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1 Introduction 
  

For centuries, the merits of knowledge acquisition have been highlighted by economists, 

philosophers, and politicians alike. Prominent examples include Benjamin Franklin, Alfred 

Marshall, or Karl Marx who all described knowledge as a valuable asset, partly in view of  

its growing importance for production purposes. At the present time, this view is almost 

universally acknowledged. Returns to education are not only confined to higher earnings  

but may also take non-pecuniary forms, such as increased health and happiness (see e.g., 

Oreopoulos, 2007). At the aggregate level, education contributes to societal welfare and 

economic prosperity. The latter aspect can largely be seen as resulting from technological 

change, i.e., the flow of new ideas. As the shift towards the knowledge society continues,  

both innovation and highly skilled labour are expected to gain further importance. Yet, as 

recent evidence suggests, ideas are getting harder to find (Bloom, Jones, van Reenen, & 

Webb, 2020). In a similar vein, Jones (2010) reports that innovators (need to) undertake  

more and more training prior to their active careers, which caused an estimated drop in  

life cycle innovation potential of 30% over the 20th century. Against this background, the 

present thesis investigates the mechanisms underlying academic progress, upon which 

research and higher education may be fostered. Conceptually, I will address three related 

topics from the economics of science and innovation; these are presented below. 

The second chapter is titled “Collapsing Stars and the Diffusion of Scientific Knowledge”  

and builds on joint work with Benjamin Bittschi. The focus of this chapter lies on the role  

of star scientists in the knowledge production process. Not only do eminent scientists 

account for a great portion of research contributions, but they also tend to occupy central 

positions in their collaboration networks. Prior studies have established that these stars 

constitute the origin of spillover effects, thus lifting the output trajectories of their co-

authors. Given that the existing evidence is limited to specific fields of science, we aim  

to broaden the understanding of these effects by exploring the entire subject spectrum.  

For this purpose, we compile a rich bibliometric database comprising metadata of 15.6 

million publications over the period from 1996 to 2015. By means of these data, we are  

able to define star scientists through performance criteria and further delineate a group  

of 162 stars that died both prematurely and unexpectedly. In the aftermath of these  

lethal shocks, we estimate a publication and citation deficit of treated collaborators that 

ranges from 4.2 to 7.8%, relative to a matched control group. Yet field-specific analyses  

reveal considerable heterogeneity masked by the aggregate figures. While star effects are  

most dominant in life sciences, they are less pronounced in physical sciences, take only 

nuanced forms in health sciences, and seem absent in social sciences. Furthermore, we 

discover an interplay of three main effect channels which shed light on the transmission  

of scientific knowledge. More specifically, in certain fields, spillovers are driven by spatial 
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elements and both eminent collaborators and collaborators with markedly different field 

expertise than their star are more severely affected by the death event. 

The third chapter studies the “Efficiency of European Universities” and is based on joint  

work with Berthold U. Wigger. In the course of this chapter, we present insights into the 

input-output transformation in the higher education sector. Methodologically, we rely on 

frontier techniques rooted in the Operations Research literature that allow for (relative) 

efficiency assessments. We argue that existing applications of these tools to universities  

are prone to unsuitable comparisons since inherent differences between institutions are 

largely left unconsidered. For instance, substantially higher expenses in medical relative to  

social studies are not necessarily a display of inefficiency but rather a reflection of distinct 

technologies. Instead of pooling the university landscape, we therefore apply peer-group 

selection methods centred around subject space proximity to obtain unbiased efficiency 

estimates of 450 European universities. This analysis partly builds on bibliometric data  

from the previous chapter but further includes official statistics such as financial figures  

or student and graduate numbers, which are accessible from 2011 to 2014. Provided  

with efficiency measures, potential efficiency drivers are moved into focus. Consistent  

with the study on star scientists, subject orientation is again identified as a source of 

heterogeneity, i.e., the relation between efficiency and several structural attributes varies 

depending on the university’s subject profile. However, both the ability to seek third-party 

funding and institutional size are mostly associated with higher efficiency. 

The fourth chapter provides new empirical evidence on the implications of “Competitive 

Funding in Academia”. Higher education sectors in most of continental Europe have been 

targeted by New Public Management inspired reforms over the last decades. Competitive 

funding schemes are a key element of this policy trend as they are hoped to improve the 

allocation of resources and fuel innovation. Yet, New Public Management has (frequently) 

drawn criticism due to unintended consequences. I add to this debate by examining the 

Quality Pact for Teaching, a large-scale funding program that aims to promote the quality  

of academic teaching in Germany. The program comprises almost 2 billion euros, which are 

spent over 10 years from 2011 onwards. The intriguing feature of this funding scheme is  

that German higher education institutions are for the first time exposed to competition  

for a notable amount of teaching aids. From exploring the grant allocation, I find evidence  

for a Matthew effect pattern. Stated differently, past third-funding volume emerges as a 

significant determinant of funding success at the Quality Pact for Teaching. Accordingly,  

it might be worried that the program unintentionally discriminated against institutions  

that were unaccustomed to grant competition which would contradict the stated goal of  

supporting the academic landscape at a broad range. 

In the end, the fifth chapter offers a brief conclusion of the mechanics behind academic 

progress by reflecting on the previous chapters. Apart from linking the central findings of  

my thesis, an outlook on future research avenues will be presented. 



  

2 Collapsing Stars and the Diffusion of  

Scientific Knowledge† 
  

2.1 Introduction 

Some stars collapse straight into darkness (Adams, Kochanek, Gerke, Stanek, & Dai, 2017).  

Our understanding of these rare events is limited in an astronomical sense, as it is of the 

consequences for the scientific community once it loses its brightest minds. The present 

paper adds to the second line of inquiry. Star scientists are known to play a central role in  

the production of knowledge (Zucker & Darby, 1996), hereby fostering economic growth  

and social welfare (Romer, 1990). If their contributions were to end abruptly, what scars 

would be left behind? 

Our attempt to answer this question revolves around the fate of scientists that formerly 

collaborated with a star. Unlike the romantic ideal, innovation is rarely achieved through  

the creativity of lone genius. Instead, teamwork has become increasingly prevalent and 

impactful in today’s science and technology (Bercovitz & Feldman, 2011; Singh & Fleming,  

2010; Wuchty, Jones, & Uzzi, 2007). Star scientists, in particular, are embedded in large  

co-author networks (de Solla Price & Beaver, 1966; Zuckerman, 1967). Given the level of 

freedom scientists are provided with, it can reasonably be assumed that these networks 

result from active search-and-matching processes (see e.g., Stephan, 2012, Chapter 4); in 

other words, they are formed endogenously. The end of a collaborative tie, in contrast,  

might occur exogenously and therefore open up a pathway for causal inference. To be  

more precise, we use the premature and unexpected death of outstanding scientists as  

a quasi-experiment and explore empirically how these lethal shocks affect the research 

productivity and quality of former co-authors. In doing so, we shed light on the nature of 

interpersonal knowledge spillovers. 

The process of human capital formation is central for any modern society, but, as the  

stock of knowledge grows, also demands more and more effort from scientists on their  

way to the research frontier. As a consequence, it might be suspected that innovative  

phases are on the decline (Jones, 2009). Against this background, it appears all the more 

important to investigate spillover effects as a potential means to spur scientific progress.  

In approaching this topic, we build on a number of studies, most notably the work of  

Azoulay, Graff Zivin, and Wang (2010) who laid the conceptual foundations by disclosing  

how collaborators fare in the aftermath of “superstar extinction”. Yet, we aim to extend  

the existing literature along several dimensions. First, hitherto evidence is drawn from 

specific scientific areas including physical sciences (Waldinger, 2012, 2016), life sciences 
                                                                 
† This chapter is based on joint work with Benjamin Bittschi. 
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(Azoulay et al., 2010), medicine (Mohnen, 2018), economics (Ductor, Fafchamps, Goyal, & 

van der Leij, 2014) mathematics (Borjas & Doran, 2012, 2015; Waldinger, 2010) or even  

more narrow disciplines such as evolutionary biology (Agrawal, McHale, & Oettl, 2017) or 

immunology (Oettl, 2012). In contrast, our dataset allows us to examine spillover effects  

over the entire subject spectrum and further compare the fields of life, health, physical,  

and social sciences within a uniform framework. Second, we offer new insights into the 

origins of spillover effects. In particular, we explore the extent of knowledge flows through 

interdisciplinary avenues and inspect in how far results are confined to the science system  

in the United States, which served as the focal point for most previous studies. 

Our analysis builds on a (dynamic) conditional difference-in-difference (DiD) design, where 

the treatment originates from the unexpected passing of 162 star scientists. We identify  

these stars from a larger group of eminent scientists that either belong to the National 

Academy of Sciences (NAS) or possess outstanding publication records. In order to define  

the latter criterion, we compile a rich bibliometric dataset from Scopus, which comprises 

meta-information of 15.6 million publications over the period from 1996 to 2015. These  

core data are further complemented with information from Google Maps and GenderAPI, 

which enables us to follow the scientific footprints of 9.2 million individuals. Moreover, we  

can assign star status by means of performance indicators such as the H-Index or citation  

metrics. Delineating star scientists is not only required for the treatment identification, but 

also essential for the effect estimation. More specifically, we use the set of stars, who did  

not pass away, and their respective co-authors to assemble a matched control group for  

the scientists that experience the unexpected loss of a star collaborator. 

On aggregate, we discover that the abrupt ending of a star collaboration causes a lasting 

decline of 4.2% in published articles of treated scientists. Accounting for output quality,  

we find a pronounced effect in form of a 7.8% decrease in citation-weighted articles. In 

neither case are recovery patterns observable. However, field-specific estimations reveal  

that the aggregate view masks substantial variation across the scientific spectrum. While  

life sciences is characterised by increased treatment effects in both output dimensions, we  

solely denote a quality-adjusted effect in physical sciences and nuanced, but no overall, 

effects in health sciences. Lastly, we cannot detect any statistically significant treatment 

consequences in social sciences. In the subsequent course of analysis, we focus on the 

mechanisms behind these effects. It hereby becomes evident that the omission of future 

cooperation is only a partial treatment aspect. Similarly, neither the frequency nor the  

timing of interaction before the stars’ death offers an explanation for the effect origins.  

Exploring further effect channels also leads us to reject a gatekeeping story based on  

editorial goodwill. Yet an interplay of three main effect drivers becomes apparent. First, 

spillovers are in part spatially confined. More concretely, co-location is related to steeper 

output declines in physical sciences, while, on a broader geographical scale, dyads within  

the United States largely account for the effects in life and health sciences. Second, we  
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find horizontal spillovers (or peer effects) in life sciences since the treatment especially 

affects scientists that are likewise stars. Third, in health and physical sciences, we further 

discover that the break-up of dyads with markedly different field expertise induces more 

severe effects, which underlines the relevance of interdisciplinary knowledge transmission. 

Our paper is linked to several strands of literature. Importantly, we adopt the research  

design of Azoulay et al. (2010) who discover that spillovers are primarily transmitted in  

idea space. The work of both Oettl (2012) and Mohnen (2018) is methodologically close,  

but focuses on different effect channels. The former study reveals that helpful stars play  

a crucial role for the performance of collaborators, while the latter study yields a similar 

conclusion for stars with central network positions. In a related setting, Jaravel, Petkova,  

and Bell (2018) investigate how inventors are affected by the premature death of a (star)  

co-inventor and document long-lasting declines in patents and earnings. Further research  

on scientific spillovers has utilised identification strategies other than death events. For 

instance, Waldinger draws findings from the expulsion of scholars during the Nazi regime 

(2010, 2012, 2016) and World War II bombing campaigns (2016), while Borjas and Doran 

(2012, 2015) exploit the collapse of the Soviet Union as a natural experiment. Moreover,  

our paper relates to the growing “science of team science” literature, which is bound by  

the question of how to enhance the effectiveness of collaborative research (see Hall et  

al., 2018, for a recent review). Team composition and especially team diversity are vital 

aspects of this debate (National Research Council, 2015), to which our results contribute. 

Thematic overlap also exists with the work of Akcigit, Caicedo, Miguelez, Stantcheva, and 

Sterzi (2018), König, Lorenz, and Zilibotti (2016), and Lucas and Moll (2014) who examine 

interaction-based spillover effects through the lens of endogenous growth models. Lastly, 

our paper belongs to a wider literature that uses (premature) death cases as a source  

of identification (apart from the aforementioned studies, see e.g., Aizenman and Kletzer, 

2011, Jäger and Heining, 2019, Jones and Olken, 2005, or Nguyen and Nielsen, 2010). 

The remainder of the paper is structured as follows. Section 2.2 describes our data and the 

research design. Section 2.3 details the econometric approach and presents our aggregate 

results. Section 2.4 focuses on effect heterogeneity across scientific disciplines and further 

explores different channels through which the diffusion of scientific knowledge operates. 

Section 2.5 offers a discussion of our findings and concludes. 

2.2 Data and Research Design 

2.2.1 Data Compilation 

Our research design is centred on star scientists and their potential spillovers onto 

collaborators. With this approach in mind, we assembled our core data laying focus on  

the science systems in North America and Europe, the latter extended by Israel. Especially 

US-based scientists and inventors have been the subject of previous studies, while their 
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European counterparts have received markedly less attention in this stream of literature. 

Constructing a dataset that spans both continents therefore helps to fill a void, but also  

offers the opportunity to examine whether spillover effects could be rooted in structural 

differences between the North American and European scientific landscapes (see e.g.,  

Aghion, Dewatripont, Hoxby, Mas-Colell, & Sapir, 2010). 

Within the US, we rely on the Carnegie Classification of Institutions of Higher Education  

and in particular on the category of doctoral universities to delineate our set of research 

institutions. As of 2015, this category listed 334 institutions, which we manually linked to 

their Scopus profiles. Elsevier’s database covers a wide range of scientific literature and 

enables us to collect metadata for each publication with affiliative ties to (at least one of)  

these research institutions. We proceeded in a similar manner with regard to Europe’s  

higher education sector using the European Tertiary Education Register (ETER) as the start 

point. From this database, we compiled a set of 724 institutions from 26 countries that  

were consistently classified as universities based on their right to grant doctoral degrees.1  

Lastly, we added universities from both Israel and Canada to the institutional collective  

given that both countries are home to internationally renowned scientific communities  

and geographically adjacent. The outlined procedure resulted in an overall list of 1,146 

research institutions, on which grounds we collected 15.6 million publication records over 

the period from 1996 to 2015, each comprising a citation horizon until 2016. 

In the following step, we constructed an author-centric dataset for the over 9.2 million 

academics listed on these publications. The depth of available metadata already allowed 

depicting publication activities, co-author networks, affiliation histories, or research topics. 

Yet we further queried Scopus for each author to access data beyond our observation  

period, e.g., the year of first publication in order to proxy career starts. In addition, we 

complemented our core data with gender predictions from Gender API, site coordinates  

from Google Maps, and biographic information from the NAS, which will be explained in  

more detail over the next subsections. Taken together, our data approach enables us to  

track a multitude of academic careers over 20 years in time. 

2.2.2 The Scientific Elite 

Our decision to focus on the brightest scholars is guided by a fundamental property of 

scientific progress. As already observed by Lotka (1926), the distribution of scientific output 

is remarkably skewed, illustrating that a prolific minority is responsible for a great amount  

of contributions. In a similar vein, as Newton claimed, science is found to largely advance  

                                                                 
1 Access to Scopus is limited by quotas. Thus, instead of collecting data for the entire university sample 
from ETER, we focused on institutions from Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, 
Denmark, Estonia, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Latvia, Lithuania, Malta, the 
Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. We feel 
confident that this sample provides an adequate level of star power for our empirical purposes. 
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“on the shoulders of giants” (Bornmann, De Moya Anegón, & Leydesdorff, 2010; Cole &  

Cole, 1972). Considering their dominant role in the production of knowledge, star scientists 

are (most) likely to shine on their surroundings and thus provide a natural starting point  

to investigate spillover effects. 

A first look at our raw data underlines the importance of elite scientists. Within the cohort 

that first published in the year 2000, we find the median scientist to record three career 

publication, whereas the marginal star, defined as the scientist that marks the start of the  

top percentile, accumulates 145 publications. Their equivalents with regard to the citation 

distribution see themselves separated by a comparable margin of 66 versus 3,485 career 

citations. Defining stardom based on relative performance is indeed common practice.2 We 

follow this approach and maintain the top percentile as the threshold for awarding star 

status. However, we rely on a more refined set of metrics to measure accomplishments.  

We begin by delineating a set of stars according to their H-Index, which we calculate over 

both a 5-year window for publications and citations. For instance, our first star cohort is 

compiled in 2001 and comprises the group of scholars with the highest H-Indices based  

on their research output from 1996 to 2000. To account for different timings in output, we 

include citations if they accrued within the first five years after publication. The H-Index is 

essentially designed to provide a balanced measure of research quantity and quality, so that 

stars of either domain are not captured by it. While we are not concerned with omitting 

scientists that only generate large quantities of work, we do intend to include scientists  

that even occasionally shift the research frontier through seminal papers. Thus, we add 

forward citations (i.e., citation-weighted publication counts) as a second star criterion to  

our performance catalogue, again employing 5-year windows for calculation. 

Next, we extend our star criteria with co-author adjusted versions of both metrics. We are 

generally in favour of measures that account for variations in team size. Yet when it comes 

to classifying star scientists, unadjusted metrics are likely to be thought of as providing 

complementary value. More specifically, they carry a network component and may help 

identifying stars that are very well positioned and possibly facilitate knowledge flows by 

connecting numerous co-authors (Mohnen, 2018).3 

  

                                                                 
2 Rothaermel and Hess (2007) assign star status to scientists that accumulate publications and citations 
three standard deviations above the mean. Using similar outcome measures, Jaravel et al. (2018) refer to 
stars upon exceeding the 98th percentile, while Waldinger (2016) sets the cut off at the 95th percentile. 
3 In case of forward citations, we divide the number of citations of each publication by the number of its 
authors before aggregating these counts at the scientist level. As for the H-Index, we use a modification 
that counts publications fractionally, again according to the number of listed authors (see Schreiber, 2008, 
for details). It is worth noting, however, that adjusted and unadjusted metrics do not capture achievement 
in a completely different sense since almost half of the final star sample satisfy both types of criteria. 



8 Collapsing Stars and the Diffusion of Scientific Knowledge 

Based on these four performance criteria, we identify stars on a yearly basis from 2001  

to 2012. Since publishing practices differ considerably across the scientific spectrum, we  

do so separately by field. We hereby follow Elsevier’s classification system and assign 

scientists to one of 26 scientific fields (see Appendix A.1)4 based on the distribution of their 

past publications. More specifically, these distributions denote how often scientists have 

published in each specific field, i.e., in journals that are classified under a given field. We 

assign scientists to their mode field and, if necessary, break ties at random. Moreover, we  

restrict the star delineation to research articles to ensure that a certain editorial standard  

is met by all papers, but also to avoid potential double counting of articles and former 

conference papers. Overall, this procedure yields a set of 154,205 eminent scientists. As a 

fifth and final criterion, we define 3,458 members of the NAS as stars, who are among  

our author collective.5 Accounting for the overlap, the final sample consists of 155,720 

scientists, which corresponds to 1.7% of the observable scientific community. It should be 

stated though that the composition of the star sample changes over time. Scientists are 

referred to as stars as of the year they fulfil a performance criterion or are inducted to the 

NAS, yet once proven keep their status thereafter. 

Only a small circle of the scientific elite is of immediate interest for our research design.  

To allow for a causal interpretation of spillover effects, we focus on stars whose careers  

ended abruptly due to unexpected death at a maximum age of 65 years. We identify these 

cases by inspecting publication histories. Once a star’s publication activity falls off rapidly 

while being at a career age where retirement appears doubtful, we manually search for 

bibliographic information online. This approach leads to 594 stars that died between 2001 

and 2012. After imposing the age constraint, we further exclude scientists whose research 

efforts already came to a halt before their death and, most importantly, scientists whose 

passing might have been anticipated from prolonged illnesses. We draw the distinction 

between unexpected and anticipated deaths primarily based on information provided by 

obituaries, but also from personally contacting former colleagues in a few unclear cases. 

Altogether, we end up with 162 deceased stars to constitute the origin of our treatment  

(see Appendix A.2). From a field perspective, we note that 40 stars belong to life sciences,  

44 to health sciences, 54 to physical sciences, and 24 to social sciences. It further becomes 

apparent that heart attacks and accidents are mentioned most frequently among the 

treatment cases, while cancer is the dominating cause of death among the (unreported)  

group of anticipated deaths. 

                                                                 
4 We omit the narrow field of multidisciplinary studies, which is not part of either of the main fields, i.e., 
life sciences, health sciences, physical sciences, and social sciences. 
5 We sort NAS members into our four-field taxonomy based on their affiliated section and the scheme 
reported in Appendix A.1. NAS sections are thus given priority over our publication-based classification,  
yet both approaches agree on 3,438 of 3,458 cases. 
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Tab. 2.1: SUMMARY STATISTICS ON TREATMENT STARS 

Notes: The sample comprises 162 outstanding scientists whose active careers ended abruptly 
between 2001 and 2012 due to unexpected death at a maximum age of 65 years. All time-
varying variables refer to the year preceding the death event. Article, citation, and distinct  
co-author numbers are aggregated over a prior 5-year span. 

Table 2.1 depicts the sample of treatment stars. On average, these stars died at 53.4 years  

of age. Almost precisely one half was affiliated with a research institution located in the US 

and the vast majority was male. Female underrepresentation is fairly unsurprising in view  

of the collective evidence on scientific gender gaps (Ding, Murray, & Stuart, 2006; Shen, 

2013).6 Moreover, star scientists published an average of 25.3 articles, worked with 67.2 

different co-authors, and received just over 800 citations over the course of five years prior 

to their passing.7 

2.2.3 Matching Approach 

Identifying 162 deceased star scientists allows us to circumscribe the treatment group,  

i.e., their former co-authors. While this task is straightforward, more diligence is needed  

to find an appropriate control group. On which outcome trajectory would the treatment 

group be, had they not been exposed to the death of a star collaborator? 

One possibility would be to rely on the full population of scientists to derive an answer. 

However, treated co-authors likely form a positive selection, as star collaborations are not 

random. Instead, we expect assortative matching by both age and ability, which makes it 

doubtful to assume that the full population were to provide an accurate projection for the 

treatment group’s outcome path (even conditional on a variety of fixed effects). A second 

option would be to employ an implicit control group composed of treated co-authors that 

experience the death at either earlier or later points in time. Yet, this approach could also 

pose threats to identification if, for instance, the death event leads to a change in outcome  

                                                                 
6 Differences in health status (Williams, 2003) and risk attitude (Hartog, Ferrer-i-Carbonell, & Jonker, 2002) 
could also play a part. To be clear, a heart attack or stroke might be a sudden and unexpected event, but 
still dependent on lifestyle factors. 
7 Cumulative figures are calculated over a fixed range to account for staggered death years. 

Variable P5 P25 P50 Mean P75 P95 SD 

Age at death 37 48 55 53.41 60 64 8.12 

Female 0 0 0 0.049 0 0 0.217 

U.S. affiliated 0 0 0 0.494 1 1 0.502 

No. of distinct co-authors 5 16 42 67.22 92 183 72.99 

No. of articles 3 11 21.5 25.32 34 63 18.57 

No. of citations 75 214 431.5 801.1 1,024 2,608 972.5 

Year of death 2001 2004 2007 2006.6 2009 2012 3.18 
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trends. Azoulay et al. (2010) discuss this methodological issue and present a strategy to 

circumvent it. We follow their example and therefore build our control group based on a  

one-to-one matching procedure. 

Although the matching algorithm iterates over the years from 2001 to 2012, we focus on  

the year 2005 for illustration purposes. We begin by compiling the pool of potential control 

scientists, which consists of scientists that essentially meet two conditions. First, as of 2005, 

they must have collaborated with a star scientist who does not pass away, regardless of  

cause. Second, at no time do they become co-authors of one of the 162 deceased stars  

(i.e., they remain spared from treatment). For each treated scientist with an associated  

death in 2005, we aim to select an appropriate control scientist from the defined pool. In 

order to be matched, we require that treated and control scientists have similar career ages, 

are embedded in co-author networks of comparable size, and show congruent outcome 

trends up to 2004. In addition to individual characteristics, we include further criteria to 

ensure that both groups are balanced regarding features of their star relationship, i.e., the 

number of past collaborations and the elapsed time since last collaborating, and their  

stars’ standing as proxied by the amount of citations received until 2004. Before deferring 

further (technical) details to Appendix A.3, we note that the algorithm is implemented year 

by year, separately for the four main scientific fields, without replacement, and utilises the 

idea of coarsened exact matching introduced by Iacus, King, and, Porro (2011, 2012). 

Finally, we add two constraints to ensure that we are exploring spillover effects between 

established scientists. Junior scientists and PhD students, to begin with, might experience a 

conceptually different treatment effect in the sense that the death of a senior colleague or 

supervisor could have career-ending consequences. We thus restrict the analysis to (both 

treated and control) scientists with a career age of at least five years at the time of death. 

Moreover, we exclude a small number of scientists whose career starts coincide with the 

beginning of their star collaboration to prevent our results from being intertwined with 

mentoring effects.8 

The outlined procedure leads to a set of 9,297 matched collaborator pairs representing a 

successful matching rate of 93.6%. Summary statistics are reported in Table 2.2. Note that 

control collaborators inherit the year of star death from their matched counterparts, so  

that treatment timing is identically distributed in both groups. Time-varying variables are 

again calculated as of the year preceding the (inherited) year of star death to depict the 

sample right before treatment onset. Overall, we detect only minor differences between 

treated and control collaborators. The average treated collaborator published 14.5 articles, 

received 517 citations, and held co-authorship ties to 65.9 scientists over a past five-year 

period, while his/her control group pendant recorded 14.1 articles, 503 citations, and 65.2  

                                                                 
8 Both Waldinger (2010) and Azoulay, Liu, and Wang (2017) provide insights into this strand of literature. 
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co-authorship ties. The performance balance is further reflected by the share of stars in  

both groups – 25.8% of the treated and 25.0% of the control collaborators are considered 

stars, which indicates that assortative matching influences network formation in science.  

We also document a close resemblance in career ages, i.e., publication activities in both 

groups span 18.2 years on average. Achieving a high age balance is clearly important for  

our research design since scientific output typically follows life cycle patterns (Levin & 

Stephan, 1991). 

Tab. 2.2: SUMMARY STATISTICS ON MATCHED COLLABORATORS 

Notes: The sample consists of 9,297 pairs of treated and control collaborators. All time-varying 
variables refer to the year preceding the (inherited) year of star death. Article, citation, and 
distinct co-author numbers are aggregated over a prior 5-year span. Gender information are 
inferred through name and country data and are available for 85.3% of the sample. 

Turning to the dyadic variables, we first note that the mean number of collaborations (i.e., 

jointly published articles) between stars and co-authors amounts to 2.29 in the treated  

and to 2.23 in the control group. However, and to some degree surprising, the median  

dyad in both groups denotes only one collaboration. Moreover, an average of 4.04 years 

passed since stars and treated co-authors last collaborated, while 3.96 years elapsed in the  

  

Variable Group P5 P25 P50 Mean P75 P95 SD 

Career age 
Treated 6 11 17 18.24 25 34 8.78 

Control 5 11 17 18.17 25 34 8.88 

Female prediction 
Treated 0 0 0 0.239 0 1 0.426 

Control 0 0 0 0.256 1 1 0.437 

U.S. affiliated 
Treated 0 0 0 0.425 1 1 0.494 

Control 0 0 0 0.409 1 1 0.492 

Star status 
Treated 0 0 0 0.258 1 1 0.438 

Control 0 0 0 0.250 0 1 0.433 

No. of distinct co-authors 
Treated 5 16 37 65.92 81 227 82.78 

Control 5 17 38 65.20 86 212 76.67 

No. of articles 
Treated 1 3 8 14.53 18 49 18.92 

Control 1 3 8 14.12 18 48 17.91 

No. of citations 
Treated 6 58 189 517.0 549 2,053 1,018.7 

Control 4 64 203 503.0 552 1,908 937.6 

No. of collaborations 
Treated 1 1 1 2.29 2 7 3.87 

Control 1 1 1 2.23 2 7 3.95 

Years since last collaboration 
Treated 0 1 3 4.04 6 11 3.61 

Control 0 1 3 3.96 6 11 3.53 

No. of citations (star) 
Treated 202 517 1,133 1,642.3 2,178 5,839 1,546.9 

Control 158 512 1,033 1,495.5 1,901 4,449 1,613.8 
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control group. The reported time gaps in Table 2.2 are indeed long enough to assume that 

neither the average nor the median co-author was engaged in ongoing research projects  

with their star at the time of death. Another observation is related to the star scientists’ 

standing. In particular, we find both treated and control stars to receive more citations  

than the initial star sample portrayed in Table 2.1. What might seem striking at first glance  

is merely due to a (harmless) selection effect. Deceased stars with greater citation numbers 

usually record both higher article and co-author numbers, which causes them to appear  

more frequently in the matched sample. Treated stars are slightly more accomplished than 

control stars, but the magnitude is not concerning.9 

We further achieve balance on two variables that were not part of the matching process.10 

First, about one quarter of the collaborator sample is predicted to be female. Neither does 

Scopus provide gender information nor is it feasible to collect these data manually (as we  

did for deceased stars). For these reasons, we rely on the gender inference by GenderAPI, 

which has been found to offer the most accurate application for this task (Santamaría  

& Mihaljević, 2018). In essence, gender data are inferred from first names, optionally in 

combination with a country information. While our Scopus data cover first names, there is 

no direct country indication. We thus derive a home country proxy from the affiliations  

listed on the earliest publication records. In sum, we hereby manage to classify 85% of our 

sample.11 Probing the validity of this approach, we find gender predictions to be correct  

for over 99% of the full sample of deceased stars. Second, we observe a little over 40%  

of the collaborators to be US-affiliated. Again, we denote slight uncertainty regarding this 

number, as some collaborators are linked with multiple affiliations as of their most recent 

publications (note that our data do not include within-year publication dates). In these  

instances, we infer a collaborator’s location based on his/her mode affiliation(s), breaking 

possible ties at random. 

In view of our field-specific estimations in Section 2.4, we lastly note that the described 

matching approach also creates balance between treated and control groups if the sample  

is split by fields (see Appendix A.4 for corresponding summary statistics). 

                                                                 
9 Besides, we would expect that the benefits of having a star collaborator increase with his/her standing. 
Building a control group with stars that received fewer citations than their treated counterparts should 
therefore rather serve as a conservative estimation approach. 
10 The number of matching variables is limited due to the curse of dimensionality. In other words, it would 
become considerably more difficult to find matches if we extended our variable set any further. 
11 We started by querying first names only and considered gender predictions valid if GenderAPI reported 
an accuracy of over 98%. In a second step, we used first names combined with the home country proxy to 
classify the remaining collaborators, hereby setting the accuracy threshold to 95%. 
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2.3 Identification of Main Effects 

2.3.1 Outcome Paths 

To set the stage for the DiD framework, we begin with a purely graphical illustration of  

the treatment impact. To be more precise, we plot the publication output of treated and 

(matched) control collaborators before and after the star scientists’ death. This approach 

gives a basic yet compelling impression of the stars’ influence on the outcome trajectory  

of their co-authors without the need for parametric assumptions. 

Figure 2.1 displays the output trends centred symmetrically around the time of death.12 We 

will confine our assessment of publication output to two main measures, i.e., article count 

and forward citations, both adjusted for co-authorships. As depicted in the upper panel of 

Figure 2.1, treated and control collaborators show hardly any difference in article counts  

before the year of star death. On average, both groups vary synchronically between 0.50  

and 0.55 annual articles. After the treatment, however, an evident gap emerges in favour  

of the group of scientists that does not experience the sudden passing of an outstanding  

co-author. The relative performance deficit of the treatment group is apparent in every  

year after the death event and thus, albeit slight variations in magnitude, permanent. The  

graphic further underlines the importance of the matching design. As can be seen, article 

counts tend to rise over time, even for the treatment group, which could be reflective of  

life cycle and/or year fixed effects. In absence of the counterfactual output path provided  

by the matched collaborator sample, it would remain ambiguous how to disentangle these 

effects from the actual treatment effect. 

It is conceivable that collaborators adjust to the treatment shock by raising their effort  

devoted to each published paper. In this scenario, scientists would (try to) maintain their 

overall quality of output despite experiencing a decline in productivity in form of lower  

article counts. We explore this possibility by plotting citation-weighted article counts, i.e.,  

forward citations, in the lower panel of Figure 2.1. This measure provides a common proxy  

for scientific quality (see e.g., Jaravel et al., 2018, or Kahn and MacGarvie, 2016).13 At first  

sight, we note that both groups show decreasing forward citation trends, which can be  

  

                                                                 
12 The number of yearly observations monotonically decreases as the temporal distance to the year of 
death increases, which can lead to imprecisely estimated effects at both ends of the observation period. 
Uncertainty in later years can also arise from collaborators becoming inactive, likely due to retirement.  
In line with Jaravel et al. (2018), we address these concerns by confining observations to a nine-year 
window around star death and by excluding observations if collaborators exceed a career age of 45 years. 
Note that we apply the age constraint simultaneously to each matched pair to ensure that treated and 
control collaborators keep their balance in calendar and experimental time. 
13 Following the cited literature, we employ winsorized forward citations. We apply this adjustment at the 
99.9th percentile, separately for each year and scientific field (life, health, physical, and social sciences). 
Robustness checks in Appendix A.5 show that our results do not rely on winsorizing. 
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Fig. 2.1: OUTCOME PATHS AROUND STAR DEATH 

Notes: The sample consists of 9,297 pairs of treated and control collaborators confined to a  
nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. 

attributed to the truncated nature of the variable. Stated differently, forward citations 

represent the total number of citations received as of 2016 by all articles published in a  

given year, which makes high numbers at the end of the observation period less likely. 

However, this mechanical effect can be neglected since treatment and control scientists 

cover the exact same time spans. More importantly, both groups closely resemble each  
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other until the year of death, yet treated collaborators are again outperformed by their 

matched counterparts in all subsequent years. 

The presented evidence suggests that scientists suffer in the realms of both productivity  

and quality after the abrupt end of a star collaboration. Figure 2.1 is indeed a (raw) preview  

of our main results that further underlines the effectiveness of our matching approach  

by visually confirming the parallel course of pre-trends. We evaluate these findings in more 

econometric detail over the next subsections. 

2.3.2 Econometric Model 

We apply a straightforward econometric methodology that has been employed in related 

contexts (Azoulay, Fons-Rosen, & Graff Zivin, 2019; Jäger & Heining, 2019; Jaravel et al.,  

2018). Assured through the matching procedure, treated scientists are paired with control 

scientists that possess a multitude of similar characteristics. Moreover, matched scientists 

are also temporally aligned, implying that each control scientist inherits a counterfactual  

death year from his/her treated counterpart. These design properties allow us to estimate  

a dynamic DiD equation, where the causal effect of star death is identified through yearly 

differences in the research output of both groups (adjusted for a range of fixed effects).  

Our econometric approach takes the following form: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛼𝛼 + � 𝛽𝛽𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 𝟙𝟙 (𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑘𝑘)
9

𝑘𝑘=−9

+ � 𝛽𝛽𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴  𝟙𝟙 (𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑘𝑘)
9

𝑘𝑘=−9

× 𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑖𝑖

= 𝑇𝑇𝑎𝑎𝑘𝑘  + 𝜗𝜗𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖�, 

 

(2.1) 

 

where 𝑌𝑌𝑖𝑖𝑖𝑖  denotes either the article count or forward citations of co-author 𝑖𝑖 in calendar  

year 𝑇𝑇. Both dependent variables are bound by a considerable fraction of zero values. We 

therefore estimate Equation (2.1) by means of Poisson pseudo-maximum likelihood (PPML) 

techniques. Apart from handling the skewed, non-negative distribution of the dependent 

variables, the PPML estimator offers compelling robustness properties. Importantly, it can  

be ensured that coefficient estimates are consistent as long as the conditional mean of  

the dependent variable is correctly specified (Gourieroux, Monfort, & Trognon, 1984). The 

data generating process is thus not required to be Poisson. In addition, employing robust 

standard errors, clustered at the star level in our application, allows for correct inference 

irrespective of any form of serial correlation (Wooldridge, 1997).14 

We address the staggered treatment onset by including lead and lag terms, denoted by  

𝐿𝐿𝑖𝑖𝑖𝑖, in Equation (2.1). Each of these terms represents an indicator variable that switches to  

                                                                 
14 For the estimation in Stata, we employ the ppmlhdfe command by Correira, Guimarães, and Zylkin 
(2019), which implements PPML regressions with multiple high-dimensional fixed effects. In contrast to 
conventional commands, ppmlhdfe proves robust to typical convergence issues in Poisson contexts. 
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1 if an observation is 𝑘𝑘 years apart from the death event. As shown by Jaravel et al. (2018),  

the first set of leads and lags, whose effects will be identified by the 𝛽𝛽𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 coefficients,  

fulfils a role similar to the post dummy in classic DiD frameworks. Its practical relevance  

stems from the concern that career age fixed effects (𝜗𝜗𝑖𝑖𝑖𝑖), calendar year fixed effects (𝛿𝛿𝑖𝑖), 
and individual fixed effects (𝛾𝛾𝑖𝑖) may not entirely capture trends in productivity or research 

quality around the time of star death.15 One possible cause for such trends could refer to  

the sample construction, where we condition on star collaboration, which could coincide  

with unobservable factors that may change regardless of the star’s passing (e.g., funding 

outlooks or work environments). Any of these transitory processes are absorbed by the 

common lead and lag terms. The second set of leads and lags, which is interacted with the 

indicator variable for treatment status, 𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑖𝑖, therefore isolates the causal treatment 

effect. We split the overall effect into yearly elements, each of which will be identified by 

their respective 𝛽𝛽𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴 coefficient. 

The key identifying assumption of our model is that star deaths are exogenous conditional  

on the covariates in Equation (2.1), which implies that treated and control scientists would  

have developed parallel output paths if the death event had not occurred. Ensuring this 

assumption motivates our research design, which builds on manually screened obituaries  

and a thorough matching procedure. While it is not possible to verify the parallel trends 

assumption post-treatment, its validity can be bolstered by means of pre-treatment data. 

Specifically, Equation (2.1) enables testing if death events are accompanied by preceding 

effect patterns, which would render the analysis doubtful. Apart from that, decomposing  

the effect post-death allows us to explore treatment consequences in dynamic fashion.  

We present our estimation results in the following subsection and note that any of these 

estimates can be interpreted as semi-elasticities after coefficients are exponentiated and 

decreased by one. 

2.3.3 Results 

Figure 2.2 provides a graphical depiction of the annual 𝛽𝛽𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴 coefficients by plotting point 

estimates along with 95% confidence intervals derived from Equation (2.1). The upper  

panel depicts the treatment dynamics in terms of article counts, while the lower panel  

refers to forward citations. Technically, the point estimate that corresponds to the year 

preceding the treatment year is normalised to zero, implying that this lead marks the 

reference point for the presented effects. 

                                                                 
15 Career age fixed effects account for output shifts over the course of a scientist’s career, while calendar 
year fixed effects capture all time-related influence factors such as the expansion of academic journals. 
Finally, individual fixed effects control for variation that originates from characteristics that are constant 
across individual scientists, e.g., innate ability, but also cover time-invariant dyadic features as, e.g., the  
age gap between stars and collaborators. Given that the three classes of fixed effects induce collinearity, 
we omit two (out of 45) career age fixed effects, which is standard practice (Jaravel et al., 2018). 
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Fig. 2.2: TREATMENT EFFECT DYNAMICS 

Notes: The sample consists of 9,297 pairs of treated and control collaborators confined to a  
nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. For the econometric approach, 
refer to Section 2.3.2. 

In view of the effect patterns for article counts, we first note the absence of pre-trends.  

While most point estimates leading up to the treatment year are slightly positive, neither  

of them is statistically significant, which is in line with the non-parametric résumé. After  

the death event, we notice a gradual shift in point estimates, which turn consistently 
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negative. The productivity decline induced by the treatment shock appears to increase in  

the long run, but the picture is not entirely conclusive. The 6th lag is associated with a 

statistically significant effect that translates into a 6.2% reduction (𝑒𝑒𝑒𝑒𝑒𝑒 [−0.064] − 1)  

in article counts, but the remaining lags are smaller in magnitude and not statistically  

significant. Despite statistical uncertainty on the annual level, the aggregate perspective 

clearly indicates that the unexpected passing of a star leads to a moderately diminished 

productivity for co-authors without signs of a rebound effect. 

As for forward citations, our proxy for output quality, we discover a broadly comparable 

picture to the article count analysis but with amplified effect magnitudes. Again, our  

research design finds support through insignificant point estimates for all leads, which 

underlines parallel pre-treatment trends. After the treatment, however, point estimates 

markedly decrease, implying that the stars’ death puts collaborators on career paths  

with less impactful publications. In six out of nine post-treatment years, we estimate a  

statistically significant decline in forward citations. Reduced output quantity could play  

into this finding, but the absolute effect sizes are notably higher. In fact, they tend to  

rise over time, peaking in the 9th year where the treatment effect equates to a 17.7% 

decrease in forward citations. This again illustrates that the star loss unfolds long-term 

consequences that transcend the mere disruption of ongoing projects. From comparing  

both panels of Figure 2.2, it can be inferred that the treatment impact becomes more 

pronounced when output quality is taken into consideration. 

2.4 Variations over the Scientific Spectrum 

2.4.1 Main Field Effects 

The identification of treatment effects over the complete sample sets the baseline for our  

next analysis steps, in which we exploit the rich diversity of our data. An integral part of  

the upcoming investigation is to compare effects across the scientific spectrum. We start  

with field-specific treatment effects, derived from the following specification: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛼𝛼 + 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑒𝑒𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑒𝑒𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑖𝑖

= �𝑘𝑘 + 𝜗𝜗𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖�, 

 

(2.2) 

 

which mirrors Equation (2.1) with the exception of the 𝐴𝐴𝐴𝐴𝑇𝑇𝑒𝑒𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖 variable that takes  

the place of the former lead and lag terms. 𝐴𝐴𝐴𝐴𝑇𝑇𝑒𝑒𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖 denotes an indicator variable  

that switches to 1 in the year of star death. Its interaction with the 𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑖𝑖 variable  

allows us to determine the treatment effect in a time-averaged form, i.e., pooled over all 

leads and lags. The 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴 coefficient will identify this effect, while the 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴 coefficient will 

capture all side effects that relate to the treatment timing but not the actual event. The 

advantage of Equation (2.2) lies in the ease of discussing total effect magnitudes but also  

in the improved statistical power. The latter aspect is particularly relevant for estimations  
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on smaller datasets, which applies to the present setting, where the overall sample will  

be split according to the stars’ field classification. Equation (2.2) will therefore be estimated 

separately for the four fields of life, health, physical, and social sciences, although we will  

also report the outcome of a pooled estimation, which corresponds to our main (dynamic) 

results. Apart from that, we adopt the inclusion of fixed effects, the level of standard error 

clustering, and the use of the PPML estimator from Equation (2.1). 

 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.043 * -0.066 * -0.044  -0.026  -0.062  
 (0.022)  (0.030)  (0.034)  (0.030)  (0.151)  

Log pseudo-likelihood -189,139  -52,754  -79,330  -53,894  -3,021  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death × treated -0.081 ** -0.114 ** -0.043  -0.104 * -0.015  
 (0.028)  (0.041)  (0.038)  (0.043)  (0.205)  

Log pseudo-likelihood -2,800,261  -809,005  -1,154,988  -784,720  -40,122  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. 2.3: IMPACT OF STAR DEATH ON COLLABORATORS’ OUTPUT 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

Table 2.3 depicts the results derived by means of Equation (2.2). From the upper panel, it 

becomes apparent that, regarding the overall sample, the death of a star affects article  

counts to a statistically significant extent. The effect equates to a 4.2% decline, which 

represents the pooled counterpart of the dynamic effects that are displayed in Figure 2.2 

(upper panel). However, a closer look at the single fields reveals that this productivity  

shock can only be confirmed for life sciences, where treated collaborators face an even 

stronger drop of 6.4%. As for the other fields, negative effects may be measured, but  

point estimates do not reach statistical significance at conventional levels. Turning to the 

lower panel of Table 2.3, we find treatment effects to increase once publication quality  

is factored in. Overall, co-authors experience a statistically significant reduction of 7.8% in 
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forward citations. This effect, again, becomes more pronounced in both magnitude and 

statistical significance for life sciences dyads, where the loss of an eminent scientist is 

followed by a 10.8% reduction. In case of forward citations, a similar observation can  

be made for physical sciences, where a 9.9% deficit is identified. Yet, in accordance with  

the article count results, no evident effects can be stated for the fields of both health  

and social sciences.16 

 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count excl. star collaboration as dependent variable 

After death × treated -0.026  -0.051  -0.028  -0.007  -0.054  
 (0.022)  (0.032)  (0.032)  (0.032)  (0.160)  

Log pseudo-likelihood -181,703  -50,560  -76,254  -51,936  -2,808  

No. of observations 268,794  81,844  115,561  67,138  4,251  

No. of dyads 18,000  5,446  7,717  4,549  288  

  Forward citations excl. star collaboration as dependent variable 

After death × treated -0.062 ** -0.112 ** -0.017  -0.080  0.021  
 (0.028)  (0.040)  (0.035)  (0.042)  (0.224)  

Log pseudo-likelihood -2,630,686  -760,591  -1,088,715  -735,906  -34,288  

No. of observations 268,314  81,780  115,383  66,947  4,204  

No. of dyads 17,961  5,440  7,702  4,534  285  

Tab. 2.4: IMPACT OF STAR DEATH ON COLLABORATORS’ OUTPUT BEYOND JOINT PRODUCTION 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. In comparison to Table 2.3, this 
also applies to collaborators that solely published together with their star. Field delineation is 
based on the stars’ publication profile or, if available, derived from the classification of the NAS. 
Robust standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

A first hypothesis as to what could drive the effects reported in Table 2.3 concerns the role 

of collaborative output. Naturally, the death of a star scientist renders future cooperation 

impossible. If we removed this portion from the control collaborators’ publication résumé,  

how would the assessment of treatment consequences change? We explore this question  

in Table 2.4. Technically, we use modified dependent variables that solely comprise articles  

                                                                 
16 Based on similar research designs, Azoulay et al. (2010), Oettl (2012), and Mohnen (2018) document 
declines of 8.2%, 12.4%, and 14.3% in impact factor weighted publication counts, respectively, whereas 
Jaravel et al. (2018) report a 15.6% drop in forward citations of patents. 
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that were not co-authored by the star. As can be seen from Table 2.4, treatment effects are 

less accentuated in this scenario. What might have been expected becomes particularly  

visible in case of articles counts (upper panel) where point estimates derived from neither  

life sciences nor the overall sample remain statistically significant. The productivity decrease 

in Table 2.3 can therefore largely be attributed to the unrealised potential of joint work.17 

However, repeating the analysis with forward citations (lower panel) leads to a different 

conclusion. With regard to the overall sample, the point estimate slightly decreases, but  

the effect stays statistically significant. Physical sciences adjusts in a comparable manner, 

although the effect lies at the margin of significance (𝑒𝑒-value of 0.056); and life sciences 

remains virtually unaffected. In summary, control scientists are thus found to accumulate 

more forward citations than treated scientists do, even after subtracting co-publications  

with their star. Importantly, this finding illustrates that the sudden death of a star clearly 

unfolds consequences that span beyond the omission of joint work. 

In Appendix A.5, we present a series of robustness checks that result from modifying  

Equation (2.2). First, we technically delay the beginning of the after-death period by one  

year. Including the year of death into the pre-death period could be justified on grounds  

of publication lags or if death events occur towards the end of the year. Strictly speaking,  

the death year can be considered a transition year, where the treatment consequences  

start to emerge. Second, we follow Azoulay et al. (2010) and Oettl (2012) by capturing life 

cycle patterns with career age cohort dummies, which could mitigate collinearity concerns 

between year, age, and individual fixed effects. Third, we extend our fixed effects arsenal  

by including interacted calendar year and career age fixed effects, thereby probing the 

implicit separability assumption in Equation (2.2). Fourth, we explore if clustering standard 

errors at the collaborator level instead of the star level affects our results. Fifth, we re-

estimate treatment effects on a (substantially) shortened panel of collaborators that are 

traceable for a full seven years before and after the death year. Using a balanced panel 

addresses the concern that collaborators with a surplus of either pre- or post-treatment 

observations might have a confounding influence on the estimation of true effects. Sixth,  

we employ forward citations without winsorizing. Taken together, we detect only minor 

changes in our results due to these alterations. In health and physical sciences, we both  

note one instance with a statistically significant article count effect, but these singular 

findings may not be overstated. Importantly, it can be confirmed that the main effects 

reported in Table 2.3 prove robust to a range of different model specifications. 

                                                                 
17 To be clear, the results in Table 2.4 do not imply that treatment effects are non-existent. They rather 
show how effects shift if joint work is taken out of the equation. In this setting, control collaborators are 
mainly penalised (post-death), although delayed publications are also removed for treated collaborators. 
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2.4.2 Distinct Effect Channels 

The death of an outstanding scientist affects the performance of former co-authors to an 

appreciable extent. The documented effects are mainly driven by collaborations in the  

fields of life and physical sciences and in part, but by no means fully, explainable by the 

deprivation of future cooperation. Within this section, we aim for a deeper understanding  

of the effect formation. If we were to determine subgroups of the treated scientists that 

experience the star death to a particularly great extent, we would have strong evidence  

for the origins of the treatment effect. Stated differently, where does the star’s death  

leave its primary mark? We explore heterogeneity in the treatment effect employing the 

following estimation equation: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛼𝛼 + 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑒𝑒𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑒𝑒𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑖𝑖

+ �𝑘𝑘 + 𝜂𝜂𝐴𝐴𝐴𝐴𝐴𝐴 Ζ𝑖𝑖 × 𝐴𝐴𝐴𝐴𝑇𝑇𝑒𝑒𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴 Ζ𝑖𝑖 × 𝐴𝐴𝐴𝐴𝑇𝑇𝑒𝑒𝑇𝑇𝐴𝐴𝑒𝑒𝑇𝑇𝑇𝑇ℎ𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑖𝑖

+ �𝑘𝑘 + 𝜗𝜗𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖�, 

 

(2.3) 

 

where Ζ𝑖𝑖 constitutes a time-invariant indicator variable, which we expect to be insightful  

for the magnitude of the treatment effect. To be clear, Ζ𝑖𝑖 will vary over the course of the 

analysis and delineate different sets of collaborations based on either individual or dyadic 

characteristics. The overall treatment effect will, according to this distinction, be divided  

into a common (𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴) and a specific (𝜂𝜂𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴) component. The coefficient of interest in this 

setting becomes 𝜂𝜂𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴, which isolates the differential treatment effect that is additionally  

yet exclusively felt by the delineated group of collaborators. Consistent with our former  

models, we incorporate Ζ𝑖𝑖 not only as part of an interaction for treated dyads, but also  

within a second interaction, which is common to all dyads and thus accounts for general 

outcome shifts that are attributable to Ζ𝑖𝑖. All further estimation aspects of Equation (2.1)  

and (2.2) remain unchanged, as does our strategy to distinguish between scientific fields. 

We first direct attention to collaborative features, which could play a moderating role. 

Intuitively, the assumption would be that scientists that maintained an intensive work 

relation with their star experience more severe treatment consequences than sporadic 

dyads. Two reasons lend support for this claim. First, co-authorships are not randomly 

assigned. Instead, they are more likely to result from a thorough matching process. 

Collaborations that turn out to be fruitful should thus embody higher chances of being 

continued. Second, even if we overstated the freedom in choosing co-authors and took 

potential lock-in effects into consideration (Boudreau et al., 2017), one might still expect 

repeated collaborations to be more valuable through accumulating team-specific capital 

(Jaravel et al., 2018). However, there are opposing arguments to be raised too. Notably, 

upholding a star collaboration could have benefits, e.g., in form of acquired knowledge  
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 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.047 * -0.054  -0.053  -0.029  -0.185  
 (0.022)  (0.030)  (0.034)  (0.035)  (0.182)  

After death × treated × 0.015  -0.039  0.036  0.015  0.349  
dyad frequency in 3. tertile (0.032)  (0.048)  (0.053)  (0.059)  (0.278)  

Log pseudo-likelihood -189,136  -52,753  -79,329  -53,892  -3,019  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death × treated -0.083 ** -0.089 * -0.066  -0.098 * -0.172  
 (0.027)  (0.044)  (0.038)  (0.044)  (0.253)  

After death × treated × 0.008  -0.080  0.090  -0.019  0.438  
dyad frequency in 3. tertile (0.048)  (0.069)  (0.066)  (0.096)  (0.404)  

Log pseudo-likelihood -2,800,245  -808,892  -1,154,831  -784,652  -40,019  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. 2.5: EFFECT HETEROGENEITY BY COLLABORATION FREQUENCY 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

or access to superior networks, that increase outside options and eventually allow for  

an easier transitioning towards new collaborations. Turning to our empirical assessment  

in Table 2.5, we can infer that frequent collaborators, defined as those that belong to the  

upper third of the distribution of co-authorships with their respective star, do not suffer  

a treatment effect of a markedly different size than the remaining collaborators.18 The  

effect for the former group, with regard to the overall sample, corresponds to a drop of  

3.1% (𝑒𝑒𝑒𝑒𝑒𝑒 [−0.047 + 0.015] − 1) in article counts and 7.2% in forward citations, while  

the latter group experiences a decline of 4.6% (𝑒𝑒𝑒𝑒𝑒𝑒 [−0.047] − 1) in article counts and  

8.0% in forward citations. Importantly, these deviations are not statistically significant, 

                                                                 
18 Analogous to the matching approach, we calculate separate distributions for each treatment year and 
each scientific field (derived from the stars’ classification). Descriptively, frequent collaborators published 
a mean number of 5.8 joint articles with their star. However, due to the large amount of one-time dyads, 
frequent collaborators are oftentimes synonymous with repeated collaborators. 
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neither overall nor in any single field. Additionally, looking into recent collaborations  

yields a similar conclusion, as does repeating the analysis with multi-year collaborations  

(see Appendix A.6). In sum, we find no evidence that treatment effects depend on any of 

these basic interaction features. 

 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.045  -0.058  -0.049  -0.038  0.010  
 (0.026)  (0.035)  (0.050)  (0.031)  (0.144)  

After death × treated × -0.005  -0.029  0.004  0.083  -0.254  
star wrote editorial (0.049)  (0.069)  (0.069)  (0.086)  (0.420)  

Log pseudo-likelihood -189,128  -52,754  -79,326  -53,890  -3,018  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death × treated -0.072 * -0.119 ** -0.020  -0.105 * 0.032  
 (0.033)  (0.050)  (0.054)  (0.046)  (0.205)  

After death × treated × -0.026  0.045  -0.059  0.007  -0.217  
star wrote editorial (0.062)  (0.085)  (0.075)  (0.112)  (0.588)  

Log pseudo-likelihood 2,800,201  -808,972  1,154,930  -784,554  -40,083  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. 2.6: EFFECT HETEROGENEITY BY EDITORIAL INFLUENCE 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

We proceed by ruling out a mechanism that would paint a less meritocratic picture of  

the scientific community. In particular, we examine if stars exercise a gatekeeping role, 

thereby elevating the career paths of their collaborators. If this believe turned out to be  

true, one should have less faith in fair academic assessment and instead devote more 

emphasis into forming profitable social ties. Our approach to test this assumption relies  

on data about editorials. From inspecting publication histories, we find that almost a  

quarter of all stars in both groups published at least one editorial over the course of five  

years before the year of death. However, as reported in Table 2.6, there is no indication  
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that editorial goodwill offers an explanation for the treatment effect. To be more precise,  

co-authors of star scientists with editorial linkage are not subject to a differential effect  

that approaches statistical significance.19 A comparable conclusion is indeed derived by 

Azoulay et al. (2010) who reject the gatekeeping hypothesis from a monetary angle, i.e., 

influence over the funding apparatus of the National Institutes of Health does not cause 

effect variations in their study of US life scientists. 

While control over journal resources is apparently not a driving force, we do discover  

local resources to be in part meaningful. Leaning on Azoulay et al. (2010), we base our 

reasoning on geographical proximity. We pursue an analogous path as in Section 2.2.3  

and first assign scientists to institutions as of their most recent publications prior to the  

treatment. In a second step, we query address data for these institutions from Scopus  

and third extend them with geographical data from Google Maps. This ultimately enables  

us to encircle collaborations that were co-located at the time of star death. We refer to  

dyads as co-located if both scientists were located in the same city. Accordingly, we do  

not require them to be linked to the same affiliation, in part because Scopus, in some 

instances, masks (parent) institutions by distinguishing between their sub-entities, which  

would add noise to this classification. Besides, relying on the city-oriented definition does 

take into account that a localised dimension of the treatment effect could encompass  

shared infrastructure facilities (e.g., large computing centres, telescopes, or laboratories). 

Empirically, we find that co-located dyads represent slightly over one fifth of both the  

treated and control sample. Furthermore, we detect a statistically significant interaction  

effect in the productivity sphere of physical sciences, which implies a decline of 13.0%  

in article counts, in addition to the negligible common treatment effect, for co-located 

collaborators following the death event (see Table 2.7).20 We interpret this geographically 

confined component of the treatment effect as a general reflection of the stars’ role in 

governing research environments. To illustrate this point, one might think of preferential 

access to expensive or highly-specialised equipment that could be at the star’s disposal  

and may be of particular importance in physical sciences (as conjectured by Azoulay et al., 

2019). 

  

                                                                 
19 Colussi (2018) underlines the benefits of being connected to editors of leading economics journals. While 
we are not able to confirm this result in our setting, it might be interesting to note that the differential 
treatment impact is largest among social scientists, although very imprecisely estimated. 
20 From a technical standpoint, one might recall that no aggregate effect was found for this field, which, 
however, does not preclude the possibility of nuanced effects, as presented here. Further examples in 
relation to health sciences follow over the course of this section. 
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 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.029  -0.069 * -0.034  -0.003  0.009  
 (0.023)  (0.030)  (0.037)  (0.032)  (0.179)  

After death × treated × -0.069 * 0.015  -0,050  -0.139 * -0.433  
co-located (0.033)  (0.072)  (0.044)  (0.064)  (0.310)  

Log pseudo-likelihood -188,788  -52,675  -79,144  -53,834  -2,987  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death × treated -0.072 * -0.139 *** -0.026  -0.082  0.109  
 (0.031)  (0.042)  (0.043)  (0.044)  (0.250)  

After death × treated × -0.047  0.112  -0.080  -0.136  -0.647  
co-located (0.053)  (0.083)  (0.081)  (0.103)  (0.397)  

Log pseudo-likelihood -2,790,989  -806,053  -1,150,133  -783,394  -39,425  

No. of observations 274,032  83,229  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. 2.7: EFFECT HETEROGENEITY IN GEOGRAPHICAL SPACE, CO-LOCATION CHANNEL 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

Co-location sheds some light on the treatment effect origin but does not deliver a full 

explanation on its own. We thus turn to a distinct mechanisms class that emphasises  

stars as being sources of unique knowledge and skills. After the treatment, collaborators 

might prove incapable of filling the void that star scientists left behind, indicating that  

parts of their expertise might die with them. The permanent nature of this loss could  

explain the long-term impact revealed in Figure 2.2. In exploring this hypothesis, we draw  

on the literature that examines technological distance between firms based on patent  

data (e.g., Ahuja, 2000, or Rosenkopf and Almeida, 2003). We adapt the methodology  

to our case and employ publications, instead of patents, to position scientists in subject 

space. For this purpose, we first compile subject portfolios for each scientist, which  

are derived from the set of non-dyad publications prior to the treatment year.  
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Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.029  -0.061 * -0.015  -0.017  -0.035  
 (0.025)  (0.027)  (0.038)  (0.034)  (0.131)  

After death × treated × -0.060  -0.016  -0.108 * -0.034  -0.113  
subject distance in 3. tertile (0.037)  (0.072)  (0.054)  (0.067)  (0.478)  

Log pseudo-likelihood -187,601  -52,268  -78,768  -53,444  -2,971  

No. of observations 265,707  80,526  114,406  66,550  4,225  

No. of dyads 17,819  5,363  7,648  4,520  288  

  Forward citations as dependent variable 

After death × treated -0.049  -0.116 ** 0.004  -0.058  0.024  
 (0.033)  (0.042)  (0.047)  (0.049)  (0.189)  

After death × treated × -0.141 *** 0.000  -0.190 ** -0.216 * -0.116  
subject distance in 3. tertile (0.050)  (0.081)  (0.073)  (0.097)  (0.604)  

Log pseudo-likelihood -2,761,000  -796,070  -1,139,737  -775,149  -38,745  

No. of observations 265,629  80,526  114,370  66,508  4,225  

No. of dyads 17,812  5,363  7,645  4,516  288  

Tab. 2.8: EFFECT HETEROGENEITY IN SUBJECT SPACE 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

Relying on Elsevier’s most granular journal classification layer, these portfolios are akin  

to vectors with 334 elements, with each of them listing the share of publications in  

a specific subject category. We then calculate the Euclidean distance between these  

vectors, which enables us to quantify the gap that separates stars and their respective 

collaborators in subject dimension. As shown in Table 2.8, there is strong evidence that  

this measure proves central for understanding how treatment effects unfold. More 

specifically, it becomes apparent that collaborators of subject distant dyads, i.e., the  

upper third of the year- and field-specific distributions, suffer especially steep outcome 

declines in health and physical sciences. The differential effects on quality are large in 

magnitude and imply that these scientists see their forward citations decrease by an 
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additional 17.3% and 19.4% in health and physical sciences, respectively.21 As for the  

former field, we further determine a statistically significant drop in productivity that  

amounts to an extra 10.2%. Considered as a whole, research potential is primarily lost  

in duos that combined distant expertise. Not only does this finding lend support to the  

substitution theory formulated above, since stars should become harder to replace if  

collaborators have less inside knowledge about their colleagues’ field, but it also shows  

that omitted knowledge transmission through interdisciplinary avenues constitutes a  

main treatment effect component. 

 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.016  -0.005  -0.045  0.020  -0.092  
 (0.024)  (0.040)  (0.040)  (0.041)  (0.189)  

After death × treated × -0.044  -0.104 * 0.002  -0.076  0.222  
star-star dyad (0.029)  (0.044)  (0.046)  (0.049)  (0.262)  

Log pseudo-likelihood -189,126  -52,746  -79,328  -53,888  -3,017  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death × treated -0.046  -0.011  -0.058  -0.049  -0.079  
 (0.029)  (0.048)  (0.042)  (0.051)  (0.241)  

After death × treated × -0.051  -0.160 ** 0.029  -0.082  0.192  
star-star dyad (0.039)  (0.059)  (0.059)  (0.075)  (0.399)  

Log pseudo-likelihood -2,796,337  -807,991  -1,153,051  -783,440  -40,008  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. 2.9: EFFECT HETEROGENEITY BY COLLABORATOR STATUS 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

                                                                 
21 The total decrease in physical sciences is presumably even higher but cannot be stated with certainty 
since the common part of the treatment effect now turns statistically insignificant. However, estimating 
Equation (2.2) on the subsample of subject distant dyads yields a precisely estimated total decrease of 
24.0%, which is almost identical to the additive effect in Table 2.8. 
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To this point, it remains puzzling, which mechanisms account for the (pronounced)  

treatment consequences faced by life sciences dyads. As will become clear, looking into  

this matter gives rise to a two-fold explanation. We first investigate if scientists of higher  

and lower calibre are differently affected upon the stars’ passing. From a theoretical  

viewpoint, one could emphasise that collaborators of lower calibre may generally be  

more reliant on the stars’ influence and therefore bear the higher costs of treatment. 

However, this influence might not prove to be overly substantial since impact analysis  

shows that the success of collaborative work is rather restrained by lower-ability  

members than lifted by higher-ability members (Ahmadpoor & Jones, 2019). Moreover,  

one might be sceptical about the likelihood of future interactions if dyads comprise a  

(too) severe ability or performance gap. In order to resolve this question empirically, we 

differentiate between collaborators based on their scientific achievement prior to the  

death event. Drawing a line between regular and star co-authors, we discover the latter 

group to take up almost the entire treatment effects in life sciences. As reported in  

Table 2.9, stars experience additional consequences in form of a dual decrease of 9.9% in  

article counts and 14.8% in forward citations. These differential effects are statistically 

significant yet bound to the life sciences spectrum. The stars’ deaths thus turn out to  

be particularly harmful for related star scientists, indicating that horizontal rather than  

vertical spillovers fuel knowledge production in this field. 

The second channel, which allows insights into the effect formation in life sciences,  

pertains to the (broader) geographical dimension. A priori, it is unclear if variations in  

the treatment impact could be attributed to the science systems in which dyads are 

embedded. This possibility has not been explored by previous studies (Azoulay et al.,  

2010; Mohnen, 2018; Oettl, 2012), yet it seems conceivable that organisational aspects  

as institutional autonomy, competition, or stratification could alter a star’s (external)  

value. We shed light on this matter by focussing on intra-US dyads, i.e., collaborations  

where both scientists are affiliated with an US institution at the time of treatment.  

These dyads represent 35% of the treated sample (versus 33% of the control sample)  

and evidently experience treatment consequences of a higher degree in health and life 

sciences. Given the statistically significant interaction terms in Table 2.10, we determine a 

differential productivity decline of 12.0% in the former field and a differential quality  

decline of 17.5% in the latter field. Although we remain limited in assessing the exact  

reasons for these effects, the US science system appears to be more star dependent. 
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 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.013  -0.036  -0.003  -0.017  -0.177  
 (0.028)  (0.042)  (0042)  (0.034)  (0.228)  

After death × treated × -0.090 * -0.076  -0.128 * -0.024  0.265  
US-US dyad (0.036)  (0.054)  (0.055)  (0.062)  (0.304)  

Log pseudo-likelihood -188,782  -52,674  -79,137  -53,836  -2,986  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death × treated -0.029  -0.026  -0.009  -0.088  -0.083  
 (0.031)  (0.047)  (0.041)  (0.053)  (0.297)  

After death × treated × -0.141 ** -0.192 * -0.115  -0.044  0.208  
US-US dyad (0.047)  (0.075)  (0.062)  (0.080  (0.412)  

Log pseudo-likelihood -2,789,367  -805,569  -1,149,362  -783,637  -39,389  

No. of observations 274,032  83,299  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. 2.10: EFFECT HETEROGENEITY IN GEOGRAPHICAL SPACE, US CHANNEL 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

Finally, our results should be put into perspective. Uncovering heterogeneity in the  

causal effect of star death does not itself permit a causal interpretation. To be more  

concrete, our estimations do not identify how treatment effects would change if 

collaborators were (exogenously) moved along certain covariate dimensions. However,  

our analysis does reveal which types of collaborators, in fact, are exposed to higher  

treatment impacts, thus helping to develop a better understanding of the processes  

that shape scientific advancement. Before we turn to a discussion of our main results,  

we shortly allay some robustness concerns, which are detailed in Appendix A.6. First,  

horizontal spillovers and intra-US effects operate independently as both interactions  

remain statistically significant if included in the same estimation. Second, intra-US effects  

are neither a mere reflection of intra-country effects nor entangled with the co-location  
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channel. Third, distance in subject space is not to be confounded with distance in topic,  

which is less predictive for the treatment effects. Fourth, our results do not hinge on the 

specific threshold definition that delineates subject distant dyads. 

2.5 Discussion and Conclusion 

The unexpected and premature death of 162 prolific scientists provides us with a quasi-

experimental setting, in which we investigate how valuable a star collaborator’s presence  

is for individual research performance. We find that scientists suffer average declines of  

4.2% in article counts and 7.8% in forward citations following the exogenous passing of  

a star co-author. Furthermore, there are no signs of recovery patterns. Instead, treatment 

consequences seem permanent and rather increase over time, thus indicating that star 

exposure constitutes an irreplaceable asset. 

Attempting to uncover the origins of the treatment effect, we first perform field-specific 

estimations, which we deem necessary given that cultures and practices differ along the 

scientific spectrum. In the course of this analysis, we generally confirm the findings of  

Azoulay et al. (2010) and Oettl (2012) as we determine a clear treatment impact in the  

field of life sciences, spanning both the productivity and quality sphere. In addition, we  

detect a quantitatively similar quality decrease for physical sciences dyads, which adds to  

the evidence presented by Borjas and Doran (2015) on high-quality mathematicians. On  

the contrary, collaborations in health and social sciences are (initially) found to escape any 

statistically significant treatment consequences. The absence of overall effects in these  

fields might have several reasons, which we cannot ascertain. In case of health sciences,  

for instance, one might argue that formal co-authorship could be less informative about  

true research interaction. Several studies raise the concern that guest or gift authorships  

lead to inflated co-author number in medical journals (Bhopal et al., 1997; Flanagin et al., 

1998; Wislar, Flanagin, Fontanarosa, & DeAngelis, 2011).22 In a separate vein, the death of  

a star scientist, as macabre as it may sound, could also emerge as beneficial for future 

performance. Prestigious research positions, journal space, funding, and accolades are all 

examples of scarce resources in academia, access to which could become less restrictive  

after the star is exempt from competition (Borjas & Doran, 2015). Although we find no  

evidence of positive treatment outcomes, it seems conceivable that the competition  

channel might (partly) offset negative effects. Moreover, we believe that this argument  

could carry particular relevance in fields where elite scientists form a small interlinked  

community, as it tends to the case for social sciences (Goyal, Van Der Leij, & Moraga-

González, 2006). 

                                                                 
22 Our data could be reflective of this phenomenon (to some extent) as we observe health scientists to 
record the highest collaborator numbers (see Table A.3). 
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In a subsequent step, we exploit the rich heterogeneity in individual and dyadic data to 

develop an understanding of the mechanisms that give rise to the treatment effects. There 

are three findings that stand out. First, we provide evidence that knowledge production 

comprises spatial elements. On a broader scale, we determine US-located dyads to be a 

primary effect driver in both life and health sciences. The observation that US scientists  

that lose a star collaborator, who is likewise located in the US, experience steeper output  

declines points to systemic causes. What could cause them to be especially vulnerable?  

A probable answer relates to increased inequality levels in the US biomedical sector as 

documented by Katz and Matter (2019) who highlight rich-get-richer effects in terms of 

patents, publications, and research grants that reinforce the role of elites and limit the  

degree of upward mobility. Star contact could thus be more important for career paths in  

this environment. On a local scale, we further find co-location effects in physical sciences. 

Although several studies underline the general tendency towards distant collaborations 

(Jones, Wuchty, & Uzzi, 2008; Laband & Tollison, 2000; Waltman, Tijssen, & Eck, 2011),  

our analysis suggests that close workspaces can still be a relevant factor for knowledge 

production. More specifically, we find that some part of the spillovers generated by stars  

are locally confined. We take the view that the diverse range of specialised equipment  

and material used in physical sciences could offer an explanation, yet our conclusion is  

not clearly verifiable. Including data on physical capital, similar to Baruffaldi and Gaessler’s   

(2018) approach, would therefore be a promising extension to our analysis. 

Our second main result pertains solely to life sciences collaborations. In stark contrast to 

other fields, we notice that the sudden death of a star primarily casts a shadow on fellow  

star scientists. Horizontal rather than vertical spillovers are thus characteristic for frontier 

research in life sciences. While it lies beyond our scope to determine the exact reasons  

for this finding, we offer two plausible explanations. Unrealised joint production, to begin  

with, appears to play a minor role. Spillovers are, however, by no means restricted to 

activities within conventional research projects, but can likewise originate from informal 

interactions, e.g., from “frequent exchanges with strong minds and powerful scientific 

imaginations that have a deep understanding of the problems one is struggling with”  

(Stigler, 1988, p. 36) or from “testing out new ideas in casual conversations” (Borjas &  

Doran, 2015, p. 1116). We expect informal channels to be shaped by social proximity, so  

that knowledge sharing is primarily facilitated between scientists of similar standing and 

intellectual ability. Strong informal channels could thus explain why stars suffer the main 

treatment effects. An alternative explanation is borrowed from Azoulay et al. (2019) who 

shed light on the nature of entry barriers in life sciences. Following the star’s death, they 

discover an influx of outsiders that, at the expanse of incumbent scientists, successfully 

challenge the leadership in the star’s research domain. These dynamics illustrate that stars, 

while alive, can also serve as a protection that ensures that like-minded scholars keep the 

knowledge reins in their hands. 
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Third, our analysis discloses spillovers in subject space. The idea that linking divergent 

scientific backgrounds can accelerate the innovative process is indeed not new. Models  

of creativity have long highlighted that new ideas typically emerge from a recombination  

or synthesis of existing ideas (Campbell, 1960; Hadamard, 1945; Schumpeter, 1934; Usher, 

1954; Weitzman, 1998). On a historical note, Robert Oppenheimer stated about the rise  

of atomic physics that it “was not the doing of any one man”, but instead “involved the 

collaboration of scores of scientists from many lands” (cited by Becker, 1957, p. 54). More 

recently, several bibliometric studies have explored the relationship between disciplinary 

diversity and citation impact. The conclusions drawn are not entirely consensus, but mostly 

supportive of a positive relation (Larivière, Haustein, & Börner, 2015; Leahey, Beckman, & 

Stanko, 2017; Uzzi, Mukherjee, Stringer, & Jones, 2013; Wang, Thijs, & Glänzel, 2015). 

Interdisciplinary research might not only lead to impactful results, it could also become  

more of a necessity. Scientific collaborations are oftentimes motivated by gaining access  

to specific competences, equipment, or data (Beaver, 2001; Melin, 2000). These reasons  

are rather pragmatic and can be considered to reflect specialisation tendencies in several 

research fields (Katz & Martin, 1997), which likely continue to increase due to the (ever)  

growing stock of knowledge (Jones, 2009). Our results align with this literature. More 

concretely, in health and physical sciences, we find that research potential is mainly lost  

in duos that combine markedly different field expertise, which is indicative of knowledge 

transmission through interdisciplinary avenues. 

Finally, this paper presents the first causal estimation of spillover effects over the entire 

spectrum of scientific fields. On aggregate, we discover that the presence of a star scientist 

benefits the research performance of his or her collaboration network. However, exploring  

the domains of life, health, physical, and social sciences separately reveals that the star  

effect is neither visible in each of these fields nor traceable to one common origin. To this 

end, our study may be viewed as a contribution that can help to develop an improved 

understanding of knowledge production functions and their potentially heterogeneous 

forms. Future research could continue in a similar (or complementary) spirit, but address 

some of our limitations. Importantly, our coverage of social sciences dyads is limited, in  

the first place due to considerably smaller collaboration networks in this field, but also 

because of a moderate number of treatment cases. A related question would arise from  

a change of scenery. Do our findings translate to fields outside of the university sector?  

Oettl (2012) raises this point and illustrates the perception that tech companies typically 

value exceptional engineers to an extent that resembles star status in academia. After all, 

knowing how human capital accumulates by means of interaction would clearly have far-

reaching implications and ultimately shed light on a key component of economic growth 

(Akcigit et al., 2018; Lucas & Moll, 2014). 

 





  

3 Efficiency of European Universities:  

A Case of Apples and Peers† 
  

3.1 Introduction 

As a consequence of European integration, universities in Europe are more and more 

competing for students, research funding, and scientific personnel across borders (Erkkilä  

& Piironen, 2014; Teixeira, 2016). It is therefore all the more important not only to assess 

these universities relative to their national peers, but to conduct comparisons on a broader 

geographical scale. Yet most studies on higher education efficiency have so far confined 

attention to one country at a time. Against this backdrop, the present paper adds to the 

scarce literature on cross-country studies by investigating how efficiently universities from 

16 European countries use the resources at their disposal. Apart from estimating relative 

efficiency scores, we further aim to identify relevant efficiency drivers, such as funding or 

personnel structure, by means of regression techniques. 

Adopting a European perspective enables us to make a methodological contribution to  

the literature on university efficiency. Given that input-output patterns notably depend on 

subject composition, universities are far from being considered homogeneous. We propose 

to address this issue with clustering methods and individual peer-group selection that both 

build on distance in subject space. We hereby avoid any kind of unreasonable comparison  

of, for instance, technical universities and business schools. Such an approach naturally 

comes with the requirement of a sufficiently large number of institutions, which we meet  

by using the European Tertiary Education Register (ETER) along with Elsevier’s database 

Scopus. In total, we hereby manage to compile a unique micro-dataset on 450 universities 

that contains information from nearly 2 million publications. 

Overall, our main results can be summarised as follows. First, it becomes evident that 

efficiency comparisons should only be made for universities with similar subject focus. 

Otherwise, efficiency scores would be more reflective of subject differences, e.g., higher  

costs in medical or technical studies relative to social studies, than of more or less efficient 

resource use. Second, efficiency drivers show substantial effect heterogeneity between 

subject clusters, which illustrates that universities are shaped by different technologies. 

However, we third provide evidence that third-party funding shares and institutional size  

are to a large extent efficiency enhancing. 

                                                                 
† This chapter is based on joint work with Berthold U. Wigger. A former version of our study is available as 
a CESifo working paper; see Herberholz and Wigger (2020). 
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The remainder of the paper is organised as follows. Section 3.2 discusses related literature  

strands and further elaborates on our key ideas. Section 3.3 establishes the classification 

scheme. Section 3.4 introduces the statistical Data Envelopment Analysis (DEA) approach. 

Section 3.5 explores estimated efficiency scores. Section 3.6 identifies efficiency drivers. 

Section 3.7 offers robustness checks. Section 3.8 briefly concludes. 

3.2 Related Literature 

Detecting inefficiencies within educational institutions has attracted much scholarly 

attention, most notably leading to empirical studies that employ various frontier efficiency 

techniques. Starting in the 1980s, numerous studies have focused on different types of 

institutions including primary and secondary schools, universities as well as university 

departments, or countries as a whole. For comprehensive reviews, see e.g., Worthington 

(2002) or De Witte and López-Torres (2017). 

Focussing on higher education, the foundations have been laid by studies that were 

conducted on a single-country basis. Historically, Anglo-Saxon countries were at the centre 

of most early frontier analyses. For instance, within the United States, Ahn, Charnes, and 

Cooper (1988) and Ahn and Seiford (1993) were both concerned with comparing public and 

private doctoral-granting institutions, whereas Breu and Raab (1994) confined attention  

to the nation’s top ranked institutions. Australian universities have also been subject to  

frequent assessment by, e.g., Coelli (1996), Avkiran (2001), and Abbott and Doucouliagos 

(2003). The same applies to institutions in the United Kingdom that have been analysed  

in depth. While the first studies on academic efficiency in Britain were conducted at the 

department level (see Tomkins and Green, 1988, Beasley, 1990, and Johnes and Johnes, 

1995, on accounting, chemistry and physics, and economics departments, respectively), 

several contributions at the university level soon followed, for instance by Sarrico et al.  

(1997), Athanassopoulos and Shale (1997), and Johnes (2006). Moreover, McMillan and 

Datta (1998) provided insights into the relative performance of Canadian universities,  

while Taylor and Harris (2004) addressed the topic in the South African context. Apart  

from the origins in the Anglo-Saxon area, higher education efficiency has emerged as a 

(research) topic of global interest as can be inferred from studies covering institutions in 

Austria (Leitner, Prikoszovits, Schaffhauser-Linzatti, Stowasser, & Wagner, 2007), Germany 

(Kempkes & Pohl, 2010), Italy (Agasisti & Salerno, 2007), Greece (Katharaki & Katharakis, 

2010), Brazil (Zoghbi, Rocha & Mattos, 2013), Mexico (Sagarra, Mar-Molinero, & Agasisti, 

2017), or China (Johnes & Yu, 2008). 

Frontier techniques are essentially driven by the number of (decision-making) units under 

assessment since efficiency refers to an endogenous concept, where benchmarks are set  

by the best performing subgroup. The aforementioned studies are therefore bound to 

national efficiency frontiers, which is apparently at odds with the widespread view of 

universities competing on a global scale. The limitations of country-specific studies have 
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indeed motivated a novel stream of literature, i.e., cross-country studies. Among them, 

Joumady and Ris (2005) were arguably the first to make a contribution by exploiting a  

postal survey sent to young professionals three years after graduation. In total, they were 

able to assess 209 institutions from eight European countries regarding their capacity to 

prepare students for labour market transition. Due to the unique survey setting, this work 

marks a rather special case. In contrast, most subsequent studies pursued an alternative  

path by using administrative data derived from national agencies. The need for manual  

data adjustments might be a reason why several studies started to adopt a two-country 

perspective. For instance, Agasisti and Johnes (2009) compared universities from England 

and Italy and noted that the latter ones were largely outperformed in the academic year  

2003/04. Following a similar methodology, Agasisti and Pérez-Esparrells (2010) conducted  

an analysis of Italian and Spanish universities. As of the academic year 2004/05, Italy was  

this time found to operate at higher efficiency levels. In fact, further two-country studies 

were centred around Italy based on data from 2000 onwards. Agasisti and Pohl (2012) 

observed a lower efficiency of Italian universities relative to their German counterparts,  

while comparisons to Polish (Agasisti & Wolszczak-Derlacz, 2016) and Dutch (Agasisti & 

Haelermans, 2016) institutions revealed that efficiency differentials are mostly model-

dependent. 

Overall, two-country studies can be regarded as a first step to account for increasing 

internationalisation in higher education. However, comparisons on a broader geographical 

scale are still required to obtain a more complete picture of cross-border competition and 

production possibilities. Apart from Joumady and Ris (2005), only a handful of studies have 

addressed this need to date, which, for the most part, can be explained by the lack of 

comparable micro-data at the institutional level (Wolszczak-Derlacz, 2017). Wolszczak-

Derlacz and Parteka (2011) approached this issue by means of a multitude of sources that  

led to a dataset on 259 universities from seven European countries. Extending the scope  

of analysis, Wolszczak-Derlacz (2017) compared 152 US to 348 European universities from 

ten countries, again based on manually collected data. Both studies clearly show that 

efficiency scores vary not only within but also between countries. Further studies were  

built on the projects Aquameth and Eumida, which were initial attempts by the European 

Commission to construct a unified database on higher education institutions. Exploiting  

these data, Daraio, Bonaccorsi, and Simar (2015a) investigated economies of scale and 

specialisation, Bolli et al. (2016) emphasised the role of competitive funding, while Daraio, 

Bonaccorsi, and Simar (2015b) proposed an advanced approach to rank universities with  

frontier techniques. Albeit these recent contributions, cross-country studies on academic 

efficiency are evidently still scarce. We therefore aim to extend this strand of literature  

with the help of a novel dataset. To the best of our knowledge, we are the first to utilise  

ETER for efficiency purposes, which enables us to expand our scope beyond past research 

and present a strong case for the validity of our findings. 
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Apart from providing an extended cross-country perspective on university efficiency, we 

propose a methodological contribution to a second stream of literature, which has rather 

been neglected in recent work. Specifically, we take the view that subject mix differentials 

have to be addressed comprehensively to avoid a well-known pitfall of DEA applications,  

i.e., comparing non-homogeneous units (Dyson et al., 2001). In fact, several studies have 

highlighted various systematic differences between academic fields. For instance, Tierny 

(1980) provides early evidence on costs per student at liberal arts colleges and shows that 

chemistry departments exceed political science departments by up to 100%. The general 

notion that social sciences incur lower cost levels than physical sciences is also confirmed  

by Dundar and Lewis (1995), who, additionally, discover the highest costs in the field of 

engineering sciences. Further cost studies have come to similar conclusions. Zimmerman  

and Altonji (2018) examine instructional spending in the Florida State University System  

and discover substantial heterogeneity. According to their results, engineering graduates  

entail costs that are almost double the amount found in low-cost majors such as business. 

Consistently, Filipini and Lepori (2007) explore expenditure levels of Swiss universities and 

report the highest values for technical sciences along with medicine. In view of the sharp 

differences between disciplines, they emphasise that cost comparisons of universities are  

at risk of being distorted if subject composition is left unconsidered. Johnes (1990) adds to 

this line of reasoning by stating that over two thirds of the variation in unit costs of UK 

universities is attributable to subject mix alone. There appear to be two main reasons for 

these patterns. On the one hand, STEM-related fields but also medicine generally require 

physical resources to a different extent and magnitude, e.g., basic materials, clinical and 

mechanical equipment, laboratories, and other costly facilities. On the other hand, some of 

these fields are considered to be more labour-intensive with higher levels of interaction 

between students and faculty, which is reflected by a different personnel structures  

(Kempkes & Pohl, 2010).23 

The relevance of external research funding is closely related to the cost dimension and  

equally well documented to be subject-dependent. The findings present a clear picture in  

so far as STEM-related fields and medicine are most active in third-party collaborations.  

Social sciences and humanities, on the contrary, are clearly underrepresented, likely due  

to less commercial potential in these fields (Bonaccorsi, Secondi, Setteducati, & Ancaiani, 

2014; Gulbrandsen & Smeby, 2005; Hornbostel, 2001). Relying on third-party funding as a 

proxy for research performance, as often favoured in the absence of bibliometric data,  

thus becomes a two-fold problem. Not only does this practice raise economic concerns  

about confounding inputs with outputs (Johnes & Johnes, 1995), but it also introduces  

unfair judgement. Publication and citation counts provide preferable output measures,  

                                                                 
23 The latter argument is presumably not restricted to STEM-subjects and medicine. For instance, music and art 
are also characterised by high levels of instruction. 
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are, however, prone to bias too. Shin and Cummings (2010), for instance, conclude that  

field differences constitute the main source of variance in faculty publications. More 

specifically, publication rates in engineering, natural, and medical sciences are found to 

exceed those in social sciences and humanities. Piro, Asknes, and Rørstad (2013) confirm  

this pattern while also emphasising the effects of alternative counting methods. Once 

fractional publication counts are employed to account for higher co-author numbers in 

natural sciences, the picture clearly changes with humanities and social sciences ranking  

first and second, respectively. Field differences are even more visible when it comes to  

the distribution of citations (Waltman, 2016). To illustrate this point, Radicchi, Fortunato,  

and Castellano (2008) state that publications with 100 citations are about 50 times more 

common in developmental biology than in aerospace engineering, while Waltman et al. 

(2011) find citation counts in biochemistry to be roughly one order of magnitude higher  

than in mathematics. 

Moreover, there is evidence that educational processes are also subject to considerable 

heterogeneity. According to Smith and Naylor (2001a, 2001b), both completion rates and 

degree results are affected by the field of study. For instance, in comparison with social 

sciences, it is more likely to receive a good degree in humanities and biological sciences, 

whereas dropout risk is increased in computer sciences.24  

In conclusion, disciplinary differences are substantial, take various forms, and have long  

been studied. Yet we are not aware of any study on higher education efficiency that has 

addressed this issue thoroughly. Some attempts were based on the distinct features of 

medical studies, which led to separating institutions with and without medical schools 

(Agasisti & Salerno, 2007; Ahn et al., 1988; Thanassoulis, Kortelainen, Johnes, & Johnes,  

2011) or to adjusting data of medical schools (Hanke & Leopoldseder, 1998). In fact, the  

most comprehensive approach might have been presented by Athanassopoulos and Shale  

(1997), who divided UK universities into three groups with different science orientation 

levels. It thus seems that the ensuring homogeneity has mostly been overlooked. 

While efficiency scores may thus be suffering from a considerable bias, subject mix has 

attracted (newfound) interest when it comes to explaining efficiency scores within two- 

stage frameworks. From an economics perspective, running a second-stage regression is  

of particular importance to gain insights into efficiency drivers on which grounds policy 

implications can be drawn. Medical faculties have frequently been included within these 

regressions (Agasisti & Pohl, 2012; Agasisti & Wolszczak-Derlacz, 2016; Kempkes & Pohl, 

2010; Wolszczak-Derlacz, 2017; Wolszczak-Derlacz & Parteka, 2011) and in several cases 

found to have a significant impact. However, it may be questioned whether universities  

                                                                 
24 Both studies by Smith and Naylor include gender specific estimations and cover a variety of subjects. Their 
approach leads to numerous findings, which are not covered in detail at this point. The results presented are 
therefore rather illustrative albeit significant and representative for both genders. 
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can be commonly assessed without accounting for subject composition. Universities with  

a strong life sciences profile might simply be incapable of reaching an efficiency frontier 

composed of universities that are primarily engaged in social sciences. In fact, they might  

not even consider these universities their peers, which essentially casts doubt upon the 

managerial side of relative efficiency techniques. Moreover, regression results become  

prone to misinterpretation once biased efficiency scores are utilised. Rather than being  

a source of inefficiency, medical faculties might be more likely to illustrate systematic 

differentials between academic fields that, of course, become more or less pronounced 

depending on the respective choice of inputs and outputs. 

3.3 Clustering Analysis 

3.3.1 Methodology 

There is an extensive number of clustering methods, from which we select the 𝐾𝐾-means 

algorithm. It is widely considered an elegant method for splitting a dataset into distinct 

clusters.25 The idea behind 𝐾𝐾-means can be formalised in an intuitive way: Let 𝐶𝐶1, … ,𝐶𝐶𝐾𝐾  

denote 𝐾𝐾 sets of distinct, non-overlapping clusters. Since clustering aims at grouping 

observations that tend to be similar, one can assess clusters based on their within-cluster 

variation, which should be as small as possible. The problem to be solved by the 𝐾𝐾-means 

algorithm can thus be stated as 

min
𝐶𝐶1,…,𝐶𝐶𝐾𝐾

�𝑊𝑊(𝐶𝐶𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

, (3.1) 

where 𝑊𝑊(𝐶𝐶𝑘𝑘) denotes the within-cluster variation of cluster 𝐶𝐶𝑘𝑘. A common way to measure 

the within-cluster variation of 𝐶𝐶𝑘𝑘 refers to the sum of squared distances between each 

observation 𝑒𝑒 ∈ 𝐶𝐶𝑘𝑘  and the cluster’s mean 𝜇𝜇𝑘𝑘. Using squared Euclidean distance, we can 

redefine the optimisation problem as follows 

min
𝐶𝐶1,…,𝐶𝐶𝐾𝐾

� �‖𝑒𝑒 −  𝜇𝜇𝑘𝑘‖2
𝑥𝑥∈𝐶𝐶𝑘𝑘

𝐾𝐾

𝑘𝑘=1

. (3.2) 

While the logic underlying 𝐾𝐾-means gives little cause of concern, one regularly faces the 

practical issue of selecting the parameter 𝐾𝐾. Since there is no universal approach for this  

task, we mainly follow Makles (2012) and determine the optimal cluster number based  

on the total within-cluster variation, i.e., the target value of the optimisation problem  

defined above. More specifically, we consider any increase in 𝐾𝐾 desirable as long as it is 
                                                                 
25 Albeit the growing popularity of clustering applications, the higher education landscape has only partially  
been explored by these techniques. Notable examples are Stanley and Reynolds (1994) and Valadkani and 
Worthington (2006), who study performance differences within the Australian university system. In a similar 
vein, Shin (2009) groups South Korean universities based on research performance, whereas Bonaccorsi and 
Daraio (2009) and Lepori, Baschung, and Probst (2010) develop classification schemes for European universities. 
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accompanied by a sufficient reduction of that value. For this purpose, we emphasise 

comparing the proportional reduction of error for different values of 𝐾𝐾. Formally, this 

coefficient is defined as 

𝑃𝑃𝑃𝑃𝑃𝑃(𝐾𝐾) = 1 −
𝑊𝑊𝑊𝑊𝑊𝑊(𝐾𝐾)

𝑊𝑊𝑊𝑊𝑊𝑊(𝐾𝐾 − 1) , (3.3) 

where 𝑊𝑊𝑊𝑊𝑊𝑊(𝐾𝐾) denotes the total within-cluster variation for a solution of 𝐾𝐾 ˃ 1 clusters. 

Once this coefficient drops considerably, we refrain from partitioning our data any further. 

Additional explanations regarding our clustering methodology are partly provided over the 

course of the next subsection. 

3.3.2 Data and Results 

Our analysis covers the period from 2011 to 2014 and exploits two main data sources.  

The core data are derived from ETER, which provides comparable micro-data on higher 

education institutions across Europe. In addition, we use data from Scopus, an abstract  

and citation database hosted by Elsevier, in order to supplement our institutional data  

with meaningful measures of research output. After restricting our dataset to public and 

government-dependent universities and eliminating specialist institutions (e.g., music and 

arts academies), 450 universities from 16 European countries remain to constitute our 

sample (see Appendix B.1 for a geographical depiction).26 

As for the clustering analysis, we rely on publication records collected from Scopus. In 

principle, one could also argue in favour of employing student enrolment data for this  

task. Yet, we consider research output the more adequate choice primarily because our 

subsequent efficiency analysis addresses research activities in greater detail. Scopus does  

not only cover a broad range of scientific literature, but also classifies its content under  

four main subject areas,27 i.e., life sciences, social sciences, physical sciences, and health 

sciences. Building on this classification system and our pooled dataset, we calculate each 

university’s share of publications in these subject areas, which determine its position in 

subject space. These vectors then serve as the foundation for the clustering analysis. 

However, it should be noted that Scopus’s subject areas are partly overlapping. Articles  

that, for instance, appear in Applied Mathematical Finance are assigned to both social 

sciences and physical sciences. Multidisciplinary work therefore entails the potential risk  

of distorting subject profiles towards research areas with greater overlap. To address this 

issue, we opt for a fractional counting approach that essentially divides each (ambiguous) 

publication evenly between its subject areas. 

                                                                 
26 Institutions are classified as government-dependent if a government agency provides either more than half  
of their core funding or their teaching personnel’s salary. Due to the reliance on public funding, these institutions 
are often regulated in very similar ways to public institutions (OECD, 2019, p. 160). 

27 Note that the auxiliary subfield of multidisciplinary studies is omitted from the clustering analysis. 
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Fig. 3.1: HEURISTICS FOR OPTIMAL CLUSTER NUMBER 

Notes: Values are averaged over 1,000 replications of 𝐾𝐾-means with random starting centres. 

The task of selecting an appropriate cluster number is addressed in Figure 3.1. The left- 

hand panel depicts the total within-cluster variation for different values of 𝐾𝐾. Raising the 

number of clusters apparently reduces variation; however, there is a diminishing benefit 

along with it. This effect becomes even more evident in view of the right-hand panel,  

which plots the proportional reduction of error. Based on this criterion, adding a second 

cluster has the biggest impact, reducing total within-cluster variation by 42%. By adding  

a third and fourth cluster, the variation continues to fall by 33% and 28%, respectively. 

Afterwards, the graph shows a relatively steep decline. A fifth cluster would decrease 

variation by (merely) 17%, which would barely differ from adding a sixth, seventh, or  

eighth cluster, so that any of these solutions appears rather arbitrary. While deciding on  

the optimal number of 𝐾𝐾 is usually not a clear cut, the heuristics are mostly supportive of a 

four-cluster solution in the present case. This also pertains to the Caliński–Harabasz (1974) 

index that we calculated as an additional check (see Appendix B.2). 

The final step of our clustering approach is to apply the actual 𝐾𝐾-means algorithm. One 

shortcoming of 𝐾𝐾-means arises from the fact that it tends to converge to local instead  

of global optima. We thus ran the algorithm multiple times with random starting centres  

and selected the solution with the lowest total within-cluster variation as suggested by  

James, Witten, Hastie, and Tibshirani (2013, pp. 388–389). In sum, the final clustering  

was obtained in 51 of 1,000 replications. Aggregate statistics on subject space location  

by cluster are presented in Table 3.1. 
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Tab. 3.1: MEAN COMPOSITION OF RESEARCH OUTPUT BY CLUSTER 

According to Table 3.1, our sample consists of universities that, on average, account for 

scientific output, 15% of which falls under the life sciences category, 19% under social 

sciences, 46% under physical sciences, and 20% under health sciences.28 However, the  

data further show that the European public university landscape can hardly be regarded  

as homogeneous. In fact, there are significant differences in terms of subject focus. This 

becomes particularly apparent with regard to specialist clusters such as CLUSTER 1. On  

average, 56% of the publications by a CLUSTER 1 university belong to social sciences. In 

contrast, other clusters display mean values that are up to five times smaller ranging  

from 11 to 15%.29 A similar degree of specialisation can be observed by CLUSTER 3, which is 

composed of universities that lay its emphasis on health sciences. These two clusters also 

resemble each other from the size perspective, as they are considerably smaller than the 

remaining clusters. Albeit comprising a lot more universities, CLUSTER 2 can still be viewed  

as a specialist cluster that is directed towards physical sciences. Lastly, CLUSTER 4 contains 

universities, which most closely align with the sample mean (thereby sharing the general 

tendency towards physical sciences). We thus consider them as generalist institutions. 

                                                                 
28 Physical sciences seem to be overrepresented, which is partly attributable to database coverage. However,  
this bias is found to be even larger within the Web of Science, which may have served as an alternative data 
source. Besides, broad-scale comparison reveals that Scopus exceeds the Web of Science in terms of journal 
coverage in every disciplinary field (see Mongeon and Paul-Hus, 2016, on both aspects) and thus provides a  
more reliable basis for efficiency assessment. 

29 It should be noted that mean values can be somewhat misleading. For instance, a few universities outside  
of CLUSTER 1 are visibly engaged in social sciences along with their primary cluster focus. Yet only two of them 
marginally exceed the lower bound of CLUSTER 1 set by the Birmingham City University (35.57%). Still, this 
observation is indicative of cluster boundaries being partly fluid (see Section 3.7). 

Cluster 𝑵𝑵 Life  
Sciences 

Social 
Sciences 

Physical 
Sciences 

Health 
Sciences 

Subject Focus 

CLUSTER 1 57 6.25% 56.10% 22.21% 15.11% Social Sciences 

CLUSTER 2 140 8.49% 10.74% 74.02% 6.30% Physical Sciences 

CLUSTER 3 49 21.41% 12.41% 14.43% 51.24% Health Sciences 

CLUSTER 4 204 20.15% 14.95% 40.80% 23.32% General 

Sample 450 14.90% 18.57% 45.91% 20.02%  
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Fig. 3.2: SUBJECT DEVIATION BY CLUSTER IN COMPARISON TO SAMPLE MEAN 

Notes: Bar order = life sciences, social sciences, physical sciences, health sciences. 

Cluster characteristics are further illustrated by Figure 3.2, which depicts how far clusters 

deviate from the sample mean, and by Figure 3.3, which emphasises comparisons inside  

the subject space boundaries that are effectively set by our data. The latter approach is 

particularly relevant given that the maximum degree of specialisation is found to differ 

notably between subject areas. For instance, while we discover universities with output 

fractions of above 90% in social and physical sciences, peak values in life and health  

sciences lie within the 60% and 70% region, respectively. Employing an identical scale  

along each subject dimension could therefore conceal insights. Instead, we apply linear 

transformations to map our data onto the intervals ranging between the 1st and 99th 

percentile.30 Following this approach, it first becomes clear that our former results hold  

true: Three clusters can be described by a distinct subject focus. Yet differences in the  

degree of specialisation appear in a partly different light. For instance, Figure 3.3 reveals  

a comparable level of specialisation for CLUSTER 2 and 3, which is primarily due to higher 

expansion on the health sciences axis. In other words, both clusters become increasingly 

similar if we acknowledge that specialisation in the field of health sciences relates to  

lower output fractions than in physical sciences. This effect is indeed most pronounced  

in life sciences, where values above 50% rarely occur. As a result, universities in CLUSTER 4  

appear increasingly balanced hence approaching the perception of generalist institutions 

more closely. 

                                                                 
30 Standard rescaling refers to utilising minimum and maximum values. As a result, this approach is known to  
be sensitive to outliers. Percentile ranks thus provide a reasonable alternative. 
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Fig. 3.3: SUBJECT FOCUS BY CLUSTER IN COMPARISON TO SAMPLE MEAN 

Notes: Data are rescaled to lie between the 1st and 99th percentile. Axes range from 0-100%. 
The sample mean is depicted by the dotted line. 

The clustering analysis clearly sheds light on systematic differences between groups of 

universities in Europe. It is worth noting that we partly confirm the results of Lepori et  

al. (2010), who identify specialised institutions in the fields of technical-natural sciences  

and social sciences and humanities. Subject differences alone could indeed be overlooked  

by efficiency analyses if they were not linked to further institutional disparities. However, 

descriptive statistics presented in Table 3.2 point to the contrary. Referring to the output 

dimension, publications per academic staff, measured as full-time equivalents, constitute  

a typical indicator for scientific productivity. In line with the cited literature, we discover  

the lowest values within the social sciences cluster. On average, we find these universities  

to record an annual number of 0.49 publications per academic employee between 2011  

and 2014.31 In comparison, mean values of 0.83 and 0.91 are achieved by universities  

                                                                 
31 Our study is not restricted to research articles but includes every publication format from Scopus. This is 
particularly relevant for the field of social sciences and humanities where books and book chapters are known 
to play an important role in scientific communication. 
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focussing on physical and health sciences, which represents an increase of 69% and 86%, 

respectively. Overall, the general cluster is associated with the highest productivity of  

1.01 publications per academic staff, which may be an indicator for the existence of 

economies of scope. A similar picture emerges with regard to the number of citations  

per publication that we include to capture the impact of scientific contributions. Based  

on an evaluation window that covers the year of publication plus two subsequent years,  

we determine an average citation rate of 3.13 within the social sciences cluster, which 

amounts to less than half of what their counterparts with a health or general profile are  

able to accomplish. 

With respect to the input dimension, we direct attention to current expenditures as a 

summary measure of resource usage. By comparing the annual expenditure levels per 

student, we clearly observe the health sciences cluster to be a costly exception. On the 

contrary, universities from the social sciences cluster record relatively low expenditure 

numbers despite being exposed to a higher teaching load (as indicated by the ratio of 

students to academic staff). Again, both of these findings are consistent with the reviewed 

literature. Lastly, we see that universities focussing on social and health sciences are of  

similar size accommodating an average of 11 to 12 thousand students. In comparison, we 

find the number of students to exceed 15 thousand in the physical sciences cluster and 

approach 22 thousand among generalist universities. 

It is crucial to note that systematic differences between clusters are a major cause of  

concern from the standpoint of efficiency analysis. More specifically, they suggest that 

production processes are subject to heterogeneous technologies, which would remain 

unconsidered if universities were pooled together across the entire subject spectrum. 

Instead, we strongly argue in favour of performing efficiency estimation cluster-wise to 

ensure a comparison of (true) peers. 
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Tab. 3.2: SUMMARY STATISTICS BY CLUSTER 

Notes: Publications comprise all document types listed on Scopus. The citation window covers 
three years including the year of publication. Academic staff is expressed in FTE. Financial data 
are converted into real PPP EUR (2014 = 100). 

3.4 Statistical DEA Approach 

We employ a statistical DEA approach in line with Simar and Wilson (1998, 2000). Thus,  

let 𝑒𝑒 ∈ 𝑃𝑃+
𝑝𝑝 denote a vector of 𝑒𝑒 inputs and 𝑦𝑦 ∈ 𝑃𝑃+

𝑞𝑞  a vector of 𝑞𝑞 outputs. The production 

possibilities set can then be defined as  

𝑃𝑃 = { (𝑒𝑒, 𝑦𝑦) ∈ 𝑃𝑃+
𝑝𝑝 × 𝑃𝑃+

𝑞𝑞  � 𝑒𝑒 𝑐𝑐𝑇𝑇𝑐𝑐 𝑒𝑒𝑇𝑇𝑝𝑝𝑇𝑇𝑝𝑝𝑐𝑐𝑒𝑒 𝑦𝑦 }. (3.4) 

Production facilities, in our case universities, in the interior of 𝑃𝑃 are termed technically 

inefficient, whereas universities located on the boundary, or frontier, of 𝑃𝑃 are considered 

technically efficient. In order to determine the degree of efficiency, we adopt an output-

oriented perspective implicitly assuming that universities have greater control over outputs 

than inputs.32 A university located at a given point (𝑒𝑒, 𝑦𝑦) can thus be assessed by 

                                                                 
32 This view is shared by a number of studies, including those by Agasisti and Johnes (2009), Kempkes and Pohl 
(2010), and Wolszcak-Derlacz and Parteka (2011). 

Cluster Publications per 
academic staff 

Citations per 
publication 

Students per 
academic staff 

Expenditures  
per student 

Number of 
students 

1 – Social Sciences 

P5 0.06 1.32 11.09 3,569 1,343 
Mean 0.49 3.13 20.91 9,911 11,029 
P95 1.35 5.91 32.00 20,199 22,945 

2 – Physical Sciences 

P5 0.17 1.91 5.41 3,435 3,043 
Mean 0.83 4.86 16.89 12,564 15,575 
P95 1.77 9.44 29.12 31,530 35,798 

3 – Health Sciences 

P5 0.12 1.87 1.47 4,341 1,608 
Mean 0.91 6.73 15.69 38,836 11,921 
P95 2.68 12.39 30.84 213,706 30,027 

4 – General 

P5 0.32 2.77 5.17 5,228 6,928 
Mean 1.01 6.81 15.13 15,189 21,882 
P95 1.82 11.01 28.33 38,542 48,150 

Sample 

P5 0.16 1.94 5.15 3,944 3,059 
Mean 0.88 5.73 16.47 8,933 17,461 
P95 1.81 10.72 29.17 39,265 38,515 
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𝜃𝜃(𝑒𝑒, 𝑦𝑦 | 𝑃𝑃) = 𝑠𝑠𝑝𝑝𝑒𝑒 { 𝜃𝜃 > 0 | (𝑒𝑒, 𝜃𝜃𝑦𝑦) 𝜖𝜖 𝑃𝑃 }, (3.5) 

where 𝜃𝜃(𝑒𝑒,𝑦𝑦 | 𝑃𝑃) 𝜖𝜖 [1,∞) measures the largest radial expansion of 𝑦𝑦 that is feasible given  

𝑒𝑒. Higher inefficiency is accordingly indicated by larger values of 𝜃𝜃(𝑒𝑒, 𝑦𝑦 | 𝑃𝑃). In theory, 

inefficiency scores could be obtained through mathematical programming if the set of 

production possibilities were fully disclosed. However, this is not the case. Instead of 

observing all possible input-output combinations, one generally encounters a subset of 

technologies from 𝑃𝑃, denoted by 𝑃𝑃�. We thus refer to 𝑃𝑃 and 𝜃𝜃(𝑒𝑒,𝑦𝑦 | 𝑃𝑃) as the true but 

unknown quantities of interest and to 𝑃𝑃� and 𝜃𝜃�𝑒𝑒, 𝑦𝑦 � 𝑃𝑃�� as their sample estimators. 

By construction, 𝑃𝑃� constitutes an inner approximation of 𝑃𝑃, which causes inefficiency 

estimates to be downward biased, i.e., 𝜃𝜃�𝑒𝑒, 𝑦𝑦 � 𝑃𝑃�� ≤ 𝜃𝜃(𝑒𝑒,𝑦𝑦 | 𝑃𝑃). In dealing with this issue, 

one generally relies on bootstrap-based inference. This leads to a virtual environment,  

where 𝑃𝑃� and 𝜃𝜃�𝑒𝑒,𝑦𝑦 � 𝑃𝑃�� become the quantities of interest to be estimated by 𝑃𝑃∗ and 

𝜃𝜃(𝑒𝑒, 𝑦𝑦 | 𝑃𝑃∗), which build on subsets drawn from the original data. Further, let 𝐹𝐹� refer to  

the bootstrap data generating process that mimics the true data generating process 𝐹𝐹.  

It then follows that 

𝜃𝜃�𝑒𝑒,𝑦𝑦 � 𝑃𝑃�� − 𝜃𝜃(𝑒𝑒, 𝑦𝑦 | 𝑃𝑃∗) � 𝐹𝐹�  ∼  𝜃𝜃(𝑒𝑒,𝑦𝑦 | 𝑃𝑃) − 𝜃𝜃�𝑒𝑒, 𝑦𝑦 � 𝑃𝑃�� � 𝐹𝐹, (3.6) 

so that a bias-corrected estimator of 𝜃𝜃(𝑒𝑒,𝑦𝑦 | 𝑃𝑃) can be stated as 

𝜃𝜃�(𝑒𝑒,𝑦𝑦) = 2 𝜃𝜃�𝑒𝑒, 𝑦𝑦 � 𝑃𝑃�� − 𝑃𝑃�𝜃𝜃(𝑒𝑒,𝑦𝑦 | 𝑃𝑃∗)�. (3.7) 

Technically, we employ the homogeneous bootstrap algorithm proposed by Simar and 

Wilson (1998) based on 1,000 replications. In addition, we assume free disposability along 

with convexity and allow for variable returns to scale when constructing estimates of 𝑃𝑃.  

This procedure leads to bias-corrected efficiency scores �𝜃𝜃�𝑖𝑖 ∶ 𝑖𝑖 = 1, … ,𝑐𝑐� for our set of  

𝑐𝑐 universities, which we examine descriptively and further by means of kernel densities.  

For this reason, let 𝐴𝐴 denote the density of 𝜃𝜃�. Its standard kernel density estimator at any 

point 𝑝𝑝 is then defined as 

𝐴𝐴(𝑝𝑝) =
1
𝑐𝑐ℎ  �𝐾𝐾 � 

𝑝𝑝 − 𝜃𝜃�𝑖𝑖
ℎ  �

𝑛𝑛

𝑖𝑖=1

, (3.8) 
 

where 𝐾𝐾(∙) denotes a kernel function and ℎ constitutes a suitable bandwidth. However,  

due to efficiency scores being constructed with bounded support, this estimator requires 

alteration to ensure consistency. We therefore apply the modified estimator 

𝐴𝐴𝑅𝑅(𝑝𝑝) = � 
1
𝑐𝑐ℎ𝑅𝑅

 �  � 𝐾𝐾 � 
𝑝𝑝 − 𝜃𝜃�𝑖𝑖
ℎ𝑅𝑅

 � + 𝐾𝐾 � 
𝑝𝑝 − �2 − 𝜃𝜃�𝑖𝑖�

ℎ𝑅𝑅
 � �

𝑛𝑛

𝑖𝑖=1

, 𝑝𝑝 ≥ 1

0, 𝑝𝑝𝑇𝑇ℎ𝑒𝑒𝑇𝑇𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒,

 
(3.9) 
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where ℎ𝑅𝑅 denotes an adjusted bandwidth. Moreover, we opt for a Gaussian kernel and follow 

Silverman’s (1986) rule for bandwidth selection.33 

In a second stage, we investigate potential efficiency drivers by employing the bootstrap 

regression framework by Simar and Wilson (2007). More precisely, we expect university  

𝑖𝑖’s true efficiency  𝜃𝜃𝑖𝑖 to depend on a vector 𝑧𝑧𝑖𝑖 of covariates. On the assumption that these 

covariates exert constant percentage effects, our model resolves to 

𝑙𝑙𝑐𝑐(𝜃𝜃𝑖𝑖) = 𝜓𝜓 (𝑧𝑧𝑖𝑖 ,𝛽𝛽) + 𝜖𝜖𝑖𝑖, (3.10) 

where 𝛽𝛽 denotes a vector of coefficients, 𝜓𝜓 (∙) describes a functional form later to be 

determined, and 𝜖𝜖𝑖𝑖 represents the unexplained residual term, which is assumed to be 

normally distributed with left-truncation at − 𝜓𝜓 (𝑧𝑧𝑖𝑖 ,𝛽𝛽). We estimate this model by means  

of maximum likelihood, again based on 1,000 replications. With true efficiencies remaining 

unknown, we rely on their bias-corrected estimates for inference about 𝛽𝛽. 

3.5 Efficiency Estimation 

3.5.1 Model Specification 

Universities are generally known to engage in two major fields of activity, i.e., teaching  

and research. With regard to teaching, we include the number of yearly graduates on  

ISCED levels 5 to 7 as our preferred output measure. Some studies instead opted for the 

number of enrolled students noting that education received by students who drop out  

before graduation should not be neglected (Cohn, Rhine, & Santos, 1989). However, this 

approach could be prone to misjudgement caused by inactive students (so-called phantom 

students), who are of particular relevance when evaluating public institutions (Teixeira, 

Rocha, Biscaia, & Cardoso, 2012). In fact, universities that handle these students least 

effectively, hereby revealing inefficient administrations, were the primary beneficiaries of  

this measure. Besides, study efforts that fail to be rewarded with degrees should not  

be overstated since job market returns are considerably decreased after dropping out  

(Walker & Zhu, 2013). 

To capture research activities, we include the number of scientific publications in our  

model. They are indeed central for knowledge dissemination as scientific contributions 

usually manifest in some form of publication. However, it seems reasonable to argue that 

publications only serve as a partial indicator for research output. Following Martin and  

Irvine (1983), we regard them mainly as a measure of scientific production but not of 

scientific progress. This distinction rests upon the notion that publications tend to vary  

in scientific value. Most contributions might be incremental in nature, while some add 

considerably to the advancement of science. Individuals but also institutions as a whole  

                                                                 
33 See Sickles and Zelenyuk (2019) for further details on density estimation in efficiency contexts. 
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might have different preferences and abilities regarding these two dimensions, which  

calls for an additional output measure. We therefore incorporate citation counts, hereby 

broadening the scope of prior efficiency studies that usually omitted this measure due  

to data limitations.34 Citations can be viewed as a quality measure, especially in settings  

that account for field differences. Yet, in a scientometric context, the right terminology  

would be to refer to citations as a measure of scientific impact (Martin & Irvine, 1983). 

Furthermore, one might speak of short-term impact given that our citation window is 

restricted to a maximum of three years. Moed et al. (1985) point out that not every 

contribution to the current research frontier eventually becomes accepted knowledge,  

which motivates the distinction between short- and long-term impact. However, empirical 

evidence indicates that both concepts are closely linked to each other (Adams, 2005).  

We further clarify this relation through a separate analysis that underlines the significant 

correlation between initial and overall citations at the institutional level (see Appendix  

B.3). Based on these results, our efficiency estimates can be expected to be robust to 

extended citation windows. 

Contrary to the output side, the literature reveals less consistency over the input choice.  

This becomes especially evident by the numerous expenditure types that have been used, 

including e.g., expenditure on personnel, central administration, or library services. These 

differences may partly result from the availability of data but, more importantly, express 

alternative views of higher education efficiency. Our take on this matter is rather strict. In 

line with Thanassoulis et al. (2011), we define the current expenditure level (converted  

in purchasing power parities) as our single input. Two main reasons can be pointed out in 

support of this approach. First, from a public finance standpoint, it seems hardly relevant  

in what specific way resources are allocated within an institution. Universities are given a 

great amount of (operational) freedom which can shape production processes in various 

forms, with labour- and capital-intensive organisation being two classic examples. It is,  

at best, of secondary concern to policy makers how efficient universities are making use  

of certain resources. Their focus is expected to lie on the overall budget. Second, there  

are technical reasons for limiting the number of inputs. DEA is a flexible technique that  

allows units to attach individual weights to input and output components so that they  

appear in the most favourable light relative to their peers. Broadening the set of inputs  

would therefore open up more opportunities for universities to become efficient, which  

we consider unreasonable. To illustrate this point, adding the number of students as a  

second input dimension would permit universities to be assessed based on their citation- 

to-student ratio, which would be at odds with our efficiency perception. 

                                                                 
34 Citation counts have frequently been advocated but rarely been included to capture research output. To the 
best of our knowledge, only one study exploits citation data for efficiency purposes, i.e., Bonaccorsi, Daraio, and 
Simar (2006), who examine the Italian university system. 



Efficiency of European Universities: A Case of Apples and Peers 51 

 

Overall, our model includes publications, citations, and graduates as outputs and current 

expenditures as an aggregate input measure. Moreover, we employ a fractional counting 

approach meaning that credit for publications and citations is split between collaborating 

universities according to the number of contributing authors. In view of a potential bias 

related to varying centrality within the European university network, it is worth noting  

that we consider co-authorship ties to any other affiliation for this task and not only links  

to universities from our sample. 

3.5.2 Results 

This section proceeds with exploring the results of our efficiency estimation, which we  

conduct separately for the years from 2011 to 2014. While we advocate cluster-specific 

technology frontiers, we also present results based on a global frontier to contrast both 

approaches. 

Tab. 3.3: SUMMARY STATISTICS ON BIAS-CORRECTED EFFICIENCY SCORES BY CLUSTER 

Table 3.3 provides summary statistics on efficiency estimates aggregated by cluster and  

pooled over the 4-year sample period. From the upper half of this table, we can infer  

that assessing universities cluster-wise reveals efficiency distributions with a high degree  

of similarity (with a minor exception being the health cluster where the long tail, i.e., the  

low-performance segment, appears slightly more accentuated). In contrast, results derived 

from a global frontier indicate that efficiency differs notably between clusters. This finding 

becomes increasingly visible as percentile ranks increase. There are indeed highly efficient 

universities within each cluster; however, beyond the 5th percentile, we see an efficiency  

gap widening between the social and health cluster on the one hand and the physical and 

general cluster on the other hand. To evaluate this gap in more detail, we employ the  

non-parametric Kruskal-Wallis test, which clearly rejects the null hypothesis of equal mean  

  

Cluster 𝑵𝑵 P5 P25 P50 Mean P75 P95 SD 

Cluster-specific Frontiers 

Social 228 1.15 1.30 1.64 2.04 2.45 4.23 1.11 

Physical 560 1.16 1.33 1.75 2.05 2.47 4.03 1.02 

Health 196 1.14 1.32 1.67 2.22 2.41 5.03 1.47 

General 816 1.18 1.47 1.81 2.03 2.27 3.75 0.81 

Global Frontier 

Social 228 1.16 1.71 2.20 2.60 2.97 5.39 1.52 

Physical 560 1.16 1.41 1.96 2.23 2.66 4.31 1.10 

Health 196 1.22 1.75 2.32 3.00 3.53 7.35 2.14 

General 816 1.18 1.53 1.90 2.16 2.43 4.15 0.91 



52 Efficiency of European Universities: A Case of Apples and Peers 

ranks across clusters (𝜒𝜒2 = 46.986 with an associated 𝑒𝑒-value of 0.0001). In light of this 

significant result, one might be inclined to draw the conclusion that some clusters simply 

outperform others. Again, we consider this rather a display of unreasonable comparison. 

  

  

Fig. 3.4: DENSITY ESTIMATES OF BIAS-CORRECTED EFFICIENCY SCORES BY CLUSTER 

Notes: Densities refer to estimates derived from an individual cluster frontier (solid line) or from 
one global frontier (dotted line). 

In addition to Table 3.3, density estimates of bias-corrected efficiency scores are visualised  

in Figure 3.4. Three observations are worth emphasising here. First, and in line with our 

previous findings, switching from a global to an intra-cluster frontier affects universities 

focused on social and health sciences most significantly. In the latter scenario, more 

probability mass becomes assigned towards unity, which is partly due to the relatively  

high reduction in sample size. Second, all distributions are right-skewed, which marks a 

frequently expected outcome in efficiency contexts, and leptokurtic. Third, we observe a 

wide range of efficiency estimates including some extreme values, which indicates not  

only considerable heterogeneity among universities but also high discriminatory power of 

our model. 
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Country Global  
Frontier 

Social  
Cluster 

Physical  
Cluster 

Health  
Cluster 

General  
Cluster 

 Mean P50 Mean P50 Mean P50 Mean P50 Mean P50 

Belgium 1.71 1.57    1.47 1.43 

Czech Republic 2.10 2.00  1.93 1.79  1.74 1.79 

Finland 2.45 2.32 2.09 2.08 1.96 1.76  2.28 2.23 

Germany 3.27 3.12 2.48 2.52 2.72 2.55 3.67 3.74 3.08 3.09 

Ireland 1.80 1.80    1.71 1.63 

Italy 2.09 1.76 4.22 3.64 1.95 1.69 1.47 1.39 1.71 1.62 

Lithuania 5.64 4.55  3.79 3.64   
Netherlands 1.77 1.77  1.34 1.25  1.61 1.76 

Norway 2.65 2.59    2.39 2.31 

Poland 1.50 1.39 1.21 1.18 1.43 1.33 1.45 1.41 1.40 1.35 

Portugal 1.91 1.81  1.57 1.20  1.72 1.79 

Sweden 2.96 2.87  2.38 2.21 2.11 2.05 2.42 2.20 

Switzerland 2.82 2.36  1.98 1.35  2.48 2.20 

United Kingdom 1.92 1.79 1.78 1.49 1.84 1.76 1.44 1.33 1.72 1.68 

Sample 2.33 1.99 2.04 1.64 2.05 1.75 2.22 1.67 2.03 1.81 

Tab. 3.4: MEAN AND MEDIAN BIAS-CORRECTED EFFICIENCY SCORES BY COUNTRY AND CLUSTER 

Notes: Efficiencies scores referring to less than three institutions are not reported. Malta and 
Cyprus are left out for this reason. 

Exploring efficiency levels from a national perspective reveals further insights. According  

to Table 3.4, mean and median efficiency scores show substantial variation across Europe.  

The group of top-performing countries mainly comprises Belgium, the Netherlands, and 

Poland. Relatively high efficiency levels are also reached by universities located in the  

Czech Republic, Poland, Ireland, and the UK, whereas Scandinavian universities generally 

offer more room for improvement. Apart from these general patterns, there are cluster 

distinctions that are worthy of note. Italy, for instance, achieves high efficiency in the  

health sciences cluster, but clearly lags behind in the social sciences cluster. Interestingly,  

the reverse picture emerges with regard to Germany despite its overall greater levels of 

inefficiency. Lastly, Switzerland appears more efficient in the physical sciences cluster  

than in the general cluster. 
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Fig. 3.5: DENSITY ESTIMATES OF BIAS-CORRECTED EFFICIENCY SCORES BY COUNTRY, GENERAL CLUSTER 

Notes: Densities refer to a single country (solid line) or to the overall cluster (dotted line). 

To offer an outlook beyond measures of central tendency, we take a closer look at the  

general cluster and, more specifically, at universities from Germany and the UK, which 

represent its largest subgroups. Based on the density estimates depicted in Figure 3.5,  

both countries can be considered to differ not only in mean or median efficiency but also  

in terms of within-country variation. Clearly, the German university landscape reveals a  

lot more heterogeneity than its British counterpart does. Upon examining the remaining 

countries, it seems difficult to state a general rule. Yet the illustrated examples seem to 

indicate that high mean efficiency scores are usually accompanied by greater variation. 

Additional density plots for single countries are provided in Appendix B.4. 

3.6 Identification of Efficiency Drivers 

3.6.1 Model Specification 

From a policy perspective, detecting inefficiencies in public institutions can only be seen  

as an intermediate step. The focus of this section will therefore be placed on identifying 

efficiency drivers, knowledge of which may prove helpful for designing reasonable policy 

measures to promote higher education efficiency. Overall, we consider the following model 

specification 

𝑙𝑙𝑐𝑐�𝜃𝜃�𝑖𝑖𝑖𝑖� =  𝛽𝛽0 + 𝛽𝛽1 𝑙𝑙𝑐𝑐(𝑊𝑊𝑖𝑖𝑧𝑧𝑒𝑒𝑖𝑖𝑖𝑖) + 𝛽𝛽2 𝐻𝐻𝑒𝑒𝑇𝑇𝐴𝐴𝑖𝑖𝑐𝑐𝑇𝑇𝑇𝑇ℎ𝑙𝑙𝑖𝑖𝑖𝑖 + 𝛽𝛽3 𝑇𝑇ℎ𝑖𝑖𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦𝑖𝑖𝑖𝑖

+ �𝑚𝑚𝑚𝑚 + 𝛽𝛽4 𝐹𝐹𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖′ + 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 , 

(3.11) 

which relates university 𝑖𝑖’s efficiency estimate in year 𝑇𝑇 to various factors expected to be  

of influence. In particular, we are interested in the potential effects of university size  

approximated by the number of students (𝑊𝑊𝑖𝑖𝑧𝑧𝑒𝑒), subject specialisation calculated as a 

Herfindahl index (𝐻𝐻𝑒𝑒𝑇𝑇𝐴𝐴𝑖𝑖𝑐𝑐𝑇𝑇𝑇𝑇ℎ𝑙𝑙), and funding composition characterised by the share of 

current revenues raised through third-party funds (𝑇𝑇ℎ𝑖𝑖𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦) and student fees (𝐹𝐹𝑒𝑒𝑒𝑒𝑠𝑠). 
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Moreover, we include a set of year dummies (𝛿𝛿) to control for time fixed effects, a set  

of country dummies (𝛼𝛼) to account for country fixed effects, and further controls (𝑋𝑋)  

related to employee structure, institutional design, and regional productivity. Summary 

statistics on all covariates by cluster along with more precise descriptions are provided  

in Table 3.5. Note that these data are derived from ETER except for 𝐺𝐺𝐴𝐴𝑃𝑃, which originates  

from Eurostat and the Swiss Federal Statistical Office. 

Among our variables of interest, 𝑊𝑊𝑖𝑖𝑧𝑧𝑒𝑒 permits investigating potential economies of scale  

in higher education. From a theoretical standpoint, large universities might benefit from 

higher utilisation of various assets. These could include shared research infrastructure,  

e.g., production plants or computing centres that typically require considerable initial 

investments, but also educational facilities such as libraries. Moreover, advancements in 

information technology could lead to a reduced demand of interpersonal relations in 

teaching hence expanding the range of decreasing unit costs presumably in favour of large 

institutions that tend to offer lectures for greater student numbers. However, administrative 

tasks potentially are a source of diseconomies of scale since organisational costs are  

expected to increase disproportionately with size. In view of these opposing arguments, it  

is understandable that the empirical literature has not yet reached a consensus on this  

matter (Bonaccorsi, Daraio, & Simar, 2006). 

We further aim to shed light on economies of scope by including 𝐻𝐻𝑒𝑒𝑇𝑇𝐴𝐴𝑖𝑖𝑐𝑐𝑇𝑇𝑇𝑇ℎ𝑙𝑙 as a measure 

of subject specialisation in our model. Based on ETER’s distinction of 11 fields of study, this 

index ranges from 0.1, if students are equally distributed across fields, to 1.0, if students 

belong to only one field. Even though the Herfindahl index rests upon student numbers, it 

largely resembles our clustering results. As can be seen from Table 3.5, specialised clusters 

are characterised by higher index values hereby providing a first indication of the robustness 

of our approach. Whether efficiency benefits from specialisation or diversification in subject 

coverage is hard to answer on theoretical grounds. Turning to empirical studies, the overall 

picture remains mostly unclear. According to Daraio et al. (2015a), specialisation enhances 

academic efficiency, whereas results from Agasisti and Wolszczak-Derlacz (2016) as well  

as Wolszczak-Derlacz (2017) point to the contrary, i.e., the presence of economies of scope. 

Yet another conclusion is derived by Bonaccorsi et al. (2006), who reject any statistically 

significant relation. 

Lastly, our interest lies in evaluating if differences in funding structure are related to 

university efficiency. Although external funding has become an increasingly central revenue 

source for European universities, empirical evidence on its performance impact remains 

relatively scant. Still, we expect universities with larger proportions of third-party funds to  

be more efficient given that previous studies by Wolszczak-Derlacz and Parteka (2011), 
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Tab. 3.5: DESCRIPTION AND SUMMARY STATISTICS ON COVARIATES BY CLUSTER 

Notes: Financial data are converted into real PPP EUR (2014 = 100). Breakdown of employee 
structure is based on headcounts. 

  

Variable Sample Social  
Cluster 

Physical  
Cluster 

Health  
Cluster 

General  
Cluster 

GDP − Regional gross domestic product per capita according to NUTS 2 classification 
P5 16,005 18,802 14,048 17,180 17,180 
Mean 32,257 46,018 26,887 38,988 30,480 
P95 48,400 159,662 46,954 157,583 47,858 

Multisite − Binary variable indicating campuses outside a university’s main location 
P5 0.00 0.00 0.00 0.00 0.00 
Mean 0.24 0.20 0.25 0.19 0.26 
P95 1.00 1.00 1.00 1.00 1.00 

Hospital − Binary variable indicating the presence of a university hospital 
P5 0.00 0.00 0.00 0.00 0.00 
Mean 0.29 0.04 0.07 0.43 0.47 
P95 1.00 0.00 1.00 1.00 1.00 

Size − Number of enrolled students at ISCED levels 5-7 
P5 3,059 1,343 3,043 1,608 6,928 
Mean 17,461 11,029 15,575 11,921 21,882 
P95 38,515 22,945 35,798 30,027 48,150 

Herfindahl − Herfindahl index based on enrolled students at ISCED levels 5-7 by subject (in %) 
P5 14.24 15.62 15.34 16.27 13.77 
Mean 26.95 37.25 31.17 37.75 18.75 
P95 75.27 97.58 76.55 99.80 27.51 

Prof − Proportion of full professors amongst employees (in %) 
P5 2.22 1.39 3.03 1.74 2.42 
Mean 6.54 6.09 6.91 6.42 6.49 
P95 11.32 10.34 11.44 12.12 11.40 

Female − Proportion of women amongst full professors (in %) 
P5 7.69 9.60 4.92 6.67 12.29 
Mean 22.50 31.54 17.39 24.90 22.80 
P95 40.00 50.00 30.38 50.00 36.36 

International − Proportion of foreigners amongst academic employees (in %) 
P5 1.74 4.97 1.11 1.04 1.86 
Mean 16.17 19.54 14.72 14.15 16.37 
P95 41.16 55.70 45.87 39.60 39.72 

Thirdparty − Proportion of current revenues raised through third-party funds (in %)  
P5 1.32 0.66 1.16 1.87 2.21 
Mean 17.47 11.65 21.16 20.90 16.43 
P95 40.34 36.69 42.32 50.06 35.83 

Fees − Proportion of current revenues raised through student fees (in %) 
P5 0.13 0.58 0.12 0.05 0.14 
Mean 23.02 41.39 14.52 16.90 23.57 
P95 69.36 76.05 49.05 68.50 67.71 
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Agasisti and Wolszczak-Derlacz (2016), and Wolszczak-Derlacz (2017) discover a negative 

correlation between the share of core funding and university performance in cross-country 

contexts. We further extend this strand of research by including the share of student fees, 

which allows us to disentangle the overall effect of external funding into two separate 

components. Although employing a parametric model, Bolli et al. (2016) pursue a similar 

approach and conclude that different mechanisms are potentially in play for these funding 

sources. More precisely, the share of tuition fees is found to decrease university efficiency, 

while the opposite is revealed about international public funds. 

Apart from investigating a comprehensive set of efficiency drivers, our methodological 

framework is in particular designed to uncover differences between fields. As indicated by 

our clustering analysis, universities likely operate under varying technological constraints, 

which casts doubt on assuming that covariates exert identical effects throughout the  

subject spectrum. For instance, multidisciplinary work could be of different value across 

fields. Instead of jointly testing for economies of scope, we thus favour evaluating clusters  

on an individual basis. 

3.6.2 Results 

The results of the regression analysis are reported in Table 3.6. In line with the previous  

section, our focus is twofold. We present our preferred approach that relies on cluster-

segmented estimations but also contrast it with the pooling approach, which derives its 

efficiency estimates from a global technology frontier. It should hereby be kept in mind  

that the dependent variable constitutes an inefficiency rather than an efficiency measure. 

Coefficient estimates with a negative sign therefore indicate efficiency-enhancing effects, 

whereas a positive sign corresponds to efficiency-decreasing effects. 

The first result is indeed not linked to a single variable but related to the overall effect 

heterogeneity, which we find to take various forms. For instance, specialisation supposedly 

increases university efficiency in the pooled model as indicated by the significant and 

negative coefficient of 𝐻𝐻𝑒𝑒𝑇𝑇𝐴𝐴𝑖𝑖𝑐𝑐𝑇𝑇𝑇𝑇ℎ𝑙𝑙. However, the segmented approach solely confirms  

this effect in case of the physical cluster. In a similar vein, a higher share of foreigners 

amongst academic employees (𝐼𝐼𝑐𝑐𝑇𝑇𝑒𝑒𝑇𝑇𝑐𝑐𝑇𝑇𝑇𝑇𝑖𝑖𝑝𝑝𝑐𝑐𝑇𝑇𝑙𝑙) is associated with lower efficiency in the 

pooled model. Not only does this notion appear too general in view of the segmented 

analysis, it might potentially be misleading. While the effect points to the same direction 

within the social cluster, universities in the health cluster seem to benefit from increasing 

levels of internationalisation. Furthermore, the general cluster emerges as an exception 

regarding the effects of 𝐹𝐹𝑒𝑒𝑚𝑚𝑇𝑇𝑙𝑙𝑒𝑒 in the sense that neither a negative nor a significant  

relation between the share of female full professors and efficiency can be confirmed. 
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Variable Global  
Frontier 

Social  
Cluster 

Physical  
Cluster 

Health  
Cluster 

General  
Cluster 

Natural logarithm of bias-corrected efficiency score as dependent variable 

ln(GDP) - 0.0412  - 0.1500 ** 0.1151  0.0923  - 0.0735 * 
 (0.0237)  (0.0466)  (0.0706)  (0.0746)  (0.0362)  

Multisite 0.0275  0.0646  0.1108 * 0.1947  0.0095  
 (0.0203)  (0.0534)  (0.0484)  (0.1091)  (0.0208)  

Hospital 0.0867 *** - 0.2130  - 0.0190  0.2849 *** 0.1065 *** 
 (0.0197)  (0.1302)  (0.0624)  (0.0646)  (0.0233)  

ln(Size) - 0.2843 *** - 0.2909 *** - 0.3985 *** - 0.1034 * - 0.1737 *** 
 (0.0127)  (0.0469)  (0.0268)  (0.0484)  (0.0199)  

Herfindahl - 0.0029 *** 0.0018  - 0.0033 ** - 0.0026  - 0.0012  
 (0.0006)  (0.0020)  (0.0010)  (0.0016)  (0.0029)  

Prof - 0.0212 *** - 0.0255 ** - 0.0217 ** - 0.0669 *** - 0.0162 ** 
 (0.0035)  (0.0085)  (0.0084)  (0.0141)  (0.0052)  

Female 0.0040 *** 0.0073 *** 0.0066 ** 0.0131 *** - 0.0014  
 (0.0010)  (0.0021)  (0.0024)  (0.0031)  (0.0016)  

International 0.0045 *** 0.0043 * 0.0016  - 0.0227 ** 0.0006  
 (0.0011)  (0.0020)  (0.0033)  (0.0069)  (0.0019)  

Thirdparty - 0.0073 *** - 0.0130 *** - 0.0074 *** - 0.0072 * - 0.0071 *** 
 (0.0009)  (0.0033)  (0.0017)  (0.0036)  (0.0014)  

Fees 0.0001  0.0072 *** - 0.0040 * - 0.0267 *** - 0.0029 ** 
 (0.0008)  (0.0019)  (0.0018)  (0.0035)  (0.0011)  

No. of observations 1,285  182  305  143  655  

Tab. 3.6: REGRESSION RESULTS 

Notes: Results are obtained from 1,000 bootstrap repetitions. Constants as well as time and 
country dummies are included but not reported. Bootstrap standard errors are in parentheses. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

So far, we have confined attention to effects that, although significant according to the 

pooled model, do not withstand cluster-specific examination. In addition to this dimension 

of effect heterogeneity, there is a second group of variables whose influence on efficiency 

might be overlooked without further scrutiny. Among them, the share of student fees 

certainly stands out. While the pooled model rejects any notable impact, we observe 

significant coefficients of 𝐹𝐹𝑒𝑒𝑒𝑒𝑠𝑠 in each cluster. More importantly, universities that rely  

more heavily on student fees are considered more efficient in the physical, health, and 

general cluster. On the contrary, the opposing relation is found in the social cluster. A  

similar pattern, though to a lesser extent, becomes visible with regard to regional gross 

domestic product per capita (𝐺𝐺𝐴𝐴𝑃𝑃) and the indicator for multisite institutions (𝑀𝑀𝑝𝑝𝑙𝑙𝑇𝑇𝑖𝑖𝑠𝑠𝑖𝑖𝑇𝑇𝑒𝑒); 

i.e., coefficients turn significant only in a single cluster. 
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To draw an interim conclusion, several efficiency drivers appear to differ in relevance 

between subject clusters. Yet some variables show consistent effects. More specifically,  

our analysis indicates that efficiency is in general positively related to the share of full 

professors (𝑃𝑃𝑇𝑇𝑝𝑝𝐴𝐴), the share of third-party funding (𝑇𝑇ℎ𝑖𝑖𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦), and university size  

(𝑊𝑊𝑖𝑖𝑧𝑧𝑒𝑒). A closer look at the magnitude of these coefficient estimates further reveals their 

economic significance. On average, we would expect inefficiency to decrease in a range 

between 0.7 and 1.3% if the share of third-party funding increased by 1 percentage  

point. In comparison, raising the share of full professors by an equal margin should lower 

inefficiency by 1.6 to 6.7%. It is worth noting, however, that the latter adjustment might 

require greater efforts given that personnel structures are supposedly less flexible than 

revenue compositions.35 Turning to the impact of institutional size on inefficiency, we 

estimate point elasticities between -0.1 and -0.4. Despite some variation in effect sizes,  

we hereby provide evidence for economies of scale in higher education and additionally  

infer that avenues for efficiency improvement exist on both the personnel and financial  

level. 

3.7 Robustness Analysis 

Within this section, we provide further evidence probing the robustness of our results. To  

be more precise, we report a series of model checks that involve variations in peer-group 

construction, output selection, and regression design. 

The initial clustering solution marks the starting point for these analyses. As a first step,  

we assess the quality of this solution by determining silhouette coefficients for each 

university. Following Rousseeuw (1987), silhouette coefficients indicate how well (data) 

objects have been classified by a given partitioning. In more concrete terms, they are  

derived by comparing an object’s proximity to its cluster members with the proximity  

to the members of its neighbouring cluster, i.e., the cluster with the highest proximity  

among those the object is not part of. In general, silhouette coefficients can range  

between -1 and 1, with higher values denoting stronger structures. Consistent with the  

𝐾𝐾-means algorithm, we rely on squared Euclidean distance in subject space to measure 

proximity between universities. Silhouette coefficients are illustrated in descriptive form in 

Table 3.7 and depicted graphically in Appendix B.5. Two aspects stand out from these 

displays. First, each cluster is characterised by an average silhouette coefficient higher  

than 0.5, which is commonly referred to as a threshold for reasonable cluster structures. 

Second, however, some universities with silhouette coefficients close to 0 appear to be 

classified rather vaguely. 

                                                                 
35 Within our regression sample, 𝑃𝑃𝑇𝑇𝑝𝑝𝐴𝐴 indeed shows less variation than 𝑇𝑇ℎ𝑖𝑖𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦, which is reflected by 
standard deviations of 2.9 and 13.3 percentage points, respectively. 
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Tab. 3.7: SUMMARY STATISTICS ON SILHOUETTE COEFFICIENTS BY CLUSTER 

The second observation hardly comes as a surprise. We may find the European university 

landscape to feature four subject clusters, yet it is to be expected that not all universities  

fit into this classification. Some institutions obviously occupy niches, which suggests that 

cluster boundaries are partly fluid. As a consequence, it could be suboptimal to compare 

universities solely to their cluster members (in some cases). Instead, certain universities, 

especially if near the boundaries, might possess relevant peers outside their own cluster.  

We thus extend our approach by constructing tailored peer-groups for each university,  

which are not bound by cluster affiliation but purely based on proximity in subject space.  

The advantage of this approach, which we term nearest neighbourhood approach, clearly  

lies in greater homogeneity. It does, however, require 450 bootstrap DEA estimations per 

year and hence call for markedly more computing resources. 

Tab. 3.8: AVERAGE PEER-GROUP COMPOSITION BY CLUSTER, NEAREST NEIGHBOURHOOD APPROACH 

Notes: Δ Distance refers to the change in average squared Euclidean distance between peers 
resulting from peer-group construction free of cluster constraints. 

Peer-group compositions based on our modified approach are reported in Table 3.8. For 

comparability reasons, we stick to identical peer-group sizes as in our baseline model, so  

that universities in the social cluster, for instance, are assessed relative to their 56 closest 

peers. The average distance between peers is reduced by a substantial margin of 21 to  

35% as we switch to the nearest neighbourhood approach mainly due to general cluster 

universities that frequently enhance peer-groups of universities from specialised clusters. 

Bias-corrected efficiency scores are then estimated based on these individual peer-groups 

and regressed on our set of covariates, which leads to the results in Table 3.9. In line with  

Section 3.6, we again observe considerable effect variation across subject fields. Although 

efficiency drivers remain (in)significant in the majority of cases, some previous findings  

Cluster 𝑵𝑵 Min P25 P50 Mean P75 Max 

Social 57 -0.123 0.341 0.666 0.535 0.758 0.819 

Physical 140 0.105 0.557 0.819 0.696 0.859 0.882 

Health 49 -0.042 0.289 0.661 0.524 0.744 0.797 

General 204 0.024 0.456 0.611 0.575 0.725 0.828 

Sample 450 -0.123 0.470 0.665 0.602 0.783 0.882 

Cluster Social Peers Physical Peers Health Peers General Peers Δ Distance 

Social 67.95% 1.19% 3.41% 27.44% -32.41% 

Physical 0.24% 83.00% 0.00% 16.76% -20.87% 

Health 3.27% 0.00% 61.05% 35.67% -34.92% 

General 2.68% 11.60% 4.47% 81.24% -25.52% 
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need to be refined. To be more concrete, institutional size and the share of third-party  

funds are no longer strictly linked to higher efficiency given that these effects are not 

persistent in the health cluster. Similarly, we notice that the share of full professors affects 

efficiency less clearly within the social cluster (𝑒𝑒-value of 0.07). 

Variable  Social Cluster  Physical Cluster  Health Cluster  General Cluster 

Natural logarithm of bias-corrected efficiency score as dependent variable 

ln(GDP)  - 0.0819  ≙ 0.1000  ≙ 0.0935  ≙ - 0.0687 * 
  (0.0587)   (0.0746)   (0.0679)   (0.0350)  

Multisite  0.1443 * ≙ 0.1031 *  0.2350 * ≙ 0.0087  
  (0.0653)   (0.0506)   (0.1012)   (0.0208)  

Hospital ≙ - 0.3071  ≙ - 0.0927  ≙ 0.3690 *** ≙ 0.0887 *** 
  (0.1605)   (0.0625)   (0.0578)   (0.0216)  

ln(Size) ≙ - 0.2254 *** ≙ - 0.3967 ***  - 0.0316  ≙ - 0.2352 *** 
  (0.0597)   (0.0262)   (0.0425)   (0.0187)  

Herfindahl ≙ 0.0003  ≙ - 0.0033 ** ≙ - 0.0005  ≙ - 0.0027  
  (0.0027)   (0.0011)   (0.0015)   (0.0028)  

Prof  - 0.0199  ≙ - 0.0295 *** ≙ - 0.0398 ** ≙ - 0.0175 *** 
  (0.0112)   (0.0086)   (0.0124)   (0.0051)  

Female  - 0.0007  ≙ 0.0094 *** ≙ 0.0135 *** ≙ - 0.0018  
  (0.0029)   (0.0024)   (0.0029)   (0.0016)  

International  0.0006  ≙ 0.0029  ≙ - 0.0239 *** ≙ 0.0008  
  (0.0027)   (0.0034)   (0.0063)   (0.0018)  

Thirdparty ≙ - 0.0125 ** ≙ - 0.0082 ***  - 0.0040  ≙ - 0.0067 *** 
  (0.0039)   (0.0017)   (0.0030)   (0.0014)  

Fees ≙ 0.0111 *** ≙ - 0.0043 * ≙ - 0.0208 *** ≙ - 0.0022 * 
  (0.0025)   (0.0019)   (0.0028)   (0.0011)  

No. of observations 182   305   143   655  

Tab. 3.9: REGRESSION RESULTS, NEAREST NEIGHBOURHOOD APPROACH 

Notes: Results are obtained from 1,000 bootstrap repetitions. Constants as well as time and 
country dummies are included but not reported. ≙ marks coefficient estimates that stay either 
significant or insignificant relative to Table 3.6. Bootstrap standard errors are in parentheses.  
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

An additional robustness check refers to altering the concept of university efficiency. To 

account for increasing levels of technology transfer activities, we now opt for granted  

patents (instead of publications) to complement citations and graduates as a third output 

component.36 As pointed out by Geuna and Nesta (2006), patenting efforts tend to be 

concentrated in the areas of life sciences and technology, which could partially explain why 

many European universities did not obtain any patents in the past (OECD, 2003). Our data 

                                                                 
36 Patent records were derived from Scopus, which contains data from five major patent offices (Elsevier, 2017). 
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generally confirm this picture as we find patent engagement to vary considerably across 

clusters and, besides, note that a number of universities received zero patents in certain 

years. To ensure a comparison of appropriate peers, we thus confine attention to the  

subset of our sample that recorded at least one patent in every year between 2011 and  

2014. Overall, this leaves us with 281 universities with measurable pursuit of applied  

forms of research output. 

All of these universities serve as potential peers as part of the nearest neighbourhood 

approach. The subsequent regression, however, requires reasonable sample sizes, which 

leads us to focus on the physical cluster with 79 and the general cluster with 163 

universities.37 Results are documented in columns 4 and 5 of Table 3.10. With regard to  

the consistent effects reported before, the positive relation between efficiency and both 

university size and third-party funding shares can be confirmed. In contrast, the share of  

full professors turns insignificant. Interestingly, there appear to be different reasons for  

this finding. While it is caused by model shift in the physical cluster, it is attributable to  

sample composition in the general cluster (see columns 2 and 3). In other words, a higher 

share of full professors neither improves efficiency in the publication nor in the patent  

model if we review patent-active general cluster universities. One might assume that  

these universities rely more on well-run administrations as they tend to be larger and 

supposedly more complex. In comparison, patent-active physical cluster universities seem  

to benefit from a higher full professor share as long as we refer to an efficiency concept  

that builds upon publications instead of patents. 

From the standpoint of generalisability, these additional checks allow us to conclude  

that institutional size and the ability to seek external funding are the main factors to  

impact university efficiency. With the exception of the health domain, both variables are 

consistently identified as efficiency enhancing. To allay concerns about the direction of 

causality, and to account for possibly delayed effects, further regression analyses with  

time-lagged covariates are presented in Appendix B.6. Irrespective of model choice, we  

find the stated interpretation encouraged by these estimations. 

  

                                                                 
37 Cluster sizes still constitute the reference points, so that groups of 79 and 163 are used to assess universities 
from the physical and general cluster, respectively. 
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Variable Physical Cluster 

Publication Model 

General Cluster 

Publication Model 

Physical Cluster 

Patent Model 

General Cluster 

Patent Model 

Natural logarithm of bias-corrected efficiency score as dependent variable 

ln(GDP) ≙ - 0.0376  ≙ - 0.1691 ***  0.1564   - 0.2059 *** 
  (0.0810)   (0.0404)   (0.1080)   (0.0458)  

Multisite ≙ 0.1681 ** ≙ - 0.0454   0.1251   - 0.0960 *** 
  (0.0608)   (0.0257)   (0.0795)   (0.0286)  

Hospital ≙ 0.0077  ≙ 0.1582 ***  0.1342   0.1870 *** 
  (0.0553)   (0.0261)   (0.0758)   (0.0286)  

ln(Size) ≙ - 0.4847 *** ≙ - 0.2863 ***  - 0.5433 ***  - 0.2946 *** 
  (0.0417)   (0.0255)   (0.0555)   (0.0280)  

Herfindahl ≙ - 0.0048 ** ≙ - 0.0018   0.0015   0.0010  
  (0.0017)   (0.0035)   (0.0019)   (0.0038)  

Prof ≙ - 0.0380 **  - 0.0005   - 0.0230   - 0.0075  
  (0.0129)   (0.0061)   (0.0175)   (0.0066)  

Female ≙ 0.0158 *** ≙ 0.0002   0.0127 *  0.0003  
  (0.0043)   (0.0021)   (0.0058)   (0.0022)  

International ≙ 0.0020   0.0052 *  0.0077   0.0052 * 
  (0.0036)   (0.0021)   (0.0047)   (0.0023)  

Thirdparty ≙ - 0.0132 *** ≙ - 0.0072 ***  - 0.0167 ***  - 0.0083 *** 
  (0.0026)   (0.0016)   (0.0034)   (0.0018)  

Fees  - 0.0058   - 0.0011   - 0.0070   - 0.0012  
  (0.0037)   (0.0013)   (0.0048)   (0.0015)  

No. of observations 176   534   176   534  

Tab. 3.10: REGRESSION RESULTS OF MODEL VARIANTS, NEAREST NEIGHBOURHOOD APPROACH 

Notes: Results are obtained from 1,000 bootstrap repetitions. Constants as well as time and 
country dummies are included but not reported. ≙ marks coefficient estimates within the 
publication model that stay either significant or insignificant relative to Table 3.6. Both models 
are estimated on identical samples, i.e., the group of patent-active universities in each cluster. 
Bootstrap standard errors are in parentheses. * 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 

3.8 Conclusion 

The present paper studies the relative efficiency of 450 European universities between  

2011 and 2014. Our approach is built on the notion that the higher education landscape  

in Europe is too diverse to be considered one homogeneous peer-group. In particular, 

differences in subject focus prove indicative for numerous institutional characteristics. We 

uncover these systematic patterns by means of clustering techniques and identify four 

groups of universities that either possess a balanced subject profile or lay clear emphasis  

on social sciences, physical sciences, or health sciences. Given that efficiency estimation 

naturally relies on relative assessment, it is crucial to differentiate between these distinct 

groups. Otherwise, one would run the risk of comparing apples and pears. To illustrate 
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this point, we discover that health cluster universities incur expenditure per student levels  

that are, on average, almost four times higher than of social cluster universities. 

We address homogeneity concerns firstly by employing intra-cluster efficiency frontiers.  

In an extension to this approach, we secondly construct individual peer-groups for each 

university based on subject space proximity. With bias-corrected efficiency scores at  

hand, we direct attention to potential efficiency drivers, which are investigated within a  

subsequent regression analysis. It becomes evident that different, even partly opposing, 

mechanisms are in play depending on the cluster under review. Yet institutional size and  

the ability to seek external funding are largely found to be efficiency enhancing. Apart  

from the health cluster, inefficiency is expected to fall by 6.7 to 16.7% if the share of  

third-party funds increased by 10 percentage points and by 1.7 to 5.4% if universities  

were to expand their capacities by 10%. 

Overall, this paper underlines the high degree of diversity in Europe’s higher education  

sector and provides a framework for further in-depth studies. However, our analyses are  

not without limitations. Incorporating teaching quality would certainly complement our 

efficiency perception, yet it is hard to think of reliable measures for this domain. Despite  

the time-lag regression design, it would also be beneficial to adopt additional methods 

dedicated towards causal inference. Lastly, future research may emphasise the distinction 

between private and public sources of external funding to broaden the understanding of 

university efficiency beyond the findings presented in this study. 

 



  

4 Competitive Funding in Academia:  

Back to the Bags of Gold 
  

4.1 Introduction 

In reference to “The Parable of the Bags of Gold” (Matthew 25: 14-30 NIV), Merton (1968) 

coined the term “Matthew effect” for self-reinforcing effects in the scientific reward and 

communication systems. More concretely, he discovered that eminent scientists tend to 

receive disproportionally great recognition for their work. In a more general sense, early 

accomplishments are likely to lead to even more success in the future. While studies on  

this topic are traditionally concerned with intangible capital (such as peer recognition),  

the present study sheds light on the accumulation of financial resources in academia. The 

concrete setting of my study is provided by a large German funding program which aims  

at improving the quality of teaching in higher education. By exploring the distribution of  

these funds, I specifically investigate if the amount of funding acquired in years prior to  

the program is associated with present funding success. 

The program in question is the “Quality Pact for Teaching” (Qualitätspakt Lehre, QPT). The  

QPT was jointly initiated by the federal and state government(s) in 2010 to promote the 

quality of teaching in higher education. Until 2020, a total of almost 2 billion euros was 

scheduled for this purpose and first allocated in 2011/12 with a possible extension period 

starting in 2017. Competition for QPT grants was open not only for universities but also for 

universities of applied sciences and colleges of arts and music. According to the funding 

decision, institutions of all three types are represented among the successful applicants  

and are thus given the opportunity to improve their studying conditions through various 

measures (e.g., additional professorships, targeted training for academic personnel, or the 

design of new teaching concepts) (Joint Science Conference, 2011a, 2011b). Despite the 

major financial commitment, the QPT has only sporadically been covered by the scientific 

literature. Moreover, most existing studies either confine attention to single institutions  

(Deicke, Gess, & Rueß, 2014; Koch & Vogt, 2015) or limit their scope to specific subgroups 

(Bloch, Mitterle, Rennert, & Würmann, 2018; Dehne, Lucke, & Schiefner-Rohs, 2017).38 In 

contrast, I pursue a higher-level approach that addresses the higher education sector in its 

entirety and therefore aims to fill a current research gap. In addition, I contribute to the 

literature by analysing the QPT with econometric tools, whereas hitherto results are mainly 

derived through qualitative methods. 

                                                                 
38 One exception is the official evaluation of the QPT, which was commissioned to the Center for Quality 
Assurance and Development of the University of Mainz in collaboration with the Prognos AG. Yet, their 
assessment focusses on conceptual and procedural aspects (ZQ Uni Mainz & Prognos AG, 2016, 2018). 
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The QPT is an important research topic for multiple reasons. At first, it can be expected  

that insights from the QPT have wide-ranging implications given that the program stands 

representative for a paradigm shift in academic governance. Starting in the 1980s, most of 

continental Europe started introducing more market forces into their higher education 

systems to increase efficiency and yield higher societal returns (Geuna, 1999; Partha &  

David, 1994). Germany may be viewed as a latecomer to New Public Management, yet has 

also implemented several measures to spur competition among and within universities 

(Schimank & Lange, 2009). A growing dependence on third-party funding plays a central  

role in this respect (Osterloh & Frey, 2008). The QPT is indeed more than a byproduct of  

this trend. Instead, it can be seen as an evolutionary step since the program marks the  

first time that a considerable amount of grants is competitively allocated for teaching 

purposes.39 In addition to the novel research setting, the QPT is also worth a closer analysis 

due to its ambiguous reception. The official evaluation presents the program in a positive 

light and repeatedly stresses the diversity of the 178 funded projects (ZQ Uni Mainz & 

Prognos AG, 2016). The Federal Court of Auditors (2019), however, expresses substantial 

concerns. According to its verdict, the QPT largely fails to meet its goal of impacting the 

academic landscape at a broad range. 

The QPT grant allocation visibly draws a line between winners and losers of the funding 

competition. This binary classification enables employing (non-)linear regression models  

that relate QPT outcome to a wide range of institutional characteristics. One of the main 

benefits of these models lies in their intuitive effect interpretation, i.e., each explanatory 

variable can be considered to affect the probability of QPT success. From my estimations,  

I can infer that past third-party funding volume (per professor) is a particularly strong 

predictor of success, thus underlining the Matthew logic. Exploring heterogeneity of the 

effect offers another key insight, namely that universities of applied sciences and colleges  

of arts and music experience effects of a notably higher magnitude. A raise of third-party  

funds by half a standard deviation is associated with a probability plus of 6.6 percentage 

points for the former and 17.0 percentage points for the latter type of institution, while the 

university effect adds up to 2.4 percentage points (assuming median profiles). Pronounced 

effects at the lower end of the funding spectrum illustrate my perception of the Matthew 

effect in that it takes the form of a learning curve. In this sense, it might be worried that  

the QPT’s application process (unintentionally) penalised institutions that were generally 

unaccustomed to grant competition, which would certainly contradict the image of a well-

balanced funding scheme. Apart from the Matthew result, I find a positive link between  

QPT chances and both student numbers and STEM focus, while, on the contrary, neither 

variation in student fees nor excellence status appears to affect the funding probability. 

                                                                 
39 The “Competition for Teaching Excellence” (Wettbewerb Exzellente Lehre) preceded the QPT with a 
similar concept, but on an evidently smaller scale (10 million versus 2 billion euros) (Stifterverband, 2009). 
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Overall, I conclude that procedural knowledge can be viewed as an important facet of  

the Matthew effect. Supporting evidence for this notion even emerges from the official  

QPT evaluation, in which grantees report on their large progress in meeting the specific 

demands of third-party funded projects (ZQ Uni Mainz & Prognos AG, 2018, pp. 65–66).  

Such statements warrant attention since they point to a growing divide in administrative 

expertise that stands in diametric opposition to the QPT’s intentions. My general policy 

recommendation is straightforward: Future programs that rely on broad-scale competition 

should devote particular effort to ensuring that selection processes are merit-based and  

not obscured by experience and skilful grant writing. 

Apart from extending the aforementioned QPT studies, the present paper contributes to  

three main strands of literature. First, it belongs to a class of studies that has followed 

Merton’s (1968) seminal work. Evidence for Matthew effect channels (or, more generally, 

cumulative advantage) has been detected in virtually all branches of science. In fact, at  

its core, the Matthew effect represents more of an interrelated concept that applies to 

scientific outcomes such as publications and citations (Allison, Long, & Krauze, 1982;  

Larivière & Gingras, 2010), just as much as it leaves its mark on awards (Azoulay, Stuart,  

& Wang, 2014) and resources (Laudel, 2006), and thereby shapes the course of scientific  

careers (Petersen, Jung, Yang, & Stanley, 2011).40 Second, my study adds to the literature  

that reviews higher education policies. With respect to Germany, this strand has largely 

been concerned with the impacts of the Excellence Initiative (e.g., Bruckmeier, Fischer,  

& Wigger, 2017; Menter, Lehmann, & Klarl, 2018) and student fees (e.g., Bruckmeier &  

Wigger, 2014; Fischer & Wigger, 2016; Hübner, 2012). Third, a monetary Matthew effect  

can also be understood as part of the literature on financial interdependences in higher 

education, which typically examines the relation between public and private sources of 

funding (e.g., Grimpe, 2012; Muscio, Quaglione, & Vallanti, 2013). 

The remainder of this paper proceeds as follows. Section 4.2 sets the stage for my study  

by depicting the institutional context and the included data. Section 4.3 elaborates on the 

methodological approach and presents my results. Lastly, Section 4.4 offers a discussion of 

the main findings and concludes with a series of policy proposals and avenues for future 

research. 

4.2 Institutional Context and Data 

My dataset is primarily compiled from the German Federal Statistical Office (Destatis) and 

builds on two complementary publication series that are annually distributed. These are  

the non-monetary (Fachserie 11, Reihe 4.3.1) and monetary (Fachserie 11, Reihe 4.3.2) 

statistics on higher education. Given that both series cover data on an aggregate level, I 

requested special evaluations from Destatis to obtain selected data on the institutional  

                                                                 
40 These studies are only an excerpt of the literature. For a systematic review, see DiPrete and Eirich (2006). 
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level. I further complemented these data with information on the first two rounds of  

the Excellence Initiative that are publicly available. Finally, I drew on the QPT project 

database, which is hosted by the DLR Project Management Agency, to delimit the group  

of institutions that were granted with funding.41 

Taken together, I utilise these data sources to identify structural characteristics that  

are predictive of QPT funding success. In light of this research strategy, I first address  

some conceptual aspects. The QPT consists of two separate funding lines that either offer 

support for single institutions or institutional consortia. The former funding line can mainly 

be regarded as the QPT’s core since it encompasses 159 projects, while the latter funding  

line covers 19 joint projects. In the course of the analysis, I will solely focus on single  

project funding not only because of its dominance from a volume standpoint, but also 

because I intend to avoid ambiguity in assessing structural variables. Stated differently,  

it would certainly require an additional model to evaluate joint projects, which ought to  

include data on, e.g., geographical proximity or institutional alignment. Furthermore, the  

QPT program announcement was issued by the German Federal Ministry of Education and 

Research (Bundesministerium für Bildung und Forschung, BMBF) on November 10, 2010.  

It declared that two application rounds would be conducted with respective submission 

deadlines in March and September 2011. Applicants were required to provide a project 

description, a financial plan, and a data-driven assessment of the institution’s strengths  

and weaknesses in teaching. Given this timeline, I refer to 2009 as the base year when  

gauging the effects of structural variables. Yet, data from 2010 will also be incorporated  

into the robustness checks. 

According to the BMBF (2010) announcement, QPT funds were open for higher education 

institutions under public ownership (with the exception of the two universities operated  

by the German Federal Armed Forces as I ascertained upon personal inquiry with the  

BMBF). Within the realm of eligibility, I managed to compile data for 250 institutions.  

Missing data prevent me to include another 14 institutions, two of which are among the  

QPT recipients. These are the Jade University of Applied Sciences and the University of 

Applied Sciences Emden/Leer that both emerged from an organisational split in 2009. In  

total, my dataset thus covers 157 of 159 institutions that eventually received support as  

part of the QPT single project funding line. 

Table 4.1 illustrates the outcome of the data compilation process. In general, the German 

higher education landscape distinguishes between three main types of institutions. These  

are (regular) universities, universities of applied sciences, and colleges of arts and music 

(Hüther & Krücken, 2018), which represent 80, 118, and 46 observations of the sample,  

  

                                                                 
41 See https://www.qualitaetspakt-lehre.de/de/projekte-im-qualitatspakt-lehre-suchen-und-finden.php. If 
not stated differently, my QPT information are derived from this database. 

https://www.qualitaetspakt-lehre.de/de/projekte-im-qualitatspakt-lehre-suchen-und-finden.php
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Tab. 4.1: SUMMARY STATISTICS ON HIGHER EDUCATION INSTITUTIONS 

Notes: The sample consists of 250 institutions that were legally eligible to apply for QPT funding. 
This applies to all public institutions except for those operated by the German Federal Armed 
Forces. A further 14 institutions were dropped in the compilation process due to missing data. 
Professorships are expressed in FTE. Continuous variables refer to the year 2009. 

respectively. I further broaden this classification scheme by delineating six institutions  

that, albeit being legally on par with universities, are characterised by a unique focus on  

educational sciences. They are accordingly referred to as universities of education (see  

Blömeke, 2004, for further information). From a territorial viewpoint, 80% of the sample  

are located in a western German state (including Berlin). Among them, I additionally  

mark institutions that belong to either Baden-Württemberg, Hamburg, or North Rhine-

Westphalia. As Fischer and Wigger (2016) note, these states shared a similar timeline  

regarding their tuition fees policy. More concretely, tuition fees were in place when the  

QPT program was announced yet their future abolishment became foreseeable shortly 

afterwards.42 I keep note of this circumstance by means of an indicator variable (termed  

abolition). Tuition fees sparked a widespread public and scholarly debate in Germany; 

however, at the time, the university sector was subject to further reforms. By initiating the 

Excellence Initiative, policy-makers visibly broke with the egalitarian tradition of higher 

education governance in Germany (Hartmann, 2006). During the first two rounds held in 

2006 and 2007, the federal and state government(s) jointly provided 1.9 billion euros to  

fund successful projects over periods of five years. Universities were awarded in three  

                                                                 
42 In all three states, the abolition was to be expected due to a change of government. In practice, tuition 
fees were first removed in North Rhine-Westphalia (winter term 2011), followed by Baden-Württemberg 
(summer term 2012) and lastly Hamburg (winter term 2012) (Fischer & Wigger, 2016, Table 2). 

Variable  P5 P50 Mean P95 SD 

QPT  QPT single project funding 0 1 0.628 1 0.484 

West  West Germany, including Berlin 0 1 0.800 1 0.401 

Abolition  Tuition abolition upcoming 0 0 0.372 1 0.484 

University  University 0 0 0.320 1 0.467 

Applied  University of Applied Sciences 0 0 0.472 1 0.500 

Education  University of Education 0 0 0.024 0 0.153 

Music College of Arts and Music 0 0 0.184 1 0.388 

Excellence  Excellence Initiative success 0 0 0.144 1 0.352 

STEM  Percentage of STEM students 0 27.79 32.15 77.59 27.37 

Size  Number of students 289 4,245 7,656 27,161 8,998 

Teachratio  Students per prof. 13.14 43.45 49.61 94.88 32.01 

Fees  Fees per student 0.00 409.86 398.22 843.48 336.39 

Basic  Basic funds per student 4,284 7,485 10,517 25,055 9,001 

Thirdparty  Public third-party funds per prof. 0 12,296 54,970 234,465 86,782 
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different domains, i.e., Graduate Schools, Excellence Clusters, and Institutional Strategies  

that aim(ed) at promoting young scientists, top-level research in particular fields, and 

universities as a whole, respectively (German Research Foundation, 2013). In total, 36 

universities received support across these areas, which is denoted by the Excellence 

indicator. 

Finally, I characterise the higher education landscape based on selected cardinal data. 

Building on Destatis’s subject classification system, I note that institutions, as of 2009, 

accommodate an average of 32% of their students in the fields of mathematics, natural 

sciences, and engineering. I subsume these students under the STEM label and report  

them separately mainly in view of their augmented dropout rates (Heublein, 2014).43 In 

addition, I find that institutions comprise a mean of 7,656 students with a student-to-

professor ratio of 50. From the monetary angle, basic funds cover the bulk of expenses.  

They amount to slightly over 10.5 thousand euros, while student contributions add up to 

nearly 400 euros, both on average and per student. Lastly, I emphasise the extent of  

third-party funds, which are raised from public sources – primarily the German Research 

Foundation, federal ministries, and the European Union. On average, these funds amount  

to 55 thousand euros per professor, which, for comparison, corresponds to 905 euros  

per student. Most of these statistics can indeed be expected to vary (markedly) between 

institutional types. This aspect will not be left unconsidered, but, due to methodological 

reasons, will be deferred to Section 4.3.3. 

4.3 Determinants of Funding Success 

4.3.1 Econometric Foundations 

In the course of this section, I first lay the econometric foundations for the regression  

analysis mostly following Long (1997) before I turn to the model specification and the 

estimation results. To begin with, binary outcomes can typically be interpreted as the 

manifestation of a latent variable. In the present context, it is accurate to view the QPT’s 

funding decision as the result of a committee evaluation given that almost all eligible 

institutions participated in the application procedure (Joint Science Conference, 2011b). 

Thus, let 𝑃𝑃𝐸𝐸𝑇𝑇𝑙𝑙𝑖𝑖 denote the evaluation outcome of institution 𝑖𝑖, which in theory can be 

thought to range from −∞ to ∞. Despite being unobserved, 𝑃𝑃𝐸𝐸𝑇𝑇𝑙𝑙𝑖𝑖 may still be assumed  

to be linearly related to a vector 𝑋𝑋𝑖𝑖 of observed covariates through 

                                                                 
43 For first-year bachelor students in 2008/09, Heublein (2014) reports an overall dropout rate of 28%. Yet 
STEM fields are more severely affected. At universities, 39% is recorded for mathematics and natural 
sciences and 36% for engineering. At universities of applied sciences, dropout is generally less frequent, 
but still at its peak in these fields with respective rates of 34% and 31%. 
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𝑃𝑃𝐸𝐸𝑇𝑇𝑙𝑙𝑖𝑖 = 𝛽𝛽 𝑋𝑋𝑖𝑖′ + 𝜖𝜖𝑖𝑖, (4.1) 

where 𝛽𝛽 denotes a vector of coefficients and 𝜖𝜖𝑖𝑖 represents a residual error term that is 

symmetrically distributed about zero, independent of 𝑋𝑋𝑖𝑖.44 Furthermore, let 𝑄𝑄𝑃𝑃𝑇𝑇𝑖𝑖 denote  

the actual funding outcome, which can take values of either one for success or zero for 

failure. The link between both random variables can then be formulated in the following  

way: If the committee comes to a positive assessment, i.e., 𝑃𝑃𝐸𝐸𝑇𝑇𝑙𝑙𝑖𝑖 > 0, funding is granted  

so that 𝑄𝑄𝑃𝑃𝑇𝑇𝑖𝑖 = 1. In the remaining cases where 𝑃𝑃𝐸𝐸𝑇𝑇𝑙𝑙𝑖𝑖 ≤ 0, however, funding is denied, 

implying that 𝑄𝑄𝑃𝑃𝑇𝑇𝑖𝑖 = 0. Thus, the conditional probability of a positive funding outcome  

can be modelled as 

𝑃𝑃𝑇𝑇(𝑄𝑄𝑃𝑃𝑇𝑇𝑖𝑖 = 1 | 𝑋𝑋𝑖𝑖) = 𝑃𝑃𝑇𝑇(𝑃𝑃𝐸𝐸𝑇𝑇𝑙𝑙𝑖𝑖 > 0 | 𝑋𝑋𝑖𝑖). (4.2) 

After substituting Equation (4.1) and rearranging the inner inequality, the right-hand side  

of Equation (4.2) can be stated as 𝑃𝑃𝑇𝑇(𝜖𝜖𝑖𝑖 > −𝛽𝛽 𝑋𝑋𝑖𝑖 | 𝑋𝑋𝑖𝑖) or equivalently as 𝑃𝑃𝑇𝑇(𝜖𝜖𝑖𝑖 ≤ 𝛽𝛽 𝑋𝑋𝑖𝑖  | 𝑋𝑋𝑖𝑖)  

due to the symmetry of 𝜖𝜖𝑖𝑖. Lastly, let the cumulative density function of 𝜖𝜖𝑖𝑖 be denoted by  

𝐺𝐺. It follows that 

𝑃𝑃𝑇𝑇(𝑄𝑄𝑃𝑃𝑇𝑇𝑖𝑖 = 1 | 𝑋𝑋𝑖𝑖) = 𝐺𝐺[𝛽𝛽𝑋𝑋𝑖𝑖 ′ ]. (4.3) 

This representation illustrates that the choice of 𝐺𝐺, which fulfils the role of a link function, 

can be derived from the distributional features of an underlying latent variable model. In 

presenting my main results, I opt for a standard logistic distribution of 𝜖𝜖𝑖𝑖 and therefore 

estimate a logit model.45 However, Equation (4.3) can also be viewed from another angle. 

Irrespective of a latent variable, one can define a model where the probability of a positive 

QPT outcome is directly dependent on 𝑋𝑋𝑖𝑖. In this scenario known as the linear probability 

model (LPM), 𝐺𝐺 becomes redundant or, more formally, resolves to the identity function.  

Due to its reduced complexity, the LPM is usually considered a useful counterpart to non- 

linear variants such as the logit model. Yet, the (effective) absence of a link function also  

has its downsides. Importantly, it cannot be assured that the predicted probabilities are 

constrained to the unit interval which can lead to biased coefficient estimates (Horrace & 

Oaxaca, 2006). I thus refer to the LPM rather as a complementary approach to the main  

logit model that, on a positive note, requires less functional assumptions. 

Both models allow the estimation of marginal effects. In the LPM case, these are (simply) 

given by the ordinary least squares estimate of 𝛽𝛽. As for the logit model, the link function 

calls for consideration. To be more concrete, let 𝑒𝑒𝑖𝑖𝑘𝑘 and 𝛽𝛽𝑘𝑘  denote the 𝑘𝑘-th element of  

𝑋𝑋𝑖𝑖 and 𝛽𝛽, respectively. If  𝑒𝑒𝑖𝑖𝑘𝑘 is continuous, its marginal effect is stated by 𝑔𝑔[𝛽𝛽𝑋𝑋𝑖𝑖 ′ ] 𝛽𝛽𝑘𝑘 with  

                                                                 
44 The first element of 𝑋𝑋𝑖𝑖  can universally be set to one to include a constant, which is mostly the case  
for binary response models. Moreover, each element of 𝑋𝑋𝑖𝑖  can be a function, such as a logarithm, of the 
respective explanatory variable (Wooldridge, 2010, Chapter 15). 
45 Alternative model choices are discussed as part of the robustness checks at the end of Section 4.3.3. 
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𝑔𝑔 indicating 𝐺𝐺’s derivative. If, in contrast, 𝑒𝑒𝑖𝑖𝑘𝑘 is binary, the marginal effect is akin to the 

difference of 𝐺𝐺 being computed at two points separated by 𝛽𝛽𝑘𝑘. Either way, it becomes 

evident that marginal effects depend on the specific realisation of 𝑋𝑋𝑖𝑖 and the estimate  

of 𝛽𝛽, which is obtained through maximum likelihood estimation in the logit case. I thus 

consider two types of marginal effects as part of the results section. First, I report the  

average over all observations, which yields the average marginal effect (AME). Second, I 

present marginal effects for (synthetic) institutions that take on median covariate values. In 

doing so, I illustrate how the funding chances of, e.g., the median college of arts and music 

or the median university are altered when a certain explanatory variable changes. 

4.3.2 Model Specification 

Based on the outlined methodology, I aim to identify institutional characteristics that  

played a decisive role for the QPT funding allocation. I specify the following model for  

this purpose: 

Pr(𝑄𝑄𝑃𝑃𝑇𝑇𝑖𝑖 = 1) = 𝐺𝐺 �𝛽𝛽0 + 𝛽𝛽1 𝑙𝑙𝑐𝑐(𝑇𝑇ℎ𝑖𝑖𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦𝑖𝑖) + 𝛽𝛽2 𝑊𝑊𝑇𝑇𝑃𝑃𝑀𝑀𝑖𝑖 + 𝛽𝛽3 𝑙𝑙𝑐𝑐(𝐹𝐹𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖)

+ �𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛽𝛽4 𝐴𝐴𝑎𝑎𝑝𝑝𝑙𝑙𝑖𝑖𝑇𝑇𝑖𝑖𝑝𝑝𝑐𝑐𝑖𝑖 + 𝛽𝛽5 𝑙𝑙𝑐𝑐(𝐹𝐹𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖) × 𝐴𝐴𝑎𝑎𝑝𝑝𝑙𝑙𝑖𝑖𝑇𝑇𝑖𝑖𝑝𝑝𝑐𝑐𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖′� 

(4.4) 
 

which relates the conditional probability of funding success to a comprehensive set of 

explanatory variables.46 Technically, I refrain from adding a time subscript to the model  

since the dependent variable lacks a longitudinal dimension, i.e., the initial QPT decision  

was a one-time event. Yet, it is important to note that Equation (4.4) implies a time lag as  

the QPT outcome was determined in the year 2011, while the (time-varying) explanatory 

variables refer to the year 2009. 

Among the right-hand side variables, I draw a distinction between variables of primary  

interest and additional control variables, the latter of which are subsumed under 𝑋𝑋𝑖𝑖. As  

for the former category, I direct particular attention to the amount of public third-party 

funding as a possible reflection of the Matthew logic. If past funding volumes prove to  

be positively linked to QPT success, we would have empirical evidence for a self-enforcing 

monetary effect or, stated differently, “For whoever has will be given more, and they will 

have an abundance” (Matthew 25: 29 NIV). A strong argument in favour of this claim can  

be seen in the specific expertise regarding competitive funding schemes that well-funded 

institutions (potentially) acquire over time. Yet, on the contrary, it is worth noting that  

apart from minor exceptions third-party funds are traditionally targeted towards research 

activities (Marquardt, 2011). Seeking these grants could require different knowledge than 

needed in the QPT setting. Moreover, it even seems conceivable that institutions that are  

  

                                                                 
46 The notation is formally introduced in Section 4.3.1. Furthermore, note that the conditioning variables 
are omitted from the left-hand side of Equation (4.4) by way of notational convenience. 
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less research oriented and presumably more dedicated towards teaching might be in an 

advantageous position when it comes to designing innovative education concepts. Taken 

together, the relationship remains a priori inconclusive. 

The second variable highlighted in Equation (4.4) is the share of students enrolled in STEM 

fields. STEM studies began drawing public attention at about the same when demand for  

a QPT-like funding program was first stated by the German Rectors’ Conference (2007).  

More specifically, both low enrolment and high dropout rates in the STEM area were 

considered key contributing factors to a (looming) labour shortage. While this view was 

primarily supported by business-oriented research organisations (see e.g., Hetze, 2011, or 

Koppel and Plünnecke, 2009), it was countered by reports of the Federal Employment  

Agency (2011) or the DIW Berlin (Brenke, 2010). Still, policy initiatives were introduced to 

promote STEM qualifications, e.g., by the BMBF in 2008 (under the title “Komm, mach 

MINT”). Overall, I assume that a strong STEM profile increased QPT funding chances not  

only due to a potential political desire, but also because STEM-focussed institutions might 

have felt a particular need to improve their studying conditions. 

The third research question relates to the abolition of student fees in three German states. 

The prospect of an upcoming financial shortfall could provide strong incentives to seek 

alternative resources to ensure consistent teaching standards. To illustrate this reasoning, 

Holger Fischer, vice president of the University in Hamburg, stated (hyperbolically) that a 

potential student fees deficit would cause a relapse to the Stone Age (cited by Volkmann-

Schluck, 2011). In acknowledgement of such concerns, it should be pointed out that the 

legislatives changes in all states eventually included compensatory funds.47 However, it is still 

conceivable that institutions invested greater efforts towards the QPT contest in response  

to rather uncertain financial outlooks. I examine this possibility through 𝐴𝐴𝑎𝑎𝑝𝑝𝑙𝑙𝑖𝑖𝑇𝑇𝑖𝑖𝑝𝑝𝑐𝑐𝑖𝑖 and  

its interaction with 𝑙𝑙𝑐𝑐(𝐹𝐹𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖). The latter variable is further included to capture the main 

effect of student fees.48 

Lastly, I control for a series of institutional factors that are described in Section 4.2. These 

comprise variables that indicate location in Western Germany, success at the Excellence 

Initiative, and institutional types. Concerning the latter aspect, I select universities of  

applied sciences to represent the base category since they account for almost half of the 

sample. Moreover, I include controls that refer to institutional size, teaching ratio and  

the amount of basic funding. Except for 𝑊𝑊𝑇𝑇𝑃𝑃𝑀𝑀𝑖𝑖, which is expressed as a percentage, all 

                                                                 
47 See Gesetz zur Abschaffung und Kompensation der Studiengebühren und zur Änderung anderer Gesetze 
(Baden-Württemberg, 21th December 2011), Gesetz zur Abschaffung der Studiengebühren (Hamburg, 20th 
December 2011), and Gesetz zur Verbesserung von Chancengleichheit beim Hochschulzugang (North Rhine-
Westphalia, 1st March 2011). 
48 The interaction term allows investigating if the student fees level exerts a differential effect in abolition 
states. I compute the AME of the interaction term according to Ai and Norton (2003). 
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continuous variables are in logarithmic form on the assumption that they impact the QPT 

funding chances at a diminishing rate. 

4.3.3 Results 

The main regression results are reported in Table 4.2. As can be seen, both the LPM and  

the logit estimation present an overall consistent picture. With respect to the variables  

of interest, I find strong evidence for a Matthew effect pattern. According to the LPM  

model, a 10% increase in third-party funds raises the QPT funding probability by 1.31 

percentage points, while, under the same scenario, an AME of 1.15 percentage points is 

obtained from the logit model. The results further lend support to the STEM hypothesis.  

To be more precise, QPT chances are expected to rise in the range of 2.54 (LPM) to 2.88 

(AME) percentage points given a higher STEM students share of 10 percentage points.  

Both models not only reveal marginal effects of a similar magnitude, but also agree on  

their statistical significance. Yet, neither the level of student fees nor its partial abolition  

are, to a statistically significant extent, related to QPT success. Lastly, two notable effects 

emerge from the included controls. On the one hand, it becomes apparent that a greater 

student number is associated with higher funding chances, whereas, on the other hand, a 

probability premium is detected for universities of education.49 

Despite their statistical significance, it appears that the documented effects, particularly in 

case of public third-party funds, are of rather moderate economic significance. However,  

this may turn out to be a hasty conclusion. To shed more light on this matter, I proceed  

by exploring the Matthew effect channel in more depth by means of the favoured logit 

model. At first, it may prove helpful to get a visual impression of the relation between QPT 

success chances and the prior amount of third-party funds. Since the logit model requires 

assumptions about all remaining covariate values, I picture the relation for a synthetic 

institution that is supposed to provide a balanced proxy of the higher education sector.  

More concretely, it is composed of mean values for binary covariates and median values  

for continuous covariates. For simplicity, it can thus be thought of as a weighted mixture of 

all institutional types with median size and median financial figures. As shown in Figure 4.1,  

opting to log-transform third-party funds implies a markedly intuitive interpretation, i.e., 

acquiring competitive grants resembles the shape of a typical learning curve. 

  

                                                                 
49 The estimated beta coefficients of the logit model are listed in the LOGIT column of Table 4.2 but will be 
omitted from the discussion due to their rather complicated interpretation. Technically, each coefficient 
denotes the marginal change in the log-odds of QPT success for every unit increase in the respective 
covariate. Albeit the different meaning, significance levels are mostly consistent with the AME estimates. 
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Variable LPM LOGIT AME 

QPT single project funding as binary dependent variable 

ln(Thirdparty) 0.1309 *** 0.7117 *** 0.1147 *** 
 (0.0335)  (0.1771)  (0.0264)  

STEM 0.2542 * 1.7877 * 0.2881 * 
 (0.1273)  (0.8978)  (0.1397)  

ln(Fees) -0.0828  -0.5814  0.0295  
 (0.1876)  (1.0616)  (0.1351)  

Abolition -0.1644  -1.3694  -0.1214  
 (0.1096)  (0.8016)  (0.0739)  

ln(Fees) × Abolition 0.2344  2.0396  0.3478  
 (0.2627)  (1.7112)  (0.3317)  

West -0.0453  -0.2388  -0.0380  
 (0.0841)  (0.5104)  (0.0798)  

University -0.2113  -0.8420  -0.1312  
 (0.1253)  (0.6811)  (0.1003)  

Education 0.5382 ** 2.9691 * 0.3065 *** 
 (0.1817)  (1.2288)  (0.0682)  

Music 0.1950  1.2043  0.1628  
 (0.1221)  (0.7828)  (0.0848)  

Excellence -0.0698  -0.3751  -0.0613  
 (0.0994)  (0.7610)  (0.1259)  

ln(Size) 0.1093 ** 0.6637 ** 0.1070 ** 
 (0.0359)  (0.2219)  (0.0338)  

ln(Teachratio) -0.0663  -0.6739  -0.1086  
 (0.0774)  (0.5805)  (0.0933)  

ln(Basic) 0.0753  0.4928  0.0794  
 (0.0709)  (0.4772)  (0.0761)  

Adj. R2 / pseudo R2 0.2300  0.2576  n/a  
F test / Wald test 0.0000  0.0000  n/a  
No. of observations 250  250  250  

Tab. 4.2: REGRESSION RESULTS 

Notes: Constants are included but not reported. Pseudo R2 accords with McFadden (1973). 
Continuous covariates refer to the year 2009. Robust standard errors are in parentheses. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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Fig. 4.1: IMPACT OF THIRD-PARTY FUNDS ON QPT FUNDING PROBABILITY 

Notes: The estimation is based on a synthetic institution that is composed of mean values for 
all binary covariates and median values for all continuous covariates. Point estimates are 
depicted by the solid blue line and 95% confidence intervals are pictured as light blue areas. 
Public third-party funds per professor are expressed in TEUR. 

The learning curve analogy makes it clear that the benefit of additional third-party funds 

crucially depends on the existing level of funding. If third-party endowments are low, small 

increases can be expected to be of high impact, whereas an already large financial basis 

leaves relatively little room for probability improvements. Furthermore, the variability of 

third-party funds should also be taken into consideration to discuss funding changes of 

reasonable magnitude. As may be conjectured, both of these aspects differ substantially 

between institutional types. Universities, for instance, generally rank at the top of the third-

party funding list, while colleges of arts and music find themselves mostly at the bottom.  

To address institutional differences of this kind plus their associated effect heterogeneity,  

I depict the Matthew effect in segmented form. More specifically, I assess the effect from  

the viewpoint of median institutions that are described in Table 4.3. Third-party funds  

aside, it becomes apparent that the median university accommodates the largest student 

body, whereas the median university of applied sciences is most STEM-oriented. In contrast, 

the median college of arts and music records the lowest student-to-professor ratio and the 

highest amount of basic funds per student. Lastly, I find the median university of education 

to display rather moderate characteristics. 
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Tab. 4.3: MEDIAN VALUES BY TYPE OF INSTITUTION 

Notes: Columns distinguish between universities, universities of applied sciences, universities 
of education, and colleges of arts and music. Continuous variables refer to the year 2009. 

Figure 4.2 pictures the estimated relation between QPT success and third-party endowment 

conditional on the (synthetic) median institutions. Each of the four integrated graphics is 

identically constructed as Figure 4.1 except for two added vertical lines that delimit the  

interval between the median third-party funding level and an increase of 0.5 standard 

deviations. The university diagram clearly underlines the diminishing effect nature, as an 

increase from 129.7 to 178.3 TEUR per prof. would merely result in higher QPT chances  

of 2.4 percentage points. Yet, as universities of education illustrate, an extensive funding  

base may not be the only factor that can dampen the effect. In their case, QPT chances  

are already at an elevated level so that additional third-party funds would be of limited  

extra value. Expressed in figures, an uptick from 14.3 to 17.6 TEUR per prof. would be  

associated with a rise in QPT chances of 0.9 percentage points.50 In comparison, median 

estimations of both universities of applied sciences and colleges of arts and music reveal 

effects of a higher magnitude. As for the former, a probability plus of 6.6 percentage points 

would be predicted following an increase from 8.4 to 13.6 TEUR per prof., while 17.0 

percentage points would be noted for the latter given a rise from 2.2 to 7.7 TEUR per  

prof. Taken together, these two institutional types obviously reflect the Matthew effect in  

the strongest sense. 

                                                                 
50 As for universities of education, the comparably wide confidence intervals in Figure 4.2 are mainly due 
to the limited number of observations. 

Variable University Applied Education Music 

West Germany, including Berlin 1 1 1 1 

Tuition abolition upcoming 0 0 1 0 

Excellence Initiative success 0 0 0 0 

Percentage of STEM students 26.38 47.42 21.12 0.00 

Number of students 14,799 3,980 3,612 592 

Students per prof. 71.96 40.98 60.65 16.14 

Fees per student 573.63 237.00 534.61 347.35 

Basic funds per student 8,667 5,872 5,383 16,616 

Public third-party funds per prof. 129,722 8,408 14,309 2,213 

No. of observations 80 118 6 46 
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Fig. 4.2: IMPACT OF THIRD-PARTY FUNDS ON QPT FUNDING PROBABILITY BY TYPE OF INSTITUTION 

Notes: The estimations are based on synthetic institutions that are composed of median values 
as reported in Table 4.3. Point estimates are depicted by the solid blue lines and 95% confidence 
intervals are pictured as light blue areas. Public third-party funds per professor are expressed 
in TEUR. The median value of this measure is marked by the left vertical line, whereas the value 
that corresponds to half a standard deviation above the median is marked by the right vertical 
line. X-axes are capped at about the 95th percentile. 

Finally, I present the results of a series of model diagnostics and model alterations to  

probe the robustness of my findings. An immediate question concerns the proportion of 

problematic predictions of the LPM. In fact, 6.8% of the predicted probabilities are found  

to be either negative or greater than one. For this reason, it appears justified to refer to the 

LPM as more of a supplementary approach. As for the logit model, I conduct the linktest  

by Pregibon (1980), which aims to detect specification errors. The basic idea behind this  

test is that if, within a second model, QPT success is regressed on its prediction derived  

from the original model and the squared prediction, the latter term should not emerge as  

a relevant explanatory factor. Indeed, the logit model passes the test since the squared 

prediction is not statistically significant (𝑒𝑒-value of 0.19). Moreover, I report the results  

of three model variants in Appendix C.1. First, I change the link function and employ a  

probit model. Second, I estimate a heterogeneous logit model that allows the residual 
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variance to differ according to the amount of third-party funds per prof.51 Third, I utilise  

data from 2010 within the initial logit model. As becomes apparent, the Matthew effect 

channel is confirmed by all three models. Similarly, the STEM student share also remains 

statistically significant although usually at the 10% level. 

4.4 Discussion and Conclusion 

The perception of academic teaching has seen a shift in recent years. Traditionally, it has 

mostly been considered a metier for individual engagement among faculty members. Yet, 

over the last decades, teaching has become more of a public matter that is included into 

institutional assessments and addressed by national policies (Clegg, 2007; Land & Gordon, 

2015). The QPT is a clear manifestation of this trend. Almost 2 billion euros are dedicated  

towards improving the quality of teaching in German higher education. However, these  

funds are not evenly spread across the academic landscape but competitively allocated,  

thus prompting the question about the winners and losers of this funding scheme. 

My analysis reveals that the level of third-party funds prior to the QPT is highly indicative  

of funding success. Simply put, the more grants that were acquired in the past, the higher 

the QPT chances. Yet my model depicts a diminishing effect of third-party engagement  

that resembles a typical learning curve. More concretely, it is not to be expected that a  

gap in third-party volume is related to drastically different QPT chances if institutions are 

located at the upper end of the funding spectrum. At the lower end, however, the effect 

becomes notably more pronounced as the estimations for universities of applied sciences  

and colleges of arts and music show. Starting off median characteristics, an increase of half  

a standard deviation is associated with a probability plus of 6.6 percentage points for the 

former and 17.0 percentage points for the latter type of institution. Furthermore, I find  

higher chances for institutions with a strong STEM-profile or large student numbers. On  

the contrary, the QPT outcome appears unrelated to student fees, which aligns with the 

neutrality result of Fischer and Wigger (2016) regarding potential crowding effects. 

Before I discuss the implications of these findings, one should be aware of the study’s 

limitations. Despite the diverse set of controls, I cannot rule out that my results are rather  

a display of multivariate correlations than of causal links. To be specific, reverse causality  

is not a direct threat to the model given the included time lag. However, it is conceivable  

that unobserved factors are a source of endogeneity. For instance, some institutions may  

be (inherently) better at acquiring funds, which could lead to both a larger funding base  

  

                                                                 
51 Standard non-linear models assume that the error of the latent variable is independent of the covariate 
vector. In comparison, heterogeneous non-linear models estimate error variances separately (Williams, 
2009). These models can lead to more reliable results but are considered inept in situations where the 
sources of heteroscedasticity are vague (Keele & Park, 2006). Once I allow the error variance to depend  
on l𝑐𝑐(𝑇𝑇ℎ𝑖𝑖𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦), the Matthew effect slightly decreases but stays statistically significant. 
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and increased QPT chances. Interestingly, even if that were the case, my findings would  

still be consistent with the Matthew logic, which is not based on the premise of causality.  

A look into the concrete Bible passage illustrates this point. The parable pictures a master 

who entrusts his property to his servants before setting off on a journey. Yet his property  

is not arbitrarily split but distributed according to the servants’ abilities. Upon his return,  

the master then discovers that only the better-endowed servants managed to increase his 

wealth – likely due to their higher financial literacy. 

The central takeaway from the Matthew narrative is the path dependency. Should we be 

worried about this pattern from a welfare perspective? Merton (1968) indeed considers  

the original Matthew effect a form of misallocation. As for the QPT, this perception does  

not have to be true if the committee managed to (perfectly) select the projects with the 

highest social returns. While it lies beyond my scope to resolve this matter, one argument 

should be given particular thought. As Viner, Powell, and Green (2004) note, the merits of  

a system that concentrates its resources on its most productive agents are usually based  

on cumulative advantage. In other words, successful research tends to attract additional 

funding, which in turn raises the chances of further achievements, thus making the initial 

recipient a legitimate choice for even more grants. However, the QPT setting casts doubt  

on the applicability of this rationale for at least two reasons. First, it is unclear on which  

grounds an organisation with large amounts of third-party funds should be considered a 

preferred destination for teaching grants. Second, the QPT’s program description explicitly 

states the intention to target the higher education sector at a broad range (BMBF, 2010).  

In sum, the Matthew effect does not appear to be a purposeful outcome, but rather a 

reflection of different levels of professionalism in funding acquisition.52 

I propose a series of policy measures in light of the presented findings. Since the QPT is  

almost expired, these measures can mainly be seen as recommendations for programs  

like “Innovation in Higher Education Teaching” (Innovation in der Hochschullehre) which is  

set to succeed the QPT from 2021 onwards (Joint Science Conference, 2019). At first, it is 

vital to extend the coverage of the official program evaluation. In the QPT case, it is solely 

restricted to the successful projects. It certainly comes as no surprise that the victorious 

institutions paint a favourable picture of the competition. However, stating that the QPT’s 

application process received a generally positive assessment from all parties involved (ZQ  

Uni Mainz & Prognos AG, 2016, p. 24) is not only inaccurate but also misleading. The  

views of the losing side are equally relevant for a reliable evaluation that is expected to  

investigate whether the (eventually) rejected institutions may have felt unaccustomed  

                                                                 
52 European higher education has taken a strong managerial turn over the last decades (Krücken, 2011; 
Teichler, 2003). As for Germany, the ongoing change is clearly visible at the administrative level, where 
highly qualified personnel is increasingly needed to fill management capacities (Krücken, Blümel, & Kloke, 
2013), but also mirrored by the institutionalisation of grant writing practices (Serrano Velarde, 2018). 
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to the application process.53 If procedural knowledge were indeed identified as a crucial  

factor (which would jibe with my Matthew effect interpretation), funding agencies would  

be advised to offer greater application assistance and contemplate reducing the leeway 

within their proposal guidelines. 

Moreover, data privacy regulations should be revisited. For scientific purposes, it would be 

extremely valuable to gain (conditional) access to all submitted project proposals and their 

rating results. Provided with these information, future studies with a scope similar to mine  

could analyse funding success factors on a more refined level. In addition, it would open up 

the possibility of exploring if proposal ratings are related to eventual project outcomes. A 

potential concern could be that proposals that raise disproportionately large expectations 

obtain systematically higher ratings but also fail to meet their (unrealistic) goals. Briefly put, 

adverse selection should be considered. As for the QPT, one might counter that the second 

evaluation round held in 2015, which decided about the project extensions, served as a 

protection against such risks. Yet, from the initial program depiction (BMBF, 2010), it could 

already be inferred that cutbacks during the second QPT phase would be highly unlikely.54  

In fact, 87% of all institutions that applied for an extension ended up being successful  

(BMBF, 2015). Although it is not a trivial task to assess the goal achievement of individual 

projects, it plays an essential role in the overall program judgement. After all, large-scale 

funding schemes like the QPT should not just put faith in the applicants’ promises given  

that “someone who is good at ‘selling’ ideas is not necessarily good at executing them” 

(Gillett, 1989, p. 28). 

 

                                                                 
53 In view of a potential assessment bias, this part of the evaluation should, of course, be conducted prior 
to the funding announcement. 
54 This reasoning is based on the BMBF’s (2010, p. 5) statement to provide annual budgets of 200 million 
euros during the extension phase, which even exceeded the annual investment plans for the first phase. 





  

5 Conclusion 
  

One distinctive characteristic of human capital is that it cannot be transferred as easily  

as financial or physical capital. Knowledge may be codified in textbooks or encyclopaedias 

which are accessible to a broad public. Yet it still requires years of educational efforts from 

individuals to partially grasp the current stock of knowledge. The first part of this thesis is 

devoted to this topic. More specifically, it sheds light on the dissemination of knowledge 

between scientists. From exploring millions of research collaborations, it can be inferred  

that star scientists elevate the performance of their co-author networks. Since research 

networks have grown substantially over time, one could have suspected that individuals  

translated into diminishing roles. On the contrary, we discover that prolific scientists add  

to the research frontier not only through their own published work but also by means of 

spillover effects. However, these effects do not occur over the entire subject spectrum,  

nor are they traceable to one common origin. Stars enhance their colleagues’ publication  

output most visibly in life sciences and to a lesser extent in physical and health sciences. It 

also emerges that knowledge is primarily transferred in horizontal direction in life sciences 

(i.e., between scientists of similar standing), whereas interdisciplinary knowledge flows are 

characteristic for physical and health sciences. Overall, it can therefore be concluded that  

the mechanics behind academic progress take different forms in different fields. 

This central finding is not restricted to the individual level but can also be derived from an 

institutional perspective. In the second part of this thesis, emphasis is placed on university 

production. On the surface, one may receive the impression that public universities form a 

largely uniform sector given their common dedication towards research and teaching. As  

far as the efficiency of their activities is concerned, there are, however, great disparities.  

The important insight is not the mere observation that universities show a varying degree  

of efficiency (which could have been anticipated), but that efficiency is differently related  

to a range of structural factors depending on the institution’s subject focus. For instance, 

solely universities with a physical sciences orientation seem to benefit from specialisation 

(i.e., a narrow subject profile), while a negative link between student fees and efficiency  

can only be confirmed for universities with a social sciences core. At the same time, it is  

worth acknowledging that universities are not subject to completely distinct technologies 

since economies of scale and efficiency gains through third-party funding both represent  

a general outcome. 

Still, it can be conjectured that the academic domain comprises diverse dynamics that  

call for carefully designed policy measures. It is understandable that governments seek to 

maximise the returns of their higher education investments. Yet, consensus over the right 

means for this purpose appears to be missing. Against this backdrop, the third part of this 

thesis investigates a large German funding program, which for the first time allocated a 
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substantial amount of teaching grants in competitive fashion. In line with the New Public 

Management paradigm, the Quality Pact for Teaching aims to spur innovation and raise 

accountability. However, it may have missed its official intention of promoting the quality  

of academic teaching over a wide range of the academic landscape. More concretely, my 

analyses reveal that strong commitment to (research-related) third-party funding in years 

prior to the Quality Pact for Teaching is associated with notably higher success chances.  

It thus stands to reason that unsuccessful applicants were potentially too inexperienced  

in competitive funding instruments. In this sense, it can even be worried that the program 

(unintentionally) contributed to existing inequalities. 

In the end, this thesis probably raises as many questions as it answers. Particular interest 

surrounds the partly diverging effects along the scientific spectrum. What could be at the 

heart of these heterogeneities? Quantitative research alone may be limited in its ability to 

explore this question which aims at the inner processes of knowledge creation. Instead, it 

would be promising to include elements of field research such as Knorr Cetina’s (2009)  

work on epistemic cultures. Future studies could also opt for complimentary indicators  

to assess academic progress. In light of the knowledge society, altmetrics may offer an 

opportunity to evaluate the extent to which science contributes to the public discourse. 

Lastly, it merits further attention if insights from the academic sector can be confirmed in 

knowledge-intensive branches of the private sector, such as technological companies, law 

firms, or consultancies. 
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Appendix A 
  

A.1 Classification of Scientific Fields 

Tab. A.1: CLASSIFICATION OF SCIENTIFIC FIELDS 

Notes: We divide the scientific spectrum into four main fields based on the All Science Journal 
Classification by Scopus (omitting the field of multidisciplinary studies). Sections in use by the 
National Academy of Sciences are mapped into this taxonomy according to the reported 
scheme so that each of its members can be assigned to either life, health, physical, or social 
sciences. Sections and subfields are listed in alphabetical order. 

National Academy of Sciences Scopus Field 

Animal, Nutritional, and Applied Microbial Sciences Agricultural and Biological Sciences 
Biochemistry Biochemistry, Genetics, and Molecular Biology 
Biophysics and Computational Biology Immunology and Microbiology 
Cellular and Developmental Biology Neuroscience 
Cellular and Molecular Neuroscience Pharmacology, Toxicology, and Pharmaceutics 
Evolutionary Biology  
Genetics  
Physiology and Pharmacology  
Plant Biology  
Plant, Soil, and Microbial Sciences  
Systems Neuroscience  
 Life Sciences 

Immunology and Inflammation Dentistry 
Medical Genetics, Hematology, and Oncology Health Professions 
Medical Physiology and Metabolism Medicine 
Microbial Biology Nursing 
 Veterinary 
 Health Sciences 

Applied Mathematical Sciences Chemical Engineering 
Applied Physical Sciences Chemistry 
Astronomy Computer Science 
Chemistry Earth and Planetary Sciences 
Computer and Information Sciences Energy 
Engineering Sciences Engineering 
Environmental Sciences and Ecology Environmental Science 
Geology Materials Science 
Geophysics Mathematics 
Mathematics Physics and Astronomy 
Physics  
 Physical Sciences 

Anthropology Arts and Humanities 
Economic Sciences Business, Management, and Accounting 
Human Environmental Sciences Decision Sciences 
Psychological and Cognitive Sciences Economics, Econometrics, and Finance 
Social and Political Sciences Psychology 
 Social Sciences 
 Social Sciences 
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A.2 List of Treatment Stars 

 (continued) 

Personal Data Excerpt from Obituary Field 

KURT JUNGERMANN, 1938 – 2002 
  University of Göttingen 

Died unexpectedly⁺ Life 

ROBERT M. MACNAB, 1940 – 2003* 
  Yale University 

Fell at home Life 

ROBERT J. KADNER, 1942 – 2005 
  University of Virginia 

Died unexpectedly Life 

DAVID S. SEGAL, 1942 – 2005 
  University of California, San Diego 

Very short and aggressive course of pancreatic cancer Life 

JERRY O. WOLFF, 1942 – 2008* 
  St. Cloud State University 

Suicide Life 

DON C. WILEY, 1944 – 2001 
  Harvard University 

Accident Life 

DAVID L. GARBERS, 1944 – 2006 
  University of Texas Southwestern 

Heart attack Life 

UWE CLAUSSEN, 1945 – 2008 
  University of Jena 

Heart attack Life 

REINHART HEINRICH, 1946 – 2006 
  Humboldt University of Berlin 

Died unexpectedly Life 

STEVEN C. HEBERT, 1946 – 2008 
  Yale University 

Sudden death after cardiovascular disease Life 

FRED F. KADLUBAR, 1946 – 2010 
  University of Arkansas for Medical Sciences 

Died unexpectedly Life 

DOMINIQUE DORMONT, 1948 – 2003 
  CEA Fontenay-aux-Roses 

Severe influenza Life 

MARJORIE A. ASMUSSEN, 1949 – 2004 
  University of Georgia 

Bicycle accident Life 

JOHN C. LAWRENCE, 1949 – 2006 
  University of Virginia 

Heart attack Life 

ROBERT W. GOLDBACH, 1949 – 2009* 
  Wageningen University & Research 

Trampled to death by an elephant while bird watching Life 

BARBARA K. BURGESS, 1950 – 2001 
  University of California, Irvine 

Suicide Life 

EBBE S. NIELSEN, 1950 – 2001 
  Australian National Insect Collection 

Heart attack Life 

DALE J. BENOS, 1950 – 2010 
  University of Alabama at Birmingham 

Died suddenly while on a walk with his wife Life 

FRANÇOIS TILLEQUIN, 1950 – 2011 
  Paris Descartes University 

Died unexpectedly Life 

THOMAS V. DUNWIDDIE, 1951 – 2001 
  University of Colorado Medical Campus 

Accident while rock climbing Life 

ROBERT B. DICKSON, 1952 – 2006 
  Georgetown University 

Ruptured aorta Life 

VINCENT R. FRANCESCHI, 1953 – 2005 
  Washington State University 

Died unexpectedly Life 

DONALD W. THOMAS, 1953 – 2009 
  University of Sherbrooke 

Stroke Life 

JEFFERY W. WALKER, 1954 – 2010* 
  University of Arizona 

Died suddenly and unexpectedly Life 

BAHMAN EGHBALL, 1956 – 2004* 
  University of Nebraska-Lincoln 

Swimming accident Life 
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 (continued) 

Personal Data Excerpt from Obituary Field 

BRIAN M. J. FOXWELL, 1956 – 2008 
  Imperial College London 

Died unexpectedly Life 

RAWIE I. HOLLINGSWORTH, 1956 – 2012 
  Michigan State University 

Collapsed in a hallway due to pulmonary emboli Life 

ANDREAS J. HELBIG, 1957 – 2005 
  University of Greifswald 

Late diagnosed cancer, short illness Life 

ANGEL A. ALONSO, 1957 – 2005 
  McGill University 

Infection with viral encephalitis Life 

KENJI TAKABAYASHI, 1957 – 2006 
  University of California, San Diego 

Died unexpectedly⁺ Life 

JASON D. MORROW, 1957 – 2008* 
  Vanderbilt University 

Died suddenly Life 

LLOYD R. KELLAND, 1958 – 2008* 
  The Institute of Cancer Research, London 

Died suddenly and unexpectedly Life 

ALAN P. WOLFFE, 1959 – 2001 
  National Institutes of Health, NICHD 

Road accident Life 

STEFAN ROSEWICZ, 1960 – 2004 
  Charité – Berlin University of Medicine 

Died suddenly and unexpectedly Life 

MICHAEL BRÜSS, 1961 – 2006 
  University of Bonn 

Died suddenly and unexpectedly Life 

ALAA E. EL-HUSSEINI, 1962 – 2007 
  University of British Columbia 

Drowned while on vacation Life 

MARCO F. RAMONI, 1963 – 2010 
  Boston Children’s Hospital 

Heart failure Life 

ANDREA TONTINI, 1966 – 2012 
  University of Urbino 

Suicide Life 

CHARLES A. LOCKWOOD, 1970 – 2008 
  University College London 

Motorcycle accident Life 

EKARAT JANTRATID, 1975 – 2010 
  Goethe University Frankfurt 

Died unexpectedly⁺ Life 

LAWRENCE D. JACOBS, 1938 – 2001 
  University at Buffalo 

Brief battle with cancer Health 

SIGRID POSER, 1941 – 2004 
  University of Göttingen 

Died unexpectedly Health 

RICHARD H. WARD, 1943 – 2003 
  University of Oxford 

Died suddenly of cardiac causes Health 

OLOF JOHNELL, 1944 – 2006* 
  Malmö University 

Died suddenly and unexpectedly Health 

LARS JANZON, 1944 – 2007* 
  Lund University 

Short illness Health 

HAIM RING, 1944 – 2008 
  Tel Aviv University 

Short and serious illness Health 

MICHAEL J. REED, 1944 – 2009 
  St Mary's Hospital London 

Died suddenly Health 

SEPPO S. SANTAVIRTA, 1945 – 2005 
  Helsinki University 

Heart attack Health 

WILLIAM C. KOLLER, 1945 – 2005* 
  University of North Carolina at Chapel Hill 

Sudden cardiac problems Health 

WAYNE A. HENING, 1945 – 2008 
  Rutgers University 

Brief struggle with pulmonary fibrosis Health 

AXEL PERNECZKY, 1945 – 2009 
  University of Mainz 

Died suddenly and unexpectedly Health 
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 (continued) 

Personal Data Excerpt from Obituary Field 

MASSIRAO CHIARIELLO, 1945 – 2010* 
  University of Naples Federico II 

Short struggle with cancer Health 

MARIO STEFANELLI, 1945 – 2010 
  University of Pavia 

Haemorrhagic stroke Health 

ROBERT M. ADRIAN, 1946 – 2007 
  Georgetown University 

Died suddenly Health 

JECKONIAH O. NDINYA-ACHOLA, 1946 – 2010 
  University of Nairobi 

Sudden kidney failure Health 

JEFFERY M. ISNER, 1947 – 2001 
  Tufts University 

Heart attack Health 

DAVID B. LARSON, 1947 – 2002* 
  Duke University 

Heart attack Health 

JOHN L. BEARD, 1947 – 2009 
  Pennsylvania State University 

Died suddenly Health 

JOB J. BWAYO, 1948 – 2007 
  University of Nairobi 

Murdered by carjackers Health 

WERNER A. BAUTZ, 1949 – 2008 
  University of Erlangen-Nuremberg 

Heart attack Health 

GARY J. MILLER, 1950 – 2001 
  University of Colorado Medical Campus 

Died suddenly while jogging Health 

DANIEL P. SCHUSTER, 1950 – 2007 
  Washington University in St. Louis 

Died suddenly while playing racquetball Health 

GREG R. ALEXANDER, 1950 – 2007 
  University of South Florida 

Heart failure Health 

ELIZABETH S. WILLIAMS, 1951 – 2004 
  University of Wyoming 

Traffic accident Health 

HELMUT DREXLER, 1951 – 2009 
  Hannover Medical School 

Accident during race biking Health 

GERD HAUSDORF, 1952 – 2001 
  University of Göttingen 

Died unexpectedly Health 

HANS J. SCHWANITZ, 1952 – 2004 
  Osnabrück University 

Died unexpectedly Health 

RICHARD L. WALKER, 1952 – 2008 
  University of California, Davis 

Probable suicide Health 

HELMUT MAXEINER, 1952 – 2009 
  Charité – Berlin University of Medicine 

Bicycle accident Health 

RICHARD W. SCHWARTZ, 1952 – 2010* 
  University of Kentucky 

Very brief battle with lung cancer Health 

BARRY M. KACINSKI, 1953 – 2003 
  Yale University 

Heart attack Health 

TONY S. KELLER, 1955 – 2006* 
  University of Vermont 

Died of gunshots, apparent homicide Health 

FRANS W. J. ALBERS, 1955 – 2007 
  University of Groningen 

Brief illness Health 

ALAN J. FLISHER, 1956 – 2010* 
  University of Cape Town 

Brief struggle with leukaemia Health 

ROBERT B. DUNCAN, 1957 – 2007 
  Virginia-Maryland College of Veterinary Medicine 

Died suddenly Health 

JASON D. MORROW, 1957 – 2008* 
  Vanderbilt University 

Died suddenly Health 

JEFFREY W. TYLER, 1957 – 2009 
  University of Missouri-Columbia 

Died unexpectedly Health 
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 (continued) 

Personal Data Excerpt from Obituary Field 

JAE-YOUNG RHO, 1958 – 2002 
  University of Memphis 

Heart attack Health 

WALTER J. MUIR, 1958 – 2009 
  University of Edinburgh 

Died suddenly and unexpectedly Health 

BERNIE J. O’BRIEN, 1959 – 2004 
  University of Edinburgh 

Died tragically while jogging Health 

HERMAN T. YEE, 1959 – 2011 
  New York University 

Died suddenly Health 

KEVIN P. GRANATA, 1961 – 2007 
  Virginia Polytechnic Institute and State University 

Victim of university campus shooting Health 

JEFFREY W. BERGER, 1963 – 2001 
  University of Pennsylvania 

Stomach cancer, died two weeks after diagnosis Health 

SERGIO VIDAL, 1966 – 2003 
  University of Santiago de Compostela 

Sudden illness Health 

JAN KWIECINSKI, 1938 – 2003 
  Polish Academy of Sciences 

Died suddenly during a cycling trip Physical 

JAMES R. HOLTON, 1938 – 2004 
  University of Washington 

Stroke and heart attack during a mid-day run Physical 

LORENZ KRAMER, 1941 – 2005 
  University of Bayreuth 

Died unexpectedly Physical 

DAVID J. FAULKNER, 1942 – 2002 
  University of California, San Diego 

Complications after heart surgery Physical 

JIN AU KONG, 1942 – 2008 
  Massachusetts Institute of Technology 

Complications from pneumonia Physical 

PAUL GRANGE, 1943 – 2003 
  University of Louvain 

Heart attack Physical 

JÜRGEN O. BESENHARD, 1944 – 2006 
  Graz University of Technology 

Stroke while returning from conference Physical 

ANDREI YAKOVLEV, 1944 – 2008 
  University of Rochester 

Heart attack Physical 

REX E. SHEPHERD, 1945 – 2003 
  University of Pittsburgh 

Heart attack Physical 

TADEUSZ PAKULA, 1945 – 2005 
  Max Planck Institute for Polymer Research 

Short and severe illness Physical 

ROBERT F. DENNO, 1945 – 2008 
  University of Maryland 

Heart attack Physical 

STEPHEN H. SCHNEIDER, 1945 – 2010 
  Stanford University 

Heart attack Physical 

ROBERT A. SCHOMMER, 1946 – 2001 
  Cerro Tololo Inter American Observatory 

Suicide Physical 

RICHARD E. EWING, 1946 – 2007 
  Texas A&M University 

Heart attack Physical 

MICHAEL J. WEAVER, 1947 – 2002 
  Purdue University 

Died unexpectedly Physical 

HANS J. RATH, 1947 – 2012 
 University of Bremen 

Short and severe illness Physical 

YORAM J. KAUFMAN, 1948 – 2006 
  NASA Goddard Space Flight Center 

Bicycle accident Physical 

PAUL G. SILVER, 1948 – 2009 
  Carnegie Institution of Washington 

Car accident Physical 

CHARLES E. HOYLE, 1948 – 2009 
  University of Southern Mississippi 

Died unexpectedly Physical 
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 (continued) 

Personal Data Excerpt from Obituary Field 

JOHN P. HUCHRA, 1948 – 2010 
  Harvard University 

Heart attack Physical 

PHILIPPE FLAJOLET, 1948 – 2011 
  INRIA at Rocquencourt 

Died suddenly and unexpectedly Physical 

IOANNIS VARDOULAKIS, 1949 – 2009 
  National Technical University of Athens 

Gardening accident Physical 

ULRICH M. GÖSELE, 1949 – 2009 
  Max Planck Institute of Microstructure Physics 

Found dead in his apartment Physical 

ISAAC GOLDHIRSCH, 1949 – 2010 
  Tel Aviv University 

Died unexpectedly Physical 

GERHARD H. JIRKA, 1944 – 2010 
  Karlsruhe Institute of Technology 

Heart attack Physical 

HASSAN AREF, 1950 – 2011 
  Virginia Polytechnic Institute and State University 

Aortic dissection Physical 

SHENG YU, 1950 – 2012 
  Western University 

Unexpectedly Physical 

JAAP G. SNIJDERS, 1951 – 2003 
  University of Groningen 

Died unexpectedly due to short-term illness Physical 

JEAN-PIERRE MAELFAIT, 1951 – 2003 
  University of Ghent 

Died suddenly and unexpectedly Physical 

PAUL F. BARBARA, 1953 – 2010 
  University of Texas at Austin 

Complications following cardiac arrest Physical 

IAN P. ROTHWELL, 1955 – 2004 
  Purdue University 

Car accident Physical 

STRATIS V. SOTIRCHOS, 1956 – 2004 
  University of Rochester 

Car accident Physical 

RICHARD C. PLAYLE, 1956 – 2005 
  Wilfrid Laurier University 

Heart failure after brief illness Physical 

STEPHEN P. HOPKIN, 1956 – 2006 
  University of Reading 

Car accident Physical 

ZLATKO B. TES  ̆ANOVIĆ, 1956 – 2012 
  Johns Hopkins University 

Heart attack Physical 

IAN I. KOGAN, 1958 – 2003 
  University of Oxford 

Heart attack Physical 

ADOLFO PARMALIANA, 1958 – 2008 
  University of Messina 

Suicide Physical 

PETER G. DUYNKERKE, 1959 – 2002 
  Utrecht University 

Tragic accident Physical 

LEOPOLDO P. FRANCA, 1959 – 2012 
  University of Colorado Denver 

Heart attack Physical 

IAN H. LANGFORD, 1961 – 2002* 
  University of East Anglia 

Suicide or home accident Physical 

WILLIAM D. ARMSTRONG, 1961 – 2006 
  University of Wyoming 

Plane crash Physical 

TIL AACH, 1961 – 2012 
  RWTH Aachen University 

Died unexpectedly Physical 

WERNER S. WEIGLHOFER, 1962 – 2003 
  University of Glasgow 

Struck by an avalanche Physical 

ALEXANDER E. FARRELL, 1962 –2008 
  University of California, Berkeley 

Died unexpectedly Physical 

RAJEEV MOTWANI, 1962 – 2009 
  Stanford University 

Accidental drowning Physical 



Appendix A 105 

 

 (continued) 

Personal Data Excerpt from Obituary Field 

MANUEL FORESTINI, 1963 – 2003 
  University of Grenoble 

Heart attack Physical 

ROBERT HEITZ, 1964 – 2003 
  Technical University of Berlin 

Cardiac aneurysm Physical 

EDOARDO CAPELLO, 1965 – 2009* 
  Polytechnic University of Milan 

Heart attack while skiing Physical 

FEMKE OLYSLAGER, 1966 – 2009 
  University of Ghent 

Died unexpectedly Physical 

LUIS SERRANO-ANDRÉS, 1966 – 2010* 
  University of Valencia 

Died unexpectedly Physical 

JOAKIM H. PETERSSON, 1968 – 2002 
  Linköping University 

Died suddenly and unexpectedly Physical 

KEITH FAGNOU, 1971 – 2009 
  University of Ottawa 

Complications from influenza Physical 

SAM T. ROWEIS, 1972 – 2010 
  New York University 

Suicide Physical 

KEVIN E. STRECKER, 1974 – 2012 
  Rice University 

Heart attack Physical 

FRANS M. DIELEMAN, 1942 – 2005 
  Utrecht University 

Died suddenly and unexpectedly Social 

DENNIS A. RONDINELLI, 1943 – 2007 
  Duke University 

Died unexpectedly⁺ Social 

ROB KLING, 1944 – 2003 
  Indiana University 

Unexpectedly due to cardiovascular disease Social 

VICTOR FLORIAN, 1945 – 2002 
  Bar-Ilan University 

Died unexpectedly⁺ Social 

DICK R. WITTINK, 1945 – 2005 
  Yale University 

Diabetic seizure while swimming in his pool Social 

MICHAEL W. PFAU, 1945 – 2009 
  University of Oklahoma 

Brief illness Social 

KENNETH A. KAVALE, 1946 – 2008 
  Regent University 

Died unexpectedly Social 

PETER GOLDIE, 1946 – 2011 
  University of Manchester 

Brief illness Social 

PHILLIP L. WALKER, 1947 – 2009 
  University of California, Santa Barbara 

Died unexpectedly Social 

IVAN MERVIELDE, 1947 – 2011 
  University of Ghent 

Short illness Social 

PETER W. JUSCZYK, 1948 – 2001 
  Johns Hopkins University 

Heart attack Social 

SUMANTRA GHOSHAL, 1948 – 2004 
  London Business School 

Brain haemorrhage Social 

LYNDA L. KAID, 1948 – 2011 
  University of Florida 

Died unexpectedly Social 

M. THEA SINCLAIR, 1950 – 2006 
  University of Nottingham 

Riding accident Social 

MARK S. JOHNSON, 1950 – 2007* 
  Montclair State University 

Died suddenly Social 

GEORGE M. ZINKHAN, 1952 – 2009 
  University of Georgia 

Suicide after being prime suspect in a triple homicide Social 

PETER LIPTON, 1954 – 2007 
  University of Cambridge 

Collapsed after a squash game Social 



106 Appendix A 

Tab. A.2: LIST OF TREATMENT STARS 

Notes: The list comprises 162 outstanding scientists whose active careers ended abruptly 
between 2001 and 2012 due to unexpected death at a maximum age of 65 years. Asterisks 
indicate that the year of birth could not be ascertained and was instead estimated based 
on the year of death and the reported death age. Plus signs indicate that the death cause 
was verified after personal consultation with former colleagues. Affiliations are selected  
as of the last held job position. 

  

Personal Data Excerpt from Obituary Field 

BRIAN D. MULLEN, 1955 – 2006 
  Syracuse University 

Died unexpectedly Social 

STEVEN C. POE, 1960 – 2007 
  University of North Texas 

Heart attack Social 

JEAN O. LANJOUW, 1962 – 2005 
  University of California, Berkeley 

Renal cancer, died three months after first symptoms Social 

JÖRG SCHUMACHER, 1962 – 2010 
  University of Leipzig 

Died unexpectedly Social 

RODNEY CLARK, 1967 – 2006 
  Wayne State University 

Died unexpectedly Social 

ALASDAIR CROCKETT, 1968 – 2006 
  University of Essex 

Suicide Social 

STEPHEN O. GYIMAH, 1968 – 2012* 
  Queen's University 

Unexpectedly due to brief illness Social 
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A.3 Detailed Matching Procedure 

Technically, the matching procedure is performed at the star-collaborator dyad level. This 

implies that although the majority of covariates refers to the collaborator, characteristics of 

the star scientist and features of their collaboration are equally important to account for.  

The overall goal is to construct a control group that mirrors the treatment group in these 

three dimensions and thus determines the hypothetical outcome path for the latter group 

had they not experienced the unexpected star death. We proceed by detailing our matching 

algorithm in three main steps. 

Step 1: Identifying treatment and potential control dyads 

Our bibliometric data cover substantial network information. We apply several constraints  

to identify treatment and control dyads therein. First, we only consider established star 

collaborations. Thus, as of the year of death, stars must have fulfilled a star criterion (as 

defined in Section 2.2.2) and collaborations must have emerged through jointly published 

articles.55 Second, we require collaborators to be research-active at the time of death. We 

implement this constraint by confining the matching sample to dyads where collaborators 

are below 40 career years and have not ended their publication activities prior to the year  

of death. Third, we focus on established collaborators. This leads us to exclude collaborators 

with less than five career years and collaborators who simultaneously began their careers  

and star collaborations. Fourth and lastly, we remove collaborators that died, regardless of  

cause, as documented by our treatment case search. 

These general constraints are common to both treatment and control dyads. In order to  

draw the distinction between the two groups, we lean on the star scientists. Treatment stars 

died unexpectedly at a maximum age of 65 years. We impose two additional constraints  

to infer that they were engaged in research activities at the time of their death. First, their 

obituaries do not indicate that they entered any kind of retirement phase. Second, they 

published at least one article over the two years preceding the year of death. Control stars, 

in contrast, must not die. Deceased stars, as disclosed through our treatment search, are 

therefore not eligible to be part of control dyads. From the remaining pool of potential 

control dyads, we first remove stars with career ages of over 35 years, which resembles the 

age threshold applied to treatment stars on the assumption that scientific careers start at  

the age of 30.56 Second, we restrict the control pool to stars who continued publishing for a  

  

                                                                 
55 This essentially excludes a small number of treatment dyads that are solely verifiable through delayed 
publications, i.e., after the year of death. In these cases, it remains unclear if collaboration actually took 
place or if the co-author possibly served as a replacement for the deceased star. 
56 Jones (2010) points out that the age at which eminent scientists and inventors become research-active 
has notably increased over the past. He documents a mean age of 31 years for the end of the 20th century 
and further shows that age patterns are very similar across scientific fields. 
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minimum of five years after the considered death year. We expect these stars to be alive 

besides being involved in further research activities. Third and analogous to the treatment 

case, control stars are required to have published one article over the past two years. 

Together, these constraints allow us to determine treatment dyads and to narrow down 

potential control dyads. As for the former group, we make a final adjustment by excluding 

collaborators that experience more than one treatment event. These cases are relatively  

rare,57 but still problematic from a methodological standpoint since it would be hardly 

possible to isolate the individual treatment effects. 

Step 2: Matching field-by-field and year-by-year 

This step aims to identify counterparts for each treatment dyad. We begin by splitting  

the confined sample into four distinct groups according to the stars’ field classification  

(life, health, physical, and social sciences). Within each field, we iterate over the years from 

2001 to 2012. Every treatment year is hereby associated with a disjoint subgroup of the  

full set of treatment dyads. Potential control dyads, in contrast, can be linked to more than 

one year. To be clear, a dyad pictures a collaboration over time. Control dyads thus serve  

as feasible matches in any given year, in which they meet the criteria stated above. We 

proceed by matching treatment and control dyads field-by-field and year-by-year. Note  

that treatment dyads can initially match with multiple control dyads as we postpone the 

implementation of the one-to-one and without replacement features to Step 3. 

Dyads form a match if they belong to the exact same stratum derived from partitioning  

the support of the joint distribution of the following covariates, with optional percentile  

cut-offs in parentheses: 

• DYAD LEVEL: no. of joint articles (50th; 85th), years since last joint article (25th; 75th) 

• STAR LEVEL: no. of received citations (25th; 75th), field classification58 

• COLLABORATOR LEVEL: no. of distinct co-authors (25th; 75th), adjusted forward citations  

in each of the last five years and aggregated over a max. 5-year period prior to that  

(50th; 80th; 98th), career age in 5-year intervals 

The selection of cut-offs is strongly guided by distributional features and therefore hard  

to determine a priori. For instance, we discover that casual dyads that collaborate once  

or twice are very common,59 which allows us to choose a relatively high first cut-off for the 

number of joint articles, i.e., the 50th percentile. This decision is motivated on theoretical 

                                                                 
57 They account for 3% of the treated collaborator sample. Among them, an unfortunate group of eight 
collaborators is exposed to the maximum of three death events. 
58 The stars’ field constitutes an implicit covariate since we opt to match dyads field-by-field. 
59 This finding is indeed not new. For instance, Azoulay et al. (2010) depict a very similar distribution of  
co-authorship intensity for US life scientists. 
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grounds, as we attempt to separate casual dyads from (more) regular ones, but is also 

reasonable on pragmatic grounds, as broad stratifications usually improve the chances of 

successful matches. Moreover, the assessment of collaboration intensity likely changes 

depending on the time horizon. To illustrate this point, in 2001, one might label a dyad 

frequent if more than five collaborations occurred from 1996 onwards. Yet this absolute 

threshold is probably not suitable to classify dyads as of 2010 given that our data (still)  

span until 1996. Relative cut-off points are hence preferred and eventually determined in  

an iterative process that intends to maximise both the degree of covariate balance and  

the overall matching rate. 

Step 3: Selecting final control dyads 

In line with the related literature (Azoulay et al., 2010; Jaravel et al., 2018), we employ  

a one-to-one matching without replacement. More specifically, control collaborators can 

only be matched once irrespective of multiple occurrences within different control dyads.  

In slight deviation to previous studies that have pursued a purely chronological approach,  

we select control dyads by first considering all allocation possibilities. This offers two 

advantages. First, it allows executing each matching year simultaneously and can thus  

lead to substantial time savings if parallel computing resources are available. Second, it  

gives us the opportunity to inspect if some collaborators, who are allocated more than  

once, constitute mandatory matches for certain treatment dyads (in possibly later years). 

We begin by locking mandatory matches, i.e., we assign control dyads that are without 

alternatives. In case that control collaborators are part of multiple mandatory dyads, we 

prioritise earlier treatment years and, if necessary, break ties at random. After removing  

all other occurrences of these collaborators, we proceed chronologically. In other words,  

we restrict all remaining control collaborators to their first match, again breaking ties at 

random. At this stage, matching is realised without replacement. In order to implement the 

one-to-one feature, we lastly select control dyads randomly in the event that treatment 

dyads are presented with multiple options. In sum, we manage to find a definite match for 

93.6% of all treatment dyads, hereby employing 8,406 distinct strata. 
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A.4 Additional Summary Statistics 

Tab. A.3: SUMMARY STATISTICS ON MATCHED COLLABORATORS BY SCIENTIFIC FIELD 

Notes: The table reports a breakdown of mean values by scientific field and treatment status. 
All time-varying variables refer to the year preceding the (inherited) year of star death. Article, 
citation, and distinct co-author numbers are aggregated over a prior 5-year span. Gender 
information are inferred through name and country data and are available for 85.3% of the 
sample. 

  

Variable Life Sciences Health Sciences Physical Sciences Social Sciences 

 Treated Control Treated Control Treated Control Treated Control 

Career age 18.52 18.44 18.57 18.54 17.42 17.33 16.94 16.96 

Female prediction 0.268 0.291 0.273 0.283 0.140 0.163 0.293 0.279 

U.S. affiliated 0.459 0.424 0.422 0.414 0.375 0381 0.630 0.468 

Star status 0.243 0.253 0.265 0.251 0.269 0.253 0.175 0.104 

No. of distinct co-authors 60.09 60.09 77.95 74.71 54.95 58.10 21.54 18.55 

No. of articles 13.26 12.53 15.26 14.56 15.25 15.72 7.71 7.33 

No. of citations 524.7 522.5 531.9 519.4 505.6 475.7 166.5 145.3 

No. of collaborations 2.03 1.93 2.49 2.40 2.31 2.32 1.63 1.68 

Years since last collaboration 4.40 4.30 3.77 3.67 4.07 4.01 4.20 4.27 

No. of citations (star) 1,621.6 1,660.3 1,643.2 1,393.4 1,712.6 1,601.2 209.0 213.3 

No. of collaborators 5,598 7,950 4,738 308 
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A.5 Robustness Checks 

 Main Model Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6 

Overall Sample)  Article count as dependent variable 

After death × treated -0.043 * -0.045 * -0.043 * -0.043 * -0.043 ** -0.073 ** n/a  
 (0.022)  (0.021)  (0.022)  (0.022)  (0.013)  (0.028)  n/a  

Log pseudo-likelihood -189,139 -189,135 -189,227 -189,138 -189,780 -67,906 n/a  

No. of observations 275,344  275,344  275,344  275,344  275,344  90,600  n/a  

No. of dyads 18,542  18,542  18,542  18,542  18,542  6,040  n/a  

Overall Sample)  Forward citations as dependent variable 

After death × treated -0.081 ** -0.087 ** -0.081 ** -0.081 * -0.080 ** -0.087 ** -0.081 ** 

 (0.028)  (0.029)  (0.028)  (0.028)  (0.019)  (0.034)  (0.030)  

Log pseudo-likelihood -2,800,261 -2,799,841 -2,804,363 -2,799,577 -2,819,493 -964,785 -2,873,838  

No. of observations 275,166  275,166  275,166  275,166  275,166  90,585  275,166  

No. of dyads 18,527  18,527  18,527  18,527  18,527  6,039  18,527  

Life Sciences)  Article count as dependent variable 

After death × treated -0.066 * -0.065 * -0.065 * -0.066 * -0.063 ** -0.079 * n/a  
 (0.030)  (0.030)  (0.030)  (0.030)  (0.024)  (0.036)  n/a  

Log pseudo-likelihood -52,754 -52,755 -52,776 -52,752 -52,948 -23,952 n/a  

No. of observations 83,541  83,541  83,541  83,541  83,541  34,770  n/a  

No. of dyads 5,585  5,585  5,585  5,585  5,585  2,318  n/a  

Life Sciences)  Forward citations as dependent variable 

After death × treated -0.114 ** -0.119 ** -0.113 ** -0.115 ** -0.114 ** -0.107 * -0.122 * 

 (0.041)  (0.044)  (0.041)  (0.041)  (0.034)  (0.046)  (0.053)  

Log pseudo-likelihood -809,005 -808,823 -810,045 -808,285 -813,795 -337,475 -835,832  

No. of observations 83,526  83,526  83,526  83,526  83,526  34,770  83,526  

No. of dyads 5,584  5,584  5,584  5,584  5,584  2,318  5,584  

 (continued) 
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 Main Model Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6 

Health Sciences)  Article count as dependent variable 

After death × treated -0.044  -0.042  -0.044  -0.044  -0.047 * -0.065  n/a  
 (0.034)  (0.034)  (0.034)  (0.034)  (0.021)  (0.046)  n/a  

Log pseudo-likelihood -79,330 -79,327 -79,369 -79,327 -79,603 -27,978 n/a  

No. of observations 118,212  118,212  118,212  118,212  118,212  37,125  n/a  

No. of dyads 7,940  7,940  7,940  7,940  7,940  2,475  n/a  

Health Sciences)  Forward citations as dependent variable 

After death × treated -0.043  -0.039  -0.044  -0.043  -0.047  -0.050  -0.030  
 (0.038)  (0.040)  (0.038)  (0.038)  (0.027)  (0.043)  (0.038)  

Log pseudo-likelihood -1,154,988 -1,154,805 -1,156,912 -1,154,597 -1,164,565 -390,776 -1,176,750  

No. of observations 118,148  118,148  118,148  118,148  118,148  37,110  118,148  

No. of dyads 7,934  7,934  7,934  7,934  7,934  2,474  7,934  

Physical Sciences)  Article count as dependent variable 

After death × treated -0.026  -0.033  -0.026  -0.026  -0.027  -0.089 * n/a  
 (0.030)  (0.029)  (0.030)  (0.030)  (0.025)  (0.043)  n/a  

Log pseudo-likelihood -53,894 -53,892 -53,936 -53,890 -54,089 -15,207 n/a  

No. of observations 69,107  69,107  69,107  69,107  69,107  17,580  n/a  

No. of dyads 4,711  4,711  4,711  4,711  4,711  1,172  n/a  

Physical Sciences)  Forward citations as dependent variable 

After death × treated -0.104 * -0.121 ** -0.106 * -0.104 * -0.102 ** -0.121 * -0.115 ** 

 (0.043)  (0.040)  (0.042)  (0.043)  (0.038)  (0.060)  (0.044)  

Log pseudo-likelihood -784,720 -784,690 -787,455 -784,029 -791,293 -218,597 -808,717  

No. of observations 69,008  69,008  69,008  69,008  69,008  17,580  69,008  

No. of dyads 4,703  4,703  4,703  4,703  4,703  1,172  4,703  

 (continued) 
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 Main Model Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6 

Social Sciences)  Article count as dependent variable 

After death × treated -0.062  -0.133  -0.061  -0.063  -0.051  0.043  n/a  
 (0.151)  (0.157)  (0.153)  (0.151)  (0.146)  (0.211)  n/a  

Log pseudo-likelihood -3,021 -3,020 -3,034 -3,017 -3,042 -706 n/a  

No. of observations 4,484  4,484  4,484  4,484  4,484  1,125  n/a  

No. of dyads 306  306  306  306  306  75  n/a  

Social Sciences)  Forward citations as dependent variable 

After death × treated -0.015  -0.137  -0.013  -0.012  -0.017  0.206  -0.015  
 (0.205)  (0.222)  (0.205)  (0.206)  (0.187)  (0.356)  (0.205)  

Log pseudo-likelihood -40,122 -40,192 -40,612 -39,909 -40,837 -12,103 -40,127  

No. of observations 4,484  4,484  4,484  4,484  4,484  1,125  4,484  

No. of dyads 306  306  306  306  306  75  306  

Tab. A.4: ROBUSTNESS CHECKS 

Notes: The table reports the results of a series of robustness checks that probe our main model 
stated in Equation (2.2). In Variant 1, we prolong the pre-treatment period to include the death 
event, thus delaying the start of the post-treatment period to the first full calendar year after 
the stars’ passing. In Variant 2, we switch to an alternative career age specification and employ 
5-year brackets to capture life cycle effects. In Variant 3, we include interacted calendar year 
and career age fixed effects instead of inserting them separately. In Variant 4, we shift the level 
of standard error clustering from the star to the collaborator level. In Variant 5, we estimate 
effects based on a balanced panel of collaborators that are traceable for exactly seven years 
before and after their respective death year. In Variant 6, we refrain from winsorizing forward 
citations. Any further estimation features and variable definitions are maintained from the  
main model. Robust standard errors are in parentheses. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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A.6 Supplementary Estimations 

This section provides further estimations that are useful for probing the robustness of  

the findings presented in Section 2.4.2. Methodologically, we rely on Equation (2.3) or on  

a slightly modified version thereof, which contains either multiple three-way interactions  

or continuous interaction terms.  

Basic Interaction Measures. Frequency, timing, and length of a collaborative relationship 

provide intuitive starting points for exploring treatment effect heterogeneity. However, 

frequency was not found to be a relevant factor. We draw similar conclusions with regard  

to the other two interaction measures, as reported in Tables A.5 and A.6. As for timing, we 

distinguish recent collaborations, who published a joint article either in the year of death  

or in the year before, from older collaborations. The former group comprises slightly over 

30% of both the treated and control sample. In the absence of any statistically significant 

interaction terms (see Table A.5), we find no reliable link between recency and treatment 

effect levels, thus indicating that the disruption of ongoing research projects plays a  

negligible role. As for collaboration length, we separate collaborations that published joint 

articles over multiple years (30% in both samples) from one-year collaboration. As can be 

seen from Table A.6, treatment effect differences between these groups are statistically 

insignificant. 

Horizontal Spillovers & Intra-US Effects. We address the concern that the effects estimated 

for star-star dyads and US-US dyads might be entangled by combining both interactions 

(together with their common terms) in the same specification. As shown in Table A.7, results 

hardly change under this scenario. More concretely, both effect channels stay statistically 

significant in life sciences despite slight reductions in absolute point estimates. In case of 

health sciences, we see a minor increase in both effect sizes and precision, which causes  

the differential quality effect for US-US dyads to become statistically significant at the five-

percent level (former 𝑒𝑒-value was 0.064). 

Intra-US Effects & Other Physical Proximity Effects. Our measures of physical proximity at  

the city-level (co-located) and at the country-level (US-US) partly overlap. We thus test the 

potential dependence of these channels by estimating their differential treatment effects 

within one specification. In view of Table A.8, we find the concern to be unfounded given  

that the field-specific results see only marginal changes. In addition to that, we explore the 

possibility that intra-US effects could just be a reflection of intra-country effects. However, 

as can be inferred from Table A.9, this is unlikely to be true. While intra-country effects  

take up some part of the productivity effect in health sciences, they point in the opposite 

direction of the quality effect in life sciences, thereby enhancing it. 
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Subject Space & Topic Space. Distance in subject space represents a key predictor for the 

treatment effect sizes in health and physical sciences. This finding suggests that the visible 

decline in research output supposedly results from the loss of complementary scientific 

resources that were provided by the deceased star. However, it remains relatively vague, 

which concrete form or combination of resources plays a decisive role. In order to improve 

our understanding in this regard, we distinguish between distances in subject and topic  

space. Methodologically, the calculation of topic space distance follows the exact same  

steps as outlined for subject distance with the exception of utilising keywords instead of 

journal categories. Moreover, keywords are cleaned and Porter-stemmed to mitigate the  

risk of misclassification, which could arise from Scopus using a non-standardised keyword 

pool. Overall, this leads us to differentiate between 162,791 keywords. However, it should 

be noted that keywords are not available for every publication, which causes a roughly  

10% reduction in sample size (topic distance could not be determined for these dyads in 

absence of keywords). Combining subject and topic space metrics in one estimation gives  

rise to the results in Table A.10. As can be seen, focus on divergent research matters is not  

a central driver of the treatment effects, as none of the topic space interactions become 

statistically significant. On the contrary, the relevance of the subject space channel in health 

and physical sciences remains largely unaffected (especially in the quality dimension). In 

unreported estimations, we additionally tested if proximity in subject and topic space, or a 

combination of both, might explain treatment effect outcomes, but could not determine  

any reliable link. 

Continuous Interactions. For the ease of interpretation, we solely used dummy variables to 

investigate effect heterogeneities in Section 2.4.2. While most variables naturally allow for  

a binary classification (e.g., co-location, star status, or intra-US collaborations), we applied  

a cut-off between the second and third tertile in some instances, most notably regarding  

the subject distance measure. To allay the concern that this specific cut-off may be pivotal 

for our results, we present additional results derived from continuous interaction effects. 

Technically, we allow for a non-linear relationship between the treatment effect and the 

distance measure by inserting two interaction terms, one regular (After death × treated × 

subject distance) and one squared (After death × treated × squared subject distance), in 

addition to the standard treatment term (After death × treated). Models that include  

multiple continuous interactions become hardly interpretable from estimated coefficients 

alone. We thus present a graphical illustration in Figure A.1 that depicts how the (overall) 

treatment impact varies along the subject distance range. As can be seen, higher distances 

are reliably linked to a higher treatment magnitude in case of the overall sample, health 

sciences, and the quality sphere of physical sciences, which is in line with our field-specific 

findings. 
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 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.051 * -0.086 ** -0.052  -0.014  -0.142  
 (0.021)  (0.033)  (0.034)  (0.038)  (0.174)  

After death × treated × 0.018  0.065  0.026  -0.041  0.281  
recent dyad (0.028)  (0.048)  (0.038)  (0.048)  (0.320)  

Log pseudo-likelihood -189,024  -52,745  -79,239  -53,873  -3,020  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death × treated -0.091 ** -0.092 * -0.056  -0.134 * -0.158  
 (0.028)  (0.041)  (0.038)  (0.052)  (0.257)  

After death × treated × 0.018  -0.071  0.025  0.067  0.461  
recent dyad (0.044)  (0.075)  (0.061)  (0.084)  (0.396)  

Log pseudo-likelihood -2,791,626  -808,089  -1,149,979  -782,563  -39,999  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. A.5: EFFECT HETEROGENEITY BY COLLABORATION RECENCY 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined  
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.039  -0.057  -0.037  -0.020  -0.150  
 (0.023)  (0.031)  (0.036)  (0.037)  (0.180)  

After death × treated × -0.012  -0.031  -0.019  -0.014  0.261  
multi-year dyad (0.028)  (0.053)  (0.041)  (0.050)  (0.281)  

Log pseudo-likelihood -189,223  -52,752  -79,329  -53,892  -3,020  

No. of observations 275,344  83,541  118,212  69,107  4,484  

No. of dyads 18,542  5,585  7,940  4,711  306  

  Forward citations as dependent variable 

After death × treated -0.076 ** -0.084  -0.069  -0.074  -0.154  
 (0.029)  (0.044)  (0.040)  (0.052)  (0.246)  

After death × treated × -0.015  -0.105  0.069  -0.077  0.422  
multi-year dyad (0.045)  (0.073)  (0.058)  (0.092)  (0.405)  

Log pseudo-likelihood -2,800,185  -808,858  -1,154,909  -784,615  -40,064  

No. of observations 275,166  83,526  118,148  69,008  4,484  

No. of dyads 18,527  5,584  7,934  4,703  306  

Tab. A.6: EFFECT HETEROGENEITY BY COLLABORATION LENGTH 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined 
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated 0.012  0.015  0.002  0.025  -0.153  
 (0.030)  (0.050)  (0.047)  (0.045)  (0.266)  

After death × treated × -0.042  -0.096 * -0.006  -0.073  0.082  
star-star dyad (0.029)  (0.043)  (0.045)  (0.048)  (0.252)  

After death × treated × -0.090 * -0.063  -0.131 * -0.018  0.230  
US-US dyad (0.037)  (0.053)  (0.056)  (0.062)  (0.297)  

Log pseudo-likelihood -188,769  -52,666  -79,135  -53,830  -2,984  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death × treated 0.006  0.057  -0.010  -0.034  -0.122  
 (0.033)  (0.053)  (0.047)  (0.060)  (0.354)  

After death × treated × -0.049  -0.144 * 0.017  -0.076  0.132  
star-star dyad (0.043)  (0.059)  (0.056)  (0.074)  (0.394)  

After death × treated × -0.146 ** -0.173 * -0.130 * -0.049  0.223  
US-US dyad (0.048)  (0.076)  (0.063)  (0.082)  (0.416)  

Log pseudo-likelihood -2,785,534  -804,699  -1,147,343  -782,330  -39,282  

No. of observations 274,032  83,299  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. A.7: EFFECT HETEROGENEITY VIA COLLABORATOR STATUS AND US CHANNEL 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined 
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated -0.003  -0.038  0.000  -0.001  -0.077  
 (0.028)  (0.039)  (0.043)  (0.034)  (0.268)  

After death × treated × -0.058  0.022  -0.030  -0.135 * -0.425  
co-located (0.034)  (0.072)  (0.046)  (0.067)  (0.299)  

After death × treated × -0.084 * -0.083  -0.122 * -0.006  0.263  
US-US dyad (0.037)  (0.054)  (0.054)  (0.064)  (0.308)  

Log pseudo-likelihood -188,780  -52,673  -79,135  -53,832  -2,983  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death × treated -0.025  -0.047  0.003  -0.073  0.052  
 (0.032)  (0.046)  (0.045)  (0.051)  (0.336)  

After death × treated × -0.028  0.138  -0.062  -0.131  -0.632  
co-located (0.053)  (0.082)  (0.082)  (0.109)  (0.382)  

After death × treated × -0.137 ** -0.210 ** -0.109  -0.027  0.239  
US-US dyad (0.047)  (0.077)  (0.061)  (0.084)  (0.406)  

Log pseudo-likelihood -2,789,319  -805,419  -1,149,316  -782,330  -39,180  

No. of observations 274,032  83,299  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. A.8: EFFECT HETEROGENEITY VIA CO-LOCATION AND US CHANNEL 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined 
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

  Article count as dependent variable 

After death × treated 0.004  -0.017  0.015  -0.012  -0.247  
 (0.031)  (0.040)  (0.046)  (0.034)  (0.417)  

After death × treated × -0.038  -0.038  -0.045  -0.008  0.113  
same country (0.043)  (0.092)  (0.063)  (0.071)  (0.479)  

After death × treated × -0.069  -0.058  -0.101  -0.021  0.223  
US-US dyad (0.046)  (0.088)  (0.067)  (0.085)  (0.279)  

Log pseudo-likelihood -188,770  -52,672  -79,120  -53,834  -2,986  

No. of observations 274,210  83,314  117,559  68,907  4,430  

No. of dyads 18,461  5,569  7,892  4,698  302  

  Forward citations as dependent variable 

After death × treated -0.016  -0.060  -0.003  -0.048  0.186  
 (0.038)  (0.058)  (0.054)  (0.054)  (0.510)  

After death × treated × -0.035  0.081  -0.022  -0.135  -0.533  
same country (0.051)  (0.091)  (0.068)  (0.110)  (0.524)  

After death × treated × -0.119 * -0.238 ** -0.099  0.051  0.478  
US-US dyad (0.057)  (0.092)  (0.070)  (0.122)  (0.340)  

Log pseudo-likelihood -2,789,309  -805,386  -1,149,019  -783,525  -39,304  

No. of observations 274,032  83,299  117,495  68,808  4,430  

No. of dyads 18,446  5,568  7,886  4,690  302  

Tab. A.9: EFFECT HETEROGENEITY VIA COUNTRY CHANNEL AND US CHANNEL 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined 
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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 Overall 
Sample 

Life 
Sciences 

Health 
Sciences 

Physical 
Sciences 

Social 
Sciences 

 Article count as dependent variable 

After death × treated -0.029  -0.071 * -0.008  -0.015  -0.105  
 (0.026)  (0.029)  (0.040)  (0.035)  (0.150)  

After death × treated × -0.058  -0.025  -0.098  -0.031  -0.282  
subject distance in 3. tertile (0.038)  (0.075)  (0.054)  (0.067)  (0.523)  

After death × treated × 0.013  0.090  -0.043  -0.006  0.597  
topic distance in 3. tertile (0.040)  (0.072)  (0.058)  (0.063)  (0.384)  

Log pseudo-likelihood -183,169  -50,859  -77,644  -51,820  -2,685  

No. of observations 251,756  75,993  109,817  62,350  3,596  

No. of dyads 16,802  5,038  7,311  4,208  245  

  Forward citations as dependent variable 

After death × treated -0.050  -0.125 ** 0.017  -0.070  -0.094  
 (0.035)  (0.043)  (0.048)  (0.052)  (0.211)  

After death × treated × -0.121 * 0.020  -0.161 * -0.204 * -0.353  
subject distance in 3. tertile (0.048)  (0.079)  (0.074)  (0.090)  (0.637)  

After death × treated × -0.010  -0.023  -0.119  0.092  0.865  
topic distance in 3. tertile (0.053)  (0.095)  (0.068)  (0.092)  (0.585)  

Log pseudo-likelihood -2,663,073  -761,129  -1,110,334  -746,954  -32,757  

No. of observations 251,736  75,993  109,797  62,350  3,596  

No. of dyads 16,800  5,038  7,309  4,208  245  

Tab. A.10: EFFECT HETEROGENEITY IN SUBJECT AND TOPIC SPACE 

Notes: The overall sample consists of 9,297 pairs of treated and control collaborators confined 
to a nine-year window around the (inherited) year of star death. The panel is equally unbalanced  
for treated and control collaborators. Both output measures are co-author adjusted. Forward 
citations are winsorized at the 99.9th percentile. Collaborators without variation in output over 
the observation period are dropped by the estimation routine. Field delineation is based on  
the stars’ publication profile or, if available, derived from the classification of the NAS. Robust 
standard errors are in parentheses, clustered at the level of the star. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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Overall: Article Count 

 

Overall: Forward Citations 

 

Life: Article Count 

 

Life: Forward Citations 

 

Health: Article Count 

 

Health: Forward Citations 

 

Physical: Article Count 

 

Physical: Forward Citations 
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Social: Article Count 

 

Social: Forward Citations 

 

Fig. A.1: EFFECT HETEROGENEITY IN SUBJECT SPACE, CONTINUOUS INTERACTION 

Notes: The panels plot the estimated treatment impact over the subject distance range from  
0-0.9. In theory, subject distance can reach values up to 1.41 (square root of 2). In practice, 
however, most distributions are characterised by a thin right tale. The 2.5th, 50th, and 97.5th 
percentiles are marked by dotted lines to provide reference points. Analogous to all former 
estimations, treatment impacts result from a Poisson model and thus require transformation  
to be interpreted as a percentage change (i.e., exponentiating and decreasing by one). Point 
estimates are depicted by solid blue lines and 95% confidence intervals are pictured as light 
blue areas. Any further estimation features and variable definitions are maintained from the 
main model. 

 

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

0.00 0.20 0.40 0.60 0.80

Impact

Subject distance
-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

0.00 0.20 0.40 0.60 0.80

Impact

Subject distance





  

Appendix B 
  

B.1 Geographical Depiction 

 

Fig. B.1: MAP OF UNIVERSITY AND COUNTRY COVERAGE 

Notes: University locations are marked by dots; their respective countries are highlighted in 
blue. Special territories of the European Union are omitted from display. 
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B.2 Cluster Number Evaluation 

In order to test our decision for four clusters, we consider a second heuristic, i.e., the  

Caliński-Harabasz index (also termed pseudo-𝐹𝐹). According to a comparative study by 

Milligan and Cooper (1985), this index performed best among 30 stopping rules and has  

since become a standard tool in clustering analysis. Technically, it combines compactness  

and separation in its formula, where the former term refers to similarity within clusters  

and the latter term to deviation between clusters. 

Tab. B.1: CLUSTER NUMBER EVALUATION BASED ON CALIŃSKI-HARABASZ APPROACH 

Notes: Pseudo-𝐹𝐹 values are averaged over 1,000 replications of 𝐾𝐾-means with random starting 
centres. “Best count” indicates how often a clustering solution was selected by this criterion. 

Consistent with our methodology outlined in Section 3.3.2, we ran the 𝐾𝐾-means algorithm  

1,000 times based on the same sequence of random starting centres. The results reported  

in Table B.1 favour four clusters given that the average Caliński-Harabasz index reaches a 

maximum for this configuration. In total, we observe a four-cluster solution being selected  

in 87.4% of our replications. On these grounds, our initial choice can be confirmed. 

  

Cluster No. 2 3 4 5 6 7 8 9 10 11 12 

Pseudo-𝐹𝐹 319.6 351.8 380.1 366.1 356.7 356.3 359.5 362.1 366.3 364.9 363.0 

Best count 0 0 874 2 2 12 0 0 100 6 4 
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B.3 Citation Window Analysis 

Within our model specification, we employ citations as an indicator of research impact.  

Since our data cover a citation window of three years, it is worth discussing if this time  

span complies with long-term impact. For this purpose, we traced our universities back to 

1996 and compiled a new dataset consisting of 184,766 publications. 

  

Fig. B.2: REGULAR AND ADJUSTED CITATION CURVES FOR PUBLICATIONS FROM 1996 BY FIELD 

Notes: Colouring refers to life (rose), health (green), physical (blue), and social (red) sciences. 

As a first step, we calculated citation curves, i.e., average annual citation counts, for the  

subset of publications with at least one citation over the 20-year period from 1996 to 2015. 

This subset comprises 86.18% of our initial data. As can be seen in the left-hand panel of 

Figure B.2, the curves of life, health, and physical sciences follow a similar shape, peaking 

between 1998 and 2000 followed by a steady decline. Citation counts in social sciences,  

on the contrary, continue to rise until 2012. From a theoretical standpoint, one might  

argue that this difference is primarily due to a slower pace of theoretical development 

(Nederhof, 2006). Interestingly, however, we find this pattern to be largely attributable  

to a higher growth rate of social sciences within the Scopus database. Once we deflate 

citation counts by field-specific growth rates, social sciences clearly becomes less of an 

exemption as illustrated by the right-hand panel of Figure B.2.60 

Our graphical depiction further reveals citations not only to differ in absolute terms but  

also regarding the way they mature. This finding could potentially raise concerns about  

the accuracy of using short-term citations as a predictor for long-term citations. In order  

to test this relation, we examine correlations between cumulative citation counts over 

                                                                 
60 Following Aizenman and Kletzer (2011), citations counts are divided by a time-varying index, defined as the 
number of publications in a given year relative to the number of publications in our base year 1996. Of course, 
indices are calculated separately for each field. Moreover, it should be noted that our adjustment is not based 
on the full Scopus database but on a comprehensive subset of 15.6 million publications. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

Regular Citation Curves

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

Adjusted Citation Curves



128 Appendix B 

increasing time spans, each starting in 1996, and total citation counts. Wang (2013) rightly 

points out that citation counts are far from being normally distributed, so that Spearman 

correlations are expected to be most reliable. Yet we also report Pearson correlations to  

allow comparison with previous studies, e.g., by Adams (2005) or Waltman et al. (2011). 

Tab. B.2: CORRELATION BETWEEN CUMULATIVE AND TOTAL CITATION COUNTS BY FIELD 

Notes: Cumulative citation counts span the period from 1996 up to and including the year given 
in the first column. Total citation counts cover 20 years (1996-2015). 

From Table B.2, we can infer that short-term citations vary in their accuracy as a proxy for 

long-term citations. In social sciences, for instance, it would require eight years to exceed  

a Spearman correlation of 0.9, whereas six years would suffice in life or health sciences.  

Of course, it is hard to define an acceptable level of correlation. However, we might be in  

a position to circumvent this question. In fact, our research design is not overly concerned  

about correlations on the publication level, given that we take an institutional perspective. 

Once we aggregate citations over universities, we discover a considerable increase in the 

degree of dependence between initial and overall citations (see Table B.3). Apparently, 

variation is largely cancelled out as becomes evident by almost perfect correlations in all  

four clusters. This result then leads us to conclude that relatively short citation windows 

indeed provide a reliable basis for our study. 

  

Year Life Sciences Social Sciences Physical Sciences Health Sciences 

 Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman 

1996 0.345 0.350 0.313 0.280 0.141 0.321 0.354 0.333 

1997 0.550 0.657 0.510 0.533 0.261 0.616 0.561 0.643 

1998 0.647 0.790 0.652 0.693 0.341 0.746 0.655 0.789 

1999 0.703 0.854 0.722 0.781 0.403 0.813 0.715 0.859 

2000 0.745 0.891 0.772 0.835 0.465 0.857 0.763 0.898 

2001 0.781 0.915 0.813 0.869 0.532 0.887 0.805 0.923 

2002 0.813 0.932 0.840 0.893 0.601 0.909 0.840 0.940 

2003 0.841 0.946 0.870 0.914 0.667 0.927 0.869 0.953 

2004 0.864 0.957 0.895 0.931 0.726 0.941 0.894 0.963 

2005 0.887 0.966 0.916 0.945 0.782 0.953 0.917 0.971 

2006 0.907 0.973 0.936 0.956 0.832 0.963 0.936 0.978 

2007 0.924 0.980 0.951 0.965 0.875 0.971 0.950 0.983 

2008 0.940 0.985 0.964 0.973 0.909 0.978 0.963 0.987 

2009 0.956 0.989 0.975 0.980 0.939 0.983 0.974 0.991 

2010 0.969 0.992 0.983 0.985 0.960 0.988 0.983 0.993 
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Tab. B.3: CORRELATION BETWEEN CUMULATIVE AND TOTAL CITATION COUNTS BY CLUSTER 

Notes: Cumulative citation counts span the period from 1996 up to and including the year given 
in the first column. Total citation counts cover 20 years (1996-2015). Citations are aggregated 
by institutions. 

  

Year Social Cluster Physical Cluster Health Cluster General Cluster 

 Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman 

1996 0.994 0.858 0.974 0.964 0.983 0.972 0.977 0.985 

1997 0.994 0.958 0.977 0.979 0.990 0.981 0.983 0.989 

1998 0.994 0.975 0.982 0.984 0.991 0.988 0.986 0.991 

1999 0.995 0.984 0.984 0.987 0.992 0.990 0.987 0.992 

2000 0.995 0.984 0.987 0.988 0.993 0.993 0.989 0.993 
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B.4 Additional Density Plots 

UK, Germany, and Italy constitute the three largest countries in our dataset with 120, 79,  

and 64 universities, respectively. Given these sample sizes, these countries are best suited 

for a cluster-specific comparison of density estimates. As illustrated in Figure B.3, UK is 

characterised by high efficiency levels across all clusters. With the exception of the social 

cluster, Italy also performs well, quite closely resembling UK’s distributions. Germany, in 

contrast, features consistently lower efficiency levels. Interestingly, Germany’s efficiency 

estimates are rather evenly distributed, thereby suggesting that the national landscape 

appears very heterogeneous from an efficiency standpoint. 

  

  

Fig. B.3: DENSITY ESTIMATES OF BIAS-CORRECTED EFFICIENCY SCORES BY CLUSTER AND COUNTRY 

Notes: United Kingdom (dark), Germany (medium), and Italy (light) are delimited by greyscale. 
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B.5 Silhouette Plots 

 

Fig. B.4: SILHOUETTE PLOTS BY CLUSTER 

  

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

H
ea

lth
 

 C
lu

st
er

 
Ph

ys
ic

al
  

Cl
us

te
r 

So
ci

al
 

Cl
us

te
r 

G
en

er
al

  
Cl

us
te

r 



132 Appendix B 

B.6 Time-Lag Regression Design 

Reverse causality is well known to hinder clear inference. In the present context, it may  

arise if universities become more successful in competing for third-party funds as a result  

of increased efficiency. We attempt to avoid this problem by using time-lagged variables.  

The idea behind this approach is that, within a given year, funding structures could be 

affected by efficiency; however, it is unlikely for past funding structures to be subject to  

the same problem. As this reasoning can also be applied to other variables, we universally  

employ a time lag of one year. Results of both the clustering and nearest neighbourhood 

approach are reported below. Overall, our main results are largely persistent. 

Variable  Social Cluster  Physical Cluster  Health Cluster  General Cluster 

Natural logarithm of bias-corrected efficiency score as dependent variable 

ln(GDP)  - 0.1559 **  0.1396 *  0.0691   - 0.0679  
  (0.0518)   (0.0687)   (0.0897)   (0.0395)  

Multisite  0.0492   0.1124 *  0.2030   0.0082  
  (0.0594)   (0.0479)   (0.1401)   (0.0234)  

Hospital  - 0.2850 *  - 0.0458   0.2840 ***  0.1085 *** 
  (0.1333)   (0.0581)   (0.0784)   (0.0255)  

ln(Size)  - 0.2105 ***  - 0.3369 ***  - 0.1014   - 0.1621 *** 
  (0.0536)   (0.0255)   (0.0599)   (0.0208)  

Herfindahl  0.0050 *  - 0.0026 **  - 0.0025   - 0.0041  
  (0.0024)   (0.0010)   (0.0019)   (0.0030)  

Prof  - 0.0209 *  - 0.0269 **  - 0.0619 ***  - 0.0106  
  (0.0086)   (0.0086)   (0.0170)   (0.0056)  

Female  0.0074 **  0.0051 *  0.0142 ***  - 0.0041 * 
  (0.0024)   (0.0023)   (0.0038)   (0.0016)  

International  0.0031   0.0023   - 0.0209 *  0.0001  
  (0.0024)   (0.0031)   (0.0087)   (0.0021)  

Thirdparty  - 0.0146 ***  - 0.0076 ***  - 0.0088 *  - 0.0075 *** 
  (0.0038)   (0.0016)   (0.0041)   (0.0016)  

Fees  0.0066 **  - 0.0041 *  - 0.0308 ***  - 0.0030 * 
  (0.0024)   (0.0018)   (0.0045)   (0.0013)  

No. of observations 134   225   106   487  

Tab. B.4: REGRESSION RESULTS, CLUSTERING APPROACH WITH TIME LAG 

Notes: Results are obtained from 1,000 bootstrap repetitions. Constants as well as time and 
country dummies are included but not reported. The model employs a one-year time lag, i.e., 
efficiency scores from year 𝑇𝑇 are regressed on explanatory variables from year 𝑇𝑇-1. Bootstrap 
standard errors are in parentheses. * 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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Variable  Social Cluster  Physical Cluster  Health Cluster  General Cluster 

Natural logarithm of bias-corrected efficiency score as dependent variable 

ln(GDP)  - 0.0661   0.1415 *  - 0.1244   - 0.0652  
  (0.0618)   (0.0713)   (0.0798)   (0.0363)  

Multisite  0.1631 *  0.1097 *  0.2766 *  0.0076  
  (0.0720)   (0.0486)   (0.1286)   (0.0223)  

Hospital  - 0.3313   0.0704   0.3884 ***  0.0870 *** 
  (0.1708)   (0.0647)   (0.0705)   (0.0249)  

ln(Size)  - 0.1798 **  - 0.3396 ***  - 0.0404   - 0.2133 *** 
  (0.0638)   (0.0278)   (0.0556)   (0.0208)  

Herfindahl  0.0010   - 0.0027 *  0.0003   - 0.0050  
  (0.0028)   (0.0011)   (0.0016)   (0.0030)  

Prof  - 0.0133   - 0.0349 ***  - 0.0371 *  - 0.0104  
  (0.0110)   (0.0088)   (0.0151)   (0.0054)  

Female  - 0.0029   0.0071 **  0.0149 ***  - 0.0046 ** 
  (0.0028)   (0.0025)   (0.0033)   (0.0016)  

International  - 0.0012   0.0034   - 0.0240 **  0.0000  
  (0.0028)   (0.0033)   (0.0078)   (0.0019)  

Thirdparty  - 0.0134 **  - 0.0083 ***  - 0.0044   - 0.0073 *** 
  (0.0046)   (0.0018)   (0.0034)   (0.0015)  

Fees  0.0106 ***  - 0.0043 *  - 0.0231 ***  - 0.0024  
  (0.0028)   (0.0020)   (0.0036)   (0.0013)  

No. of observations 134   225   106   487  

Tab. B.5: REGRESSION RESULTS, NEAREST NEIGHBOURHOOD APPROACH WITH TIME LAG 

Notes: Results are obtained from 1,000 bootstrap repetitions. Constants as well as time and 
country dummies are included but not reported. The model employs a one-year time lag, i.e., 
efficiency scores from year 𝑇𝑇 are regressed on explanatory variables from year 𝑇𝑇-1. Bootstrap 
standard errors are in parentheses. * 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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C.1 Robustness Checks 

Variable PROBIT HETLOGIT LOGIT 2010 

QPT single project funding as binary dependent variable 

ln(Thirdparty) 0.4363 *** 0.8617 ** 0.5658 ** 
 (0.1046)  (0.2908)  (0.1736)  

STEM 0.9645  2.3626  1.5210  
 (0.5024)  (1.3854)  (0.8146)  

ln(Fees) -0.3249  -0.6086  -0.6070  
 (0.6107)  (1.3843)  (0.8960)  

Abolition -0.8251  -1.7564  -1.2559  
 (0.4690)  (1.1987)  (0.7526)  

ln(Fees) × Abolition 1.2659  2.4749  2.2093  
 (1.0133)  (2.2651)  (1.5686)  

West -0.1144  -0.2481  -0.2966  
 (0.2990)  (0.6454)  (0.5021)  

University -0.5537  -0.8157  -0.3265  
 (0.3999)  (0.8694)  (0.6047)  

Education 1.8096 ** 3.4925 * 2.6667 * 
 (0.6944)  (1.6836)  (1.2407)  

Music 0.6752  1.6671  1.1100  
 (0.4535)  (1.1687)  (0.7584)  

Excellence -0.2689  -0.2319  -0.2950  
 (0.4180)  (1.1228)  (0.7368)  

ln(Size) 0.3919 ** 0.8681 * 0.6991 *** 
 (0.1308)  (0.3966)  (0.2103)  

ln(Teachratio) -0.4174  -0.6566  -0.8461  
 (0.3395)  (0.7350)  (0.5699)  

ln(Basic) 0.2797  0.8333  0.2178  
 (0.2824)  (0.7891)  (0.4398)  

Pseudo R2 0.2570  0.2599  0.2325  
F test / Wald test 0.0000  0.0128  0.0000  
No. of observations 250  250  250  

Tab. C.1: RESULTS OF REGRESSION VARIANTS 

Notes: The PROBIT column refers to a probit model. The HETLOGIT column refers to a logit 
model that permits the residual variance to differ according to 𝑙𝑙𝑐𝑐(𝑇𝑇ℎ𝑖𝑖𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦). The LOGIT 
2010 column refers to a logit model that utilises data from 2010. All remaining features are 
adopted from the main model. Moreover, constants are included but not reported. Pseudo R2 
is computed according to McFadden (1973). Robust standard errors are in parentheses. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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Variable PROBIT HETLOGIT LOGIT 2010 

QPT single project funding as binary dependent variable 

ln(Thirdparty) 0.1206 *** 0.0997 ** 0.0949 *** 
 (0.0270)  (0.0330)  (0.0277)  

STEM 0.2665 * 0.2988 * 0.2551  
 (0.1356)  (0.1382)  (0.1326)  

ln(Fees) 0.0401  -0.0770  0.0363  
 (0.1355)  (0.1809)  (0.1237)  

Abolition -0.1218  -0.2222  -0.0977  
 (0.0723)  (0.1312)  (0.0744)  

ln(Fees) × Abolition 0.3679  0.3130  0.3932  
 (0.3337)  (0.2862)  (0.3380)  

West -0.0313  -0.0314  -0.0490  
 (0.0809)  (0.0848)  (0.0809)  

University -0.1459  -0.1032  -0.0543  
 (0.0979)  (0.1212)  (0.0994)  

Education 0.3186 *** 0.4417 * 0.2940 *** 
 (0.0625)  (0.2035)  (0.0737)  

Music 0.1605  0.2109  0.1581  
 (0.0889)  (0.1230)  (0.0874)  

Excellence -0.0752  -0.0293  -0.0501  
 (0.1177)  (0.1436)  (0.1265)  

ln(Size) 0.1083 ** 0.1098 ** 0.1173 *** 
 (0.0346)  (0.0354)  (0.0331)  

ln(Teachratio) -0.1154  -0.0830  -0.1419  
 (0.0937)  (0.0995)  (0.0954)  

ln(Basic) 0.0773  0.1054  0.0365  
 (0.0775)  (0.0795)  (0.0737)  

No. of observations 250  250  250  

Tab. C.2: AVERAGE MARGINAL EFFECTS OF REGRESSION VARIANTS 

Notes: The PROBIT column refers to a probit model. The HETLOGIT column refers to a logit 
model that permits the residual variance to differ according to 𝑙𝑙𝑐𝑐(𝑇𝑇ℎ𝑖𝑖𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦). The LOGIT 
2010 column refers to a logit model that utilises data from 2010. All remaining features are 
adopted from the main model. Robust standard errors are in parentheses. 
* 𝑒𝑒 < 0.05, ** 𝑒𝑒 < 0.01, and *** 𝑒𝑒 < 0.001. 
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