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Zusammenfassung

Die Entwicklung von Synchrotronlichtquellen der dritten Generation hat
die Grundlage für die Untersuchung der 3D-Struktur opaker Proben mit einer
Auflösung im Mikrometerbereich und höher geschaffen. Dies führte zur Entwick-
lung der Röntgen-Synchrotron-Mikro-Computertomographie, welche die Schaf-
fung von Bildgebungseinrichtungen zur Untersuchung von Proben verschiedens-
ter Art förderte, z.B. von Modellorganismen, um die Physiologie komplexer le-
bender Systeme besser zu verstehen. Die Entwicklung moderner Steuerungssys-
teme und Robotik ermöglichte die vollständige Automatisierung der Röntgen-
bildgebungsexperimente und die Kalibrierung der Parameter des Versuchsauf-
baus während des Betriebs. Die Weiterentwicklung der digitalen Detektorsyste-
me führte zu Verbesserungen der Auflösung, des Dynamikbereichs, der Emp-
findlichkeit und anderer wesentlicher Eigenschaften. Diese Verbesserungen führ-
ten zu einer beträchtlichen Steigerung des Durchsatzes des Bildgebungsprozes-
ses, aber auf der anderen Seite begannen die Experimente eine wesentlich größere
Datenmenge von bis zu Dutzenden von Terabyte zu generieren, welche anschlie-
ßend manuell verarbeitet wurden. Somit ebneten diese technischen Fortschrit-
te den Weg für die Durchführung effizienterer Hochdurchsatzexperimente zur
Untersuchung einer großen Anzahl von Proben, welche Datensätze von besserer
Qualität produzierten. In der wissenschaftlichen Gemeinschaft besteht daher ein
hoher Bedarf an einem effizienten, automatisierten Workflow für die Röntgenda-
tenanalyse, welcher eine solche Datenlast bewältigen und wertvolle Erkenntnisse
für die Fachexperten liefern kann. Die bestehenden Lösungen für einen solchen
Workflow sind nicht direkt auf Hochdurchsatzexperimente anwendbar, da sie für
Ad-hoc-Szenarien im Bereich der medizinischen Bildgebung entwickelt wurden.
Daher sind sie nicht für Hochdurchsatzdatenströme optimiert und auch nicht in
der Lage, die hierarchische Beschaffenheit von Proben zu nutzen.

Die wichtigsten Beiträge der vorliegenden Arbeit sind ein neuer automatisierter
Analyse-Workflow, der für die effiziente Verarbeitung heterogener Röntgenda-
tensätze hierarchischer Natur geeignet ist. Der entwickelte Workflow basiert auf
verbesserten Methoden zur Datenvorverarbeitung, Registrierung, Lokalisierung
und Segmentierung. Jede Phase eines Arbeitsablaufs, die eine Trainingsphase
beinhaltet, kann automatisch feinabgestimmt werden, um die besten Hyperpara-
meter für den spezifischen Datensatz zu finden. Für die Analyse von Faserstruk-
turen in Proben wurde eine neue, hochgradig parallelisierbare
3D-Orientierungsanalysemethode entwickelt, die auf einem neuartigen Konzept
der emittierenden Strahlen basiert und eine präzisere morphologische Analyse
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ermöglicht. Alle entwickelten Methoden wurden gründlich an synthetischen Da-
tensätzen validiert, um ihre Anwendbarkeit unter verschiedenen Abbildungs-
bedingungen quantitativ zu bewerten. Es wurde gezeigt, dass der Workflow in
der Lage ist, eine Reihe von Datensätzen ähnlicher Art zu verarbeiten. Darüber
hinaus werden die effizienten CPU/GPU-Implementierungen des entwickelten
Workflows und der Methoden vorgestellt und der Gemeinschaft als Module für
die Sprache Python zur Verfügung gestellt.

Der entwickelte automatisierte Analyse-Workflow wurde erfolgreich für Mikro-
CT-Datensätze angewandt, die in Hochdurchsatzröntgenexperimenten im Bereich
der Entwicklungsbiologie und Materialwissenschaft gewonnen wurden. Insbe-
sondere wurde dieser Arbeitsablauf für die Analyse der Medaka-Fisch-Datensätze
angewandt, was eine automatisierte Segmentierung und anschließende morpho-
logische Analyse von Gehirn, Leber, Kopfnephronen und Herz ermöglichte. Dar-
über hinaus wurde die entwickelte Methode der 3D-Orientierungsanalyse bei der
morphologischen Analyse von Polymergerüst-Datensätzen eingesetzt, um einen
Herstellungsprozess in Richtung wünschenswerter Eigenschaften zu lenken.
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Abstract

The development of the third-generation synchrotron light sources has estab-
lished the foundation for the investigation of the 3D structure of opaque sam-
ples at micrometer resolution and higher. That led to the development of X-ray
synchrotron micro-computed tomography which promoted the creation of imag-
ing setups aimed at the investigation of samples of diverse nature, for example,
model organisms to better understand the physiology of complex living systems.
The development of modern control systems and robotics allowed for the com-
plete automation of the X-ray imaging experiments and calibrating the experi-
mental setup parameters on the fly. The advancement of digital detector systems
prompted enhancements in resolution, dynamic range, sensitivity, and other es-
sential characteristics. These improvements resulted in a substantial increase in
the throughput of the imaging process, but on the other side, experiments started
to produce a substantially increased amount of data up to dozens of terabytes that
were processed manually afterward. Thus, these technical advancements paved
the way for carrying out more efficient high-throughput experiments to study a
large number of samples producing datasets of better quality. Thereby, in a scien-
tific community is a high demand for an efficient automated X-ray data analysis
workflow that could cope with such data burden and provide valuable insights
for the domain experts. The existing solutions for such a workflow are not di-
rectly applicable to high-throughput experiments since they were developed for
ad-hoc scenarios in the medical imaging domain. Therefore, they are not opti-
mized for high-throughput data streams and incapable to exploit the hierarchical
nature of samples.

The major contributions of the present thesis are a new automated analysis work-
flow suited for efficient processing of heterogeneous X-ray datasets having hi-
erarchical nature. The developed workflow is based on improved cutting-edge
methods aimed at data pre-processing, registration, localization, and segmenta-
tion. Every stage of a workflow involving a training phase can be automatically
fine-tuned to find the best hyper-parameters for the specific dataset. To address
the analysis of fibrous structures in samples, a new highly parallelizable 3D ori-
entation analysis method was developed based on a novel concept of emitting
rays, which allowed for more precise morphological analysis. All the developed
methods were thoroughly validated on synthetic datasets to quantitatively as-
sess their applicability in different imaging conditions. It was shown that the
workflow is able to process a series of datasets of similar nature. Moreover, the
efficient CPU/GPU implementations of the developed workflow and methods
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were presented and made available for the community as modules for Python
language.

The developed automated analysis workflow was successfully applied for micro-
CT datasets acquired in high-throughput X-ray experiments in the field of de-
velopmental biology and material science. In particular, this workflow was ap-
plied for the analysis of the medaka fish datasets, which allowed for automated
segmentation and subsequent morphological analysis of the brain, liver, head
nephrons, and heart. Moreover, the developed 3D orientation analysis method
was employed in the morphological analysis of polymer scaffolds datasets to
guide a fabrication process towards desirable properties.
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1. Introduction

1.1. Motivation

Man always was curious about the world of tiny insects and things, whose details
were hidden from the naked eye. Soon, these perception limits were overcome
by discovering lenses during the Roman period. The people were experimenting
with various shapes of glass, and it was observed that the thick in the middle and
thin on the edges glass could magnify an object. However, they were forgotten
and not used much for centuries, and were recalled only at the end of the 13th cen-
tury by spectacle makers who were producing glasses made of a pair of lenses. It
is the time when the earliest microscopes emerged being just magnifying glasses
with a constant power of 6-10x. It was called as "flea glasses" because, at that
time, fleas and other small insects were favorite subjects for observations. At the
end of the 16th century, two spectacle makers, Zaccharias Janssen and his father
Hans during experimenting with lenses made a significant discovery [1]. They
placed several lenses in a tube and observed that such combination of lenses pro-
vides much higher magnification than a single lens. Although, their microscope
can hardly be called a scientific tool because the magnification power was still too
small, around 9x and images were somewhat blurry. The world’s first practical
microscope was invented by Antony Van Leeuwenhoek, a draper, and scientist.
His microscope was hand-held and had a single lens [2]. The secret was a supe-
rior lens which he made by grinding and polishing a small glass ball, providing
magnification of 270x, the finest known at that time. This microscope allowed
people to see things that no one had ever seen before like yeast, blood cells, bac-
teria and many tiny animals swimming in a drop of water. Until that time people
did not realize that magnification can reveal previously hidden structures, and
change minds about the complexity of the world, that all life might be made up
of tiny pieces unseen by the naked eye. In the middle of the 17th century, Robert
Hooke had improved the microscope by use of a three-lens configuration, which
allowed him to discover a basic unit of life, a cell. All early microscopes pro-
vide quite distorted images due to glass quality and imperfections of lenses [2].
During the 19th century, vast improvements in quality had been made by Zeiss
and Charles Spencer companies producing fine optical instruments [3]. However,
soon the development of microscopes was slowed down since physical princi-
ples of optics were well understood, and the limits of optics were reached. After
that, the majority of produced microscopes follow similar construction principles
which inherent in monocular or binocular microscopes. The optical microscope
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1. Introduction

was mainly used for imaging sectioned or transparent samples. However, soon a
discovery will permit investigations of opaque samples.

In the last years of the 19th century, Wilhelm Röntgen discovered a phenomenon
which will change the world and effect on all fields of life and science [4]. The
discovery of X-rays called in honorous of Röntgen, allowed for non-invasive in-
vestigations of living organisms and non-destructive control of materials. Within
a few years, these rays became a traditional medical tool for a more efficient treat-
ment of broken bones, discovering pathologies, diagnostic and therapeutic pur-
poses in various medical disciplines. In the next year after discovery, Thomas
Eddison developed the fluoroscope which became the standard for medical X-
ray experimentation. In the same year, Hall-Edwards performed a surgical oper-
ation with the help of X-rays. A decade after the discovery, the physicist Charles
Barkla found that gases could scatter X-rays and that each element has a charac-
teristic X-ray spectrum. The unique properties of this radiation were proactively
applied in numerous areas of human life, for instance, as an assisting tool for
the fitting of shoes in retail shoe stores. In the next decade, the initial step to-
wards cross-sectional imaging has been done by Johann Radon, who established
the mathematical basis for the reconstruction of a three-dimensional (3D) object
from an infinite number of two-dimensional (2D) projections of this object. Later,
these principles were applied by Godfrey Hounsfield and Allan Cormack in their
the world’s first computed tomography (CT) scanner [5]. Further advances in
physics will stimulate the birth of other imaging modalities as Magnetic reso-
nance imaging (MRI), Positron-emission tomography (PET), Single-photon emis-
sion computed tomography (SPECT), and others, which successfully will have
found their place in the medical domain.

A couple of decades after the discovery of X-rays, physicists have gained interest
in the radiation as an energy-loss mechanism, and magnetic induction electron
accelerators producing intense beams of X-rays have been built. The synchrotron
radiation was accidentally discovered in the middle of the 20th century at Gen-
eral Electric (GE) cyclotron because the machine was not entirely shielded and
the coating of the doughnut-shaped electron tube was transparent that allowed
a technician unintentionally see sparking in the tube with a large mirror. The re-
search group quickly understood his observation of a bright arc of light coming
from the electron beam [4]. Afterward, some improvements were introduced to
cope with the disadvantages of cyclotrons for imaging purposes, which resulted
in the modern third-generation synchrotron light sources providing the charac-
teristics of the beam greatly superior to laboratory X-ray sources.

The discovered X-ray source provided a significantly higher brilliance and pho-
ton flux that allowed for much shorter acquisition time to acquire the data of a
comparable quality to conventional X-ray sources that have a low number of in-
coming photons, poor focusing, and non-parallel geometry. The third-generation
synchrotron light sources have established the basis for investigation of the 3D
structure of opaque samples at micrometer resolution and higher. That led to the
emergence of X-ray synchrotron micro-computed tomography (SR-µCT) which
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promoted the creation of tailored imaging setups aimed at investigation of sam-
ples of different nature.

It was widely applied for revealing of 3D structures of biological samples from
many species of organisms including human, mouse, fish, worm, and insect.
In material science, it allowed for the identification of internal material inho-
mogeneities, assessment of internal defects and damage, and investigation of
microstructural-property relationships.

Evolution of digital electronics allowed for rapid development and improvement
of digital detectors in resolution, dynamic range, sensitivity, and others charac-
teristics, which are exceptionally important for any imaging setup. The modern
detectors have a significantly higher number of pixels than predecessors, allowed
to acquire more information on radiograms, a better resolution to capture finer
details, improved sensitivity of pixels and dynamic range enabling to detect even
subtle variations in absorption of a specimen matter. However, another side of
such improvements is a significantly increased size of each projection image.

The emergence of modern control systems and advances in robotics allowed for
automation of sample change, systems of servo motors to adaptively control a
position of a sample and all components involved in the experiment [6]. Thus,
series of samples can be studied without visiting the experimental room, which
is essential for investigation of specimens which are sensitive to even a subtle
change of environmental conditions, evaluation of the phenotype-genotype asso-
ciation, and drug action on morphometry of internal structures of living organ-
isms. These advances allow managing the whole imaging process automatically
and adjusting the experimental parameters on the fly, which leads to dramatically
increase of the throughput of imaging setup and, as a consequence of the amount
of produced data which must be processed after the experiment.

To obtain valuable information from the acquired data, it should be processed
and analyzed first by the experts in the field such as biologists, doctors, material
scientists, physicists, and others. The analysis of such data usually consists of a
delineation of sample structures to make the further morphological analysis of
structures and density of matter possible. The delineation process is called seg-
mentation, and it allows partitioning data into distinct sets of pixels or voxels,
so-called labels, describing shapes of target structures. Such a representation fa-
cilitates quantitative analysis of structures, which consists of finding the volume,
surface, density, etc. However, segmentation is one of the hardest tasks in the im-
age analysis field, since it requires precise delineation of structures at each slice of
data. For example, an experienced biologist could easily spend days and weeks
on segmentation of data representing a highly detailed part of a sample [7].

Thus, experiments involving a few samples usually do not demand complete
automation of data analysis since sometimes treat them manually or semi-
automatically is quicker. However, the data produced in the result of high-
throughput scanning experiments are impossible to be processed manually, es-
pecially in a phenotype-genotype association, and drug action on the morphom-
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etry of living organisms, where the number of samples exceeds hundreds. That
creates an urgent need for efficient automated data analysis workflows able to
handle such an immense amount of data.

1.2. X-ray computed tomography

1.2.1. History of synchrotron radiation

The synchrotron radiation generated by relativistic electrons in circular accelera-
tors was born a few years after the Second World War. However, the beginning of
synchrotron radiation started from the discovery of the electron in 1897 by John
Thomson, which laid the theoretical basis for further development. In the same
year, the French physicist Joseph Larmor derived an expression from classical
electrodynamics for the total power radiated by an accelerated charged particle.
Soon after, Alfred Liénard demonstrated that electrons moving along a circular
path emit the power proportional to (E/mc2)4/R2, where E is the kinetic energy
of electrons, m is the electron rest mass, and R is the trajectory radius.

Figure 1.1.: The first-ever observation of synchrotron light from the 70 MeV electron syn-
chrotron at General Electric Research Laboratory. Reproduced from [8].

The first time synchrotron radiation was detected at cyclotron (Fig. 1.1) of the
General Electric Research Laboratory in Schenectady (New York) on 24 April
1947. Since this was the first time, the phenomenon was not immediately rec-
ognized and understood. Here is the fragment of a letter dated 25 September
1970 from Herb C. Pollock to Dmitri Ivanenko describing this event after almost
20 years later:

On April 24, Langmuir and I were running the machine and as usual were
trying to push the electron gun and its associated pulse transformer to the
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limit. Some intermittent sparking had occurred and we asked the technician
to observe with a mirror around the protective concrete wall. He immedi-
ately signaled to turn off the synchrotron as ‘he saw an arc in the tube.’ The
vacuum was still excellent, so Langmuir and I came to the end of the wall
and observed. At first we thought it might be due to Cerenkov radiation,
but it soon became clearer that we were seeing Ivanenko and Pomeranchuk
radiation.

The observed phenomenon of synchrotron radiation was predicted by two Rus-
sian physicists D. Ivanenko and I. Pomeranchuk in 1944 [9], and several years
later was experimentally confirmed and formally described [10]. In the begin-
ning, the synchrotron radiation was treated as an unwanted but unavoidable loss
of energy in magnetic induction electron accelerators designed to produce intense
beams of X-rays by directing an accelerated beam to an appropriate target. In
1956, Diran Tomboulian and Paul Hartman were granted for two-weeks access to
the 300 MeV Cornell Synchrotron to conduct some experiments to investigate op-
portunities for further application of synchrotron light. Despite the limited time,
they reported on potential advantages of using such X-ray sources, presented the
experimental setup and photographic-plate in their paper [11], demonstrating the
broadband synchrotron radiation emitted by monoenergetic electrons [11].

However, despite the advantages of synchrotron light source which the Cornell
scientists highlighted in their work, only five years later an experimental pro-
gram exploiting synchrotron radiation began. The National Bureau of Standards
(now National Institute of Standards and Technology) modified its 180-MeV syn-
chrotron in Washington, D. C. to allow access to the radiation through a tangent
section into the machine’s vacuum system. It was a birth of Synchrotron Ultravi-
olet Radiation Facility (SURF I), the first facility providing access to X-ray source
for external users.

The first generation of synchrotron radiation sources was usually referred to as
parasitic facilities, mainly due to the primary users of these facilities of that time,
since the synchrotrons initially were designed for high-energy or nuclear physics
experiments. Along with SURF I, facilities in Frascati and Japan soon after launch
began to attract regular physicists eager to explore the capabilities of synchrotron
radiation. In the beginning, experiments were conducted in the ultraviolet and
soft X-ray modes, because most of these early facilities had storage-ring energies
around 1 GeV. In 1964, the Deutsches Elektronen-Synchrotron (DESY) with the
storage-ring of 6 GeV in Hamburg opened the doors for the first users, providing
the extended energy spectrum up to the hard x-ray regions down to 0.1 Å(about
125 keV). Many other facilities started to attract synchrotron radiation users, one
of the first was the 240 MeV Tantalus synchrotron in Wisconsin. Even though it
was not originally designed to supply synchrotron radiation, it became the first
facility exclusively providing the beam for synchrotron experiments.

The advances in the engineering of efficient electron storage rings optimized for
the long-term operation were a catalyst for the development of the first dedi-
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cated facilities aimed exclusively at synchrotron radiation. The first such facility
was the 2 GeV Synchrotron Radiation Source (SRS) at Daresbury, England and
experiments began in 1981. Due to introduced improvements in design, these
facilities started to call as "second-generation" synchrotron light sources. As time
passed, many new facilities were built and commissioned, while some of the first-
generation synchrotrons were upgraded to second-generation.

After the invention of the second-generation facilities, it became clear that en-
hancement of X-ray beam brilliance could be achieved by optimizing of "emit-
tance" property of the electron beam with the specialized devices as the array of
magnets (the "magnet lattice") intended to manipulate the beam, and so-called
"insertion devices". Among them are "wigglers" and "undulators", they are sit-
uated in the straight sections in between the curved arcs of storage rings. They
function by perturbing the path of the electrons in an oscillatory manner, pro-
ducing synchrotron radiation without effect on their average direction. The inte-
gration of insertion devices into storage rings marked the beginning of the third-
generation of synchrotron sources, which were designed to provide optimal bril-
liance. The first implementation of the specification for third-generation facilities
was done at the 6 GeV European Synchrotron Radiation Facility (ESRF) in Greno-
ble, France, which began operating in 1994.

At the moment, the most recent third-generation facilities are the National Syn-
chrotron Light Source II (NSLS II) at the Brookhaven National Laboratories in
Upton, New York, and MAX IV in Lund, Sweden. Construction of these facili-
ties was started almost at the same time, NSLS II in 2009 and MAX IV in 2010.
The facilities enable the study of material properties and functions at nanoscale
resolution, providing world-leading capabilities for X-ray imaging. These signif-
icant improvements were made possible by recent advances in the construction
of magnets for storage rings.

The development of the fourth-generation of synchrotron facilities has already
begun. These facilities will be defined by a vastly enhanced performance, es-
pecially concerning the coherence and brilliance of the X-rays, using so-called
energy recovery linacs (ERLs), and free electron lasers (FELs). With the help of
them, the peak brilliance can be improved a further three and ten orders of mag-
nitude using ERLs and FELs respectively. At the moment, the Linac Coherent
Light Source (LCLS) at Stanford, and the FLASH and European XFEL facilities at
Hamburg are presently on the way to this goal.

1.2.2. Synchrotron construction

The third-generation synchrotron light sources are characterized by their highly
parallel and narrow X-ray beams of high intensity, moreover, all their parameters
can be expressed via a single "brilliance" property. Another essential characteris-
tic is the energy of the electrons moving within the storage ring and generating
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1.2. X-ray computed tomography

the synchrotron radiation, in its turn, it influences on the spectrum of photon en-
ergies that facility can cover. The schematic depiction of the main components of
a synchrotron is presented in Fig. 1.2.

Figure 1.2.: The schema of the essential components of any modern synchrotron light
source. Electrons produced by a heated filament in an electron gun are accelerated in
a linear accelerator (linac) and transmitter into a booster ring, where they continue ac-
celeration. After that, they are injected into the so-called storage ring, where they are
circulating in a closed path with the help of bending magnets at arc sections. The beam-
lines use the radiation emitted from the bending magnets and insertion devices (wigglers
and undulators). The energy loss of electron due to the emission of synchrotron radiation
is replenished by a radio frequency (RF) supply.

1. The source of electrons is an electron gun, where thermionic emission from
a hot filament usually generates the electrons. Then, they are accelerated
with a linear accelerator (linac) to approximately 100 MeV. Since electrons
collide with residual gas particles in the storage ring and regularly get lost,
it is necessary to produce them continuously.

2. The electrons from the linac are injected into a booster ring where they are
accelerated. The target energy for acceleration might either be equal to the
energy in the main storage ring or to some lower energy. When the tar-
get energy is reached, they are periodically injected into the storage ring to
maintain the specified storage ring current.

3. Electrons circulate inside the storage ring where they are being maintained
on a closed path by an array of magnets, which is usually referred to as
the "magnet lattice" of the ring. The most commonly used magnets are
dipole- or bending magnets which induce the electrons to change their path
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and follow the closed path, quadrupole magnets focus the electron beam
and compensate for Coulomb repulsion between the electrons, and sex-
tupole magnets correct chromatic aberrations caused by the focusing by the
quadrupoles (Fig. 1.3).

Figure 1.3.: The components of the magnet lattice used at the KIT synchrotron light
source. (a) Bending- or dipole magnets which force electrons to travel along a curved
path, thereby emitting synchrotron radiation. (b) A focusing quadrupole magnet and (c)
a correcting sextupole magnet.

The storage ring comprises arced sections containing bending magnets
(BMs), and straight sections which host insertion devices (IDs) providing
the most intense synchrotron radiation. The BMs deviate the electrons
so that they move along the arced sections that connect the straight parts
which are also used to provide bending-magnet radiation, although their
brilliance is significantly lower than that produced by IDs.

4. Due to the emission of synchrotron radiation, the electrons lose energy. To
replenish this energy, a radio frequency (RF) supply is used, which supplies
the electrons with the extra amount of energy every time they pass through
it.

5. The beamlines are placed along the axes of the insertion devices, which are
tangentially connected to the bending magnets of the storage ring. When
the beam comes to the beamline, at first it goes through the "front end",
which isolates the beamline vacuum from the storage ring vacuum, it con-
trols the position of the beam, blocks the X-ray and Bremsstrahlung radia-
tion. The next section of the beamline contains the optics and experimental
hutches, and it allows to filter out the low-energy tail of the synchrotron
radiation spectrum, which can easily damage the optical components due
to strong absorption. Then, the beam is focused and monochromated (if
required), before it enters the experimental hutch. To protect the users not
only from X-rays but also from gamma rays and high-energy neutrons, the
hutch is usually shielded with lead-lined, thick concrete. Therefore, the ex-
periments are performed remotely from the radiation-free area.
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1.2. X-ray computed tomography

1.2.3. Advantages of synchrotron-based X-ray setups over
laboratory CT systems

The laboratory computed tomography (CT) systems are becoming more afford-
able for private companies, and research institutes than the synchrotron light
sources, which are only a few in a country and perspective users require to
pass special procedures to get the access. In comparison to the synchrotron X-
ray facilities, they are typically operating with the cone beam geometry using
the raw spectrum of the X-ray source, whereas synchrotron-based CT setups can
do measurements using monochromatic X-rays with a parallel beam geometry
(Fig. 1.4).

Figure 1.4.: The projection geometries of (a) synchrotron-based X-ray setup and (b) labo-
ratory CT system, the latter produces a cone beam and enables to adjust the magnification
and spatial resolution of the sample by changing its position on the X-ray optical path.
Whereas, in the synchrotron-based X-ray setups, the magnification can be only achieved
by modification of the optical system, and the distance between the sample and the scin-
tillator influences on the severity of phase-contrast effects.

The synchrotron light sources provide three the most significant advantages over
the laboratory CT systems, namely, the wide energy range (4–200 keV), high flux
and small source size and beam divergence. Due to these properties, thick and
dense samples can be examined in a shorter period. Moreover, the features of
spatial coherence make possible to use phase-contrast techniques for imaging of
weakly absorbing materials. The high photon flux enables to do monochromatic
beam imaging with very narrow energy bandwidths (∆E/E ∼ 102 − 104), that is
helpful for quantitative absorption and phase imaging, and for imaging close to
absorption edges of specific chemical elements. The synchrotron-based CT setups
provide 10–100 times faster data acquisition for comparable spatial resolutions.
The laboratory CT systems are still struggling to go below of 5 µm spatial resolu-
tion. Therefore, for the analysis of the soft-tissue morphology of millimeter-sized
living samples, where phase-contrast and submicron-level spatial resolution are
required, the synchrotron light sources are the only solution.
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1.3. Experiment design

1.3.1. Synchrotron-µCT imaging process

The experimental setup, which is usually implemented at beamlines for the ac-
quisition of synchrotron-µCT (SR-µCT) data is depicted in Fig. 1.5. The sample
rotates 180/360° with the constant speed around the axis perpendicular to the in-
cident X-ray beam. The signal produced by attenuation of the beam transmitted
through the sample is recorded at regular intervals during the rotation with the
help of a scintillator, an optics setup, and a digital detector.

Figure 1.5.: The principle of X-ray computed tomography. A parallel beam of X-rays
passes through a sample and falls on a scintillator to transform X-rays into visible light,
which can be optionally magnified with a lens system onto a CCD detector. The responses
from each row of pixels are collected at each rotation step into a stack to form the so-called
sinogram, which is then fed into a computer. Then, a cross-section is reconstructed from
a given sinogram at the corresponding height level using tomographic reconstruction
algorithms. Finally, the 3D reconstruction is created from a stack of cross-sections.

The geometric resolution of the acquired data depends on several factors, namely
the point-spread function of the scintillator, the magnification factor of the optics
setup M , the signal-to-noise ratio of the detector, and the linear pixel size ∆ and
the point-spread function of the detector. The minimal number of projections
Nmp which must be recorded is determined with the help of the Nyquist-Shannon
sampling theorem and is equal to

Nmp =
Npxπ

2
, (1.1)

where Npx is the number of pixels in the row. The reconstructed object cross-
section also known as a slice is produced from each row of a detector. The signal
response of the Npx pixels from each row is collected at each rotation position,
which can be presented as a function of rotation angle from the response, known
as a sinogram (Fig. 1.6). The response of a detector pixel is proportional to the in-
tensity of the transmitted X-rays that hit it after passing through the object along
a path Lray = M∆z, that is

I = I0 e
−µ1∆z e−µ2∆z e−µ3∆z . . . e−µM∆z (1.2)
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I = I0 exp
M∑
k=1

µk∆z. (1.3)

The projection p for a given pixel at a given angle is determined as:

p = − ln
I

I0

=
M∑
k=1

µk∆z ≈
∫
Lray

µzdz. (1.4)

Figure 1.6.: The process of generating sinogram. An example of (d) a simple sinogram
generated in the result of rotation around 180° (a) three absorbing blocks touching each
other by corners. The representative transmission profiles at three symmetrical angles of
0°, 45°, 135°, which corresponds to 0th, 45th and 135th rows of the sinogram in a case of
1° rotation step. One of the tomograms acquired from (b) the top part of medaka fish,
(c) the sinogram created by collecting rows of pixels from each tomogram marked by an
orange line, and (e) the reconstructed slice from the corresponding sinogram.
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To reconstruct the attenuation distribution of the entire object, the line integrals
for different angles for every pixel must be collected. Every slice is reconstructed
from its respective sinogram using the preferable reconstruction algorithm. The
most popular method is filtered back projection (FBP) [12], which is based on the
Radon transform proposed by Johann Radon in 1917 [5].

The basic idea of FBP is presented in Fig. 1.7, there is a centered 2D absorbing disc.
At the first step, the absorption profile of X-ray is collected in one direction. Then,
this projection is run back through the image, whereby the projection intensity is
evenly distributed among all the pixels along each ray path. It is done for a full
set of projection angles spanning 180°. As a result, the projection of each respec-
tive angle is back projected and added to the image. The reconstruction quality
can be improved by decreasing the angular step, which increases the number of
acquired projections, and subsequently, the resemblance of the result of overlap-
ping to the original object (Fig. 1.7). The plain back projection does not work well
because it causes significant distortions in the reconstruction due to overlapping
projections producing starlike artifacts and a blurring, which increases towards
the center of the reconstruction. To suppress these artifacts, each absorption pro-
file before back projecting must be filtered in the Fourier domain to filter out the
specific ranges of the Fourier components. The low-frequency components tend
to be responsible for blurring, while the high-frequency for features and sharp
details.

Figure 1.7.: The process behind the FBP algorithm. The transmission profile of the absorb-
ing disk is recorded in several directions. Then, each profile is propagated back through
the image space along the acquisition direction. Those regions in the image space where
the back projections overlap are accumulated. The more back projections are overlapped,
the closer the result of the accumulation of them resembles the original object. The recon-
structed image suffering from blurring and starlike artifacts can be improved by filtering
each transmission profile before back-projecting.

The efficient implementation of the Fourier transform allowed to apply the
Fourier slice theorem for a rapid tomographic reconstruction. The main idea is
depicted in Fig. 1.8, this theorem states that the one-dimensional Fourier trans-
form of the projection at a given angle of a two-dimensional object is equal to the
line through the center of two-dimensional Fourier transform of the reconstruc-
tion of this object. Thus, placing all Fourier transformed projections at respective
angles spanning 180° onto the 2D Fourier space will fill the entire Fourier space
representation of the object. Afterward, interpolating data from its polar grid to a
Cartesian grid allows for recovering the object reconstruction by inverse Fourier
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transforming of the interpolated data [13]. Due to fact that interpolation is a time
consumable task, a range of optimizations was proposed [14].

Figure 1.8.: The illustration of the Fourier slice theorem.

The stack of the reconstructed slices constitutes the 3D volume, whose resolution
is determined by the dimensions of the voxels. The reconstructed volume consists
of an array of these voxels on a regular three-dimensional grid, where each voxel
is associated with a particular physical value, for example, the average linear
absorption coefficient within that voxel.

1.3.2. Specimen preparation

The X-rays transmitting through the sample interact with its electron-poor and
electron-dense regions that allows it to be visualized by the contrast of the struc-
tures against the background. In a case of biological tissues and weakly absorbing
materials, they primarily consist of elements with a low atomic number, such as
carbon and oxygen, providing very little contrast by imaging with hard X-rays.

Thus, in most cases, imaging of such samples enable to investigate only the out-
line with a complete absence of internal structures, which are crucial for the un-
derstanding of architecture and functions.

To efficiently visualize biological microstructures and architecture of weakly ab-
sorbing materials, they should be labeled with an appropriate contrast agent.
During the history of usage X-rays, many contrast agents have been proposed.
Among them are osmium tetroxide [15–18], gold [19–22], silver [23–26], iodine
[27–30], phosphotungstic acid [28], mercury [18], lead [16], and others. Along
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Figure 1.9.: The example of optimization sample preparation process for the hypodermis
layer of mouse skin. At the horizontal axis, different variants of solutions for fixation/s-
taining are presented, whereas the vertical axis depicts different combinations of fixa-
tion/staining duration. The red arrows point the places at samples which were poorly
labeled due to an improper solution, concentration, fixation or staining duration.

with their absorptivity properties, contrast agents should be able to penetrate the
whole way into a sample. Therefore, staining agents are usually chosen by taking
into the account its diffusion rate, rather than specific binding properties. As an
example, the systematic studies of various agents have shown that potassium io-
dide and mercuric chloride demonstrate fast diffusion rates [31], while phospho-
tungstic acid has a slower rate of diffusion, but it possesses specific binding prop-
erties efficiently applied for visualization of collagenous structures [32, 33].

Mentioned chemicals have high atomic number elements which bind differen-
tially to internal regions of a sample. That allows significantly enhance the visi-
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bility of structures due to more efficient absorption of X-rays, since it is approxi-
mately proportional to the product of electron density and the cube of an atomic
number of the element, whereas the phase-contrast imaging methods rely on the
phase shift [34, 35], which is proportional to only the electron density.

Every biological tissue or material has an unique staining protocol aimed at spe-
cific needs. Usage of the wrong protocol will lead to incomplete or improper
staining due to differences in sample nature and composition, influencing on
stain-binding affinities and diffusion rates. Therefore, a trial-and-error approach
is widely applied (Fig. 1.9), which assume testing multiple stainings to determine
the optimal time and solution concentration [36].

1.3.3. Imaging quality calibration

There is no general imaging setup optimized for all data quality characteristics
like spatial resolution, a level of noise, acquisition time, a field of view at the same
time. The imaging setup must be calibrated with a particular assurance phantom
prior the experiment to ensure not only high data quality but also reproducible
and comparable quantitative results with respect to other similar samples. Unfor-
tunately, data quality parameters are not independent, that is why the setups are
usually optimized only for some of the parameters while compromising others.

Spatial resolution determines the smallest distance between two distinguishable
structures in an image. Nevertheless, it should not be confused with the spacing
or the size of voxels of the reconstructed data. They are usually smaller than the
actual resolution of the imaging setup defined by the modulation transfer func-
tion. In a case of in vitro imaging of biological tissues, spatial resolution can be
close to the resolution of histologic sections, that is almost at a cellular level (e.g.,
5–10 µm). Whereas, in vivo imaging of small animals and objects of comparable
sizes sometimes imposes the limitation on a spatial resolution to shorten the ac-
quisition time and consequently reduce radiation dose. However, calibration of
spatial resolution should be guided by resolvability of target structures.

Contrast resolution is another important parameter, which is based on contrast
differences to resolve the discrepancy between structures. Contrast emerges due
to differences in the energy-dependent attenuation coefficients of structures mak-
ing up the sample. These coefficients are proportional to the electron density, and
produced the grayscale values in the reconstructed data representing a quantita-
tive description of the density of the material. Since contrast is inversely propor-
tional to the energy, the higher contrast can be achieved at low photon energies.
However, to find the optimal energy, many other parameters must be taken into
account (e.g., the quantum efficiency of the detector).

The noise level drastically influences the resolvability of structures, which in turn
depends on the radiation dose, and hence on the exposure time. Although, in
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some cases, contrast resolution can be traded for spatial resolution, due to high
absorptivity properties of the investigated sample (e.g., calcified bones).

1.4. Automated data analysis

1.4.1. Image representation

The reconstructed volume is a 3D array of voxels, which represent the linear
attenuation coefficients of corresponding material at each discretized point of
the volume. Every voxel can be presented as a 32-bit integer number with a
value from 0 to 65535, or as a 32-bit floating number in a range from -3.4×1038

to 3.4×1038. By such large dynamic ranges, the density of the material can be
very accurately described. Modern CCD and sCMOS detectors providing a high
dynamic range of 16-bit, a pixel size of several micrometers, rapid readout, and
a matrix size higher than 2000×2000 pixels can easily produce hundreds of gi-
gabytes of data per acquisition session. Thus, in the case of time-resolved or
high-throughput experiments involving many samples, it causes data acquisi-
tion, handling, and segmentation challenges.

1.4.2. Image noise and artifacts

The tomographic data can suffer from different artifacts and noise from various
sources. Most of these artifacts significantly complicate the further analysis, and
therefore they must be suppressed as much as possible. The examples of some
frequently occurred artifacts in X-ray imaging are presented in Fig. 1.10.

Figure 1.10.: The examples of some types of X-ray imaging artifacts in several samples: a)
bioglass with large inclusions; b) composite scaffold; c) medaka fish (tail part); d) bioglass
with small inclusions. The presence of a specific artifact is marked with an arrowhead
of the corresponding color (red - statistical noise, yellow - motion artifacts, orange - ring
artifacts, blue - streak artifacts).
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Statistical noise

An insufficient photon flux caused by short exposure time or low absorptivity
of a sample leads to an increase in statistical noise complicating the subsequent
analysis. It decreases the visibility of sample structures and makes it difficult to
distinguish adjacent parts. The noise is not constant over the volume, it usually
spreads out the center of the object, due to higher X-ray attenuation of rays pass-
ing through the center. The ability to analyze the sample structures is limited
by the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) characteris-
tics, which quantitatively describe the detectability and distinguishability of the
structures. The best achievable SNR depends on the type of sample and imaging
setup configuration providing the best possible photon flux and energy.

Streak artifacts and angular undersampling

Streak artifacts can appear along straight edges of structures due to an insufficient
number of acquired projections, or from the presence of small highly absorbing
particles in a sample. These artifacts have a long history in various application
fields of X-rays, so a vast number of approaches were proposed to mitigate them
[37]. The most developed class of metal artifact reduction (MAR) methods is
based on the projection completion approach, in which corrupted data inside
the metal trace is refined in the sinogram domain. The correction process usu-
ally relies on data generated by interpolation techniques [38], reprojection from a
prior image [39] or a combination of both that involves normalization [40]. Other
MAR techniques rely on data acquisition improvement, iterative reconstruction,
and image post-processing. The latter has only limited success [41] and their im-
pact are more perceivable in conjunction with projection domain correction [42].
Recently, novel methods based on deep learning have emerged, in which a net-
work is trained on labeled data to learn an end-to-end mapping of patches from
metal-corrupted X-ray data to their corresponding artifact-free ground truth data
[43].

Ring artifacts

Rings artifacts manifest as full or partial circles centered at the rotational axis of
each slice of the reconstructed volume. They are caused by differences in the
sensitivity or defects of adjacent detector elements [44, 45]. Since these abnormal
pixel values appear at the same position on every projection, the tomographic re-
construction process generates ring patterns which reinforce towards the center
due to a peculiarity of a back-projection operation. Due to the nature of these ar-
tifacts, they are much more amenable to suppression than others (e.g., beam hard-
ening). The ring artifact correction methods are usually divided into two groups:
the pre-processing and the post-processing techniques [46]. The pre-processing
techniques mainly work in the sinogram domain, where rings are represented
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as line artifacts and can be suppressed by filtering the Fourier or real space be-
fore the tomographic reconstruction [47–52]. As well, the ring removal process
can be integrated into the iterative tomographic reconstructions algorithm [53].
Recently, a new method based on the helical acquisition mode was proposed
to reduce the effect of systematic errors from detector elements by transforming
slice-wide ring artifacts to volume-wide helix-like artifacts reducing their sever-
ity [54]. The post-processing methods perform calculations in the image domain,
where the reconstructed slices are converted to polar coordinates, and rings are
filtered out as line artifacts [55, 56, 45]. The hyper-parameters for the ring correc-
tion algorithms should be finely tuned for the specific application, because some
features may be easily lost during the correction process, or additional artifacts
can be introduced.

Motion artifacts

Motion artifacts are usually caused by movements of the specimen or its struc-
tures during the data acquisition process [57, 58]. Also, it can appear due to de-
tector movement relative to the sample. Since there is a significant discontinuity
between the first and last projections, the reconstruction process produces breaks
in the edges having asymmetric tails. The stable sample fixation at a tomographic
stage can help to avoid this kind of artifacts.

1.4.3. Deep learning

Image classification is a fundamental problem in computer vision, whose goal is
to categorize images into one of several predefined classes. As well, it forms the
basis for other tasks such as detection, localization, and segmentation. Traditional
machine learning methods suppose a dual-stage approach, where hand-crafted
features are first extracted from images using feature descriptors, and then used
as an input for a classifier. The major drawback of this approach is that the clas-
sification accuracy largely depends on the feature extraction procedure, which
could be compromised by lack of experience in the domain.

In recent years, deep learning models that are composed of multiple layers of
non-linear information processing for feature extraction, transformation, pattern
analysis, and classification, have demonstrated great performance. The most re-
markable case is convolutional neural networks (CNNs), which became the lead-
ing architecture for most image detection, recognition and classification tasks. It
was greatly promoted during the deep learning renaissance, which happened
due to the emergence of high-performance graphics processing units (GPUs),
large datasets and new algorithms. CNNs have captured large attention for im-
age classification tasks in the ImageNet Large Scale Visual Recognition Challenge,
where the architecture of Krizhevsky et al. [59] has shown the highest accuracy
among others.
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CNNs are feed-forward networks, i.e., they pass information only in one direc-
tion, from inputs to outputs. Similarly to artificial neural networks (ANNs), they
are as well biologically inspired by the visual cortex in the brain consisting of
alternating layers of simple and complex cells [60, 61]. The classical CNN ar-
chitecture consists of convolutional and pooling layers, which are grouped into
blocks. One or several fully-connected layers may follow these blocks, as in tra-
ditional feed-forward networks. The blocks are usually stacked on top of each
other to compose a deep model. A schematic representation of a typical CNN ar-
chitecture aimed at image classification is illustrated in Fig. 1.11. An image is fed
directly to the network, where it is passed to several convolutional and pooling
layers. Then, representations from these layers are transferred into one or more
fully-connected layers. In the end, the last fully-connected layer produces the
predictions of a class label.

Figure 1.11.: Typical architecture of convolutional neural networks.

Convolutional layers

The convolutional layers perform feature extraction; thus they learn the feature
representations of their input images. The neurons constituting the convolutional
layer are organized into feature maps. Every neuron of a feature map has a re-
ceptive field, which is connected to a neighborhood of neurons at the previous
layer via trainable weights, sometimes called as a filter bank [62]. Inputs are
convolved with the learned weights to produce a new feature map, and the con-
volved results are fed to a non-linear activation function. All neurons constituting
every feature map are restricted to have equal weights. However, different fea-
ture maps within the same convolutional layer have different weights; thus sev-
eral features can be extracted at each spatial location [63, 62]. The convolutional
layer with the k-th output feature map Fk can be defined as:

Fk = f(x ∗Wk), (1.5)
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where the 2D convolution operation is expressed as:

x[n,m] ∗Wk[n,m] =

Nw/2∑
i=−Nw/2

Nw/2∑
j=−Nw/2

x[i, j] ·Wk[n− i,m− j], (1.6)

where x denotes the input image,Wk is the k-th feature map related to the specific
filter, Nw is the size of the feature map, and f indicates the non-linear activation
function [64]. The activation function allows extracting non-linearities from in-
puts. Initially, traditional sigmoid and hyperbolic tangent functions were actively
used. However, in recent time rectified linear units (ReLU), expressed as:

fReLU(xk) = max(xk, 0), (1.7)

have gained popularity due to its unique properties [65]. It keeps only the pos-
itive part, whereas the negative part is reduced to zero that allows introducing
sparsity and be resistant to the vanishing gradient problem.

Pooling layers

The goal of pooling layer is to decrease the spatial resolution of the input feature
maps and to introduce invariance to translations and possible distortions [63, 62,
66]. Initially, the first architectures of CNNs employ average pooling layers to
propagate the average value of a small neighborhood of an image to the next layer
[63, 67]. However, in more recent architectures, max-pooling layers propagating
the maximum value within a receptive field to the next layer became popular
[59, 68]. The max-pooling operation finds the largest value of each receptive field
and can be expressed as:

F k
ij = max

(p,q)∈Rij
xkpq, (1.8)

where the output of pooling operation over the k-th feature map is denoted by
F k
ij , xkpq indicates the element at a spatial location (p, q) within a pooling region

Rij , which is a receptive field centered at the location (i, j) [64]. The intuitive
description of max-pooling operation is presented in Fig. 1.12. In this case, a
max-pooling operation will be performed over the entire image searching for the
maximum value in non-overlapping local regions of 2×2 pixels and will produce
the output image of 2×2 pixels consisting of maximum values found in the re-
spective local regions.
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Figure 1.12.: The max-pooling operation of a filter size 2×2 pixels with a stride of 2 pixels
applied to an input image of4×4 pixels.

Fully-connected layers

The fully-connected layers usually follow after several convolutional and pool-
ing layers, stacked on top of each other to extract more abstract feature repre-
sentations of inputs. In these layers, the extracted features are interpreted and
employed in training of the network by minimizing a specific loss function. It is
common to use the softmax loss function for the classification problems due to its
simplicity and probabilistic interpretation [59, 68]. The softmax loss function for
the i-th input feature xi with the corresponding label yi, can be written as:

fsm =
1

N

∑
i

Li =
1

N

∑
i

− log
efyi∑
j e

fj
, (1.9)

where the j-th element (j ∈ [1, K] and K is the number of classes) of the vector
of class scores f denoted by fj , and N is the amount of training data. In this
case, f is the activations of a fully-connected layer W , thus fyi can be denoted as
fyi = W T

yixi, where Wyi is the yi-th column of W .

1.4.4. Workflow of data analysis for X-ray imaging

The data analysis workflows were developed to standardize and automatize the
processing of datasets of a similar kind (e.g., datasets of animals belonging to the
same species). The workflow in the simplest case is a sequence of independent
processing operations, where the result of one operation is fed to the input of
another. The independence of operations allows being implemented and assem-
bled using different software packages, libraries, and platforms, which makes
such workflows are troublesome for deploying and reusing.

There are many examples of workflows developed for different application cases
in various research fields, such as a study of living processes in model organisms
[69–71] to understand disease mechanisms, and further apply to a human. Using
modern non-invasive techniques allows for studying gene knockout animals (e.g.,
mice [72, 73]) to gain an insight into gene function [74–76] and various insects
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(e.g., fruit fly (Drosophila melanogaster)) for understanding of embryogenesis [77,
78], behavior patterns [79] and brain morphology [80, 81].

All considered application cases implement custom automated analysis work-
flows designed to answer particular research questions and tailored for specific
data modalities starting from µCT [70, 74, 76] and light microscopy [69, 71, 77, 80,
81] to conventional photography [79]. Nevertheless, most of them have a simi-
lar structure composed of several of the following stages: pre-processing, sample
alignment, localization, segmentation, and morphological analysis. Moreover,
due to the generality of image processing principles in these stages, they are
equally applicable to data from different modalities but may require some ad-
justments (e.g., the alignment process may use specific fluorescence expression
patterns as in [80]).

Data pre-processing

The pre-processing is an important part of the automated analysis workflow. The
signal acquired from a detector usually suffers from noise and artifacts of various
kinds, which should be weakened or removed before transmitting data to the
next stage.

The nature of artifacts depends on the acquisition setup because different ways of
imaging suffer from different kinds of artifacts and noise sources. The fluorescent
microscopy techniques can produce sequences of multi-channel images forming
a 3D stack, which usually suffer from such artifacts as non-uniform illumination,
blur, statistical noise and can be corrected with a number of approaches [82–87].

The µCT laboratory sources allow acquiring a series of projections, which are
then reconstructed into a 3D volume. The reconstructed volumetric data suffer
from a range of artifacts occurred due to inappropriate parameters of an imag-
ing setup, an acquisition device, sample composition, and size. If a sample is
composed of several different materials, beam hardening artifact may occur due
to selective attenuation of lower energy photons of a polychromatic beam. Hot
pixels at a detector or cracks at a scintillator lead to ring artifacts, which can be
partially removed with methods mentioned in Sec. 1.4.2. Streak artifacts occur
due to the presence of highly absorbing parts in a sample surrounded by weakly
absorbing material; however, such artifacts may usually be found in the medi-
cal imaging, where there are prostheses or implants. The X-ray beam instability
can be a cause of contrast differences in neighborhood projections; thus it should
be corrected with flat-field correction methods [88, 89]. An insufficient angular
sampling of projections could also result in streak artifacts at straight parts of a
sample. To cope with this, the slices can be obtained with algebraic reconstruc-
tion algorithms, which perform iterative reconstruction by modeling the forward
and backward projection process and allow to take into account various prior
knowledge to improve the reconstruction quality [90, 91].
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The data produced by SR-µCT suffer only from a part of laboratory µCT artifacts
(Sec. 1.4.2) because the beam has much better properties in comparison to the
lab sources (Sec. 1.2.3). Besides the specific artifacts and noise introduced by the
acquisition systems, there is a common way to improve contrast and clarity of
data. As an example, it is a histogram equalization [92], non-linear filtering which
allows preserving edges of structures [93, 94], and local contrast enhancement
[95–97]. To reduce the size of data and complexity of structures, one can utilize
a coarse-to-fine approach by multi-level downscaling with subsequent Gaussian
smoothing [98].

In some cases, the data can be acquired in 2D or 3D chucks. For instance, the
result of studies using microscopy is a bunch of 2D images, because the sample
could be too large for the field of view, so series of overlapped images are cre-
ated. In experiments studying elongated samples with SR-µCT, whose length is
much larger that height of the field of view, the samples are scanned in chunks by
shifting along the Z-axis per the data acquisition session. Then, these 2D or 3D
datasets should be stitched into a single image or volume to be passed further.
The stitching algorithms were initially used for creating panoramic views from
sets of overlapping photos [99], and later were adapted for scientific imaging
[100–102].

Sample alignment

The primary goal of the sample alignment is to align all datasets involved in
the analysis process to a common coordinate system defined by the reference
dataset or the manually arranged set of landmarks. Hence, this stage is similar to
the rigid intra-modal registration, which operates with datasets from the specific
modality and composed of rotation and translation geometric transformations
describing sample displacement. The proper alignment is vital for the successful
analysis because the segmentation algorithms are tailored to work better with the
datasets having the particular orientation; otherwise, the behavior could be un-
predictable. Moreover, the analysis at the substructure level requires accurately
extracted sample structures by correctly determined bounding boxes, which is
impossible when datasets are not aligned. The demand in alignment usually oc-
curs in cases when the sample cannot be reliably fixed during the data acquisition
process, which results in that all scanned samples are presented in the datasets in
different spatial positions that complicates the further analysis.

In the medical imaging, this procedure is rarely needed since the doctor usually
guides a pose of a patient. In the pre-clinical research on the rodents and other
vertebrates with the laboratory µCT systems, they are typically mounted on the
special stage, which guarantees that all specimens are positioned in the same way,
and no additional alignment is required. In the scientific imaging of living organ-
isms and materials, samples sometimes cannot be properly oriented relative to
each other. In the experiments aimed at studying of insects with the SR-µCT,
insects are placed into plastic containers filled with viscous solution helping to
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avoid dehydration and fixing them in the same orientation. However, it is im-
possible to set all samples in the same way due to morphological differences, so
additional pose adjustments are required. Therefore, the sample alignment is the
essential part of the analysis workflow, especially in cases when samples cannot
be reliably positioned.

The registration algorithms are divided into two groups, namely the landmark-
based methods which utilize points and surfaces extracted from datasets, and
the intensity-based methods using voxel intensities in the iterative registration
process.

Landmark-based techniques These methods derive the geometric transfor-
mation using features extracted from the data, represented as landmarks, surfaces
or point clouds.

The landmarks are points in a target dataset identified automatically, they could
be represented by an intensity maximum, gradient, or other computable features.
The most frequently used feature detectors are SIFT [103–106], SURF [107, 108],
and MSER [109]. The point-based registration methods use these feature de-
tectors to identify similar points in the target and reference datasets to derive
the spatial transformation by minimizing the Euclidean distance between these
points [110, 111].

The surfaces in some cases can be even more distinct than landmarks. The iter-
ative closest point algorithm consists of two stages, namely, identifying for each
point of the target surface the closest point on the reference surface, and then
finding the spatial transformation of these point sets [112–114]. The algorithm
iteratively redefines the closest point set and continues until it finds the match
between these surfaces by minimizing the cost function based on the Euclidean
distance.

Intensity-based techniques These methods rely on voxel intensities of the tar-
get and reference datasets to derive the geometric transformation required to per-
form the alignment. The most popular similarity measures are based on differ-
ence and cross-correlation of voxel intensities and information theory.

The measures based on the intensity difference usually employ the sum of
squared differences (SSD) [115, 116]. The cross-correlation (CC) measure is based
on the assumption that there is a relation between the intensities of the corre-
sponding structures in the datasets [117–119]. The SSD, the CC, and derivatives
of these similarity measures are applicable for intra-modal registration.

The similarity measures employing the information theory are usually based on
the mutual information (MI) [120–122]. The MI is based on the Shannon entropy
which is estimated from the joint probability distribution of the dataset voxel
intensity. This measure estimates how well one dataset explains the other, i.e., it
is based on the assumption that there is a function between the intensities of both
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datasets. The MI is applicable for both intra- and inter-modal registrations and
maximized when the datasets are properly aligned [123–125]. There were also
introduced other measures, e.g., Rény’s entropy [126], Tsallis entropy [127–129]
and Havrda-Charvat’s entropy [130].

Localization of structures

Automated localization sometimes may be critical for initialization of automatic
segmentation methods and further analysis [131–136], image classification [137],
and content-based image retrieval [138, 139]. The localization is a process of de-
termination of the region in a data containing the target structure, whereas the
segmentation is aimed at accurate delineation of this structure.

The localization of structures has an interest for many cases, where the specific
parts of a sample should be studied separately, e.g., organs of living organisms,
inclusions and defects in materials, components of integrated circuits, cells grown
on a surface of biomaterials, and others. In some cases, it plays an essential role
in such tasks as segmentation and registration. Moreover, it enables faster data
inspection and visualization of target structures. In the field of medical imaging
it helps in treatment planning, for example in radiotherapy, a volume of an organ
is required to compute a radiation dose [140]. In the material science, the analy-
sis of material damage involves localization to analyze shape evolution of cracks
and inclusions. The result of such analysis is further used in finite element mod-
eling and applied in various industries. Also, it is important for high-throughput
experiments which require automated analysis workflows for detailed analysis
of specific parts of a sample especially is the case of complex heterogeneous sam-
ples.

During the history of multi-dimensional data analysis, only a few dedicated
methods for automated localization of structures in composite materials, organs
or other structures were proposed. These methods can be divided into three
groups: knowledge-based, atlas-based and learning-based approaches.

Knowledge-based approaches The spatial relationships between sample
structures can be represented by a structural model, which is a graph where the
nodes are the structures, and the edges are their relationships. This representa-
tion in conjunction with organ-specific appearance models was used to localize
organs in a human body [141]. Fouquier et al. [142] proposed to localize human
brain structures in pre-computed sequential order, following a priori knowledge
about the spatial relationships between these structures. However, due to the
sequential nature, this process tends to propagate errors and therefore requires
backtracking. The solution for this issue was proposed in [143] by performing
global localization which takes into account a constrained network derived from
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the structural model. Even though this approach relies on robust a priori knowl-
edge, it is computationally expensive and requires thorough parameter tuning,
which makes it difficult to apply in practice.

Atlas-based approaches The atlases are datasets with known positions of tar-
get structures. The atlas-based approaches are widely applied in segmentation,
but also can be used for localization purposes. They are based on a registration
process, whose goal is to find an optimal transformation to warp atlases to a
dataset with unknown positions of target structures. By placing all atlases into a
common space allows to roughly localize the target structures [144–148]. These
approaches were proven to be robust techniques, especially if many atlases with
various textural and shape variations of target structures are available. The di-
versity of presented variations allows to perform more accurate registration and
thus localization by selecting only the most similar atlases to the studied sam-
ple [149–151]. The atlas-based techniques usually require exhaustive parameter
tuning and are considered to be slow due to the computational complexity of the
optimization process, which is a core of any method employing registration.

Learning-based approaches These approaches are based on machine learn-
ing algorithms trained on a subset of data to predict coordinates of the bounding
box containing the target structure. In the work of Zheng et al. a dedicated local-
ization method using marginal space learning (MSL) was introduced and used to
localize organs in medical CT datasets [152]. The bounding box was determined
in three successive stages: finding its location, orientation, and size. This strategy
allows to significantly reduce the parameter space at each following stage while
allowing to calibrate the parameters found at the previous stages. At every stage
a set of candidate bounding boxes are generated, then the optimal one is chosen
using a probabilistic boosting tree. This method was validated and evaluated
with localization of ventricles of the human heart in 3D CT and 2D MRI datasets
[153].

The method allowing to localize multiple target structures simultaneously was
firstly proposed by Criminisi et al. in [154]. The localization was formulated as
a multivariate regression problem and solved with a regression random forest.
The regression forest determines the spatial positions of the six bounding walls
around the target structures by textural features calculated in their neighborhood
[155]. The method was evaluated for the localization of 26 organs in full-body hu-
man medical CT datasets. Thereafter, this approach was improved in the work of
Gauriau et al. by cascading the initial regression forest with organ-specific forests
[132]. This improvement reduced the localization error, but at a cost of increased
execution time.

The method introduced by Zhou et al. consisted in defining 2D bounding boxes
at image slices from three orthogonal planes [156]. Then, they were determined
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with AdaBoost and an ensemble of stump classifiers trained at calculated Haar-
like features. Afterward, these predicted 2D bounding boxes were combined into
3D bounding boxes by a major voting algorithm. The evaluation of this method
was done for the localization of five human organs in medical CT datasets. In
comparison to other mentioned methods, this one is slower and localizes only
one target structure at a time.

CNNs emerged at the end of 80th [63]; however, they did not become widespread
due to high computational complexity but were recalled recently [62]. These net-
works learn features directly from the raw data, reducing the semantic gap intro-
duced by hand-crafted features and drastically shorten the time required to en-
gineer features. At the moment, many works aimed at organ detection are based
on the different kind of neural networks. The autoencoders were used to find
rough locations of organs by detecting landmarks [157]. Various CNN architec-
tures were designed to accurately localize organs in medical CT datasets of a hu-
man body, employing information from different axial planes [158, 137, 159–161].
The CNNs trained at slices from different axial planes perform multi-structure
localization by deriving 3D bounding boxes based on slices indices where organs
were detected.

Data segmentation

The goal of segmentation is the delineation of target structures, or in other words,
identification of a set of voxels making up the contour or the interior of the tar-
get structure. The segmented structures of studied samples allow for quantita-
tive analysis of various parameters related to volume and shape, which enable
to perform phenotyping analysis over studied living organisms or to find opti-
mal fabrication parameters in large-scale material optimization studies. Besides
automated analysis workflows, an accurate segmentation greatly simplifies the
process of manual inspection of the sample for the operator.

Currently, with the help of specialized software providing segmentation capabil-
ities, the experts in the domain can accurately perform delineation of the target
structures. However, the segmentation process of volumetric datasets composed
of thousands of slices in a slice-by-slice manner is laborious, incredibly tedious,
time consumable and expensive. Moreover, the manual annotating is subjective
and suffer from low reproducibility that would lead to high inter-observer vari-
ability, as the segmentation quality highly depends on the individual experience
and knowledge. To the end, it is physically impossible to provide manual seg-
mentation for results from high-throughput experiments, generating hundreds
of multi-dimensional high-resolution datasets. Thus, automated segmentation
methods are highly demanded, especially in cases when the amount of produced
data is impossible to process manually in a reasonable amount of time.

Automated volumetric segmentation is an exceptionally challenging task in the
case of complex heterogeneous data. The appearance and shape variations of
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target structures can significantly vary among the studied samples. The bound-
aries between target structures or surrounded environment are usually ambigu-
ous with limited contrast, which can be caused by similarity in physical proper-
ties of materials making up these structures.

Basic approaches The global thresholding is the most widely applied segmen-
tation algorithm, whose idea is to determine an optimal thresholding value to
separate regions of interest by analyzing the histogram. Depending on the ap-
proach used for determination of a thresholding value, algorithms may be di-
vided into several groups, namely, based on analysis of the histogram shape, cor-
relation of entropies estimated from the background and foreground pixels, cor-
relation of the grayscale and segmented image properties or higher-order proba-
bility distributions and spatial relationships between pixels.

The region growing assumes that the pixels constituting the object of interest are
connected and similar enough. A specific algorithm iteratively searches for all
pixels neighboring to a current region of interest (ROI) and uses a particular se-
lection criterion based on similarity of the intensities of neighboring pixels to the
mean intensity of the region to decide on addition these pixels to the ROI.

The watershed algorithm perceives an image as a topographic surface, where low
and high intensities denote hills and valleys, respectively. The algorithm starts
to fill every isolated valley with water of different color (label). As the level of
water rises, at some time point, water from different valleys starts to merge. To
prevent this, barriers are built in the locations where water merges. The algorithm
continues to fill the valleys and building barriers until all hills are under water.
Finally, the segmentation result is represented as different water pools (labeled
groups of pixels) separated by the barriers (background pixels) from each other.

The probabilistic fuzzy clustering groups the pixels based on their intensity and
spatial connectivity with others. The algorithm iteratively tries to find a stable
configuration of clusters. Once it is converged, the segmentation task is simplified
to thresholding of the fuzzy connectedness values.

Model-based approaches These approaches gained huge popularity for
multi-structural segmentation in various imaging fields. A shape model or a
probability atlas is estimated by averaging shape or location priors of multiple
spatially aligned atlases. Constructed statistical shape models or probabilistic at-
lases can provide a priori knowledge about the location and shape of the target
structures for the segmentation methods.

The statistical shape models were introduced in the early 90s by Cootes et al. [162].
Later on, they were improved and successfully applied in the segmentation of
human abdominal organs [163], such as a liver [164], a pancreas [165], and kid-
neys [166] in medical CT datasets. To improve robustness to shape variability
of organs, a generalized multi-resolution hierarchical shape model was proposed
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[167]. Since statistical shape models or probabilistic atlases are built from a spe-
cific population of atlases matching the appearance of the target structures, these
models lead to a low specificity with respect to individual appearance. The
generality of such average models may impede the segmentation due to sub-
stantial inter-subject variability. To cope with these shortcomings, approaches
based on subject-specific shape models [168] or subject-specific probabilistic at-
lases [169, 165, 170] were proposed. In recent works, spatial a priori knowledge
of different abdominal organs was incorporated to facilitate multi-organ segmen-
tation [171–176, 170, 177].

In earlier studies, Aljabar et al. showed that the segmentation accuracy of multi-
atlas based methods highly depends on atlases selected for the target dataset
[178]. Most atlas selection methods measure the global similarity between the
target and atlas dataset. More advanced methods transfer global similarities into
a manifold and perform the atlas selection from the learned manifold [179, 180].
However, global similarities might not adequately represent similarity due to
large organs may occupy most of the space. To overcome this drawback, a region-
wise local atlas selection strategy was proposed by selecting atlases for each local
region [181, 182, 170]. As an example, Tong et al. proposed a patch-based seg-
mentation framework to perform abdominal multi-organ segmentation in MRI
datasets [183].

Machine learning-based approaches Recently, machine learning algorithms
such as random forests (RFs) were extensively used to tackle the problem
of multi-structural segmentation. The RF algorithm was firstly proposed by
Breiman et al. , and designed to handle multi-class problems and be computa-
tionally efficient in processing of large amount of 2D and 3D features based on
voxel intensity and local relationship information [184]. It was widely applied
in the biomedical and computer vision domains and lately adapted to the med-
ical image segmentation. The RFs gave impetus to the development of other
forest-based algorithms. The vantage point forests were originally proposed for
high-dimensional data clustering and accelerated search in metric space [185].
Further, they were successfully applied for supervised image classification with
3D BRIEF [186] providing better robustness than the long-range context features
[187] or SIFT vectors [188]. The random ferns method proposed by Yaqub et
al. use so-called ferns features composed of a series of binary features represent-
ing a patch in a vicinity of a given voxel [189]. Jin et al. suggested combining
RFs and random ferns to take advantage of both methods [190]. Richmond et
al. presented cascaded RFs interleaved with inference in Markov random field
(MRF) models for both segmentation and localization [191]. Bieth et al. proposed
to use vantage point forests using local context features of the target structures
with further gradual refinement by regional context information [192]. Zografos
et al. proposed a method based on a boosted tree classifier trained on contextual
features extracted from the multi-scale supervoxels [193]. Glocker et al. suggested
joint classification-regression forests trained on class and spatial consistency ex-
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tracted from structural information of labels [194]. Montillo et al. developed a
novel entangled decision forests exploiting spatial correlations between the tar-
get structures [195]. The mentioned approaches were successfully applied for
segmentation of various human abdominal organs in medical CT datasets.

Despite the efficiency of forest-based methods, the hand-crafted features are lim-
ited in representation capabilities of huge appearance variations of the target
structures. Moreover, they cannot take full advantage of the 3D spatial informa-
tion presented in the volumetric data to achieve high segmentation accuracy.

Deep learning-based methods Deep learning-based methods were emerging
as a competitive branch which provides alternative approaches to traditional im-
age segmentation tasks. The CNNs achieved great progress in 2D scientific image
segmentation [196–198]. However, it is still challenging to segment target struc-
tures from volumetric CT datasets possessing different spatial properties.

In the architectures of the first CNNs such as AlexNet [59] and VGGNet [68], the
last layers are usually fully-connected. This fact restricts the network to take in-
put images of fixed size and produce non-spatial predictions, usually expressed
as a probability vector of a length equal to the number of target classes. Soon af-
ter the development of first CNNs, Ciresan et al. used a patch-based approach al-
lowed to make predictions with spatial information [199]. However, such strate-
gies are computationally expensive and therefore are not directly applicable to
volumetric segmentation, which requires dense prediction for every voxel in a
dataset.

These fully-connected layers can be converted into convolutional layers by re-
organizing the parameter weight matrix into high-dimensional convolution ker-
nels [200]. Thus, after that transformation, the entire network forms a fully convo-
lutional architecture, where all layers are convolutional or pooling, and both have
no restriction on the size of input data. In other words, the network is capable of
taking volumetric data of arbitrary size, and produce the classification probabil-
ity volume of the same size. Therefore, the fully convolutional network drasti-
cally reduce redundant computations occurred due to overlapping inherent to
the patch-based methods. CNNs demonstrated high performance in many chal-
lenging medical image analysis tasks, in particular for classification [201–203] and
segmentation [199, 204] in the last years. The CNN-based segmentation methods
can be divided into two groups, namely 2D and 3D CNNs.

The methods based on 2D CNNs perform segmentation in a slice-by-slice fash-
ion for processing volumetric CT or MRI datasets [205, 206]. Ronneberger et
al. proposed the novel architecture called U-Net providing a dense image-to-
image segmentation [207].

Later on, 3D CNN-based methods emerged since, despite high segmentation
quality of 2D methods, they still do not take into account potentially useful 3D
spatial information of volumetric data. In the beginning, Roth et al. proposed
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a pseudo-3D approach employing 2D patches extracted from orthogonal planes
[208]. Afterward, pure 3D CNN-based segmentation methods were developed
[209, 210] and allowed to use full advantages of volumetric data, demonstrat-
ing high segmentation accuracy of lesions in multi-channel MRI datasets. Mean-
while, various extensions of the U-net architecture for volumetric data were pro-
posed, such as 3D U-Net [211], V-Net [212] and VoxResNet [213].

The segmentation results provided by CNN-based methods usually may be re-
fined with classical segmentation methods, deformable models [214] or graphical
models [215, 216].

Morphometric analysis

The extraction of metrics allows concluding on the current state of the sample
composition. In the medical imaging it allows making decisions on the diagnosis
or changing the treatment strategy. The morphometric properties allow establish-
ing correlations of the specific genes with the anatomy changes of the organism,
which helps to decipher the genome and describe the phenotype.

Object shape and distribution estimation The shape properties of objects in
a 3D space can be described with volume, surface, inertia moments, and kurtosis
measures estimated from the segmentation result. The distributions of particles
or small parts of the target structure can be performed with a group of methods
aimed at the labeling of non-adjacent groups of voxels [217].

Orientation analysis of fiber structures The task of orientation analysis arises
in various application fields, and the way of analysis mainly depends on the na-
ture of target structures. The orientation of amorphous structures is usually es-
timated over the area, whereas the fibrous structures are along the medial fiber
axis. Nevertheless, these cases share similar algorithms due to the natural sim-
ilarity of the estimation process. However, the quantitative information about
the orientation of fibrous structures has a particular interest, since it allows to
improve mechanical properties of materials and guide a fabrication process to
produce a material with desired properties.

Various approaches aimed at 2D orientation analysis emerged in the last decades.
The Hough transform was utilized for analysis of collagen fibers [218], electro-
spun polyacrylonitrile fibers [219], and alignment quantification of structures in
textile composites [220]. Another approach is based on computing an intensity
gradient and allows to determine the orientation at the particular point via a ra-
tio of gradient magnitudes. It was used to quantify the orientation of cytoskeletal
fibers [221] and myofiber disarray [222], fibers in human ligament fibroblast [223],
unidirectional fiber-reinforced polymers [224], and collagen fibers [225]. The next
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technique involves the analysis of the 2D Fourier spectrum, which enables to re-
veal a global orientation of structures. It was applied to quantify the orientation
of nanofibrous layers of textile materials [226, 227], fibers in electrospun materials
[228–230], and collagen fibers [231, 232].

Quantification of 3D orientation is presented by a few approaches, which are
mainly operated in a vicinity of every voxel. The most popular approach is
based on eigenanalysis on the second-order structure tensor calculated for every
voxel neighborhood [233–235] for characterization of nonwoven fabrics materi-
als, fiber-reinforced composites, and polymer scaffolds with fiber structure. A
similar method estimates 3D fiber orientation from a series of 2D measurements
[236–238] for analysis of reinforced composite materials. Other methods utilize
3D inertia moments [239] and shape of fibers [240] to estimate orientation in bio-
logical tissues.

Even though a lot of methods for fiber orientation analysis were proposed, there
were no notable works devoted to the orientation accuracy evaluation of methods
on ground-truth datasets.

1.4.5. Available software solutions

The analysis workflow of sophisticated heterogeneous data produced by high-
throughput experiments usually consists of several stages such as I/O opera-
tions, pre-processing, analysis, characteristics quantification, and visualization.
The composition of the workflow, as a rule, is dictated by research goals, data ac-
quisition setup, nature of acquired data, and other peculiar properties inherent to
the specific experimental setup. Nowadays, high-throughput experiments pro-
duce terabytes of data per acquisition session, which cannot be processed man-
ually or semi-automatically [241]. Therefore, the software packages providing
opportunities for building custom workflows and deploying them on distributed
parallel computing environments are required to handle such amount of data ef-
ficiently.

In the past decade, a vast number of commercial and open-source software so-
lutions were proposed. The commercial solutions such as MetaMorph, Amira
(FEI), Volocity (PerkinElmer), SlideBook (3i), and ZEN (Zeiss) are usually offered
as complementary tools by companies selling imaging instrumentation. Among
the open-source solutions, which allow general-purpose analysis of 2D/3D data
and creating custom workflows are Icy [242], ImageJ [243], CellProfiler [244], 3D
Slicer [245], ilastik [246], MITK [247] and workflow systems like KNIME [248],
WEKA [249], XPIWIT [250] which allow assembling workflow from independent
processing blocks written from the scratch or reused from other software. These
software packages were widely applied in various research fields, for example in
the context of fruit fly [251] and zebrafish [252] research.
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However, despite availability and popularity of these packages, most of them
have limited support for deep learning technology which is rapidly gaining
weight in all scientific and medical imaging fields and allow efficiently utilize
a large amount of data in segmentation. Only a few packages, namely NifTK
[253] and Slicer 3D (via the DeepInfer plugin [254]) provide some functionality
for integration of deep learning into the workflows.

At the moment, general-purpose deep learning software is under extensive devel-
opment. Due to high computational demands for training deep learning models
and the complexity of efficient usage of the modern hardware, a vast number of
deep learning libraries and platforms were developed and adapted for the vari-
ety of programming languages, such as cuDNN [255], TensorFlow [256], Theano
[257], Caffe [258], Torch [259], PyTorch [260], CNTK [261], and MatConvNet [262].
These platforms and libraries facilitate creating sophisticated deep networks pro-
viding high-level of programmatic abstractions hiding all nuances of parameter
optimization procedures required for a training process, and providing efficient
implementations of routines involved in the process of network creation. These
frameworks were developed to be extremely flexible, optimized and providing a
general interface for deep learning technology, therefore it is challenging to use
them directly. This issue inspired other developers to create platforms simplify-
ing the process of network creation for common usage scenarios, such as Keras
[263], and TensorLayer [264] for TensorFlow and Lasagne [265] for Theano. Al-
though, the proposed platforms remained to be general-purpose without focus at
any specific research field. However, recently NiftyNet [266] for TensorFlow was
proposed, this platform facilitates application of deep networks in medical image
analysis providing all necessary functionality from data loading to model evalu-
ation. In the same time, the Deep Learning Toolkit was developed by Pawlowski
et al. [267] providing building blocks for fast prototyping of deep learning models
and modules in the context of medical image analysis.

The segmented data produced by a software package or library should be quan-
titatively estimated using the morphological analysis approaches. However,
among the considered aspects of morphology analysis, only analysis of fiber-like
structures presents a substantial variety of techniques and software. There are
various proprietary and open-source solutions available to conduct fiber analysis
in 2D or 3D. Among the proprietary software, FEI Avizo 3D with Fiber Analy-
sis module, the Automated Fiber Analysis included in the software shipped with
Phenom Scanning Electron Microscopes, and VGStudio MAX with its Fiber Com-
posite Material Analysis Module, are commonly used. Also, a vast variety of
open-source solutions is available, most noticeable are the stand-alone applica-
tion FiberScout [268] which is mainly aimed at the 3D analysis of fiber-reinforced
materials for industrial CT, and plug-ins for ImageJ [243]. These plug-ins include
DiameterJ [269], FibrilTool [270], and OrientationJ [271] which offer the analysis
of 2D images acquired with various imaging techniques like light and electron
microscopy, µCT, and others. The considered software solutions are mostly ori-
ented only to a single aspect of fiber characterization; thus a complete analysis
can be performed only with multiple software tools. Moreover, a lack of inte-
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gration capabilities, inability to process both 3D and 2D data equally well and
limited parallelization capabilities impede efficient implementation of automated
analysis workflows.

1.5. Hypotheses and open questions

Despite that previous research on approaches to X-ray data analysis provide a
broad range of solutions, they initially were designed for ad-hoc scenarios in
the medical imaging domain employing devices which are not optimized for
throughput and produce relatively low-resolution CT data. Thus, these ap-
proaches cannot be directly applied to tackle the problem of high-resolution µCT
data analysis of model organisms and materials due to vast discrepancy in data
characteristics and analysis process specificities; hence, there are several unsolved
questions:

• Existing automated analysis workflows are rigid and mostly aimed at
studying of particular specimens in the experiments tailored to the specific
data acquisition setups and producing a relatively small amount of data;
therefore, they are not applicable for high-throughput X-ray experiments
for various specimens and producing terabytes of µCT data per acquisition
session.

• Most available data segmentation approaches are mainly developed and
applied in the medical imaging field where low-resolution data acquisition
systems are used. Thus, they provide very limited applicability to in-depth
hierarchical analysis of high-resolution µCT data acquired with modern
synchrotron light and X-ray laboratory sources.

• Existing methods aimed at fiber orientation analysis are usually based on
the second-order structure tensor, which has high computational complex-
ity limiting the applicability of such methods to high-resolution large µCT
datasets by requiring downscaling or analyzing only the specified ROIs.

• Most of the automated analysis workflows currently used in X-ray experi-
ments are composed of independent software packages. Usage and main-
tenance of such workflows are complicated due to imposed dependencies
on the third-party packages and libraries.

• Even though many fiber analysis approaches have been presented in the last
decade, their programmatic implementations are not readily available to
the end users, suffer from insufficient parallelization, require the excessive
amount of memory, and are not adapted for large µCT datasets that impedes
integration with the automated analysis workflows.
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1.6. Objectives and thesis outline

According to unsolved problems stated in the previous section, the primary ob-
jectives of this thesis are:

1. Design the automated analysis workflow capable of handling a large
amount of heterogeneous µCT data produced by acquisition setups based
on synchrotron light or laboratory X-ray sources involved in the high-
throughput experiments aimed at studying model organisms.

2. Develop an efficient and reliable segmentation approach for the hierarchical
analysis of high-resolution µCT data. The method should be able to perform
rapid and accurate segmentation of substructures presented in µCT datasets
of hundreds of gigabytes.

3. A rapid and accurate 3D orientation analysis method applicable to large
µCT datasets and executable on modern parallel computing environments.

4. The performance analysis of the designed workflow over the generated
phantom datasets to determine the optimal parameterization and limita-
tions of each stage.

5. Develop the algorithm for generating a synthetic dataset of the specified
size, noise severity, number and parameters of included fibers.

6. The accuracy and throughput analysis of the proposed orientation estima-
tion method in comparison to another approach on the synthetic dataset in
various scenarios of fiber composition, data size, and noise severity.

7. The implementation of all stages of the proposed workflow as independent
modules, using the state-of-the-art programming libraries, to make possible
integration into any workflow management library or package.

8. The implementation of the fiber analysis module, which provides capabili-
ties for orientation estimation and generation of synthetic datasets.

9. Apply the developed workflow to several real-world application cases from
the life and material sciences.

To make possible accurate and efficient analysis of large µCT data produced dur-
ing high-throughput X-ray experiments, the concept of the automated analysis
workflow along with all thoroughly evaluated and validated intermediate stages
is presented in Chap. 2. The novel method for fiber orientation analysis capable
of processing large µCT datasets by taking advantage of modern parallel comput-
ing environments is described in Chap. 3 along with the comparison to another
popular method. Besides the systematic validation of the developed workflow on
the phantom datasets, it was also applied to facilitate answering the real-world
scientific questions as illustrated in Chap. 4. Such questions as the existence of
dependencies between the fish strain and distinct morphometric properties of
the organs of medaka fish (Oryzias latipes) and analysis of polycaprolactone 3D
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scaffolds, which are widely applied in the field of tissue engineering, to find the
optimal fabrication parameters. Finally, a summary of the completed tasks and
possible improvements are discussed in Chap. 5.
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2. An automated machine
learning-based segmentation
framework for X-ray data

2.1. Overview and related work

The efficient data analysis is a crucial part of high-throughput experiments in-
volved in studying a large number of samples of a similar nature. The data
analysis workflows are widely applied in various fields, e.g., in the life sciences,
they are used for studying of living processes in model organisms [69, 70] to un-
derstand physiology and diseases of complex living systems with perspective
to apply obtained knowledge for treating human diseases. As it was already
mentioned in Sec. 1.4.4, the workflows usually consist of several interconnected
processing stages.

Most workflows operate with single images of relatively small size, which are
easy to transfer over a network to a remote server for further processing. How-
ever, transferring of µCT datasets may be problematic due to large size up to
dozens of gigabytes. The fault-tolerance in processing single images is not crucial,
because usually, images are independent, and analysis failure of any image will
insignificantly influence results. Whereas, in the case of µCT datasets composed
of sets of slices should be treated as single 3D images because analysis failure
of any slice will violate sample integrity. The workflows considered in Sec. 1.4.4
do not provide capabilities for hierarchical analysis, which is in high demand
for handling large datasets describing complex multi-structural samples. They
assume that the complete dataset should be processed at once, without data re-
duction and narrowing the location for processing. Also, these workflows do not
take into account the results from previous executions, which potentially could
contain useful information to improve their overall performance.

Investigation of the proposed workflows for applicability to the current case has
shown that some stages can be partially borrowed and that every stage should
be reliable, independent, and rapid. The reliability is achieved by decomposing
every stage into independent building blocks encapsulating a specific elementary
functionality. During execution, blocks providing an optional functionality could
be skipped in a case of failure to continue processing without stopping a complete
workflow. The independence of stages is ensured by decoupling stages one from
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another; thus the workflow can be created by combining stages to fulfill specific
requirements of an application case. Furthermore, decoupling allows to abstract
from a particular view of analysis workflow and perform parallelization of the
stages. High execution speed can be achieved by use of high-performance cluster-
computing on GPUs or CPUs, exploiting hardware-specific optimizations, and an
efficient implementation using proper programming languages. The data analy-

Figure 2.1.: The general diagram of the segmentation framework based on the custom
data analysis workflow for µCT datasets (X-ray datasets) with the learning feedback loop,
the visual feedback and parameter tuning components to find the optimal parameters of
every processing stage. The red blocks represent new steps, stages or components in all
the following figures.

sis workflow proposed in this thesis in Fig. 2.1 resembles the one from [70] regard-
ing the functionality of some stages and architectural principles. It is composed
of various independent processing stages as presented in Sec. 1.4.4 to analyze a
series of similar samples. However, the order of stages is mainly determined by
the nature of data and may vary depending on the application case. In the be-
ginning, the data is validated to weed out the outliers, then the validated data
should be spatially transformed to be co-aligned with some reference landmarks
or another dataset. Then, the aligned data is transferred to the pre-processing
stage to remove noise and artifacts from various sources inherent to the specific
imaging setup. Afterward, the processed data is passed to the localization stage,
where the structures of particular interest are localized and provided for the fol-
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lowing stage, which extracts the localized structures and performs segmentation
to delineate the target structures. At the final stage, all segmented structures are
analyzed, and a set of morphological characteristics is estimated and stored. The
obtained new segmentation is validated and stored into a dedication facility to
improve the model at the next iteration of the learning feedback loop.

2.1.1. Learning feedback loop

This new concept is based on adding new segmented datasets to the storage,
which allows to iteratively improve the prediction models for validation, local-
ization, and segmentation in terms of accuracy of valid data recognition, bound-
ing boxes detection, and structure delineation, respectively. Thus, the learning
loop can be scheduled to perform retraining of models taking into account added
datasets after a certain amount of time. During the retraining process, the work-
flow is not completely stopped, but rather all incoming processing jobs requiring
some of the prediction models are added into a queue, where they are waiting
until the training will be finished.

2.1.2. Expert assessment

Before passing a new segmented dataset into a dedicated storage, it should be
first assessed by an expert in the domain. Since segmentation algorithms are
usually trained at a limited number of datasets, the produced segmentation will
always contain wrongly segmented structures, which could be barely noticeable
or significantly distort the result. Therefore, it should be validated by the expert
to avoid adding wrongly segmented data into a set of training data, which po-
tentially could lead to lowering of segmentation accuracy. The expert can either
correct wrongly segmented structures or reject dataset from adding to the train-
ing set.

2.1.3. Parameter tuning

The prediction models are based on deep-learning convolution neural networks,
whose architecture completely depends on properties of datasets. At the mo-
ment, there is no theory explaining how to properly parameterize a specific
model to get the best performance. Therefore, every prediction model during the
retraining process performs a hyper-parameter optimization to derive the best-
suited architecture for the datasets obtained during specific experiments. The
hyper-parameter optimization is a cumbersome and lengthy process; therefore,
it is performed only over a predefined set of parameters using the grid search
approach.
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2.1.4. Visual feedback

In some cases, data processing algorithms (e.g., denoising) produce results of sub-
jective nature, which can be only qualitatively evaluated. Therefore, visual feed-
back can help a user to find the best algorithm parameterization by providing a
gallery of algorithm outputs obtained at various combinations of specified pa-
rameters.

2.1.5. Data storage

When a dataset is segmented and morphological analysis is performed, the pro-
duced statistics are stored in a specifically configured database. While, the new
segmented dataset is then passed for validation to the expert, who check and
correct segmentation if necessary and push it to the large data storage facility.

2.2. Data validation

The high-throughput experiments usually produce an enormous amount of data,
which further is subjected to automated analysis due to impracticality of manual
processing. The validation stage is required to exclude all data obtained in result
of wrongly scanned samples to reduce loss in accuracy during further analysis.
The incorrectly scanned samples could occur due to factors such as incorrect posi-

Figure 2.2.: The diagram of the data validation stage which allows detecting datasets of
improperly scanned samples and excludes them from the further analysis steps. The red
blocks represent new steps for data normalization, creating a sparse representation and
training a data classifier.

tioning and alignment of the sample at the rotation stage (Fig. 2.3), an improperly
selected sample preparation protocol, inaccurate experiment parameters, severe
contamination with artifacts and other conditions which depend on the specific
imaging technique and setup.

40



2.2. Data validation

Figure 2.3.: The examples of the sample alignment to be handled in data validation: (a,d)
normal position in the field of view; (b,e) inclined position, when the sample peeks out of
the lateral sides of the field of view; (c,f) translated position, when the sample intersects
the upper or bottom sides of the field of view.

The validation procedure can be formulated as a classification task, which is re-
quired to determine the state of the currently processed dataset. Similar tasks
arise in various high-throughput studies using other imaging techniques such as
bright-field microscopy to classify whole-body zebrafish deformations in multi-
fish microwell plates [272, 273] and zebrafish embryos according to their defects
[274–276] caused by various chemical substances. In the case of plant pheno-
typing, it is used to classify plant diseases and stresses employing ground and
aerial platforms equipped with multiple sensors [277]. Also, it can be done man-
ually, e.g., to perform data quality control in phenotyping of mouse brain from
structural µMRI datasets [278] or to estimate the quality of datasets coming from
different mouse phenotyping centers [279]. Due to the variety of use cases, the
strategy of validation procedure explicitly depends on the nature of data, i.e., ev-
ery application case has unique approach satisfying the specific requirements.

Here will be presented the algorithm for validation µCT datasets to exclude all
datasets suffering from severe artifacts or where the sample is located out of the
field of view. The projections acquired during X-ray experiments are represented
as 2D grayscale images of the size equal to the detector size. Each pixel of projec-
tions has 16 or 32-bit color depth, which entirely depends on the detector proper-
ties. These projections are then subjected to the flat-field correction to remove hot
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pixels of the detector, imperfections of the scintillator, and alleviate the instability
of the X-ray beam. After that, they are transformed into a stack of cross-sections
or so-called slices which allow revealing the internal structure of the sample with
the help of tomographic reconstruction algorithms [12–14]. The reconstructed
X-ray data could contain statistical noise, and various artifacts occurred due to
the nature of X-ray imaging, such as ring and streak artifacts. These artifacts
may severely contaminate the reconstructed data and make it unusable for fur-
ther analysis; therefore, they should be suppressed as much as possible. The ring
artifacts more frequently appear at the reconstructed data, since they depend on
the detector and scintillator, which usually are not changed during the experi-
ment. Therefore, the ring artifacts could appear on data of all scanned samples
(Sec. 1.4.2). Whereas, the streak artifacts usually produced by samples contain-
ing highly absorbing parts surrounded by the weakly absorbing environment
(Sec. 1.4.2).

Besides the artifacts and noise occurred due to the experiment design and the
sample nature, the data could be spoiled by improper positioning of the sample
as depicted in Fig. 2.3. It could happen if the sample was scanned incompletely,
i.e., a part of the sample is located out of the field of view. Such sample position
violates its structural integrity, and the complete 3D dataset should be excluded
from further consideration.

2.2.1. Tomographic reconstruction and artifacts filtration

The X-ray projections at first are converted into sinograms Isino as described in
Sec. 1.3 and proceed the ring artifact filtration fring(·) using the algorithm pro-
posed in [47], which is relying on filtration of vertical lines in the wavelet domain.
Every sinogram is wavelet-decomposed into the vertical, horizontal and diago-
nal details bands at different decomposition levels Nwl. Thus, the vertical and
horizontal bands contain information about all vertical or horizontal stripes pre-
sented in the original image, correspondingly. After that, the bands carrying un-
desirable stripe information are Fourier transformed to compress the stripe infor-
mation into narrow bands. Applying 1D Fourier transform to all columns of the
vertical wavelet band will concentrate the stripe information around the X-axis
of the produced Fourier spectrum. Then, these coefficients are multiplied with a
Gaussian function of σdmp to remove those located near to the X-axis. Next, the
coefficients are transformed back to the wavelet domain with 1D inverse Fourier
transform, and the de-striped sinogram I

′
sino is obtained with the inverse wavelet

transform applied to the refined wavelet coefficients.

I
′

sino = fring(Isino;Nwl, σdmp) (2.1)

Finally, applying tomographic reconstruction algorithms to the de-striped sino-
grams (Eq. (2.1)) produces the reconstructed slices forming the dataset Ireco with
suppressed ring artifacts as shown at Fig. 2.4b.
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Figure 2.4.: The example of applying ring artifact correction to the real dataset: before (a)
and after (b) correction.

2.2.2. Data denoising

The correction of ring artifacts can help either to remove most of them or at least
significantly decrease their severity. However, the reconstructed data may still
suffer from the statistical noise, which was not filtered out with ring artifacts
(Fig. 2.5a).

At the validation stage, the data is preliminarily checked for suitability to the
further analysis. Thus, it is not reasonable to use computationally expensive non-
linear 3D filtering operations. Therefore, the 2D median filtering fmedian(·) with
the window of the specified size Wmed is applied to all slices along each orthogo-
nal axis ax to suppress the statistical noise in the reconstructed data

I
′ax
reco = fmedian(Iaxreco;Wmed). (2.2)

This results in the denoised data I ′reco, and it allows partially mitigate weak streak
artifacts and homogenize internals of structures that will benefit in following
steps (Fig. 2.5b). However, the size of Wmed should be selected not larger than
the size of the smallest structure of interest.

Figure 2.5.: The example of applying denoising process to the real dataset: before (a) and
after (b) denoising.
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2.2.3. Intensity and spatial normalization

To proceed with further steps, the 32-bit float data should be converted into the 8-
bit unsigned integer data using a histogram stretching and subsequent discretiza-
tion denoted by fnorm(·). The range of intensities in the 32-bit data is globally
selected by specifying two percentiles (Plow, Phigh) to define an intensity range for
conversion to 8-bit, which allows decreasing the total size of the dataset by factor
of four. The specified percentiles are used to determine a global intensity range
for the dataset by averaging intensity ranges obtained at equally-spaced slices
at each Nqss percents along the selected orthogonal axis. The careful selection
of these percentiles is a vital step because it defines the further intensities of the
dataset after conversion:

Inorm = fnorm(I
′

reco;Plow, Phigh, Nqss). (2.3)

The selected percentiles usually can be reused for data obtained from samples
of similar nature, prepared by the same protocol, and acquired using the same
imaging setup and experiment conditions. In a case of different datasets, unique
percentiles should be selected individually for each dataset

The size of reconstructed datasets may routinely reach dozens of gigabytes due to
high-resolution detectors. Unfortunately, such large sizes make troubles for the
validation stage, since it slows down the analysis process and increases memory
consumption. To avoid this, the dataset should be scaled:

Iscaled = fscale(Inorm;Sval) (2.4)

to fit the predefined size Sval, thereby spatially unifying datasets obtained with
detectors of different resolutions. Moreover, adjustment of the size Sval allows
significantly decrease the total size of the scaled dataset.

2.2.4. Data classifier

The previous attempts in validation tasks utilizing CNNs have shown high ef-
ficiency and accuracy [272, 273]. However, they all were developed mainly for
2D images, and hence cannot be directly applied to 3D data, since the network
should take into account the third dimension. Therefore, the CNN was modified
for a 3D case, allowed to parameterize the architecture and adapt for a sparse
representation of 3D data to reduce a GPU memory burden.

The sparse representation

The configuration of network CNN(·) imposes requirements on dimensionality
and size of the input data. Particularly, in the case of CNN, the input data size is
extremely restricted by the amount of available GPU memory, because it directly
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influences on the network architecture, and subsequently on the number of train-
able weights. On the other hand, the dataset must have enough slices along the
third dimension to maintain the structural integrity of the scanned sample. Thus,
an optimal sparse representation is produced by fsparse(·) for each dataset scaled
to the size of Sval by keeping only equally-spaced slices along the selected axis ax
with the step of Nqss percents:

Iaxsparse = fsparse(I
ax
scaled;Nqss). (2.5)

The creation process of a sparse representation of a phantom dataset along a sagit-
tal view is illustrated in Fig. 2.6, such representations can be produced for each
orthogonal axis if several networks are employed in the validation process.

Figure 2.6.: The schematic illustration of the creation process of a sparse representation
of a phantom dataset: (a) a phantom dataset; (b) slices obtained along each orthogonal
axis; (c) a sparse representation along the Y-axis.

For the training phase, every sparse representation should be accompanied by
an integer class label C. The sparse representations obtained from different axial
planes of the same dataset are assigned the same class label. For example, the
sample alignments presented in Fig. 2.3(a, d) and Fig. 2.3(b,e) can be denoted by
zero- and one-class labels, correspondingly. However, they are not understand-
able for the CNN due to the inability to estimate a loss function for them. There-
fore, integer class labels should be converted into a suitable view for the CNN by
means of a one-hot encoding algorithm fohe(·), which encodes integers by unique
sequences of binary codes:

C
′
= fohe(C)

C
′
= [e0, e1, . . . , eNc−1]

ei ∈ {0, 1}
i ∈ {0, 1, . . . , Nc − 1}.

(2.6)
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The network architecture

The type of network mentioned in [272] was extended to handle 3D data and
generalized through parameterization of the architecture: the network depth Nd

or the minimal size of the receptive field at the last convolution layer Smrf , the
number of filters at the first convolution layer Nbf , the number of neurons at the
fully-connected layer Nfc and the amount of dropout Ndp. These parameters al-
low performing a hyper-parameter optimization to find the best suitable network
architecture for the specific application case.

The architecture of a network is presented in Fig. 2.7, and consists of several types
of layers, which are placed in the following order: an input layer, several blocks
of two convolutional layers and following a max-pooling layer, a fully-connected
layer, and an output layer. This order of layers is inherent to the networks aimed
at prediction of data classes expressed via scalar values.

The data of size W ×H ×S, where W , H , and S are the width, the height and the
number of slices along a sparse dimension, is passed to the input layer of equal
size Sval. Then, the data is propagated through a network of length Nd, starting
from a sequence of convolution layers of size W d−1 × Hd−1 × S formed by con-
volving the previous layer with a stack of Nbf · d filters of size 3 × 3 × Sd−1 and
passed through a ReLU function to produce the activations of the current layer at
the network level d. After passing convolutional levels, the data is transferred to
the max-pooling layer producing the data of size W d−1/2× Hd−1/2× S by perform-
ing a max operation over Nbf ·d feature maps from the previous level with a filter
of size 2 × 2 × 1. When the propagated data reaches the fully-connected layer at
Nd level consisting of Nfc so-called neurons with a ReLU activation function, it is
linearized and mapped to all neurons. These neurons are passed to the dropout
layer [280], which randomly zeroes a fraction Ndp of the neurons for a regular-
ization purpose. Finally, the rest of the neurons are transferred to the output
layer, where the activations are obtained with a sigmoid function, and the errors
with respect to the ground truth are estimated, which are then back-propagated
through the network to adjust the weights.
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Figure 2.7.: The architecture diagram of the CNN involved in the validation process. The
lower row illustrates a convolutional and a max-pooling layer for level d, and a fully-
connected layer.

The network performs an optimization procedure to minimize the output error
by minimizing a specific loss function, e.g., in the case of validation it is a cross-
entropy:

floss(y) = − 1

Ns

Ns−1∑
i=0

Nc−1∑
c=0

1yi∈Cc log p(yi|Cc), (2.7)

whereNs is the number of observations, Nc is the number of classes or categories,
C is a set of classes, and 1yi∈Cc is the indicator function of the i-th observation
belonging to the c-th category. The p(yi|Cc) is the probability predicted by the
network for the i-th observation to belong to the c-th category. At each pass, the
network outputs a vector of P probabilities, each describing the probability that
the network input should be classified as belonging to the respective class.

The prediction process

The parameterized CNN can be expressed as Eq. (2.8), which accepts a sparse
representation of a dataset Iaxval along axis ax of size Sval, and produces a predic-
tion vector P ax. This vector contains probabilities representing belonging of the
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input data to the specific class:

P ax = CNNax(Iaxval;Sval, Nbf , Smrf , Nfc, Ndp). (2.8)

The probabilities are thresholded fth(·) with the specified threshold value γth to
obtain the class encodings:

Cax = fth(P
ax; γth)

Cax = [e0, e1, . . . , eNc−1]

ei ∈ {0, 1}
i ∈ {0, 1, . . . , Nc − 1},

(2.9)

where Cax is a one-hot encoded vector of classes.

The strategy of data augmentation

Data augmentation allows producing synthetic data based on real data to increase
a variety of sample appearance in a population. As was described in Sec. 1.4.3,
due to the nature of CNNs, their full potential can be leveraged only if there is
enough of training data. However, in some cases, experiments may be expen-
sive, time consumable or can be performed only a limited number of times that
significantly reduces the number of produced datasets which could participate in
a training.

When datasets from experiments are limited, the acquired datasets of similar
samples with analogous imaging setup can be reused to generate additional
datasets. The process of generation consists in applying a set of randomly or man-
ually parameterized geometrical (Fig. 2.8) and intensity transformations to the
available datasets. The combination of such transformations is able to produce
the new dataset with plausible spatial and intensity modifications controlled by
a set of parameters. It allows teaching the network about possible variations in
pose and morphology of the sample and improves the robustness and general-
ization of the final prediction model.

Figure 2.8.: The results of applying geometrical transformations involved into data aug-
mentation process: (a) no transformations; (b) rigid transformation; (b) affine transfor-
mation; (c) piece-wise affine transformation.
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The geometrical transformations differ one from another by complexity they can
provide. As for example, rigid transformation allows only for translation and ro-
tation, whereas affine transformation includes both of them and additionally scal-
ing and shearing operations [281]. However, they perform the global transforma-
tion of the coordinate system of the dataset to another coordinate system, thereby
not allowing for local transformations to deform various parts of the dataset in-
dependently. The piece-wise affine transformation can be used to perform local
deformations by placing a regular grid on the dataset and randomly move the
neighborhood of these points along sampled force vectors with affine transfor-
mations.

Thus, additional datasets can be produced by an accurately parameterized aug-
mentation process to generate datasets that are comparable to the real ones. It
can improve the prediction accuracy in the case of an insufficient amount of data
representing positive or negative cases for the training.

2.3. Sample alignment

The goal of alignment or registration is to spatially align the moving image IM(x)
to the fixed image IF (x), where the moving image is the original image, which
undergoes various spatial transformations. This is a procedure of finding a coor-
dinate transformation T (x) that makes the transformed moving image IM(T (x))
be aligned with IF (x) as schematically illustrated in Fig. 2.9. The moving image
transformation can be described as:

IM(T (x)) = fmv(IM ,x,T (x)), (2.10)

where fmv is a mapping function of the image IM with the coordinates x to the
transformed coordinates T (x). The alignment quality of these images is esti-
mated with a cost function C(T ; IF , IM) which is minimized if the images are
aligned. Thus, an optimization process tries to minimize a cost function to find
the optimal transformation parameters.
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Figure 2.9.: The schematic representation of the alignment process, where the target (IM )
sample (a) is passing through a series geometrical transformations (b) to find one, which
will align it to the reference (IF ) sample (c).

Usually, the registration task is accompanied by a number of choices to be made,
such as the optimization method [282, 283], the cost function [284–289], the model
of coordinate transformation [287, 290], the interpolation algorithm to correctly
transform the moving image [291], the sampling and multi-resolution strategies
[292].

2.3.1. Overview

The registration problem can be formulated as an optimization problem, where
the selected metric defined by the cost function C is minimized with respect to
parametrized transformation T . Since, the transformation is defined by a number
of parameters, only a limited number of transformations is possible. The final
optimization problem can be written as:

µ = argmin
µ
C(Tµ; IF , IM) (2.11)

where µ is a vector carrying the transformation parameters, Tµ denotes the trans-
formation T parametrized by µ. This minimization problem Eq. (2.11) is solved
with an iterative optimization method in a multi-resolution framework. The
schematic representation of the entire process is shown in Fig. 2.10, which is the
adaptation of the scheme presented in [293].
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2.3. Sample alignment

Figure 2.10.: The diagram of the alignment stage describing the general mechanisms to
align a target (moving) dataset to a reference (fixed) one.

2.3.2. Cost function

The cost function C defines a metric to estimate the similarity between the fixed
image IF (x) and the transformed moving image IM(T (x)). There is a lot of met-
rics to use, such as mean square difference (MSD) [284], normalized correlation
(NC) [285, 286], mutual information (MI) [287, 288, 294], normalized MI (NMI)
[289], α-MI [295, 296], and the κ-statistic [297]. For an instance, the MI metric is
defined as:

MI(X,Y ) = H(X) +H(Y )−H(X,Y )

=
∑
i

∑
j

pxy(i, j) log2

pxy(i, j)

px(i)
py(j),

(2.12)

where X and Y are fixed and moving images, i ∈ X and j ∈ Y are values, px(i)
and py(j) are the probabilities of occurrence of these values in the corresponding
images, pxy(i, j) is the joint probability of these values occurring together,H is the
Shannon entropy, and H(X,Y ) is a joint entropy. The voxels are sampled from
the domain according to the selected sample strategy which will be described
later.

The MSD metric is suitable only for images with similar intensities, usually, these
images are from the same modality or obtained with the same parameters of the
imaging setup. In contrast to MSD, the NC metric allows being used when inten-
sities of the fixed and moving images have an affine relation. The most relaxed
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conditions are provided by the MI, NMI and α-MI metrics, which assume that
there is only a statistical relation between intensities of the images. Therefore,
these metrics can be used for both intra- and inter-modal registration tasks. The
κ-statistic metric is developed for aligning of binary images by measuring over-
lap of segmented regions.

2.3.3. Geometric transformations

The severity of deformation is defined by the parametrization of the coordinate
transformation model Tµ. The example of the affine transformation model allow-
ing for translation, rotation, scaling and skew of the images:

Tµ(x) = Ax+ t, (2.13)

where A is a matrix incorporating rotation, scaling and skew, and t denotes the
translation vector. The parameter vector µ consists of the matrix elements aij and
the components of the translation vector:

µ =
(
a11, a12, a13, a21, a22, a23, a31, a32, a33, tx, ty, tz

)T
. (2.14)

The degrees-of-freedom of the deformation is completely determined by the
parametrization vector µ, so for the rigid transformation model consisting of
translation and rotation, only the elements of the A matrix responsible for ro-
tation and the translation vector should be specified.

2.3.4. Optimization process

The optimization problem Eq. (2.11) can be solved as a result of the optimization
procedure. At each iteration k, the vector of the current transformation param-
eters µk is updated by taking a step in the direction dk to improve the current
solution:

µk+1 = µk − akdk, (2.15)

where ak is a value defining the step size. A lot of optimization methods use
similar update schemes [283], such as gradient descent, quasi-Newton, nonlinear
conjugate gradient, evolution strategy, and stochastic gradient descent methods.
However, each of them provides own definition for ak and dk. In the case of a
gradient descent method, the direction of search is defined as the derivative of
the cost function ∂C/∂µ evaluated at the current position µk.
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2.3.5. Sampling strategies

The estimation of the cost function C and its derivative ∂C/∂µ requires to select a set
of voxels x ∈ X from the fixed image domain as stated in Eq. (2.12). The easiest
and straightforward way is to use all voxels from the fixed image, whose down-
side is a significant computational burden in a case of large images. However,
the more widespread approach implies that a set of voxels is selected randomly
or from a uniform grid defined over the fixed image. In another strategy, voxels
are picked only from remarkable image features like edges [298]. Also, the ap-
proach randomly samples voxels at non-voxel locations has shown to improve
the smoothness of the cost function [299, 300].

All sampling strategies may be supplied with statically or dynamically defined
image masks over the image X . The dynamic masks are randomly defined at
each iteration of the optimization procedure. The static masks are specified once
automatically or manually and do not change during the iterative process. The
mask forces the sampling algorithm to pick points only from the specified ROI,
which in some cases allows for increasing the quality of alignment.

2.3.6. Interpolation

Calculation of the cost function involves evaluation of IM(Tµ(x)) at non-voxel
locations. Thus, the interpolation is required to correctly estimate this transfor-
mation of the moving image. The existing interpolation methods such as nearest-
neighbor, linear and B-spline algorithms vary in quality and speed [301, 302], and
therefore should be selected with a trade-off in mind. As for the fixed image, it
does not require any interpolation with the most sampling strategies, because the
image is sampled at the voxel positions.

2.3.7. Hierarchical approach

The multi-resolution strategies [292] are the important part of the image registra-
tion process. These strategies allow for a gradual increase of the transformation
model complexity when approaching from a coarse resolution level to a finer one
to introduce more fine-scale transformations. Moreover, the parameters of the se-
lected sampling strategy and the cost function may be subjected to a hierarchical
strategy to adaptively change the behavior on approaching to finer levels. As an
example, in [294] was suggested to gradually increase the number of histogram
bins for the estimation of the MI and NMI metrics.
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2.4. Data pre-processing and normalization

The goal of this stage is to suppress the statistical noise and isolate the object of in-
terest from excessive surrounding empty space and unimportant structures and
prepare data for further hierarchical analysis. This stage is widely used in analy-
sis of medical CT datasets as a part of the segmentation workflow for abdominal
organs of patients; in plant phenotyping to prepare photographs for identifica-
tion and classification; to process fluorescent images in zebrafish phenotyping.
The data pre-processing became an essential part of any data analysis workflow
because raw data from a detector system usually suffer from various kinds of
noise and artifacts, which should be suppressed or removed before to proceed
with the further analysis.

Figure 2.11.: The diagram of the pre-processing stage which prepares data for the further
processing steps and analysis. The red blocks represent new steps for rough data seg-
mentation, extraction of a segmented structure, spatial data normalization, and creation
of a multi-level scale pyramid.

The proposed pre-processing pipeline (Fig. 2.11) is partially based on early stud-
ies [303–307] aimed at segmentation and analysis of data produced at various
X-ray imaging devices, such as medical CT scanners, X-ray laboratory sources,
and synchrotron light sources.

In the previously presented workflows, the input data at first proceeds the in-
tensity normalization to convert gray values to some intensity range. In this
work, this intensity range is defined as an average of intensity ranges estimated
at equally-spaced slices of the µCT data along the specified orthogonal axis and
step, as previously described in Eq. (2.3).
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2.4. Data pre-processing and normalization

The converted data is then processed with an anisotropic filter to suppress the
statistical noise. There are a lot of denoising algorithms potentially applicable to
X-ray data. However, the non-local means algorithm fnlm(·) [308] is the most cost-
effective and not requiring any a priori knowledge and training procedures while
ensuring the best quality among other denoising approaches [309] and demon-
strating efficiency for denoising of tomographic data. The algorithm estimates
every pixel as the weighted average of all gray values within the search window
Wsw. The weights indicate the degree of similarity between a patch of size Wtp

centered at the estimated pixel and all patches within the search window cen-
tered at the respective pixels. The smoothing parameter γsm controls the extent
of averaging. The high values of γsm promote removing noise and at the same
time, structural details, whereas low values preserve details, but as well noise.
The denoising algorithm is applied along any specified orthogonal axis ax of the
dataset Iaxnorm, and can be expressed as:

I
′ax
norm = fnlm(Iaxnorm; γsm,Wtp,Wsw). (2.16)

Then, the dataset with suppressed noise I ′axnorm is subjected to edge extraction pro-
cedure (e.g., the Sobel operator fsobel(·)) to extract the region containing the object
of interest:

Iedge = fsobel(I
ax
norm). (2.17)

Afterward, the global thresholding fgth(·) is applied to the data with enhanced
edges Iedge, which results in the binarized contours of structures:

Ith = fgth(Iedge). (2.18)

The sequence of morphological operations fmorph(·) such as erosion, dilation, clos-
ing, opening and fill holes is applied to obtain the closed segmentation of the ob-
ject of interest. These operations are parameterized by the size of the structural
element Sse and the number of iterations Nmi, whose values depend entirely on
the heuristic knowledge about the imaging setup and the nature of data. Thus,
applying this sequence to the data leads to the fully closed binary mask:

I
′

th = fmorph(Ith;Sse, Nmi). (2.19)

In the following step, the connected-components analysis fcca(·) is performed to
determine the largest bounding box B∗ and isolate the object of interest:

B = fcca(I
′

th)

B = [B0, B1, . . . , BM−1]

Bi = [xmin, xmax, ymin, ymax, zmin, zmax]

i ∈ {0, 1, . . . ,M − 1}
B∗ = max(B) by volume,

(2.20)

where x, y and z are coordinates along the corresponding orthogonal axes, and
operator max(·) determines the bounding box enclosing the largest volume. The
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data contained by a bounding box I ′Bth is then zero-padded and scaled fsnorm(·) to
fit the specified size Snorm to normalize dataset in terms of size to other datasets
participating in the analysis:

IBsn = fsnorm(I
′B
th ;Snorm). (2.21)

Finally, the rescaled and zero-padded dataset IBsn is used to create the multi-scale
pyramid fpyr(·) to make possible a hierarchical analysis:

H = fpyr(I
B
sn;NL, γds, σpyr)

H = [I0, I1, . . . , INL−1],
(2.22)

where NL is the number of layers for the pyramid. Every next level is produced
by downscaling the dataset from the previous layer by the factor of γds and sub-
sequent smoothing with the Gaussian filter of σpyr. The multi-scale pyramid en-
ables to analyze the objects of interest at various scale levels providing a different
degree of details. The initial scale level of pyramid H0 is created by applying
all previous pre-processing steps to the input dataset. The total processing time
can be dramatically reduced by performing time-consumable operations at the
coarsest possible level. The obtained results further can be remapped to higher
or lower levels. The algorithm for computing of the multi-scale pyramid is de-
scribed in [98].

All meta-information about the bounding boxes, the scale factors, the number of
added zeros and the parameters of the multi-scale pyramid is stored for further
use.

Thresholding algorithm selection

The thresholding segmentation methods rely on the detection of peaks and val-
leys in a histogram and are very sensitive to the content of the data. Due to a vast
variety of content, there were proposed a lot of approaches [310] for analyzing
histograms, because typically, each case requires a unique approach.

In early systematic studies on thresholding segmentation methods [311, 310],
there were attempts to formulate a methodology for selection of segmentation
method for non-destructive testing images such as thermal, ultrasonic, light mi-
croscope, ceramic, cloth images and synthesized images. In these studies, each
method was evaluated for each image from the specific application case.

However, despite that various methods were evaluated, the obtained results can
only be considered as a recommendation, because the number of images in each
case was insufficient, and therefore hardly can be used as an established method-
ology. Moreover, due to probable variations in the content of the images, even
the recommended methods could fail to determine a proper thresholding value.
Among the studied methods, no one was systematically evaluated on X-ray data,
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and therefore there are no recommendations for the method selection in this
case.

Based on heuristic knowledge, in this work, it is proposed to use the entropy-
based methods when the fraction of data subjected to segmentation is small (e.g.,
small particles embedded in a polymer scaffold). The clustering-based methods
are more suitable if the object of interest occupies the large fraction of data, and
the histogram has emphasized peaks. The determination of the proper method
is possible by visual inspection of results produced by each method on the repre-
sentative slice of X-ray data.

2.5. Localization of internal structures

In the previous chapter, it was outlined that with the development of deep learn-
ing methods [62], the organ localization approaches based on CNNs started to
emerge and overcome the traditional ones, which mainly relied on classical ma-
chine learning methods like SVM, Linear regression, Decision Forests, and others.
These classical methods required to design features manually, which is cumber-
some due to restrictions of human perception, whereas the deep learning meth-
ods can automatically extract hierarchical features in domains invisible for the
naked human eye.

2.5.1. Overview

In this section, the 3D localization method proposed by Humprie-Mamani et
al. [161] for medical CT datasets will be described, generalized and adopted in
the context of high-throughput µCT experiments. This approach is based on
the detection of structures presented in 2D slices of X-ray data, whose schematic
overview is illustrated in Fig. 2.12.
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Figure 2.12.: The diagram of a general view of the localization stage, which allows deter-
mining bounding boxes of target structures in a dataset. The red blocks represent new
steps for recalculation of obtained bounding boxes for pyramid levels and extraction of
target structures using these bounding boxes.

The method relies on three multi-label CNNs, one for each orthogonal view (ax-
ial, sagittal, and coronal) that independently process the input slices and make
predictions. Each CNN returns predictions along the corresponding axis, indi-
cating the presence of an organ at the specific slice. The prediction results are
thresholded, and the largest 1D connected-components are extracted. These com-
ponents are then merged to create a 3D bounding box per the structure of inter-
est. Afterward, the obtained bounding boxes are propagated to finer levels of the
multi-scale pyramid to operate with the data of higher resolution at the further
analysis steps. In the following subsections, the method will be explained more
thoroughly.

2.5.2. Input data preparation

The algorithm tries to predict classesCax of structures presented in every slice of
the dataset Iax along the specified axis ax, described as:

Iax = {I0, I1, . . . , INax−1}
Cax = [C0,C1, . . . ,CNax−1]

Ci = {1, 2, . . . , CNc}
i ∈ {0, 1, . . . , Nax − 1},

(2.23)
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where each slice Ii has a corresponding vector of classes Ci represented by a
set of integer values, which does not include the 0-th class, since it corresponds
to the background. To provide slices and corresponding classes for the training
procedure of the CNNs, the vectors of classes should be processed with the multi-
hot encoding algorithm fmhe(·):

C
′ax = fmhe(C

ax)

C
′ax = [C

′

0,C
′

1, . . . ,C
′

Nax−1]

C
′

i = [e0, e1, . . . , eNc−2]

ej ∈ {0, 1}
i ∈ {0, 1, . . . , Nax − 1}
j ∈ {0, 1, . . . , Nc − 2},

(2.24)

which produces a categorical vector C ′i of length Nc − 1, where presence or ab-
sence of a class C is denoted by 1 or 0 at the corresponding positions, which
schematically depicted in Fig. 2.13. Thereby, complete absence of structures can
be encoded as a zero vector of the same length, instead of reserving a specific vec-
tor element. This strategy allows unambiguously describe the content presented
in the slices in the form suitable for the CNNs.

Figure 2.13.: The schematic representation of the multi-hot encoding process for several
slices of a dataset, where different colors and activations correspond to presence of corre-
sponding structures (green - Structure 1, red - Structure 2, blue - Structure 3, and orange
- Structure 4).

The X-ray data is presented as a stack of slices describing a sample in a 3D space.
Therefore, using 2D slices may not be efficient, because the third dimension pro-
viding depth is not taken into account. Hence, instead of 2D slices of size W ×H ,
the CNNs can be adapted to 3D slices of size W × H × S, where the extent
of the third dimension is relatively small, a similar approach was described in
Sec. 2.2.4.

Every slice along the specified orthogonal axis ax is accompanied with several
neighbor slices Nns taken before and after its position with a step of Nss and form
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a 3D spatial context fctx(·) for the central slice as:

Iaxctx = fctx(I
ax;Nns, Nss)

Iaxctx = [I0, I1, . . . , INax−1]

Ii = [Ii−j·Nss , . . . , Ii, . . . , Ii+j·Nss ]

i ∈ {0, 1, . . . , Nax − 1}
j ∈ {0, 1, . . . , Nns − 1},

(2.25)

where Ii is a 3D slice at i-th position in the dataset along the specified axis, whose
corresponding categorical vector describes the content of its central slice. The
prediction of class is performed only for the central slice, whereas neighbor slices
serve only for a depth context. In some cases, the context slices cannot be taken
due to exceeding the minimal or maximal index along the specific axis, e.g. the
slices at 0 andNax−1 positions, thus, this issue can be resolved by replacing them
with the central slice.

2.5.3. The network architecture

The architecture of employed multi-label CNNs is similar to the one already de-
scribed in Sec. 2.2.4. This architecture is a generalization of the network proposed
in [161], and it allows tuning a range of parameters to find the best architecture
configuration for the specific application case.

The differences to already described architecture are that the network is aimed
at prediction of Nc classes encoded with the multi-hot algorithm and the specific
multi-label loss function [312] is used to obtain predictions for multiple labels
simultaneously. This loss function is a special case of the cross-entropy loss func-
tion (Eq. (2.7)), where Nc = 2, because several classes in the slice are encoded by
0 and 1.

2.5.4. The prediction process

The multi-label CNN can be parameterized in a similar manner as it was done
for the network at the validation stage (Eq. (2.8)). It accepts a dataset composed
of 3D slices Iaxctx created from Iax along the selected axis ax using a procedure
described in Eq. (2.25). The network generates a prediction for each slice forming
a prediction vector:

P ax = CNNax(Iaxctx;Snorm, Nbf , Nfc, Ndp), (2.26)

which contains probabilities of presence of the specific structures in every slice
(Fig. 2.14c). These prediction vectors should be post-processed to obtain the
multi-hot encoded representations of classes, which in turn can be used to de-
termine the ranges of indices describing the locations of target structures along
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the respective axis. Combining the obtained ranges of indices allow to obtain 3D
bounding boxes of the corresponding target structures (Fig. 2.14d).

Figure 2.14.: The diagram depicts the localization process of target structures in a dataset
(a) by deriving components of bounding boxes from axial probabilities vectors (c) using
CNNs (b) trained on corresponding orthogonal views to obtain 3D bounding boxes (d)
of respective structures.

2.5.5. The post-processing of predictions

The post-processing of the obtained prediction vectors P ax is an essential step to
deal with noisy results caused by abnormalities presented in the dataset. The pre-
diction vectors obtained per orthogonal axis are smoothed with a Gaussian filter
of σpvs to mitigate sharp peaks occurred at positions of slices carrying abnormal
or ambiguous structures. The smoothed prediction vectors are then thresholded
fth(·) with some predefined value γth to obtain the multi-hot encoded representa-
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tions of classes:

Cax = fth(P
ax; γth)

Cax = [C0,C1, . . . ,CNax−1]

Ci = [e0, e1, . . . , eNc−1]

Cax[j] = [C0,j,C1,j, . . . ,CNax−1,j]

ej ∈ {0, 1}
Ci,j ∈ {0, 1}

i ∈ {0, 1, . . . , Nax − 1}
j ∈ {0, 1, . . . , Nc − 1}.

(2.27)

These binary vectors are subjected to the connected-component analysis fcca(·) to
extract the largest connected-component for j-th structure along the ax orthogo-
nal axis:

Rax
j = fcca(C

ax[j];Nml)

Rax
j = [Rj,0, Rj,1, . . . , Rj,Ncaa−1]

Rj,i = [rmin, rmax]

i ∈ {0, 1, . . . , Ncaa − 1}
j ∈ {0, 1, . . . , Nc − 1}

R∗axj = max(Rax
j ) by length,

(2.28)

where Ncaa is the number of extracted components Rax
j of the j-th structure, Nml

is a minimum size of a connected-component considered for processing, Rj,i is
a vector formed by rmin and rmax indices describing a contiguous sequence of
slices, and max(·) is an operator to determine the longest range of indices R∗axj ,
which presumably includes the j-th target structure along the specified orthogo-
nal axis.

Combining the location information from the most extended ranges of indices
R∗ax for each axis with properly calibrated γth and Nml parameters allows re-
constructing a 3D bounding box Bj of the j-th structure of interest. If the most
extended sequence was not detected for at least one orthogonal axis, then the 3D
bounding box will not be constructed, and the corresponding structure cannot be
localized.

2.5.6. Propagation through a multi-scale pyramid

Once the 3D bounding boxes are constructed for Nc structures, they should be
propagated through a multi-scale pyramid H to make possible to localize struc-
tures hierarchically. The bounding boxes created at the l-th level of the pyramid
should be adapted to every of NL levels with fbscale(·), which scales coordinates
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of a bounding box by the specified scale factor:

Bl′

j = fbscale(B
l
j; γbds)

γbds = γ
(l′−l)
ds

j ∈ {0, 1, . . . , Nc − 1}
l, l′ ∈ {0, 1, . . . , NL − 1},

(2.29)

where Bl′
j is the bounding box of the j-th structure at the l′-th level of the multi-

scale pyramid H , given the bounding box Bl
j of the same structure at the l-th

level, γbds is a scale factor calculated from the pyramid downscale factor γds, the
current and the next/previous pyramid levels l and l′, correspondingly.

2.5.7. Accessing data at various pyramid levels

When the 3D bounding boxes for Nc structures were propagated through the
multi-scale pyramid, the data at the higher pyramid level can be readily accessed
as:

IB,l+1
j = HBl+1

j

j ∈ {0, 1, . . . , Nc − 1}
l ∈ {0, 1, . . . , NL},

(2.30)

where IB,l+1
j is the localized data of j-th structure extracted with the bounding

boxBl+1
j from the multi-scale pyramidH at the (l+1)-th pyramid level. Thus, the

data at a lower or higher resolution can be accessed by addressing the necessary
level of the multi-scale pyramid.

2.6. Segmentation of localized structures

Among the segmentation techniques reviewed in Sec. 1.4.4, the deep learning-
based methods demonstrated the state-of-the-art performance in the segmenta-
tion of multi-structural medical CT datasets. Therefore, these methods can be
adapted for analysis of sequences of complex heterogeneous datasets of similar
nature obtained during µCT experiments.

The 2D CNN-based methods usually utilize a slice-by-slice strategy to seg-
ment volumetric CT or MRI datasets [205, 313, 314, 206]. For instance, Roth et
al. proposed spatial aggregation of holistically-nested networks for segmentation
of pancreas CT data [313]. Havaei et al. proposed two-pathway shallow networks
with cascaded architectures to segment glioblastomas in brain MRI datasets [205].
The novel architecture called U-Net was proposed by Ronneberger et al. , which
was a 2D FCN architecture [200] and provided an efficient dense pixel-to-pixel
segmentation [207].
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Although these 2D CNN-based methods showed vast improvement in the seg-
mentation accuracy over the classical machine learning methods based on hand-
crafted features, they were still not optimal for 3D data analysis as they could
not use spatial information inherent to volumetric data. To approach volumetric
methods, Roth et al. proposed to train a network on centered orthogonal planes of
a 3D patch to integrate richer spatial information; however, it was still limited to
2D kernels [208]. Soon after, the real 3D CNN-based methods emerged, they al-
low extracting much more powerful volumetric representation across all spatial
dimensions [209, 210]. Kamnitsas et al. proposed to use a 3D network consist-
ing of dual pathways and training strategy based on a dense inference technique
of image segment to reduce computational complexity [210]. After segmenta-
tion, a 3D conditional random field model was applied to refine the result. This
approach showed outstanding performance on segmentation of lesions in multi-
channel MRI datasets.

Recently, several 3D volume-to-volume segmentation architectures were pro-
posed, namely 3D U-Net [211], V-Net [212] and VoxResNet [213]. The 3D U-Net
is an extension of 2D U-Net [207], which consisted of a contracting path to ab-
stract features and an expansive path to produce a full-resolution segmentation.
However, layers of the same resolution of these paths are linked through skip-
connections. The V-Net divided the architecture into stages, integrated residual
connections and proposed the objective function based on the Dice coefficient.
This new objective function was used instead of the traditional cross-entropy to
handle class imbalance issue occurred due to the significant difference between
the number of annotated positive and negative samples. The VoxResNet bor-
rowed the ideas of 2D deep residual learning [315] and constructed a very deep
3D network, whose multi-modality input and multi-level contextual information
allowed to produce brain segmentation from MRI datasets.

The prediction learned with CNNs are usually refined with classical methods
to improve the segmentation accuracy. In a range of works were proposed to
combine CNNs with graphical models such as Markov random fields (MRFs)
[216, 316] and conditional random fields (CRFs) [215, 317–321] to refine the net-
work output. Moreover, a classical level-set method was used by Cha et al. [214]
to refine a prediction result of a urinary bladder. Chen et al. [322] and Dou et
al. [323] proposed to use a fully connected CRF for refinement because it is capa-
ble of capturing complicated shapes with holes or tiny structures.

2.6.1. Overview

The novel network architecture proposed by Ronneberger et al. [207] allowed
for obtaining accurate segmentations without the need of additional refinement
steps. The idea is to provide a common contracting network with successive
layers, where up-sampling operations replace max-pooling layers. These layers
increase the resolution of the output until it reaches the size of the input layer.
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It allows for more accurate learning by incorporating local information, which is
transferred by concatenating features from the contracting path with the corre-
sponding features of the expansive path. In this way, the network can propagate
local context information to higher-resolution layers. As the expansive path in
some way is symmetric to the contracting path, the resulted network architec-
ture resembles a U-shape. The network is trained in the end-to-end fashion, so
it produces the probability map at the output layer of the same size as in the in-
put layer. The training is performed for each orthogonal view extracted from the
prepared 3D datasets as illustrated in Fig. 2.15.

Figure 2.15.: The diagram of the segmentation stage which performs segmentation of
a localized structure and post-processing. The red blocks represent new steps for two
possible strategies. In the slice-wise strategy, axial 2D probabilistic maps are fused into
a 3D probabilistic map, then it is thresholded, and the largest structure is extracted. The
patch-based strategy uses 3D patches extracted from the dataset to train a network for
further prediction of a 3D probabilistic map for each patch, assembling into the complete
dataset, thresholding, and extracting the largest structure.

The resulted models produce 2D probability maps of the structure of interest
along each of the axes. After that, these three stacks of probability maps are
merged to generate more robust prediction by averaging probabilities for each
voxel from all orthogonal views. In this section, the U-Net architecture [207] will
be described and adapted for usage in the context of the high-throughput µCT
experiments.
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2.6.2. Input data preparation

The 3D bounding boxes B are estimated from the labels or obtained with the
approach described in Sec. 2.5.1 are employed to extract the structures of interest
for the dataset I :

IBj = IBj

j ∈ {0, 1, . . . , Nc − 1},
(2.31)

where IBj is the localized data of j-th structure with the bounding box Bj .

The input network size is fixed; therefore every input data must be prepared to
fit the required size. However, due to the high memory consumption of the net-
work, only a 2D U-Net is possible to apply per an orthogonal axis in a condition
of restricted computational resources. The input data preparation can be divided
into two strategies: the slice-wise and patch-based strategy.

The slice-wise strategy

In this strategy, all slices extracted along the corresponding axis are fed into the
respective axial network with the specific input size. Since the input size of the
network is fixed, the data should be scaled and uniformly zero-padded from all
sides to fit the optimal size Sseg(j) of the j-th structure as:

IBsn(j) = fsnorm(IBj ;Sseg(j)), (2.32)

where IB(ax)
sn(j) is the scaled localized data, whose sizes of slices along each orthog-

onal axis ax match the size of input data Saxseg(j) of the corresponding network.
Hence, the localized and spatially normalized data enclosing the j-th structure
can be represented as:

I
B(ax)
sn(j) = [I0, I1, . . . , INax−1]

i ∈ {0, 1, . . . , Nax − 1}
j ∈ {0, 1, . . . , Nc − 1},

(2.33)

for each 2D U-Net trained on all slices along orthogonal axis ax, where Ii is a slice
at the i-th position in the extracted data region IB(ax)

sn(j) along the specified axis.

The patch-based strategy

In the patch-based strategy, the network is trained on slices obtained along the
axis ax of 3D patches of the fixed size Spth, which are extracted from the local-
ized and scaled data IBsl(j) of the j-th structure as using fpext(·) with the specified
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overlap of γovlp:

IBsl(j) = fscale(I
B
j ;Saxseg(j))

IPj = fpext(I
B
sl(j);Spth, γovlp)

IPj = [IP0 , IP1 , . . . , IPNpths−1 ]

IPk(ax) = [I0, I1, . . . , ISaxpth−1]

i ∈ {0, 1, . . . , Saxpth − 1}
j ∈ {0, 1, . . . , Nc − 1}

k ∈ {0, 1, . . . , Npths − 1},

(2.34)

where IPk is the k-th 3D patch of size Spth, and Ii is a slice of this patch taken
along the selected axis ax. The procedure fpext(·) extracts patches of size Spth
evenly across the complete dataset maintaining the overlap γovlp to ensure smooth
transitions between patches.

2.6.3. The training process

At the training phase, the network UNet(·) is trained at the predefined subset of
data Iaxj and corresponding binary labels Laxj of the j-th structure:

Iaxj = [I0, I1, . . . , INax−1]

Laxj = [L0, L1, . . . , LNax−1]

i ∈ {0, 1, . . . , Nax − 1},
(2.35)

where Ii and Li are the i-th slices of data and labels obtained along the specified
orthogonal axis ax. Then, these slices are fed into the corresponding network:

W ax
j = UNetaxj (Iaxj ,L

ax
j ;Saxseg(j), Nbf , Smrf ), (2.36)

where W ax
j is the set of trained network weights, Saxseg(j) is the input data size

along the corresponding axis for the j-th structure, Smrf is the minimal size of the
receptive field at the last convolution layer, and Nbf is the number of filters at the
first convolution layer. The network performs an optimization procedure with a
specified loss function Eq. (2.7) to learn the mapping from the data features to the
output labels. However, depending on the strategy of input data preparation, the
training procedure may slightly differ.

In a case of an insufficient number of training datasets, the data augmentation
procedure may help to improve the robustness of the trained networks as de-
scribed in 2.2.4.

67



2. An automated machine learning-based segmentation framework for X-ray data

The slice-wise strategy

The studied sample may vary in size due to peculiarities of a development pro-
cess, which in the case of a living organism greatly influences the properties of
internal structures. Due to these variations in properties, the location and size of
the same structure in others datasets may be slightly different.

As the input size of the network is fixed, i.e., all datasets are fed into the net-
work should be of the same size. Therefore, the localized data containing the j-th
structure should be spatially normalized to the size Sseg(j), which is selected by
averaging fsavg(·) among all sizes SBj of localized regions of the same j-th struc-
ture in other datasets:

Sseg(j) = fsavg(S
B
j ). (2.37)

It is likely that the average size is not evenly divisible by two until the result
of division reaches the specified size, as it is required by the network architec-
ture. Therefore, each component of the size Sseg(j) should be adjusted to obtain
S
′

seg(j):

S
′

seg(j) = fsnear(Sseg(j);Smrf ), (2.38)

which is evenly divisible by two until the size Smrf is reached by looking for the
nearest fitting value. In this way, it is guaranteed that the corresponding layers
of the contracting and expansive paths will have the same sizes.

The patch-based strategy

In the case of the patch-based strategy, there is no need for additional adjustments
of the size for the spatial normalization (e.g., be divisible by two) or zero-padding
to fit the specified size, because small patches are extracted from the data of much
larger size. The localized data should be scaled while keeping the aspect ratio
only to make structural content comparable in terms of scale with the similar
structures from other localized data.

2.6.4. The architecture of U-Net

The U-Net architecture is illustrated in Fig. 2.16, where a contracting path is lo-
cated on the left side, while an expansive path on the right. The first compresses
the input data, whereas the second decompress the data until its original size is
reached. All convolution operations are applied with appropriate zero-padding
to avoid shrinking of the output and subjected to batch normalization to avoid
internal covariate shift.
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2.6. Segmentation of localized structures

Figure 2.16.: The diagram of a generalized 2D U-Net architecture represented by con-
tracting and expansive paths, where ReLU is an activation function and BN stands for a
batch normalization technique.

The architecture of the compression path is arranged like in a regular CNN, and
it is divided into several levels Nd operating at different resolutions. Each level
comprises two convolutional layers with a kernel size of 3 × 3, equipped with a
ReLU activation function followed by a max-pooling operation applied in non-
overlapping windows of 2 × 2 to reduce the size of the current layer d by half
W d/2 × Hd/2 × F . Therefore, it is crucial that the size of the input layer W × H
was selected in the way that the output size of each max-pooling operation has
even values. The number of feature channels F is doubled at each level.

The decompression path implements a similar strategy but works in the oppo-
site direction. It extracts features and expands the spatial support of the feature
maps having lower resolution in order to collect and assemble the necessary in-
formation for the output layer. At each level of the decompression path, the up-
sampling operation with the window size of 2×2 is employed in order to increase
the size of the inputs, followed by a convolutional layer equipped with a ReLU
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2. An automated machine learning-based segmentation framework for X-ray data

activation function using a halved number of 3× 3 filters employed in the previ-
ous layer. Then, a concatenation with the corresponding feature maps from the
compression path and two convolutions of the same configuration as in the pre-
vious layer is performed. At the last level, i.e., the first level in the case of the
decompression path, two feature maps are computed by a convolutional layer
with a kernel size of 1× 1 and a soft-max activation function to produce outputs
of the same size W × H as the input layer and generate 2D probability maps of
the foreground and background regions.

The forwarding of the features extracted at the levels of the compression path
to the corresponding levels of the decompression path is illustrated in Fig. 2.16
by horizontal connections. This allows transferring the fine-grade details that
would be otherwise lost during contraction of the feature maps that improve the
prediction quality and the convergence time of model.

2.6.5. The prediction process

During the prediction phase, illustrated in Fig. 2.17, the slices from each orthog-
onal axis of the extracted data of the j-th structure are fed into the corresponding
network equipped with the trained weights W ax

j . At the output, the network
produces a collection of 2D probability maps P ax for the specified axis ax:

P ax
j = UNetaxj (Iaxj ,W

ax
j ;Sseg(j), Nbf , Smrf )

P ax
j = [P0, P1, . . . , PNax−1]

i ∈ {0, 1, . . . , Nax − 1},
(2.39)

where each slice Pi denotes the presence probability of the specific structure in
every pixel.

In the case of the patch-based strategy, the resulted predictions for Npths patches
P P
j extracted from the localized and scaled data of the j-th structure, must be

combined with the help of fpcmb(·) procedure:

P ax
j = fpcmb(P

P
j ;Saxseg(j), Spth, γovlp)

P P
j = [P P0 ,P P1 , . . . ,P PNpths−1 ]

j ∈ {0, 1, . . . , Nc − 1}
k ∈ {0, 1, . . . , Npths − 1},

(2.40)

where the probabilities of the overlapped regions are averaged for every k-th
patch P Pk to reconstruct the 3D probability map P ax

j composed of slices of size
Saxseg.
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Figure 2.17.: The diagram illustrates the segmentation process of a target structure (a) us-
ing pre-trained U-Nets on corresponding orthogonal views (b) predicting 2D probability
maps (c), which are then fused into a single 3D probability map (d) and thresholded to
yield a binary segmentation.

2.6.6. The post-processing of predictions

The pseudo-3D probability maps P ax
j obtained per orthogonal view ax for the

j-th structure are represented as collections of 2D probability maps along the
corresponding axes. Therefore, they should be fused to form the averaged 3D
probability map providing a more robust prediction. Due to some parts of the
target structure could be more perceivable from the specific orthogonal view, and
less from others. These pseudo-3D probability maps are combined with ffuse(·)
by averaging probabilities at every voxel:

Pavg(j) = ffuse(Pj)

Pj = [P 0
j ,P

1
j , . . . ,P

Nax−1
j ]

ax ∈ {0, 1, . . . , Nax − 1}
j ∈ {0, 1, . . . , Nc − 1},

(2.41)

where Pavg(j) is the averaged 3D probability map across all axes for the j-th struc-
ture. The resulted probability map is then thresholded by the specified value of
γseg to generate a binary segmentation of the j-th structure:

Lj = fth(Pavg(j); γseg)

Laxj = [L0,j, L1,j, . . . , LNax−1,j]

i ∈ {0, 1, . . . , Nax − 1}
j ∈ {0, 1, . . . , Nc − 1},

(2.42)

whereLj is the 3D binary segmentation obtained by thresholding of the averaged
3D probability map, and Li,j is the i-th slice of the obtained segmentation for the
j-th structure along the specified axis ax.
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2.7. Morphological and statistical analysis

As it was said in Sec. 1.4.4, morphological analysis is highly important in diverse
research fields such as medical, life and material science. The information about
morphological properties helps to understand the microstructure of the studied
sample and its physical properties. In its turn, it allows predicting the mechanical
properties of the material to develop the new ones with the desired characteris-
tics. Also, it helps to get insight into how structures change in a sample during
the development or degradation processes.

2.7.1. Morphological analysis workflow

The general workflow is presented in Fig. 2.18, where the segmented input
dataset Lj of the j-th structure is scaled back to the initial size to estimate the
volume and the surface area properties correctly.

Figure 2.18.: The diagram of the morphological analysis stage which is used to extract
various characteristics from segmentation of corresponding structures of interest.

The estimation of volumetric properties is performed by utilization of voxel in-
formation which is already presented by the label.

A polygonal representation also called as a mesh should be extracted from the
segmentationLj using the Marching Cube algorithm [324] to compute the surface
properties. Then, the surface area may be calculated as a sum of polygon areas
constituting the mesh. The compactness measures at this point may be estimated
using the volume Vj and the surface area Aj values calculated for the segmented
j-th structure.

The analysis of fibrous structures consists of the separate processing workflows
aimed at the analysis of certain fiber properties. In the case of fiber orientation,
it is composed of pre-processing, skeletonization, and successive morphological
dilation of the segmented input data to provide more local support for the orien-
tation estimation algorithms evaluated at each point of the skeleton. The detailed
description and performance analysis of this workflow is provided in Sec. 3.1.
Other types of structures can be also analyzed, but corresponding workflow and
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underlying processing stages must be defined (e.g., analysis of crack formation
and crack growth in materials).

The estimated measures for the j-structure are saved into a persistent storage to
be reused further.

2.7.2. Geometrical properties

The widely used method for estimation of the shape properties of particles is
based on the American Society for Testing and Materials (ASTM) standard pro-
cedure [325] to measure the elongation and flatness ratios for various paving ma-
terials. As Fig. 2.19 illustrates, the elongation ratio may be represented by the
length-to-width ratio, and the flatness ratio using the width-to-thickness ratio,
where the length, width, and thickness are the object dimensions from the longest
to the shortest.

Figure 2.19.: The representation of elongation and flatness ratios of a sample or structure.

The 3D shape of the segmented j-th structure Lj is defined as the spatial distri-
bution of voxels, whose properties can be analyzed with the central moments of
order (p+ q + r):

µp,q,r =
∑

(x,y,z)∈Ω

(x− xc)p(y − yc)q(z − zc)rLj(x, y, z) (2.43)

whereLj(x, y, z) is a value at a coordinate (x, y, z), and (xc, yc, zc) is the centroid of
the segmented structure. The central moments allows to determine geometrical
and statistical properties of the structure. The zero-order moment describes the
total volume of the structure, the second-order moments can be used to find the
principal axes and orientation, whereas the moments of higher order describe
rather the statistical properties of the distribution like skewness or kurtosis, than
the geometrical ones.
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2.7.3. Compactness and sphericity

The most basic measures for characterizing the geometrical shape of the seg-
mented structure are the volume V and the surface area A. The volume is calcu-
lated as the total number of non-zero voxels that comprise the studied structure,
and the surface area may be estimated from a polygonal representation obtained
from the segmented structure with the Marching Cube algorithm [324], which is
the most popular method for surface extraction.

Along with the aspect ratio analysis, the shape of the structure can be measured
regarding compactness, which is the dimensionless ratio of the surface area to the
volume of the structure:

C =
V
A
. (2.44)

Moreover, the resemblance of the structure with a sphere can be estimated via the
sphericity measure [326]:

S =
As
A
, (2.45)

whereAs =
3
√

36πV2 is the surface area of the sphere, containing the same volume
as the structure. The sphericity is defined in the range [0, 1], whereas the upper
bound is reachable only if the studied structure is a true sphere.

2.7.4. Connected-component analysis and skeletonization

The connected-components analysis algorithm [327, 217] is the most widely used
method for extracting groups of adjacent voxels, i.e., connected-components. All
voxels constituting a connected-component share similar intensity values and a
particular type of connectivity. Once all groups are determined, each voxel is
labeled with the specific intensity corresponding to the component it was as-
signed.

The skeletonization process [328, 329] reduces the binary regions of the studied
structure to skeleton parts that largely preserves the extent and connectivity of the
original structure while removing most voxels belonging to the original structure
regions. One of the possible implementations may use morphological thinning
that successively removes voxels from the boundary of segmentation and trying
to preserve the ends of line segments until no more thinning is possible, which
results in a skeleton.
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2.7.5. Fiber analysis

The analysis of fibrous structures forms a separate research field applied in vari-
ous areas of medical, material, and life sciences. It comprises plenty of methods
developed for different aspects of analysis, such as estimation of density, orien-
tation, diameter, length, connectivity, and other fiber properties in a 2D or 3D
space. Due to the particular usefulness of the orientational analysis in the charac-
terization of materials and tissues, the novel method for 3D orientation analysis
will be presented in Sec. 3.1.

2.8. Implementation

This chapter introduces the programmatic architecture of the described analysis
workflow presented as a set of modules combined into a framework. All general
image processing operations were decoupled from the module-specific opera-
tions into a separate module. In this way, the modules perform only a single task
and dependencies from other modules are minimized.

2.8.1. General architecture

The architecture of the segmentation framework is presented in Fig. 2.20 using
Unified Modeling Language (UML) to explain the relationships between multi-
ple modules. The framework consists of several internal modules, such as I/O
Data, Validation, Processing, Alignment, Localization, Segmentation, and Anal-
ysis. Besides the internal modules, there are several external packages denoted
here as external modules, namely, NumPy and sci-kit image. These modules
are globally imported and used in all internal modules, along with locally im-
ported ANTsPy, Keras, and quanfima modules providing the specific functional-
ity for particular internal modules. The access to databases or storages, namely
Large Data Storage, Fast Temporary Data Storage, and Meta-data Storage, was
arranged through the I/O Data module to unify the interfaces because a saving
process could be represented either by writing files on a disk or by adding new
entries into a database. The framework was implemented using the Python lan-
guage because it has a large collection of image processing and machine learning
packages providing an easy interface to high-performance C/C++ implementa-
tions. The Python language allows for fast prototyping, widespread among the
science community, and has a very calm learning curve to allow less experienced
programmers to contribute into the code base. Moreover, it enables to use this
framework in other Python-based environments by importing some of the mod-
ules.
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Figure 2.20.: The diagram of the segmentation framework composed of several modules,
interacting with third-party modules and databases.

The emergence of IPython, and then Jupyter notebook made the creation of in-
teractive web-based notebooks possible, where a user could write a code and im-
mediately observe the execution result. These notebooks demonstrated that the
code of some processing method could be attached to the paper, thereby closing
the gap between the mathematical formulation and the practical in-code imple-
mentation. Therefore, the Python language provides a good opportunity for the
integration with available data processing packages, large community and wide
application in the research community. This framework was developed under
the MIT license; therefore, it can be freely used in any other projects [330]. The
detailed description of methods is presented in (Tab. B.15 to B.20).

In the following sections, only key methods from each module will be pre-
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sented.

2.8.2. Validation module

The module implements the functionality for checking the suitability of the
dataset for further usage in the analysis workflow. To distinguish between valid
and invalid cases, the class DataValidator provides the method train to train
the model at representative cases, which are passed into this method one after
another. The suitability of the dataset for the further analysis is estimated by the
method validate, which takes the dataset, and returns a Boolean value, True
if the data is accepted and False otherwise.

2.8.3. Processing module

In this module, all image processing operations are gathered together to be acces-
sible from one place for other modules. The data normalization routine with em-
bedded data type conversion is available from the normalize function, which
expects the dataset on the input. The optional arguments of this function are min-
imum and maximum intensities used in the normalization process, and the target
data type employed in the data conversion.

The uniform zero-padding operation is provided by the zeropad function,
which takes the dataset on the input and amount of zeros to add along every axis.
The function returns the zero-padded dataset and the bounding box containing
the original data.

To extract the largest connected-component from the binary data, the function
find_largest_object is provided. It takes the binary data on the input and
returns the extracted connected-component and its bounding box.

The function rescale scales the input data to the specified size and returns the
original and rescaled data, and the scaling factor.

The averaging intensities at each voxel are accomplished with the average
function, which takes a list of datasets of the same size. Then, these datasets
are merged by averaging values at every voxel, and the averaged dataset is re-
turned.

2.8.4. Alignment module

This module uses the ANTsPy package that provides Python bindings to Ad-
vanced Normalization Tools software [331], which is widely applied for the im-
age registration tasks.
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To align one dataset to another, the method align is provided by the class Data
Aligner, whose arguments are the reference dataset and the target dataset, the
transformation, the number of Gaussian pyramid levels, the minimized met-
ric, and sampling strategy. The additional arguments are matched to the ones
the antsRegistration application accepts [331]. The method returns the reference
dataset, the aligned target dataset, and the matrix of the geometrical transforma-
tion.

Applying the existed transformation to the dataset may be done with the method
apply_transform, by passing into the target dataset and the transformation
matrix to apply. The method returns the original and the transformed dataset.

2.8.5. Localization module

The module implements the functionality to localize the structures of interest in
the datasets using the deep learning approach. The localization model must be
trained on the datasets with already annotated bounding boxes. To perform train-
ing, the class DataLocalizator provides the method train which takes the
training and validation datasets, the number of layers and returns the trained
model. The method predict allows for prediction of the bounding boxes by
passing inside the target dataset and returns the prediction vectors, one per the
structure.

2.8.6. Segmentation module

This module provides the functionality enabling to perform segmentation of
the structures of interest using the CNN of the specific architecture. The
method train of the class DataSegmenter takes the training and the valida-
tion datasets on the input, and several other parameters, such as the depth of
network, the kind of loss function, the optimization method, and returns the
trained model as the result. To apply the model to the previously unseen data,
the method predict may be used. It takes the dataset as the input and returns a
set of 2D probability maps, one per slice, depicting probability to find the target
structure in every pixel.

2.8.7. Analysis module

To perform the morphological analysis of the segmented dataset, this module
provides several routines. The volumetric and surface properties may be ex-
tracted with the functions extract_vol_props and extract_surf_props,
which take the segmented dataset as the input argument, and return the lists of
the extracted properties for each structure of interest. The fibrous properties are
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extracted with the function extract_fiber_props which employs the quan-
fima package providing the functionality for the analysis of fibrous structures.
The function returns the lists of the analyzed structures and the corresponding
extracted properties.

2.9. Performance evaluation

The segmentation framework presented in this chapter should be evaluated on
the series of synthetically generated datasets to systematically and quantitatively
estimate optimal parameterization and accuracy for each stage. The secondary
goal is to discover the influence of parametrization of some stages on others, the
potential limitations of the entire system and its behavior in various noise condi-
tions.

2.9.1. Dataset description

High-quality datasets with various internal structure are required to estimate the
performance of the proposed segmentation framework quantitatively. Therefore,
a synthetic phantom was designed [332] and used to generate 20 datasets (10 for
a training and 10 for a validation/prediction population) for further comparative
analysis, several representatives are depicted in Fig. 2.22. The phantom is pre-
sented by an ellipsoidal body composed of several ellipsoidal internal structures
as illustrated in Fig. 2.21.

Figure 2.21.: The description of the phantom dataset composed of several nested ellip-
soidal structures.

The properties of these structures such as location and size within the body are
varying by the specified standard deviation to emulate variability in the real sam-
ples (e.g., living organisms), the details are presented in Tab. 2.1. Every structure
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was assigned a unique intensity value, which was manually selected in the way
that all structures in the phantom have different intensities. The synthetic phan-
tom allows evaluating the framework in non-trivial conditions by additionally
contaminating datasets with the additive Gaussian noise to quantitatively esti-
mate the behavior of each stage to quality degradation, which partially emulates
insufficient exposure time during µCT experiments. Every generated dataset was

Structure Type Radius (voxels) Location (voxels) Value
X Y Z X Y Z

Body Ellipsoid 227±10 128±10 128±10 256 256 256 30
Structure 1 Ellipsoid 20±10 20±10 20±10 398±10 206±10 235±10 130
Structure 2 Ellipsoid 25±15 25±15 25±15 331±10 257±10 192±10 160
Structure 3 Ellipsoid 62±15 27±15 27±15 149±10 305±10 256±10 190
Structure 4 Ellipsoid 37±15 37±15 37±15 228±10 236±10 325±10 230

Table 2.1.: The configuration parameters of the phantom dataset.

smoothed with a Gaussian filter of σsmooth of 0.5, and contaminated with the ad-
ditive Gaussian noise σagn of 1.0 to rid of sharp transitions at the interfaces from
the internal structures to the body and to introduce inhomogeneity, which is in-
herent to X-ray data. At the stages of evaluation of the robustness to the noise,
the datasets allocated for evaluation were contaminated with the noise of level
σagn in a range from 0.0 up to 40.0 with a step of 2.0. The datasets used in the
training and prediction procedures are consistent through the whole evaluation
process.

Figure 2.22.: The randomly selected representatives of the phantom datasets.

2.9.2. Benchmarking setup

The performance evaluation was done at a machine running 64-bit Ubuntu
16.04.5 LTS and equipped with 2 x Intel Xeon Silver 4114 processors, 4 x GeForce
GTX 1080 Ti 12GB graphical adapters and 256 GB of random access memory
(RAM). The datasets located at the Large Scale Data Facility (LSDF), and accessed
via a local high-speed network of 320 MB/s.
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2.9.3. Validation stage

The validation stage should be evaluated for the detection accuracy of anomalous
samples to find the optimal network architecture and investigate how the noise
influence on its accuracy.

Accuracy metric

The obtained predictions from the validation stage are first thresholded with the
specified thresholding value to obtain binary predictions. The accuracy can be
estimated using these thresholded values with the Dice score or so-called Dice
ratio, which is widely used for estimation of segmentation accuracy:

DSC(X, Y ) =
2 |X ∩ Y |
|X|+ |Y |

, (2.46)

where X and Y are the obtained binary predictions and ground-truth labels.

Data preparation

Before to proceed with the validation process, the dataset should be quickly pre-
processed by fast 2D median filtering of Wmed = 3, which was selected smaller
than the smallest structure presented in the dataset. The scaled size Sval of
datasets was specified as 128×128×128, because it allows significantly reduce
the data size, and subsequently the training and prediction time. The selected
size should allow distinguishing between the general shape of the sample and
the rough shapes of internal structures.

In the case of a lack of training data, the scaled data can be utilized to generate the
new data by randomly translating the sample along all axes in the range from -64
to 64 voxels, and rotating around the center of the volume in the range from 0° to
45° for elevation and from -45° to 45° for azimuth. The transformed data is then
assigned to the invalid class if the sample is out of the field of view or touches the
volume boundaries, the valid class otherwise.

The transformed dataset is then converted into a sparse representation parame-
terized by the number of equally-spaced slices with a step ofNqss = 10, which was
selected empirically. The complete parameterization is presented in Tab. B.1.

Training procedure

The optimal network architecture (Sec. 2.2.4) is selected with the help of the grid
search procedure, which allows training networks on the grid of parameters cre-
ated from Tab. B.2, and then select the most efficient architecture by the predic-
tion accuracy on the validation datasets. The networks were parameterized with
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various combinations of parameters as stated in Eq. (2.8): the number of base
filters Nbf = {4, 8, 16}, the minimal size of the receptive field Nmrf = {4, 8, 16},
the dropout ratio of Ndp = 0.5 and the number of neurons Nfc = 1000 at the
fully-connected layer. They were trained on the prepared training and validation
datasets for 250 epochs using a batch size of 8 sparse representations. During
each epoch, all datasets in a batch were passed through the network once. The
initial weights of the network were set using the Glorot initialization. The Adam
optimization [333] was used as a gradient-based optimization with learning rate
α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. To avoid falling into a local mini-
mum, the learning rate is reduced by a factor of 2 when a loss function was not
improved in a row over 5 epochs. The training process stops when the value of
the accuracy metric on the validation datasets stops improving within the last
10 epochs. In the end, the network with the highest accuracy on the validation
dataset is selected as the final model.

Prediction procedure

The network produces a probability value that indicates the degree of validity of
a given dataset, and then it is thresholded with the specified value to obtain a bi-
nary value, which corresponds to a valid or invalid class. The accuracy of the spe-
cific network architecture is calculated from a series of validation outputs from
several datasets, which form a prediction vector. Next, the accuracy it is calcu-
lated with Eq. (2.46) from the produced prediction vector and the corresponding
ground-truth vector.

Evaluation procedure

The evaluation procedure of the validation stage is aimed at the investigation
of various network architectures to find the optimal one using the grid search
method for a hyper-parameter optimization. The efficiency of the specific ar-
chitecture completely depends on data; therefore, the only way is to brute-force
some of the possible parameters with the assumption that the search happens
in the vicinity of the optimal parameterization. Next, the optimally configured
network should be estimated for the robustness of detection of datasets contami-
nated with various levels of the additive Gaussian noise.

The optimal network architecture

The validation networks were initialized with parameters specified in Tab. B.2
and trained without augmentation on the specially prepared datasets as de-
scribed earlier.

The results of architecture benchmarking presented in Fig. 2.23 have shown that
CNN[4MRF 8BF], CNN[8MRF 16BF], and CNN[16MRF 4BF] demonstrated
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better accuracy than all other architectures, namely, 0.9786±0.009, 0.9798±0.0103,
and 0.9808±0.0071, correspondingly. However, CNN[16MRF 4BF] provides the
best detection accuracy, which is higher than CNN[4MRF 8BF] by 0.0022, and
CNN[8MRF 16BF] by 0.001.

Figure 2.23.: The benchmarking results of the validation stage for determining of the
optimal architecture.

Robustness to the noise

At this step, the optimally configured network should be evaluated for the ro-
bustness to the noise to determine acceptable SNR intervals of input datasets
subjected to validation. These intervals allow rejecting the datasets, which have
an excessive amount of noise and will not be adequately analyzed at the further
stages.

The network was trained at the noiseless datasets from the training population.
The five datasets from the validation population were contaminated with various
σagn to estimate the robustness at each level of noise.

The Fig. 2.24 presents the results of robustness evaluation, demonstrating that
the detection accuracy gradually decreases to zero starting from 6.25 of σagn.
Thus, according to the obtained results, the values from 0.0 to 6.25 of σagn
form a confidence interval, which corresponds to the interval from 13.13±0.14
to 12.38±0.13 dB of the SNR. This interval can be used in real experiments to de-
termine datasets that will likely be analyzed correctly, given that their intensity
distributions are similar to ones of the phantom datasets.
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Figure 2.24.: The noise benchmarking results of the optimal network architecture for the
validation stage.

Discussion

The quantitative analysis of the validation stage for the optimal network archi-
tecture has demonstrated the superiority of CNN[16MRF 4BF] over other con-
sidered network architectures. Furthermore, the selected architecture proved its
resistance to the additive Gaussian noise up to 6.25 of σagn.

The selected optimal network architecture is parameterized by 4 filters at the first
convolution layer, and the minimal size of the receptive field of 16 has provided
higher prediction accuracy among other considered variants. The size of the re-
ceptive field of the layer located just before the fully-connected layer significantly
influence the prediction accuracy. The small size of the receptive field promotes
the elimination of most of the structural features by excessive downsampling pro-
vided by a max-pooling operation. In its turn, it leads to degradation of the dis-
criminative power of features that in conjunction with a dropout process zeroing
some of the feature values stimulates decreasing of the accuracy. On the other
hand, the large size of receptive field provides much more feature values than the
fully-connected layer can accommodate, which leads to ambiguity of the feature
representation, and consequently worse accuracy of prediction. The number of
features at the first convolution layer as well influence the representation of fea-
tures, because the number of feature values at the layer before the fully-connected
layer is the product of the number of filters and the size of the receptive field at
the current layer. Thus, the large or small number of filters at the first convolution
layer may potentially lead to either ambiguity or insufficiency of the representa-
tion of features. However, the only way to identify the best-suited configuration
of the architecture is through a hyper-parameter optimization.

The recognizability of structures depends on the value of σagn or so-called the
level of noise, whose source usually is low exposure time during the X-ray exper-
iments. However, the visibility of structures expressed in the ability of the sample
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to absorb the specific range of X-rays may also be controlled by the preparation
protocol. The synthetic datasets were used to simulate various degrees of degra-
dation with the additive Gaussian noise when at some noise level, the structures
became no longer distinguishable for the network. It allows estimating the ro-
bustness of the network to potential outliers in the framework of the same exper-
iment.

2.9.4. Data alignment stage

The efficiency of the registration procedure for data alignment was numerously
presented in a range of works for the last decades. Therefore, here will be pre-
sented only the proof of principle that alignment can be performed for the syn-
thetically generated datasets.

Accuracy metric

The accuracy of alignment may be estimated by calculating the MI metric
Eq. (2.12) since it describes as one dataset explains another, and it maximizes
when two datasets are co-aligned.

Data preparation

The synthetic datasets from the training population (10 datasets) are randomly
rotated around the center of the volume in the range from 0° to 25° for elevation
and from -25° to 25° for azimuth. In the case, when both orientation components
are 0°, the phantom is co-aligned with the Z-axis. The rotated phantom is then
randomly shifted along all axes from -20 to 20 voxels. All these transformations
are required to simulate the case when the sample was improperly mounted on
the rotation stage and started to move before the experiment started.

Method parameterization

The employed registration method was based on the rigid transformation model,
which can describe an accidental movement of the sample before or during the
experiment since it can only be either translated or rotated. The method was also
equipped with the multi-resolution strategy to be able to process data of different
size efficiently.

The registration model was initialized (Tab. B.3) with 4 zoom levels with corre-
sponding scale factors of 8, 4, 2 and 1, where data at each level was smoothed
using the Gaussian filter with σsmooth of 3, 2, 1, and 0, correspondingly. At ev-
ery zoom level, the optimization procedure using the gradient descent method
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initialized with the mutual information cost function and the stopping criterion
ε = 0.001. This stopping criterion allows terminating the optimization process if
the value of the cost function is not improved by more than ε from the previous
iteration. This optimization process is run over 1000, 1000, 500, and 500 iterations
per zoom level with scale factors 8, 4, 2, and 1, respectively. In the case, if the
convergence occurs before reaching the limit of iterations, then the optimization
stops and goes to the next level.

Evaluation procedure

The prepared datasets were registered to one of the reference datasets (Fig. 2.25)
taken from the prediction population using the registration method described
previously in (Sec. 2.3).

Figure 2.25.: The alignment example of a randomly selected not aligned dataset to the
reference dataset.

The results presented in Fig. 2.26 demonstrate that all aligned datasets have a
small registration error Eq. (2.12) and visual assessment of a randomly picked
registered dataset proves the correctness of the obtained results (Fig. 2.25).
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Figure 2.26.: The accuracy results of the alignment stage calculated in terms of the MI
metric between the aligned and reference datasets (DT).

Discussion

The only difficulty of this stage is that the quality of alignment highly depends on
the content of datasets, i.e., in a case of completely different datasets, the process
likely provide the incorrect result. Therefore, the accuracy estimation was per-
formed for visually similar datasets, which are generated with the special phan-
tom model, whose internal structures may vary in size and location within the
predefined ranges. It is assumed that the datasets are similar to one another, and
the structure of one may potentially describe the structure of another.

The obtained different metric values in the registration results can be explained
by slightly different locations of the internal structures of the datasets. Therefore,
it is impossible to obtain the single maximal metric value for all datasets, because
the corresponding structures always differ in size and location within a popula-
tion. It is only possible to maximize the metric value until it stops to change, that
will point to that one dataset is aligned relative to another.

2.9.5. Pre-processing stage

The datasets should be pre-processed (Sec. 2.4) to suppress various types of noise
(Eq. (2.16)), extract the object of interest from the volume (Eq. (2.17) to (2.20)) and
create a multi-scale pyramid of the extracted object (Eq. (2.21) and (2.22)) to pre-
pare it for the further analysis. The pre-processing stage was configured as in
Tab. B.4 to proceed with the evaluation process. The NLM denoising step was
initialized with the smoothing parameter γsm = 7, the patch size Wtp = 3, and the
size of the search windowWsw = 21, which were determined by visual inspection
of results obtained for various combinations of parameters. The sequence of mor-
phological operations improving the global segmentation was parameterized by
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the size of the structural element Sse = 5, which was selected based on the po-
tentially smallest observable structure and the number of iterations Nmi = 3 was
selected empirically. Then, the datasets were spatially normalized to the nearest
size Snorm, which is divisible by two. The process of multi-scale pyramid creation
was configured with the number of levels NL = 4. This value was selected based
on the minimal size of a dataset, so that, its internal structures still can be perceiv-
able. The downscale factor of the multi-scale pyramid γds = 2.0 is better to select
in the way that it will be multiple of two, because all further stages will benefit
from it, and finally the smoothing σpyr = 1.0 at each level is calculated relative to
the smoothing parameter of the first level.

2.9.6. Localization stage

The localization should be evaluated on the accuracy of detection of 3D bounding
boxes for the selected target structures. The goal is to investigate how the accu-
racy of detection degrades by increasing the amount of noise for the case of the
optimal parameterization estimated for the noiseless datasets.

Accuracy metric

The localization stage predicts walls of a 3D bounding box enclosing the structure
of interest. The prediction accuracy concerning the corresponding ground-truth
3D bounding box can be assessed by the wall distance measure WD(·). This
measure estimates the average distance between the corresponding walls of the
predicted and the ground-truth 3D bounding box:

WD(Bt, Br) =
1

Nw

Nw∑
i=0

∣∣Bt(i) −Br(i)

∣∣ , (2.47)

where Bt and Br are the bounding boxes for the target and reference structure
and Nw denotes the number of walls composing a bounding box.

Training procedure

Similar to the validation stage, the grid search method is used to determine the
optimal network architecture for each orthogonal axis from a set of parameters
Tab. B.5 by the wall-distance error Eq. (2.47). The networks were configured with
the same parameters as in the case of the validation stage (Sec. 2.9.3). Every net-
work was trained on the training and validation datasets prepared for the corre-
sponding orthogonal axis as described in (Sec. 2.5.2) to provide the specific slice
configuration as listed in Tab. B.5 with fctx(·), where the number of neighbor slices
Nns = {3, 5} and the step between them is Nss = {1, 2}. The training lasted for
250 epochs with a batch size of 8 contextual slices and used the same optimization
technique as in Sec. 2.9.3.
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Prediction procedure

Every network predicts the walls of the bounding box for each structure along the
specified axis. The produced predictions are then converted into 3D bounding
boxes as described in (Sec. 2.5.5). The bounding boxes are calculated for every
structure in every dataset subjected for evaluation, and then they are used to
estimate a wall-distance error Eq. (2.47) to the ground-truth bounding boxes. The
errors obtained across structures of a dataset are averaged and then are averaged
within a population of datasets as well. The final average wall-distance error is
used as the accuracy measure for the specific network architecture.

Evaluation procedure

The performance analysis of the localization stage was conducted in several
phases. At the first phase, the optimal parameterization should be found by a
grid search method, while it completely depends on data, and in a case of differ-
ent datasets, the parameters will differ. The obtained optimal parameterization
is then used in conjunction with different augmentation strategies: no augmen-
tation; the rigid strategy (R) is composed of translation and rotation; the affine
strategy (A) includes the rigid and additionally performs scaling, and the piece-
wise affine strategy (PA), which includes the affine with piece-wise deformations,
whose parameters are described in Tab. B.6. The evaluation with augmentation
is important because it allows understanding, how the optimally parameterized
architecture will behave in conditions of a lack of data, and which augmentation
strategy provides the best gain in accuracy. When the optimal parameterization
with the best-suited augmentation strategy is found, then it can be evaluated on
the sensitivity to the noise. The same datasets contaminated with different noise
levels are passed through the network to discover at which level of noise it starts
failing to determine bounding boxes properly.

The optimal network architecture

The localization networks were parameterized as listed in Tab. B.5. Then, they
were trained on datasets generated according to the phantom model described in
(Sec. 2.9.1) without involving any data augmentation strategy.

The results of the architecture evaluation presented in Fig. 2.27 demonstrate
that CNN[8MRF 16BF 3NS 2SS], CNN[4MRF 8BF 5NS 2SS], and CNN[4MRF
8BF 5NS 1SS] provide the smallest error distances among other architectures,
0.0414±0.1035, 0.0418±0.1023, and 0.0425±0.1045 voxels, correspondingly. How-
ever, CNN[8MRF 16BF 3NS 2SS] showed a less distance error by 0.0004 and
0.0011 voxels relative CNN[4MRF 8BF 5NS 2SS] and CNN[4MRF 8BF 5NS
1SS]; thus it was selected as the best architecture.
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The conducted evaluation has shown that the CNN[8MRF 16BF 3NS 2SS]
trained at the generated population of datasets has provided the best accuracy
among the network architecture and the slice configuration parameters. Hence,
it provides the optimal parameterization of the network for this particular model
of the phantom dataset.

Figure 2.27.: The benchmarking results of the localization stage for determining of the
optimal architecture.

The data augmentation strategy

As the deep learning methods require significant amount of training data, the
generated datasets can be augmented to improve the accuracy of the networks.
Therefore, the accuracy should be assessed for the networks utilizing the optimal
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initialization parameters (i.e., CNN[8MRF 16BF 3NS 2SS]) in conjunction with
different data augmentation strategies participating in the training process.

The results are presented in Fig. 2.28, where the wall-distance error is shown
for each structure separately for each network, and calculated as the average
over the specific structure across all datasets participating in the prediction pro-
cess. These results demonstrate that the network CNN+R has shown the best re-
sults among others for all structures, namely, it predicted the bounding boxes
of Structure1 and Structure2 with a zero error, whereas other networks have
insignificant errors, except CNN+A which has the error of 0.0500±0.0805 vox-
els for Structure2. While, in the case of Structure3 and Structure4, CNN+R has
shown the errors of 0.0400±0.0644 and 0.0450±0.0724 voxels, 0.0500±0.0805
and 0.1000±0.1165 voxels for CNN, 0.0833±0.1178 and 0.0666±0.0860 voxels for
CNN+A, and 0.0666±0.0860 and 0.0800±0.1032 voxels for CNN+PA, correspond-
ingly. The mean errors for these structures relative to CNN+R are differ by 0.0100
and 0.0550 voxels for CNN, by 0.0433 and 0.0216 voxels for CNN+A, and by 0.0266
and 0.0350 voxels for CNN+PA, respectively.

Figure 2.28.: The benchmarking results of the optimal architecture for various augmen-
tation strategies of the localization stage.

Robustness to the noise level

When the optimal architecture and augmentation strategy of the network are
found and successfully applied to the noiseless datasets, then its robustness to
the datasets contaminated with the noise should be evaluated. It is necessary to
determine the acceptable interval of the SNR and the noise level of the datasets,
so that, internal structures be localizable.

The network configured with the optimal parameters and the augmentation pro-
cedure were trained using the same datasets as in the previous steps. Initially,
the network was trained at the noiseless datasets. However, five datasets of the
prediction population were sequentially contaminated with the specified noise
levels to estimate robustness to every of them.
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The obtained results presented in Fig. 2.29 demonstrate that the wall-distance er-
ror rapidly increases from 5 to 10 of σagn, while at higher noise levels, bounding
boxes could not be created due to failing to localize structures at one or several
orthogonal planes. It leads to the inability to extract the region containing the
structure of interest and perform segmentation and further analysis of this struc-
ture. That allows determining the confidence interval from 0 to 5 of σagn, which
corresponds to the interval of the SNR from 13.13±0.15 to 12.54±0.13 dB. Thus,
the localization of internal structures in datasets having the SNR out of this range
is likely to fail.

Figure 2.29.: The noise benchmarking results of the optimal network architecture with
suitable augmentation strategy for the localization stage.

Discussion

The quantitative evaluation of the localization stage for the optimal network ar-
chitecture and the data augmentation strategy has shown that the CNN[8MRF
16BF 3NS 2SS] network architecture with the rigid augmentation strategy, de-
noted by CNN+R provides the best performance among the considered configura-
tions. Moreover, it demonstrated significant robustness to the additive Gaussian
noise, starting failing only after 5 of σagn.

The obtained network architecture based on 16 filters at the first convolution layer
and having a minimal size of the receptive field of 8 provides better accuracy than
other considered architectures. It is because of the smallest size of the receptive
field at the layer right before the fully-connected layer eliminates most of the
structural features by excessive downsampling ensured by max-pooling opera-
tions. The consequences of such parameterization were previously described in
(Sec. 2.9.3).

The network has shown the best accuracy results using a spatial context of 3 slices
with a step of 2 slices between them. The accuracy mainly depends on the to-
tal number of slices forming a context, because it regulates how many neighbor
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structures will be caught. If too many slices are selected for the spatial context,
it might lead to ambiguity of prediction, especially at the borders of the target
structure. This occurs since the network will be trained on slices which are out of
the structure bounding box, and it will predict structure where it is absent. As for
the step between slices, it influences in less degree, because it only regulates spar-
sity of the slices. However, if the step between slices is too large relative to the
structure size, then prediction will fail because the integrity of the target structure
will be violated and the network will be trained on the contextually disconnected
slices.

The data augmentation was introduced into the training process to improve the
accuracy by artificially increasing the amount of available data. The results have
shown that the rigid augmentation strategy in conjunction with the CNN[8MRF
16BF 3NS 2SS] network architecture produces better accuracy than any other
setup. It is connected to that the internal structures of the synthetically gener-
ated datasets change mostly rigidly among the generated population. All internal
structures are represented with ellipsoids, which are parameterized by the radii
and location, whose values are changing in the specified ranges, while the orien-
tation is fixed. The body encapsulating all structures has fixed location; however,
its size and orientation slightly change within the specified ranges. Therefore, all
datasets are affected mostly by translation and rotation, which can be described
by the rigid transformation model. As for changing the size of internal struc-
tures, it can be expressed via the scaling operation provided by the affine trans-
formation model, however, its effect is too insufficient to use this model in the
augmentation process. Concerning the piece-wise transformation model, it is too
complicated for the case of the synthetically generated datasets since it elastically
deforms the shape of structures. Taking into account that the synthetic dataset
model is mainly driven by rigid transformation for its structures, usage of the
piece-wise augmentation model will lead to training the network on the data,
which cannot be produced by this dataset model.

The recognizability of structures on some extent depends on the level of noise,
which source usually is low exposure time during the X-ray experiments. The
synthetic datasets were used to simulate various degrees of degradation with the
additive Gaussian noise to find the level when the structures become no longer
be distinguishable for the network. It allows estimating the robustness of the
network to the potential outliers occurring during the same experiment.

2.9.7. Segmentation stage

The segmentation accuracy of the selected target structures should be evaluated
to investigate its dependency on the network architecture and the augmentation
strategy. Also, the acceptable noise level of the input datasets should be deter-
mined to estimate the robustness of the optimally configured network.

93



2. An automated machine learning-based segmentation framework for X-ray data

Accuracy metric

In the case of the segmentation stage, it produces a 3D probability map, which is
then thresholded to obtain the binary segmentation of the target structure. The
automatically segmented structure must be compared to the ground-truth to esti-
mate the algorithm accuracy. The most common measure for this purpose is Dice
ratio Eq. (2.46), which is regularly employed in accuracy estimation of segmenta-
tion methods.

Training procedure

The optimal configuration of the U-Net architecture can be found similarly as in
the cases of the validation and localization stage, using the grid search approach
over the grid of parameters constructed from Tab. B.7. The networks were trained
for each orthogonal axis separately on the prepared slices of the training and
validation datasets along the corresponding axis. Every training process lasted
for 250 epochs with the specified batch size of 8 slices using the same optimiza-
tion method as for the validation (Sec. 2.9.3) and localization (Sec. 2.9.6) stages.
The network architecture with the highest accuracy Eq. (2.46) on the validation
dataset is selected per the corresponding axis.

Prediction procedure

The network predicts the presence of the target structure at every pixel of each
slice along the specified axis. The predictions produced for each axis are fused
to obtain a 3D probability map with the procedure ffuse(·), which is then thresh-
olded with γseg = 0.5 to yield the segmentation of the target structure. After-
ward, the obtained segmentation should be cleaned up from potential artifacts
and noise with fcca(·), which appear in the result of thresholding. The cleaned
up segmentation is then used to estimate the accuracy with Eq. (2.46) metric rel-
atively to the ground-truth segmentation. The accuracy of the specific network
architecture is calculated as the average of accuracies estimated for each dataset
in a population, where the accuracy for a particular dataset is the averaged accu-
racy among all target structures.

Evaluation procedure

The evaluation of the segmentation stage consists of two phases, whose are sim-
ilar to ones conducted in the evaluation of the localization stage. The first one
is discovering the optimal network architecture with the help of the grid search
approach because the architecture depends on the data. At the second stage,
the best-suited data augmentation strategy among the rigid, affine, piece-wise
approaches described in Tab. B.6 should be determined for the optimal network
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architecture, since it potentially may improve the prediction accuracy. Finally, the
network with the optimal architecture and training procedure should be assessed
for the sensitivity to the noise. It is performed for the validation datasets, which
are contaminated with various values of σagn to find out the noise level, at which
the segmentation accuracy will start to degrade.

The optimal network architecture

The segmentation networks were configured as described in Tab. B.7 and trained
without any augmentation strategy on the target structures obtained from the
datasets generated with the phantom model described in (Sec. 2.9.1).

The results of the architecture evaluation are shown in Fig. 2.30, which illustrate
that CNN[8MRF 16BF], CNN[4MRF 16BF], and CNN[4MRF 8BF] showed bet-
ter accuracy among the rest architectures, namely, 0.9823±0.0047, 0.9821±0.0046,
and 0.9818±0.0055, respectively. However, the network architecture CNN[8MRF
16BF] provides the best accuracy among them, which higher by 0.0002 and
0.0005 relative to CNN[4MRF 16BF] and CNN[4MRF 8BF], correspondingly.

Figure 2.30.: The benchmarking results of the segmentation stage for determining of the
optimal architecture.

The data augmentation strategy

As mentioned before in (Sec. 2.9.6), the training datasets can be augmented to
improve the prediction accuracy of the networks. The networks initialized with
the optimal parameters (i.e., CNN[8MRF 16BF]) obtained in the previous section
should be evaluated in conjunction with different augmentation strategies inte-
grated into the training process.

The evaluation of the data augmentation strategies for two structures is presented
in Fig. 2.31, where the averaged segmentation accuracy for each target structure
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across all datasets involving into prediction is shown separately per augmenta-
tion strategy. According to the results, the network CNN+R provides the best over-
all segmentation accuracy of Structure2 and Structure3, namely, 0.9610±0.0214
and 0.9814±0.0069, whereas 0.8502±0.117461 and 0.9823±0.0056 in the case
of CNN+A, 0.7378±0.2133 and 0.9813±0.0066 for CNN, and 0.8232±0.1410 and
0.9816±0.0058 for CNN+PA, respectively. The network CNN+R is superior in the
average accuracy to other networks regarding to Structure2 by 0.2232, 0.1109,
and 0.1379 for CNN, CNN+A, and CNN+PA, respectively. However, the network
CNN+R is slightly inferior in the segmentation accuracy of Structure3 to CNN+A
and CNN+PA by 0.0008 and 0.0002, correspondingly.

Figure 2.31.: The benchmarking results of the optimal architecture for various augmen-
tation strategies at the segmentation stage.

Noise robustness

The next step is to evaluate the network configured with the optimal parame-
ters in conjunction with the proper augmentation strategy to the sensitivity to
the noise. It allows determining the acceptable level of the noise, within which
the accuracy almost does not change so that the target structures can be readily
segmented.

The networks were trained on the noiseless datasets from the same population as
in the previous steps. The five of the validation datasets were contaminated with
the specified levels of noise to evaluate the robustness to each level.

The results of the robustness evaluation are presented in Fig. 2.32 and they
demonstrate that the segmentation accuracy of Structure2 slowly starts to worsen
right after 12 of σagn, and then continues to degrade until 35 of σagn. In the case of
Structure3, its accuracy rapidly drops in the range from 12 to 18 of σagn. Hence,
the confidence interval for both structures is from 0 to 12 of σagn, which corre-
sponds to the SNR from 13.13±0.15 to 11.11±0.13 dB. Hence, the structures of
similar datasets could be readily segmented if their SNR is within this range. The
difference in the sensitivity to the noise of the structures can be explained by the
size of the structure. It means that the smaller the structure, the higher the sensi-
tivity, and hence, the harder to localize and segment it.
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Figure 2.32.: The noise benchmarking results of the optimal network architecture with
the suitable augmentation strategy for the segmentation stage.

Discussion

The performance evaluation of the segmentation stage for the optimal network
parameters and the data augmentation strategy has demonstrated that the CNN+R
network configuration produces the best results among others. Also, it proved
the robustness to the additive Gaussian noise, maintaining the high accuracy up
to 12 of σagn.

The selected network architecture provides better performance among the con-
sidered architectures, it is based on 16 filters constituting the first convolutional
layer, and the network grows in depth until it reaches a minimal size of the recep-
tive field of 8. The features are propagated through the contracting and expan-
sion paths, where they are downscaling, and then upscaling to provide contextual
features with the skip-connections. The tiny size of the last receptive field in the
contracting path leads to feature vanishing due to excessive downsampling as
it was described in (Sec. 2.9.6), while on the expansion path, these downscaled
features provide worse distinguishability due to loss of feature information dur-
ing downscaling. However, in the case of the large size of the receptive field, the
features on the expansion path will not provide enough contextual features that
will affect the final accuracy. The number of filters at the first convolutional level
as well influence the performance, in such a way that a large number of filters
may lead to overfitting, whereas a small number of filters to underfitting. These
both cases lead to poor model generalization, and a result to low prediction ac-
curacy. Therefore, the best-suited network configuration can be determined via a
hyper-parameter optimization.

The rigid data augmentation strategy in conjunction with the optimal network ar-
chitecture has provided the highest gain in the prediction accuracy among other
considered strategies. Since the shape of the structures constituting the phantom
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datasets is mainly defined by the rigid transformation model. Therefore, intro-
ducing more complex geometrical transformations into the training process will
lead to teaching the network to segment structures of such shapes, which cannot
be generated with the phantom model that will lead to poor prediction accuracy,
as it was previously described in Sec. 2.9.6.

The analysis of the optimal network architecture with the best-suited augmenta-
tion strategy has demonstrated the robustness to the noise up to 12 of σagn allows
resisting outliers which the SNR resides in the found noise intervals, more in de-
tail is described in Sec. 2.9.6.

2.9.8. Summary

In this chapter, the segmentation framework for µCT datasets was presented. It
is composed of various processing stages, such as data validation, sample align-
ment, pre-processing, localization, segmentation, and morphological analysis.
The performance evaluation of each stage was done at the synthetic datasets with
multiple different internal structures using the grid search method to find the op-
timal parameterization. It was shown that the framework could process a series
of datasets of similar nature and provide persistent results with the optimal pa-
rameterization and the SNR level of the input datasets of at least 12.01±0.64 dB.
The localization and segmentation stages allow determining bounding boxes and
perform segmentation of small structures occupying less than 2% of the total ob-
ject volume. In real-world applications, the segmentation stage can produce seg-
mentations of complex structures requiring sophisticated approaches for analysis
of internal morphology described in Chap. 3, since the analysis of simple geomet-
rical properties could not be enough. Therefore, this framework can be used for
real-world applications (Chap. 4) to analyze a large number of µCT datasets ac-
quired under similar experimental conditions.
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3.1. Overview and related work

Quantification of fiber orientation is a common task in the fields of medical, mate-
rial and life sciences. The orientation allows to determine the direction of fibers in
tissues, predict properties of materials reinforced with fibers, validate and guide
a fabrication process of scaffolds with controlled fiber orientation. Various meth-
ods were proposed to perform estimation of fiber orientation in a 3D space by
analyzing a neighborhood of every voxel as described in Sec. 1.4.4.

The datasets can be acquired with different imaging methods (e.g., light and elec-
tron microscopy, µCT, and others) that allow studying different aspects of a sam-
ple nature. However, among them, only the µCT imaging method has the largest
penetration depth. It allows for a non-invasive investigation of an internal struc-
ture by collecting X-ray projections of the sample at different angles and subse-
quent reconstruction of cross-sections as described in Sec. 1.3.1. The size of the
reconstructed µCT datasets usually reaches dozens of gigabytes due to the use of
high-resolution detectors, which enable resolving more details while maintaining
larger FOV.

The conventional workflow for orientation analysis of µCT datasets is composed
of several stages: pre-processing, segmentation, a medial axis extraction, and ori-
entation quantification. Different points of view on this workflow (Fig. 3.1) were
presented in a range of works devoted to the analysis of fibrous structures in life
and material sciences [225, 235, 334, 335].

Figure 3.1.: The general workflow for fibrous orientation analysis.

The quality of acquired X-ray data varies and depends on parameters of an imag-
ing method, an acquisition device, a sample preparation protocol and nature of a
sample. Therefore, data should be pre-processed to correct noise with non-linear
filters like median, bilateral or other edge preserving filters, in a case when the
interested sample features are larger than a filter size, otherwise, they will be fil-
tered out. On the other hand, data contaminated with beam hardening, streak,
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and ring artifacts, described previously in Sec. 1.4.2, are very challenging and re-
quire specifically tailored approaches to be corrected. Moreover, these stages can
be found in the previously described analysis workflow in Sec. 2.1.

The pre-processed data should be segmented to proceed with the further analysis.
There is a vast of segmentation techniques which were mentioned in Sec. 1.4.4,
however, their applicability depends on the nature of data. If fibers presented
in the data are made of a homogeneous material and possess high contrast, then
simple histogram-based methods might be applied. Otherwise, more sophisti-
cated approaches based on machine learning are better suited.

After that, a medial axis or a skeleton should be extracted from isolated binary
regions of the segmented data (Sec. 2.7.4). There are many algorithms for deriving
the medial axis, some of them take into account crossing or touching regions [336–
339].

When the medial axis of the segmented data is obtained, orientation estimation
can be performed to determine the orientation of structures in the studied data.
The most common and widespread method is based on the calculation of the
second-order structure tensor which is used to quantify orientation from derived
eigenvalues and eigenvectors. Despite it provides high-quality analysis, it is not
rapid enough to process large µCT datasets in a reasonable amount of time due to
a huge computation burden. Therefore, in this chapter, a new method for quan-
tification of orientation will be presented.

3.2. Algorithms for orientation analysis

In this section, the proposed and the tensor-based methods are described in de-
tail, along with a general workflow employed in orientation analysis as a prereq-
uisite step, a fiber model in a 3D space, and the algorithm used to generate the
synthetic dataset required for the further performance evaluation.

3.2.1. A fiber model

The fiber can effectively be modeled with a cylinder of length ρ, whose the center
of mass is placed at the origin of the spherical coordinate system and oriented
along the Z-axis, since orientation is estimated within a neighborhood of every
point of its medial axis. Hence, an orientation of a bent fiber is an average orien-
tation across all points constituting its medial axis. The orientation of the cylin-
drical fiber is defined by θ and ϕ angles determining tilts in different projection
planes as presented in Fig. 3.2. The ϕ angle is elevation, which represents an in-
clination relatively the Z-axis, the θ angle is azimuth, specifying orientation in the
XY-plane.
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Figure 3.2.: The representation of a fiber in the spherical coordinate system.

It is assumed that angles vary from 0° to 90° for elevation and from -90° to 90°
for azimuth, and both orientation components are 0° when the fiber is co-aligned
with the Z-axis.

3.2.2. Tensor-based method

The second-order structure tensor Ŝ is estimated within a voxel neighborhood I ′

at every point of a medial axis of segmented fibers. The gradients I ′x, I ′y and I ′z
along corresponding directions are calculated for every voxel of I ′ as:

Kyz =

-1 0 1
-2 0 2
-1 0 1

 , I ′x = Kyz ∗ I ′ (3.1)

Kxz =

-1 0 1
-2 0 2
-1 0 1

 , I ′y = Kxz ∗ I ′ (3.2)

Kxy =

 1 2 1
0 0 0
-1 -2 -1

 , I ′z = Kxy ∗ I ′, (3.3)

where Kyz, Kxz, and Kxy are the Sobel kernels extracting gradients along x, y
and z axes, correspondingly.

Next, the smooth structure tensor matrix is constructed using the obtained gradi-
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ents convoluted with the specified smoothing kernel:

S = G(0, 0, σtsr) ∗

 I ′2x I ′xI
′
y I ′xI

′
z

I ′xI
′
y I ′2y I ′yI

′
z

I ′xI
′
z I ′yI

′
z I ′2z

 =

 Ĩ ′2x Ĩ ′xI
′
y Ĩ ′xI

′
z

Ĩ ′xI
′
y Ĩ ′2y Ĩ ′yI

′
z

Ĩ ′xI
′
z Ĩ ′yI

′
z Ĩ ′2z

 , (3.4)

where G(0, 0, σtsr) is a Gaussian function with zero mean and σtsr standard devi-
ation, defined as:

G(x, y;σ) =
1

σ
√

2π
e
−(x2+y2)

2σ2 . (3.5)

The smoothing is used to prevent cancellation of the gradient vectors with the
same orientation but opposite direction. After that, the average tensor in the
neighborhood I ′ is produced by averaging each element of matrix Eq. (3.4):

Ŝ =

µxx µxy µxz

µxy µyy µyz

µxz µyz µzz

 , (3.6)

where each element of the matrix Eq. (3.6) is the average gradient of the neigh-
borhood I ′, calculated as:

µax =
1

N ·N

N−1∑
i=0

N−1∑
j=0

xij (3.7)

ax ∈ {xx, xy, xz, yy, yz, zz, xz}, (3.8)

where N is the size of the element of the matrix Ŝ. Since, the resulted matrix
Eq. (3.6) is positive semi-definite, its eigenvalues and eigenvectors can be ob-
tained by solving

∣∣∣Ŝ − λIm∣∣∣ = 0 as:

Ŝ =

v>1v>2
v>3

λ1 0 0
0 λ2 0
0 0 λ3

 [v1 v2 v3
]

(3.9)

λ1 >= λ2 >= λ3, (3.10)

where v1, v2 and v3 are unit eigenvectors, and λ1, λ2 and λ3 are corresponding
eigenvalues. The v1 is orthogonal to the best fitting plane, v2 is orthogonal to the
best fitting line within this plane and v3 is orthogonal to both and aligned with the
direction of the least intensity change within I ′, whereas the eigenvalues specify
the magnitudes of the corresponding eigenvectors. The tensor is based on in-
tensity gradients estimated in all orthogonal planes; thus, the eigenvectors point
to intensity changes in space. Hence, the primary orientation of the structures
within the region I ′ is determined by the eigenvector v∗ = (v∗1, v

∗
2, v
∗
3) with the

smallest eigenvalue λ∗, which is used to calculate the pair of angles as:

θ =

{
tan−1 v∗22

v∗23
, v∗23 > 0

π
2
, otherwise

, ϕ = sin−1
√
v∗22 + v∗23 , (3.11)

and points along the structures, where intensity variation is minimal.
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3.2.3. Ray-casting method

The proposed method is based on the assumption that fiber orientation at each
point (x, y, z) of the volume I can be determined by emitting rays from the corre-
sponding point in all possible directions within its neighborhood I ′ (Fig. 3.3) and
computing the related ray-sum (Eq. (3.12)). A ray-sum is calculated by summing
intensities along a ray defined by a line L passing through a sub-volume I ′. The
fiber direction (θ, ϕ) at each point is determined by the ray having a maximal ray
sum:

fray(x, y, x; θ, ϕ) =

∫
L

I ′(l sin θ cosϕ+ x, l sin θ sinϕ+ y, l cos θ + z)dl, (3.12)

where I ′ is a sub-volume representing the neighborhood of the point (x, y, z) con-
taining original values of volume I , L is a line in the spherical coordinate system
centered at the point (x, y, z), and f ∗ray(x, y, z) is the primary orientation:

f ∗ray(x, y, z) = argmin
θ,ϕ

fray(x, y, x; θ, ϕ). (3.13)

The propagation distance of the rays is limited by a sphere with a radius of L/2,
centered at the point (x, y, z). The trade-off between the accuracy and the compu-
tation time can be achieved by adjusting the radius of the restricting sphere, the
limits and the step of the angular scanning ranges.

Figure 3.3.: The representation of a fiber in the spherical coordinate system with the rays
casted from the origin.

3.2.4. Generating of a synthetic dataset

Synthetic datasets provide users with the ground-truth values (e.g., orientation)
which makes verification of imaging techniques or analysis algorithms possible.
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Here, the algorithm for the generation of non-curved fiber-like structures in a 3D
volume is presented.

A fiber can be parameterized with a diameter value, a pair of tilt angles, azimuth
and elevation, denoting orientation and a length value. The diameter and orien-
tation values are sampled from given ranges, whereas the length of the fibers is
specified as a percentage with respect to the minimum side length of the volume.
Moreover, it is assumed that individual fibers do not cross each other and are
separated by a specified gap value.

The fibers are added to the volume until a stop rule is satisfied. The stopping
rule can be a maximum number of fibers, the ratio between the volume of all
fibers and the total volume, or the number of failed additions due to intersec-
tions of fibers. Each fiber is initiated as a set of points representing a circle of the
specified diameter. Then these points are rotated by the sampled azimuth and
elevation angles (Fig. 3.4a) and propagated along the unit vector perpendicular
to the profile (Fig. 3.4b). Then, the obtained coordinates are transformed to array
indices and used for checking on the placing conditions and forming a fiber in a
three-dimensional array (Fig. 3.4c).

Figure 3.4.: The synthetic fiber generation process: a) the cross-section rotation in a plane
of the 3D volume, the orange region represents a gap for a given fiber; b) the cross-section
propagation along the specified direction to form a fiber; c) adding the fiber into the 3D
volume.

To more closely simulate real fibers, the parameters of the fibers should be sam-
pled from value ranges defined heuristically or analytically. If randomly oriented
and tightly packed thin fibers in a small 3D volume are desired, the simulation
process requires a high number of fibers, narrow distributions of the gap value
and the diameter and a broad distribution of orientation values. The simulated
volume consists of two materials, where zero values represent the background
and non-zero values are synthetic fibers. The produced dataset can be contami-
nated with the additive Gaussian noise to emulate the noise produced by a digital
detector. The noise value is sampled from the noise distribution and applied to
every point of the 3D volume independently. Since physical dimensions are mea-
sured in pixels, thus fiber parameters can be controlled at the finest level and be
versatile in terms of resolution. The maximum size of a simulated volume en-
tirely depends on the amount of RAM of the specific computer. The example of
the generated datasets in aligned, moderately aligned and disordered configura-
tions are shown in Fig. 3.5(a-c).
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Figure 3.5.: The generated datasets with different fiber configurations: a) aligned; b) mod-
erately aligned; c) disordered.

These datasets are composed of 100 non-intersected fibers, whose orientation of
the aligned case is fixed to 27° and 15° for azimuth and elevation angle, respec-
tively. The moderately aligned dataset has fiber orientations which ranges from
-45° to 45°, and from 0° to 45° for the azimuth and elevation angle, correspond-
ingly. The fiber orientation in the disordered dataset fluctuates from -90° to 90°
for the azimuth angle and from 0° to 90° for elevation angle.

3.3. Implementation

The morphological analysis of fibrous structures is a composite task consisting of
many intermediate steps and analysis strategies. Thus the proposed method [340]
is only a small part of such analysis; therefore it was decided to develop quan-
fima (Quantitative Analysis of Fibrous Materials) package [341], which allows
seamless integration of a complete fiber analysis into third-party software and
data processing workflows based on the Python language. The package provides
an automated analysis of the foremost parameters required for material charac-
terization, such as porosity, fiber orientation and diameter, number of particles,
and inclusions. It facilitates the 3D visualization of fibrous structures by map-
ping geo-coordinates to a color scheme, and the visualization of the orientation
in a region-wise (i.e., plotting orientation vectors in regions of interest distributed
across the image) as well as a pixel-wise (i.e., coloring pixels according to orien-
tation in a neighborhood) fashion.

The quanfima package is based on several widespread third-party packages de-
veloped for data analysis, such as NumPy [342], SciPy [343], scikit-image [344],
Numba [345], PyCUDA [346], TensorFlow [347], Pandas [348], and Statsmodels
[349]. Their capabilities were combined to create a complete workflow for the
characterization of structures. The functionality of quanfima is separated into
four modules as shown in Fig. 3.6. In following, all externally imported libraries,
packages or components will be called as modules to unify the architecture rep-
resentation.
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The modules used by quanfima can be separated into mandatory and optional.
The mandatory modules are depicted in white and ensure a core functionality of
analysis routines and are therefore essential for installation. The optional mod-
ules drawn in gray and are required only by the visualization module and can
be skipped if the user prefers to use other software for visualization. The dataset
can be loaded as separate grayscale images, or as a stack of images representing
a 3D volume. In the following, the modules will be described with emphasis on
key functions.
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Figure 3.6.: The diagram of the quanfima package consisting of several modules to per-
form data simulation, analysis and visualization.

3.3.1. Simulation module

The simulation module in the quanfima package implements the algorithm de-
scribed in Sec. 3.2.4, which allows generating synthetic datasets. Such datasets
provide users with the ground-truth values which makes verification of imaging
techniques or analysis algorithms possible. The simulation process is provided by
simulate_fibers function, which takes a set of arguments: the size of the out-
put simulated dataset, the number of fibers, the maximum number of attempts,
and the ranges of radii, length, tilt angels and gap between fibers. The comple-
tion of the process occurs when the number of attempts to generate a fiber exceeds
the specified number of maximum attempts. The module was used to generate
datasets for the performance evaluation in Sec. 3.4.1.
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3.3.2. Morphology module

This module is a core part of the developed package. It offers functionality for
analysis of fibrous structures, which includes the estimation of diameter, orien-
tation, and the number of fibers, as well as allows porosity calculations. The
intermediate steps such as data pre-processing, segmentation and medial axis
extraction are provided by third-party modules (e.g., scikit-image) as shown in
Fig. 3.7.

Figure 3.7.: The general workflow for fibrous orientation analysis with a specified soft-
ware package for each stage.

Fiber orientation analysis

The fiber orientation analysis is performed on skeletonized binary data obtained
via a segmentation procedure from the scikit-image module included in quan-
fima, or any other modules which provides image segmentation capabilities.

This module provides implementations of three functions for analysis of the fiber
orientation, orientation_fourier, orientation_3d_tensor, and ori-
entation_3d_ray_cast, which are based on the Fourier spectrum [350], the
second-order structure tensor [351, 352, 235, 353], and the ray-casting approach
proposed in Sec. 3.2.3. These functions take the input binary data of the suitable
dimension and return a value or a pair of numbers representing the orientation
angles in radians.

Fiber diameter estimation

The estimation of fiber diameters is provided by a function estimate_diam-
eter_single_run. It requires a binary dataset obtained by segmentation and
including orientation information at every point of the medial axis of the fibers, as
obtained by the fiber orientation analysis. The function returns a dataset, where
each voxel is represented by an average fiber diameter calculated within its neigh-
borhood.

Porosity estimation

The porosity calculation is provided by the function calc_porosity, which
returns an associative array, where keys are intensities, and values are the corre-
sponding porosity estimations. The required input is a segmented dataset, which
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is composed of an arbitrary number of materials Nm, labeled from 1 to Nm on a
zero-background. The porosity is measured as the fraction of the air volume or
material volume to the whole volume.

Object counting

Objects may be counted by the object_counter function. It allows for count-
ing and the estimation of various morphometric characteristics of non-adjacent
particles and inclusions presented in the segmented dataset. Behind the scene, it
performs a connected-component analysis to assign different labels to the non-
adjacent clusters of the voxels. Then, characteristics are calculated for each sepa-
rated object, and the results are saved as a CSV file.

3.3.3. Visualization module

Visualization is a routine task for data analysis. In many cases, it requires export-
ing data to the format required by the visualization software and needs adjusting
many parameters. To avoid such extensive work, this module was added. It al-
lows visualizing all extracted quantitative characteristics like orientation and di-
ameter via histograms, heatmaps, and volume rendering to reveal so far hidden
properties. The module is largely based on available modules, such as Matplotlib
[354], VisVis, Mayavi2 [355], and ipyvolume. If pre-processing is required be-
fore visualization, a set of functions provided in the utils module described in the
following simplifies this procedure.

3.3.4. Utils module

The volumetric visualization of fiber orientation requires mapping of geo-
coordinates to a specific color. The function geo2rgb juxtaposes a color from
the HSV color model to a pair of azimuth and elevation values.

Statistical information

For statistical analysis, such as the calculation of p-values, the function calcu-
late_tukey_posthoc was included. To estimate p-values for several sample
characteristics, the user passes an associative array with values and their type,
which store the array of sample characteristic values (e.g., porosity) and the array
of labels (types of biomaterials) associating each value with a specific a group of
samples. The result of the p-value calculation may be saved to a CSV file.
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3.4. Performance evaluation

The proposed method and the tensor-based approach were embedded into the
described workflow to estimate accuracy and throughput of orientation quantifi-
cation on a synthetic dataset in various conditions.

3.4.1. Dataset description

The synthetic dataset was generated as described in (Sec. 3.2.4) to validate the
proposed method and compare it to the tensor-based approach. The structure
of the dataset resembles a real-world fiber-reinforced material. It is composed
of 70 fibers of radius from 3 to 20 pixels with a gap between them from 3 to
10 pixels, oriented in a range from -90° to 90° of azimuth and from 0° to 90° of
elevation angle components. Afterward, it was contaminated with the additive
Gaussian noise with different the standard deviation σagn of 0.5, 1.0, and 1.5, and
subsequent smearing with the Gaussian filter with σsmooth of 1.0 and 2.0.

Figure 3.8.: The synthetic dataset (a) with the central slice extracted from the XY-plane
(marked with the blue dashed line) of the same dataset contaminated with additive Gaus-
sian noise and smeared with the Gaussian filter (b-g).

3.4.2. Validation procedure

The procedure is composed of several phases. At the first phase, the noiseless
dataset is estimated by each method with varying a window size from 4 to 44
pixels, selected heuristically based on the radii of fibers in the synthetic dataset.
Then, the window size providing the best accuracy is selected for further calcula-
tions. Thereafter, the fixed window size is used in the processing of the generated
dataset to observe the behavior and limitations of each method in specific condi-
tions. In the end, the throughput of the methods is estimated at different scales
of the same dataset.
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3.4.3. Analysis workflow

The implemented workflow was composed of the following stages: the pre-
processing stage uses the non-local means filter in a slice-wise fashion with the
smoothing parameter γsm = 7, the patch size Wtp = 3, and the size of the search
window Wsw = 21, which were determined heuristically, the segmentation stage
employs the Otsu thresholding algorithm [356] to obtain the binary data, the me-
dial axis extraction was performed with a parallel thinning algorithm [337], and
at the analysis stage both methods were estimated in the specified 3D local win-
dow. The entire workflow was implemented and performed on CPU, except the
orientation analysis methods, which were implemented and executed on both
CPU and GPU.

3.4.4. Benchmarking setup

The performance evaluation was done at a computer operating under 64-bit
Ubuntu 16.04 and equipped with Intel Xeon E5-4660 v4 processor, NVIDIA Tesla
T4 16GB graphical adapter and 60 GB of random access memory. The data were
located at the Large Scale Data Facility [357] and were accessed via a high-speed
network of 320 MB/s.

3.4.5. Orientation evaluation

The synthetic dataset was analyzed with each method for a range of window
sizes from 4 to 44 pixels to determine the optimal one. The methods have similar
behavior of elevation component errors as shown in Fig. 3.9(a,b), which rapidly
fall from 4 to 20 pixels of window size and then do not change much. The results
presented in Fig. 3.9a for the tensor-based method show that the sum of absolute
angular errors of azimuth component rapidly falls from 4 to 28 and starts slowly
decrease from 32 pixels of window size.

While the azimuthal error of the proposed method in Fig. 3.9b quickly falls from
4 to 24 and then slightly varies. Since the sums of absolute errors of both methods
start slowly decreasing from a certain window size, the optimal window size is
34 pixels for the tensor-based approach and 32 pixels in a case of the proposed
method was chosen. The optimal window sizes were then averaged to unify the
parameters of both methods for the further analysis, which results in 33 pixels of
window size. The absolute errors produced by the tensor-based approach and the
proposed method using the optimal window size are (5.6°±24.29°, 1.03°±0.67°)
and (3.75°±8.97°, 0.93°±1.25°) correspondingly, where the values in the paren-
theses are azimuth and elevation components.
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Figure 3.9.: The accuracy comparative analysis of the tensor-based approach (left) and
the proposed method (right): a,b) the absolute error of orientation quantification of the
noiseless dataset to determine the optimal window size; c,d) the evaluation of the sum of
absolute errors to spot error-prone regions; e,f) the behavior of the absolute error while
increasing of σagn.

Then, angular ranges were analyzed to find the most error-prone for each method
while keeping the optimal value of the window size. The polar heatmaps de-
picted in Fig. 3.9(c,d) use a logarithmic scale to present the errors calculated as
the sum of the averaged azimuth and elevation errors within angular ranges
from -90° to 90° and from 0° to 90° for azimuth and elevation correspondingly,
with a step of 5° for both. It can be seen from the Fig. 3.9c that most errors of
the tensor-based approach are uniformly distributed over the heatmap, except
the strong error peaks around (88°, 25°), (-88°, 18°) locations of azimuth and el-
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evation components correspondingly. The proposed method has a comparable
distribution of errors to its competitor and has weak error peaks around (-60°,
85°), (-50°, 26°), (25°, 16°) and (70°, 26°) locations of azimuth and elevation com-
ponents correspondingly (Fig. 3.9d). The angular error increases towards angles
0°, 90°, and -90° because orientation at these angles tends to be incorrectly deter-
mined due to the limited spatial resolution governed by the window size, which
in turn is restricted by the proximity of fibers. Thus, the optimal window size
should maximize the spatial resolution and minimize capturing neighbor fibers
in the window. In a case of tightly packed fibers, the optimal window size will
be equal to the diameter of fibers, which is not sufficient to resolve a complete
angular range.

Afterward, the methods were run over the synthetic dataset contaminated with
σagn of 0.0, 0.5, 1.0, 1.5, 2.0 and σsmooth of 1.0 to estimate the robustness (Fig. 3.8(b-
g)). The results presented in Tab. 3.1 have shown that the proposed ray-casting
approach is more accurate for both azimuth and elevation components for every
configuration of noise (Fig. 3.8(e-f)). The angular error almost linearly changes
for the proposed method from 0.5 to 2.0 of σagn. However, it non-linearly changes
in the same range for the tensor-based approach. This is due to the fact that
the segmentation stage produces the over-segmented binary data because of the
imposed noise, and subsequently, the extracted skeleton will be greatly distorted,
and many wrong locations of orientation estimation are produced.

σagn

Ray-casting

approach (R)

Tensor-based

approach (T)
Difference |T-R|

Azth (°) Elev (°) Azth (°) Elev (°) Azth (°) Elev (°)

0.0 5.11 2.41 11.95 7.59 6.84 5.18

0.5 17.05 15.01 22.55 18.59 5.5 3.58

1.0 21.71 20.39 25.84 23.30 4.13 2.91

1.5 27.11 26.18 32.25 28.91 5.14 2.73

2.0 33.67 32.96 43.91 39.86 10.24 6.9

Table 3.1.: The accuracy of methods for the synthetic dataset contaminated with varying
σagn.

This validation procedure has shown that the proposed method provides higher
accuracy than the tensor-based approach for the same dataset over different vali-
dation scenarios.
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3.4.6. Throughput evaluation

The complexity of each method was analytically estimated in terms of the nec-
essary number of arithmetical operations. It showed that the proposed method
requires approximately

√
(Nφ ·Nθ) · 2 ·N2

ws arithmetic operations if it is assumed
that each ray is fixed length of

√
2 ·N2

ws and (Nφ ·Nθ) rays were emitted in all pos-
sible directions in the 3D local window of size Nws pixels; thus the computational
burden highly depends on the number of emitted rays. Whereas, the tensor-
based approach requires N2

ws · (10/3 ·N3
d +N2

d)+(6 ·N2
d +Nd) arithmetic operations,

where Nd is the size of the square matrix, which is in our case the 3×3 covariance
matrix calculated from the 3D local window. The number of required operations
was numerically estimated by substituting the variables with corresponding val-
ues used in the study, where Nws = 33, Nd = 3, Nφ = 90 and Nθ = 180. This
showed that the proposed method requires approximately 30 · 106 operations,
while the tensor-based method needs 105 operations. Therefore, the through-
put of the sequential computation of the proposed method theoretically is more
than an order of magnitude less than for the tensor-based approach. However,
this issue can be overcome with the help of CPU-specific code vectorizing opti-
mizations and GPUs which are aimed at massive parallelization of fine-grained
tasks.

The performance of the proposed and the tensor-based approach was experimen-
tally evaluated over the synthetic dataset at different scales. The versions of the
algorithms were implemented for CPU and GPU to compare their throughput in
conditions of varying the computational environment and the sizes of the dataset.
The results of the evaluation are presented in Fig. 3.10 and Tab. 3.2.

Figure 3.10.: The throughput evaluation of the proposed method (Ray) and the tensor-
based approach (Tensor) over different data sizes for various computation environments.

The CPU version of the proposed method is 20 times faster than the tensor-based
approach in the same conditions, and this tendency is preserved for all cases of
computations involving CPUs. The throughput of the proposed method on CPUs
is always higher than the tensor-based method because it is based on control flow
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operators and trivial memory access patterns allowing for hardware-specific op-
timizations, whereas the method competitor is locked to the specific implementa-
tion of the matrix factorization algorithm. In the case of the GPU version, the pro-
posed method outruns in 17-30 times the tensor-based approach, because the lat-
ter cannot be easily parallelized due to the matrix factorization algorithm. Thus,
the undertaken experiment showed the high suitability of the proposed method
for implementation on both CPU and GPU and its superiority over the tensor-
based approach in all considered evaluation scenarios.

Data size

(pixels)

Ray-casting

approach (MB/s)

Tensor-based

approach (MB/s)

GPU CPU x8 CPU x16 GPU CPU x8 CPU x16

256 227.03 18.33 35.41 11.90 1.47 1.68

512 304.18 38.26 39.25 10.25 1.84 2.05

1024 192.66 37.34 43.92 11.07 1.80 2.07

Table 3.2.: The results of throughput evaluation of the proposed method and the tensor-
based approach for various data sizes and computation environments.

3.5. Summary

In recent years a vast number of methods aimed at orientation analysis of struc-
tures in datasets of diverse modalities were presented. Initially, every method
was developed to answer a specific question about a particular dataset. How-
ever, late due to the inherent generality, some of them were successfully ap-
plied to other problems, such methods as analysis of the Fourier spectrum or the
tensor-based approach. The latter has been compared to the proposed ray-casting
method in this chapter.

The proposed method (Sec. 3.2.3) and the tensor-based approach (Sec. 3.2.2) were
validated on the synthetic ground-truth dataset generated using the new algo-
rithm presented in (Sec. 3.2.4). The results were shown that the proposed method
surpasses the tensor-based approach in terms of accuracy, and due to inherent
parallelizability, it can be efficiently implemented for GPUs to improve the exe-
cution time drastically. Moreover, the processing speed can even be further im-
proved by shrinking the scanning angular ranges. The coarse-to-fine approach
can be used to create the multi-level pyramid of the dataset. Then, starting from
the top level, the orientation angles are calculated at each point and propagated to
the next level. The orientation is recalculated for the new level at each point, tak-
ing into account the angular values at the previous level and some confidence in-
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tervals to mitigate the accuracy errors. The process repeats until it reaches the lat-
est level, where the initially large scanning ranges are shrunk to restricted ranges.
The described changes will be introduced in the further revisions. Despite the
proposed method outperformed the tensor-based approach, it cannot completely
replace it. The method presented in this chapter is mainly oriented to the analysis
of clearly separable structures because it relies on intensity accumulation along a
ray path. While the method competitor is more suitable to analyze stuck together
or bent structures by quantifying average orientations in regions-of-interests.

The analyzed methods were implemented as a part of the quanfima package for
the Python language to perform a complete, comprehensive 2D and 3D analy-
sis of fibrous structures. It provides capabilities for morphological and statisti-
cal analysis, and visualization without bindings to a specific visualization sys-
tem. The package can be easily applied to fibrous structures of various nature
for characterization of wall thicknesses, inclusions, and porosity. The power of
such analyses will be demonstrated in the next chapter on analysis of polycapro-
lactone 3D scaffolds. In future work, the functionality of the quanfima package
will be extended by implementing new algorithms to analyze fiber intersection
types, fiber clustering, and fiber tracking providing the information about indi-
vidual fiber lengths. It is also planned to improve the synthetic fiber generation
algorithm which will no more be limited to straight fibers but allows for curved
fibers with inclusions resembling particles and cells on a fiber surface.
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4.1. Quantitative morphometric analysis of adult
teleosts

A genotype-phenotype association plays an essential role in many studies, e.g.,
etiology of diseases. Such associations can be readily found for species with a
natural tissue transparency to visible light. These properties are inherent to small
teleost models such as medaka (Oryzias latipes) and zebrafish (Danio rerio) [358–
360]. Their embryos are small and transparent that allows for high-resolution
analysis using confocal and wide-field light microscopy. However, detailed anal-
ysis of adult morphometrics is problematic since tissue thickness and pigmenta-
tion often impede analysis based on visible light. Moreover, quantitative analysis
of traits requires detailed measurements of the entire body at high resolution.
Due to the high demand for using these genetic models in studying diseases, it
is crucial to provide imaging and data analysis approaches to permit the whole-
body morphometric characterization of adult individuals.

The previous quantitative studies of morphometrics relied on landmark-based
approaches which split traits into different groups [361] by linear measurements;
however, they are limited because they do not take into account whole-body
anatomical information. Recently, the potential of 3D imaging for quantitative
estimation of phenotypes was demonstrated with optical projection tomography,
µCT, and high-resolution episcopic microscopy of mice [362]. However, µCT
technique provides the best imaging properties among other methods regarding
penetration depth, attainable spatial resolution up to nanometres and scanning
time. Similarly to visible light, it provides multiple imaging contrasts, such as
absorption, phase and dark-field contrasts [363, 364]. The poor X-ray absorp-
tion of biological soft tissues can be circumvented with the X-ray phase-contrast
technique operating at lower resolution [365, 366]. However, in some cases, ab-
sorption of X-rays can be enhanced by applying specific chemical contrast agents
during a sample preparation stage, whereas phase-contrast requires to modify
the X-ray optical system to reach a similar result.

Recently, a few morphometric studies using µCT have been presented for rain-
bow trout and zebrafish [367–369], which relied on manually or unsegmented
data due to low differential contrast of soft tissues and spatial resolution. In
the last years, advances in image processing for ultrasonic, MRI, X-ray, and
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other imaging techniques allowed to replace tedious and time-consuming man-
ual segmentation of specific organs with semi-automated and automated meth-
ods [370, 371]. However, automated whole-body segmentation still is not widely
used due to its complexity, and so far among model organisms, it was success-
fully performed for mice [74, 372].

In this section, the application of the proposed segmentation framework (Sec. 2.1)
to µCT data of small teleost medaka was presented (Fig. 4.1). The imaging setup
and sample preparation stage were optimized for the specific spatial resolution
and tissue contrast in a way that be applicable to large numbers of specimens re-
quired for comparative morphometric analysis. Thus, the whole procedure pro-
vides a general tool for high-resolution anatomical studies for small vertebrates
and potentially can be used for discovering genotype-phenotype associations and
complex genetic traits.

Figure 4.1.: The general diagram of the segmentation framework with the specific imple-
mentation and parameterization of each stage for µCT datasets of medaka fish. The data
analysis stages are described with methods and parameters, while the data preparation
stages are characterized by institutions and facilities where experiments were carried out
(e.g., the Institute of Toxicology and Genetics (ITG) of the Karlsruhe Institute of Technol-
ogy (KIT)). The unused stages are marked in gray.
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4.1.1. Data segmentation and analysis

The reconstructed and manually segmented datasets were split into 10 training
and 10 validation datasets. Then, they were processed and analyzed with the
segmentation framework presented in (Sec. 2.1) to be prepared for morphometric
analysis of the brain, liver, head nephrons, and heart organs between different
inbred lines. In the beginning, the datasets were aligned to the reference dataset,
and then they were pre-processed to prepare data for all further stages. The
prepared data was then passed to the localization stage, where the specified or-
gans were localized by determining their 3D bounding boxes. Next, the extracted
bounding boxes were used in the segmentation stage to obtain binary masks of
the specific organs, whereas the organs extracted from the manually segmented
datasets were employed in the training procedure. Finally, the segmented organs
can be subjected to morphometric analysis to determine their shape properties.

Alignment

The reference dataset was manually aligned so that the specimen was placed in
the center and its sides corresponded to the orthogonal planes. The registration
method utilizing the multi-scale approach and the rigid transformation model
was parameterized as listed in Tab. B.3. It was initialized with four zoom levels
with corresponding scale factors of 8, 4, 2 and 1, where at each zoom level, data is
smoothed with the Gaussian filter of σsmooth of 3, 2, 1 and 0, correspondingly. The
optimization procedure employing the gradient descent method was initialized
with the mutual information cost function (Eq. (2.12)), and ε = 0.0001 was run
over 1000, 1000, 1000, and 500 iterations for the corresponding zoom levels. The
reference dataset was used as the fixed image and non-aligned datasets were used
as the moving images in the context of the cost function. If the optimization
process was converged before reaching the limit of iterations, then it stopped and
went to the next level. The datasets considered for analysis were aligned to the
reference dataset and showed relatively small errors. The results of alignment for
the validation datasets are presented in Fig. 4.2.
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Figure 4.2.: The accuracy results of aligning medaka datasets calculated in terms of MI
metric.

Pre-processing

The aligned datasets were then passed through the pre-processing stage config-
ured as in Tab. B.8 to prepare data for the further workflow stages. The suit-
able denoising parameters, namely, the smoothing factor γsm = 7, the patch size
Wtp = 3, and the search window Wsw = 21 were selected by visual inspection of
results collected from the output of the denoising method over the various com-
binations of parameters. The parameters of morphological operations involved
in the extraction of specimens such as the size of a structural element Sse = 5
were selected based on the smallest observable structure, whereas the number of
iterations Nmi = 3 was chosen empirically. Then, the extracted specimens were
spatially normalized to Snorm of 1152×1024×6656 voxels determined as the near-
est size, which is divisible by two. Finally, the multi-scale pyramid of NL = 6
levels, allowing to resolve the target organs at the last level was created from
each normalized dataset. Every successive level of the pyramid starting from the
first one is produced by downscaling data by γds = 2.0 and smoothing with the
Gaussian filter of σpyr = 1.0.

Localization

The pre-processed datasets were transferred to the localization stage, where a 3D
bounding box was determined for each target organ.

The optimal architecture of CNN depends on the nature of data; therefore the
networks were trained on several combinations of parameters listed in Tab. B.9
to determine the best-suited architecture. The slice configuration was built for
Nc = 3 target organs from Nns = 3 neighbor slices with a step of Nss = 1 slice.
The networks were parameterized with the number of base filters Nbf = 16, the
minimal size of the receptive field Nmrf = {2, 4, 8}, the dropout ratio of Ndp =
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0.5, and the number of neurons Nfc = 1000. The Adam optimization method
with the learning rate α = 0.001, β1 = 0.9 , β2 = 0.999 and ε = 10−8 was used.
Every network was trained on the datasets from the fourth level of the multi-
scale pyramid, prepared along the corresponding orthogonal axis with the given
slice configuration as described in Sec. 2.5.2. The number of training datasets was
limited; therefore, the rigid and affine augmentation strategies parameterized as
in Tab. B.10 were integrated into the training process, which was performed over
250 epochs with a batch size of 8 contextual slices. The learning rate was reduced
by a factor of 2 during the training if a loss function was not improved for 5
epochs. If the accuracy on the validation datasets stopped improving for last 10
epochs, the training was stopped. Thus, the network parameters providing the
smallest wall-distance error (Eq. (2.47)) on the validation datasets was selected.

The input data prepared for the specified orthogonal axis as described in
(Sec. 2.5.2) was passed into the corresponding trained CNN, which predicted the
walls of the bounding box for each target organ along the corresponding axis.
Then, the obtained predictions from all orthogonal axes were converted into 3D
bounding boxes using the method from (Sec. 2.5.5). Afterward, these 3D bound-
ing boxes were propagated to the higher level of the multi-scale pyramid as de-
scribed in (Sec. 2.5.6), where the profile thresholding value γth = 0.1 and the
smallest size of the connected-component Nml = 64.

The optimal network architecture for localization of medaka organs was found
with the grid search method over the minimal receptive field size parameter,
while others were fixed. The evaluation results presented in Fig. 4.3 demonstrate
the average wall-distance error calculated across all the validation datasets for all
the organ bounding boxes of medaka fish.

Figure 4.3.: The evaluation of the localization network architectures to determine the
one providing the smallest average wall-distance error calculated over all the validation
datasets across all the organ bounding boxes of medaka fish.

The network architecture CNN[8MRF 16BF 3NS 1SS] has the smallest wall-
distance errors among other architectures as shown in Tab. B.11. This architecture
has a less error differ by 5.22 µm and 8.53 µm for CNN[4MRF 16BF 3NS 1SS]
and CNN[2MRF 16BF 3NS 1SS], respectively.

The localization results of the brain, liver, head nephrons, and heart with differ-
ent network configurations are presented in Fig. 4.4 and listed in Tab. 4.1, which
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demonstrate that CNN+R provides the smallest wall-distance error for all organs,
except the liver, among the other network configurations.

Network configuration Organ name Wall-distance (µm)

CNN

Brain 17.94±25.58
Liver 18.96±22.89
Head nephrons 27.43±28.9
Heart 26.83±30.79

CNN+R

Brain 2.53±1.99
Liver 4.83±3.96
Head nephrons 4.57±3.17
Heart 5.31±3.47

CNN+A

Brain 6.31±7.52
Liver 3.90±2.06
Head nephrons 7.65±6.89
Heart 8.86±6.42

Table 4.1.: The organ localization results of medaka fish for various network configura-
tions: no augmentation strategy (CNN), the rigid augmentation strategy (CNN+R), and
the affine augmentation strategy (CNN+A).

The high values of standard deviation can be explained by the fact that the organs
are poorly distinguishable because they are surrounded by tissues and other or-
gans, in some cases, with a similar texture. Also, some datasets could not prop-
erly be aligned due to large anatomical or spatial location differences of speci-
mens.

Thus, the network CNN+R is more accurate than CNN and CNN+A for the brain, the
head nephrons, and the heart, however, it is inferior to CNN+A in the wall-distance
of the liver. Despite its little weakness in localization of the liver, CNN+R was
selected as the optimal network configuration, which can robustly localize the
brain, liver, head nephrons, and heart. Its superiority is based on the usage of the
rigid augmentation strategy, which allows correctly simulating the real geometric
transformations which the sample undergoes. Whereas the network CNN+A uses
the affine augmentation strategy taking into account more complex geometrical
transformations, which do not exist in the real experiments and consequently
lead to lower accuracy.
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Figure 4.4.: The localization results of several medaka organs using the optimal network
configuration and different augmentation strategies, which are calculated as the average
wall-distance error for the specific organ across all the validation datasets.

Segmentation

The localized organs were then spatially normalized as described in (Sec. 2.6.2)
and passed into the segmentation stage, where the pre-trained U-Nets performed
the organ-wise segmentation for each organ individually.

The architecture of U-Net as well depends on data; therefore it was trained in a
slice-wise fashion on various combinations of parameters listed in Tab. B.12 to de-
termine the most efficient architecture for the specific organ. The networks were
initialized with the number of base filters Nbf = 32 and the minimal size of the
receptive field Nmrf = {8, 16, 32}, thus varying only a depth of the networks. The
learning process was performed with the Adam optimization method parame-
terized with the learning rate α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. The
networks were trained on slices obtained from the extracted datasets of the tar-
get organ along the corresponding orthogonal axes as described in (Sec. 2.6.2).
Due to a lack of training datasets, similarly to the localization stage, the rigid and
affine augmentation strategies (Tab. B.10) were employed in the training process,
which lasted for 250 epochs with a batch size of 8 slices. The learning rate reduc-
tion and the training stop policies were used the same as in Sec. 4.1.1. Finally,
the network architecture providing the highest Dice ratio, see Eq. (2.46) on the
validation datasets was selected as the optimal architecture.

The U-Net predicts the presence of the target organ at every pixel of the in-
put slice producing the output probability map of the same size as presented
in Fig. 4.5. The slices along the specified orthogonal axis were prepared as ex-
plained in Sec. 2.6.2. The obtained probability maps along all axes were merged
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and post-processed according to the procedure described in Sec. 2.6.6, and pa-
rameterized by the probability thresholding value of γseg = 0.5 to generate a 3D
binary segmentation.

Figure 4.5.: The predicted probability maps overlaid on top of the corresponding axial
slices of a medaka fish dataset for a brain (a), a liver (b), head nephrons (c) and a heart
(d). The colorbar denotes the probability of presence of the specific structure at every
pixel.

The optimal network architecture was determined with the grid search method
over the minimal receptive field size, while fixing the number of base filters. The
architecture evaluation results are presented in Fig. 4.6.

Figure 4.6.: The evaluation of the segmentation network architectures to determine the
optimal one, providing the largest average Dice ratio calculated over all the validation
datasets across all the segmented organs of medaka fish.

As it can be seen, the architecture CNN[8MRF 16BF] provides the segmenta-
tion accuracy of 0.92±0.08 whereas CNN[16MRF 16BF] and CNN[32MRF 16BF]
have the accuracy of 0.91±0.07 and 0.89±0.08, respectively. Thus, the architecture
CNN[8MRF 16BF] is superior to CNN[16MRF 16BF] and CNN[32MRF 16BF]
by 0.01 and 0.03, correspondingly.

In the next step, the proper augmentation strategy was determined for the opti-
mal network architecture CNN[8MRF 16BF] by evaluating various network con-
figurations as in Sec. 2.9.7. The segmentation results of each organ produced
by each network configuration are shown in Fig. 4.7, and additionally listed in
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Tab. 4.2, which demonstrated that the network CNN+A provides the best segmen-
tation accuracy for all organs.

Network configuration Organ name Dice ratio

CNN

Brain 0.97±0.01
Liver 0.93±0.08
Head nephrons 0.87±0.14
Heart 0.89±0.11

CNN+R

Brain 0.97±0.01
Liver 0.93±0.07
Head nephrons 0.86±0.15
Heart 0.85±0.13

CNN+A

Brain 0.98±0.01
Liver 0.94±0.06
Head nephrons 0.88±0.11
Heart 0.91±0.01

Table 4.2.: The organ segmentation results of medaka fish for various network configu-
ration.

As it can be seen, the network CNN+A is superior to CNN and CNN+R network
configurations in the segmentation accuracy of every organ.

Figure 4.7.: The segmentation results of several medaka organs using the optimal net-
work architecture and different augmentation strategies, which are calculated as the av-
erage Dice ratio for the specific organ across all the validation datasets.

The segmentation result of a new dataset is reviewed by the domain experts and
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then added to the set of training datasets, which is then used to re-train the organ-
specific U-Nets.

Discussion

The imaging setup used in the experiment was equipped with an automated
robotic sample changer allowed for sample positioning with high precision.
Therefore, the validation stage was skipped, and all datasets have proceeded di-
rectly to the alignment stage.

The automated mounting procedure eliminates the need to manually position a
sample container, and subsequently reduces the risk of placing a sample out the
field of view. Since all samples were already positioned approximately at the
same location by the automated sample changer, it dramatically simplifies the
registration problem by reducing the number of possible solutions. Therefore,
alignment was done in a small number of iterations, since minor transformations
were required to align all specimens.

The datasets mainly suffered from the statistical noise, which could interfere in
the successful execution of the further stages. Therefore, the denoising step was
necessary; moreover, the denoising parameters had to be chosen carefully by vi-
sual inspection of outputs produced with different settings. Since, the non-local
means denoising algorithm is susceptible to parameterization, and can easily fil-
ter out essential features of the organs along with the noise.

The localization procedure was performed on highly downscaled data (6x) that
significantly reduced the training and prediction time. The obtained bounding
boxes were then upscaled and successfully applied in the extraction of the cor-
responding organs from data of higher resolution (4x). Despite that localization
was done on a quite coarse resolution, most of the organs still were accurately lo-
calized. The organs were localized using the CNN with the optimal configuration
of network architecture, which was determined by the grid search method over
the minimal size of the receptive field parameter. Other parameters were fixed
because they do not influence much the accuracy as it was shown in (Sec. 2.9.6).
The lack of theoretical basis behind the deep learning does not allow inferring the
optimal network configuration beforehand. Therefore, the only way to find the
best-suited configuration for datasets of a particular nature, it is through a hyper-
parameter optimization. However, there were problems with the head nephrons
and heart, because their shape tends to vary among individuals even within the
same inbred line significantly. While, the brain and liver were localized more
robustly since their shape usually quite stable, and they occupy more volume
than the head nephrons and heart that allows them to be more perceivable. The
localization inaccuracies are also explainable by a lack of training data despite
the usage of the rigid and affine augmentation strategies, which seems to be can-
not wholly simulate plausible organ shape variations. The piece-wise augmenta-
tion strategy was not used, because it provides only random local deformations,

126



4.1. Quantitative morphometric analysis of adult teleosts

which might be unrelated to the real behavior of anatomy. It would lead to train-
ing the network for recognizing anatomical deformations, which do not exist in
the real organs and subsequent failure in real datasets. The anatomy-driven data
augmentation should be introduced, which would take into account plausible
anatomical variations to cope with this issue.

The obtained bounding boxes were used to extract the organs of interest, such as
the brain, liver, head nephrons, and heart. The optimal network architecture was
determined using the same approach as in the case of localization, by performing
the grid search over the minimal size of the receptive field parameter, which reg-
ulates the depth of network. Similar to the localization stage, a lack of data was
compensated by incorporating the rigid and affine augmentation strategies into
the training process. Nevertheless, this stage shares the same issues regarding
the augmentation process with the localization stage, because in both cases, aug-
mentation may introduce unrealistic shape variations into the prediction model
that in turn would degrade prediction accuracy on the real datasets.

Thus, a lack of training data is the current bottleneck for localization and seg-
mentation stages. It can be partially mitigated by introducing more manually
segmented data and integrating information about anatomy variations into the
augmentation process.

4.1.2. Materials and methods

Fish stocks and husbandry

The stock of Medaka (Oryzias latipes) was maintained at ITG of KIT at 26° C for
14 hours of light and 10 hours of dark conditions. All experimental procedures
and animal husbandry were done according to local and European Union animal
welfare standards (Tierschutzgesetz 111, Abs. 1, Nr. 1, AZ35-9185.64/BH).

Optimisation of absorption contrast for µCT of teleosts

The µCT allows performing 3D imaging for various applications, and it provides
high penetration power, different spatial resolution scales, and multiple contrast
modes. To acquire high-resolution data of adult teleosts possessing the highest
possible contrast, both between and within various organs, and facilitating au-
tomated segmentation, various staining procedures to optimize absorption con-
trast were studied. The previously proposed staining protocols were optimized
for overall, rather than differential contrast, or were designed to ensure contrast
only for some specific organ or tissue. Also, these studies were mainly oriented
to embryonic or even earlier developmental stages of specimens. Several fixa-
tion and contrasting protocols were systematically evaluated in [373] to establish
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an optimal procedure providing sufficient differential contrast between individ-
ual organs and sub-regions within organs, enabling high-resolution analysis of
whole adult specimens.

Various contrast agents were evaluated, such as, iodine (I2KI), phosphotungstic
acid (PTA), and europium chloride (EuCl3). The results of the preparation of
whole adult medaka with each contrast agent are shown in Fig. 4.8 on the repre-
sentative coronal and sagittal cross-sections through the center of a 3D volume.
As a result, a new sample preparation protocol based on a PTA contrast agent
was developed [373], which showed high and well-balanced differential contrast
for all tissues, providing optimal contrast for µCT imaging of adult teleosts.

Figure 4.8.: The optimization of absorption contrast. The coronal and sagittal slices of
adult medaka stained with PTA, I2KI, EuCl3 and unstained control. (a) PTA staining pro-
vides good differential absorption contrast in all body regions (red arrowheads). (b) I2KI
staining results in differential absorption contrast in the eye (1, red arrowhead). Its pre-
cipitates lead to agglomerates of high intensity concentrated in the head region, intestine,
and spine (1, 3, yellow arrowheads; 4, spine). Absorption in inner organs is weak with
low absorbing tissue (2, 3, red arrowheads). (c) EuCl3 staining leads to strong absorption
in bones (red arrowheads) and weak absorption in inner organs (2, yellow arrowhead).
(d) In unstained medaka adults, the eye (1) and gut (3, yellow arrowhead) have very
weak absorption, whereas bones possess strong absorption (2, 4, red arrowheads). The
details are described in [373]. Scale bars: 6 mm.
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The visualization of PTA stained adult medaka presented in Fig. 4.9, which
proves that PTA allows revealing detailed structural information. The entire ren-
dering (Fig. 4.9b) shows high differential contrast and high spatial resolution,
which allows distinguishing even tiny details and different structures within or-
gans. As examples, visualizations of the brain, eye, and intestine were shown in
Fig. 4.9(a,c,d), demonstrating a potential for revealing detailed tissue morphol-
ogy.

Figure 4.9.: The 3D renderings of the PTA stained adult medaka: a) the brain at 5x mag-
nification; b) the entire body, length is approximately 22 mm (red arrowhead indicates
neuromast of the cranial lateral line); c) the eye with transversal sectioning at 10x mag-
nification; d) the intestine at 3x magnification (the spherical objects within the gut are
artemia eggs).

This protocol was successfully integrated into the imaging pipeline, which re-
sulted in high differential absorption contrast of soft tissues of adult specimens
while preserving high spatial resolution required for automated segmentation.

Sample preparation

The 8 weeks post-hatching (sexually mature) medaka fish were sacrificed and
fixed with 0.3% phosphotungstic acid in 70% ethanol. The samples were fixed
for three days at room temperature followed by staining with a contrast agent
for three days at room temperature, while the solutions were changed every 48
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hours. After the staining procedure, samples were washed in PBS and embedded
in 4% agarose and placed in polypropylene containers. The whole procedure
with all other contrast agents is described in [373].

Data generation pipeline

The pipeline of the whole process is presented in Fig. 4.10, which illustrates all
steps from the sample preparation to the data analysis.

Figure 4.10.: The pipeline for quantitative 3D morphometric analysis of teleosts: a) fish
husbandry; b) sample preparation by fixating and staining with a contrast agent; c) µCT
data acquisition at the synchrotron radiation facility; d) tomographic reconstruction and
manual segmentation of the training data for CNNs; e) automated segmentation and
morphometric analysis.

The samples were scanned at the high-resolution tomography station of the syn-
chrotron light source facility at KIT [374, 375] using a white beam from a bending
magnet. The X-rays were filtered to 16 keV with a double-multilayer monochro-
mator with an additional Al filter (0.2 mm). The X-ray projections were detected
by an sCMOS camera (2560×2160 pixels, 6.5×6.5 µm2 pixel size) coupled with
an optical light microscope of 3.6x magnification. The X-ray beam was converted
into visible light by a Lu3Al5O12 (LAG) scintillator of 50 µm. The whole optical
system resulted in an effective pixel size of 1.8 µm and the measured spatial res-
olution of 5 µm. From every sample, 2000 projections were acquired over 360°
rotation. Since the samples could not fit the field of view, they were vertically
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translated after each scanning session, and the obtained projections were then
vertically concatenated to form a complete sample.

The acquired projections were corrected for dark noise of the camera, instability
of the beam and inhomogeneities of the scintillator. Afterward, the 3D dataset
was reconstructed from the corresponding set of corrected projections using the
FBP algorithm provided by a GPU-based data processing framework [376].

Training data preparation

The brain, liver, heart, kidney and spleen organs were manually segmented for
10 datasets with low precision at each twentieth slice and then were fine-tuned
and interpolated through the volume with the biomedical image segmentation
application [377].

4.1.3. Conclusion

The quantitative morphometric analysis is crucial in studying genotype-
phenotype associations. The µCT imaging provides unique characteristics, such
as high penetration power, fast speed and applicability to samples presented in
different resolution scales [378]. The chemical contrast agents allow increasing
absorption of X-rays for biological soft tissues, and thereby they can be visual-
ized [32].

In this section, the application of µCT for high-resolution imaging of the adult
medaka was demonstrated. It provided a complete description of internal struc-
tures for quantitative morphometric analysis. The whole pipeline consisting of
sample preparation, data acquisition, and data analysis using the framework pre-
sented in (Sec. 2.1) was implemented. The pipeline was evaluated on medaka
fish, which is widely used as a genetic teleost model. PTA contrast agent pro-
viding high differential contrast in conjunction with high-resolution µCT imag-
ing allowed for whole-body imaging while maintaining differentiation between
tissues and organs. The automated segmentation enables extraction of morpho-
metric parameters of internal organs that proves the applicability of the proposed
segmentation framework for such kind of experiments.

The described pipeline for analysis of small adult teleosts provides several ad-
vantages. It allows for the entire body imaging while maintaining resolvability of
all organs and tissues, so they can be perceivable for segmentation algorithms to
perform the morphometrical analysis. The proposed framework reduced a com-
putational burden by employing hierarchical analysis, thus enabling to process
and analyze separate organs in large datasets. It allows uncovering genotype-
phenotype associations, such as genome-wide association studies (GWAS). Thus,
the proposed pipeline paves the way for state-of-the-art genomic approaches to
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unravel the genetics underlying variance of quantitative traits for various or-
gans.

Moreover, the developments in real-time tomographic reconstruction and rapid
data processing algorithms, monitoring and controlling efficiency of imaging ex-
periments employing µCT will allow for upscaling the whole pipeline to manage
a large number of individuals. The small vertebrate models, such as medaka
fish, are frequently used as disease models to investigate how a disease affects
organ function, which is usually caused by altered organ morphology. Thus,
the described pipeline will allow obtaining vital information on disease etiology
by studying disease phenotypes via changes in morphometric properties of or-
gans.

4.2. 3D hybrid fibrous scaffolds for bone tissue
engineering

Bone is a sophisticated organ, which protects internal organs from damage and
supports the entire body. It consists of collagen fibers impregnated with hydrox-
yapatite (HA) such as calcium and phosphate, which increase hardness and dura-
bility of bone tissue [379].

Bone tissue is continuously renewed during life through the remodeling process.
However, this process can be unstable and may fail in a case of various bone dis-
orders like fractures and diseases. Despite many bone treatment methods avail-
able today, they have a range of disadvantages, including the potential to trigger
an immune response and the risk of disease transmission [380].

Alternatively, the new principles of tissue engineering can be employed in bone
treatment. One of the promising directions of tissue engineering is the develop-
ment of special constructions, so-called scaffolds [381].

These constructions have a particular structure, which mimics the structure and
properties of natural bone tissue. Bone tissue has a specific sort of orientation
depending on a type of bone (e.g., cortical or trabecular bone). The controlling
of these properties in the scaffolds fabrication is a crucial task in material science
because it helps to regulate cells response during the regeneration process. Also,
specific orientation of the scaffold structure may influence the mechanical proper-
ties of the construction, which is essential in the regeneration process of the bone
tissue as well.

In this study, fabrication of scaffolds was performed via electrospinning tech-
nique [382]. This method was chosen due to its versatility and simplicity of the
technological process. For mimicking the structure of different bone types, the
randomly-oriented and aligned fiber structure was formed by controlling the ro-
tation speed of a collector [383].
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For scaffolds fabrication, the use of composite materials is highly recommended
due to their advantageous properties compared to one single material. In this
work, the combination of polycaprolactone (PCL) and silicate-containing hydrox-
yapatite (SiHA) biomaterials was used. Previously it was shown that PCL poly-
mer material could be successfully applied for scaffolds fabrication due to its high
mechanical properties and a long period of degradation (2-3 years) [384], which is
crucial in the regeneration process of bone tissue. However, due to its hydropho-
bic nature for enhancing bioactivity, different additives can be used [385, 386]. As
bone tissue consists of HA, it can be added to the polymer solution for improve-
ment of scaffold’s properties. Si in the HA structure may improve and enhance
the mineralization process of the bone and cause a positive effect in the rate of
bone formation [387, 388].

The studying of scaffolds was performed with high-resolution SR-µCT, which ad-
vantages were previously described in Sec. 1.3.1. The analysis of morphological
properties of fibrous scaffold structures presented in 3D datasets has been per-
formed with the segmentation framework presented in Sec. 2.1, which specific
implementation is illustrated in Fig. 4.11.
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Figure 4.11.: The general diagram of the segmentation framework with the specific imple-
mentation and parameterization of each stage for µCT datasets of fibrous scaffolds. The
data analysis stages are described with methods and parameters, while the data prepara-
tion stages are characterized by institutions and facilities where experiments were carried
out (e.g., KIT and Tomsk Polytechnic University (TPU)). The unused stages are marked
in gray.

4.2.1. Methods

Scaffold fabrication

The detailed information about the electrospinning process and chemicals used
for this experiment is presented elsewhere [382]. The fabrication process was per-
formed at Tomsk Polytechnic University (TPU). The pure fibrous scaffolds with
randomly oriented (rPCL) and well-aligned (wPCL) structures were fabricated
using a PCL solution of 9% (w/v). For composite scaffolds with the same struc-
ture (rPCL-SiHA, wPCL-SiHA) the mixture of 9% (w/v) of PCL and 10 wt.% of
precursor powder of SiHA was used. The electrospinning setup was adjusted at
the following parameters: a solution feeding rate of 2 ml/h, a high voltage of
17 kV, and a distance between a needle tip and a collector of 7 cm. The rotation
speed of the collector was fixed at 600 and 1000 rpm for fabrication randomly
oriented and aligned structures, respectively. The duration of samples formation
was set at 1 hour.
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SR-µCT imaging

The high-resolution µCT was performed at the bending-magnet imaging station
at the synchrotron light source facility at KIT [374]. The samples were scanned
with the monochromatic beam of 12 keV energy, which was converted into visible
light with Lu3Al5O12 scintillator of 200 µm. The X-ray projections were detected
by an sCMOS camera (2560×2160 pixels, 6.5×6.5 µm2 pixel size) in conjunction
with an optical light 3.6x microscope providing a spatial resolution of 1.8 µm and
a visual field of view of 4.6×3.9 mm. The samples were rotated with a step of
0.24° and exposed for 1 sec for the beam, totally 1500 projections were acquired
over 360° rotation per sample. The projections were flat-field corrected to reduce
the noise of camera and imperfections of the scintillator. The tomographic re-
construction was performed using the FBP algorithm implemented in the UFO
framework [376].

Data segmentation and analysis

The segmentation framework, presented in (Sec. 2.1) was utilized in data pre-
processing, segmentation and further morphological analysis. The analysis of the
reconstructed datasets consisted of quantification of the orientation and diameter
distribution of the fiber structures, as well as a size distribution of inclusions, and
the determination of the porosity parameter of each sample.

Due to the specificity of data analysis task, only a part of processing stages
was used, namely, pre-processing, non-learning segmentation and morpholog-
ical analysis. The stages comprising framework are decoupled from each other
that allows them to be connected arbitrarily. In the morphological stage, only the
quanfima module was utilized for fiber analysis.

Pre-processing The reconstructed datasets were passed through the denois-
ing functionality of the pre-processing stage configured as Tab. B.14 to reduce
statistical noise and provide homogeneity of structures for the further segmen-
tation stage. The optimal denoising parameters: the smoothing factor γsm = 4,
the patch size Wtp = 5, and the search window Wsw = 21 were found empirically
from results produced by the denoising method over a set of various combination
of parameters for representative data slices.

Segmentation The denoised datasets were then segmented to separate fibers
and particles from a background. The histogram-based segmentation method
has been empirically selected because there are no strict rules in algorithm selec-
tion, rather recommendations (Sec. 2.4). The density distributions of fibers and
particles are completely different; therefore they require individual segmentation
methods. The particles were segmented with threshold-based maximum entropy
method, whereas fibers with the Otsu thresholding method. The algorithms were
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applied to every slice of a dataset separately in a slice-wise fashion along the Z-
axis. The produced segmented slices formed a dataset with physically separated
particles and fibers.

Morphological analysis The segmented particles and fibers were transferred
to the next stage to perform the morphological analysis, where several aspects of
fibers and particles were estimated, namely, fiber orientation and diameter, the
number of particles and their volumes, and porosity of a dataset.

Before proceeding with the orientation analysis, the segmented fibers were skele-
tonized to extract the medial axis as described in (Sec. 3.1). Then, the ray-casting
method run over the skeletonized segmentation at every point of the skeleton.
The algorithm described in (Sec. 3.2.3) estimated orientation as a pair of azimuth
and elevation angles in the neighborhood of a sphere of diameter L = 32 cen-
tered at every skeleton point, with steps of scanning angular ranges of θ∆ = 1°
and ϕ∆ = 1°. When the orientation of fibers were estimated, the diameter could
be calculated using the approach (Sec. 3.3.2).

The segmented particles were counted and estimated individually for volume
and diameter with the connected-component analysis mentioned in (Sec. 3.3.2).
The porosity for each dataset was calculated from the combined segmentations
of fibers and particles as described in Sec. 3.3.2.

4.2.2. Characterization of the structure and morphology

The morphology is one of the critical factors influencing cells adhesion and pro-
liferation [389]. The addition of SiHA to polymer solution may distort fiber di-
ameter in scaffolds. This phenomenon was observed by Metwally et al. , who
fabricated PCL scaffolds with embedded pure HA and calcium carbonate mi-
croparticles using electrospinning technique [390].

The reconstructed datasets were cropped for better representation to the ROIs of
400×400×230 pixels, which correspond to 720×720×414 µm and are presented
in Fig. 4.12. The visualizations demonstrate that fabricated PCL and PCL-SiHA
scaffolds possess the expected fiber morphology, which would correlate to the
natural structure of bone tissue.
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4.2. 3D hybrid fibrous scaffolds for bone tissue engineering

Figure 4.12.: The visualization of polymer PCL and hybrid PCL-SiHA scaffolds with SR-
µCT. The 3D renderings and corresponding axial slices along the height of samples are
presented in the left and right columns, respectively: (a) rPCL, (b) wPCL, (c) rPCL-SiHA
and (d) wPCL-SiHA. The fibers are colored in cyan, while microparticles and their aggre-
gates are in red.

In the studied scaffolds, there were detected changes in the fiber morphology
for samples containing SiHA microparticles. A rough surface morphology with
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massive polymer structures was observed in the randomly oriented (r) and well-
aligned (w) samples, rPCL-SiHA and wPCL-SiHA, correspondingly. The SiHA
microparticles intensively agglomerate over the entire volume. The most mas-
sive aggregates tended to embed within an even larger polymer structure. These
drastic morphology changes may be related to change in electrostatic forces since
Si inclusions are non-conductive and/or increase viscosity regarding pure PCL.

The azimuthal and elevational fiber orientation histograms are presented in
Fig. 4.13. In the azimuthal direction (Fig. 4.13a), scaffolds with a well-aligned
structure (wPCL) have a prevailing number of fibers oriented from 75° to 100°.
While scaffolds with a randomly oriented structure (rPCL) have a predominant
directionality ensured by a rotating collector, however, in wider angular ranges,
the fibers of rPCL are mostly oriented in the range from 80° to 160°, and rPCL-
SiHA in the ranges from 20° to 60° and from 120° to 180°. As can be seen, all sam-
ples in the elevational direction have similar orientation from 50° to 90°, which is
dictated by a layer-by-layer fiber deposition during the electrospinning process
(Fig. 4.13b).

138



4.2. 3D hybrid fibrous scaffolds for bone tissue engineering

Figure 4.13.: The orientation histograms of polymer PCL and hybrid PCL-SiHA scaffolds
in (a) azimuthal and (b) elevational directions.

The complete analysis of fiber orientation presented in Fig. 4.14 grants an imme-
diate visual comparison of scaffolds with randomly oriented and well-aligned
fiber orientations, where similar colors represent fibers aligned in a similar di-
rection. Notably, fibers comprising wPCL change their dominant orientation
depending on sample height, which is evidence of a difference in layer deposi-
tion during electrospinning. Moreover, the visualizations demonstrate that most
fibers comprising scaffolds with an aligned structure lay in the same plane, while
fibers of scaffolds with a randomly oriented structure are chaotically distributed
in a volume.
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Figure 4.14.: The visualization of fiber orientation for scaffolds: (a) rPCL, (b) wPCL, (c)
rPCL-SiHA and (d) wPCL-SiHA.

The results of fiber diameter analysis are presented in Fig. 4.15 showed that hy-
brid scaffolds have the thickest fibers in the range from 35 µm to 75 µm, while
the largest number of fibers presented in the range from 10 µm to 25 µm. It was
also found out that the fiber diameter of wPCL and wPCL-SiHA scaffolds de-
creased relatively to rPCL and rPCL-SiHA scaffolds. The pie charts illustrate that
the fiber diameter of wPCL increased in the range from 1 µm to 5 µm for 6.7%
and decreased from 10 µm to 35 µm for 2.7%. This study revealed that scaffolds
with SiHA microparticles have a similar trend, where the fiber diameter of wPCL-
SiHA increased in the range from 1 µm to 10 µm for 0.8% and from 10 µm to 25
µm for 14.4%, and decreased from 25 µm to 35 µm for 1.3%, from 35 µm to 45
µm for 5.1%, and from 45 µm to 75 µm for 8.7%, relative to the rPCL-SiHA scaf-
fold. This behavior of fiber diameter can be explained by excessive stretching of
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a solution jet before to be deposited onto collector rotating at high speed.

Figure 4.15.: The visualization of fiber diameter analysis for SR-µCT datasets of polymer
PCL and hybrid PCL-SiHA scaffolds.

The size distributions of SiHA microparticles and its aggregates in rPCL-SiHA
and wPCL-SiHA scaffolds are presented in Fig. 4.16(a,b). The analysis has shown
that the most frequently detected microparticle aggregates were in the range from
5.83 µm3 to 1000 µm3, which corresponds to an approximate diameter from 2.23
µm to 12.4 µm, respectively, assuming that aggregates are modeled with spheres.
The larger aggregates were detected in the range from 1000 µm3 to 1000000 µm3,
which corresponds to an approximate diameter from 12.4 µm to 124 µm, but their
total number was not higher than 13.6% for rPCL-SiHA and 13.8% for wPCL-
SiHA. However, microparticles of volume less than 5.83 µm3 could not be re-
solved with this setup due to limits of spatial resolution of 1.8 µm. In the case of
both hybrid types of scaffolds, a similar number of microparticles and their aggre-
gates were observed, and no statistical significance was recognized (Fig. 4.16c).
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Figure 4.16.: The results of structural analysis of the scaffolds from SR-µCT datasets. The
pie charts show percentage of the total number of microparticles and their aggregates in
each size range for (a) rPCL-SiHA and (b) wPCL-SiHA; (c) histogram displays the total
number of inclusions presented in hybrid scaffolds and (d) histogram shows porosity of
polymer and composites (*p ≤ 0.05 and N.S. with p > 0.05).

The composite scaffolds have shown slightly increased porosity of 78.36±3.35%
and 73.50±1.87% for rPCL-SiHA and wPCL-SiHA, respectively, whereas, rPCL
and wPCL pure scaffolds have demonstrated porosity of 77.14±0.49% and
72.27±1.14%, correspondingly (Fig. 4.16d). As can be seen from the results of
the analysis, SiHA inclusions influence change in porosity of scaffold structure.
These facts can help to optimize a scaffold design, which may enhance attach-
ment and proliferation of cells into scaffolds [391].

Discussion

The data analysis workflow for datasets produced from SR-µCT experiments
over samples of simple structure, i.e., composed of a few materials was created
from the processing stages provided by the proposed segmentation framework in
Sec. 2.1. The processing stages are decoupled from each other, therefore, they can
be connected arbitrarily to provide the analysis workflow of the required struc-
ture. Moreover, the functionality within each stage is also decoupled, that allows
providing higher flexibility, i.e., only a part of operations within a stage can be
executed if necessary.
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The pre-processing was required only to reduce statistical noise with the denois-
ing functionality while skipping all other preparation steps for further segmen-
tation with CNNs. Since the datasets were composed of several homogenous
materials, which resulted in multi-modal intensity distributions, they did not
require any sophisticated CNN-based segmentation approaches. Therefore, in-
tensity histograms of the datasets could be analyzed with histogram-based seg-
mentation methods to find correct thresholding values to separate materials from
each other.

The morphological analysis stage was as well only partially utilized because only
analysis of fibers and particles was required. The fibers were subjected to the spe-
cific kind of analysis, while particles were analyzed with the volumetric analysis
functionality.

4.2.3. Conclusion

In this section, the characterization of PCL scaffolds with randomly oriented and
well-aligned fiber structures aimed at the regeneration of bone tissue was pre-
sented. The embedding of SiHA microparticles and their aggregates into a struc-
ture of scaffolds allowed to improve cellular penetration and bone in-growth.
The proposed segmentation framework was utilized to analyze SR-µCT datasets
of scaffolds for the fiber diameter and orientation, porosity, and the distribution
of inclusions size. The results demonstrated that more often SiHA microparticles
were detected in the range from 2.23 µm to 12.4 µm, which influences the fiber
morphology and has little impact on the orientation of fibers. Thus, the presence
of inclusions changes the morphological properties of the material, while it does
not influence on the orientation of fibers.
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The development of µCT imaging techniques and instrumentation, digital detec-
tors, and smart control systems has led to the emergence of high-performance
imaging setups capable of producing a tremendous amount of data per scanning
session. The application of such imaging setups in high-throughput experiments
involving a large number of complex heterogeneous specimens, as in a case of
studies for phenotype-genotype association or drug action on morphometry of
living organisms, produce dozens of terabytes of data, which should be processed
and analyzed quickly to take the next step in the planning of research. Such
amount of data are impossible to handle manually since even the domain experts
can easily spend weeks on a manual delineation of target structures and subse-
quent analysis. While, since the experts are not machines, they tend to be prone to
a human factor which incorporates mistakes into a segmentation process. More-
over, manual delineation process is subjective, because different experts may see
boundaries of target structures differently. The available automated analysis ap-
proaches are not applicable for such complex heterogeneous datasets due to their
simplicity, inability to exploit the hierarchical nature of specimens, lack of flex-
ibility and low performance. The primary aim of this thesis was to develop a
new concept for the automated analysis of complex specimens to provide a fast
and reliable workflow for various high-throughput X-ray experiments. This goal
was accomplished by developing a new concept for hierarchical data analysis,
improving reliable state-of-the-art approaches from different application fields
aimed at registration, localization, and segmentation to fit specificity of such data,
and developing a new method for more precise morphological analysis of fibrous
structures.

The major contributions presented in this thesis can be formulated as follows:

1. A new concept for hierarchical data analysis of complex heterogeneous
datasets of similar nature acquired in high-throughput experiments em-
ploying laboratory or synchrotron-based µCT imaging setups (Chap. 2).

2. A new automated analysis workflow tailored for efficient processing of
complex heterogeneous µCT datasets of hierarchical nature (Sec. 2.1). The
proposed workflow is based on improved state-of-the-art approaches for
validation, pre-processing, registration, localization, and segmentation,
where any stage involving a training phase can be automatically fine-tuned
using a grid search approach over the specified parameter space (Sec. 2.1.3).
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3. A new, rapid, highly parallelizable 3D orientation method for analysis of
fibrous structures in large µCT datasets (Sec. 3.2.3). The proposed method
provides higher accuracy than the state-of-the-art tensor-based method and
outperforms it by a factor of twenty using the GPU implementation, which
increases with the size of the dataset (Sec. 3.4).

4. A new algorithm for generation of a synthetic dataset composed of non-
/overlapping straight fiber-like structures with such properties as spatial
location, length, orientation, radius, a minimum distance to neighbor struc-
tures sampled from the specified ranges (Sec. 3.2.4). The proposed algo-
rithm allows generating ground-truth datasets with fibers having specific
properties to validate methods for 3D orientation analysis.

5. The thorough evaluation of the developed workflow on the phantom
datasets simulating results of µCT experiments (Sec. 2.9). Every stage of the
workflow utilizing neural networks was assessed individually for various
network architectures, data augmentation strategies and noise robustness
to determine the best-suitable parameters.

6. The comparative analysis of the developed 3D orientation analysis method
to the tensor-based approach in terms of accuracy and throughput
(Sec. 3.4) on the synthetic dataset generated with the algorithm proposed
in (Sec. 3.2.4). The synthetic dataset was comprised of tightly packed and
non-overlapped fibers of highly varying parameters. The methods were
evaluated on the generated datasets to determine the optimal parameters
and assess robustness to noise. The throughput of methods was estimated
for CPU and GPU implementations on a dataset of varying size and a fixed
configuration of fibers.

7. The implementation of all stages of the developed workflow as independent
modules to allow a user to combine them accordingly to the task and data
on hands (Sec. 2.8). The independence of modules allows creating a work-
flow using any workflow management library [392]. The modules were
developed using the Python language to allow execution on any platforms
including Windows, Linux, and macOS and integration with Jupyter note-
books. The dependencies on the third-party libraries were reduced to ease
the deployment process.

8. The implementation of Quanfima package aimed at a complete 2D and 3D
morphological analysis of fibrous structures (Sec. 3.3). The proposed 3D
orientation analysis method (Sec. 3.2.3) was implemented as a part of the
Morphology module of this package and available to be executed on both
CPU and GPU. The package was implemented with the Python language
to provide immediate integration into other workflows and be used with
interactive Jupyter notebooks.

9. The successful application of the newly developed and implemented auto-
mated analysis workflow to analyze the high-resolution datasets of medaka
fish acquired with the synchrotron-based µCT imaging setup at KIT in the
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frame of the phenotyping experiment (Sec. 4.1). The brain, liver, head
nephrons and heart from 20 medaka fishes were segmented and analyzed
automatically with the proposed workflow, which paves the way for unrav-
eling correlations between the genetics and the morphological characteris-
tics of various organs.

10. A complete morphological analysis including orientation, diameter, and
density of the polycaprolactone 3D scaffolds using the implemented Quan-
fima package (Sec. 4.2). The developed 3D orientation estimation method
was employed for orientation analysis. The quantitative results of the anal-
ysis allow guiding the fabrication process to produce scaffolds with desir-
able mechanical properties.

The X-ray imaging techniques are continuously developing to provide faster ac-
quisition and higher quality of the acquired data. However, along with 3D X-
ray imaging which captures a static specimen, 4D (3D+t) X-ray imaging is also
actively developing to digitalize a specimen in motion to discover dynamic pro-
cesses behind its complex structure. A biological screw joint of Trigonopterus ob-
longus [393] is a remarkable example of how 4D X-ray imaging helps to reveal hid-
den mechanisms. Such imaging techniques require analysis approaches capable
of providing sufficient quality and performance. The proposed automated anal-
ysis workflow should be revised to meet new requirements imposed by 4D X-ray
imaging. All stages should take into account the temporal dimension since the
specimen is not static anymore. The validation stage should be able to track ab-
normalities along all temporal states of the specimen and exclude datasets which
are outliers with respect to the initial state. The alignment stage should perform
registration of the initial state of the specimen to the reference atlas, and then
other datasets from the corresponding temporal states should be registered se-
quentially to compensate possible anatomical variations. The localization stage
should adjust 3D bounding boxes through all temporal states to take into account
the specimen movements. The segmentation stage should use all temporal infor-
mation to improve the prediction of the structures by propagating the segmenta-
tion probabilities to the next state. These improvements will allow for tracking
how the morphological properties of structures change in time that gives more
in-depth insight into the internal dynamic processes of the specific specimen.

A new experiment aimed at studying species which were not previously scanned
usually suffers from a lack of data for training localization and segmentation neu-
ral networks at the respective stages. These networks must be trained at represen-
tative examples to be able to recognize similar patterns in newly scanned datasets
of similar specimens. In this case, several datasets should be manually segmented
by the domain experts to provide reliable ground-truths for training. Data aug-
mentation allows increasing amount and variety of training data by applying
random geometrical transformations to manually segmented datasets and corre-
sponding labels. However, geometrical transformations cannot provide substan-
tial deformation of the target data. Therefore more severe variations could be
introduced by elastic deformations, which are widely applicable in histology or
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cells analysis, where the shape is simple, and most shape variations are plausible.
Whereas, in a case of model organisms like mouse, Zebrafish or medaka fish, the
outer shape and shapes of internal organs are restricted and dependent on each
other. Hence, random elastic deformations are not straightforwardly applicable,
because they do not take into account how each deformation of a single organ
impacts on the whole system, since all organs are interconnected. Thus, deforma-
tion models providing plausible deformations of the entire system of structures
are required for more realistic data augmentation. To address this issue, statistical
shape models of every organ and the outer shape can be created and assembled
into a single system. Thus, data augmentation of manually segmented datasets
can be performed using this system of deformable models, which guides plausi-
ble and complex deformations of the whole model organism.

The performance of the proposed method for orientation analysis of large
datasets could be further improved by introducing a hierarchical analysis via a
coarse-to-fine strategy. The scanning angular ranges can be shrunk depending
on the current scale level. Thus, at the most coarse level, the angular ranges are
broad and thoroughly scanned to determine a set of the closest candidates corre-
sponding for the correct orientation. Then, the determined angles accompanied
by the specified confidence intervals for a minimum and maximum angles are
passed to the finer level, where the algorithm scans only the specified angular
ranges. The process of scanning and determination of new scanning ranges re-
peats until it reaches the finest level, where the scanning ranges are significantly
shrunk and require much less time to find the final orientation.

Thus, improvements in X-ray imaging techniques allow revealing so far hidden
internal structure and dynamic processes. However, they produce data, whose
amount gradually increases year by year, and without a proper interpretation
from the domain experts, it is just a set of bytes. Hence, the produced data should
be processed and analyzed promptly with the methods which can completely
utilize the potential of imaging techniques, and provide the experts with valuable
quantitative information.
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A. Nomenclature and Symbols

In this section, the notation including the basic concepts and symbols used
throughout the thesis is summarized. The nomenclature is inspired by the for-
mulation given in [394].

• Lower case letters are used for scalars, parameters, indexing variables and
functions (e.g., γ, µ, σ are common names for parameters, f(·) is common
name for functions or functionals, i, j, k, l are common names for indices)

• Upper case letters are used for number of entities (e.g., Nc, Nax for the num-
ber of classes and the number of dimensions, respectively)

• Upper case bold face letters represent matrices (e.g., S, Im)

• Lower case bold face letters represent vectors (e.g., x, y for column vectors
and x>, y> for row vectors)

• Accessing elements of data structures is denoted by square brackets (e.g.,
x[1] accesses the first element of vector x, I[1, 2] accesses the matrix element
in the first row and second column)

• Elements topped with a hat refer to estimates of a certain quantity (e.g., x̂
represents an estimate of the scalar x, x̂ represents an estimate of vector x)

• Optimal solutions are indicated by an asterisk (e.g., x∗ would denote the
optimal solution to argmina,b f(a, b))
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Symbol Description

|x| Absolute value of x

∗ Convolution operator. Discrete convolution is used for
images.

ANN Artificial Neural Network

Al Aluminium

A A surface area measure

argmin(·), argmax(·) The minimization and maximization functions.
∂f
∂x

Partial derivative of function f with respect to x

2D Two dimensional

3D Three dimensional

3D+t Three spatial dimensions and temporal dimension

[...] An array of items

{ ... } An unordered set of items

BRIEF Binary Robust Independent Elementary Features

BM Bending magnet

B 3D bounding box

CCD Charge-coupled Devices

sCMOS Scientific Complementary Metal Oxide Semiconductor-
based Detectors

CNR Contrast-to-Noise Ratio

CNN Convolutional Neural Network

CAD Computer-Aided Design

CC Cross-Correlation

CPU Central Processing Unit

CT Computed Tomography

C The registration cost function

C Integer class label
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C Encoded vector of classes

DSC Dice Score

d Network depth level

∆x,∆y,∆z Pixel size along x, y, z axes

exp(·), ex Exponential function

fray(·) Ray-casting function

fring(·) Ring artifact filtering function

fmedian(·) 2D median filtering function

fnorm(·) Intensity normalization function

fsparse(·) Function generating a sparse representation

fscale(·) Scaling function to the specified size

fohe(·) One-hot encoding algorithm

floss(·) Optimization loss function

fth(·) Thresholding function

fnlm(·) Non-local means filtering function

fsobel(·) Sobel operator function

fgth(·) Global thresholding function

fmorph(·) Sequence of morphological operations

fcca(·) Connected-components analysis function

fsnorm(·) Spatial normalization function

fpyr(·) Function creating a multi-scale pyramid

fmhe(·) Multi-hot encoding algorithm

fctx(·) Function creating a 3D spatial context

fsavg(·) Function averaging size of datasets in a population

fsnear(·) Function finding of the nearest divisible by two size

fbscale(·)
Function scaling coordinates of a bounding box by the
specified scale factor

fpext(·) Function extracting 3D patches from a dataset

fpcmb(·) Function reconstructing a dataset from 3D patches
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A. Nomenclature and Symbols

ffuse(·)
Function creating a 3D probability map by averaging
probabilities at every voxel

FBP Filtered Back Projection

F k
ij

The k-th feature map whose a receptive field centered at
the location (i, j)

G(x, σ) Gaussian kernel with standard deviation σ

GPU Graphics Processing Unit

H Shannon entropy

H Multi-scale pyramid

i, j, k, l,m, n Index variables defined by the context

Im Identity matrix

I General dataset variable

L General label variable

I
′ Changed dataset, determined by a context

Iax Slices of a reconstructed dataset along axis ax

Isino Sinogram image

Ireco Reconstructed slices forming a X-ray dataset

Inorm Intensity-wise normalized dataset

Iscaled Scaled dataset

Isparse Sparse representation of a dataset

Ival Validated dataset

IM , Y Moving dataset

IF ,X Fixed / reference dataset

Iedge Dataset with enhanced edges

Ith Thresholded dataset

IB Data contained by a bounding box B

Isn Spatially normalized dataset

Iaxcts
Dataset composed of 3D slices along the orthogonal axis
ax

IPk The k-th 3D patch of size Spth
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ITK Insight Toolkit

ID Insertion Device

ICP Iterative Closest Point

min(·), max(·) Minimum and maximum functions

MRF Markov random field

MI Mutual Information

MRI Magnetic Resonance Imaging

N
General number of angles, objects or dimensions speci-
fied by the context

NMI Normalized Mutual Information

Nd Number of dimensions / Network depth

Nax Number of dimensions

Nwl Number of wavelet decomposition levels

Nf General number of features

Nm Number of materials making up a sample

Nx, Ny, Nz Number of pixels in x, y, z direction

Nφ Number of elevation angles

Nθ Number of azimuth angles

Nmp Minimal number of projections

Npx Number of pixels in a row of each projection

Nws Size of a local 3D window

Nqss
Number of equally-spaced slices along the selected or-
thogonal axis

Nbf Number of filters at the first convolution layer

Nfc Number of neurons at the fully-connected layer

Ndp Amount of dropout

Ns Number of observations

Nc Number of classes or categories

Nmi Number of iterations of morphological operations
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A. Nomenclature and Symbols

NL Number of layers for a multi-scale pyramid

Nns Number of neighbor slices

Nss Size of slice step to form a 3D spatial context

Ncaa Number of extracted connected components

Npths Number of extracted 3D patches from a dataset

Lray Length of X-ray path transmitting through a sample

L Diameter of a restricting sphere for a casted ray

N (µ, σ)
Normally distributed random variable with mean µ and
standard deviation σ

PCL Polycaprolactone

PTA Phosphotungstic Acid

Plow, Phigh Percentiles defining an intensity range for conversion

P ax Prediction vector along the orthogonal axis ax

P 3D probability map

ROI Region of Interest

RF Random forest

RAM Random Access Memory

ReLU Rectified Linear Unit

R Connected component represented as a range of indices

R Vector of connected components

ρ Length of a fiber

Rij
Array of indices belonging to some local region centered
at the location (i, j)

Sr Euclidean sphere structuring element with radius r

SDK Software Development Kit

S Sphericity measure

S General variable for size

Smrf
Minimal size of the receptive field at the last convolution
layer

Sval Size of a dataset at the validation stage
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Sse Structural element of morphological operations

Snorm Average size of datasets in a population

Sseg Size of a dataset at the segmentation stage

Spth Size of 3D patches extracted from a dataset

S Second-order structure tensor matrix

SNR Signal-to-Noise Ratio

SIFT Scale-Invariant Feature Transform

SURF Speeded-Up Robust Features

SSD sum of squared differences

sgn(·) Signum function that returns the sign of a real number

SR-µCT imaging Synchrotron-µCT imaging

SiHA Silicate-containing Hydroxyapatite

VTK Visualization Toolkit

V Volume measure

Tµ Geometric transformation parametrized by µ

Wk The k-th feature map related to the specific filter

W ×H ×D The width, height and depth of a dataset

Wmed Window size of the median filter

Wsw Size of search window of the non-local means algorithm

Wtp Patch size of the non-local means algorithm

WD(·) Wall distance measure

γsm Smoothing parameter of the non-local means algorithm

γth Thresholding value

γds Pyramid downscaling factor

γovlp 3D patch overlap

γseg Thresholding value to generate a binary segmentation

γrad Maximum length of ray propagation

θ Azimuth angle of a fiber

θ∆ Step of azimuth angle
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A. Nomenclature and Symbols

ϕ∆ Step of elevation angle

λ1, λ2, ..., λNd
Eigenvalues sorted in ascending order of aNd×Nd matrix
defined in the context

λλλ
Nd-dimensional vector of eigenvalues sorted in ascend-
ing order

µ Arithmetic mean value

π Mathematical constant (approximately 3.14159)

ϕ Elevation angle of a fiber

σ Standard deviation

σagn Zero-mean additive Gaussian noise standard deviation

σsmooth The standard deviation of a Gaussian smoothing kernel

σdmp The standard deviation of a Gaussian dumping function

σtsr
The standard deviation of a Gaussian smoothing kernel
for a second-order structure tensor matrix

σpyr
The standard deviation of a Gaussian smoothing kernel
of a multi-scale pyramid

σpvs
The standard deviation of a Gaussian smoothing kernel
for a prediction vector
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B. Tables

The chapter presents the tables related to the performance evaluation (Sec. 2.9)
and applications (Chap. 4).

B.1. Performance evaluation

B.1.1. The validation stage

Parameter Value

Median filter size (Wmed) 3 pixels
Scaled dataset size (Sval) 128 × 128 × 128 voxels
Step between equally-spaced slices (Nqss) 10%

Table B.1.: The pre-processing parameters of the validation stage for the performance
analysis.

Parameter Value

Number of base filters (Nbf ) 4, 8, 16
Minimal size of the receptive field (Nmrf ) 4, 8, 16
Dropout ratio (Ndp) 0.5
Number of neurons (Nfc) 1000
Number of epochs 250
Batch size 8
Weights initialization Glorot initialization
Optimization method Adam
Learning rate 0.0001
Learning rate reducing factor 2
Number of patience epochs 10

Table B.2.: The parameters of validation networks to determine the optimal architecture.
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B. Tables

B.1.2. The alignment stage

Parameter Value

Number of levels 4
Scale factors 8, 4, 2, 1
Smoothing factors 3, 2, 1, 0
Optimization method Gradient descent
Cost function Mutual information
Stop rule value (ε) 0.0001
Number of iterations 1000, 1000, 1000, 500

Table B.3.: The parameters of the registration method for the alignment stage.

B.1.3. The pre-processing stage

Parameter Value

Smoothing factor (γsm) 7
Patch size (Sval) 3 pixels
Search window size (Nqss) 21 pixels
Structural element size (Sse) 5 pixels
Spatially normalized dataset size (Snorm) 512 × 512 × 512 voxels
Number of iterations of morphological filters (Nmi) 3
Number of pyramid levels (NL) 4
Pyramid downscale factor (γds) 2.0
Pyramid smoothing factor (σpyr) 1.0

Table B.4.: The parameters of the pre-processing stage during the performance analysis.
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B.1. Performance evaluation

B.1.4. The localization stage

Parameter Value

Number of base filters (Nbf ) 4, 8, 16
Minimal size of the receptive field (Nmrf ) 4, 8, 16
Dropout ratio (Ndp) 0.5
Number of neurons (Nfc) 1000
Number of epochs 250
Batch size 8
Weights initialization Glorot initialization
Optimization method Adam
Learning rate 0.0001
Learning rate reducing factor 2
Number of patience epochs 10
Number of neighbor slices (Nns) 3, 5
Step between neighbor slices (Nns) 1, 3

Table B.5.: The parameters of localization networks to determine the optimal architec-
ture.

Parameter Value

Translation (-0.25, 0.25)
Rotation (-15°, 15°)
Scaling (0.75, 1.25)

Table B.6.: The parameters of the affine augmentation strategy of convolution networks
during the performance analysis.
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B.1.5. The segmentation stage

Parameter Value

Number of base filters (Nbf ) 4, 8, 16
Minimal size of the receptive field (Nmrf ) 4, 8, 16
Number of epochs 250
Batch size 8
Weights initialization Glorot initialization
Optimization method Adam
Learning rate 0.0001
Learning rate reducing factor 2
Number of patience epochs 10

Table B.7.: The parameters of segmentation networks to determine the optimal architec-
ture.

B.2. Quantitative morphometric analysis of adult
teleosts

B.2.1. The pre-processing stage

Parameter Value

Smoothing factor (γsm) 7
Patch size (Sval) 3 pixels
Search window size (Nqss) 21 pixels
Structural element size (Sse) 5 pixels
Spatially normalized dataset size (Snorm) 1152×1024×6656 voxels
Number of iterations of morphological filters (Nmi) 3
Number of pyramid levels (NL) 6
Pyramid downscale factor (γds) 2.0
Pyramid smoothing factor (σpyr) 1.0

Table B.8.: The parameters of the pre-processing stage for the application on medaka fish.

160



B.2. Quantitative morphometric analysis of adult teleosts

B.2.2. The localization stage

Parameter Value

Number of base filters (Nbf ) 16
Minimal size of the receptive field (Nmrf ) 4, 8, 16
Dropout ratio (Ndp) 0.5
Number of neurons (Nfc) 1000
Number of epochs 250
Batch size 8
Weights initialization Glorot initialization
Optimization method Adam
Learning rate 0.0001
Learning rate reducing factor 2
Number of patience epochs 10
Number classes (Nc) 3
Number of neighbor slices (Nns) 5
Step between neighbor slices (Nns) 1

Table B.9.: The parameters of localization networks to determine the optimal architecture
for the application on medaka fish.

Parameter Value

Translation (-0.15, 0.15)
Rotation (-25°, 25°)
Scaling (0.75, 1.25)

Table B.10.: The parameters of the affine augmentation strategy of convolution networks
during the application on medaka fish.

Network name Average wall-distance (µm)

CNN[8MRF 16BF 3NS 1SS] 10.89±12.42
CNN[4MRF 16BF 3NS 1SS] 16.11±17.85
CNN[2MRF 16BF 3NS 1SS] 19.42±21.57

Table B.11.: The accuracy of localization for different networks configurations.
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B. Tables

B.2.3. The segmentation stage

Parameter Value

Number of base filters (Nbf ) 16
Minimal size of the receptive field (Nmrf ) 4, 8, 16
Number of epochs 250
Batch size 8
Weights initialization Glorot initialization
Optimization method Adam
Learning rate 0.0001
Learning rate reducing factor 2
Number of patience epochs 10
Number classes (Nc) 1

Table B.12.: The parameters of segmentation networks to determine the optimal architec-
ture for the application on medaka fish.

B.3. 3D biodegradable scaffolds of
polycaprolactone for bone tissue engineering

B.3.1. The pre-processing stage

Parameter Value

Smoothing factor (γsm) 4
Patch size (Sval) 5 pixels
Search window size (Nqss) 21 pixels

Table B.13.: The parameters of the pre-processing stage for the application on the PCL
scaffolds.

B.3.2. The morphological analysis stage

Parameter Value

Neighborhood sphere diameter (L) 32
Step size of scanning angular ranges (θ∆,ϕ∆) (1°, 1°)

Table B.14.: The parameters of the morphological analysis stage for the application on
the PCL scaffolds.
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B.4. Implementation description of the segmentation framework

B.4. Implementation description of the
segmentation framework

Method description Function name

Ring artifact filtering (Eq. (2.1)) ring_filter

Data denoising with a median filter (Eq. (2.2)) median_filter

Intensity normalization (Eq. (2.3)) normalize

Data rescaling (Eq. (2.4)) rescale

Input data preparation (sparse representation)
(Eq. (2.5) and (2.6)) validation_data_prep

Model training process (Eq. (2.7)) DataValidator.train

Model prediction process (Eq. (2.8) and (2.9)) DataValidator.validate

Table B.15.: The correspondence between mathematical equations and implemented
functions for the data validation stage.

Method description Function name

Align the target dataset to the reference one
(Eq. (2.10) to (2.12), (2.14) and (2.15)) DataAligner.align

Apply geometric transformation to the target dataset
(Eq. (2.13))

DataAligner.apply_-
transform

Table B.16.: The correspondence between mathematical equations and implemented
functions for the sample alignment stage.

Method description Function name

Non-local means filtering (Eq. (2.16)) nlm_filter

Sobel filtering (Eq. (2.17)) sobel_filter

Binary thresholding (Eq. (2.18)) threshold

Closing holes in binary data (Eq. (2.19)) morph_filter

Finding connected-components and extracting the
largest structure (Eq. (2.20)) find_largest_object

Spatial normalization and zero-padding (Eq. (2.4)
and (2.21)) zeropad

Creating a multi-scale pyramid (Eq. (2.22)) create_pyramid

Table B.17.: The correspondence between mathematical equations and implemented
functions for the data pre-processing and normalization stage.
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Method description Function name

Input data preparation (3D context slices) (Eq. (2.23)
to (2.25)) localize_data_prep

Model training process DataLocalizator.train

Model prediction process (Eq. (2.26)) DataLocalizator.predict

Creating 3D bounding boxes (Eq. (2.27) and (2.28)) create_bbox

Propagating 3D bounding boxes through a multi-
scale pyramid (Eq. (2.29)) scale_pyramid_bbox

Accessing data at a specific pyramid level (Eq. (2.30)) get_data_at_level

Table B.18.: The correspondence between mathematical equations and implemented
functions for the localization stage.

Method description Function name

Input data preparation (the slice-wise strategy)
(Eq. (2.31) to (2.33)) seg_slicewise_prep

Input data preparation (the patch-based strategy)
(Eq. (2.31) and (2.34)) seg_patch_prep

Model training process (Sec. 2.6.3) DataSegmenter.train

Spatial normalization of a localized structure
(Eq. (2.38)) normalize_struct

Model prediction process (Eq. (2.39)) DataSegmenter.predict

Assembling image from patches (Eq. (2.40)) combine_patches

Obtaining 3D binary segmentation by averaging and
thresholding probabilities from all orthogonal views
(Eq. (2.41) and (2.42))

average

Table B.19.: The correspondence between mathematical equations and implemented
functions for the segmentation stage.

Method description Function name

Extracting volumetric properties (Eq. (2.44)) extract_vol_props

Extracting surface properties (Eq. (2.45)) extract_surf_props

Extracting fibers properties (Eq. (2.45)) extract_fiber_props

Table B.20.: The correspondence between mathematical equations and implemented
functions for the morphological and statistical analysis stage.

164



B.5. Implementation description of fiber analysis workflow

B.5. Implementation description of fiber analysis
workflow

Method description Function name

Otsu thresholding segmentation method
(Sec. 2.4)

skimage.filters.threshold_-
otsu

Table B.21.: The descriptions of implemented functions for the fiber segmentation stage.

Method description Function name

Fiber skeletonization (Sec. 3.1) skimage.morphology.skele
tonize

Fiber orientation analysis (Sec. 3.2.3) orientation_3d_ray_cast

Particles counting (Sec. 3.3.2) object_counter

Fiber diameter estimation (Sec. 3.3.2) estimate_diameter_single_run

Table B.22.: The descriptions of implemented functions for the fiber analysis stage.
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