝐶𝐸𝑉𝑀𝐴(𝑠𝑚𝑜𝑏) EV maintenance cost depending on the mobility scenario 𝑠𝑚𝑜𝑏   [€] 

𝐶𝐸𝑉𝑇𝐼 fixed annual costs for insurance and taxes [€] 

𝐶𝐸𝑉𝑆𝐸𝑀𝐴  fixed annual for EVSE maintenance [€] 

𝐸𝐶𝑒𝑙 (𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

, BCAPG, 𝑇𝑒𝑚𝑝𝑡,𝑠𝑡𝑒𝑚𝑝
𝑎𝑚𝑏 ) 

electric energy consumption depending on driving speed 𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

, 

battery capacity BCAPG and outside temperature 𝑇𝑒𝑚𝑝
𝑡,𝑠𝑡𝑒𝑚𝑝
𝑎𝑚𝑏  [kWh/km] 

𝑜𝑘𝑗
[1]

≔ 𝑜(𝜔𝑘, 𝜔𝑗) 

Kantorovich distance between the second-stage costs of two 
scenarios 𝑘 and  𝑗 used for scenario selection in the FSWC_O 
heuristic 

Stochastic parameters 

𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑐𝑟𝑔

 EV charging state in mobility scenario 𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏 in period 𝑡 ∈ 𝑇 

𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑑𝑟𝑣  EV driving state in mobility scenario 𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏 in period 𝑡 ∈ 𝑇 

𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

 EV average speed in mobility scenario 𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏 in period 𝑡 ∈ 𝑇 

𝑝𝑠𝑚𝑜𝑏 probability that scenario 𝑠𝑚𝑜𝑏 occurs 

𝑇𝑒𝑚𝑝𝑡,𝒔𝒕𝒆𝒎𝒑
𝑎𝑚𝑏  

ambient temperature in temperature scenario 𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝  in period 

𝑡 ∈ 𝑇 [°C] 

𝑝𝑠𝑡𝑒𝑚𝑝 probability that scenario 𝑠𝑡𝑒𝑚𝑝 occurs 

Decision variables 

𝐵𝐶𝐴𝑃𝐺  
first-stage variable representing the gross battery capacity of the EV, 
integer [kWh] 

𝑃
𝑡,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑐𝑟𝑔

 
second-stage variable representing the charging power in period 𝑡 ∈ 𝑇 

under the mobility scenario 𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏 and temperature scenario 
𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝, continuous [kW] 

𝑆𝑂𝐶
𝑡,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡  

second-stage variable representing the state of charge (SOC) in 

period 𝑡 ∈ 𝑇 under the mobility scenario 𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏 and temperature 
scenario 𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝, continuous [kWh] 
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The price of the vehicle 𝐼𝑁𝑉𝑉 is set fixed. The battery price 𝐼𝑁𝑉𝑎0
𝑏𝑎𝑡 depends on the market 

price for battery capacity on system level 𝑝𝑟𝑎0
𝑏𝑎𝑡 in the year the investment is made.  

 

𝐼𝑁𝑉𝑎0
𝑏𝑎𝑡 =  𝑝𝑟𝑎0

𝑏𝑎𝑡𝐵𝐶𝐴𝑃𝐺          (3) 
 

The investment and installation costs of the EVSE 𝐼𝑁𝑆𝑇𝑐
𝐸𝑉𝑆𝐸 are fixed and depend on the 

selected type 𝑐. 
 

The EV and EVSE in this analysis are sold at the end of the planning horizon. Hence, their 

residual values must also be taken into account. 
 

𝑅𝑉𝑎,𝑐
𝐸𝑉(𝑠𝑚𝑜𝑏) = 𝑅𝑉𝑎

𝑉(𝑠𝑚𝑜𝑏) + 𝑅𝑉𝑎
𝑏𝑎𝑡(𝑠𝑚𝑜𝑏) +𝑅𝑉𝑎,𝑐

𝐸𝑉𝑆𝐸      (4) 
 

The residual values of the vehicle and the battery depend on the intensity of use over time 

and therefore the respective mobility scenario 𝑠𝑚𝑜𝑏. The intensity of use is represented by 

the total mileage traveled 𝐷𝐼𝑆𝑇(𝑠𝑚𝑜𝑏) which itself depends on the mobility demand 𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

 

in the respective scenario 𝑠𝑚𝑜𝑏 and the time resolution 𝑑. 
 

𝐷𝐼𝑆𝑇(𝑠𝑚𝑜𝑏) = ∑ 𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

𝑡∈𝑇  𝑑        (5) 
 

The calculation of the vehicle’s residual value 𝑅𝑉𝑎
𝑉(𝑠𝑚𝑜𝑏) is based on the linear regression 

formula developed by Linz, Dexheimer, & Kathe [50] also applied for EVs in Plötz et al. [6] 

where readers are referred to for detailed information concerning the model. 

𝑅𝑉𝑎
𝑉(𝑠𝑚𝑜𝑏) =

𝑒𝛼𝑒𝛽112𝑎𝑒

𝛽2
12

 
𝐷𝐼𝑆𝑇(𝑠𝑚𝑜𝑏)

𝑎𝑒𝑛𝑑
 
𝐼𝑁𝑉𝑉𝛽3

(1+𝑖)𝑎        (6) 

 

The residual value of the battery 𝑅𝑉𝑎
𝑏𝑎𝑡(𝑠𝑚𝑜𝑏) is estimated based on the battery ageing in 

terms of the remaining capacity in year 𝑎.  
 

 

𝑅𝑉𝑎
𝑏𝑎𝑡(𝑠𝑚𝑜𝑏) =  

[((
𝑓0.7

𝑏𝑎𝑡𝑆𝐿−𝑤𝑏𝑎𝑡𝑐𝑎𝑝

1−𝑤𝑏𝑎𝑡𝑐𝑎𝑝 )+(
1−𝑓0.7

𝑏𝑎𝑡𝑆𝐿

1−𝑤𝑏𝑎𝑡𝑐𝑎𝑝)𝑤𝑢𝑐𝑎𝑝(𝑠𝑚𝑜𝑏))𝑝𝑟𝑎
𝑏𝑎𝑡−𝑐𝑎

𝑏𝑎𝑡𝑟𝑒𝑓
]𝐵𝐶𝐴𝑃𝐺

(1+𝑖)𝑎     (7) 

 

Fischhaber, Regett, Schuster, & Hesse [51] have developed a model in which the residual 

value of the battery 𝑅𝑉𝑎
𝑏𝑎𝑡(𝑠𝑚𝑜𝑏) in year 𝑎 depends on the state of health (SOH) 𝑤𝑎

𝑢𝑐𝑎𝑝
(𝑠𝑚𝑜𝑏) 

and its second-life use-value. At the end of the first life 𝑤𝑏𝑎𝑡𝑐𝑎𝑝 the resale value after 

refurbishment 𝑐𝑎
𝑏𝑎𝑡𝑟𝑒𝑓

 lies only at a factor 𝑓0.7
𝑏𝑎𝑡𝑆𝐿 of the current price for a new battery system.  

 

This study takes a practical approach towards battery aging to limit the complexity and avoid 

non-linear constraints. Empirical studies show that for C-rates1 of 1 c or less, which can be 

expected as the outcome of the presented model, the capacity fade is close to linear [52,53]. 

The warranties provided by the manufacturers are taken as references to model the worst-

case linear decline. The warranties of the manufacturers usually guarantee utilization, e.g. 

150,000 km, and durability, e.g. 8 years. To account for both limitations, the battery 

degradation factor in this study 𝑤𝑢𝑐𝑎𝑝(𝑠𝑚𝑜𝑏) is calculated as the minimum two terms: First, 

the total mileage in the mobility scenario in relation to the maximum warranted distance; 

second, the investment period in relation to the warranted durability.  
 

𝑤𝑎
𝑢𝑐𝑎𝑝

(𝑠𝑚𝑜𝑏) = 𝑚𝑖𝑛 {
𝑤𝑏𝑎𝑡𝑑𝑖𝑠𝑡−(𝐷𝐼𝑆𝑇(𝑠𝑚𝑜𝑏))

𝑤𝑏𝑎𝑡𝑑𝑖𝑠𝑡 ,
𝑤𝑏𝑎𝑡𝑡𝑖𝑚𝑒−𝑎𝑒𝑛𝑑

𝑤𝑏𝑎𝑡𝑡𝑖𝑚𝑒 }      (8) 

 
1 The C-rate stands for the ratio of the applied (dis-)charging current to the capacity of the battery, e.g. for a battery a capacity of 
40 Ah a charging current of 80 A means a C-rate of 2. 
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For residual values of EVSE type 𝑐 in year 𝑎, 𝑅𝑉𝑎,𝑐
𝐸𝑉𝑆𝐸 there are currently no well-founded 

models. Therefore, following the legal depreciation time a linear loss of value independent of 

the intensity of use is assumed.  
 

𝑅𝑉𝑐,𝑎
𝐸𝑉𝑆𝐸 =

𝐼𝑁𝑉𝑐,𝑎0
𝐸𝑉𝑆𝐸(1−

𝑎

𝐴𝐸𝑉𝑆𝐸𝑑)

(1+𝑖)𝑎           (9) 

 

The costs of operation are divided into fixed and variable costs with the variable costs 

𝐶𝐸𝑉𝐸𝑁(𝑠𝑚𝑜𝑏, 𝑠𝑡𝑒𝑚𝑝) and 𝐶𝐸𝑉𝑀𝐴(𝑠𝑚𝑜𝑏) depending on the assumed mobility demand 𝑠𝑚𝑜𝑏 and 

ambient temperature 𝑠𝑡𝑒𝑚𝑝 scenario. 
 

𝐶𝑜𝑝(𝑠𝑚𝑜𝑏 , 𝑠𝑡𝑒𝑚𝑝) =  𝐶𝐸𝑉𝐸𝑁(𝑠𝑚𝑜𝑏 , 𝑠𝑡𝑒𝑚𝑝) + 𝐶𝐸𝑉𝑀𝐴(𝑠𝑚𝑜𝑏) + 𝐶𝐸𝑉𝑇𝐼 + 𝐶𝐸𝑉𝑆𝐸𝑀𝐴   (10) 
 

Fixed are the annual costs for insurance and taxes  
 

𝐶𝐸𝑉𝑇𝐼 = ∑
𝑐𝐸𝑉𝑡𝑎𝑥+𝑐𝐸𝑉𝑖𝑛𝑠

(1+𝑖)𝑎𝑎∈𝐴           (11) 

 

as well as EVSE maintenance for each year 𝑎 of operation. 
 

𝐶𝐸𝑉𝑆𝐸𝑀𝐴 = ∑
𝐼𝑁𝑉𝑐

𝐸𝑉𝑆𝐸𝑓𝐸𝑉𝑆𝐸𝑚𝑎

(1+𝑖)𝑎𝑎∈𝐴          (12) 

 

The energy and EV maintenance costs are variable. The energy costs depend on the total 

energy charged during operation, the electricity price 𝑝𝑟𝑡
𝑒𝑙 in period 𝑡, and the chosen time 

resolution 𝑑. 
 

𝐶𝐸𝑉𝐸𝑁(𝑠𝑚𝑜𝑏, 𝑠𝑡𝑒𝑚𝑝) = ∑ 𝑃
𝑡,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑐𝑟𝑔

𝑡∈𝑇 𝑝𝑟𝑡
𝑒𝑙𝑑       (13) 

 

EV maintenance costs are set variable only depending on the distance traveled 𝐷𝐼𝑆𝑇(𝑠𝑚𝑜𝑏) 

in the specific mobility demand scenario 𝑠𝑚𝑜𝑏.  
 

𝐶𝐸𝑉𝑀𝐴(𝑠𝑚𝑜𝑏) = 𝐷𝐼𝑆𝑇(𝑠𝑚𝑜𝑏) 𝑐𝐸𝑉𝑚𝑎         (14) 

2.1.2 Constraints 

The technical model of the EV sets the constraints for the stochastic program. In the 

following, the focus lies on the energy model. The non-linear progressions of the energy 

consumption and charging curves are piecewise linearly approximated (see Section 5.1 and 

Appendix C). This approach leads to higher quality results than the commonly assumed fixed 

maximum capacity while the overall problem remains linear [54]. The thermal behavior of the 

battery is neglected.  
 

The mobility scenarios determine when the EV can be charged. No public charging is 

included as risk mitigation. Currently, only limited public charging stations are available. 

Therefore, in the opinion of the authors, commercial applications, in which mobility is an 

essential part of the service, should not be dependent on the accessibility of public charging 

stations. Hence, the vehicle is only available for charging when parking on company grounds 

(the binary charging parameter 𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑐𝑟𝑔

= 1 and the binary driving parameter 𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑑𝑟𝑣 = 0). 

 

𝑃
𝑡,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑐𝑟𝑔

= 0,  ∀ 𝑡 ∈ 𝑇, 𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏 , 𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝|𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑐𝑟𝑔

= 0     (15) 
 

Four typically used AC charging types distinguished by their charging capacity are compared 

in this paper: Mode 2 with 2.2 kW from a domestic socket, Mode 3 with 3.7, 11, and 22 kW 

(IEC61851-1). The battery charging curve is piecewise approximated by two linear parts. 

Exemplary recorded curves can be found in Schücking et al. [55] or Landau et al. [56]. 

Starting from an empty battery a constant maximum power 𝑃𝑐
𝑚𝑎𝑥𝑐𝑟𝑔

 can be utilized.  
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𝑃
𝑡,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑐𝑟𝑔

≤ 𝑃𝑐
𝑚𝑎𝑥𝑐𝑟𝑔

, ∀ 𝑡 ∈ 𝑇, 𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏 , 𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝     (16) 
 

After reaching a certain threshold, in this study defined by the remaining battery capacity to 

charge, the charging capacity is reduced depending on the SOC 𝑆𝑂𝐶
𝑡,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡 .  

 

𝑃
𝑡,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑐𝑟𝑔

≤ 𝑆𝑂𝐶
𝑡,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡 (−

𝑃𝑐
𝑚𝑎𝑥𝑐𝑟𝑔

𝑅𝑃𝑐
) +

𝑤𝑢𝑐𝑎𝑝(𝑠𝑚𝑜𝑏)𝑓𝐸𝑉𝑔𝑛𝐵𝐶𝐴𝑃𝐺𝑃𝑐
𝑚𝑎𝑥𝑐𝑟𝑔

𝑅𝑃𝑐
, ∀𝑡 ∈ 𝑇, 𝑠𝑚𝑜𝑏 ∈

𝑆𝑚𝑜𝑏, 𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝          (17) 
 

The reduction depends on the SOH 𝑤𝑢𝑐𝑎𝑝(𝑠𝑚𝑜𝑏) and the available net capacity 𝑓𝐸𝑉𝑔𝑛. The 

point of reduction 𝑅𝑃𝑐 varies between the different types of EVSE. In this study, no vehicle-to-

grid services such as providing energy back to the grid or other ancillary services are 

included (Appendix C1).  
 

In the energy model, it is important to distinguish the different measurement points for 

assessing energy consumption. From the technical point of view the tank-to-wheel (TTW) 

energy consumption is relevant. From an economic point of view, the grid-to-wheel efficiency 

(GTW) must be considered. The losses due to transformation and resistances that occur 

between the grid and the battery are included in the charging efficiency factor 𝜂𝑐𝑟𝑔 [57].  
 

The discrete energy model is set by the SOC in period 𝑡 + 1 which equals the SOC in period 

𝑡 plus the energy charged minus the energy consumed through driving calculated by the 

average speed 𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

 and the specific TTW energy consumption 𝐸𝐶𝑒𝑙 (Appendix C2). 
 

𝑆𝑂𝐶
𝑡+1,𝑠𝑚𝑜𝑏,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡 = 𝑆𝑂𝐶

𝑡,𝑠𝑚𝑜𝑏,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡 + [(𝑃

𝑡,𝑠𝑚𝑜𝑏,𝑠𝑡𝑒𝑚𝑝
𝑐𝑟𝑔

𝜂𝑐𝑟𝑔) − 𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

𝐸𝐶𝑒𝑙 (𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

, 𝐵𝐶𝐴𝑃𝐺 , 𝑇𝑒𝑚𝑝𝑡,𝑠𝑡𝑒𝑚𝑝
𝑎𝑚𝑏 )] 𝑑  

 ∀𝑡 ∈ 𝑇, 𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏, 𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝        (18)  
 

For the TTW energy consumption 𝐸𝐶𝑒𝑙 the average speed 𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

 (drag), the additional 

battery weight (rolling resistance) and the ambient temperatures 𝑇𝑒𝑚𝑝𝑡,𝒔𝒕𝒆𝒎𝒑
𝑎𝑚𝑏  (auxiliary load) 

are considered as individual influence factors. The SOC can never exceed the maximum 

available capacity 
 

𝑆𝑂𝐶
𝑡,𝑠𝑚𝑜𝑏,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡 ≤ 𝑤𝑢𝑐𝑎𝑝(𝑠𝑚𝑜𝑏)𝑓𝐺𝑁𝐵𝐶𝐴𝑃𝐺 , ∀𝑡 ∈ 𝑇, 𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏, 𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝   (19) 

 

and must always be positive. 
 

𝑆𝑂𝐶
𝑡,𝑠𝑚𝑜𝑏,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏, 𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝      (20) 

 

Furthermore, the SOC level after purchase (period 𝑡0) and when the EV is sold at the end of 

the time (period 𝑡𝑒𝑛𝑑) are set to be the same.  
 

𝑆𝑂𝐶
𝑡0,𝑠𝑚𝑜𝑏 ,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡 = 𝑆𝑂𝐶

𝑡𝑒𝑛𝑑,𝑠𝑚𝑜𝑏,𝑠𝑡𝑒𝑚𝑝
𝑏𝑎𝑡  , ∀𝑠𝑚𝑜𝑏 ∈ 𝑆𝑚𝑜𝑏, 𝑠𝑡𝑒𝑚𝑝 ∈ 𝑆𝑡𝑒𝑚𝑝    (21) 

2.2 Scenario generation with a hidden Markov model 

The mobility demand scenarios are one core input to the SAA. They consist of different tours 

taken by the EV over a fixed period. A tour starts with leaving the company grounds and 

ends with the return. It can consist of several trips and intermediate stops, which makes it a 

complex structure to predict. The key parameters required by the optimization model are the 

starting time of the tour as well as the parameters of the individual trips and stops during the 

tour. 
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The stochastic model used to generate the scenarios from the historical data and forecast 

the future mobility demand consists of three parts: an inhomogeneous Markov model to 

predict the starting point of the tours, a multinomial HMM to generate the individual tours, 

and a set of conditional normal distributions to estimate the mean speed per trip depending 

on the duration.  
 

Since the probability of starting a tour is dependent on the time of day in line with previous 

studies, a discrete inhomogeneous Markov model is used to account for the temporal 

variance of the transition probabilities [45]. The maximum-likelihood estimator of the 

transition probabilities �̂�𝑗𝑘(𝑡) for visible states 𝑆, can be calculated based on the historic 

observations 𝑛𝑗𝑘(𝑡) at time 𝑡.  
 

�̂�𝑗𝑘(𝑡) =
𝑛𝑗𝑘(𝑡)

∑ 𝑛𝑗𝑙(𝑡)𝑁
𝑙=1

 , ∀ 𝑗, 𝑘 ∈ 𝑆         (22) 

 

HMMs are finite mixture models. They consist of two parts: an unobserved parameter 

process and an observed state-dependent process (Appendix A). The unobserved parameter 

process satisfies the Markov property and can, therefore, be applied to driving cycle 

modulation. HMMs can be trained on historical data in supervised learning. The most 

common approach to find the estimates of the model parameters is the Baum-Welch 

algorithm [58]. This paper applies a strategy version for this algorithm based on Biernacki, 

Celeux, & Govaert [59] with several runs and different random starting parameters (Appendix 

A). This approach does not guarantee a global optimum but reduces the risk of getting stuck 

in a local one [60].  
 

Different evaluation criteria are used to identify the best suitable HMM. The number of hidden 

states cannot be deduced from the data. An ex-post evaluation is necessary. With each 

additional hidden state, the model fit indicated by the log-likelihood increases. However, so 

does the number of parameters. In the case of the multinomial-HMM, the number of 

parameters 𝐵 is calculated by 𝐵 = 𝐻 + 𝐻2 + 𝐻 ∙ 𝑂 where 𝐻 is the number of hidden states 

and 𝑂 is the number of observations. To avoid an overcomplex model two commonly used 

evaluation metrics are applied. The Akaike information criterion (AIC) [61]  
 

𝐴𝐼𝐶 = −2 log 𝐿 + 2𝐵          (23) 
 

and the Bayes information criterion (BIC) [62].  
 

𝐵𝐼𝐶 = −2 log 𝐿 + 𝐵 log 𝑂         (24) 
 

Both provide relative model quality estimates, where 𝐿 is the log-likelihood of the training 

data. The HMM with the lowest values is the best fitting model.  
 

As an additional selection criterion k-fold cross-validation is used. It is a standard practice in 

supervised statistical learning to ensure out-of-sample predictive performance [63]. k-fold 

cross-validation is applicable to HMMs [64]. In this paper, 4-fold cross-validation is chosen. In 

each run ¾ of data are taken for training while ¼ is left out for testing.  
 

The last part of the stochastic driving profile generation is the estimation of each trip’s mean 

speed. For driving profiles, the mean speed increases with the total driving distance of the 

trip [65]. Accordingly, speed and trip duration cannot be considered independent. For 

different intervals of duration, separate normal distributions are assumed based on the 

historical data with the statistical value as maximum likelihood estimators for 𝜇 and 𝜎. 
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2.3 Scenario reduction heuristics 

The complex nature of the underlying uncertainty distribution often requires many scenarios 

for the SAA. Since the approximated deterministic model is solved considering all scenarios 

simultaneously, this can lead to a significant computational burden. The most common 

approach to limiting the computational burden while keeping a high quality of the solution is 

to approximate the original set of scenarios with a smaller representative subset. Fast 

forward selection (FFS) is a commonly applied scenario reduction heuristic that relies on the 

probability metrics of the stochastic input parameters when generating the representative 

subset [30,66].  
 

Over the years, FFS has faced some criticism for its sole focus on the input parameters and 

their failure to consider the individual scenario’s impacts on the first-stage decision and 

second-stage cost. The literature proposes different advancements that build on FFS but 

cluster the scenarios according to key first-stage decision variables or consider the individual 

scenario’s impact on the optimum value [67–69]. 
 

Adding to this line of research, three different scenario reduction heuristics are compared in 

the following: FFS heuristic (Appendix B) introduced by Heitsch & Römisch [30] as well as 

two versions of forward selection in wait-and-see-clusters (FSWC) heuristic proposed by 

Feng & Ryan [67].  
 

The FSWC heuristic differs from FFS by including the key first-stage decision variables in the 

scenario reduction process by implementing the following four steps:  

• Step 1: 

For each mobility scenario, the deterministic subprogram is solved, and the key first-stage 

decision variables are recorded. 

• Step 2: 

The scenarios are clustered by their first-stage decision variables. If the number of first-

stage decision variable combinations 𝑞𝑚 is equal to or smaller than the target number of 

scenarios 𝑞 step 3 can be skipped.  

• Step 3: 

The number of groups 𝑞𝑚 is reduced by clustering them into 𝑞 clusters. Instead of the 𝑘-

means clustering algorithm [70] used by Feng & Ryan [67] the improved 𝑘-means++ [71] 

method is applied in this paper to create the clusters 𝑞. 

• Step 4: 

For each of the clusters, one representative scenario is selected by using FFS. The 

probabilities of the unselected scenarios in the cluster are added to the probability of the 

selected one.  

In the presented framework the battery and charging capacity are used for clustering.  
 

As an additional approach, this paper proposes a new advancement of the original FSWC 

algorithm (in the following called FSWC_S). The new version (in the following called 

FSWC_O), also considers the overall output performance of the individual scenarios. In 

step 4, instead of selecting the representative scenario for each cluster based on the 

Kantorovich distance between their probability distributions, the second-stage costs of the 

individual optimization runs are used, represented by 𝑜𝑘𝑗
[1]

≔ 𝑜(𝜔𝑘 , 𝜔𝑗). The required 

information is already available through the individual solution of the deterministic 

subprograms from step 1. Therefore, no additional effort is required in comparison to 

FSWC_S. The motivation behind this advancement is to provide a potentially more efficient 

way of approximating the optimum value of the presented two-stage stochastic model. This 
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can be achieved by having even smaller scenario subsets delivering a high-quality solution 

and therefore reducing the computational time of the overall program. 

3. Data and case study design  

The stochastic program is implemented for the home nursing service use case: Nurses drive 

around in small vehicles to attend to care-dependent people in their homes. Its technical and 

organizational requirements can be met by the properties of EVs. Mobility is essential to the 

operations and the mobility cost is the second-highest cost item after labor. The fleets usually 

consist of EVs from the mini or small segment. The tours show a high frequency of starts and 

stops with an annual mileage of 15,000 km in urban and 20,000 km in rural environments. 

Due to the frequent short trips, combustion engines are especially inefficient leading to high 

fuel consumption and maintenance costs. Previous research has identified it as one of the 

most promising commercial use cases for early EV introduction [4,5].  
 

Technical and financial EV and EVSE properties, electricity prices, mobility demand, and 

temperature are the data input to the model. Whenever possible literature values are 

validated with current market information or directly taken from manufacturers or leasing 

companies (Table 3). Also, direct data from operations, e.g. charging infrastructure 

maintenance, electricity prices, insurance, and warranties are used.  

The estimation of the specific energy consumption in dependence of the mean speed per trip 

is split into three components: the energy consumed by propulsion, the additional energy 

consumption due to the battery weight, and the energy required by the auxiliaries depending 

on the outside temperature (Appendix C1). The resulting, here piecewise linearly 

approximated, specific energy consumption curve in Fig. 2 shows the distinctive progression 

that can also be found in empirical studies [e.g. 72–74]. 

 
Fig. 2 Linear approximation of the EV specific energy consumption depending on the average speed and auxiliary demand 

(Appendix C1, Source: ADAC) 
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Table 3 Overview of the technical and economic input parameters for the case study 

Table 4 provides an overview of the four EVSE alternatives that are compared in this study. 

The progression of the piecewise linear charging load-curves can be seen in Fig. 3 

(Appendix C2). The net purchase prices 𝐼𝑁𝑉𝑐
𝐸𝑉𝑆𝐸  for the EVSE are current mean market 

values. For the 2.2 kW, investment and installation costs are assumed to be zero since it 

only requires a separately protected standard power socket. 

 

 

Parameter Value Explanation & source 

𝑎0 2017 year of investment 

𝐼𝑁𝑉𝑉 20,000 €  
the mean EV net purchase price with basic configuration and no 
battery (mini and small car segment) [75] 

𝑝𝑟2017
𝑏𝑎𝑡  210 €/kWh 

the net battery price on a system level, mean value from the 
literature [76,77]; validated with current EV purchase prices [78] 

𝑝𝑟2020
𝑏𝑎𝑡  185 €/kWh 

the net battery price on a system level, mean value from the 
literature [76,77] 

𝑓0.7
𝑏𝑎𝑡𝑆𝐿 0.5  

the reselling price of the battery at the end of life will be around 
50% of the current market price for a new comparable battery 
[51] 

𝑐𝑎
𝑏𝑎𝑡𝑟𝑒𝑓

 50 €/kWh 
estimation of the battery refurbishment cost based on the mean 
value from review by [51] assumed to be independent of 𝑎 

𝛼 0,97948 a constant from the regression model by [50] 

𝛽1 -1.437 ∙ 10-2 the age factor from the regression model by [50] 

𝛽2 -1.17 ∙ 10-4 the mileage factor from the regression model by [50] 

𝛽3 0.91569 the purchase price factor from the regression model by [50] 

𝑎𝑒𝑛𝑑  3 a 
assumption of EV usage time due to fast technological 
advances, 3.8 years is the current average for commercial 
vehicles [6] 

𝑑 1 min time resolution of the model 

𝑖 5.02% 
the mean value of interest rates in Germany over the last 10 
years [79] 

𝑇𝐸𝑉𝑆𝐸𝑑  8 a 
assumption based on comparable technical equipment, no 
reliable empirical data available or legal amortization period 
defined in Germany 

𝑝𝑟𝑡
𝑒𝑙  0.20 €/kWh 

net price for electricity (assumed constant, since this is currently 
the case for most home nursing service providers in Germany) 
(EPEX SPOT) 

𝑐𝐸𝑉𝑚𝑎 0.024 €/km 
the mean value of EV maintenance costs from the literature [80–
82] 

𝑐𝐸𝑉𝑡𝑎𝑥 0 €/a EV are exempted from taxes and tolls in Germany 

𝑐𝐸𝑉𝑖𝑛𝑠 450 € assumption for EV insurance based on interviews (IIP database) 

𝑓𝐸𝑉𝑆𝐸𝑚𝑎 0.10 
assumption for EVSE maintenynce based on interviews with 
installation companies (IIP database) 

𝑓𝐸𝑉𝑔𝑛 0.87 
the mean current value for the gross to net battery capacity ratio 
estimated based on information provided by manufacturers of 
current EV models 

𝜂𝑐𝑟𝑔 0.85 
the mean value of charging efficiency based on own 
measurements and review [56,57] 

𝑤𝑏𝑎𝑡𝑐𝑎𝑝 0.70 
the mean current value of warrantied battery capacity 
communicated by the manufactures of current EV models 

𝑤𝑏𝑎𝑡𝑑𝑖𝑠𝑡 160,000 km 
the mean current value of warrantied battery lifetime milieage 
communicated by the manufactures of current EV models 

𝑤𝑏𝑎𝑡𝑡𝑖𝑚𝑒 8 a 
the mean current value of warrantied battery life communicated 
by the manufactures of current EV models 

𝜌𝑏𝑎𝑡 95 Wh/kg the energy density of current Li-ion batteries [81] 

𝑐𝑟𝑟 0.0088 
the rolling resistance coefficient mean value for tires on the road 
surface [81] 

𝑔 9.81 N/kg the gravitational constant 
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𝑷𝒄
𝒎𝒂𝒙𝒄𝒓𝒈

 2.2 kW 3.7 kW 11 kW 22 kW 

𝑅𝑃𝑐 1 kWh 1 kWh 3.5 kWh 7 kWh 

𝐼𝑁𝑉𝑐
𝐸𝑉𝑆𝐸  0 € 600 € 1,200 € 1,800 € 

𝐼𝑁𝑆𝑇𝑐
𝐸𝑉𝑆𝐸  0 € 100 € 200 € 300 € 

Table 4 Technical and economic input parameters for the different EVSE alternatives (Sources: IIP database) 

 

  
Fig. 3 Maximum available charging power for the EVSE alternatives depending on SOC (a) and duration (b) (Appendix C2, 

Source: IIP database) 

 

The data input to train the mobility demand model is taken from the regional eco mobility 

2030 (REM2030) project [83]. The empirical data consists of 91,422 single trips from 630 

commercial ICEVs that were deployed by various companies from different economic 

segments over an average period of three weeks. For each trip the time of departure, arrival, 

the distance traveled, and the distance to the company are recorded. Also, metadata 

concerning the vehicles and companies is available [83]. This case study is based on ICEV 

data under the assumption that the mobility profiles will not change when EVs are introduced 

since they are determined by the customer and user demand. 

 
Fig. 4 Distribution of the tour starting times for the home nursing service case study (Source: REM2030 [83]) 

 

For this case study, one home nursing service company with ten vehicles and 1,698 logged 

trips is selected. The minimum of recorded trips per vehicle is 17 and the maximum 299. The 

demand for home-nursing service is independent of the weekday. The relative frequency of 

starting tours shows three high peaks throughout the day, indicating that in the morning, 

around noon, and in the late afternoon, there is a higher probability for starting a tour (Fig. 4). 
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The proposed model requires tours consisting of one or more cohesive, individual trips as 

input. Therefore, it is necessary to cluster the single recorded trips into tours that start and 

end at the company. The tours are created based on assumptions about the driving profiles. 

Unfortunately, the times at the company are not given in the data set. As a workaround, it is 

assumed that the vehicle has returned to the company if the waiting time between two trips is 

larger than 30 minutes. This approach has been approved by operators. Based on this 

approach 594 tour profiles are created. Since around 70% of all of the trips are shorter than 

10 minutes with over 25% being shorter than 5 minutes a time resolution 𝑑 of one minute is 

required to allow a detailed energy consumption assessment.  
 

Temperature data for five large German cities from 1981 to 2016 provided by the Climate 

Data Center (CDC) is taken as data input for the temperature scenarios [84]. From readings 

at these five measurement points over 25 years, an average year with 52 weeks and hourly 

values is calculated as the set of temperature scenarios.  
 

To analyze the effect of variable electricity prices on the battery and charging capacity 

investment decision as well as on the operational costs, flexible tariffs are introduced. In the 

base case, the net price for electricity 𝑝𝑟𝑡
𝑒𝑙 is assumed to be constant. For the flexible tariffs, 

hourly electricity prices for Germany from 2014 at the European Power Exchange (EPEX 

SPOT) are taken and separated into 52 weekly scenarios. To assess the sensitivity of the 

optimal results to a flexible tariff, the weeks with the minimal, median, and maximal variation 

are selected (Table 5). The EPEX SPOT lists wholesale prices. Hence, additional charges 

must be considered. The final net price 𝑝𝑟𝑡
𝑒𝑙 is calculated by subtracting the annual average 

wholesale price 𝑝𝑟∅,2014
𝐸𝑃𝐸𝑋 𝑆𝑃𝑂𝑇 from the net price in the base case 𝑝𝑟𝑡

𝑐𝑜𝑛𝑠𝑡 and adding the hourly 

wholesale price 𝑝𝑟𝑡,2014
𝐸𝑃𝐸𝑋 𝑆𝑃𝑂𝑇.  

 

𝑝𝑟𝑡
𝑒𝑙 = 𝑝𝑟𝑡

𝑐𝑜𝑛𝑠𝑡 − 𝑝𝑟∅,2014
𝐸𝑃𝐸𝑋 𝑆𝑃𝑂𝑇 + 𝑝𝑟𝑡,2014

𝐸𝑃𝐸𝑋 𝑆𝑃𝑂𝑇       (26) 
 

Scenario Mean 𝒑𝒓𝒕
𝒆𝒍 Minimum 𝒑𝒓𝒕

𝒆𝒍 Maximum 𝒑𝒓𝒕
𝒆𝒍 

Constant 0.200 €/kWh 0.200 €/kWh 0.200 €/kWh 

Flexible minimum 0.181 €/kWh 0.201 €/kWh 0.222 €/kWh 

Flexible median 0.173 €/kWh 0.203 €/kWh 0.248 €/kWh 

Flexible maximum 0.136 €/kWh 0.187 €/kWh 0.218 €/kWh 

Table 5 Overview of the assessed electricity price scenarios (Source: EEX) 

4. Case Study Results  

The following section presents and discusses the results regarding the applied framework 

and implications for commercial applications. 

4.1 Mobility scenario generation 

As input to the framework, the empirical tour profiles are coded with the three introduced 

parameters 𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑐𝑟𝑔

 ,𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑑𝑟𝑣 , and 𝐷𝑆

𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

 which indicate the current status of the EV at any 

given point in time (Table 6).  

Vehicle status 𝑫𝑺
𝒕,𝒔𝒎𝒐𝒃
𝒄𝒓𝒈

 𝑫𝑺
𝒕,𝒔𝒎𝒐𝒃
𝒅𝒓𝒗  𝑫𝑺

𝒕,𝒔𝒎𝒐𝒃
𝒔𝒑𝒅

 

EV is parked on company grounds and can be charged 1 0 0 
EV is parked during a tour and cannot be charged 0 0 0 
EV is driving 0 1 >0 
Table 6 Overview of the three different vehicle states that are used to model the mobility scenarios 
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HMMs with different numbers of hidden states are trained to identify the best fitting model 

with the tour profiles assumed to be independent of the time of day. Four separate training 

and evaluation sets were created from the 594 empirical tours. The model training was 

implemented in Python using the Annaconda environment and the hmmlearn package with 

the functions fit to train the model, score to calculate the likelihood, and predict to decode the 

hidden states using the Viterbi algorithm. The training was run on a Win Server 2016 (x64) 

system with a 2x Intel Xeon 5430, 2.66GHz CPU, and 24 GB 4 Core RAM.  
 

Hidden states 2 3 4 5 6 7 8 

Score -10,166.78 -9,833.68 -9,769.73 -9,735.75 -9,723.50 -9,722.33 -9,717.96 

AIC 20,353.56 19,703.35 19,595.45 19,551.51 19,554.99 19,584.65 19,611.91 

BIC 20,435.84 19,851.44 19,825.81 19,880.59 19,999.25 20.160.55 20,335.90 

4-fold score -2,759.53 -2,497.78 -2,486.18 -2,463.14 -2,467.39 -2,460.60 -2,460.56 
Table 7 Model evaluation results for the HMMs with an increasing number of hidden states 

 
Fig. 5 AIC, BIC, log-likelihood, 4-fold cross-validation values of the HMMs with an increasing number of hidden states  

 

The results of the model evaluation indicate that an HMM with either four or five hidden 

states has the best fit (Table 7 & Fig. 5). The BIC favors four hidden states, the AIC five. The 

4-fold cross-validation as an indication for out-of-sample performance also favors the HMM 

with five hidden states. Further, increasing the number of hidden states delivers no 

significant gain in predictability (Table 7 & Fig. 5). Hence, the HMM with five hidden states is 

selected (Appendix B). The comparison of the empirical data and the scenarios created 

underlines the quality of the model (Fig. 4 & Fig. 6). 

 
Fig. 6 Comparison of the historical data and the scenarios generated by the HMM 

 

For estimation of the mean speed values in dependence of the individual trip duration, the 

empiric values are separated into five classes. For each class, a normal distribution is 
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assumed based on the ML estimation of 𝜇 and 𝜎 (Table 8). The goodness of fit is assessed 

with the Kolmogorov-Smirnoff (KS) test. 
 

With the stochastic model, 2,500 scenarios of one-week mobility demand in one-minute time 

resolution were generated by Monte-Carlo simulation. The high number of scenarios 𝑀 is 

required to ensure with 95% confidence (risk level δ = 0.05) that the estimated mean varies 

5% (accuracy 𝜀) or less from the original values for the four tour characteristics: number of 

trips per tour, mean duration of trips per tour, number of stops per tour, and mean duration of 

stops [85]. 
 

𝑀 ≥  𝛷−1(1 − 𝛿)2 𝜎2

𝜀2            (27) 

 

 0-5 min 6-10 min 11-15 min 16-20 min >20 min 

𝝁 14.91 22.36 35.56 41.91 50.72 

𝝈 8.42 11.04 13.95 13.34 15.58 

KS test      

√𝒓𝑳𝒏
𝒏𝒐𝒓𝒎 √63𝐿𝑛

𝑛𝑜𝑟𝑚

= 0.57 
√205𝐿𝑛

𝑛𝑜𝑟𝑚

= 0.81 

√198𝐿𝑛
𝑛𝑜𝑟𝑚

= 0.68 
√63𝐿𝑛

𝑛𝑜𝑟𝑚

= 0.57 
√63𝐿𝑛

𝑛𝑜𝑟𝑚

= 0.67 

𝒍𝒏; 𝟎,𝟗𝟓
𝒏𝒐𝒓𝒎  𝑙>30; 0,95

𝑛𝑜𝑟𝑚

= 0.89 

𝑙>30; 0,95
𝑛𝑜𝑟𝑚

= 0.89 

𝑙>30; 0,95
𝑛𝑜𝑟𝑚

= 0.89 

𝑙>30; 0,95
𝑛𝑜𝑟𝑚

= 0.89 

𝑙>30; 0,95
𝑛𝑜𝑟𝑚

= 0.89 
Normal 
distribution  

Cannot be 
rejected 

Cannot be 
rejected 

Cannot be 
rejected 

Cannot be 
rejected 

Cannot be 
rejected 

Table 8 Results of the ML estimation for the normal distribution parameters of the average speed depending on trip duration 
and goodness of fit assessment 
 

4.2 Subsets for scenario reduction 

All scenario reduction algorithms were implemented in Python and run on a Win Server 2016 

(x64) system with a 2x Intel Xeon 5430, 2.66GHz CPU, and 24 GB 4 Core RAM. Scenario 

subsets containing from 5 to 25 scenarios are created with each heuristic. In step 2 of the 

FSWC, the 2,500 individual sub-problem solutions can be clustered into 70 different 

combinations of optimal battery and charging capacity. Fig. 7 provides an overview of the 

relative frequency of the battery and charging capacity combinations as well as examples of 

clusters created out of the 70 combinations by the k-means++ algorithm in step 3. 
 

 
Fig. 7 Solutions of the individually optimized subprograms (a) and exemplary clusters created by the k-means++ algorithm (b)  

4.3 Optimization 

The optimization model is solved for scenario subsets of different sizes whose composition is 

determined by the three reduction heuristics. The program sizes for the different subsets can 

be found in Table 9. The optimization is implemented in Python 3.63, solved with the Gurobi 

solver (7.5.2), and run on a Win Server 2016 (x64) system with a 2x Intel Xeon 5430, 

2.66GHz CPU, and 24 GB 4 Core RAM. 
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Smob No. of lines No. of columns No. of non-zeros 
No. of continuous 

variables 
No. of integer 

variables 

5 3,528,002 1,512,014 5,608,024 1,512,013 1 
10 7,056,002 3,024,014 11,208,684 3,024,013 1 
15 10,584,002 4,536,014 16,937,014 4,536,013 1 
20 14,112,002 6,048,014 22,739,234 6,048,013 1 
25 17,640,002 7,560,014 28,520,874 7,560,013 1 

Table 9 Program size dependent on the number of mobility demand scenarios (Stemp = 10) 

4.3.1 Scenario reduction – mobility scenarios  

The progression of the optimal value shows distinctive differences between the scenario 

reduction approaches. The optimal value is highly sensitive to the composition of scenarios 

selected. In comparison, both FSWC approaches require fewer scenarios than FFS to reach 

a stable approximated solution in the observed range (Fig. 8a). Furthermore, the stabilization 

level of the optimal value differs for all three algorithms. For smaller subsets, the optimal 

choice of charging capacities varies. From subsets containing 15 selected by FSWC and 20 

by FFS onwards, 11 kW becomes the consistent cost-minimal choice. Detailed numerical 

results for all charging capacity alternatives can be found in Appendix D1.  
 

The effects of increasing scenario subset sizes on the optimal gross battery capacity choice 

also shows distinctive differences between the three scenario reduction heuristics (Fig. 8b). 

With FFS the battery capacity increase is monotone. In each step, new mobility scenarios 

are added with some increasing the required optimal battery capacity. For scenario subsets 

selected by FSWC, the progress of the optimal battery and charging capacity configuration is 

more volatile. As new clusters are formed in each step, the composition of the most 

representative scenarios does not build on the selection in the smaller subsets. Like the 

optimal value and charging capacity, the optimal choice for battery capacity stabilizes with 

larger subset sizes. A small difference of 1 kWh remains between the optimal choice based 

on FSWC and FFS (Table D.1). This small discrepancy cannot explain the observed gap 

between the optimal TCO values generated by the three heuristics. 

 

 
Fig. 8 Optimal TCO values (a) and gross battery capacities (b) with an increasing number of mobility demand scenarios for the 

three reduction heuristics FFS, FSWC_S & FSWC_O (Stemp = 10)  
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Fig. 9 Distribution of the optimal TCO values and battery capacity choices for the 2,500 individual subproblem solutions with the 

allocated probabilities compared for all three scenario reduction heuristics (Smob = 10 or 20; Stemp = 10) 

 

As is illustrated by Fig. 9, the gap can be explained by the second-stage cost distribution of 

the selected scenarios and their allocated probabilities. For the subset consisting of ten 

scenarios, FFS only selects scenarios that require a comparably low battery capacity. The 

optimal TCO values of the selected scenarios are at the lower boundary of the possible 

optimal TCO values for these configurations. In the subset of 20, also scenarios with 

individual solutions that have a large optimal battery capacity and comparatively high TCO 

values are included. However, they show rather low probabilities (0.0004). The scenario 

selection through FSWC_S and FSWC_O shows a more even distribution, but also 

distinctive differences (Fig. 9). The effect of selecting the representative scenario for each 

cluster and attributing the probabilities based on the second-stage costs as a measure for 

output performance, as it is done in the FSWC_O approach, becomes clearly visible.  

4.3.2 Scenario reduction – temperature scenarios  

The effect on the optimal TCO value and battery capacity for an increasing number of 

temperature scenarios differs notably from the mobility scenarios. The comparison of the 

subsets with an increasing number of scenarios selected by the FFS algorithm shows a fairly 

stable progression (Fig. 10). The charging capacity of 11 kW is always the cost-minimal 

choice. The optimal TCO value rises only slightly with the inclusion of more temperature 

scenarios. The outside temperature has only a small effect on the gross battery capacity, 

which rises from 45 to 47 kWh for the optimal TCO solution. Numerical results for the 

individual charging capacity alternatives can be found in Appendix D2. 
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Fig. 10 Optimal TCO values (a) and gross battery capacity (b) with an increasing number of temperature scenarios (FFS, 

Smob = 15) 

 

4.3.3 Evaluation of the stochastic approach and the applied heuristics  

The comparison of the optimal TCO values resulting from the different scenario reduction 

heuristics shows that the newly proposed FSWC_O delivers the best approximation for our 

case study. The relative error to the solution for all 2,500 scenarios (z2500*) is 1.3% 

(Table 10). Hence, this solution is taken for the evaluation of the stochastic approach based 

on the expected value of perfect information (EVPI). The EVPI is calculated by the difference 

of the expected value of all individual subproblem solutions (EX2500) and the optimal 

stochastic solution (zS
mob*). It represents the amount one would be willing to pay for perfect 

foresight [25]. In this case study, the EVPI is 4,956 € (Table 10). The proportionally high 

value is owed to the large influence of the uncertain mobility patterns on the optimal 

investment decision. This underlines the importance of considering the uncertain energy 

demand in the investment decision even for the relatively regular mobility patterns of the 

home nursing service. The effect will arguably be even stronger for commercial use cases 

that show a higher variance in their mobility patterns.  

 

 FFS FSWC_S FSWC_O 

Smob 25 25 25 
zS

mob* 18,071 € 18,847 € 21,656 € 

𝑃𝑐
𝑚𝑎𝑥𝑐𝑟𝑔

 11 kW 11 kW 11 kW 

𝐵𝐶𝐴𝑃𝐺 46 kWh 47 kWh 47 kWh 

z2500* 21,382 € 21,382 € 21,382 € 
error 18.3% 13.5%  1.3% 
EX2500 16,700 € 16,700 € 16,700 € 
EVPI   4,956 € 
Table 10 Overview of the solution quality for the different scenario reduction heuristics and the EVPI  

 

Due to the different process steps required for the applied scenario reduction heuristics, a 

clear statement concerning their computational efficiency is challenging. Taking only the final 

optimization into account, FSWC_O delivers the relatively best approximation. For a detailed 

comparison of the upstream process steps and potential benefit of parallelized subproblem 

optimization, the reader is referred to Feng & Ryan [67]. However, the results of the case-

study show a clear advantage of the newly proposed FSWC_O compared to the FSWC_S. 

For both heuristics, the upstream process steps require the same computational time and 

resources. The second-stage costs taken for the selection of the most representative 

scenario in FSWC_O are already calculated for the individual subproblems in FSWC_S. 

Since the quality of the approximated solution is significantly higher for the same subset 
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sizes, in this case study FSWC_O outperforms FSWC_S (Table 10). A qualitative advantage 

of both FSWC versions over FFS is the transparency throughout the reduction process 

through the inclusion of the key first-stage decisions. Especially in the context of real 

applications, this can be an advantage. 

4.4 Technological and economic implications for commercial mobility applications 

The results of the case study provide interesting insights for commercial fleet operators to 

determine the techno-economic optimal EV and EVSE system configuration and TCO under 

uncertain energy consumption. The evaluation of the stochastic approach points to the 

importance of considering the uncertainty in the investment decision through joint 

optimization of the investment and expected operational costs. Based on the optimal choice 

of a gross battery capacity of 47 kWh and charging capacity of 11 kW, home nursing service 

fleet operators can scan the market to identify small EV models, with a suitable endowment. 

For example, the current version of the Renault ZOE Z.E. 50 with a gross battery capacity of 

52 kWh and up to 22 kW charging capacity would meet the identified requirements. 
 

The potential total cost savings enabled by the inclusion of the battery and charging capacity 

trade-off in the evaluation framework are notable (Table D.1). For FSWC_O (S
mob = 25, S

temp = 

10) the optimal 11 kW solution reduces the TCO in comparison to the optimal 22 kW 

configuration by 1.3% (286 €). The cost advantage in comparison to the optimal 2.2 kW and 

3.7 kW configurations are 2.6% (566 €) and 3.9% (852 €) respectively (Table D.1). When 

excluding the cost items, that are independent of the investment choice, e.g. the loss of value 

for the EV excluding the battery (Eq. 6), the proportional cost advantage increases to 3.2%, 

6.3%, and 9.4% respectively. Hence, the results support the argumentation to consider 

different battery and charging capacity configurations in the investment decision. 
 

The utilization of variable electricity prices combined with an optimal charging scheduling 

bears the potential for further TCO reductions. As can be seen in Fig. 11, charging EVs in 

low-price periods can reduce the second-stage cost through load shifting into periods with 

lower electricity prices. For the optimal 11 kW solution, the total energy costs over the 

investment period are 2,213 €. Under the assumption that the maximal volatile electricity 

price scenario would occur daily throughout the investment period, these costs could be 

reduced by 696 € (i.e. by 31.6%). Even though these effects are relatively small in relation to 

the overall TCO, variable electricity prices could also influence the optimal investment 

decision. However, in this case study, the introduction of flexible tariffs does not influence the 

optimal configuration of 47 kWh battery and 11 kW charging capacity in any of the assumed 

scenarios (Fig. 11). For other mobility applications, a faster charging option or a larger 

battery capacity allowing to use low-price periods more efficiently might influence the optimal 

trade-off between battery and charging capacity.  

 
Fig. 11 Optimal values and battery capacities for the different electricity price scenarios (FSWC_O, Smob = 25; Stemp = 10) 
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A detailed look into the upstream process steps of the FSWC heuristic provides additional 

insights that can potentially be beneficial in the investment decision. For the home nursing 

service case study only few mobility scenarios require battery capacities over 30 kWh or an 

11 kW EVSE, when solved individually (Fig. 7 & Fig. 9). This is also reflected in the 

probabilities allocated to the selected scenarios (Table D.3). All scenarios, which when 

solved individually, require a battery capacity of less than or equal to 30 kWh, have a 

cumulative probability of 0.9576; all scenarios, which when solved individually, have a cost-

minimal charging capacity of 11 kW, have a cumulative probability of only 0.0076. Hence, the 

transparency gained through the individual subproblem solution and scenario clustering 

helps to identify outlier scenarios. This may lead to a reconsideration of a full technical 

substitution as a condition for the introduction of EVs. In this case study, the willingness to 

exclude a small proportion of the mobility demand might lead to a system configuration with a 

significantly lower TCO.  
 

Besides commercial fleet operators, the proposed framework may also be helpful for other 

user groups. For example, manufacturers of EV and EVSE can use it to draw conclusions on 

which vehicle configurations are required by commercial customers. Also, policymakers can 

apply the framework to evaluate the techno-economic substitution potential of EVs in 

widespread commercial applications. With the commercial vehicle market being an important 

introductory market, targeted subsidies for the identified mobility applications could notably 

accelerate the market introduction of EVs. 
 

4.5 Critical appraisal 

The suggested optimization approach and presented results are subject to various limitations 

that require consideration. Some limitations result from the lack of data. Also, simplifications 

are made to reduce the model complexity. For the overall framework, the key assumptions 

are that the vehicle must be able to fully cover all tours and the EV has its dedicated EVSE. 

As the basis for further optimization, both assumptions could be removed when considering a 

mixed commercial fleet. The abstraction of unrestricted battery capacity is chosen to identify 

the ideal configuration as a decision-making base for the investment. Currently, 

manufacturers offer two or three battery capacity choices for their current vehicle models, at 

best. Furthermore, the study neglects other sources of uncertainty that can influence energy 

consumption, e.g. the individual driving behavior, as well as the TCO, e.g. the development 

of electricity or battery prices. For the technical EV model, the key simplifications are the 

piecewise linear approximations of energy consumption, charging curves, and battery aging. 

Finally, based on this study, no general statements can be made about the criteria for 

selecting the appropriate scenario reduction heuristic. FFS worked well for the temperature 

scenarios; FSWC worked significantly better for the mobility scenarios. A possible 

explanation for this discrepancy might be the chosen modulation of the driving states based 

on the three parameters (Table 6). Overall, it can be stated that for the mobility scenarios in 

this case study, a similarity between two scenarios in the input distribution does not correlate 

to a similarity in the output of the model, i.e. optimal investment choice and second-stage 

costs. Hence, relying on the output performance instead of on the stochastic input 

parameters for scenario selection delivers a better approximation.  

5. Conclusion and future work 

This paper proposes a comprehensive methodical framework for optimizing the investment 

choice and operational costs when introducing electric vehicles in commercial fleets. It 

considers detailed technical electric vehicle characteristics and the uncertain actual energy 
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consumption and available charging times during operation. A two-stage stochastic program 

that minimizes the costs of the first stage (investment decision) and the second stage 

(vehicle usage costs) builds the core of the framework. The proposed approach specifically 

focuses on the trade-off between the electric vehicle’s battery and charging capacity in the 

investment decision as well as on the influence that mobility demand patterns and outside 

temperature have on energy consumption and available charging times. The stochastic 

program is solved by sample average approximation. The mobility demand patterns, as part 

of the stochastic input parameters, are generated by a multinomial-hidden Markov model 

based on limited empirical time series data. To reduce the computational effort while keeping 

a good approximation, a newly developed adaptation of an existing scenario reduction 

heuristic is proposed. The overall framework is applied to a home nursing service case study.  
 

The results of the case study show that the proposed framework is a well-suited approach to 

address the identified gap in the literature. The results illustrate the impact that mobility 

patterns and outside temperature as sources of uncertainty can have on the investment 

decision and therefore underline the importance of the stochastic approach. In the case 

study, allowing different battery and charging capacities in the investment decision can 

reduce the total cost of ownership. The influence of the mobility patterns on the investment 

decision is notably higher than the one of the outside temperatures. In the presented case, 

the introduction of variable electricity prices does not influence the optimal investment 

decision. Nevertheless, variable prices can lead to a lower total cost of ownership by 

enabling load-shifting into low price periods. Regarding the methodology applied, the newly 

proposed scenario reduction heuristic improves the quality of the approximated solution by 

including the overall output performance in the selection process with no additional 

computation effort. Additionally, the scenario clustering based on the optimal investment 

decision for their individual subproblems increases the transparency and provides valuable 

insights that can be beneficial in the investment decision. Moreover, the case study 

demonstrates that a hidden Markov model is well suited to generate stochastic commercial 

mobility patterns based on limited empirical time series data. In its entirety, the case analysis 

validates that the proposed framework can directly be applied by commercial fleet operators 

to determine the optimal electric vehicle and charging station configuration required for the 

substitution of an internal engine combustion vehicle and to minimize the related total cost of 

ownership.  
 

Future work is needed to address the shortcomings of the presented framework and related 

open issues. The precision of the optimization model could be improved by considering the 

non-linearity of the technical constraints. Also, the hidden Markov model could be extended 

into an inhomogeneous model. Especially for use cases, where the tours differ in their 

characteristics throughout the day and between weekdays, an inhomogeneous approach 

would increase the predictability. Furthermore, the model could be applied to other mobility 

use cases to assess their potential and the suitability of the model. Also, additional sources 

of uncertainty could be included. Finally, future research could extend the optimization focus. 

One obvious extension would be to combine the model with a fleet size and routing 

optimization approach. This would make it possible to further optimize costs by utilizing the 

flexibility of different electric vehicle and charging infrastructure configurations or sharing 

common charging infrastructure between electric vehicles. 
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Appendix A 

Hidden Markov model 

Hidden Markov models (HMMs) are finite mixture models. They consist of two parts: an 

unobserved parameter process and an observed state-dependent process. The unobserved 

parameter process satisfies the Markov property. 
 

𝑃𝑟(𝑍𝑡|𝐙(𝑡−1)) = Pr(𝑍𝑡|𝑍𝑡−1) , ∀𝑡 ∈ 𝑇        (A.1) 
 

It can only be observed through the state-dependent process {𝑋𝑡: 𝑡 ∈ 1,2, … } which is solely 

dependent on the current hidden state 𝑍𝑡.  
 

𝑃𝑟(𝑋𝑡|𝐗(𝑡−1), 𝐙(𝑡)) = Pr(𝑋𝑡|𝑍𝑡) , ∀𝑡 ∈ 𝑇        (A.2) 
 

In contrast to independent mixture models, there is a temporal dependency. The current 

hidden state 𝑍𝑡 and therefore the state-dependent process hinges on the previous state 𝑍𝑡−1.  
 

𝑝𝑖(𝑥) = Pr (𝑋𝑡 = 𝑥|𝑍𝑡 = 𝑖) ∀𝑡 ∈ 𝑇        (A.3) 
 

𝑝𝑖(𝑥) is the probability mass function of 𝑋𝑡 when the HMM is in a hidden state 𝑖 at time 𝑡. In 

line with Zucchini et al. [44] three additional properties of the HMM are assumed: temporal 

homogeneity, stationarity of the Markov chain, and conditional independence. A multinomial 

HMM can be defined by (𝑨, 𝑩, 𝜋): 𝑨 is the matrix of the transmission probabilities between 

the hidden states, 𝑩 is the matrix of state emission probabilities, and 𝜋 is the vector of the 

initial state distribution.  
 

The Baum-Welch algorithm used for training the HMM is a specific form of the EM algorithm 

which is generally applicable to finite mixture models [86] and makes use of the conditional 

independence assumption [39]. The likelihood of the estimated parameters increases 

monotone with every iteration. Depending on the initial parameters the progress can be slow, 

and it is never clear whether a local or a global optimum has been reached.  
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Fig A.1 Implementation strategy of the Baum Welch algorithm in the case study (based on Biernacki et al. [59]) 

 

  
Fig. A.2 The relationship of hidden states and observations in the multinomial HMM (case study example) 
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Appendix B 

Fast Forward Selection (FFS) heuristic 

The fast forward selection (FFS) heuristic stepwise selects the scenario from the set of 

unselected scenarios that has the shortest (updated) Kantorovich distance to the remaining 

scenarios and is, therefore, the most representative one. The distance between the 

scenarios is measured with 𝑐(𝜔𝑖, 𝜔𝑗) which is the sum of a norm of all the distances at any 

point 𝑡 in 𝑇 between the scenarios. The Euclidean norm is used to measure the distance. 𝑁 

is the target number of scenarios. FFS proceeds as follows: 
 

• Step 1:  

The distance 𝑐𝑘𝑗
[1]

≔ 𝑐(𝜔𝑘 , 𝜔𝑗) between all scenario pairs 𝑘, 𝑗 = 1, … , 𝑁 is calculated.  

The weighted distance 𝑧𝑙
[1]

≔ ∑ 𝑝𝑗𝑐𝑗𝑙
[1]

𝑗≠𝑙  of each scenario 𝑙 = 1, … , 𝑁 to the rest is 

computed. 

Scenario 𝑠1 = arg min
𝑙=1,…,𝑁

𝑧𝑙
[1]

 is selected and 𝐽[1] = 1, … , 𝑁\𝑠1 is set.  

• Step i: 

1. The scenario pair distance 𝑐𝑘𝑗
[𝑖]

= min [𝑐𝑘𝑗
[𝑖−1]

, 𝑐𝑘𝑗𝑖−1

[𝑖−1]
] is updated for all unselected 

scenarios 𝑘, 𝑗 ∈  𝐽[𝑖−1] with the minimum of the original pair distance and the distance to 

the scenario selected in 𝑖 − 1. 

2. The updated weighted distance 𝑧𝑙
[𝑖]

≔ ∑ 𝑝𝑗𝑐𝑗𝑙
[𝑖]

𝑗∈𝐽[𝑖−1]\𝑖  of each unselected scenario 𝑙 ∈

𝐽[𝑖−1] to the rest is computed. 

3. Scenario 𝑠𝑖 = arg min
𝑙∈𝐽[𝑖−1]

𝑧𝑙
[𝑖]

 is selected and 𝐽[𝑖] = 𝐽[𝑖−1]\𝑠𝑖 is set.  

Step 𝑖 is repeated until the target number of selected scenarios is reached. To the probability 

𝑝𝑗 of each selected scenario 𝑗 ∈ 𝐽′ the sum of the probabilities 𝑝𝑖 of the unselected scenarios 

closest to it is added, at the end.  

𝑞𝑗 = 𝑝𝑗 + ∑ 𝑝𝑖𝑖∈𝐿(𝑗)  , ∀𝑗 ∈ 𝐽′         (B.1) 

𝐿(𝑗) ≔  {𝑖 ∈ 𝐽\𝐽′, 𝑗 = 𝑗(𝑖)}, 𝑗(𝑖) = arg min
𝑗∈𝐽′

𝑐𝑗
[1]

, 𝑖 ∈ 𝐽\𝐽′      (B.2) 

Appendix C1 

Electric vehicle energy consumption model 

The energy consumption is split into three parts: propelling the electric vehicle (EV), 

additional energy consumption through battery weight, and the auxiliaries’ demand. 
 

𝐸𝐶𝑒𝑙 (𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

, 𝑩𝑪𝑨𝑷𝑮, 𝑇𝑒𝑚𝑝𝑡,𝒔𝒕𝒆𝒎𝒑
𝑎𝑚𝑏 ) = 𝐸𝐶𝑝𝑟𝑜𝑝 (𝐷𝑆

𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑 ) + 𝐸𝐶𝑤𝑔ℎ𝑡(𝑩𝑪𝑨𝑷𝑮) + 𝐸𝐶𝑎𝑢𝑥(𝑇𝑒𝑚𝑝𝑡,𝒔𝒕𝒆𝒎𝒑

𝑎𝑚𝑏 )  (C.1) 
 

A detailed description of forces, resistances, and efficiencies in a dynamic driving model and 

a discussion of the external influences on energy consumption can be found in the literature 

[81,87].  
 

Drive cycle Mean speed 

Inner-city (NEDC, phase 1 & WLTP phase 1) 18.5 km/h 
Inter-urban (NEDC, phase 2 & WLTP phases 2-4) 63 km/h 
Motorway (ADAC BAB) 114 km/h 
Table C.1 Drive cycle characteristics of ADAC measurement 

The data for the piecewise linear approximation of the energy required for propelling the EV 

forward is based on real-world measurements taken by the German automobile club ADAC. 

This study relies on real-world data since the values stated by the manufacturers are 

measured under laboratory conditions. Different points of measurement are required to 
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approximate the energy consumption depending on the mean driving speed. Table C.1 lists 

the combinations of phases from three driving cycles used by the ADAC for their 

measurements of inner-city, inter-urban, and motorway consumption [88]. For each of the 

measurement points the mean speed of different EVs from the mini and small segment was 

deducted from the applied driving cycles. The force required to overcome the drag resistance 

is proportional to the square of the speed. To avoid quadratic constraints, it was piecewise 

linearly approximated by the parameters 𝑚𝑠𝑝𝑑 and 𝑏𝑠𝑝𝑑 (Table C.2). 
 

𝐸𝐶𝑝𝑟𝑜𝑝 (𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑 ) = 𝑚𝑠𝑝𝑑𝐷𝑆

𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

+ 𝑏𝑠𝑝𝑑        (C.2) 

𝑫𝑺
𝒕,𝒔𝒎𝒐𝒃
𝒔𝒑𝒅

  (0,18.5] (18.5,63] (63, …) 

𝑚𝑠𝑝𝑑  0 0.5693 1.863 

𝑏𝑠𝑝𝑑  115.45 104.92 23.43 

Table C.2 Parameters for the piecewise linear approximation of energy consumption for propulsion 

The additional energy required to overcome the increased rolling resistance due to the 

battery weight is calculated with the energy density 𝜌𝑏𝑎𝑡, the rolling resistance coefficient 𝑐𝑟𝑟, 

and the gravitational constant 𝑔. 

𝐸𝐶𝑤𝑔ℎ𝑡(𝑩𝑪𝑨𝑷𝑮) =
𝑩𝑪𝑨𝑷𝑮

𝜌𝑏𝑎𝑡 𝑐𝑟𝑟𝑔         (C.3) 

The specific mean energy consumption increases by 0.2524 Wh/km for each additional kWh 

of capacity, which fits the around 3% increase per 100 kg additional weight [89]. Higher 

weight also increases the vehicle inertia which leads to higher losses in recuperation. This is 

neglected in this study since the increases are small and difficult to assess. 
 

The specific energy consumption of the auxiliaries is highly sensitive to the speed of the EV 

𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

 since the power demand of the auxiliaries is assumed to be constant. At a constant 

load, the specific energy consumption increases at a slower speed. For the auxiliaries, a 

baseload of 500 W is set. This value is based on empiric measurements and literature values 

[81]. The specific energy consumption is piecewise linearly approximated by five separate 

functions (Table C.3). 
 

𝐸𝐶𝑎𝑢𝑥 (𝐷𝑆
𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

, 𝑇𝑒𝑚𝑝𝑡,𝒔𝒕𝒆𝒎𝒑
𝑎𝑚𝑏 ) = (𝑚𝑡𝑒𝑚𝑝𝐷𝑆

𝑡,𝑠𝑚𝑜𝑏
𝑠𝑝𝑑

+ 𝑏𝑡𝑒𝑚𝑝) 𝑓𝑡𝑒𝑚𝑝(𝑇𝑒𝑚𝑝𝑡,𝒔𝒕𝒆𝒎𝒑
𝑎𝑚𝑏 )    (C.4) 

 

𝐃𝐒
𝐭,𝐬𝐦𝐨𝐛
𝐬𝐩𝐝

  (0,5] (5,10] (10,20] (20,40] (40, …) 

𝑚𝑡𝑒𝑚𝑝  -40 -10 -2.5 -0.625 -5/48 

𝑏𝑡𝑒𝑚𝑝  300 150 75 37.5 50/3 

Table C.3 Parameters for the piecewise linear approximation energy consumption of the auxiliaries 

Heating and cooling the passenger cabin requires additional power. In this study four levels 

of additional power demand factor 𝑓𝑡𝑒𝑚𝑝 to heat or cool the cabin are set depending on the 

ambient temperature (Table C.4). Other temperature dependencies such as increased losses 

due to higher battery inner-resistance or lower recuperation power are neglected in this 

study. Therefore, the ambient temperature from the temperature scenarios 𝑇𝑒𝑚𝑝𝑡,𝒔𝒕𝒆𝒎𝒑
𝑎𝑚𝑏  is 

taken as variable input to the energy consumption function. 
 

𝑻𝒆𝒎𝒑𝒕,𝒔𝒕𝒆𝒎𝒑
𝒂𝒎𝒃  (…,0) [0,10) [10,15) [15,25) [25,30) [30, …) 

𝑓𝑡𝑒𝑚𝑝  4 3 2 1 2 3 

Table C.4 Factor for the auxiliaries’ intensity of use dependent on the outside temperature 
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Appendix C2 

Electric vehicle charging load-curves 

The input data for the charging curves comes from own empirical measurements (IIP 

database). The maximum charging power 𝑃𝑐
𝑚𝑎𝑥𝑐𝑟𝑔

 and the reduction points 𝑅𝑃𝑐 for different 

EVs for single-phased 2.2 kW and 3.7 kW charging were recorded with an external energy 

measurement device directly at the power outlet. The three-phased 11 kW (16 A, 400 V) and 

22 kW (32 A, 400 V) charging curves were taken from the EV battery management system 

data. Hence, the charging losses in the on-board charging unit must be considered when 

calculating their maximum power at the grid level. The recorded curves are validated by 

other empirical results from the literature [56]. Due to the modeling choice of the flexible 

battery capacity, the linear increase in charging power as a result of the increase in battery 

voltage at a constant current level had to be neglected. 

Appendix D1 

 𝒔𝒎𝒐𝒃 5 10 15 20 25 

 c zS
mob* BCAPG zS

mob* BCAPG zS
mob* BCAPG zS

mob* BCAPG zS
mob* BCAPG 

FFS 

2.2 13,392 18 13,460 18 16,721 44 18,220 56 18,237 56 

3.7 13,931 18 13,999 18 16,389 37 18,511 54 18,527 54 

11 14,471 18 14,539 18 16,929 37 18,055 46 18,071 46 

22 15,011 18 15,078 18 17,468 37 18,470 45 18,486 45 

FSWC_S 

2.2 17,252 47 18,281 52 19,360 60 19,383 60 19,390 60 

3.7 17,169 42 18,446 49 19,650 58 19,673 58 19,680 58 

11 17,459 40 18.361 44 18,816 47 18,839 47 18,846 47 

22 17,999 40 18,901 44 19,106 45 19,128 45 19,136 45 

FSWC_O 

2.2 20,149 44 21,227 52 22,193 60 22,192 60 22,222 60 

3.7 20,309 41 21,513 50 22,479 58 22,478 58 22,508 58 

11 19,710 32 21,673 47 21,627 47 21,626 47 21,656 47 

22 19,997 30 21,580 42 21,913 45 21,912 45 21,942 45 

Table D.1 Optimal values and battery capacities for the three scenario reduction heuristics and four different charging capacities 

(the cost-minimal decision set for each subset size is highlighted; FFS with 𝑠𝑡𝑒𝑚𝑝 = 10) 

 

Appendix D2 

 𝒔𝒕𝒆𝒎𝒑 5 10 15 20 

 c [kW] zS
mob* BCAPG zS

mob* BCAPG zS
mob* BCAPG zS

mob* BCAPG 

FFS 

2.2 22,060 59 22,192 60 22,193 60 22,193 60 

3.7 22,346 57 22,479 58 22,479 58 22,479 58 

11 21,620 47 21,626 47 21,627 47 21,627 47 

22 21,907 45 21,913 45 21,913 45 21,913 45 

Table D.2 Optimal values and battery capacities for the FFS scenario reduction heuristic and four different charging capacities 

(the cost-minimal decision set for each subset size is highlighted; FSWC_O with 𝑠𝑚𝑜𝑏 = 15) 
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Appendix D3 

Scenario No. zS
mob* BCAPG c Probability 

37 20,014 33 2.2 0.0200 

55 21,863 38 11 0.0008 

76 19,520 29 2.2 0.0280 

114 15,050 12 2.2 0.1100 

238 21,130 28 11 0.0008 

542 21,724 35 11 0.0016 

774 20,321 44 2.2 0.0012 

1004 18,856 25 2.2 0.0568 

1036 18,826 22 11 0.0008 

1102 23,867 50 2.2 0.0008 

1171 21,882 47 11 0.0004 

1175 20,677 15 11 0.0012 

1214 20,241 18 11 0.0016 

1310 20,441 34 2.2 0.0100 

1404 16,710 16 2.2 0.1920 

1439 14,140 9 2.2 0.1084 

1497 17,328 21 2.2 0.1452 

1593 21,370 40 2.2 0.0028 

1627 18,143 23 2.2 0.0912 

1763 26,263 54 11 0.0004 

1867 15,854 16 2.2 0.2116 

1928 21,395 37 2.2 0.0044 

1978 19,745 20 3.7 0.0028 

2019 12,719 6 2.2 0.0068 

2393 23,490 29 2.2 0.0004 

Cumulative probability of scenarios with 2.2 kW 0.9896 

Cumulative probability of scenarios with 3.7 kW 0.0028 

Cumulative probability of scenarios with 11 kW 0.0076 

Cumulative probability of scenarios with ≤ 30 kWh 0.9576 

Cumulative probability of scenarios with ≤ 40 kWh 0.9972 

Table D.3 Optimal solutions for the individual mobility scenarios and the associated probabilities for the SAA (FSWC_O with 

𝑠𝑚𝑜𝑏 = 15, FFS with 𝑠𝑡𝑒𝑚𝑝 = 10) 
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a b s t r a c t

According to many governments electric vehicles are seen as an efficient mean to mitigate carbon dioxide
emissions in the transport sector. However, the energy charged causes carbon dioxide emissions in the
energy sector. This study demonstrates results from measuring time-dependent electricity consumption
of electric vehicles during driving and charging. The electric vehicles were used in a French-German
commuter scenario between March and August 2013. The electric vehicles ran a total distance of
38,365 km. 639 individual charging events were recorded. Vehicle specific data on electricity con-
sumption are matched to disaggregated electricity generation data with time-dependent national elec-
tricity generation mixes and corresponding carbon dioxide emissions with an hourly time resolution.
Carbon dioxide emission reduction potentials of different charging strategies are identified. As carbon
dioxide emission intensities change over time according to the electric power systems, specific smart
charging services are a convincing strategy to reduce electric vehicle specific carbon dioxide emissions.
Our results indicate that charging in France causes only about ten percent of the carbon dioxide emis-
sions compared to Germany, where the carbon intensity is more diverse.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Electric vehicles (EV) are considered as an eco-innovation that
has the potential to reduce environmental problems caused by the
transportation sector (Jochem et al., 2016; Lane and Potter, 2007;
Rezvani et al., 2015). The potential for CO2 emission reductions
depends on the CO2 emissions generated for charging the EV
compared to the emissions from conventional Internal Combmag-
nitude in different countries (Doucette and McCulloch, 2011; Faria
et al., 2013; Nordel€of et al., 2014). For example CO2 emission in-
tensities of electricity generation largely differ between France and
Germany (Fig. 1) due to severe differences in the underlying elec-
tricity generation mixes (ENTSOE-E, 2014). Heavy fluctuations of
electricity fed-in by photovoltaic and wind turbines can be
observed in Germany whereas the high share of nuclear power
, maximilian.schuecking@kit.
m), henningsteffens@gmx.de
), olaf.wollersheim@kit.edu
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effect corresponding CO2 emission intensities in France.
Quantifying CO2 emission reduction potentials of EV are of

particular interest with regards to European greenhouse gas
emissions reduction targets. However, this task remains chal-
lenging like ongoing discussions on the appropriateness of stan-
dardized driving cycles to measure CO2 emissions of EV and ICEV
show.

The objective of this paper is to contribute to this discussion by
quantifying CO2 emission reduction potentials of EV used for
commuting in the French-German cross-border context based on
time-dependent empirical EV energy consumption data as well as
data on CO2 emissions of the national power plant portfolios.
2. Literature review on EV specific CO2 emissions

Literature discussing CO2 emission reduction potentials of EV
deployment usually compares the calculated values to other
potentially substituted vehicle technologies. Most do so by
comparing them to an identical or similar ICEV model (Doucette
and McCulloch, 2011; Faria et al., 2013). Others set them in refer-
ence to regulatory limits (e.g. Euro VI) or fleet targets for ICEV
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Fig. 1. CO2 emission intensities of electricity generation in France and Germany in 2013.
(Sources: EEX Transparency, 2015; RTE, 2014).
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(Donateo et al., 2014, 2015; Jochem et al., 2015). Some illustrate the
potential by calculating the point of ecological break-even in
dependence of driven mileage (Bickert et al., 2015). Yet others
expand the basis for comparison to other new technologies such as
hybrid electric vehicles (HEV), plug-in hybrid electric vehicles
(PHEV), or fuel cell electric vehicles (FCEV) (Campanari et al., 2009;
Ma et al., 2012; McCarthy and Yang, 2010; Sharma et al., 2012).

Most outcomes of previous studies indicate some kind of
reduction potential. A significant dependence on the carbon in-
tensity of electricity generation can be found. A high share of low-
carbon energies in the energy mix, such as renewables or nuclear
power, significantly favors the EV emission values (Faria et al.,
2013). To lower the CO2 emissions, especially for a carbon inten-
sive energy mix such as Germany, a change towards renewable
energies is needed (Bickert et al., 2015) or the implementation of
specific low carbon charging strategies, such as load shifting
(Jochem et al., 2015; Robinson et al., 2013).

However, these results are not consistent as they highly depend
on themethod and setting of the research. Table A1 in the Appendix
provides an exemplary overview of different studies focusing on
emissions of EV. The results of these studies are divers, because
they differ in the following dimensions: region, system boundaries,
specific energy consumption, definition of emission intensity (i.e.
12
time resolution, average or marginal), and type of pollutants.
The system boundaries have two main sub-dimensions: the

product life cycle and process chain of energy production. A life
cycle assessment (LCA) of EV usually considers all emissions of their
production process and all upstream materials used, the emission
caused by operation, and the emissions caused by their recycling
and disposal (e.g. Bickert et al., 2015; Hawkins et al., 2013; Muneer
et al., 2015). Other studies focus only on the emissions caused
during operation neglecting the upstream and downstream.

The second dimension considers the extent to that the value
chain of the energy carrier (i.e. fuel or electricity) is considered. For
EV the literature distinguishes between four different perspectives:
tank-to-wheel (TTW), grid-to-wheel (GTW), plant-to-wheel (PTW)
and well-to-wheel (WTW) (Fig. 2).

TTW as the most limited only considers the efficiency of the
energy conversion stored in the battery. Additionally to the TTW
perspective, GTW considers efficiency losses from the grid into the
battery. PTW additionally considers the losses in the process of
energy generation, transport and conversion. WTW as the most
holistic approach considers all the energy consumption (and
emissions) from resource depletion, electricity generation, trans-
port, conversion, and vehicle usage. While energy conversion for
generating electricity to run EV takes place in power plants (PTW)
1



Fig. 2. Energy measurement points and methods in the energy supply chain for charging EV.
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with the major parts of efficiency losses, fuel combustion, corre-
sponding energy conversion and efficiency losses for ICEV occur in
internal combustion engines (TTW). Therefore concerning the
emissions caused by energy supply TTW for ICEV is adequately
represented by PTW of EV.

In this context it is also important to distinguish whether
empirically measured energy consumption values are taken or
values based on standardized driving cycles, such as the New Eu-
ropean Driving Cycle (NEDC), as basis for emission assessment. Like
the consumption values of ICEV depending on the conditions of
deployment (driving profiles, driver behavior, and the auxiliaries,
etc.) the real energy consumption values can significantly differ
from the ones based on standardized driving cycles (Donateo et al.,
2014; Muneer et al., 2015; Rangaraju et al., 2015). Nevertheless,
most studies do not consider real driving profiles.

The considered time resolution and time duration of the inves-
tigation varies significantly between studies and shows a significant
impact on the results. Some only take average values for one year of a
specific energy mix (e.g. Campanari et al., 2009; Doucette and
McCulloch, 2011) others take smaller distinctions looking at
different seasons, monthly averages or even use disaggregated data
with a 30 min time resolution (e.g. Donateo et al., 2014; Rangaraju
et al., 2015; Robinson et al., 2013). Some studies do not focus on
the average emissions of the energy mix, but focus only on the
marginal emissions that are caused by the additional demand of EV,
which are mostly carbon-intensive plants (Jochem et al., 2015; Ma
et al., 2012; McCarthy and Yang, 2010), which consequently leads
to higher CO2 emission values. Due to different energy mixes
depending on various factors such as local resources, climate, and
energy policy, it is important to clearly distinguish regional bound-
aries inwhich the emissions are investigated. Especially the different
energymixes and their volatility can have a significant impact on the
EV emissions Doucette and McCulloch, 2011; Faria et al., 2013; Ma
et al., 2012). For example average CO2 emissions from electricity
generation in 2013 in the neighboring countries, Germany and
France, illustrate these differences evidently: 486 g/kWh in Germany
and 64 g/kWh in France (IEA, 2015).

The importance of clearly distinguishing between the different
approaches to assess emissions from EV is illustrated by Jochem
et al. (2015) for the example of Germany. EV specific PTW CO2
emissions are measured based on four methods including (i) the
annual average electricity generation mix, (ii) the time-dependent
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average electricity generation mix, (iii) the marginal electricity
generation mix and (iv) balancing zero emissions (e.g. by the Eu-
ropean Emission Trading System). As vehicle driving and parking is
not equally distributed over the day in general (Kaschub et al., 2011;
Ketelaer et al., 2014) and the European carbon pricing mechanism
seems to be inefficient (Koch et al., 2014), quantifying EV specific
CO2 emissions with methods (ii) or (iii) considering time-
dependent energy mixes seems appropriate, when charging un-
der a high volatile energy emission factor (cf. Fig. 1).

There seems to be a research gap in the current literature con-
cerning charging-dependent PTW CO2 emissions of EV based on
empirical, disaggregated, time-dependent data series of the energy
mix charged in real world usage scenarios in order to derive CO2
reduction potentials for different countries. Due to the various
potential ways to set the system boundaries and measure the en-
ergy consumption, there is no direct comparability of the different
studies and their proposed reduction potentials among themselves.
The studies that are comparing the CO2 emissions of EV in different
countries do so, due to the lack of empirical data, mainly based on
standardized driving cycles or exemplary recorded trips. In order to
fill this gap in the literature a long-term fleet test of EV deployed in
a common and real cross-border mobility profile between two
countries with distinctively different energy mixes is required.

Therefore, we present a French-German commuter fleet test as a
case study. The driving profiles of commuters are characterized by a
deterministic, repetitive, and therefore predictable mobility demand
on fixed routes. Hence, commuting is widely considered an ideal
application for substituting ICEV with EV (e.g. Tomi�c and Kempton,
2007). According to the Association of European Border Regions
(2012) the French-German Pamina region is notably characterized
by a high degree of cross-border labor mobility with large-scale
cross-border cooperation. About 16,000 workers daily cross the
French-German border in the Pamina region for commuting pur-
poses, which underlines the validity presented results.

In order to achieve the paper's objective of quantifying the time-
dependent real CO2 emission reduction potentials of EV in the
French-German cross-border context we raise the following
research questions:

(i) How much energy was charged and consumed by the EV on
the individual trips during the fleet test and how much does



A. Ensslen et al. / Journal of Cleaner Production 142 (2017) 263e278266
this amount depend on the chosen measurement points or
assessment method (e.g. GTW, TTW, NEDC)?

(ii) What are the CO2 emissions caused by the EV considering the
time-dependent national PTW CO2 emissions and the
different assessment methods?

(iii) How high are the real CO2 emission reduction potentials of
different EV use cases based on the previous results?
3. Methods and data

Section 3.1 describes the French-German e-mobility commuter
case study. Section 3.2 presents the methods applied (Section 3.2.1)
and data used (Section 3.2.2) tomeasure EV specific energy charged
and consumed. Section 3.3 provides an overview on the methods
applied (Section 3.3.1) and data used (Section 3.3.2) to measure
charging-dependent CO2 emissions of EV.

3.1. Case study description

The fleet test to answer the proposed research questions was a
French German cross-border e-mobility project carried out between
2013 and 2015 (Stella et al., 2015). EVwere used by cross-border shift
workers to commute between their homes in Alsace (France) and
their workplace in Karlsruhe (Germany) in fixed car-pooling groups
(Table 1). Hence, the time of use changed according to their rolling
shift schedule: the workers arrived 30 min before the start of their
eight hour shift at 6 am, 2 pm, or 10 pm respectively. After their shift
they immediately started their journey back home, which usually
lasted between one and 1.5 h. The average commuting distance of
75 km one-way was too long to travel two ways on one battery
charge. Therefore, the EV were directly recharged during the eight
hours of work as well as at home, usually immediately after arrival.
Out of the six EV used by the shift workers during the project data of
three e-Wolf Delta 2 is analyzed in this study.

3.2. Measuring EV specific energy charged and consumed

Different methods to quantify the energy charged and
consumed by EV are applied. The first approach calculates the en-
ergy charged during the charging events based on an exemplary
charging curve (Fig. 3) measured at measurement point 1 (Fig. 2)
during a charging event. The second approach quantifies the energy
charged (measurement point 2, Fig. 2) and consumed (measure-
ment point 3, Fig. 2) based on data from EV on-board data loggers.
The third approach calculates the energy consumed during the
charging events based on standard energy consumption (NEDC).
Furthermore, information on the case study are provided including
important meta-information of the data used.

3.2.1. Assessment methods
To calculate the time-dependent CO2 emissions, it is essential

not only to know the total amount of energy charged, but also the
Table 1
Characteristics of shift worker commuting in the project.

User group E

User per EV F
Usage frequency 7
Average one-way distance 7
Average annual mileage 3
Average speed 5
Type of EV 3
Charging locations A
Charging infrastructure 1
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changes of charging power during the charging process. The
amount of energy charged during one charging event or discharged
during a journey can be calculated via the integral of the product of
current and voltage over time. As recording frequency of the on-
board data logger measuring the charging power, the voltage and
current was rather low, three different approaches are used to
approximate the energy charged and consumed by the EV.

One possibility to calculate the energy charged during the
charging processes relies on one exemplary charging curve recor-
ded for the conventional AC charging process from 0% to 100% state
of charge (SOC) (1). Voltage and current were measured at mea-
surement point 1 within the energy supply chain presented in
Fig. 2. This approach is used to quantify the GTW charging energy of
the three EV under investigation. Fig. 3 indicates that the charging
power was set by the on-board charging unit of the EV, which lay at
a maximum of 2.544 kW significantly lower than the allowed
3.6 kW for the European domestic Schuko socket outlets (CEE 7/7).
For the charging process two different phases can be distinguished:
almost directly after the start and for the main part of the process
the effective charging power remained almost constant at
2.544 kW; after around 8.75 h the charging power started to
decrease stepwise until it reaches zero at 10.75 h. This simply re-
flects the constant current constant voltage charging regime used
by almost all lithium ion battery chargers. This regime starts with
constant current until a preset cell voltage level is reached. At this
time, the charger switches to constant voltage charging, which
requires a current derating until a predefined minimum current
level, where the charging process is finished (Kaschub et al., 2013).

Our approach of modelling EV charging processes is based on
Kaschub et al. (2013), but is using a battery voltage limit of 685 V as
an indicator for the point of power reduction. Until this voltage
level, the battery is charged at constant power (i.e. 2.544 kW)
(Formula 1). Then an approximated linear charging power reduc-
tion begins (Formula 2 and Fig. 3).

wq;1;constant ¼ 2:544$Dtq;1;constant ½kWh� (1)

wq;1;reduction ¼ 1
2
$2:544$Dtq;1;reduction½kWh� (2)

The energy needed during charging event q in this approach is
calculated by:

wq;1 ¼ wq;1;constant þwq;1;reduction (3)

For each individual charging process the energy charged was
calculated based on these considerations.

A second possibility to calculate the energy charged during the
charging processes is based on the data recorded by the EV on-
board data logger (2a). It calculates the energy consumed and
recuperated during the journeys as well as the energy charged and
the timely distribution by multiplying the battery voltage, the
battery current and the interval from the actual data point to the
previous (Formula 4).
mployees in shift production

ixed group of 5e7 people
days per week before and after shift changeovers
5 km
6,000 km
5e60 km/h
e-Wolf Delta 2
t home and at work
2 standard outlets (230 V, max. 16 A, max. 3.7 kW)
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Fig. 3. Recorded charging curve of project EV (e-Wolf Delta 2) at domestic power outlet.

Table 2
Technological data of the EV (e-Wolf Delta 2).

Technical data e-Wolf Delta 2

Number of seats 7
HV-Battery capacity 24.2 kWh
HV-Battery voltage (max.) 720 V
Number of cells 168
Cell technology Li-ion NMC
Battery weight 250 kg
Energy consumption (NEDC) 187 Wh/km
Maximum range (NEDC) 154 km
Performance 60 kW
Peak performance 90 kW
Heating Bio-Diesel
Vehicle mass (empty) 1666 kg
AC charging power 2.5 kW (nominal)
AC plug type Type 2 (EN 62196e2)
AC charging mode Mode 1 (IEC 61851)
Data logger On-board CAN and GPS Logger
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wq;2a ¼
X
tLogger

2TLogger;q

UtLogger$ItLogger$Dt Logger (4)

This approach is used to measure the energy charged at battery
entrance without considering the losses of the AC/DC charging unit
(measurement point 2, Fig. 2) and the energy consumed at the
battery outlet (measurement point 3, Fig. 2).

The frequency of only one data point every 20 s while driving
and five to ten minutes while charging still lead to a significant
degree of inaccuracy. So additionally this study compares two
rolling means for the values of battery voltage and current taking
into account three (2b) and fivemeasured values (2c). As the switch
between charging and driving is promptly, equalizing over a high
number of values is not sensible. Therefore, the first rolling mean
only includes the preceding and the following data point (2b); the
second rollingmean includes the two predecessors and followers of
each data point (2c).

The third possibility to calculate the energy charged during the
charging processes is widely applied in literature and takes the
standard energy consumption based on the NEDC (3). The NEDC
does not consider the losses during charging processes, although this
has been suggested by UNECE (2005). For our vehicle the manufac-
turer states 187 Wh/km as specific energy consumption (Table 2).
Accordingly the energy consumption on the journeys was estimated
under the assumption that this was the exact energy consumption
for each journey and therefore had to be recharged after the arrival.

As the energy charged calculated by (1) is based on data
measured directly at the socket outlet (GTW), no additional losses
for transmitting energy from the power socket to thewheel need to
be considered. On the other hand (2a), (2b), (2c), and (3) are all
based on the energy charged and consumed at battery level.
Therefore, the charging efficiency from the grid to the battery
additionally needs to be taken into account.

3.2.2. Data used
The EV used in the project, i.e. the e-Wolf Delta 2 (an EV recon-

struction based on the chassis of Nissan NV200), and the installed
charging infrastructure were chosen according to the technological,
user, and research requirements. For the accompanying research it
was important to gain detailed access to the vehicle and its battery
data. Technical data of the e-Wolf Delta 2 are presented in Table 2.
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Only conventional charging (Mode 1, according IEC 61851) was
used. Therefore, standard outlets (230 V) with a maximum current
of 16 Awere installed at the workers' homes as well as at the plant.

To allow a detailed assessment of the energy consumption and
charging processes the e-Wolf Delta 2 were equipped with special
data loggers (VIKMOTE VX 20, Vikingegaarden). Details on the data
collected are presented in Stella et al. (2015).

The charging events were identified and distinguished based on
the data recorded by the EV data logger. Whenever the ignitionwas
switched off, indicated by a LV-circuit of zero, and a current speed
of zero the start of a charging event was set.

Over the timeframe of this study, from March to August 2014,
the three EV travelled about 38,365 km,18,612 in France and 19,753
in Germany. 639 charging events were recorded, 299 in France and
340 in Germany. 565 transnational commuting trips were identi-
fied, 283 to France and 282 to Germany.

As expected, in Germany the charging events usually started
before the shifts of the commuters started at 6:00,14:00 and 22:00.
In France the charging events mostly started between one and two
hours after work when the commuters had returned back home
(Fig. 4). The active charging hours are well distributed over the days
with peaks before shift changeovers in Germany and after shift
changeovers in France.



Fig. 4. Timely distribution of starting hours of the charging events.

1 100% e (100%e2.5%) (100%e6%) (575 TWh e 7 TWh e 24 TWh
575 TWh ) ¼ 13.3%.
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3.3. Measuring charging-dependent CO2 emissions

As CO2 emission intensities of electricity generation show large
seasonal as well as hourly variations (Fig. 1), particularly in Ger-
many, usage of a time-dependent mix to assess CO2 emissions of EV
is appropriate (Jochem et al., 2015). Therefore (ii) the time-
dependent average electricity generation mix or (iii) the marginal
electricity generationmix could be used. Since the EV were used for
commuting and usually showed a very low SOC at arrival they had
to be directly charged after they were plugged in to ensure that
sufficient energy could be charged during the available time. This
represents a highly inelastic manner and is very similar to other
electrical appliances. Consequently it seems not to be justified to
take the EV as the marginal consumer. Hence, using (iii) the mar-
ginal electricity generation mix seems not to be appropriate for our
evaluation. Consequently we focus on the (ii) hourly average CO2
emission mix of the electricity generated.

3.3.1. Method
The energy charged wq during a charging event q with duration

of Tq (cf. Formula 3 and Formula 4) is mapped to the time-
dependent and country specific CO2 emission factors of electricity
generated (fi;t) in order to quantify the CO2 emissions of a charging
event cq;i (Formula 5).

cq;i ¼
P

t2Tq fi;t$Dt

Tq
$ wq; ci;cq (5)

The time-dependent CO2 emission factors of country i during
hour t (fi;t) are calculated based on the time-dependent shares of
the energy generated by sources j of power generation in hour t
(ei;j;t) multiplied with the appropriate specific CO2 emission factors
of the different energy sources ki;j (cf. Formula 6).

fi;t ¼
X
j2J

ei;j;t$ki;j; ci;ct (6)

ei;j0 ;t ¼
E
i;j0 ;tP
j2J

Ei;j;t
represents the share of electricity generated in

country i by one energy source j
0
during hour t with Ei;j;t repre-

senting the electricity generated by energy source j in country i
during hour t with
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t2T ¼ f1;…; Tg: Hourly time intervals from March
2013eAugust 2013.
i2I ¼ fFrance;Germanyg ¼ fF;Gg: Countries considered.
j; j

0
2J ¼ fLignite; Hard coal;Natural gas;Oil; Nuclear; Pump

storage;Run� of � river hydro; Wind; Photovoltaics; Bioenergy;
Waste and othersg: Power plant technologies.

Additionally, knowing all cq;i as well as the overall distances
travelled by the EV during the period considered, the average
specific CO2 emissions of the project EV as well as country specific
average CO2 emissions for exclusively charging in one of the
countries can be calculated.

3.3.2. Data
The emission factors in Table 3 represent the emission factors of

the energy at power outlet level. As only PTWCO2 emissions and not
the life cycle emissions, i.e. no WTW perspective, are considered
within this study, specific emission factors for nuclear power, hydro
power, wind, and photovoltaics are zero (Table 3). For the German
case the total CO2 emission values from electricity generation divided
by the total electricity consumption in the year 2012 including losses
for transmission anddistribution are used to calculate ki,j (Icha, 2014).
For France only data on electricity generation by source is available
(RTE, 2015). In order to include CO2 emissions for efficiency losses of
electricity transmission and distribution the values are calculated
based on 6% losses provided by the major French distribution system
operator (ERDF, 2009) and the 2.5% losses provided by the French
transmission grid operator (RTE, 2016). Corresponding efficiency
losses are in line with other studies, e.g. Donateo et al. (2015) calcu-
latedwith about 7% losses and Robinson et al. (2013)with 9.1% losses.
In order to calculate French electricity consumption based on gross
electricity generation in accordance to Icha (2014), power plant's self-
consumption of 24 TWh in 2013 (INSEE, 2014) as well as electricity
produced from pump storage of 7 TWh in 2013 (INSEE, 2014) are
taken into account. Corresponding efficiency losses consequently
amount to 13.3%.1 These efficiency losses are comparable to those in
Germany, which amounted to about 11.6% in 2012 (Icha, 2014). In
5



Table 3
Specific emission factors depending on the sources of energy in France (RTE, 2015) and Germany (Icha, 2014).

Energy source (j) Specific emission factors ki;j

�
gCO2
kWh

�

France (F) Germany (G)

kPRODF;j kCONSF;j ¼ kPRODF;j $w kCONSG;j

Lignite 956 1102.5 1159.7
Hard coal 904.8
Gas Combustion turbine 593 683.9 376.8

Co-generation 350 403.6
CCG 359 414.0
Other gases 552 636.6

Oil Combustion turbine 777 896.1 571.4
Co-generation 459 529.4
Other fuels 783 903.0

Nuclear 0 0 0
Pump storage hydro 0 0 0
Run-of-river hydro 0 0 0
Wind 0 0 0
Photovoltaics 0 0 0
Bioenergy waste and others 983 1133.7 328.1

Legend:
Remark: CO2 emissions for electricity generation and distribution are considered; CO2 emissions for fuel provision and power plant construction are not considered.
Combustion turbine: Also known as gas turbine.
Co-generation: Generates electricity and useful heat at the same time.
CCG: Combined Cycle Gas e Combination of thermodynamic cycles to improve turbine efficiency.
Other gases: E.g. steam turbines or gas engines.
Other fuels: E.g. steam turbines and diesel engines.
Bioenergy, waste and others: Specific CO2 emissions of biomass, biogas andwaste are assumed to be at the same level in France. For Germany specific CO2 emissions of biomass
are assumed to be zero. Waste and other energy sources are at different levels leading to differences observed for specific CO2 emissions of bioenergy, waste and others
between France and Germany.
PROD: Calculations based on gross electricity generation.
CONS: Calculations including efficiency losses.
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order to calculate the specific CO2 emissions of France based on
electricity consumption kCONSF;j we multiplied the specific CO2 emis-
sions based on gross electricity generation kPRODF;j with w ¼ 1.1532

(Table 3). The additional losses are included in the GTW energy
consumption assessment.

The datasets concerning hourly electricity generation by
different energy sources for the year 2013 originate from RTE for
France (RTE, 2015) and from the EEX Transparency Platform for
Germany (EEX Transparency, 2015).

4. Results

In Section 4.1 the energy charged and consumed by the
considered EV are presented. In Section 4.2 the results concerning
corresponding charging-dependent CO2 emissions are given.

4.1. EV specific energy charged and consumed

The battery efficiency and the charging efficiency of the EV
deployed were calculated by comparing the measured energy
values at three different points as presented in Fig. 2. The energy
losses in the battery depend on various factors, e.g. the cell
chemistry, the assembly and connection between the cells, and the
cell temperature. To calculate an average value of the battery effi-
ciency for all three EV the ratio of the total amount of energy
consumed at battery level (measurement point 3, Fig. 2) and total
amount of energy charged at battery level (measurement point 2,
Fig. 2) was calculated for (2a), (2b), and (2c). The corresponding
results are presented in Table A2 in the Appendix. Since the
measured battery efficiency of the second EV (EV2) were greater
than one and showed other additional irregularities (later in the
project it was discovered that one cell of the battery pack was
2 w ¼ 1/(1e13.3%) ¼ 1.153.
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damaged), the values were excluded for calculating charging effi-
ciency. The empiric average charging efficiency between the
sockets and the batteries of EV1 and EV3 amounted to 0.924.

Comparing GTW and NEDC energy of the three project EV, on
average norm consumption (18.7 kWh/100 km) was exceeded by
42% (Table 4). Considering the charging processes only taking place
in France (Germany), on average norm consumption was exceeded
by about 49% (36%). Neglecting the losses in the AC/DC charging
unit (measurement point 2, Fig. 2) efficiency losses compared to
NEDC amount to about 32%, i.e. 39% for the charging processes
taking place in France and 26% for the charging processes taking
place in Germany. Additionally neglecting the losses in the battery
(measurement point 3, Fig. 2) results in efficiency losses of about
30% compared to NEDC, i.e. 34% for the trips from Germany to
France and 26% for the trips from France to Germany.

Next to the overall surplus compared to NEDC values the results
show that the energy consumption is on average significantly
higher on the home trips from Germany to France (Table 4 and
Fig. 5). These findings are supported by highly significant inde-
pendent sample t-test results (Student, 1908) with medium effects
(Cohen's d ranges between 0.55 and 0.69, Table 4). These results are
of particular interest, as they indicate that external factors influ-
enced electricity consumption of the EV on their home trips
significantly. However, no significant differences between the var-
iations of energy consumption on the trips to work and back home
could be observed. According to Table 4 standard deviations of trip
specific energy charged and consumed per kilometer do not differ
significantly. This is supported by insignificant Leveneetest results
(Levene, 1960) which are also presented in Table 4.
4.2. Charging-dependent CO2 emissions

The average CO2 emissions during the charging processes of the
project EV inFrance andGermanyare presented in Fig. 6. According to
these results average CO2 emission factors of the charging events vary



Table 4
Total energy charged and consumed by the project EV.

Activity Parking and charging Driving, consuming and recuperating

Assessment method Method (1) Average of the methods
(2a), (2b) & (2c)

Average of the methods
(2a), (2b) & (2c)

Method 3 (NEDC)

Measurement point 1 Measurement point 2 Measurement point 3 e

Place of recharge/Trip destination Total F G Total F G Total F G Total F G

Total energy [kWh] 10,195.6 5182.7 5012.9 9456.7 4818.9 4637.7 9320.7 4674.6 4646.1 7174.3 3480.4 3693.8
Overall surplus of total energy compared to

calculations based on NEDC [%]
42.1% 48.9% 35.7% 31.8% 38.5% 25.6% 29.9% 34.3% 25.8% e

Average trip specific energy per kilometer
[kWh/km]

0.267 0.279 0.254 0.248 0.259 0.237 0.244 0.251 0.236

Standard deviation of trip specific energy per
kilometer [kWh/km]

0.044 0.048 0.034 0.043 0.044 0.038 0.024 0.023 0.023

t-Test results t(563) ¼ 7.26, p < .001, d ¼ 0.61 t(563) ¼ 6.55, p < .001,
d ¼ 0.55

t(563) ¼ 8.21, p < .001,
d ¼ 0.69

Levene-test results F(1; 564) ¼ 0.092, p ¼ .76 F(1; 564) ¼ 0.182, p ¼ .67 F(1; 564) ¼ 0.559, p ¼ .46
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considerably, particularly in Germany. The standard deviations of
average CO2 emissions during the charging processes (SDcq;F and
SDcq;G ) and Levene's test (Levene,1960) show that the variations of the
distributions differ at a highly significant level (SDcq;F¼30.6;
SDcq;G ¼ 91.2; F[1;637] ¼ 201.9, p < .001). Obvious differences
observed concerning arithmetic averages Mcq;F and Mcq;G are sup-
ported by highly significant t-test (Student, 1908) results with strong
effect sizes (Cohen, 1988) (t[423.2] ¼ 97.3, p < .001, d ¼ 7.5). These
findings are further supported by aggregated results presented in
Table 5.

On average PTW CO2 emissions of charging the project EV from
March until August 2013 exceeded CO2 emissions calculated based
on norm consumption by about 37% (measurement point 1, Fig. 2).
Not taking into account efficiency losses in the battery and for
charging still results in a surplus of PTW CO2 emissions of about
27% (measurement points 2 and 3, Fig. 2).

Two major reasons for the discrepancies between real CO2
emissions and CO2 emissions calculated based on NEDC can be
distinguished in (i) differences between the specific NEDC con-
sumption and real consumption and (ii) differences between TTW
and GTW. As NEDC consumption is also measured at measurement
point 3 (Fig. 2) the first reasons for the discrepancies between the
CO2 emissions calculated based on NDEC and real consumption can
be quantified. This amounts to about 27% for all trips considered, to
about 34% for the trips from Germany to France and to about 26%
for the trips from France to Germany (Table 5). However, this
analysis neglects the losses occurring in the converter and the
battery. Additionally incorporating the losses between measure-
ment point 1 and measurement point 3 (Fig. 2) permits accounting
for GTW consumption in order to quantify the empirical, time-
Fig. 5. Distributions of the specific energy consumed (measurement point 3, Fig. 2)
during the bi-national commuting trips by the 3 project EV.

12
dependent PTW CO2 emissions, as efficiency losses between elec-
tricity generation and measurement point 1 (Fig. 2) are considered
in the specific emission factors used.

Empirical specific GTW energy charged amount to about
0.27 kWh/km (Table 4, measurement point 1) and results in average
specific transnational PTW CO2 emissions of about 83.7 g CO2/km.
Specific CO2 emissions derived from norm consumption are on
average only at a level of 60.9 g CO2/km (Table 5). During the
evaluation period of six months about 3.2 tons of CO2 were emitted.
As the major part of the electricity generated in France is based on
“carbon-free” nuclear power, specific PTW CO2 emissions are sub-
stantially lower for the EV (16.4 g CO2/km in France compared to
147.1 g CO2/km for Germany). A detailed EV specific overview on
charging-dependent CO2 emissions is provided in Table A3.
5. Discussion

Section 5.1 discusses the results concerning EV specific energy
consumption, Section 5.2 the results concerning CO2 emissions and
Section 5.3 corresponding potentials to reduce CO2 emissions.
5.1. Energy consumption

When putting the emission values into a broader context con-
cerning the energy charged two distinctive outcomes have to be
discussed: firstly, the higher energy consumption in comparison to
the NEDC values and secondly, the higher average energy
consumed on the commuters' way home. The higher energy need
of about 42% is not the result of a single factor, but can rather be
Fig. 6. Distribution of the average CO2 emissions during the charging processes of the
project.
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Table 5
Total and average CO2 emissions of project EV.

Activity Parking and charging Driving, consuming and recuperating

Assessment method Method (1) Average of the methods
(2a), (2b) & (2c)

Average of the methods
(2a), (2b) & (2c)

Method 3 (NEDC)

Measurement point 1 Measurement point 2 Measurement point 3 e

Place of recharge/Trip destination Total F G Total F G Total F G Total F G

Total CO2 emissions [kg] 3209.6 304.8 2904.8 2976.9 283.7 2693.2 2957.0 275.1 2681.8 2338.0 205.3 2132.8
Overall average time-dependent specific

CO2 emissions (in g CO2/km)
83.7 16.4 147.1 77.6 15.2 136.3 77.1 14.8 135.8 60.9 11.0 108.0

Overall surplus of average time-dependent
specific CO2 emissions compared to
calculations based on NDEC [%]

37.3% 48.5% 36.2% 27.3% 38.2% 26.3% 26.5% 34.0% 25.7% 0%

3 (128 gCO2/km e 11 gCO2/km)/128 gCO2/km.
4 (128 gCO2/km e 108 gCO2/km)/128 gCO2/km.
5 (128 gCO2/km e (11 gCO2/km/0.924))/128 gCO2/km.
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explained by a combination of different factors.
First of all, the charging efficiency is considered in the GTW en-

ergy calculated based on method (1) (Table A2), which the NEDC
does not take into account. The calculated average value of 0.924 is
supported by the technical data of the e-Wolf Delta 2 components,
e.g. the on-boardAC/DC charging unit itself has an efficiency of up to
0.95, according to the manufacturer; and the calculated battery ef-
ficiency lies between 0.976 and 0.984. It is slightly higher than the
charging efficiency that has been stated in previous studies with a
value around0.9 (e.g. Campanari et al., 2009; Eaves and Eaves, 2004;
VanVliet et al., 2011), whichmight be due to other battery types, on-
board AC/DC charging units or other electrical components
(Thomas, 2009). Additionally, our period of investigation was
mainly during summertime,whendue to themild temperatures less
energy is lost due to the battery's internal resistance, than inwinter.

When we compare our results to a recent commercial German
vehicle test of EV (ADAC, 2015) with 11 EV, results of our empiric
additional energy consumption compared to the NEDC values are
comparable. The commercial test provides deviations from þ17.1%
up to þ49.7%, with an average of þ34.7% (standard deviation 11%).
This test also includes the new Nissan eNV200, which is very similar
to the project vehicles Delta 2 (the car bodies are identical). The
project vehicles consume (based on the GTW approach) on average
17% (26.6 kWh/100 km) more than the Nissan eNV200 in the com-
mercial test. Furthermore the results provided byHacker et al. (2009)
indicated an additional empirical energy demand measured by the
GTW approach of 25% up to 70% compared to NEDC values.

Additionally to efficiency losses during the charging process,
two further influencing factors leading to an increased energy de-
mand were identified: route profiles and average payload. In this
specific usage scenario the EV travel high distances on motorways
and (flat) country roads (share of motorways 49.5% and country
roads 46.4%) and have only a very low share of inner-city usage
(4.1%) e which is not optimal for EV. This leads to comparably
energy intensive high speed profiles with average speeds between
55 km/h and 60 km/h (Stella et al., 2015), where a higher amount of
energy is lost to drag, whereas the driving cycle used by ADAC
(2015) only covers a short motorway phase. The last, but prob-
ably most severe argument is the payload. As commuters use the
EV to carpool in order to travel as cheap as possible to work, usually
5 to 7 people travel in one EV.

The difference in specific higher energy consumption (~7% sur-
plus) between the trips from France to Germany and back from
Germany to France is arguably the result of three conditions: (i) the
shift workers might try to get home as quick as possible after work
resulting in higher average speeds or higher driving dynamics.
Furthermore, (ii) the users' homes are located at higher altitudes.
Finally (iii) the average wind direction in this area is south-west,
which is opposing the usual commuting direction when driving
home and therefore increasing the drag losses.
128
Additionally, the data quality and uncertainties in the energy
consumption measurement should be addressed. In terms of
generalization it should be kept in mind that only the energy
charged of three EV was measured. Even more limiting is the fact
that EV2 showed some irregular behavior in its data due to damaged
individual battery cells. Also the precision of the measurement of
the energy consumed and recuperated is limited due to the 20 s time
resolution of data points taken during a trip. As the recuperation
phases are often shorter, these phases might be underrepresented
due to the sampling frequency. Within this work the ratio of energy
recuperated and energy consumed lies between 10% and 15%. This
should be considered as lower bound. Furthermore, the assessment
of energy charged in the GTW approach with method (1) at mea-
surement point 1 (Fig. 2) is based on one exemplary charging curve.
Charging behavior might vary considerably based on different pa-
rameters, particularly outdoor temperatures.
5.2. CO2 emissions

The calculated EV emissions based on the French and German
energy mix reveal significant differences between the two coun-
tries. Therefore, different reduction potentials are derived from the
comparisons to comparable ICEV. Assuming that the project vehi-
cles would only be charged in Germany results in average time-
dependent PTW CO2 emissions of about 147.1 g CO2/km. This is
about 36% above the CO2 emissions calculated based on the norm
consumption of the EV (Table 5) and can be explained by the
comparably high energy consumption mainly due to the specific
driving profiles and the high occupancy rates. Although the CO2
emissions calculated by ADAC (2015) are based on a WTW assess-
ment, the average PTW CO2 emissions according to our results still
exceed the CO2 emissions calculated for Nissan eNV200 by about
15%. Comparing CO2 emissions according to norm consumption of a
conventional Nissan NV200 also having an identical chassis (128 g
CO2/km) with the CO2 emissions calculated based on the norm
energy consumption of the project EV (11 g CO2/km in France and
108 g CO2/km in Germany) leads to the conclusion that EV usage in
France (Germany) is e with regard to CO2 e more environmentally
friendly than usage of comparable ICEV. CO2 emission reduction
potentials in France (Germany) consequently amount to 91.4%3

(15.6%4). However, additional efficiency losses in the batteries and
the AC/DC charging unit (charging efficiency, Section 4.1) increases
the amount of energy needed for charging. This consequently also
increases CO2 emissions and results in reduction potentials
compared to ICEV of about 90.7%5 in France and 8.7%6 in Germany.
6 (128 gCO2/km e (108 gCO2/km/0.924))/128 gCO2/km.



Fig. 7. Cumulated active charging hours of the project vehicles.

Table 6
Estimates on CO2 emission reduction potentials and strategies.

Use cases Number of commuters Strategies to reduce CO2 emissions CO2 emission reduction potential per
electric kilometer travelled

French-German transnational
commuters in the Pamina region

~16,000 (Association of European
Border Regions, 2012)

Shifting charging activities to France, if
possible. If commuters need to charge
in Germany, shifting load into periods
with high shares of fluctuating
renewable energy sources.

Assuming that energy consumption is
equal on the way to work and back and
the EV are charged as often in Germany
as in France, CO2 emissions can be
almost halved. Load shifting, so EV are
charged as much as possible in France,
would permit to further reduce CO2

emissions of EV charging.
German commuters using EV instead of

cars
66% of the German workforce, i.e. ~27
million (Wingerter, 2014)

Load shifting into periods with high
shares of fluctuating renewable energy
sources.

The high volatility of CO2 emission
intensities of the German electricity
generation mix results in highly volatile
CO2 emission reduction potentials.
According to Fig. 7 load shifting into
afternoon hours could decrease CO2

emission intensities of EV charging by
about 100 gCO2/kWh on average.

French commuters using EV instead of
cars

About 73% of the French commuters use
cars, i.e. 18.6 million (INSEE, 2009)

Emissions are always at comparably
low levels, so charging when
convenient is possible. Alternatively
usage of self-generated renewable
energy could be an option.

About 10 times less CO2 emissions are
generated if EV are used instead of ICEV.
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PTW CO2 emissions for charging EV in France are consequently
about 10 times lower than CO2 emissions of comparable ICEV and
about 10 times lower than charging in Germany. These results
underline the effects of the different electricity generation mixes in
France and Germany on operational, charging and time-dependent
CO2 emissions of EV.

It needs to be critically mentioned, that the disaggregated data
on electricity generation used for the calculations differs between
France and Germany. Notably electricity generation by source is
classified differently and specific CO2 emissions in the two coun-
tries differ (Table 3). Nevertheless, almost all of the specific CO2

emissions provided for operating the power plants are within the
range of Turconi et al. (2013). Furthermore, differences between
official German statistics on annual electricity generation by source
and the averages calculated based on the hourly disaggregated data
provided by the EEX Transparency Platform (EEX Transparency,
12
2015) were observed. In comparison to the AGEB (2015) the
shares of lignite (~9 percentage points (pp)) and nuclear power (~7
pp) are heavily and the shares of electricity generated by wind (~3
pp) and photovoltaic (~2 pp) are slightly overrepresented, while on
the other hand gas (~8 pp), biomass, waste and others (~11 pp) are
heavily underrepresented. Furthermore, we did not consider elec-
tricity exchange between countries (which is currently increasing).
In the border region this electricity exchange is strongly influencing
the regional electricity generation mix. For other uncertainties,
such as regional specific grid losses or power generation mixes
(such as local electricity use from photovoltaics), there is to our
knowledge currently no reliable data available and therefore could
not be used. Depending on the region the time-dependent local
energy mix could potentially vary significantly from the national
one (UBA, 2016). Further limitations include that only CO2 emis-
sions were considered. Other environmental indicators were
9



A. Ensslen et al. / Journal of Cleaner Production 142 (2017) 263e278 273
neglected in this analysis.

5.3. CO2 emissions reduction potentials and strategies

Focusing on our results, we observed that if EV would have been
charged exclusively in Germany, specific CO2 emissions according
to NEDC of the EV would have still been slightly lower than for a
comparable ICEV (Section 5.2). Consequently, according to our
findings the upcoming European fleet target of 95 g CO2/km in 2022
would not be achieved by the project EV when real power plant
emissions would be considered. For Italy, Donateo et al. (2014) are
more optimistic about the potentials of EV to reach the fleet targets.
However, as the German electricity generation is in a considerable
decarbonization process, the 95 g CO2/km target might be achieved
in 2022 e even with our calculation method.

The time-dependent CO2 emissions assessed for 2013 and the
CO2 emissions calculated based on national average CO2 emissions
are about at the same level. This is surprising, as time-dependent
CO2 emissions fluctuate heavily during the day, particularly in
Germany. However, this can be explained by the usage scenario
within this particular project, as the commuters are shift workers
with a 24 h rotating shift schedule. The EV were in constant
deployment and charged rather slow (Mode 1). Consequently,
charging times are well distributed over the hours of a day (Fig. 7).
For commuters not working in a rotating shift schedule the
outcome would be different.

Our results implicate that CO2 emission reduction potentials of
EV could be used by charging them during windy and sunny hours
in Germany. From an environmental perspective, the time the
charging processes take place is much more important in Germany
than in France, as time-dependent CO2 emissions in France remain
relatively stable on a low level (Fig. 1). The findings are supportive
to Faria et al. (2013) who showed that CO2 emission reduction
potentials of EV are high for France. Additionally Faria et al. (2013)
showed that the reduction potential in Portugal varies significantly
depending on the month and time of day.

Therefore, particularly for Germany, we suggest introducing
controlled Mode 3 (IEC 61851) charging with comparably higher
charging powers up to 44 kW and the possibility to shift load into
periods with comparably low time-dependent CO2 emissions. This
however would require smart services controlling the charging
events so the batteries are fully charged at the end of the shifts. In this
context the potentially harmful effects of higher charging powers on
battery health as well grid constraints need to be considered.

An overview on strategies and potentials for reducing CO2 emis-
sions by substituting ICEVwith EV for different commuting use cases
in the French-German context is presented in Table 6. Based on our
findings the strategy suggestions for the different use cases vary: for
transnational EV users commuting between France and Germany we
recommend charging their EV in France as much as possible in order
to reduce the specific CO2 emissions. For commuters only commuting
within Germany we recommend shifting the load into periods with
high shares of renewables, i.e. particularly into afternoonhours,when
the sun is shining, or into windy periods. As CO2 emissions in France
are generally on a lowand stable level, our results permit to conclude
that charging when convenient has no negative impact on CO2

emissions. Further reduction is only possible when self-generated
renewable energies are available. In this case the charging schedule
should be adapted accordingly.

6. Conclusions

The energy needed for charging three well-loaded electric ve-
hicles in a French-German fleet test resulted in an average specific
consumption surplus above the official values of about 42% on
130
average. Considering time-dependent average French (character-
ized by a high share of nuclear power) and German (characterized
by a high share of fluctuating renewables) electricity generation
mixes, time-dependent carbon dioxide emissions for charging
electric vehicles are roughly ten times lower in France than in
Germany. Recommendations derived from the case study results of
focusing on commuting with electric vehicles in a region with a
high degree of cross-border labor mobility include that time-
dependent plant to wheel carbon dioxide emissions for charging
electric vehicles should be considered in future driving test pro-
cedures. Furthermore, the findings of this study underline the
postulation that hypothetical energy consumptions of the stan-
dardized driving cycles should be validated by long-term real-
world consumption analysis. Assuming that electric vehicles are
not charged equally distributed over the day in general, time-
dependent carbon dioxide emissions should be calculated and
considered in the currently developed Worldwide Harmonized
Light Vehicles Test Procedures. The better specific real world con-
sumption and corresponding carbon dioxide emissions are incor-
porated in upcoming test procedures, the more attractive it
becomes for car manufacturers to build low consuming electric
vehicles and provide attractive services supportive to charging
electric vehicles, when carbon dioxide emissions are low.

7. Future work

In order to assess charging dependent carbon dioxide emissions
precisely, future research could address this problem by comparing
the energy consumption of different types of electric vehicles
operating on the same routes. For this, the data on energy con-
sumption of the vehicles during driving and charging phases should
be recorded in higher sampling rates. This would allow better esti-
mates on energy consumption of electric vehicles. Furthermore, to
compare the empirical carbon dioxide emissions of electric vehicles
and internal combustion engine vehicles, measuring real fuel con-
sumption of comparable conventional cars operating on the same
routes could be investigated. The data on time-dependent carbon
dioxide emissions within the two countries could be analyzed in a
more detailedmanner in order to develop environmentally friendly
charging strategies for the two countries. Analyses focusing on the
research question how charging processes of electric vehicles used
in France and Germany could be scheduled in a carbon dioxide
minimizing manner could also be addressed in future works by
focusing on EV specific time-dependent marginal carbon dioxide
emissions due to the fact that EV are marginal consumers, when
they are capable to shift their load. Furthermore, load flow calcula-
tions, taking into account the technical constraints of the electric
power grid, could be supportive to map energy sources and sinks
more precisely in order to derive conclusions about the real carbon
dioxide emissions of consumers in different areas.
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A B S T R A C T

The utilization has a significant effect on the life-cycle assessment (LCA) of battery electric ve-
hicles (BEVs). This article evaluates this effect in detail by presenting a case-driven LCA for BEVs
deployed in two commercial mobility applications. The empirical data was recorded over
2.5 years and 450,000 km. The findings of this article indicate that regular and predictable
mobility demand patterns in combination with a high vehicle utilization are favorable conditions
for an environmentally beneficial deployment of BEVs. These characteristics allow tailoring the
battery capacity to the requirements and avoiding an unnecessary offset from production. When
charging the vehicles with electricity from renewable energy sources (RESs), the high operating
grade utilizes the comparatively lower environmental impacts per kilometer. A high lifetime
mileage allows breaking-even to comparable internal combustion engine vehicles (ICEVs) in most
investigated impact categories. Since regular and predictable mobility patterns, as well as a high
operating grade, are commonly found in commercial applications these are especially suitable for
replacing ICEVs with BEVs from an environmental perspective.

1. Introduction

Passenger cars are significant contributors to anthropogenic climate change, local emissions of air pollutants, and are highly
dependent on nonrenewable fossil fuels (Helmers and Weiss, 2017). The market for passenger cars is projected to double from around
1 billion today to 2 billion by 2040 (BP, 2018). Without a replacement of fossil fuels as an energy source, this development will lead
to a significant increase in emissions from transport.

Battery electric vehicles (BEVs) are propagated as one solution to reduce the greenhouse gas (GHG) and local tailpipe emissions as
well as the dependency on fossil fuels (Hawkins et al., 2013a). As a consequence of political measures and technological advances the
numbers of BEVs and Plug-in hybrid vehicles (PHEVs) sold worldwide is increasing rapidly with over 1 million new registrations in
2017 surpassing the total number 3.1 million (IEA, 2018). However, the actual environmental benefit from replacing internal
combustion engine vehicles (ICEVs) with BEVs is part of an ongoing debate in scientific research.

1.1. Related work

For the holistic assessment of the environmental impact from different vehicle power train technologies, the standardized
quantitative Life-Cycle Assessment (LCA) approach has emerged as the dominant methodology. This approach considers the whole
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life-cycle from raw material extraction to recycling and disposal and not only the direct tailpipe emissions or indirect emissions from
the electricity used for charging (Helmers and Weiss, 2017; Nordelöf et al., 2014). Furthermore, it includes several impact factors, not
just the Global Warming Potential (GWP) (Ausberg et al., 2015; Klöpffer, 2014). This approach allows uncovering potential burden-
shifting or rebound effects from GWP to other impact categories (Egede et al., 2015; Ellingsen et al., 2014). However, a large number
of previous studies focuses on GHG or just CO2 emissions when assessing the environmental impact of BEVs (Helmers and Weiss,
2017; Nordelöf et al., 2014).1 Only around a quarter of all publications between 2011 and 2015 include additional environmental
impact factors (Helmers and Weiss, 2017). These LCA studies commonly compare the different technologies on individual vehicle
level in one or more specific energy markets under the current or future conditions (Bauer et al., 2015; Cox et al., 2018; Hawkins
et al., 2013a; Notter et al., 2010; Tagliaferri et al., 2016).

The life-cycle of a vehicle consists of three phases: cradle-to-gate, which includes all upstream processes of raw material ex-
traction, production of materials, and manufacturing, the utilization, and the End-of-Life (EoL) treatment which includes the re-
cycling, recovery, and disposal. In the following, the main influence factors on the environmental impacts of different power train
technologies identified by previous studies are presented with emphasis on the utilization phase.

The cradle-to-gate phase causes significant environmental impacts that highly depend on powertrain technology. For BEVs, it is
essential to distinguish the vehicle glider, powertrain, and battery (Bauer et al., 2015; Tagliaferri et al., 2016). In comparison to other
powertrain alternatives, especially the materials and production processes of the battery cells and packs increase the environmental
impact of the BEV from cradle-to-gate (Cerdas et al., 2018; Dunn et al., 2015; Held et al., 2016). Several LCAs for different battery
technologies exist in the literature (Ellingsen et al., 2014; Kim et al., 2016; Peters et al., 2012; Sullivan and Gaines, 2012). Detailed
inventory information is vital to assess the cradle-to-gate impacts reliably. However, only a few publications provide high-resolution
inventories for BEVs and their batteries (Ellingsen et al., 2017). Ellingsen et al. (2014) and Kim et al. (2016) are two prominent
examples that offer primary industry data.

For the utilization phase, previous publications have identified two critical influencing factors on the overall environmental
impact of BEVs: the energy demand and the source of the energy carrier. In contrast to the upstream supply chain, for the utilization,
primary inventory data is broadly available, and energy flows are more straightforward to model.

The energy consumption of passenger cars is highly sensitive to external vehicle characteristics and technological performance
(Ellingsen et al., 2014; Hawkins et al., 2013a, 2013b). External factors are the user characteristics, the mobility patterns, the desired
temperature in combination with the surrounding conditions, as well as the road and traffic conditions (Egede et al., 2015). Empirical
studies have demonstrated the impact of these factors on the energy consumption of BEVs (Helmers et al., 2017; Neubauer and Wood,
2014; Schücking et al., 2016; Wu et al., 2015).

Three approaches can be found in the literature to estimate the energy consumption of different powertrain technologies: values
stated by the manufacturers, detailed technical models, and empirical values. Most studies rely on the standardized energy con-
sumption values since they facilitate an easy comparison between different powertrain technologies (Ellingsen, 2016; Hawkins et al.,
2013a, 2013b; Tagliaferri et al., 2016). However, empirical studies have shown that the real-world values for all powertrain tech-
nologies can notably differ from the ones measured on standard driving cycles (Muneer et al., 2015; Rangaraju et al., 2015; Saxena
et al., 2014; Wang et al., 2015; Wu et al., 2015). Mechanical energy consumption models that calculate the energy consumption based
on specific driving profiles and internal efficiencies are an alternative to standardized energy consumption values (Yazdanie et al.,
2016). Increasingly the Worldwide harmonized Light vehicles Test Procedure (WLTP) is taken as the basis for these models (Bauer
et al., 2015; Cox et al., 2018; Garcia et al., 2017).2 Using numerical simulation models allows the consideration of different scenarios,
e.g., developments in component efficiencies or increased auxiliary demand (Bauer et al., 2015; Cox et al., 2018; Li et al., 2016). Only
a few studies rely on the third option, long-term real-world energy consumption values (Faria et al., 2013; Muneer et al., 2015; Plötz
et al., 2017). Of these, even fewer include other pollutants than CO2 (Donateo et al., 2014, 2015; Rangaraju et al., 2015) and even less
conduct a full LCA (Held et al., 2016; Helmers et al., 2017). The use-case and the field of deployment can have a significant impact on
the mobility patterns and therefore the energy required for propulsion and auxiliaries (Schücking et al., 2016). Even though, a
detailed analysis of site-specific use-cases based on long-term empirical values is missing from the literature (Egede et al., 2015).

Next to energy consumption, previous studies conclusively demonstrate that the indirect emissions resulting from the used energy
carrier have a notable influence on the environmental impact of BEVs. The used energy is the largest source of variability in the
prognosis of future LCA development (Cox et al., 2018). Therefore, a well-to-wheel (WTW) scope considering the energy supply chain
from extraction, transport, and conversion is indispensable. Previous studies have simulated the influence of different energy markets
(Doucette and McCulloch, 2011; Egede et al., 2015; Faria et al., 2013; Woo et al., 2017), average mixes to electricity from a single
renewable energy source (RES) (Held et al., 2016; Helmers et al., 2017; Helms et al., 2011), different regional grids (Macpherson
et al., 2012), as well as an electricity system with to one without a high storage capacity (Garcia et al., 2017). However, we are not
aware of any study that empirically analyses the influence of different energy markets on cross-border transport.

The EoL treatment consisting of recycling, recovery, and disposal makes up only a comparatively minor share of the overall
impact but is still subject to considerable uncertainty (Hawkins et al., 2013a, 2013b). The recycling, recovery, and disposal of the
glider is similar for the different powertrain technologies. Hence, the research focus of LCA for BEVs lies on the powertrain

1 Some papers do not extensively assess the environmental impacts but add direct urban air pollutants such as Sulfur dioxide (SO2), nitrogen
oxides (NOX) and particulate matters (PM) to their analysis (Donateo et al., 2014, 2015; Rangaraju et al., 2015).

2 The WLTP was introduced to reduce the gap between the values stated by the manufacturer and the real-world consumption values. It is
compulsory for all new vehicles in the European Union starting from the 1st of September 2018 (European Commission, 2017).

M. Held and M. Schücking Transportation Research Part D 75 (2019) 87–105

88
137



components and the battery. Analog to the cradle-to-gate processes, the larger the battery, the higher the environmental burden of
recycling and disposal. Different publications analyze potential recycling processes for different Lithium-ion (Li-ion) battery tech-
nologies (Buchert et al., 2011; Buchert and Sutter, 2015; Cerdas et al., 2018). Based on empirical research projects, some suggest a
potentially positive contribution of recycling by closing the loop for rare materials used in battery and powertrain components and
hence avoiding primary material production (Buchert et al., 2011; Buchert and Sutter, 2015). However, on energy and material flows
which cause high uncertainty in the EoL treatment and its environmental impact, there is only limited first-hand data available
(Ellingsen et al., 2017). In particular, there are still significant gaps concerning the commercial recycling processes for BEV batteries.

1.2. Contribution of the study

Overall, previous LCA studies concur in their key findings when comparing the environmental impact of BEVs and ICEVs: Firstly,
the introduction of BEVs increases the environmental impact from cradle-to-gate. However, depending on the circumstances of
utilization in some impact categories these can be more than compensated. Secondly, in terms of the circumstances of utilization, the
following parameters and inventories have the most notable influence on the overall performance: electricity used for charging,
vehicle size and topology, lifetime, driving patterns, and battery size (Cox et al., 2018; Egede et al., 2015; Ellingsen et al., 2014).

The strong influence of the utilization on the overall environmental performance of BEVs justifies the need for a use-case specific
analysis. Plötz et al. (2017) underline the necessity to consider individual mobility patterns in the environmental assessment of BEVs.
(2017)(2017)(2017)(2017)(2017) A few long-distance trips, which require a large battery, often dominate private mobility patterns.
Under the premise of full substitution, BEVs are less beneficial in comparison to PHEVs according to the lifetime CO2 emissions since
a notable share of the battery capacity remains unused for most of the time but causes a high environmental impact offset from
cradle-to-gate (Plötz et al., 2017). On the other hand, regular mobility patterns on fixed routes allow for a constantly high degree of
battery capacity utilization (Schücking et al., 2017). In commercial use-cases, this type of mobility patterns with limited variance is
widespread (Ketelaer et al., 2014).

However, most publications that assess the environmental impacts of BEVs have neglected specific use-cases and long-term
empirical energy consumption values. They rely on general assumptions concerning lifetime mileage and mixed route profiles (urban,
interurban, or motorway) not considering the substitution potential of BEVs in detail. The few papers that use actual data from BEV
deployment either lack a full LCA or do not focus on specific use-cases (Donateo et al., 2015, 2014; Helmers et al., 2017; Rangaraju
et al., 2015).

This study attempts to fill this gap in the literature by presenting a detailed case-driven LCA for BEVs and ICEVs. It makes the
following contributions:

1. Presenting the empirical energy consumption of two BEV types deployed over two years in two cross-border commercial use-cases
that allow for a high operating grade.

2. Conducting an LCA and analyzing the effect of the high operating grade, different energy mixes on both sides of the border, and
vehicle types on the lifetime environmental impact as well as the respective break-even points according to three impact cate-
gories and the primary energy demand as an indicator for the depletion of nonrenewable energetic resources.

The primary goal of the presented analysis is to gain a better understanding of the environmental performance of BEVs in realistic
use-cases and to derive key characteristics and boundary conditions required for an environmentally beneficial introduction of BEVs
in mobility systems.

The subsequent sections of the paper are structured as follows: Chapter 2 describes the applied methodology, main assumptions,
and the case-study parameters. Chapter 3 presents the results of the LCA for the two use-cases. Chapter 4 discusses the results and
deduces recommendations for an environmentally beneficial deployment of BEVs. Chapter 5 concludes the paper by summarizing and
providing an outlook for future work.

2. Method & data

The environmental analysis of the investigated BEV use-cases is conducted by using the method of Life-Cycle Assessment (LCA).
This method follows a standardized framework described by the DIN EN ISO 14040 and 14044 that was last updated in 2006. The
LCA is a quantitative method that covers all material and energy flows throughout the process chains of the whole product life-cycle.

The LCA approach consists of four steps: Goal and Scope, Life-Cycle Inventory (LCI), Life-Cycle Impact Assessment (LCIA), and
Results and Interpretation. Since the goal of the study is to gain a better understanding of the environmental performance of BEVs in
realistic use-cases the LCA input data, and main assumptions are chosen accordingly.

2.1. System boundaries

The system boundaries of this LCA study cover the whole life-cycle of the investigated BEVs including the expenses for the
required energy, material, and auxiliaries (Fig. 1). The cradle-to-gate phase includes the complete supply and production chain of all
used materials and auxiliaries as well as the corresponding process steps. The analysis considers the powertrain and battery specific
materials, components, and assembly processes individually. It does not include the transportation of intermediate products for
assembly in the production phase, nor general maintenance measures of vehicles and components. Due to the lack of reliable data on
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the EoL treatment and recycling of Li-ion batteries, this phase is represented by the EoL treatment of conventional industrial materials
such as steel and iron, lightweight and non-ferrous metals or plastics. For the modeling of the EoL phase, a cut-off approach is used.
Hence, the reduced environmental impact of used secondary materials in vehicle production is accounted for in the production phase.
These are mainly the common secondary materials shares represented in the production mixes of the used LCI dataset for steel,
copper, and aluminum. The recycling of used precious and rare materials of BEVs at the EoL phase is a crucial aspect for the future
security of resources. However, recycling scenarios on the battery cells and rare earth magnets of PMSM motors have not been
accounted for in the analysis, mainly due to the lack of primary data on the processing and recovery rates of materials. Therefore,
further processing and recycling are not covered in the scope of this analysis.

2.2. Simplified screening approach

Since no car manufacturer was directly involved in this study for exchanging specific inventory data on the vehicle and pow-
ertrain components in a consistent level of detail a simplified internal LCA screening model approach for estimating the environ-
mental impacts from production and the EoL of the investigated vehicle types is used (Fig. 2).

The approach is based on a generic model, which was developed by Held (2014). The model allows the calculation of specific
vehicle layouts, powertrain concepts, and technologies for the full life-cycle. It consists of generic and parameterized LCA modules,
which are hierarchically structured into the main life-cycle phases, functional groups, and powertrain components. The para-
meterization allows a comprehensive adjustment of the vehicle specifications as well as for single components according to their
technical properties (e.g., the cell chemistry, energy density, type, module, and system specifications, performance, and use para-
meters of the battery system). Also, it can be applied by making more profound adjustments of material mixes, main processing steps,
and critical performance data. Hence, this approach is a flexible framework. Depending on the level of detail and quality of available
input data the model allows for a detailed specification of process data, material mixes, and technologies, as well as a simplified LCA
of vehicles using pre-configured modules. These are adjusted according to the main technical specifications of the vehicle and power
train components (for example the total mass of battery system, used battery technology, cell types, chemistry of active materials,
energy density and energy capacity of the battery systems).

In this paper, the model is applied in the latter version as a simplified screening approach by estimating the environmental
burdens resulting from the production and EoL according to the main technical specifications of the BEV and ICEV models deployed
in the use-cases. This approach is selected since the focus of the analysis lies on the influence of utilization and the lack of detailed
LCI. Based on the available information, such as components, technologies, and performance data, the generic modules are scaled and
adjusted by calculated parameters and scaling factors. Therefore, the results do not represent specific LCIA results of specific BEV or
ICEV models but provide a robust estimate of the environmental performance of vehicles with comparable technical specifications
and dimensions.

Fig. 1. System boundaries of the presented LCA approach.
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2.3. Functional unit

In line with previous research, the environmental profile per kilometer traveled over the full lifetime under the specific conditions
of the investigated use-cases is taken as the functional unit to ensure the comparability of the results. Additionally, a comparative
break-even analysis relative to the lifetime mileage is provided for the different powertrain technologies. It offers a good indication
for the influence of the BEV’s operating grade on its overall environmental performance.

2.4. Geographical scope

The vehicle production and EoL processing, the used energy provision, and materials are considered according to the German
production and import mixes as represented in the used LCI database (GaBi Databases, SP36, 2018). For the Li-ion battery systems of
the BEVs, this study assumes a mix of the specific energy mixes of Japan and Korea (Buchenau, 2018; The Economist, 2017). Since the
use-cases of the study represent findings from a cross-border fleet project between France and Germany, the emission intensities of
both electricity mixes, as well as a combination of them and other scenarios, are included.

2.5. Impact categories under consideration

The environmental assessment methodology in this study is based on CML2001 (Institute of Environmental Sciences (CML),
2001). The results of the following impact categories are presented in this paper:

• The Global Warming Potential (GWP) is selected as an indicator of the contribution to the greenhouse effect. There is a wide range
of emissions that contribute to the GWP such as carbon dioxide (CO2), methane (CH4), and fluorine compounds. The reference
unit is expressed in kg CO2-eq.

• The Acidification Potential (AP) is taken as an indicator of damage on organic and inorganic materials due to an increase of
acidifying chemicals which lead to an altering of the pH of the receiving medium. Relevant emissions contributing to this category
are, amongst others, sulfur oxides (SOx), nitrogen oxides (NOx), hydrochloric acid (HCl), and ammonia (NH3). The reference unit
is expressed in kg SO2-eq.

• The Eutrophication Potential (EP) is included as an indicator for the addition of nutrients that cause excessive biomass growth,

Fig. 2. Simplified screening model for estimating the cradle-to-gate and EoL phase of BEVs by using generic models and parameterization.
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decay in water or soil which lead to oxygen depletion. Relevant emission of this category are compounds of nitrogen or phos-
phorous. The reference unit is expressed in kg phosphate-eq.

Additionally, the primary energy demand from non-renewable resources (PED) is assessed to represent the use of natural re-
sources within the full life-cycle.

This paper focusses on these impact categories for several reasons: The applied simplified screening approach allows calculating
resilient LCIA results for the stable impact categories such as AP, EP, GWP, POCP, and PED. These categories also cover the most
relevant emissions of energy conversion processes, raw material extraction, and processing as well as from the use of ICEVs (e.g.,
exhaust emission profiles) and BEVs (electricity generation). Furthermore, these parameters are the most common and their plau-
sibility can be compared with the published LCIA results from other studies or car manufacturers.

Despite these arguments, the results of the ozone creation potential (POCP, also known as summer smog), are not presented in this
paper. The CML2001 method provides a negative characterization factor for nitrogen monoxide (NO). In this, it differs with other
impact methods, such as ReCiPe. In the case of the driving emissions of the gasoline and diesel vehicles, this leads to negative POCP
resulting from utilization. Although the negative characterization factor of NO can be comprehensively explained, the LCIA results of
the POCP might allow misleading conclusions. For this reason, decisions based on these results should be critically questioned and are
not further evaluated in this analysis.

Furthermore, the results of other essential impact categories, e.g., toxicity or abiotic resource depletion (ADP), are also excluded
from this paper. The first reason is the lower stability of the underlying characterization methods. The second reason is that the
simplified screening model is not applicable to generate reliable results in impact categories where a higher precision level of
inventory data for specific inventory flows is required, e.g., in case toxicity or ADP. A reliable assessment requires a consistent quality
of used inventory data for all vehicle components in terms of foreground and background data covering all used materials and
substance contents in the final products as well as the production processes. Since, even little deviances of substances and elementary
flows can have a significant influence on the results and can lead to highly biased results, e.g., precious metals use in power electronic
components. With the chosen approach for scaling the power train components based on our generic screening model, these impact
categories cannot be assessed in acceptable quality.

2.6. Data sources and main assumptions

The LCA conducted in this study uses the empirical input data from two use-cases: The commuting of shift workers in car-pool
groups and the business trips of employees between two production sites located in France and Germany. These were selected since
they both operated on fixed routes, which facilitate a simple technical substitution of ICEVs by BEVs. The departure predictability
distinguishes both use-cases. On the one hand, based on the rolling shift schedule the mobility demand of the commuters was
thoroughly predictable. On the other hand, business trips could occur at any time during the day, which sets a higher demand for the
required charging power. Due to the different sized user groups, two different vehicle types were deployed. The shift workers in their
larger groups had minivans, e-Wolf Delta 2. For the business trips one compact car, Nissan Leaf, was deployed. Also, the lifetime
mileages for the two use-cases differ. The commuter vehicles with daily distances of 160 km reached annual mileages of around
36,000 km. The less frequent use of the business trip vehicle led to around half the annual mileage. A more detailed description of the
two use-cases and the charging strategies that were implemented to increase the operation grade are presented in Schücking et al.
(2017). Table 1 and Table 2 give an overview of the experimental boundary conditions and main assumptions.

Predicting the aging of Li-Ion battery cells is highly complex. In general, cyclical aging and calendar aging depending can be
distinguished (Schoch et al., 2018). Detailed overviews of the underlying electrochemical processes, their dependencies on influence
factors such as charging power, depth of discharge, temperature, and SOC, as well as different empirical long-term measurements and
modeling approaches, can be found in the literature (Barré et al., 2013; Pelletier et al., 2017; Smith et al., 2012; Vetter et al., 2005).
During the project, the battery aging indicators, such as capacity and internal resistance, were exemplary measured, but no detailed
prediction model was developed. Therefore, this paper takes a practical approach by making the simplifying worst-case assumption,
that at the end of the guaranteed battery life at 200,000 km the battery needs to be replaced.

For the two use-cases, the empiric energy consumption data used in this study was recorded during a long-term research project.
The sensitivity of the LCA results to the BEV energy consumption made a detailed analysis indispensable. A detailed description of the
empirical data, as well as a corresponding theoretical energy consumption model for the two BEV types, can be found in Schücking
et al. (2016). Both vehicle types were equipped with data loggers recording the battery, powertrain, and GPS data. For the minivans,
the battery and powertrain data were retrieved from the CAN bus system which amongst others provided access to the battery
management system (BMS). The recorded battery and powertrain data is used to calculate the tank-to-wheel energy consumption of
the deployed BEVs. The energy consumption measured this way includes propulsion, the energy gained through regenerative braking,
and the energy consumed by the auxiliaries. The compact car was equipped with a Bluetooth data logger connected to the OBD
interface providing full battery and powertrain data to assess the energy consumption and the quality of the online available energy
consumption values for the individual trips provided by the manufacturer. Over the analyzed period of 2.5 years, data from over
450,000 km was logged in total.

The emissions resulting from the energy carrier are based on two different databases. The calculation of the ICEV tailpipe
emissions is based on the HBEFA v3.2 which provides a comprehensive estimate of exhaust gas emissions, related to the specific drive
situations (iNFRAS, 2014). The environmental profiles of the evaluated electricity mixes are based on SP36 (the reference year 2014)
(GaBi Databases, SP36, 2018). Table 3 lists the respective values for France, Germany, the 50/50 mix, the renewable energy mix in
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Table 1
Empirical boundary conditions and main assumptions for the minivans used for commuting.

BEV ICEV,
gasoline

ICEV,
diesel

Comment

Production phase
Vehicle mass [kg] 1,700 1,400 1,550
Battery system: Technology/Storage capacity

[kWh]/Total mass [kg]
Li-Ion (NMC/C)/24.2
kWh/250 kg

Power electronics (inverters, etc.) mass [kg] 35
Engine performance [kW] 60 81 81
Engine displacement, combustion engine [l] – 1.6 1.5

Utilization
Vehicle lifetime [a] 12
Battery life for replacement scenario [change

interval after km traveled]
200,000 – –

Average trip distance [km/trip] ∼73
Average monthly mileage [km/month] ∼3,000
Assumed total mileage of base scenario [km/

lifetime]
400,000

Average speed [km/h] 57
Average energy consumption [kWh/100 km] 23.8 – – The measured average value in fleet operation
Energy consumption stated by the

manufacturer (NEDC) [kWh/100 km]
20.0 – – Datasheet manufacturer

Additional energy demand due to charging
losses

15% – – Measured in fleet operation

Fuel consumption of ICEV [l/100 km] – 8.13* 5.5** *Measured value in the field test
**Assumption, 12% higher than NEDC value (based on
the measured deviation of gasoline vehicle)

Calculation of tailpipe emission profile based on HBEFA 3.2 (iNFRAS, 2014), EURO 6 standard (vehicles with cylinder capacity from 1,4–2,1 l), calculation of CO2

and SO2 (fuel: 10 ppm sulfur content) emissions based on fuel consumption values
End of Life
Calculation according to a cut-off approach based on the World Steel Association (2011).

Table 2
Empirical boundary conditions and the main assumptions for the compact car used for business trips.

BEV ICEV,
gasoline

ICEV,
diesel

Comment

Production phase
Vehicle mass [kg] 1,550 1,200 1,300
Battery system: Technology/Storage capacity

[kWh]/Total mass [kg]
Li-Ion (NMO-NCA
Blend/C)/24 kWh/
250 kg

Power electronics (inverters, etc.) mass [kg] 35
Engine performance [kW] 80 81 81
Engine displacement, combustion engine[l] – 1.0 1.6

Utilization
Vehicle lifetime [a] 12
Battery life for replacement scenario [change

interval after km traveled]
200,000 – –

Average trip distance [km/trip] ∼70
Average monthly mileage [km/month] ∼1,230
Assumed total mileage of base scenario [km/

lifetime]
200,000

Average speed [km/h] 74
Average energy consumption [kWh/100 km] 19.0 – – The measured average value in fleet operation
Energy consumption stated by the

manufacturer (NEDC) [kWh/100 km]
17.3 – – Datasheet manufacturer

Additional energy demand due to charging
losses

15% – – Measured in fleet operation

Fuel consumption of ICEV [l/100 km] – 5.5** 4.37** **Assumption, 12% higher than NEDC value (based
on the measured deviation of gasoline vehicle)

Calculation of tailpipe emission profile based on HBEFA 3.2 (iNFRAS, 2014)], EURO 6 standard (vehicles with cylinder capacity < 1,4 l (gasoline); vehicles with
cylinder capacity from 1,4–2,1 (diesel)), calculation of CO2 and SO2 (fuel: 10 ppm sulfur content) emissions based on fuel consumption values

End of Life
Calculation according to cut-off approach according to the World Steel Association (2011).
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Germany, and for electricity from wind power.

3. Results

This chapter presents the results in three parts. First, a short assessment of the empiric energy consumption is provided. Second,
the results of the LCIA are shown for the three environmental impact categories and PED over the lifetime in total and respective to
the functional unit. Third, the break-even points for the GWP and AP depending on the lifetime mileage and the used electricity mix
for charging are calculated.

3.1. Energy consumption

The assessment of the energy consumption indicates key influence factors and the uncertainty in the actual energy consumption.
A detailed description of the energy model, the empirical data, and the influence factors can be found in Schücking et al. (2016). As
can be seen in Table 4 the average specific energy consumption varies between the vehicles deployed. Since the e-Wolf Delta 2 is a
minivan vehicle and the Nissan Leaf a compact car, this result is not surprising. The second characteristic is the variance of the
specific energy consumption between the commuting routes (CO.1-CO.6). The different profiles can mainly explain the variance. For
example, route CO.4 with a large motorway share has the highest average speed of 60 km/h, which leads to the comparably higher
energy consumption required to overcome the drag.

The six commuter vehicles with their large number of individual trips allow a more detailed analysis. In total, 5,404 single long
trips over 60 km were recorded. The frequency distribution is close to a normal distribution (Fig. 3). The minimum value for the
specific energy consumption is 151 Wh/km and the maximum 367 Wh/km. The mean and the median are both 238 Wh/km. Hence,
238 Wh/km is taken as the average input value for the LCI. Additionally, the 5% and the 95%-quantile are added as upper and lower
boundaries for the following LCIA (Fig. 4) to illustrate the influence of the specific energy consumption on the different impact
categories. For the commuting use-case, 186 Wh/km is the 5% and 287 Wh/km the 95% quantile.

For the business trips, the average value of 183 Wh/km is taken as input with the 140 Wh/km as the 5% and 250 Wh/km as the
95% quantile.

The input values for both vehicle types and use-cases are significantly higher than the NEDC value stated by the manufacturer
underlining the importance of a realistic energy consumption assessment.

3.2. Life-cycle impact assessment

The following section presents the LCIA results of the two use-cases. For the investigated impact categories, the relevant para-
meters and influencing factors are identified and discussed for the individual life-cycle phases and in relation to the full life-cycle. A
detailed analysis is set on the utilization phase and its parameters.

3.2.1. LCIA for both use-cases
The results of the BEVs and the gasoline and diesel ICEV alternatives vary significantly between the impact categories depending

Table 3
Environmental profiles of the electricity mixes (per kWh electricity generation).

Impact category Acidification potential (AP) Eutrophication potential (EP) Global warming potential
(GWP)

Primary energy demand
(PED)

[kg SO2-eq./kWh] [kg PO4
3−-eq./kWh] [kg CO2-eq./kWh] [MJ/kWh]

Electricity mix France 1.84E−04 2.41E−05 5.57E−02 9.01E+00
Electricity mix Germany 8.99E−04 1.46E−04 5.91E−01 7.63E+00
Electricity mix 50/50 5.41E−04 8.52E−05 3.23E−01 832E+00
Renewable energy mix

Germany
9.06E−04 1.83E−04 7.85E−02 5.31E−01

Electricity from wind power 3.76E−05 3.94E−06 1.23E−02 1.59E−01

Table 4
Overview of route characteristics and specific energy consumption values.

Route CO.1 CO.2 CO.3 CO.4 CO.5 CO.6 BT.1

Vehicle type Minivan Minivan Minivan Minivan Minivan Minivan Compact
Distance [km] 80 76 76 62 75 70 70
Max. elevation difference [m] 110 112 361 38 158 135 66
Average speed [km/h] 55 58 56 60 55 58 74
Specific energy consumption(lowest month) [Wh/km] 235 227 227 230 224 209 152
Specific energy consumption(highest month) [Wh/km] 258 248 260 271 241 255 214
Specific energy consumption(2-year average) [Wh/km] 243 236 240 251 230 233 183
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on the vehicle segment and the energy used for charging. The impacts of the individual life-cycle phases are separated to allow
conclusions about their relevance to the full life-cycle (Figs. 5 and 6). The manufacturing steps of the BEVs are broken down further to
assess the effect of the single components. The comparison of the 50/50 cross-border electricity mix, that was charged by the BEVs,
and the German energy mix from RESs as an alternative scenario illustrate the influence of the electricity used for charging. Ad-
ditionally, the lower and upper boundary values show the bandwidths of the utilization phase impacts related to the measured energy
consumption of the vehicles. Tables 5 and 6 provide detailed environmental impacts based on the functional unit.

In the cradle-to-gate phase, both BEV types show notably higher impacts of the BEV in comparison to the ICEVs (Figs. 5 and 6).
The battery system production as well as the extraction and processing of the required active material for the battery cells, in this
case, graphite (anode) and Li-NMC (cathode), cause these higher impacts. These high-tech materials represent a significant share in
the material mix of the battery system and have notably higher environmental impacts in the extraction and processing than con-
ventional materials used in the vehicle production, such as iron-steel, non-ferrous and lightweight metals as well as polymers. The
impact is most notable on the AP from cradle-to-gate.

Depending on the underlying electricity mix in the BEV utilization phase, a share of the relatively higher GWP from production
can be compensated. Again, both car types show similar tendencies. Concerning the GWP the main influence factors are the specific
energy consumption, the mileage, the environmental profile of the electricity mix used for charging, and the necessity of a battery
system replacement (Table 5). The high mileage of the minivans can lead to significant GWP improvements compared to minivans
with combustion engines. In the set boundary conditions, the GWP for the minivans can be reduced by ∼20 t CO2-eq. (diesel vehicle)
and ∼46 t CO2-eq. (gasoline vehicle). In the RESs scenario, improvements from ∼47 t CO2-eq. (diesel vehicle) to ∼73 t CO2-eq.
(gasoline vehicle) are possible. For the compact car, the lower lifetime mileage, as well as the comparably lower fuel consumption
values for the investigated ICEVs, lead to smaller total GWP savings (Fig. 6). The lowest comparable savings under the set cir-
cumstances are ∼8 t CO2-eq. compared to a diesel vehicle. Under the RESs scenario the highest comparable benefit of ∼23 t CO2-eq.
can be achieved in comparison to a gasoline vehicle. These results underline the high reduction potential of BEV deployment on the
lifetime GWP when using electricity from renewable energy sources.

Based on the boundary conditions of the use-cases and selected energy mixes the high AP of the BEV production phase cannot be
compensated relative to the ICEVs during the vehicle operation (Figs. 5 and 6). Over the ICEV life-cycle, the contributions to the AP of
the gasoline and diesel production are mainly caused by the released SO2, NOx and NH3 emissions during the production process

Fig. 3. Frequency distribution of all specific energy consumption values measured for the commuter vehicles.

Fig. 4. Specific net energy consumption values minivans and compact car.
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chains. For the car operation, main exhaust gas emissions are NH3, NO and minor contributions of SO2.
The EP of the utilization phase highly depends on the electricity and fuel mix used. The BEVs charged with the 50/50 electricity

mix have the lowest EP impact. It lies below the level of the compared ICEVs. In the RESs scenario, the BEV’s EP values are about the
same as the ones for the gasoline vehicle (Figs. 5 and 6). The higher EP values are a consequence of the biogas and biomass shares in
the German RESs mix and their respective impacts from the cultivation. In the investigated use-cases, the contributions of the fuel
production routes and exhaust emissions differ for the diesel and gasoline vehicle. The production route of the gasoline shows a
higher contribution than diesel. The high EP of gasoline production results from the biofuel content in the fuel production mix and
related nitrogen and nitrate emissions into the water during the cultivation of energy crops. The effects of the cultivation on EP
caused by agricultural processes such as fertilizing are significantly higher than those from the production of crude oil-based fuels.
Therefore, biofuels in the diesel mix also increase the EP. Furthermore, diesel shows higher impacts based on exhaust emissions,
mainly caused by higher NOx emissions.

Regarding the EoL phase of the vehicles, the calculation of the impacts is done with the cut-off approach. Hence, no credits are
given for the recycling of materials or energy recovery from waste incineration. This approach is chosen due to the lack of reliable
process data for Li-Ion battery recycling. Under these conditions, notable contributions of the vehicle's EoL phase are mainly in terms
of GWP which can be attributed to the electricity required for dismantling, separation, and the vehicle shredder as well as to the
emissions that occur during the thermal recycling of combustible materials (e.g., plastics).

In conclusion, due to the high lifetime mileage, in both use-cases, the higher impacts of vehicle production in GWP, EP, and PED

Fig. 5. LCIA results of BEV and ICEV minivan operation in commuter traffic.
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can be compensated for by the lower environmental impacts during utilization with the actual benefit depending highly on the
electricity mix used of charging. Using electricity from RESs delivers additional benefits for all impact categories besides EP.
Concerning the AP, in the investigated use-cases in both electricity mix scenarios, the 50/50 cross-border electricity mix and the
German energy mix from RESs, the lifetime environmental impact of the BEV models is always higher than the one of the comparable
ICEVs.

3.2.2. The influence of the use-case parameters mileage and electricity mix
In the following, the influences of the use-phase parameters mileage and electricity mix are investigated further to illustrate the

required conditions for an environmentally beneficial deployment of BEVs. The GWP and the AP LCA results for the BEVs and ICEVs
deployed in both use-cases under additional energy mix scenarios, the German electricity mix and electricity from wind power, are
presented depending on the traveled mileage.

These two impact factors vary significantly in their results for the comparable environmental benefit to ICEV. The lines in
Figs. 7–10 illustrate the impact during the utilization phase. The grey area represents the total mileage bandwidth for the different
commuter routes. The mileage is extrapolated over the assumed lifetime of 12 years based on the monthly mileages recorded during
the fleet test. For the two exemplary impact factors, the diagrams determine the mileage-dependent break-even points for the BEVs in
comparison to the ICEVs. The initial offset represents the higher environmental impacts of BEV production compared to ICEV. Tables
7 and 8 list the results for all three impact factors and the PED.

Fig. 6. LCIA results of BEV and ICEV compact car operation for business trips.
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As indicated by the previous results the higher GWP impacts from production can be compensated during the utilization de-
pending on the energy mix. Under the specific boundary conditions and use-cases, the GWP break-even points of the minivans in the
commuter traffic use-case vary between 20,000 km (wind power) to 60,000 km (German electricity mix) in comparison to the

Fig. 7. GWP results of the BEV minivan based on the commuting use-case's boundary conditions.

Fig. 8. GWP results of the BEV compact car based on the business trip use-case's boundary conditions.

Fig. 9. AP results of the BEV minivan based on the commuting use-case's boundary conditions.
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Fig. 10. AP results of the BEV compact car based on the business trip use-case's boundary conditions.

Table 7
Break-even points for the minivans deployed in the commuter use-case for different energy mixes.

Acidification Potential
(AP)

Eutrophication Potential
(EP)

Global Warming Potential
(GWP)

Primary energy demand (non-
renewable) (PED)

Break-even points against gasoline vehicle (rounded to 5,000 km); [including 1 battery replacement during utilization after 200,000 km]
Electricity mix 50/50 340,000 km

[–]
60,000 km
[60,000 km]

30,000 km
[30,000 km]

80,000 km
[80,000 km]

German (DE) electricity mix –
[–]

135,000 km
[260,000 km]

60,000 km
[60,000 km]

60,000 km
[60,000 km]

German (DE) renewable energy
mix

–
[–]

–
[–]

20,000 km
[20,000 km]

20,000 km
[20,000 km]

Electricity from wind power 110,000 km
[205,000 km]

35,000 km
[35,000 km]

20,000 km
[20,000 km]

20,000 km
[20,000 km]

Break-even points against diesel vehicle (rounded to 5,000 km); [including 1 battery replacement during use phase]
Electricity mix 50/50 –

[–]
70,000 km
[70,000 km]

40,000 km
[40,000 km]

–
[–]

German (DE) electricity mix –
[–]

225,000 km
[–]

–
[–]

–
[–]

German (DE) renewable energy
mix

–
[–]

–
[–]

20,000 km
[20,000 km]

20,000 km
[20,000 km]

Electricity from wind power 110,000 km
[220,000 km]

35,000 km
[35,000 km]

20,000 km
[20,000 km]

20,000 km
[20,000 km]

Table 8
Break-even points for the compact car deployed in the business trips use-case for different energy mixes.

Acidification Potential
(AP)

Eutrophication Potential
(EP)

Global Warming Potential
(GWP)

Primary energy demand (non-
renewable) (PED)

Break-even against gasoline vehicle (rounded to 5,000 km)
Electricity mix 50/50 – 45,000 km 40,000 km –
German (DE) electricity mix – 80,000 km 150,000 km 140,000 km
German (DE) renewable energy

mix
– 160,000 km 25,000 km 25,000 km

Electricity from wind power 90,000 km 30,000 km 25,000 km 25,000 km

Break-even against diesel vehicle (rounded to 5,000 km)
Electricity mix 50/50 – 45,000 km 50,000 km –
German (DE) electricity mix – 90,000 km – –
German (DE) renewable energy

mix
– – 30,000 km 30,000 km

Electricity from wind power 95,000 km 25,000 km 25,000 km 25,000 km
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gasoline ICEV (Table 7) and between 20,000 km (wind power) to no break-even (German electricity mix) in comparison to the diesel
vehicle. The assumed battery replacement after 200,000 km causes the additional vertical increase. For the compact car used for
business trips, the earliest break-even to comparable diesel or gasoline vehicles lies at 30,000 km (wind power). The influence of the
German electricity mix is even stronger than in the case of the vans. The break-even point is at 150.000 km for the gasoline vehicle,
and again no break-even is reached compared to the diesel vehicle. These results can be explained by the high GWP of the German
electricity mix compared to the other investigated electricity mixes. Also, the compact ICEV deployed had shown low fuel con-
sumption values leading to a gradient that is almost identical to the one of the BEV charged with the Germany electricity mix (Fig. 8).

As shown in Section 3.2.1 in the case of the AP the impact of the BEV production phase is notably higher than for comparable
ICEV. The extended analysis shows that break-even for both vehicle types can only be reached under particular conditions (Figs. 9
and 10). For both use-cases and vehicle types, a break-even can only be reached over the lifetime (including a battery system change)
if electricity from wind power is used exclusively (Tables 7 and 8). Even under these favorable conditions, the break-evens lie
between 90,000 and 110,000 km, and the potential environmental benefits remain small. The potential battery replacement during
utilization leads to another significant AP increase pushing the break-even points even further (Fig. 9).

4. Discussion

The results of this study demonstrate that a case-specific LCA can deliver valuable insights for the environmentally beneficial
introduction and operation of BEVs. It provides examples of how the comparably higher environmental impact from BEV production
can be compensated during utilization. Especially in countries with a low carbon electricity mix, the substitution of ICEVs with BEVs
can lead to notable GWP benefits. For the AP and the EP, a break-even can only be reached under specific favorable conditions. The
micro perspective approach of this study does not allow predicting the effects of a more widespread introduction BEVs. However, it
enables the deduction of general conditions for an environmentally beneficial deployment of BEVs in comparison to ICEVs.

The comparison of the empirical charging data of the BEVs in France and Germany emphasizes the influence of different energy
markets. However, not only the region but also the season or time of day can influence environmental performance during utilization.
Especially in electricity markets with a high share of RESs, the emission intensity can vary significantly over time (Donateo et al.,
2015; Jochem et al., 2015; Rangaraju et al., 2015; Robinson et al., 2013). These fluctuations offer the chance to reduce the en-
vironmental impact by postponing the charging processes into periods with lower emission intensity (Jochem et al., 2015; Rangaraju
et al., 2015). This deliberate load shifting provides an additional argument for a detailed utilization assessment. However, when
shifting the load, it is essential to base the decision on the emission intensity and not just overall demand (Helms et al., 2011). These
renewable energies must be provided from additional installed power plants, to avoid a simple shift of burden in the electricity grid
mix.

For the local impact factors such as AP and EP, another potential benefit arises from the introduction of BEV. The emissions during
utilization shift from the exhaust of the vehicles to power plants that are usually outside of cities (Helmers and Weiss, 2017).
Furthermore, the aggregate emission from fewer point sources allows concentrated control and reduction measures such as the
installation of SCR (Hawkins et al., 2013a; Ke et al., 2017).

Even though the use-cases demonstrate the positive effect of a high lifetime mileage as an external parameter that can increase the
comparable environmental benefits of BEVs it has received little attention in the literature so far. Some studies point out the sen-
sitivities and individual variability of the emissions and LCA results to changes in the battery lifetime and lifetime mileage (Bickert
et al., 2015; Cox et al., 2018; Egede et al., 2015). The specific mileage-dependent break-even points for different electricity mixes and
ICEV fuel types identified in this study emphasize the importance of a high battery lifetime and lifetime mileage for an overall
environmentally beneficial introduction and operation of BEVs.

All three life-cycle phases show high potential for technological progress in reducing the environmental impact of BEVs. The
realization of this potential is expected to decrease the environmental impacts of BEVs much faster than the ones from ICEV (Cox
et al., 2018; Helmers and Weiss, 2017). The progress can lower the break-even points by decreasing the offset from cradle-to-gate and
EoL as well as by reducing the gradient of the BEV impact line.

The results from the presented use-cases allow the deduction of three characteristics for the identification of mobility applications
in which the replacement of ICEVs with BEVs can potentially be environmentally beneficial: Firstly, regular and predictable mobility
patterns allow potential tailoring of the battery to avoid an additional offset from production. Secondly, a high operating grade and
therefore high mileage allows benefitting from the lower impacts during utilization. Thirdly, energy from additional installed RESs,
ideally wind power, should be available to avoid a shift of burdens.

The concept of tailoring the battery capacity to the utilization requirements and compensating the initial offset with a high
operating grade also fits the criteria for commercial deployment of BEVs. The lower operational cost can compensate for the higher
initial investment in comparison to ICEVs. Utilizing this cost-saving potential requires a high annual mileage (Gnann et al., 2015;
Schücking et al., 2017). Therefore, economic and environmental benefits align since achieving a high operating grade becomes a core
aim of BEV deployment. The same alignment can also be observed for a potential battery replacement. From an economic as well as
an environmental point of view a subsequent high mileage after the replacement is required to make it beneficial.

At the current state of technology and market stage, commercial mobility applications are more likely to meet the identified
characteristics than private mobility demand. Techno- and socio-economic research has identified several characteristics that make
commercial transport applications more advantageous for an early BEV adoption than private mobility demand (Barfod et al., 2016;
Gnann et al., 2015; Ketelaer et al., 2014; Plötz et al., 2014; Robinson et al., 2013). Some of them are directly related to the identified
characteristics for an environmentally beneficial deployment. The mobility patterns are usually more regular and therefore enable an
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easier substitution assessment and better utilization of the required battery capacity. In mixed fleets trips over the maximum BEV
range can be substituted by an ICEV. Commercial vehicles have higher annual mileages than private ones enabling the commercial
and environmental break-even. Moreover, commercial vehicles have a much faster turnover rate than private vehicles making it a
promising introductory market with 65% of total first-time registrations in Germany (KBA, 2017a). Of the 34.022 registered BEVs in
Germany in 2016, over 85% were registered commercially (KBA, 2017b). In 2020 for 3–5% of all newly registered commercial
vehicles BEVs can be operated more economically than ICEVs (Plötz et al., 2014). Specific mobility applications identified by bottom-
up analyzes that promise early widespread introduction of BEV are social, security, delivery, and postal services (Hacker et al., 2015;
Ketelaer et al., 2014; Wagner et al., 2011).

5. Conclusion

The study at hand compares the environmental impacts of BEVs and ICEVs based on an LCA with emphasis on the utilization
phase. The observed energy consumption values from two commercial use-cases that are characterized by a high operating grade and
regular mobility patterns are used as a core part of the LCI. The environmental impact is assessed based on a simplified screening
model, and comparable break-even points are calculated for the three impact categories GWP, AP, EP as well as PED which are all
highly sensitive to the conditions of the utilization phase.

The results demonstrate the importance of a case-specific analysis and confirm that the substitution of ICEVs through BEVs in
commercial applications can lead to environmental benefits, e.g., for the GWP, EP, and PED. For the AP, improvements in comparison
to ICEVs can only be achieved under specific favorable conditions. BEVs show higher environmental impacts in the production phase
than ICEVs which is mainly due to the battery materials and production. Currently, these higher impacts can only be compensated by
a lower impact per driven mile during utilization. Therefore, a battery capacity tailored to the mobility demand to avoid unnecessary
offset from production, the environmental profile of the used electricity mix for charging, as well as the capacity utilization of
vehicles, is of vital importance for an environmentally beneficial deployment of BEVs. Operating BEVs under these conditions can
also lead to an economically competitive BEV deployment.

Due to several limitations, generalizing the results and conclusions into a broader context must be done cautiously. The cross-
border commuting and business trips, as well as the deployed BEV technologies, represent a unique combination. For future research,
various use-case profiles could be compared to allow for broader conclusions. Furthermore, over time the variety of vehicle models
grows continuously, the battery materials, production processes and durability changes, the energy efficiency of the powertrains
increases, and more detailed information about the recycling phase becomes available. Therefore, future research should expand the
models by including the newest technical developments and empirical data, to ensure that the introduction of BEVs into the transport
sector leads to long-term environmental benefits. Since the recommendations for an environmentally and economically beneficial
deployment are similar in several regards future research could develop a joint optimization model for the design of the vehicle and
charging infrastructure.
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C 1. Data 

In this section, the additional data, which was used in the research papers of Part B is 

presented in detail. The data sources are distinguished into three categories: data recorded 

from the BEVs, mobility data from other sources, and weather data. For the different data, 

the source, approach, and frequency of recording, as well as the logged parameters are 

described. Additional information concerning the measurement precision and errors, as well 

as data preparations, can be found in the stated references.  

C 1.1 Data electric vehicles 

For the detailed techno-economic analysis and optimization detailed empirical input data 

from BEVs in operation was required. Notably, the calibration and validation of the technical 

models of energy consumption and vehicle charging required empirical data. Additionally, the 

mobility data of applications with a high degree of utilization was needed to assess the 

economic potential. Hence, detailed technical and movement data of two BEV types the e-

Wolf Delta 2 and the Nissan Leaf, deployed in the RheinMobil research project was 

recorded. Moreover, the charging curves of other BEV types were logged to compare them 

and to put the theoretical model on a more resilient basis.   

C 1.1.1 Data e-Wolf Delta 2 (EVO) 

The vehicle and movement data of the e-Wolf Delta 2 and Delta 2 (EVO) vehicles was 

recorded in two different ways: directly from the onboard data logger and indirectly via the 

motion and GPS sensors of a smartphone. The long-term data originates from the onboard 

data logger with a maximum logging frequency of 0.05 Hz. To assess the accuracy and to 

scrutinize the effect on the models a smartphone was installed in each vehicle logging the 

movement data with a frequency of 10 Hz for one week (Stella et al., 2015). This valuation 

was especially crucial since the recorded vehicle and movement data was the core input for 

assessing the empirical energy consumption, calibrating the theoretical energy consumption 

model, and charging curves, as well as measuring the range of efficiency on the 

dynamometer. The data recorded from the e-Wolf Delta 2 (EVO) vehicles is directly used in 

the following research papers: 
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• Schücking et al. (2016) 

• Schücking et al. (2017) 

• Ensslen et al. (2017) 

• Held & Schücking (2019) 

In the following, the logging devices, as well as the recorded data, will be explained in more 

detail. 

C 1.1.1.1 Data e-Wolf Delta 2 & Delta 2 (EVO) recorded with an onboard data logger  

The vehicle and GPS data of the EV models e-Wolf Delta 2 and Delta 2 EVO was recorded 

with the onboard data logger VikMote VX20 STD+ Remote Telemetry and Control Unit 

connected to the CAN-bus of the vehicle. Technical details of the device can be found in the 

datasheet (Østergaard, 2011). Within the RheinMobil project, each of the six vehicles was 

deployed for 36 months. During that time the recorded data was sent in fixed intervals via 

UMTS to an online server. Due to technical difficulties with the BEVs that occurred during the 

time of deployment the data sets for the vehicles differ in their extent. The data logging 

frequency changed between the first and the EVO generation. The amount of data collected 

for each vehicle and the logging frequencies in the different driving states can be found in 

Table C10. Table C and Table C provide an overview of the logged vehicle and GPS 

parameters.  

 

Table C10: Overview data logged from the e-Wolf Delta 2 vehicles during the RheinMobil Project 

Vehicle Duration of 

data 

recording 

Number of 

data points 

Logged 

distance [km] 

Logging 

frequency 

while 

driving [s] 

Logging 

frequency 

while 

charging [s] 

Logging 

frequency 

while plugged 

in [s] 

e-Wolf Delta 

2_1 

36 Months 390,729 87,452 20 300 - 

e-Wolf Delta 

2_2 

36 Months 277,686 68,638 20 300 - 

e-Wolf Delta 

2_3 

36 Months 352,005 76,947 20 300 - 

e-Wolf Delta 

2_1_E 

36 Months 799,968 65,781 60 60 60 

e-Wolf Delta 

2_2_E 

36 Months 1,219,173 93,983 60 60 60 

e-Wolf Delta 

2_3_E 

36 Months 1,358,466 99,852 60 60 60 

 

Table C2: Overview of the different vehicle parameters recorded with the VikMote VX20 STD+ 

No. Category Parameter Format Unit 

1  Date & time YYYY/MM/DD hh:mm:ss  

2 Low voltage system data KL30 ##.### [V] 

3 KL15 ##.### [V] 

4 High voltage system data Battery voltage ###.# [V] 

5 Mean cell voltage #.### [V] 

6 Battery current ##.## [A] 

7 Cell temperature ##.# [°C] 

8  State of Charge (SOC) ###.#  

9 Distance data Remaining range ###.# [km] 

10 Speed (odometer) ## [km/h] 

11 Drive mode NEUTRAL/DRIVE, ECO  

12 Total distance #,### [km] 
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Table C3: Overview of the different GPS parameters recorded with the VikMote VX20 STD+ 

No. Parameter Format Unit 

1 Date & time YYYY/MM/DD hh:mm:ss  

2 Start YYYY/MM/DD hh:mm:ss  

3 Stop YYYY/MM/DD hh:mm:ss   

4 Latitude ##° ##‘ ##.###“  

5 Longitude ##° ##‘ ##.###“  

6 Course North, NorthWest, West, SouthWest, South, 

SouthEast, East, NorthEast 

 

7 Speed (GPS) ##.## [km/h] 

8 Total distance (GPS) ####.## [km] 

9 Satellite # / # [km] 

C 1.1.1.2 Data e-Wolf Delta 2 & Delta 2 (EVO) recorded with a smartphone 

In addition to the onboard data logger, an iPhone 3 smartphone was installed to record the 

vehicles' movement data. The vehicle movement data was recorded based on the input of 

the smartphone’s motion and GPS sensors with a specifically developed application by the 

Fraunhofer Project Group New Drive Systems (NAS). The application allowed a significantly 

higher logging frequency in comparison to the onboard data logger. The data was logged 

with 10 Hz. For one week, ten trips were recorded as basis to validate the quality of the lower 

resolution onboard data logger. The period of the recording was kept to a week since it 

required additional cooperation of the commuters to start and stop the recording. Table C 

provides an overview of the logged vehicle motion and GPS parameters.  

Table C4: Overview of the different GPS and motion parameters recorded with the smartphone app 

No. Parameter Format Unit 

1 Date DD.MM.YYYY  

2 Time hh:mm:ss:sss  

3 Latitude ###,###  

4 Longitude ###,###  

5 Altitude ### [m] 

6 Speed ##.## [m/s] 

7 Acceleration x-axis #.### [g] 

8 Acceleration x-axis #.### [g] 

9 Acceleration x-axis #.### [g] 

C 1.1.2 Data Nissan Leaf 

The vehicle and movement data of the Nissan Leaf was recorded in two different ways: 

indirectly from the online tool provided by the manufacturer and directly via a smartphone 

connected to the onboard diagnostics (OBD) system. The online tool provided by the 

manufacturer only provided data in an aggregated form, which proved insufficient for the 

detailed techno-economic analysis. Therefore, by connecting a diagnostic socket to the OBD 

interface and using the smartphone app Leaf Spy Pro much more detailed data could be 

recorded. Accessing this data was crucial since the recorded vehicle and movement data 

was the core input for assessing the empirical energy consumption, as well as calibrating the 

theoretical energy consumption model and charging curves. Analog to the e-Wolf data, the 

data recorded from the Nissan Leaf is directly used in the following research papers: 

• Schücking et al. (2016) 

• Schücking et al. (2017) 

• Ensslen et al. (2017) 

• Held & Schücking (2019) 

In the following, the logging devices, as well as the recorded data, will be explained in more 

detail. 
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C 1.1.2.1 Data Nissan Leaf online tool 

The vehicle data of the Nissan Leaf vehicle deployed in the RheinMobil Project was only 

made available in aggregated form on the online platform NISSAN CARWINGS. On this 

platform the current SOC, the remaining range, and charging status of the vehicle was 

visible. Also, past data concerning individual trips, energy consumption, distance, and saved 

CO2 emissions was presented. Details of the parameters available for past trips can be found 

in Table C. The logging frequency of the data is unknown. Overall 50,397 km were recorded 

on 851 individual trips.  

 
Table C5: Overview of the different vehicle parameters presented on the online platform 

No. Category Parameter Format Unit 

1  Date MMM/DD  

2  Number of trips per day ##  

3 Energy 

consumption 

Net consumption ##.## [kWh] 

4 Gross consumption ##.## [kWh] 

5  Recuperated energy ##.## [kWh] 

6  Specific net energy consumption ###.## [kWh/100 km] 

7  Covered distance ##.## [km] 

8  Reduction of CO2 emissions ## [kg] 

C 1.1.2.2 Data Nissan Leaf recorded via the onboard diagnostics (OBD) system 

Since the online platform did neither provide the required transparency nor level of detail an 

additional data logging system was installed on-board of the vehicle for three months as well 

as for two weeks in a Nissan eNV200. An onboard diagnostics (OBD)-2 scanner was 

connected to the diagnostic socket, which send the data via Bluetooth transmission to a 

smartphone. The Leaf Spy Pro application was installed on the Android operating system of 

the smartphone to interpret and store the received data. The data was retrieved from the 

smartphone via USB. The amount of data collected for each vehicle and the logging 

frequencies be found in Table C. Table C provides an overview of the logged vehicle and 

GPS parameters. 

Table C6: Overview data logged from the Nissan Leaf vehicle via the OBD-2 scanner 

Vehicle Duration of 

data 

recording 

Number of 

data points 

Logged 

distance [km] 

Logging 

frequency while 

driving [s] 

Logging 

frequency while 

charging [s] 

Nissan Leaf 3 Months 37,800 858 3 3 

Nissan eNV200 2 Weeks 15,120 130 3 3 

 

Table C7: Overview of the different vehicle and GPS parameters recorded via the OBD-2 scanner 

No. Parameter Format Unit Description 

1 Date DD.MM.YYYY  Date of the recording 

2 Time Hh:mm:ss  Time of the recording 

3 Latitude ##:##.#####  GPS latitude 

4 Longitude ##:##.#####  GPS longitude 

5 Elevation ### [m] GPS elevation 

6 Speed ### [km/h] Current speed of the vehicle 

7 Gids ###   

8 SOC ###,###  Battery state of charge 

9 AHr ###,###  Battery state of health 

10 Pack Volts ###.## [V] Battery voltage 

11 Pack Amps ##.# [A] Battery current 

12 Max CP mV #,### [mV] Maximum cell voltage 

13 Min CP mV #,### [mV] Minimum cell voltage 

14 Avg CP mV #,### [mV] Average cell voltage 

15 CP mV Diff ## [mV] Difference of cell voltages 
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16 Judgment Value # 0 = ok, 

1 = problem 

State of the battery  

17 Pack T1 F (1 to 4) ##.# [°F] Temperature for all 4 battery packs 

18 Pack T1 C (1 to 4) ##.# [°C] Temperature for all 4 battery packs 

19 CP1 (1 to 96) #,### [mV] Cell voltage for all 96 cells 

20 12v Bat Amps #.## [A] Current in the low volt circuit 

21 VIN   Vehicle identity number 

22 Hx ###.##   

23 12v Bat Volts ## [V] Voltage of the 12 V battery 

24 Odo(km) ##,### [km] Odometer 

25 QC ###  Number of fast charging events 

26 L1/L2 ###  Number of conventional charging 

events 

27 TP (FL, FR, RL, RR) #.# [bar] Tire pressure for all four tires FL, FR, 

RL, RR 

28 Ambient # [°C] Ambient temperature 

29 SOC ### [%] State of Health 

30 RegenWh ## [Wh] Recuperated energy 

31 BLevel   Battery level before warning of low 

SOC 

32 epoch time #,###,###,### [s] Time passed since the first trip 

33 Motor Pwr(100w) ### [100 w] Power electric motor 

34 Aux Pwr(100w) ## [100 w] Power auxiliaries 

35 A/C Pwr(250w) ## [250 w] Power A/C 

36 A/C Comp(0.1MPa) # [0.1MPa] Air pressure A/C 

37 Est Pwr A/C(50w) ## [50 w] Estimated power of A/C 

38 Est Pwr Htr(250w) ## [250 w] Estimated power charging 

39 Plug State # 0 = no  

1 = plugged-in 

State of the charging plug 

40 Charge mode # 0 = no 

2 = conventional 

3 = fast charge 

Charging mode 

41 OBC ##,### [W] Charging power 

C 1.1.3 Charging curves recorded with an energy cost measurement device 

The energy cost measurement device VOLTCRAFT ENERGY-LOGGER 4000 was used to 

record the Mode 1 and Mode 2 charging curves of different EV. It was put between the 

standard power outlet and the charging cable. Overall the charging curves of eight different 

EV types were recorded. With a frequency of one measurement point per minute, the data 

recorded is listed in . 

 

Table C8: Overview of the different charging parameters recorded with the energy cost measurement device 

No. Parameter Format Unit 

1 DateTime DD.MM.YYYY hh:mm   

2 Voltage  ###,# [V] 

3 Current ##,### [A] 

4 Power Factor #.##  

5 Actual Consumption #,###.## [W] 

6 Apparent Consumption #,###.## [W] 

 

The data was used in the following research papers: 

• Schücking et al. (2017) 

• Schücking & Jochem (2019) 

• Ensslen et al. (2017) 
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C 1.2 Mobility data 
Extensive mobility data of vehicles deployed in specific commercial use-cases was required 

in addition to the movement data recorded directly from the deployed BEVs. Therefore, the 

data from the regional eco mobility 2030 (REM2030) project was taken (REM2030 Daten 

v2015, Fraunhofer-Institut für System- und Innovationsforschung ISI, Karlsruhe). It consists 

of 91,422 single trips from 630 commercial ICEVs that were deployed by various companies 

from different economic segments over an average period of three weeks. For each trip the 

time of departure, arrival, the distance traveled, and the distance to the company are 

recorded. Also, metadata concerning the vehicles and companies is available. A detailed 

overview can be found in the REM2030 codebook (REM2030, 2015). The data of the 

vehicles can be found Table C. Table C provides an overview of the time and GPS 

parameters recorded for individual vehicles. The data was used in the following research 

paper:  

• Schücking & Jochem (2019) 

 
Table C9: Overview of the REM2030 vehicle data parameters 

No. Variable Format Description 

1 ID YYMMKKKKKK A unique primary key consisting of the year (YY), month 

(MM) and the last 6 digits of the data logger ID 

(KKKKKKK) 

2 Vehicle_size Small, Midsize, 

Large, Transporter 

Size class of the vehicle 

3 Economic_sector Classification 

according to 

SOURCE DeStatis 

2008 

Business sector of the company 

4 NACE_section Classification 

according to 

SOURCE DeStatis 

2008 

 

5 Economic_segment Classification 

according to 

SOURCE DeStatis 

2008 

Business segment of the company 

6 NACE_division Classification 

according to 

SOURCE DeStatis 

2008 

 

7 Company_description  Free text according to the company 

8 City_size < 20,000, 

20,000 to 100,000, 

> 100,000 

Population 

9 Company_size < 10, 

10 to 50, 

51 to 250, 

251 to 1,000, 

1,001 to 5,000 

> 5,000 

Number of employees 

10 Comment  Free optional comments 

11 Vehicle_utilization Fleet vehicle, 

Company car 

Utilization of the vehicle 

12 Number_of_users One user, 

More than one user 

Number of users 

13 Parking_spot Fixed spot on the 

company premises, 

changing spots on 

Parking situation of the vehicle 
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the company 

premises, no 

parking spot on the 

company premises 

14 Federal_state Two-digit according 

to ISO 3166-2:DE 

Federal state in Germany 

15 Company_ID # Ongoing and unique for each company 

 
Table C10: Overview of the REM2030 trip data parameters 

No. Parameter Format Description 

1 ID YYMMKKKKKK A unique primary key consisting of the year (YY), month 

(MM) and the last 6 digits of the data logger ID 

(KKKKKKK) 

2 DepYear #### Departure time (year) 

3 DepMonth ## Departure time (month) 

4 DepDay ## Departure time (day) 

5 DepHour ## Departure time (hour) 

6 DepMinute ## Departure time (minute) 

7 ArrYear #### Arrival time (year) 

8 ArrMonth ## Arrival time (month) 

9 ArrDay ## Arrival time (day) 

10 ArrHour ## Arrival time (hour) 

11 ArrMinute ## Arrival time (minute) 

12 Distance ##,## Distance traveled [km] 

13 Distance_to_company ###,## Distance to the company [km] 

C 1.3 Weather data 

Including detailed weather data in the techno-economic assessment and optimization of 

BEVs is important for two reasons: the influence of the auxiliaries, especially cooling and 

heating of the passenger cabin, on the specific energy consumption of the BEV and the 

influence on the battery temperature. However, the restricting effects of low or high battery 

temperatures on the usability of the BEV are neglected in the research presented in this 

book. The focus lies on the effect of the auxiliaries. Two different approaches were taken to 

get outside temperature data. Firstly, temperature loggers were installed in the deployed e-

Wolf Delta 2 (EVO) vehicles and the Nissan Leaf to record temperature data directly at the 

BEV. Secondly, long-term empirical data was downloaded from Germany's National 

Meteorological Service (DWD) which is a public institution with partial legal capacity under 

the Federal Ministry of Transport and Digital Infrastructure. The data was used in the 

following research paper: 

• Schücking et al. (2016) 

• Schücking et al. (2017) 

• Schücking & Jochem (2019) 

In the following, the logging devices, as well as the recorded data, will be explained in more 

detail. 

C 1.3.1 Outside temperature recorded at the vehicles 

The surrounding temperature data of the deployed EV was recorded with the Tempod MP-1 

data logger. Technical details can be found in the datasheet (TempSen, 2018). Within the 

RheinMobil project, one logger was installed into each of the seven vehicles. During the 36 

months of deployment, the data was saved on the logger and monthly retracted. The amount 

of data collected for each vehicle and the logging frequencies can be found in Table C. Table 

C provides an overview of the logged parameters.  
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Table C11: Overview outside temperature data logged from the vehicles during the RheinMobil Project 

Vehicle Duration of data 

recording 

Number of data points Logging frequency [s] 

e-Wolf Delta 2_1 36 Months 105,216 20 

e-Wolf Delta 2_2 36 Months 105,216 20 

e-Wolf Delta 2_3 36 Months 105,216 20 

e-Wolf Delta 2_1_E 36 Months 105,216 60 

e-Wolf Delta 2_2_E 36 Months 105,216 60 

e-Wolf Delta 2_3_E 36 Months 105,216 60 

 

Table C12: Overview of parameters recorded via the Tempod MP-1 datalogger 

No. Parameter Format Description 

1 Date and time DD.MM.YYYY hh:mm:ss Date and timestamp of the measurement 

2 Outside temperature ##.# Outside temperature [°C/°F] 

C 1.3.2 Deutscher Wetterdienst (DWD) 

The publicly available database from the DWD was used to include long-term empirical data 

of the outside temperature. The database offers data from numerous weather stations in 

Germany with an hourly, daily, monthly, annual or multi-annual resolution. Recently, even 1-

minute precipitation measurements and 10-minute measurements of temperature, 

precipitation, wind, and sunshine are made available. All data is provided on an openly 

accessible server (ftp://ftp-cdc.dwd.de/../). In this book, hourly temperature values were used. 

More details can be found in the data set description (DWD Climate Data Center (CDC), 

2018). Table C1311 provides an overview of the available parameters. 

 

Table C1311: Overview of parameters provided by the DWD Climate Data Center (CDC) 

No. Parameter Format Description 

1 Station ID #### Individual ID of the station 

2 Measurement time DD.MM.YYYY hh:mm:ss Date and timestamp of the measurement 

3 Data quality # Quality level - coding see datasheet  

4 Air temperature (2 m) ##.# Measured at 2 m above ground [°C] 

5 Relative humidity (2 m) ## Measured at 2 m above ground [%] 

C 2. Source Code 

In the following the source code of the stochastic program, the scientific modeling of the 

electric vehicles, the training, and scoring of the HMM, as well as the calculation of the 

scenario reduction is presented. The code was applied to calculate the Results of the Paper 

Schücking & Jochem (2019). The code was programmed in SPYDER. 

C 2.1 Sample average approximation optimization program 

In the following, the modulation of the optimization program as well as the electric vehicles 

are presented. The author added the comments to the source code. 

C 2.1.1 Optimization program 

The optimization program used the Gurobi Python interface as well as the standard libraries: 

matplotlib, csv, openpyxl, pandas, numpy and math. 

 
#Created on Tue Aug 22 15:54:48 2017 

 

#@author: maximilian schuecking 

 

#Optimization for one EV with SAA 

#Variable temperature and mobility scenarios 

#Optimization period: 1 week 
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#Investment period: 3 years 

 

#step 0: Importing packages 

 

import gurobipy as gp 

import EV as ev 

import matplotlib.pylab as plt 

import csv 

from openpyxl import load_workbook 

import pandas as pd 

import numpy as np 

import math as math 

 

#step 1: data import 

 

#step 1.1: data time index  

#Setting the period in number of days (365 is basic setting)  

period_d = 7 

period_a = period_d / 365 

period_inv = 3 

period_min = period_d * 24 * 60  

 

#Setting the time resolution [min] 

time_res = 1 

 

#Index t 

T = int(period_min / time_res) 

 

#step 1.2: data EVSE 

#Number of EVSE alternatives 

EVSE_a = 4 

 

#EVSE data maximum power, reduction point, charging mode, investment, installation cost 

EVSE_data = {} 

EVSE_data.update({("EVSE_1","max_power") : 2200}) 

EVSE_data.update({("EVSE_1","red_pnt") : 1000}) 

EVSE_data.update({("EVSE_1","ch_mode") : 2})  

EVSE_data.update({("EVSE_1","ch_inv") : 0}) 

EVSE_data.update({("EVSE_1","ch_inst") : 0}) 

 

EVSE_data.update({("EVSE_2","max_power") : 3700}) 

EVSE_data.update({("EVSE_2","red_pnt") : 1000}) 

EVSE_data.update({("EVSE_2","ch_mode") : 3})  

EVSE_data.update({("EVSE_2","ch_inv") : 600})  

EVSE_data.update({("EVSE_2","ch_inst") : 100}) 

 

EVSE_data.update({("EVSE_3","max_power") : 11000}) 

EVSE_data.update({("EVSE_3","red_pnt") : 3500}) 

EVSE_data.update({("EVSE_3","ch_mode") : 3})  

EVSE_data.update({("EVSE_3","ch_inv") : 1200})  

EVSE_data.update({("EVSE_3","ch_inst") : 200}) 

 

EVSE_data.update({("EVSE_4","max_power") : 22000}) 

EVSE_data.update({("EVSE_4","red_pnt") : 7000}) 

EVSE_data.update({("EVSE_4","ch_mode") : 3})  

EVSE_data.update({("EVSE_4","ch_inv") : 1800})   

EVSE_data.update({("EVSE_4","ch_inst") : 300}) 

 

#amortization period EVSE 

EVSE_T = 8 

 

#EVSE maintenance cost factor [%/a] 

EVSE_mnt_fac = 0.1 

 

step 1.3: data EV 

#Charging efficiency grid to battery 

ch_eff = 0.85 
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#discharging efficiency battery to grid 

dch_eff = 0.85 

 

#Faktor of net battery capacity used 

bat_gn_factor = 0.87 

 

#Battery warranty in years 

bat_war_time = 8 

 

#Battery warranty max. distance 

bat_war_dist = 160000 

 

#Battery warranty capacity 

bat_war_cap = 0.7 

 

#EV price (compact class net without battery) 

EV_price = 20000 

 

#parameters residual value 

EV_RV_alpha = 0.97948 

EV_RV_beta_1 = -0.01437 

EV_RV_beta_2 = -0.000117 

EV_RV_beta_3 = 0.91569 

 

#battery price on modul level in 2017 [€/kWh] 

bat_pr_17 = 210 

 

#battery price on modul level in 2020 [€/kWh] 

bat_pr_20 = 185 

 

#battey second life value factor 

bat_sl_f = 0.5 

 

#battery refurbishment cost 50 €/kWh 

bat_ref_c = 50 

 

#cost of EV maintenance [€/km] 

EV_mnt = 0.024 

 

#insurance cost EV [€/a] 

EV_insur = 450 

 

#tax EV [€/a] 

EV_tax = 0 

 

#interest rate for investment model 

interest_rate = 1.0502 

 

#step 1.4: electricity data 

#importing external data for electricity prices 

wb = load_workbook(…) 

ws = wb.active 

energy_df = pd.DataFrame(ws.values) 

energy_data = energy_df.values.tolist() 

energy_pr_buy = [] 

for i in range(len(energy_data)): 

    energy_pr_buy.extend(energy_data[i]) 

#from €/kWh to €/Wh 

for i in range(len(energy_pr_buy)): 

    energy_pr_buy[i] /= 1000 

 

#importing external data for selling electricity 

wb = load_workbook(…) 

ws = wb.active 

energy_df = pd.DataFrame(ws.values) 

energy_data = energy_df.values.tolist() 

165



 

energy_pr_sell = [] 

for i in range(len(energy_data)): 

    energy_pr_sell.extend(energy_data[i]) 

#from €/kWh to €/Wh 

for i in range(len(energy_pr_buy)): 

    energy_pr_sell[i] /= 1000 

 

#gas price set at net 1.2 €/l 

gas_pr_buy = [1.2 for t in range(T)] 

       

#step 1.5: data outside temperature 

#Number of temperature scenarios 

T_S = 10 

 

#importing external data for annual hourly temperature profile 

wb = load_workbook(…) 

ws = wb.active 

temp_df = pd.DataFrame(ws.values) 

temp_data = temp_df.values.tolist() 

 

temp_scen_prob = [] 

 

for ts in range(T_S): 

    temp_scen_prob.append(temp_data[ts][0]) 

    x = temp_data[ts][0] 

    temp_data[ts].remove(x) 

     

#step 1.6: data mobility demand  

#number of scenarios 

M_S = 15 

#import the relevant scenarios and their probabilities 

wb = load_workbook(…) 

ws = wb.active 

mob_scen_df = pd.DataFrame(ws.values) 

mob_scen_data = mob_scen_df.values.tolist() 

 

mob_scen_list = [] 

mob_scen_prob = [] 

 

for ms in range(M_S): 

    mob_scen_list.append(mob_scen_data[ms][0]) 

    x = mob_scen_data[ms][0] 

    mob_scen_data[ms].remove(x) 

    mob_scen_prob.append(mob_scen_data[ms][0]) 

     

mob_drv = [ms for ms in range(M_S)] 

mob_crg = [ms for ms in range(M_S)] 

mob_spd = [ms for ms in range(M_S)] 

 

#importing external data for each scenario 

for ms in range(M_S): 

     

    wb = load_workbook(…) 

    ws = wb.active 

    mob_df = pd.DataFrame(ws.values) 

    mob_data = mob_df.values.tolist() 

     

    #changing form from long to integer 

    for i in range(len(mob_df.index)): 

        mob_data[i] = [int(x) for x in mob_data[i]] 

     

    mob_drv[ms] = [] 

    mob_crg[ms] = [] 

    mob_spd[ms] = [] 

 

    #rows 0,3,… are the driving state 

    for i in range (0, period_d * 3, 3): 
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        mob_drv[ms].extend(mob_data[i]) 

    #rows 1,4,... are the charging state 

    for i in range (1, period_d * 3, 3): 

        mob_crg[ms].extend(mob_data[i]) 

    #rows 2,5,... are the average speed 

    for i in range (2, period_d * 3, 3): 

        mob_spd[ms].extend(mob_data[i]) 

        

step 1.7: data collection 

res_crg_power = [] 

res_crg_mode = [] 

res_opt_val = [] 

res_bat_cap_g = [] 

res_bat_cap_n_start = [] 

res_bat_cap_n_end = [] 

res_drv_time_avg = [] 

res_stp_time_avg = [] 

res_crg_time_avg = [] 

res_crg_energy_avg = [] 

res_dcrg_energy_avg = [] 

res_drv_dist_avg = [] 

res_period_d = [] 

res_period_inv = [] 

 

step 2: model 

step 2.1: defining model 

#for each charging alternative there must be a separate run to keep the LP 

for c in range(0, EVSE_a): 

     

    #creating an empty model 

    m = gp.Model("one_EV_MobS_" + str(M_S) + "_TempS_" + str(T_S)) 

 

   #step 2.2: variables 

    #charging power in each period for each scenario  

    crg_power = {} 

    for ms in range (M_S): 

        for ts in range (T_S): 

            for t in range (T): 

                crg_power.update({(ms, ts, t): m.addVar(lb=0, vtype=gp.GRB.CONTINUOUS,  

                            name="crg_power" + str(ms) + str(ts) + str(t))}) 

                       

    #discharging power in each period for each scenario  

    dcrg_power = {} 

    for ms in range (M_S): 

        for ts in range (T_S): 

            for t in range (T): 

                dcrg_power.update({(ms, ts, t): m.addVar(ub=0, vtype=gp.GRB.CONTINUOUS,  

                            name="dcrg_power" + str(ms) + str(ts) + str(t))})     

     

    #state of charge measured in Wh for each period in each scenraio 

    EV_SOC = {} 

    for ms in range (M_S): 

        for ts in range (T_S): 

            for t in range(T): 

                EV_SOC.update({(ms, ts, t): m.addVar(lb=0, vtype=gp.GRB.CONTINUOUS,  

                            name="EV_SOC" + str(ms) + str(ts) + str(t))}) 

     

    #gross battery capacity measured in kWh of the initial investment 

    #integer variable 

    bat_cap_g = m.addVar(lb=0, vtype=gp.GRB.INTEGER, name="bat_cap_g") 

 

    #net battery capacity measured in kWh 

    bat_cap_n_start = m.addVar(lb=0, vtype=gp.GRB.CONTINUOUS, name="bat_cap_n_start") 

     

    #net battery capacity measured in kWh 

    bat_cap_n_end = m.addVar(lb=0, vtype=gp.GRB.CONTINUOUS, name="bat_cap_n_end") 
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    step 2.3: updating model 

    m.update() 

             

    step 2.4: target function 

    #minimization of the TCO (investment and operation cost) 

     

    #EV investment without battery in € 

    TF_EV_inv = m.addVar() 

    TF_EV_inv = EV_price 

     

    #investment in battery in € 

    TF_bat_inv = m.addVar() 

    TF_bat_inv = bat_cap_g * bat_pr_17 

     

    #residual value of EV in € after 3 years of use 

    #depends on the use/mobility scenario only the temperature scenario is here not necessary 

        TF_EV_RV = m.addVar() 

    TF_EV_RV = sum((((np.exp(EV_RV_alpha) * np.exp(12 * EV_RV_beta_1 * period_inv) *  

    np.exp(EV_RV_beta_2 * (sum((time_res / 60) * mob_spd[ms][t] for t in range(T)) / (period_a)) / 12) *  

    math.pow(EV_price, EV_RV_beta_3)) / math.pow(interest_rate, period_inv))) * mob_scen_prob[ms] for ms in range(M_S)) 

 

 

    #residual value of battery in € after 3 years of use 

    #depends only on the time not the use/mobility scenario in this case 

    TF_bat_RV = m.addVar() 

    TF_bat_RV = ((((((bat_sl_f - bat_war_cap) / (1 - bat_war_cap))+ (((1 - bat_sl_f) / (1 - bat_war_cap)) *  

                     (1- (period_inv * 0.3 / bat_war_time))))  

    * bat_pr_20) - bat_ref_c) * bat_cap_g)/ math.pow(interest_rate, period_inv) 

     

     #Investment in EVSE and additional costs for installation in € 

    TF_EVSE_inv = m.addVar() 

    TF_EVSE_inv = EVSE_data["EVSE_" + str(c+1),"ch_inv"] + EVSE_data["EVSE_" + str(c+1),"ch_inst"]     

     

    #residual value charging infrastructure in € after 3 years of use 

    TF_EVSE_RV = m.addVar() 

    TF_EVSE_RV = EVSE_data["EVSE_" + str(c+1),"ch_inv"] * ( 1 - (period_inv / EVSE_T)) / math.pow(interest_rate, period_inv) 

     

    #charging cost of EV in € depending on the (use) mobility scenario 

    #minute index transformed to hourly energy prices 

    TF_EV_crg_cost = m.addVar()    

    for ts in range(T_S): 

        for ms in range(M_S): 

            TF_EV_crg_cost += mob_scen_prob[ms] * temp_scen_prob[ts] * (sum(crg_power[(ms, ts, t)] * 

                           energy_pr_buy[int(math.floor(t/60))] * time_res / 60 for t in range(T)) * (period_inv / period_a)) 

     

    #discharging cost of EV in € depending on the (use) mobility scenario 

    #minute index transformed to hourly energy prices 

    TF_EV_dcrg_cost = m.addVar()    

    for ts in range(T_S): 

        for ms in range(M_S): 

            TF_EV_dcrg_cost += mob_scen_prob[ms] * temp_scen_prob[ts] * (sum(dcrg_power[(ms, ts, t)] *  

                                              energy_pr_sell[int(math.floor(t/60))] * dch_eff *  

                                              time_res / 60 for t in range(T)) * (period_inv / period_a))   

     

    #additional fixed costs: insurance and tax in € 

    #discounted over time, paid at the start of the year 

    TF_EV_fix_cost = m.addVar() 

    for t in range(period_inv): 

        TF_EV_fix_cost += (EV_insur + EV_tax) / math.pow(interest_rate, t) 

     

    #maintenance cost of EV in € depending on the (use) mobility scenario 

    TF_EV_mnt_cost = m.addVar() 

    for ms in range(M_S): 

        TF_EV_mnt_cost += mob_scen_prob[ms] * (sum(EV_mnt * mob_spd[ms][t] *  

                                       time_res / 60 for t in range(T)) * (period_inv / period_a)) 

     

    #maintenance cost of EVSE in € set at 10% of the investment cost 
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    #discounted over time, paid at the end of the year 

    TV_EVSE_mnt_cost = m.addVar() 

    for t in range(period_inv): 

        TF_EV_fix_cost += (EVSE_data["EVSE_" + str(c+1),"ch_inv"] * EVSE_mnt_fac) / math.pow(interest_rate, t + 1) 

     

    #final target function 

    TF_all = (TF_EV_inv + TF_bat_inv - TF_EV_RV - TF_bat_RV + TF_EVSE_inv - TF_EVSE_RV +  

              TF_EV_crg_cost + TF_EV_dcrg_cost + TF_EV_fix_cost + TF_EV_mnt_cost + TV_EVSE_mnt_cost)  

     

    #minimizing the TCO 

    m.setObjective(TF_all, gp.GRB.MINIMIZE) 

     

    #step 2.5: constraints 

    #EV can only charge on company ground 

    for ts in range(T_S): 

        for ms in range(M_S): 

            for t in range(T): 

                m.addConstr(crg_power[(ms, ts, t)] * (mob_drv[ms][t] + 1 - mob_crg[ms][t]) == 0) 

             

    #EV can only discharge when they are on company ground 

    for ts in range(T_S): 

        for ms in range(M_S): 

            for t in range(T): 

                m.addConstr(dcrg_power[(ms, ts, t)] * (mob_drv[ms][t] + 1 - mob_crg[ms][t]) == 0) 

     

    #max. charging power depending on EVSE alternative 

    for ts in range(T_S): 

        for ms in range(M_S): 

            for t in range(T): 

                m.addConstr(crg_power[(ms, ts, t)] <= EVSE_data["EVSE_" + str(c+1),"max_power"]) 

             

    #max. charging power reduction on EVSE alternative 

    for ts in range(T_S): 

        for ms in range(M_S): 

            for t in range(T): 

                m.addConstr(crg_power[(ms, ts, t)] <= EV_SOC[(ms, ts, t)] * ((-EVSE_data["EVSE_" + str(c+1),"max_power"]) /  

              EVSE_data["EVSE_" + str(c+1),"red_pnt"]) + 

                                                                             (bat_cap_n_end * 1000 * EVSE_data["EVSE_" + str(c+1),"max_power"]  /  

                                                                             EVSE_data["EVSE_" + str(c+1),"red_pnt"])) 

             

    #max. discharging power including the discharging efficiency 

    for ts in range(T_S): 

        for ms in range(M_S): 

            for t in range(T): 

                m.addConstr((dcrg_power[(ms, ts, t)] / dch_eff) >= -EVSE_data["EVSE_" + str(c+1),"max_power"]) 

             

    #SOC transition function 

    for ts in range(T_S): 

        for ms in range(M_S): 

            for t in range(T-1): 

                m.addConstr(EV_SOC[(ms, ts, t+1)] == EV_SOC[(ms, ts, t)] + (((crg_power[(ms, ts, t)] * ch_eff) + dcrg_power[(ms, ts, 

               t)]) * time_res / 60) - (mob_spd[ms][t] * ev.energy_consumpt(mob_spd[ms][t], temp_data[ts][int(math.floor(t/60))],  

               bat_cap_g) * time_res / 60)) 

     

    # SOH limiting the SOC 

    for ts in range(T_S): 

        for ms in range(M_S): 

            for t in range(T): 

                m.addConstr(EV_SOC[(ms, ts, t)] <= bat_cap_n_end * 1000) 

     

    #no additional gains through discharging from the first to the last period 

    for ts in range(T_S): 

        for ms in range(M_S): 

            m.addConstr(EV_SOC[(ms, ts, 0)] == EV_SOC[(ms, ts, T-1)]) 

     

    # aging of the battery, linear reduction up to 30% in 8 years of battery guarantee 

    m.addConstr(bat_cap_n_end == bat_cap_n_start * (1- (period_inv * 0.3 / bat_war_time))) 
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    #relation gross to net battery capacity 

    m.addConstr(bat_cap_g * bat_gn_factor == bat_cap_n_start)     

     

    #step 2.6: solving model 

    m.optimize() 

    

    #step 3: output of results 

    #writing the individual results of the scenarios 

    for ts in range(T_S): 

      for ms in range(M_S):   

            #naming file, e.g. "results_S1-2_3700" 

            csv_file =  open(…) 

             

            #general information about the scenario 

            writer_csv.writerow(("opt. period [days]", "avg. temperature [°C]", "avg. energy price buy [€/wh]",  

                                 "avg. energy price sell [€/wh]", "energy charged [Wh]", "energy discharged [Wh]",  

                                 "avg. SOC [Wh]", "avg. SOH [Wh]", "driving time [h]",  

                                 "stopping time [h]", "charging time [h]", "distance travelled [km]")) 

             

            writer_csv.writerow((str(period_d), str(sum(temp_data[ts][int(math.floor(t/60))] for t in range(T)) / T),  

                                 str(sum(energy_pr_buy[int(math.floor(t/60))] for t in range(T)) / T), 

                                 str(sum(energy_pr_sell[int(math.floor(t/60))] for t in range(T)) / T), 

                                 str(sum(time_res * crg_power[(ms, ts, t)].x / 60 for t in range(T))), 

                                 str(sum(time_res * dcrg_power[(ms, ts, t)].x / 60 for t in range(T))), 

                                 str(sum(EV_SOC[(ms, ts, t)].x for t in range(T)) / T), 

                                 str(sum(time_res * mob_drv[ms][t] for t in range(T))), 

                                 str(sum(time_res * (1 - mob_crg[ms][t]) * (1 - mob_drv[ms][t]) for t in range(T))), 

                                 str(sum(time_res * mob_crg[ms][t] for t in range(T))), 

                                 str((sum(time_res * mob_spd[ms][t] / 60 for t in range(T)))) 

                                 )) 

             

            writer_csv.writerow(("time [min]", "temperature [°C]", "energy price buy [€/wh]",  

                                 "energy price sell [€/wh]", "charging power [W]",  

                                "discharging power [W]", "SOC [Wh]", "SOH [Wh]",  

                                "driving state", "stopping state", "charging state", "avg. speed [km/h]"))    

            for t in range(T): 

                writer_csv.writerow((str(t+1), str(temp_data[ts][int(math.floor(t/60))]), str(energy_pr_buy[int(math.floor(t/60))]),  

                                     str(energy_pr_sell[int(math.floor(t/60))]),str(crg_power[(ms, ts, t)].x), 

                                     str(dcrg_power[(ms, ts, t)].x), str(EV_SOC[(ms, ts, t)].x),  

                                     str(mob_drv[ms][t]), str((1 - mob_crg[ms][t]) * (1 - mob_drv[ms][t])),  

                                     str(mob_crg[ms][t]), str(mob_spd[ms][t]) 

                                     )) 

         

            csv_file.close()     

     

    #writing the overall results for all EVSE alternatives 

    res_crg_power.append(EVSE_data["EVSE_" + str(c+1),"max_power"]) 

    res_crg_mode.append(EVSE_data["EVSE_" + str(c+1),"ch_mode"]) 

    res_opt_val.append(m.objVal) 

    res_bat_cap_g.append(bat_cap_g.x) 

    res_bat_cap_n_start.append(bat_cap_n_start.x) 

    res_bat_cap_n_end.append(bat_cap_n_end.x) 

    res_drv_time_avg.append(sum(sum(time_res * mob_drv[ms][t] for t in range(T)) *  

                                    mob_scen_prob[ms] for ms in range(M_S)) / 60 ) 

    res_stp_time_avg.append(sum(sum(time_res * (1 - mob_crg[ms][t]) * (1 - mob_drv[ms][t]) for t in range(T)) *  

                                                mob_scen_prob[ms] for ms in range(M_S)) / 60) 

    res_crg_time_avg.append(sum(sum(time_res * mob_crg[ms][t] for t in range(T)) *  

                                    mob_scen_prob[ms] for ms in range(M_S)) / 60) 

    res_crg_energy_avg.append(sum(sum(sum(time_res * crg_power[(ms, ts, t)].x / 60 for t in range(T)) *  

                                          mob_scen_prob[ms] for ms in range(M_S)) * temp_scen_prob[ts] for ts in range(T_S))) 

    res_dcrg_energy_avg.append(sum(sum(sum(time_res * dcrg_power[(ms, ts, t)].x / 60 for t in range(T)) *  

                                          mob_scen_prob[ms] for ms in range(M_S)) * temp_scen_prob[ts] for ts in range(T_S))) 

    res_drv_dist_avg.append(sum(sum(time_res * mob_spd[ms][t] / 60 for t in range(T)) * mob_scen_prob[ms] for ms in 

range(M_S))) 

    res_period_d.append(period_d) 

    res_period_inv.append(period_inv) 
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#writing the overall results of the optimization     

csv_file =  open("results_MS" + str(M_S) + "_TS" + str(T_S) + ".csv", "wt")      

writer_csv = csv.writer(csv_file) 

writer_csv.writerow(("charging power [W]", "charging mode", "opt. value [€]", "gross capacity [kWh]", 

                     "net capacity [kWh]", "end SOH [Wh]", "driving time avg. [h]",  

                     "stopping time avg. [h]", "charging time avg. [h]","energy charged avg. [Wh]",  

                     "energy discharged avg. [Wh]", "distance travelled avg. [km]",  

                     "optimization period [days]", "investment period [years]"))     

     

for c in range(EVSE_a): 

    writer_csv.writerow((str(res_crg_power[c]), str(res_crg_mode[c]), str(res_opt_val[c]),  

                         str(res_bat_cap_g[c]),str(res_bat_cap_n_start[c]),str(res_bat_cap_n_end[c]),  

                         str(res_drv_time_avg[c]), str(res_stp_time_avg[c]),  

                         str(res_crg_time_avg[c]), str(res_crg_energy_avg[c]), str(res_dcrg_energy_avg[c]), 

                         str(res_drv_dist_avg[c]), str(res_period_d[c]), str(res_period_inv[c]) 

                         )) 

 

csv_file.close() 

 

C 2.1.2 EV module 

 
#Created on Wed May 10 09:37:20 2017 

 

#@author: maximilian schuecking 

 

#electric vehicle charging curves 

#electric vehicle energy consumption 

 

1. EV charging curves 

def charging_curve(Charge_mode, max_power_EVSE, Charge_eff, SOC, SOH): 

     

    max_charge_power = 0.0 

     

    #charging mode 2, max. charging power 2,000 W 

    if Charge_mode == 2.0: 

        #constant part of the charging curve until 1,000 Wh remaining capacity 

        if (SOC <= SOH - 1000.0): 

            max_charge_power = 2200.0 

        #second part of the charging curve, constant linear reduction 

        else: 

            max_charge_power = (-2200.0 / 1000.0 * SOC) + (2200.0 + ((SOH - 1000.0) * 2200.0 / 1000.0)) 

         

    #charging mode 3, max. charging power 3,700 W, 11,000 W & 22,000 W 

    if Charge_mode == 3: 

        #charging curve 3,700 W 

        if max_power_EVSE == 3700.0: 

            #constant part of the charging curve until 1,000 Wh remaining capacity  

            if (SOC <= SOH - 1000.0): 

                max_charge_power = 3700.0 

            #second part of the charging curve, constant linear reduction 

            else: 

                max_charge_power = (-3700.0 / 1000.0 * SOC) + (3700.0 + ((SOH - 1000.0) * 3700.0 / 1000.0)) 

        #charging curve 11,000 W         

        if max_power_EVSE == 11000.0: 

            #constant part of the charging curve until 3,500 Wh remaining capacity 

            if (SOC <= SOH - 3500.0): 

                max_charge_power = ((11.0/185.0 * SOC + (9900.0 - (SOH - 3500.0) * 11.0/185.0))) * (1.0 / Charge_eff) 

            #second part of the charging curve, constant linear reduction 

            else: 

                max_charge_power = (((-9900.0 / 3500.0) * SOC) + (9900.0 + ((SOH - 3500.0) * (9900.0 / 3500.0)))) * (1.0 /  

Charge_eff) 

        #charging curve 22,000 W         

        if max_power_EVSE == 22000.0: 

            #constant part of the charging curve until 7,000 Wh remaining capacity 
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            if (SOC <= SOH - 7000.0): 

                max_charge_power = ((11/75) * SOC + (19800.0 - (SOH - 7000.0) * 11.0/75.0)) * (1.0 / Charge_eff) 

            #second part of the charging curve, constant linear reduction 

            else: 

                max_charge_power = (((-19800.0 / 7000.0) * SOC) + (19800.0 + ((SOH - 7000.0) * (19800.0 / 7000.0)))) * (1.0 /  

Charge_eff)     

                     

    #charging mode 3, max. charging power 20,000 W 50,000 W 

    if Charge_mode == 4: 

        #charging curve 20,000 W        

        if max_power_EVSE == 20000.0: 

            #constant part of the charging curve until 9,000 Wh remaining capacity 

            if (SOC <= SOH - 9000.0): 

                max_charge_power = (0.14 * SOC + (18500.0 - (SOH - 9000.0) * 0.14)) * (1.0 / Charge_eff) 

            #second part of the charging curve, constant linear reduction 

            else: 

                max_charge_power = (((-18500.0 / 9000.0) * SOC) + (18500.0 + ((SOH - 9000.0) * (18500.0 / 9000.0)))) * (1.0 /  

Charge_eff) 

        #charging curve 50,000 W        

        if max_power_EVSE == 50000.0: 

            #constant part of the charging curve until 12,000 Wh remaining capacity 

            if (SOC <= SOH - 12000.0): 

                max_charge_power = (0.4 * SOC + (47300.0 - (SOH - 12000.0) * 0.4)) * (1.0 / Charge_eff) 

            #second part of the charging curve, constant linear reduction 

            else: 

                max_charge_power = (((-47300.0 / 12000.0) * SOC) + (47300.0 + ((SOH - 12000.0) * (47300.0 / 12000.0)))) * (1.0 /  

Charge_eff) 

     

    return max_charge_power 

 

2. EV energy consumption 

#specific energy consumption based on average speed, outside temperature, and battery weight 

 

def energy_consumpt(avg_speed ,amb_temp, batt_kap): 

     

    #energy for propelling EV forward linear approximated 

    prop_el_energy_consumpt = 0 

    if avg_speed == 0.0: 

        prop_el_energy_consumpt = 0 

    if (avg_speed > 0.0 and avg_speed < 18.5): 

        prop_el_energy_consumpt = 0 * avg_speed + 115.45 

    if (avg_speed >= 18.5 and avg_speed < 63): 

        prop_el_energy_consumpt = 0.5693 * avg_speed + 104.92 

    if (avg_speed >= 63): 

        prop_el_energy_consumpt = 1.863 * avg_speed + 23.43 

     

    #additional consumption through battery weight 

    batt_weight_energy_consumpt = batt_kap * 0.2524 

     

    #energy consumed by the auxiliaries 

    #factor determines multiples of 500 W for the auxiliaries’ demand 

    aux_el_energy_consumpt = 0 

    if (amb_temp <= 0.0): 

        factor = 4 

    if (amb_temp > 0.0 and amb_temp <= 10.0): 

        factor = 3 

    if (amb_temp > 10.0 and amb_temp <= 15.0): 

        factor = 2 

    if (amb_temp > 15.0 and amb_temp <= 25.0): 

        factor = 1 

    if (amb_temp > 25.0 and amb_temp <= 30.0): 

        factor = 2 

    if (amb_temp > 30.0): 

        factor = 3   

     

    #calculating energy consumption based on the factor, linear approximated 

    if (avg_speed > 0.0 and avg_speed < 5.0): 
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        aux_el_energy_consumpt = (-40 * factor) * avg_speed + (300 * factor) 

    if (avg_speed >= 5.0 and avg_speed < 10.0): 

        aux_el_energy_consumpt = (-10 * factor) * avg_speed + (150 * factor) 

    if (avg_speed >= 10.0 and avg_speed < 20.0): 

        aux_el_energy_consumpt = (-2.5 * factor) * avg_speed + (75 * factor) 

    if (avg_speed >= 20.0 and avg_speed < 40.0): 

        aux_el_energy_consumpt = (-0.625 * factor) * avg_speed + (37.5 * factor) 

    if (avg_speed >= 40.0): 

        aux_el_energy_consumpt = (-5/48 * factor) * avg_speed + (50/3 * factor) 

         

    return (prop_el_energy_consumpt + batt_weight_energy_consumpt + aux_el_energy_consumpt) 

 

C 2.2 Training and scoring HMM 

The training and scoring of the HMM used the hmmlearn library as well as the standard 

libraries: openpyxl, pandas, and numpy. 

 
#Created on Wed Apr 5 09:37:20 2017 

 

#@author: maximilian schuecking 

 

#multinomial hidden markov model 

#Evaluation AIC, BIC, 4-fold cross-validation 

#5 em-EM Baum-Welch (10 times, 10 different random initial parameters, 50 iterations, 200 iterations for the version with 

highest ML) 

 

 

#step 0: Importing packages 

from __future__ import division 

import numpy as np 

from hmmlearn import hmm 

from openpyxl import load_workbook 

import pandas as pd 

 

#step 1: setting parameters 

#number of hidden states 

NoHdStat = 5 

#number of parameters 

NoParams = 40  

#number of observations 

NoObs = 27642  

#number of total runs 

NoExtRun = 10 

#number of different initial distributions 

NoIntRun = 10 

#number of iterations in the first step 

NoIt1stStep = 50 

#number of iterations in the second step 

NoIt2ndStep = 200 

#number of validation sets 

NoCrossVal = 4 

 

start_pro_matrix_f = {} 

trans_pro_matrix_f = {} 

em_pro_matrix_f = {} 

likeli_matrix_f = {} 

 

#step 2: training the model 

for c in range(NoExtRun): 

 

    #allgemeine Initialisierung des HMM, entsprechend dann für alle erweitern 

    states = ["Z1", "Z2", "Z3", "Z4", "Z5"] 

     

    n_states = len(states) 

    observations = ["stopp", "fahren", "halten"] 

    n_observations = len(observations) 
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    start_pro = np.array([]) 

    trans_pro = np.array([ [], [], [], [], [] ]) 

    em_pro = np.array([ [], [], [], [], [] ])      

    start_pro_matrix = {} 

    trans_pro_matrix = {} 

    em_pro_matrix = {} 

    likeli_matrix = {} 

    

    #start of full run  

    for a in range(NoIntRun): 

         

        model = hmm.MultinomialHMM(n_components=n_states, n_iter=NoIt1stStep, params="te", init_params="te") 

         

        model.startprob_=start_pro 

        model.transmat_=trans_pro 

        model.emissionprob_=em_pro 

         

        #importing tour profiles  

        name_train = 'Tourprofile_120501.xlsx' 

        wb = load_workbook(name_train) 

        ws =wb.active 

        df_train = pd.DataFrame(ws.values) 

        df_train.fillna(-1, inplace=True) 

        data_train = df_train.values.tolist() 

        for i in range(len(df_train.index)): 

            data_train[i] = [x for x in data_train[i] if x != -1.0] 

         

        for i in range(len(df_train.index)): 

            data_train[i] = [int(x) for x in data_train[i]] 

         

        #training the model 

        model.fit(data_train) 

         

        #saving the data of the first step runs 

        start_pro_matrix[a+1] = model.startprob_  

        trans_pro_matrix[a+1] = model.transmat_ 

        em_pro_matrix[a+1] = model.emissionprob_ 

         

         

        #calculating the ML of the individual runs 

        likeli = 0.0 

        for i in range(len(df_train.index)): 

            likeli += model.score(data_train[i]) 

         

        #saving the data 

        likeli_matrix[a+1] = likeli 

     

    #identifying the best first step run 

    MaxLikelIns = -1e6 

    MaxVarIns = 0 

    for b in range(NoIntRun): 

        if likeli_matrix[b+1] > MaxLikelIns: 

            MaxLikelIns = likeli_matrix[b+1] 

            MaxVarIns = b+1 

 

    #Parameters of highest scoring run are now starting parameters 

    model_f = hmm.MultinomialHMM(n_components=n_states, n_iter=NoIt2ndStep, params="te", init_params="") 

 

    model_f.startprob_= start_pro_matrix[MaxVarIns] 

    model_f.transmat_= trans_pro_matrix[MaxVarIns] 

    model_f.emissionprob_= em_pro_matrix[MaxVarIns]   

     

    #training the model 

    model_f.fit(data_train) 

     

    #calculating the ML of the total run 

    likeli_f = 0.0 
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    for i in range(len(df_train.index)): 

        likeli_f += model_f.score(data_train[i]) 

   

    #saving the data of the total runs 

    start_pro_matrix_f[c+1] = model_f.startprob_ 

    trans_pro_matrix_f[c+1] = model_f.transmat_ 

    em_pro_matrix_f[c+1] = model_f.emissionprob_ 

    likeli_matrix_f[c+1] = likeli_f 

     

#identifying the best total run 

MaxLikelIns_f = -1e6 

MaxVarIns_f = 0 

for d in range(NoExtRun): 

    if likeli_matrix_f[d+1] > MaxLikelIns_f: 

        MaxLikelIns_f = likeli_matrix_f[d+1] 

        MaxVarIns_f = d+1 

         

#step 3: scoring the model 

 

#AIC, BIC 

AIC_2 = (-2*likeli_matrix_f[MaxVarIns_f]) + 2*NoParams 

BIC_2 = (-2*likeli_matrix_f[MaxVarIns_f]) + NoParams*np.log(NoObs) 

 

#4-fold cross-validation  

cross_likeli = {} 

for e in range(NoCrossVal):  

 

    #run the model for one of the 4 cross-validation sets 

    #identical to the model training above for the total sets 

    start_pro_matrix_f = {} 

    trans_pro_matrix_f = {} 

    em_pro_matrix_f = {} 

    likeli_matrix_f = {} 

     

    for c in range(NoExtRun): 

        states = ["Z1", "Z2", "Z3", "Z4", "Z5"] 

        n_states = len(states) 

        observations = ["stopp", "fahren", "halten"] 

        n_observations = len(observations) 

         

        start_pro = np.array([]) 

        trans_pro = np.array([ [], [], [], [], [] ])   

        em_pro = np.array([ [], [], [], [], []  

        start_pro_matrix = {} 

        trans_pro_matrix = {} 

        em_pro_matrix = {} 

        likeli_matrix = {} 

         

        for a in range(NoIntRun): 

             

            model = hmm.MultinomialHMM(n_components=n_states, n_iter=NoIt1stStep, params="te", init_params="te") 

 

            model.startprob_=start_pro 

            model.transmat_=trans_pro 

            model.emissionprob_=em_pro 

                         

            name_train = 'Tourprofile_120501_' 

            name_train += str(e+1) 

            name_train += '_Train.xlsx' 

            wb = load_workbook(name_train) 

            ws =wb.active 

            df_train = pd.DataFrame(ws.values) 

            df_train.fillna(-1, inplace=True) 

            data_train = df_train.values.tolist() 

            for i in range(len(df_train.index)): 

                data_train[i] = [x for x in data_train[i] if x != -1.0] 

            for i in range(len(df_train.index)): 
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                data_train[i] = [int(x) for x in data_train[i]] 

             

            model.fit(data_train) 

             

            start_pro_matrix[a+1] = model.startprob_  

            trans_pro_matrix[a+1] = model.transmat_ 

            em_pro_matrix[a+1] = model.emissionprob_ 

                         

            likeli = 0.0 

             

            for i in range(len(df_train.index)): 

                likeli += model.score(data_train[i]) 

             

            #hinzufügen zur Likelihood 

            likeli_matrix[a+1] = likeli 

                 

        MaxLikelIns = -1e6 

        MaxVarIns = 0 

         

        for b in range(NoIntRun): 

            if likeli_matrix[b+1] > MaxLikelIns: 

                MaxLikelIns = likeli_matrix[b+1] 

                MaxVarIns = b+1 

         

        model_f = hmm.MultinomialHMM(n_components=n_states, n_iter=NoIt2ndStep, params="te", init_params="") 

         

        model_f.startprob_= start_pro_matrix[MaxVarIns] 

        model_f.transmat_= trans_pro_matrix[MaxVarIns] 

        model_f.emissionprob_= em_pro_matrix[MaxVarIns]   

         

        model_f.fit(data_train) 

         

        likeli_f = 0.0 

         

        for i in range(len(df_train.index)): 

            likeli_f += model_f.score(data_train[i]) 

 

        start_pro_matrix_f[c+1] = model_f.startprob_ 

        trans_pro_matrix_f[c+1] = model_f.transmat_ 

        em_pro_matrix_f[c+1] = model_f.emissionprob_ 

        likeli_matrix_f[c+1] = likeli_f 

         

    MaxLikelIns_f = -1e6 

    MaxVarIns_f = 0 

     

    for d in range(NoExtRun): 

        if likeli_matrix_f[d+1] > MaxLikelIns_f: 

            MaxLikelIns_f = likeli_matrix_f[d+1] 

            MaxVarIns_f = d+1 

     

    #calculation of the cross-validation values 

             

    name_test = 'Tourprofile_120501_' 

    name_test += str(e+1) 

    name_test += '_Test.xlsx' 

    wb = load_workbook(name_test) 

    ws =wb.active 

    df_test = pd.DataFrame(ws.values) 

    df_test.fillna(-1, inplace=True) 

    data_test = df_test.values.tolist() 

    for i in range(len(df_test.index)): 

        data_test[i] = [x for x in data_test[i] if x != -1.0] 

    for i in range(len(df_test.index)): 

        data_test[i] = [int(x) for x in data_test[i]] 

     

    #calculating the log-likelihood 

    likeli_test = 0.0 
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    for i in range(len(df_test.index)): 

        likeli_test += model.score(data_test[i]) 

 

    cross_likeli[e+1] = likeli_test 

     

cross_likeli_avg = 0 

for f in range(NoCrossVal): 

    cross_likeli_avg += cross_likeli[f+1] 

cross_likeli_avg = cross_likeli_avg / NoCrossVal 

 

 

C 2.3 Scenario reduction 

The algorithms for the scenario reduction is separated into the calculation of the Kantorovich 

distance between the individual scenarios and the reduction algorithms. Here only the source 

code for the Fast Forward Selection (FFS) algorithm is presented, since it was the only one 

applied in the paper.  

C 2.3.1 Calculation Kantorovich distance  
 

#Created on Sep 19 17:20:49 2017 

 

#@author: maximilian schuecking 

 

#calculating the Kantorovich distance at the example of the mobility scenarios 

 

#step 0: Importing packages 

from openpyxl import load_workbook 

import pandas as pd 

import csv 

import math 

 

step 1: data import & variables 

#number of scenarios 

no_scen = 500 

  

mob_drv = [ms for ms in range(no_scen)] 

mob_crg = [ms for ms in range(no_scen)] 

mob_spd = [ms for ms in range(no_scen)] 

 

#importing data 

wb = load_workbook(…) 

ws = wb.active 

raw_data_df = pd.DataFrame(ws.values) 

raw_data = raw_data_df.values.tolist() 

for i in range(len(raw_data_df.index)): 

    raw_data[i] = [int(x) for x in raw_data[i]] 

 

for ms in range (no_scen):  

    mob_drv[ms] = [] 

    mob_crg[ms] = [] 

    mob_spd[ms] = [] 

     

    #21 because the scenarios are one week (7x3) 

    #rows 0,3,... are the driving state 

    for i in range ((ms * 21) + 0, (ms * 21) + 21, 3): 

        mob_drv[ms].extend(raw_data[i]) 

    #rows 1,4,... are the charging state 

    for i in range ((ms * 21) + 1, (ms * 21) + 21, 3): 

        mob_crg[ms].extend(raw_data[i]) 

    #rows 2,5,... are the average speed 

    for i in range ((ms * 21) + 2, (ms * 21) + 21, 3): 

        mob_spd[ms].extend(raw_data[i]) 
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T = len(mob_drv[0]) 

 

step 2: calculating the Kantorovich distance 

 

kant_dist = [[0 for i in range(no_scen)] for i in range(no_scen)] 

 

#Euclidian norm  

for i in range(no_scen): 

    print (i+1) 

    for j in range(no_scen): 

        kant_dist[i][j] = sum(math.sqrt(math.pow(mob_drv[i][k] - mob_drv[j][k], 2) + 

                 math.pow(mob_crg[i][k] - mob_crg[j][k], 2) + 

                 math.pow(mob_spd[i][k] - mob_spd[j][k], 2)) for k in range(T)) 

 

step 3: output of results 

csv_file =  open(…)  

writer_csv = csv.writer(csv_file) 

 

for i in range(no_scen): 

    writer_csv.writerow((str(kant_dist[i][j]) for j in range(no_scen))) 

 

csv_file.close()  

 

C 2.3.2 Scenario reduction (an example of fast-forward reduction algorithm)  

 
#Created on Tue Sep 19 11:43:19 2017 

 

#@author: maximilian schuecking 

 
#step 0: Importing packages 

from openpyxl import load_workbook 

import pandas as pd 

 

#step 1: data import & variables 

#number of selected scenarios 

target_scen = 5 

 

#importing the Kantorovich distances 

wb = load_workbook(…) 

ws = wb.active 

c_a_val_df = pd.DataFrame(ws.values) 

c_a_val = c_a_val_df.values.tolist() 

no_scen = len(c_a_val) 

 

#list for remaining scenarios 

rem_scen = [i+1 for i in range(no_scen)] 

 

#list for deleted scenarios 

sel_scen = [] 

 

#list for scenario probabilities 

scen_prob = [1/no_scen for i in range(no_scen)] 

 

scen_prob_p = [1/no_scen for i in range(no_scen)] 

 

#list for c_u_k values that are updated in each reduction step 

c_b_val = [[[0 for i in range(no_scen)] for i in range(no_scen)] for j in range (no_scen - target_scen)] 

 

 

#step 2: scenario reduction 

#step 2.1: initial reduction step 

 

#adding the current values to the list 

for k in range(no_scen): 

    for u in range(no_scen): 
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        c_b_val[0][u][k] = c_a_val[u][k] 

 

#z_value vector for identifying the next deleted scenario 

#default values are 0, so deleted scenarios cannot be deleted againg 

z_val = [0 for i in range(no_scen)] 

     

#calculating the z_values 

for l in rem_scen: 

    z_val[l-1] = sum(scen_prob[k] * c_b_val[0][l-1][k] for k in range(no_scen)) 

 

#identifying scenario 

z_min =  min(i for i in z_val if i > 0) 

 

#identifying scenario index 

index_sel = z_val.index(z_min) + 1 

 

#adding deleted scenario index to the list 

sel_scen.append(index_sel) 

 

#deleting from available scenarios 

rem_scen.remove(index_sel) 

 

#step 2.2: iterative scenario redcution 

 

for scen in range (1, target_scen): 

     

    for k in rem_scen: 

        for u in rem_scen: 

 

            c_b_val[scen][u-1][k-1] = min(c_b_val[scen - 1][u-1][k-1],c_b_val[scen - 1][index_sel-1][k-1]) 

         

    #setting all values back to 0 

    z_val = [0 for i in range(no_scen)] 

    

    #calculating the z_values 

    for l in rem_scen: 

        z_val[l-1] = sum(scen_prob[k-1] * c_b_val[scen][l-1][k-1] for k in rem_scen) 

             

    #identifying scenario 

    z_min =  min(i for i in z_val if i > 0) 

     

    #identifying scenario index 

    index_sel = z_val.index(z_min) + 1 

     

    #adding deleted scenario index to the list 

    sel_scen.append(index_sel) 

     

    #deleting from available scenarios 

    rem_scen.remove(index_sel) 

     

                 

    #step 3: allocating the probabilities of the deleted scenarios 

    #list for reduced scenario probabilities 

    scen_prob_red = scen_prob 

     

    #for all deleted scenarios 

    for l in rem_scen: 

        #values for all unselected scenarios are set to 0, so they are excluded 

        for k in rem_scen: 

            c_a_val[l-1][k-1] = 0 

         

        #index of the remaining scenario with the smallest distance 

        j = c_a_val [l-1].index(min(i for i in c_a_val[l-1] if i > 0)) 

         

        #adding the probability of the deleted scenario l to the identified scenario j 

        #setting the probability of the deleted scneario to 0 

        scen_prob_red[j] += scen_prob[l-1] 
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        scen_prob[l-1] = 0 

               

    #resetting the values       

    scen_prob = [1/no_scen for i in range(no_scen)]         

    c_a_val_df = pd.DataFrame(ws.values) 

    c_a_val = c_a_val_df.values.tolist()    
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