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ABSTRACT 

The correct classification of a logs assortment is crucial for the economic output within a fully 

mechanized timber harvest. This task is especially for unexperienced but also for professional machine 

operators mentally demanding. This paper presents a method towards an assistance system for machine 

operators for an automated log quality and assortment estimation. Therefore, machine vision methods 

for object detection are combined with machine learning approaches for estimating the logs weight 

based on a Convolutional Neural Network (CNN). 

categorisation into a specific assortment is done. By comparing the theoretical weight of a healthy log 

of such dimensions to the real weight estimated by the CNN-based crane scale, quality reducing 

properties such as beetle infestation or red rod can be detected. In such cases, the assistance system 

displays a visual warning to the operator to check the loaded log. 

Keywords: Assistance System, Log Assortment, Crane Scale, Machine Learning, Machine Vision, 

Forwarder, Convolutional Neural Network 

1. MOTIVATION 

In a fully mechanized timber harvest, a harvester 

fells the trees and cuts them into logs of specific 

length according to the log quality. Afterwards, a 

forwarder loads the logs and moves them from 

the logging area to a forest road. Here, the 

operator piles the logs into different assortments 

regarding their specifications such as length and 

quality. Loading and piling sums up to 85 % of 

total working hours. [1 4]  

It requires experienced operators with a 

background in forestry to fulfil these tasks 

efficiently, economically and sustainably. The 

main challenges forestry service companies 

currently face are a high employee fluctuation 

and a simultaneously increasing average age of 

the machine operators [5, 6]. Training of a new 

operator takes 9 months on average [7], resulting 

in reduced productivity during this time. Hence, 

this lack of experienced operators results in an 

economical deficit within the forestry sector.  

2. ASSISTANCE SYSTEM FOR 
ASSORTMENT ESTIMATION 

Especially new, young operators show a lack of 

experience in estimating the log dimension and 

quality during loading due to an insufficient 

background in forestry. A wrong assortment 

assignment leads to a quality reduction of the 

whole pile where the log was placed and reduces 

the overall profit of the forest owner and 

consecutively the forestry contractor. The log 

quality  decreases 

with defects, e.g. red rot or bark beetle infestation 

at spruces, resulting in reduced weight compared 

to a healthy log. The aim of this paper is to close 

this gap in experience by presenting a method for 

an automated log quality and assortment 

estimation during a continuous loading cycle, 

exemplary shown for spruces. Figure 1 displays 

the functional principle of the assistance system, 

which combines two parallel branches, one for 

measuring the weight and one for measuring the 

log dimensions, into an assortment estimation for 

forestry machine operators. The bottom branch 

receives the weight of the log via a CNN, mainly 
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based on the input of the hydraulic pressure of the 

inner boom cylinder and the grapple position. The 

upper branch estimates the log diameter and 

length via object detection methods, resulting in 

the log volume. Assuming the density of a 

healthy log, the theoretical weight of the log is 

calculated and compared in the next step to the 

measured weight. In cases of significant 

differences, e.g. if the log is lighter due to red rot, 

a warning appears at the machine operators 

display, cf. Figure 1 right. In the following, 

Chapter 3 shows the state of the art of object 

detection and crane scales. The two branches for 

the assistance system are explained in detail in 

Chapter 4 for the object detection and in Chapter 

5 for the databased crane scale. 

3. STATE OF THE ART 

Currently, a system for forwarders estimating the 

log assortment automatically is unknown to the 

authors. Nevertheless, different approaches for 

the necessary subsystems of such an assistance 

system, especially measurement systems for the 

weight and dimensions of a log, are investigated 

by industry and research. 

3.1. Object Detection of Logs 

Machine vision is an essential part of many 

current research projects in the field of 

automation. However, research focusing on 

automatic recognition of logs are quite rare. [8] 

deals with general object recognition in point 

clouds. The authors discuss a robust method to fit 

cylinder models in incomplete point cloud data. 

Based on laser scanning, a method is proposed 

that combines Principal Component Analysis and 

RANSAC algorithms [ibid].  

A forestry related research topic is the 

development of an algorithm for recognition and 

pose estimation of logs using a 3D structured 

light camera [9]. Herein, a method for analyzing 

the shape of a log by segmentation and surface 

patching is described. The focus is on the 

detection of rotational symmetries in point 

clouds. With this method, the determination of 

the volume and location of logs is implementable 

in automated processes, limited with a success 

rate under 33 % at a distance of 5 m. [9]  

In order to evaluate object recognition 

algorithms, it is important to deal with the 

deviation between the determined values and the 

actual values. In [10] the authors focus on 

research in the field of volume measurements of 

logs. The main objective is the experimental 

determination of the actual log volume according 

to the Archimedean principle. Comparing the 

resulting volume data to the harvester measuring 

system as well as the in forestry common manual 

method shows an absolute volume error range up 

to 27 % for the 5 % - 95 % quantiles. [10] 

3.2. Crane Scales 

Commercial available crane scales for weighing 

the grapple content are provided by forestry 

machine manufactures [11, 12]. These scales are 

mounted between grapple and telescope, 

resulting in worse maneuverability due to 

negatively changed crane kinematics. 

Furthermore, measuring with high accuracy 

requires a static crane state [13, 14], resulting in 

reduced overall productivity. 

A crane scale based on artificial neural 

networks was first presented by the authors in 

[15] and [16]. Based on a Long Short-Term 

Memory (LSTM) architecture, an Artificial 

Neural Network (ANN) weighs the grapple 

Figure 1: Flow Chart of the Assistance System 
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content within a continuous loading process. The 

focus of this method is on an estimation of the 

logged mass of a working day in post-processing 

procedure. During testing, the ANN shows for 

single loading cycles an average full scale error 

of 1.5 % per 1000 kg, resulting in an example 

loading scenario in a total mass error of 1.2 % for 

a fully loaded forwarder with 10 tons payload 

[16]. 

4. LOG DETECTION AND SHAPE 
ESTIMATION  

The aim of the proposed recognition algorithm is 

the automated determination of log volumes. The 

approach combines object recognition in 2D 

images and 3D point clouds. Using the feature of 

ordered point clouds allows assigning a space 

point to the corresponding pixel in a two-

dimensional image and vice versa. 

4.1. Camera technology 

An D415 stereo camera is 

used for the object recognition method. The 

camera functions are based on active stereoscopy 

technology. The manufacturer specifies an 

application range of 0.45 m to 10 m for depth 

detection. The D415 generates point clouds via 

the coupling of two infrared cameras, an active 

infrared projector and a RGB camera. [17] 

A defined number of space points, represented 

by a location matrix M and a corresponding RGB 

colour matrix C, are orderly recorded. 

Therefore, the properties of a point with an index 

i are defined by six scalar quantities: 

U , the depth 

camera is directly coupled to MATLAB®. This 

enables the integration of recordings into 

automated processes. Another advantage of the 

used camera is the comparatively low purchase 

price, which allows a cost-effective testing of the 

proposed method. 

4.2. Data acquisition 

Due to challenging environmental conditions in 

forestry, the camera was mounted on the 

forwarders cabin roof. Therefore, the recorded 

point clouds lie at a defined angle in space. This 

setup was considered when recording the 

validation and verification data. Varying 

mounting angles and heights improves the 

robustness of the method due to the independence 

from the installation setting. The resolution of the 

camera was set to 1280x720 pixels, which 

outputs a point cloud with 921.600 points. 

4.3. Method of log recognition 

Because the elements of point clouds are ordered, 

an RGB image can be generated from the 

recorded colour matrix C. Each described colour 

value of a point is assigned to a pixel in the 2D 

image via the indices of the point cloud.  

Using the ordering of the point cloud together 

with the recorded color matrix C as lookup-table, 

an RGB image  with pixels 

can be generated. Next, I is processed by a Mask 

R-CNN [18], which we adapt for log recognition 

by transfer learning [19]. The network outputs 

bit-masks for each detected log, which map all 

to the corresponding object, cf. Figure 1  left. For 

the Transfer Learning 100 hand-annotated 

pictures of single logs were used. The training set 

consisted of 80 pictures, with the remaining 20 

used for validation. An accuracy for log detection 

of 100% was achieved.  

The object pixels, corresponding to the bit-

mask, are recalculated into the three-dimensional 

space. Thus, the 3D points are assigned to the 

the recognized log length and the local log 

diameter. 

The location matrix of the point cloud is 

rotated for further processing of the data via 

matrix transformation. The aim is to rotate the 

location matrix in a way that the log lies on the 

X-Y plane parallel to the Y-axis. Thus, the Z-

coordinates of the location matrix M describe the 

local log diameters as a height profile, the X-

coordinates the log width and the Y-coordinates 

the log length. As a reference for the necessary 

rotations, an M-estimator Sample Consensus 

(MSAC) algorithm is used to fit a plane to the 

point cloud data [20], which represents the 

ground. With the normal vector of the plane, the 

rotation angles around the X- and Y-axis are 

determined. For the rotation on the Z-axis the 

direction of the log must be determined. 
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Figure 2: RGB data with determined log direction 

An edge detection of the outline 2D image from 

the Mask R-CNN is carried out. The outermost 

points of the log are determined (top, bottom, 

right and left), cf. Figure 2 in green. An 

imaginary box is created around the log based on 

the four boundary points. The two centres of the 

front and rear boundary points are calculated. The 

log direction is determined by connecting these 

two centres. In order to ensure that the described 

points are on the logs surface, the points are 

moved along the direction axis. Figure 2 shows 

the RGB image with the generated direction 

vector in red as a result of the edge detection. The 

result of the transformation of the location matrix 

is shown in Figure 3,where the log lies parallel 

to the X-Y-Plane of the original system. After the 

data has been defined in the original space, the 

log length is determined. For the further process, 

the set of points is reduced to the pure log points 

that the Mask R-CNN generated as output. 

Figure 3: Rotated point cloud with indicated log 

direction (red)

4.4. Shape estimation 

The local minima and maxima of the Z-

coordinates along the Y-direction are determined. 

A profile of the top and bottom points is created 

as a matrix of Y- and Z-coordinates. To estimate 

the log length, only the profile of the top side is 

analysed. By using the MSAC algorithm, the 

points of the Y-Z-location matrix are fitted as a 

straight line that approximates the course of the 

diameter over the log length. We define the end 

of the log as the last point of intersection between 

the Y-Z curve and the approximated diameter 

curve from the MSAC algorithm. The same 

algorithm is used for the bottom side of the log. 

Figure 4 shows the results of the fitting process.  

Figure 4:  Point data describing log diameter and 

length with fitted lines 

4.5. Error Estimation 

Due to technical limitations of the camera, errors 

occur when measuring the depth. The error is 

estimated using the manufacturer's formula of the 

root-mean-square deviation. [21] 

With the used camera settings and an estimated 

maximal working distance of 8 m, a root-mean-

square deviation of the depth of 93 mm is 

calculated. The error increases quadratically with 

the distance and is influencing the length and 

diameter determination. Especially the latter 

leads to an error in the volume calculation. 

4.6. Verification Data 

To verify and validate the functionality of the log 

detection and shape estimation, 11 logs with a 

length about 5.2 m and a diameter range of 0.3 m 

to 0.5 m were tested. Figure 5 shows the errors 

of the diameter and length determination, as well 

as the error of the calculated volume for these 

logs. As the absolute error in length is less than 

7 % with a median of -0.4 %, the diameter 

estimation shows an error range between -11 % 

to 18 % with a median of -5.9 %. Here, the 

camera error described in Chapter 4.5 leads to a 

significant deviation of the measurement results. 

This diameter error influences the volume error 

significantly as it is included quadratically in the 

volume calculation. 
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Figure 5: Errors of diameter, length and volume 

determination 

As a basis for the explanation of the assistance 

system, the best results are presented in the 

following. With these results, shown in Table 1, 

the coupling possibilities of the crane scale with 

the log recognition algorithm will be 

demonstrated exemplarily in chapter 6. The real 

volume of the log presented in this example is 

V = 0.55 m³, whereby the calculated volume 

determined by our method is V = 0.5448 m³.

Table 1: Results for log with least error 

Log parameter Error [%] 

Diameter 2.88 

Length -2.73 

Volume 1.26 

The results show that the accuracy of the 

proposed method depends primarily on the 

camera, cf. Chapter 4.5. In addition, we verified 

this dependency by using a logs point cloud 

achieved within the simulation environment 

GAZEBO, resulting in a volume error of 0.44 %. 

In future implementations of this system, it will 

be necessary to use a depth camera with a lower 

depth resolution error to show the benefit of the 

presented method for the assistance system. 

5. CRANE SCALE BASED ON A 
CONVOLUTIONAL NEURAL NETWORK 
(CNN) 

Beneath remaining constant crane kinematics, the 

objective of a data-based crane scale is, that 

modelling the crane with its non-

unknown parameters like friction coefficients is 

not necessary. Therefore, the function drive of the 

machine is mapped to an artificial neural network 

[16]. 

In a static situation, the mass of the grapple 

content can be calculated, neglecting adhesive 

friction, on the equilibrium of moments based on 

the pressure of the inner boom cylinder (IBC) and 

the grapple distance, cf. Figure 6. Avoiding a 

reduced productivity during loading processes 

due to stoppage for a weight measurement, the 

ANN represents a dynamic model of the crane. 

Therefore, the weighing process can be executed 

automatically during continuous loading 

processes. 

In contrary to the in [16] presented approach 

of a crane scale based on a LSTM architecture, a 

convolution-only architecture is presented in this 

paper. Hereby, this architecture avoids 

drawbacks of Recurrent Neural Networks (RNN) 

with LSTM cells such as higher training and 

testing time, parallelization issues as well as 

higher sensitivity concerning overfitting or first 

examples seen [22]. Based on the idea of [22, 23] 

and partially conducted by [24], a Convolutional 

Neural Network was developed to fulfil the task 

of estimating the mass of the grapple content.  

Figure 6: Forestry Crane [16] 

5.1. Data Pre-Processing  

The challenge of achieving a robust, real-world 

applicable setup for a crane scale at forestry 

conditions is using the least sensors possible. In 

modern in-market forestry cranes, each joint is 

equipped as standard with a kinematic sensor. 

With the presented setup, we only added one 

hydraulic pressure sensor to the system 

measuring the pressure of the inner boom 

cylinder (IBC). With this principle, the crane 

scale is independent regarding the used hydraulic 

systems for the crane drive [25] as well as the 
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machine manufacturer. Furthermore, the 

ignals, 

which are just like the other sensors readable 

-Bus, is used as input 

signals for the CNN [16]. The hydraulic signal of 

the pressure of the IBC is used as a direct as well 

as a preprocessed input into the network. 

Therefore, the pressure signal is filtered by means 

of a Savitzky-Golay filter. Furthermore, the 

pressures frequency spectrum calculated by a fast 

Fourier transform serves as an additional input. 

Finally, the oil temperature in tank, always 

available for monitoring and safety purposes on 

forestry machines, is an input signal. The grapple 

position as input results from processing the 

kinematic sensor of each crane joint, the grapple 

velocity by differentiating the position. [16] 

The input consists of time-series data. In a first 

step, the input signals are standardized. 

Afterwards, the standardized signals are 

normalized between values of 0 and 255 and 

saved as an greyscale image [24]. The resulting 

image has the size of 18x250 pixels 

corresponding to the 18 input signals and 250 

time steps, meaning that each pixel is equivalent 

to a specific measurement value. 

5.2. Architecture of the CNN  

For the CNN architecture, we use three parallel 

branches, each consisting of Convolutional 

Layers, Rectified Linear Units (ReLU) Layers 

and Pooling Layers [22, 24]. Figure 7 visualizes 

exemplary the first branch. As input for the CNN 

serve the converted time series data as an 18 x 

250 pixel greyscale image.  

The first Convolutional Layer consists of 128 

filters with a filter size of 18x1 and stride one. 

Hence, this filter covers all input signals at each 

time step. Directly connected to the 

Convolutional Layer is the ReLU activation 

function , which 

passes only input values greater and equal to zero 

[26]. Subsequently, the Max Pooling Layer with 

a size of 5x1 and stride 5 downsamples the input 

from 250x1 to 50x1. This corresponds to using 

only the maximum value of the filtered 18 input 

signals in a time range of five time steps. The 

second Convolutional Layer consists of 32 filters 

with a filter size of 1x1 and stride 1. As input 

serve the 128 channels resulting from the 

previous layers. Therefore, this recombines the 

previously divided input signal. The second Max 

Pooling Layer condense the input to 25x1, 

whereby the Concatenation Layer receives only 

800 inputs for this branch. 

The first Convolutional Layer of the second 

branch consists of 128 filters with a filter size of 

18x5 and stride five. Therefore, already with the 

first layer in the CNN, five time steps are 

considered. In contrary to the first branch, no max 

pooling takes place between the first and second 

Convolutional Layer. The same principle is also 

applied for the third branch, expect for the fact 

that the filter size here is 18x51 with stride 4, 

covering therefore a wider time range. For both 

second and third branch, the second 

Convolutional Layer and Max Pooling Layer is 

the same as in the first branch, resulting to 800 

input values for each branch for the 

Concatenation Layer. The Concatenation Layer 

combines the outputs of each branch and transfers 

the values to the Fully Connected Layer. 

Therefore, only 2400 weights have to be 

determined during training for this layer. The last 

layer is a regression output layer, meaning that 

the output of the 18x250 image is a single integer 

value representing the mass of the grapple 

content.  

Figure 7: First Branch of used Convolutional Neural Network 
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5.3. Training of the CNN 

We logged training data for the CNN by 

recording 550 loading cycles under reproducible 

laboratory conditions between August 2018 and 

March 2019, while the forwarder as well as the 

logs were placed on a flat surface. Three different 

machine operators with, from beginner to 

professional, varying expert level performed the 

loading cycles. The real log mass was determined 

by a scale with 0.5 kg accuracy. The log lengths 

were about 5.2 m, the log masses were in a range 

of 100 to 600 kg with a varying diameter up to 

50 cm. [16] 

31 loading cycles were reserved for testing of 

the crane scale. The remaining 519 cycles were 

split during training to 90 % for training and 10 % 

for validation. Due to the small amount of 

training data with its resultant issues [27], we 

used a six-fold cross validation, meaning that all 

519 training cycles were randomly separated six 

times into a training data set and a validation data 

set [24].  

For training, we set the learning rate to 0.01, 

the mini batch size to 20 and used a maximum of 

30 epochs. Each training consists of 20 iterations, 

resulting overall in 120 networks due to the 6-fold 

cross validation. After the first training, we 

successively performed two further training 

passes with a learning rate of 0.001 using the 

weights of the pre-trained networks.  

5.4. Results of Training and Validation Data 
Set 

We evaluate the performance of the CNN on the 

trainings and validation data set by the percentage 

error resulting from difference of the predicted 

mass to the real mass divided by the real mass. 

Figure 8 shows the gauss distribution of the 

Prediction Error (PE) for the validation set (left) 

and the training set (right) in a range of -40 % to 

40 %. The training data set shows, based on 

56,160 values, a mean PE of 0.23 % and a median 

PE of -0.0263 % with a standard deviation of 

4.67 %. The validation data set displays, based on 

6,120 values, a mean PE of 0.46 % and a median 

PE of -0.0095 % with a standard deviation of 

7.33 %. 

Table 2 lists the Prediction Error for both 

training and validation data with its 5 %, 25 %, 

75 % and 95 % quantiles. Taking the 5 % and 

95 % quantiles as well as the mean PE, into 

account, the CNN shows a slight tendency of 

overestimating the mass with its prediction. 

Consecutively, 50 % of the predicted masses 

have an absolute PE less than 1.71 % (training 

data set) respectively less than 3.13 % (validation 

data set).  

Figure 8: Prediction Error Distribution 

Therefore, we observe no significant overfitting 

of the CNN, resulting in a robust network for 

detecting the mass based on a minimal amount of 

sensor data. 

Table 2: Statistical analysis of the CNN  

Quantile [%] 
Prediction Error 
in Training Data 

Set [%] 

Prediction Error 
in validation Data 

Set [%] 

5 -6.25 -9.46 

25 -1.69 -2.95 

75 1.71 3.13 

95 7.44 12.18 

5.5. Results on Test Data Set 

Reducing the variance of the mass prediction, we 

use bagging for testing [28]. Therefore, we 

determined the 20 CNNs with the least mean PE 

on the validation data set. During testing, by 

using a trimmed mean, the mass of the grapple 

content is averaged based on these networks 

without the upper and lower 10 % of the 

predictions. Embedding this evaluation method 

into the assistance system increases the 

robustness of the same against varying machine 

operators and environmental factors. 

The test data set consists of the 11 loading 

cycles for the in Chapter 4 evaluated logs and 20 

randomly chosen loading cycles. None of these 
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cycles was used during training or testing of the 

CNN. The loading cycles were performed by two 

different machine operators with different 

experience level, one advanced beginner and one 

professional. In total, these cycles sum up to 

6888 kg, tallying nearly to a complete payload of 

a forwarder. The estimated mass by the CNN for 

all cycles is in total 6873 kg, resulting in an error 

of - 0.22 %. Figure 9 shows the prediction error 

of the validation set. The Prediction Error of 

single logs is in a range of -7.73 % to 10.73 % 

with a mean PE of 1.20 %.  

Figure 9: Test Data set 

The range of the PE in the validation data set 

corresponds very well to the error range in the test 

data set. This underpins the stability and 

robustness of the Convolutional Neural Network. 

The fact, that the absolute error can be higher than 

10 % is no critical argument against the shown 

method and network architecture as only a 

minimum of data was used for training. 

Increasing training data will reduce the error 

range significantly. 

6. ASSISTANCE SYSTEM 

The in Figure 1 visualized assistance systems for 

log quality and assortment estimation is the 

combination of both log detection and mass 

prediction shown in the previously chapters. By 

using the log with the best volume estimation, the 

method and functionality of the assistance system 

is explained in the following. In this exemplary 

case, the evaluated log shows a significant bark 

beetle infestation. 

In the first step, the length and diameter of the 

log specifies its assigned assortment. In the 

example case, the log is appointed to the 

assortment FL (log with standard length) and a 

diameter class D3b due to a diameter of 0.36 m 

[29]. In the second step, the mass of the log is 

calculated based on the log volume and a green 

wood density of 906 kg/m³, assuming that the log 

is of healthy state without defects. In our 

example, this results in a theoretical log weight of 

494 kg. Afterwards, this value is compared to the 

mass predicted by the Convolutional Neural 

Network, cf. Figure 1. As this mass has a 

predicted value of 404 kg - with a PE of 6.60 % - 

the log weighs only 81.78 % of the expected 

value calculated with the green wood density. 

The deviation is significantly higher than the 

absolute PE of the Test Data Sets 5 % and 95 % 

quantiles, resulting in a low certainty of an 

outlier. The threshold for sending a visual 

warning to the operator is when the mass 

difference estimated by the volume information 

and the CNN output is greater than 15 %. This 

corresponds directly to the quality classification, 

as with a red rot percentage over 15 % the log 

quality decreases [29].  

By displaying this warning and the log 

information on the machine operators monitor, he 

is able to double-check the log quality. As further 

information, the theoretical mass for beetle 

infested logs with 373 kg is displayed, which 

varies about 7.76 % from the CNN-estimated 

mass and 1.67 % from the real mass. Therefore, 

if there is no visual sign of red rot at the front 

faces of the log, the operator defines the log to 

quality D due to beetle infestation [29].  

7. CONCLUSION  

The right assignment of logs to their specific 

assortment is crucial for an economical 

harvesting process. The presented method 

describes an assistance system for machine 

operators, which supports them in the task of the 

assortment estimation.  

The assistance system combines two parallel 

branches of object and weight detection to 

estimate the logs dimension and quality, resulting 

in its assortment. The functionality of the 

presented method was verified within this paper. 

For object detection, an Intel RealSense D415 

depth camera was used. Due to a root mean 

square error up to 0.1 m within working distance, 

the logs diameter estimation shows an absolute 

error range of 17 %, resulting in an error range 

from 25 % to 30 % regarding the volume 
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calculation. Therefore, the chosen depth camera 

limits the potential of the assistant system. The 

volume error influences directly the theoretical 

mass calculation based on the green wood density 

for logs of healthy state. This error could be 

reduce significantly with an industry-standard 

depth camera. Nevertheless, the approach for 

detecting a log via machine learning methods and 

the consecutive dimension estimation could be 

verified under laboratory conditions. Of special 

use is the log length estimation for machine 

operators, as this parameter defines the 

assortment of the log in the first place. 

Distinguishing the common log lengths of 3.6 m, 

4.0 and 5.0 is difficult in real forestry conditions 

and mentally demanding. 

For the weight detection system, a databased 

approach resting on a Convolutional Neural was 

developed and successfully tested. The chosen 

CNN shows a prediction error for single loading 

cycles between -2 % to 5 % for the 25-75 % 

quantiles of the test data set. This corresponds to 

a full scale error of 2 % with a maximum absolute 

error of 20 kg in this range. Due to the results at 

the validation data set, the CNN shows a high 

robustness against varying machine operators and 

changing environmental conditions. 

Furthermore, the CNN achieves a certain degree 

of abstraction as in the period of data recording 

parameter settings and optimizations of the 

hydraulic system were done. Therefore, it is 

possible to transfer the crane scale to other 

machines with the same crane type, 

accomplishing a universal usage of the presented 

method.  

8. OUTLOOK 

In a first step, accuracy of the log dimension 

estimation will be significantly increased using 

an industry standard depth camera. The log 

detection will be extended from the two-

dimensional image to an object detection in a 3D 

dataset. Furthermore, the algorithms for this 

estimation will be improved towards fitting a 

three-dimensional truncated cone in the point 

cloud data which approximates the log. The 

combination of multiple point clouds recording 

the same scenery towards one, holistic point 

cloud with a high accuracy will be investigated. 

For the crane scale, additional training cycles 

under varying conditions will be recorded in 

forestry environments. Therefore, the accuracy 

and robustness of the presented method will 

improve significantly. After a further 

optimization of the algorithms, the assistance 

system will be implemented as a near-time, 

online system in the forwarder cabin. 
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