
Real-Time Safe Stop Trajectory Planning via Multidimensional Hybrid
A∗-Algorithm

Lingguang Wang1, Zhenkang Wu1, Jiakang Li1 and Christoph Stiller1

Abstract— A reliable autonomous driving system should be
capable of performing safe stop when proceeding the normal
driving becomes impossible. It is essential for safe stop planning
to be able to provide a trajectory that leads the vehicle to
a specific stopped goal in real-time. With this as a main
challenge and distinction, the safe stop planning should still
be able to avoid collision with static and dynamic obstacles like
normal motion planning. To guarantee a meaningful solution
and be real-time capable, we propose to utilize path-velocity
decomposition, which provides a non-globally optimal solution
but reduces the computational burden. Firstly, by sampling
piecewise quintic polynomials that connect a series of sampled
points from the current location to the goal, a set of path
candidates in Frenét frame are generated. The path that meets
kinematic constraints, maximizes comfort, and avoids static
obstacles is selected. Afterward, we generate the length-time
(ST) graph by projecting the dynamic obstacles on our driving
corridor along the chosen path in space and time domain.
The velocity planning is performed on the ST-graph with an
extended multidimensional Hybrid A-Star (A∗) Algorithm. Fi-
nally, our approach is evaluated in several simulation scenarios
and also in CoInCar-Simulation framework, which shows a
real-time capability and promising driving behaviors.

I. INTRODUCTION

Nowadays, the requirements for autonomous vehicles stay
not only at efficiency and convenience level, but more
at safety level. In the recent years, many major vehicle
manufactures and research institutions have invested huge
manpower and resources to develop fully self-driving ve-
hicles. However, most of them focus on how to bring the
vehicle to the goal more efficiently and comfortably, but
rarely consider a back-up plan for cases whenever their
designed systems fail. This might include situations when
the self-driving system experiences a internal problem, the
vehicle is involved in a tiny collision, or when the envi-
ronmental conditions change in a way that would affect
normal driving within our operational design domain. After
encountering those situations, the system should determine
an appropriate response to keep the vehicle and its passengers
safe, including pulling over or coming to a safe stop.

In comparison to the emergency braking, the events that
trigger the safe stop are usually not that urgent, i.e. the
vehicle still maintains part of its automation ability such
that it can still follow one pre-calculated trajectory until

*This work is accomplished within the project “UNICARagil” (FKZ
16EMO0287) and the financial support from the Federal Ministry of
Education and Research of Germany (BMBF) is acknowledged.

1Authors are with the Institute of Measurement and Control
Systems, Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany lingguang.wang, stiller@kit.edu,
wuzhenkang111@gmail.com, mazeljk@gmail.com

Fig. 1: Safe stop trajectory (center of the red corridor) from the
current position (non-solid red rectangle) to the goal (solid black
rectangle) while avoiding static (solid red rectangle) and dynamic
obstacles (blue rectangle).

stopping. However, assuming that the vehicle has lost its
main perceptional and computational ability, replanning the
safe stop trajectory while following one is in this case
not considered. Therefore, the safe stop planning should be
executed in parallel with the normal planner in a sufficient
operating frequency and whenever the system failure occurs,
the calculated safe stop trajectory before it happens, which
was verified as safe based on the previous perceived and
anticipated environment, will be pursued until the end. This
raises several new questions in addition to the normal trajec-
tory planning:
• How to generate trajectories that stops the vehicle

exactly on the chosen location with certain orientation
while avoiding static and dynamic obstacles, e.g. mov-
ing pedestrians, bicycles, as shown in Fig. 1?

• How to ensure safety given only single-shot perception
and prediction of the environment?

• How to meet the kinematic constraints (jerk, accelera-
tion and velocity limits, etc.) of the vehicle?

• How to fulfill the real-time requirements while meeting
all the aforementioned constraints?

By answering these questions, we could state the main
contributions of this paper:
• Our safe stop planning approach could generate tra-

jectory that guides the vehicle to a specific goal lo-
cation/pose with zero final velocity on arbitrary road
topology.

• Our approach is prediction algorithm agnostic, i.e.
we can incorporate the Responsibility-Sensitive Safety

(RSS) [1] along with the reachable set based prediction
[2] of other road users as the underlying prediction
concept to ensure provable safety.

• Our approach meets the real-time requirements and
avoids static and dynamic obstacles given their states
and predictions.

• The trajectory comes out from the safe stop planner is
comfort in the sense of minimizing jerk, and feasible
w.r.t. the vehicle kinematic constraints, which is con-
trollable by a highly close-to-real controller in CoInCar-
Simulation [3].

The remainder of the paper is organized as follows:
Section II discusses the related work. In Section III, some
preliminaries of safe stop planning are given. The planning
approach is then described in Section IV. In Section V,
we evaluate the approach in some simulation scenarios and
in CoInCar-Simulator. Finally, we conclude this paper and
discuss the future work in Section VI.

II. RELATED WORK

Some surveys report on the state-of-art of autonomous
vehicle in the field of motion planning are [4], [5]. Trajectory
planning is referred as the subfield of motion planning,
which generates reference trajectories for the ego vehicle.
In the field of robotics, graph search method is widely
used. The space is discretized into grid and graph searching
algorithms visit the different states in the grid and find
the path connecting the initial and end state. A∗-Algorithm,
which is an extension of Dijkstra’s graph search algorithm,
is used to search in high-dimensional space [6]. Ziegler
et.al. [7] implemented the A∗ with Voronoi cost function for
planning in unstructured environment and shows good and
fast result for practical path planning problem. However, the
planning is only performed in a static environment without
taking dynamic obstacles into account. In [8], they proposed
hybrid A∗, which captures the continuity state of the vehicle
in the discrete of A∗ and guarantees the kinematic feasibility
of the planned path. Sampling-based planners draw samples
either in deterministic [9] or probabilistic [10] manner.

As for sampling with predefined-pattern, Pivtoraiko et.al.
[11] proposed the concept of state lattice, which embeds
a discrete graph composed of kinematically-feasible motion
primitives. However, the trajectory candidate pool grows fast
due to refined sampling resolution and a long horizon. In
addition, randomized sampling like RRT∗ [12], BiRRT∗ with
hybrid curvature steer [13] combine graph construction and
graph searching process, which further guarantee asymptotic
optimality. Despite this, a slower convergence due to random
sampling occurs, which inevitably introduces higher compu-
tation time.

Optimization-based methods formulate motion planning as
a mathematical optimization problem. The planning results
are continuous, optimal and spatiotemporal. The state-of-
the-art work at this field is done by Mercedes-Benz [14],
which utilized Sequential Quadratic Programming (SQP) to
solve the nonlinear and non-convex problem. Chen et.al.
[15] proposes the Constrained Iterative Linear Quadratic

Safe Stop Planner

Final trajectory

Path
selection

Path set
generation

Path generation

Velocity
searching

ST graph
construction

 Speed profile
generation

Localization

Obstacles

Goal state

Road
boundaries

Fig. 2: Pipeline.

Regulator (CILQR) to handle the general form of constraints
for Iterative LQR. It has superiority on time efficiency, which
makes it a potential method that can be utilized in real-
time. However, there is no generally well-defined formulation
of the optimization problem in the context of automated
driving. For each specific scenario, it should be designed
appropriately.

In contrast to the normal trajectory planning problem,
safe stop trajectory planning receives limited interest of
researchers. One related work is the contingency planner
presented by Salvado et al. in [16]. The planner uses graph
search with the help of precomputed motion primitives and
is capable of planning reasonable and fast trajectory. But
suboptimality is difficult to guarantee and the algorithm does
not have a specific stop location. In the recent paper [17],
considering the high complexity and time consumption of
solving the non-convex optimization problem, the authors
sample some goal positions on the road and discrete the
vehicle’s initial state. Trajectory planning problem is formu-
lated as an optimal control problem (OCP). They generate
a large set of trajectories with different initial state and
goal positions by solving OCP offline. At runtime, the
subset of trajectories associated to the current vehicle state is
selected and the trajectory with the lowest cost w.r.t. comfort
and safety in the subset will be executed. They run their
algorithm only on straight road and it is almost impossible
to setup trajectory set to cover all initial states. Therefore,
this approach is not flexible enough.

This paper aims to provide a safe stop planning approach
that can lead the vehicle to a specific stop location smoothly
on arbitrary road topologies in real-time while fulfilling all
the internal and external constraints.

III. PRELIMINARIES

The vehicle has nonlinear dynamics

ẋ(t) = f(x(t),u(t)) (1)

where x ∈ Rm and u ∈ Rn are the state and input vector
of the system. To avoid collision with static and dynamic
obstacles, constraints on space at specific time t can be
expressed by

Γ(x(t)) ∈ Ωfree(t) (2)

Γ(x(t)) : Rm → R2 denotes the occupancy of the ego vehi-
cle at state x(t), which is derived from the m-dimensional
states of the vehicle (position, orientation, etc.). Ωfree(t)
denotes the free space that is not occupied by static and
dynamic obstacles at t .

As mentioned in Section I, the localization of the ego ve-
hicle is given as a prior, as well as the states and predictions
of all the static and dynamic obstacles. In order to ensure
safety in terms of RSS, set-based prediction of other traffic
participants could be adopted. However, this will further limit
the possibilities of finding a meaningful solution as more
free spaces will be occupied in the future. Our approach is
allowed to fail in case that all the space on the road is not
available for driving, due to too conservative prediction of
other road users. In this case, the back-up plan of full-braking
on the ego lane always exists. On the contrary, if other road
users are anticipated to keep their velocities and follow the
traffic rules, the solution pool will be opened up such that
obtaining more comfortable and feasible trajectories becomes
possible.

Furthermore, as the approach focuses on trajectory plan-
ning, choosing optimal target location is not included in
the task, which itself is a complex enough decision making
problem. The goal location is assumed as given by the
higher-level behavior planning module, which has access to
the High-Definition (HD) Map frameworks that provides traf-
fic rule information and the location of possible temporary
parking slots, e.g. Lanelet2 [18].

IV. SAFE STOP TRAJECTORY PLANNING

The safe stop trajectory planning is performed in two
steps: path generation and speed profile generation. Fig 2
illustrates the whole pipeline. As inputs, the goal position,
localization, all the information about the obstacles and the
drivable corridor of the road are given.

A. Path Generation

In the first step, we project the static obstacles, location
and orientation of the ego vehicle, goal location and ori-
entation and road boundaries from world coordinate to the
Frenét frame [19] w.r.t. the centerline of the road. The static
obstacles after projection will be represented as polygons
(the red polygon in Fig 3(b)).

As shown in Fig 3(a), we sample a series of waypoints
between the start state and the goal state (e.g. two columns
and four points in each column) in Frenét frame. By gener-
ating piecewise quintic polynomials between points of each
column, a set of paths connecting start and goal can be
obtained. As for the boundary conditions, the first derivatives
of the polynomials at the start and goal points are set to the
corresponding yaw angles, and the second derivatives (yaw
rate) are 0. After examining each path in the path set, the
ones that have no collision with the road boundaries and the
static obstacles will be firstly selected as path candidates.

In order to check collision, we assume that the ego vehicle
has negligible control error and small side slip angle while
driving along the path. Thus, we sample some points on

Center line of the road

0 S (m)

L
(m

)

Goal

Start

Road boundary

Path set
Way points

(a) Generated path set in Frenét frame.

Center line of the road

0 S (m)
L

(m
)

Goal

Start

Road boundary

Path set
Way points

(b) Collision check of the DC with static obstacle (red polygon).

0 10 20 30 40 50
x (m)

5

10

15
y
 (

m
)

Path set in Cartesian space

Road center line
Road boundaries

(c) Collision free splines (red curves) in Cartesian space.

Fig. 3: Path generation, collision check and coordinate transforma-
tion

each path equidistantly and offset them perpendicularly to
the left and right side to construct two new borders, which
envelope the occupancy area of the vehicle while driving
along the path. We call it driving corridor (DC) later on.
The offset distance is half of the vehicle’s width added by a
designed safe distance. In Fig 3(b), the DC is represent by the
green polygon. Thus, those paths whose DCs overlap with
the obstacles’ polygons in Frenét frame can be screened out
from the path candidates. Among those left paths, the one
that potentially provides more comfort behavior and is safer
is preferable.

We transform all the left path candidates back to Cartesian
space based on continuous curvature derivative reference line
[19], as shown in Fig 3(c) (red splines). The cost for each
path π is formulated as:

J(π) = w1

∫ S

0

κ(s)ds + w2

∫ S

0

v2(s)κ(s)ds + w3
1

d(π)
(3)

where S is the total length of the path. κ(s) represents the
curvature in Cartesian space. v(s) provides a rough velocity
profile along the path by assuming the vehicle decelerates
constantly and stops at S, in order to estimate the lateral

acceleration for each path. d represents the minimal distance
to the static obstacles. w1 to w3 are the weights that should
be manually fine-tuned via experiments. Apparently, the path
with the lowest cost can be derived using (3).

B. Velocity-Profile Generation

After having a path, the remaining problem is to know
where exactly on the path the vehicle should be at each time
step. This can be represented by a length-time-profile on the
ST-graph, which is simplified as s-profile later on.

We construct the DC of the ego vehicle along the selected
path in world coordinate using the aforementioned method.
In order to avoid dynamic obstacles while following the
path, when and where these obstacles will interfere with
our DC should be known. This is straightforward given their
predictions. By checking collision between the DC and the
predicted obstacles at each time step t, the corresponding
arc length S along the path where the collision happens
can be derived. On the ST-graph (first row of Fig 4(b)), the
dynamic obstacles that interfere with our DC are represented
as polygons (red polygons in Fig. 4(b)). The remaining area
is the collision free region where the vehicle can enter.

There are several constraints for the s-profile which con-
nects the origin and target arc length line: 1) initial and goal
position, i.e. the s-profile should start from origin and end
in the goal arc length. 2) initial and end velocity, i.e. the
first derivative of the s-profile should be the initial velocity
at the origin and 0 at goal. 3) velocity limits, i.e. the first
derivative of the s-profile should neither exceed the speed
limits nor lower than 0m/s. 4) acceleration limits, i.e. the
second derivative of the s-profile should not exceed the
dynamic limits of the vehicle. 5) collision free, i.e. the s-
profile should not intersect with the obstacles’ polygons.

We would like to get the final s-profile via solving a time-
invariant linear optimal control problem (OCP):

min

N−1∑
k=1

(xk − xr)TQ(xk − xr) + uTkRuk

s.t. xk+1 = Axk +Buk

xmin ≤ xk ≤ xmax

umin ≤ uk ≤ umax

x0 = x, xN = x

(4)

where k is the time step and N is the total number of time
steps. Q and R are weight matrices. x ∈ R3 is the state vector
with xk = [sk, vk, ak]T (distance, velocity and acceleration).
xr = [sk,r, 0, 0]T is reference state vector, i.e. the deviation
of sk from the sk,r on the searched s-profile is penalized.
u ∈ R is the scalar control input (jerk) with uk = jk. A is
the simplified longitudinal system matrix which represents a
constant acceleration model:

A =

 1.0 dt
d2
t

2
0.0 1.0 dt
0.0 0.0 1.0

 (5)

dt is the discrete time interval between steps. B is the control
vector with B = [

d3
t

3
d2
t

2 dt]
T. x, x are the initial and

end constraints for initial state x0 and end state xN . The
constraint for state vector xk is:skmin

vmin

akmin

 ≤ xk =

skvk
ak

 ≤
skmax

vmax

amax

 , 1 < k < N − 1 (6)

For vk, ak and control input jk, we can set constant
lower and upper bounds according to vehicle’ kinematic
limitations. However, there is no clear continuous bounds
for sk on ST-graph at each time k which makes the problem
highly non-convex, i.e. it is not straightforward to set skmin

and skmax
.

To overcome this problem, we extend the Hybrid A∗-
Algorithm to search a coarse s-profile on the ST-graph that is
not directly controllable for the vehicle but at least meets part
of the constraints. Afterwards, based on the first result, we
could construct convex bounds for sk. However, searching
only on length-time domain can hardly ensure final velocity
constraint. Therefore, we add an additional dimension -
velocity - to the ST graph and convert the searching space
from 2D (length-time) to 3D-space (length-velocity-time),
where the state vector s consists of (s, v, t). The algorithm
is shown in Algorithm 1.

Algorithm 1: Extended Hybrid A∗

Data: Initial continuous state sstart and sgoal
Result: Path from sstart to sgoal
Discretize sstart and sgoal to nstart and {ngoal}
OpenSet← nstart
CloseSet← nstart
Assign g(nstart) = 0, g(n) = +∞ for all graph nodes
Calculate h(nstart) for initial node nstart
while OpenSet 6= ∅ do
ncurrent = arg min

n∈OpenSet
f(n)

OpenSet.pop(ncurrent)
if ncurrent ∈ {ngoal} then

return traversedPath(ncurrent)
end if
for each
nchild ∈ nextNode(ncurrent, ControlInputs) do

if nchild ∈ CloseSet or nchild ∈ Obstacles or
outOfLimits(nchild) then

Continue
else if nchild ∈ OpenSet then
f(nchild).update()

else
OpenSet← nchild

end if
end for

end while
return NoPathFound

The ControlInputs are sampled acceleration values acc,
e.g. (−4,−3, . . . , 1, 2)m/s2. The cost function is f(n) =
γ1g(n) + γ2h(n). n is one discrete node with discrete
distance, velocity and time information (sn, vn, tn). g(n) is

(a) Nodes in closeSet.

0

10

20
30
40
50
60

s
(m

)

2

4

6

8

v
 (

m
/s

)
0 2 4 6 8 10 12

t (s)

2

1

0

1

2

a
cc

 (
m

/s
2
)

goal
s-profile

(b) s-profile, v-profile and acc-profile .

0 2 4 6 8 10 12
t (s)

0

10

20

30

40

50

S
 (

m
)

Lower boundary

Upper boundary

(c) Constraint for length sk .

Fig. 4: Results of the extended Hybrid A∗-Algorithm.

the cost from the initial node to the node n with: g(n) =
g(nparent) + γ3 ∗ |acc| + γ4 ∗ κ(sn)vn

2, where g(nparent)
is cost of the parent node. κ(sn) is the curvature at sn. This
cost penalizes longitudinal and lateral acceleration. γ1, γ2,
γ3 and γ4 are weights that need to be tuned. The heuristic
function h(n) = sngoal

− sn represents the distance from
the current node to the goal nodes. Note that the goal in
3D-space is rather a line (set of nodes {ngoal}) instead of a
single node. The explored nodes in CloseSet after solving
the ST-graph is shown in Fig. 4(a). The red nodes construct
the 3D path. The s-profile can be obtained by projecting the
red nodes to ST plane, as depicts in Fig. 4(b), where the
v-profile and acc-profile are also plotted.

Having a first s-profile helps conduct the lower and upper
bounds for sk, which was infeasible before. This is done by
extracting the largest possible drivable area around the s-
profile on ST-graph, as depicts in Fig. 4(c). In other words,
the extended A∗-Algorithm finds the appropriate gap for the
vehicle to enter.

As we have the linear constraints for all the state variables
and control variable in (4), the optimal control problem can
be converted to standard quadratic problem (QP) and can be
solved efficiently, for which the OSQP (Operator Splitting
Quadratic Program) solver [20] is utilized. Some of the
optimized s-profiles are shown in Fig. 5. Finally, the safe
stop trajectory can be resampled from the selected path and
the s-profile.

V. EVALUATION

A. Evaluation in three Scenarios in Simulation

To evaluate the present approach, three scenarios are
simulated. The resulting trajectories and their corresponding
velocity, acceleration and jerk profiles are shown in Fig. 5.
The three scenarios have different configurations in term of
the road structure and the number of obstacles. The initial
velocity and velocity limit of the ego vehicle is 8.3m/s and
10m/s for all scenarios respectively. Other traffic partici-
pants are predicted to drive with constant velocity along
one known path. But if we want to be safer, other more
conservative predictions mentioned in Section III can also
be adopted, which however limit the number of feasible safe

stop trajectories. Before implementing our approach in real
traffic, a good compromise should be found first.

In Scenario 1 (Fig. 5(a)), there is one slow moving
dynamic obstacle in front. The ego vehicle decelerates to not
collide into it and moves to the right side simultaneously. In
scenario 2 (Fig. 5(b)), there are two dynamic obstacles on
the adjacent lane. The safe stop trajectory tries to reach the
goal by passing through the gap between the two cars. The
scenario 3 (Fig. 5(c)) is a replication of scenario 1 on curved
road while having another static obstacle and the trajectory
shows similar behavior.

This algorithm is implemented in C++ and runs on a
laptop cpu (intel CORE i7 8th Gen). The time consumptions
for the three scenarios are listed in Table I. Overall, the
computation of the pipeline can be done within 30ms. Note
that in the second scenario, executing the extended Hybrid
A∗ is significantly more expensive. We can find clues from
Fig. 4(a), which illustrates all the nodes in CloseSet that are
visited by the algorithm. Firstly, the algorithm tries to find
solution by overtaking the first vehicle in the adjacent lane to
reach the goal as soon as possible. However, after realizing
that it’s impossible to stop at goal while ensuring collision-
freeness, it traces back to wait until the adjacent vehicle
passes through. This actually imitates one decision making
process on determining which gap suites the safe stopping
better, which certainly raises the need to explore more nodes
in 3D-space and results in huge amount of useless visits.

B. Evaluation in CoInCar-Simulation

We also evaluated our algorithm in CoInCar-Simulation in
order to prove that our trajectory is able to be followed by
a close-to-real controller.

In Fig. 6, the vehicle first follows the normal trajectory
and the safe stop planning is executed simultaneously (Fig.
6(a)). The goal location is picked on the right side of the road
with certain safety distance to the border. The arc distance
of the goal to the current location is selected depending on
the current velocity. Note that the trajectory makes a large
turning before entering the roundabout, which reduces the
lateral acceleration. After manually triggering the safe stop
mode, the ego vehicle performs harsh brake to avoid collision

0

10

20

30

40

50

60

0

2

4

6

8

0 2 4 6 8 10 12
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 2 4 6 8 10 12

2

1

0

1

2

3

s
(m

)

v
 (

m
/s

)

a
cc

 (
m

/s
2
)

je
rk

 (
m

/s
3
)

t (s) t (s)

(a) Straight road with one dynamic obstacle

0

10

20

30

40

50

60

0

2

4

6

8

0 2 4 6 8 10 12
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 2 4 6 8 10 12

2

1

0

1

2

3

s
(m

)

v
 (

m
/s

)

a
cc

 (
m

/s
2
)

je
rk

 (
m

/s
3
)

t (s) t (s)

(b) Straight road with two dynamic obstacles

0

10

20

30

40

50

60

0

2

4

6

8

0 4 8
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 4 8

2

1

0

1

2

3

s
(m

)

v
 (

m
/s

)

a
cc

 (
m

/s
2
)

je
rk

 (
m

/s
3
)

t (s) t (s)

(c) Curved road with one dynamic obstacle

Fig. 5: Simulation results in different scenarios. Dynamic obstacles are shown in blue. Ego vehicle are represented by red rectangles with
one red triangle inside. Black solid rectangles are goal states.

TABLE I: Time consumption in different scenarios

Time (ms) Path generation & selection Extended hybrid A∗ s-profile optimization Other processing Total time
Straight one obstacle 2.2 6.2 1.2 1.3 10.9
Straight two obstacle 3.2 15.1 1.4 1.5 21.2
Curvy one obstacle 2.5 5.8 1.3 1.6 11.2

(a) (b) (c)

Fig. 6: Simulation in CoInCar-Simulator. (a) The circles represent the normal trajectory, while the pink line is the safe stop trajectory.
Both circles and lines in (b) and (c) represent the safe stop trajectory as there is no normal trajectory anymore. The red bar and green
bar in the right bottom window represent the braking and throttle strength.

with the cyclist (Fig. 6(b)). After that, it accelerates slightly
to reach the goal faster (Fig. 6(c)) and then comes to a full
stop. The controller is able to stop the vehicle within the
limited braking and steering potential without damaging the
overall comfort too much, even though the vehicle encounters
an abrupt emergency situation and needs a harsh braking.

VI. CONCLUSION AND FUTURE WORK

In this paper, a path-velocity decoupled method for real-
time safe stop trajectory planning is presented. Piecewise
quintic splines is utilized to generate smooth path candidates
in Frenét frame. By extending the Hybrid A∗-Algorithm
to 3D-space, a coarse s-profile that meets the required
constraints can be generated on ST-graph. After conducting
the boundaries for the s-profile, the OCP can be transformed
to standard convex QP that can be solved efficiently.

Our approach limits the goal location and orientation
explicitly, considers static and dynamic obstacles and is still
able to provide feasible trajectory. It is potentially not only

suitable for safe stop planning but also for other goal-oriented
trajectory planning which might has non-zero constraint for
final velocity.

Furthermore, our approach has large potential for main-
taining stability in terms of computational time even with
more dynamic obstacles. As explained in Section V, the
extended Hybrid A∗-Algorithm did part of the job for de-
cision making while trying to find the best time gap to pass.
We can parallelize them by introducing several heuristic cost
functions which simulates distinct driving styles (aggressive,
defensive) to explore different gaps. In case of several
feasible gaps, the fastest or the most comfortable one will be
chosen depending on the preference of the driver. Another
parallelization that can be done for finding better trajectories
is applying the extended Hybrid A∗-Algorithm on more
paths. By comparing the resulting trajectory of each path, we
could find a solution that is closer to the globally optimal
solution.

REFERENCES

[1] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” CoRR, vol. abs/1708.06374,
2017. [Online]. Available: http://arxiv.org/abs/1708.06374

[2] M. Althoff and S. Magdici, “Set-based prediction of traffic participants
on arbitrary road networks,” IEEE Transactions on Intelligent Vehicles,
vol. 1, no. 2, pp. 187–202, June 2016.

[3] M. Naumann, F. Poggenhans, M. Lauer, and C. Stiller, “Coincar-sim:
An open-source simulation framework for cooperatively interacting
automobiles,” in 2018 IEEE Intelligent Vehicles Symposium (IV), June
2018, pp. 1–6.

[4] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 17, pp. 1135–1145,
2016.

[5] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, March 2016.

[6] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[7] J. Ziegler, M. Werling, and J. Schroder, “Navigating car-like robots in
unstructured environments using an obstacle sensitive cost function,”
in 2008 IEEE Intelligent Vehicles Symposium. IEEE, 2008, pp. 787–
791.

[8] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor, vol.
1001, no. 48105, pp. 18–80, 2008.

[9] U. Schwesinger, P. Versari, A. Broggi, and R. Siegwart, “Vision-
only fully automated driving in dynamic mixed-traffic scenarios,” it-
Information Technology, vol. 57, no. 4, pp. 231–242, 2015.

[10] S. Klemm, J. Oberländer, A. Hermann, A. Roennau, T. Schamm, J. M.
Zollner, and R. Dillmann, “Rrt-connect: Faster, asymptotically optimal
motion planning,” in 2015 IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE, 2015, pp. 1670–1677.

[11] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[12] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, no. 2, 2010.

[13] H. Banzhaf, L. Palmieri, D. Nienhüser, T. Schamm, S. Knoop, and
J. M. Zöllner, “Hybrid curvature steer: A novel extend function for
sampling-based nonholonomic motion planning in tight environments,”
in 2017 IEEE 20th International Conference on Intelligent Transporta-
tion Systems (ITSC). IEEE, 2017, pp. 1–8.

[14] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
bertha—a local, continuous method,” in 2014 IEEE intelligent vehicles
symposium proceedings. IEEE, 2014, pp. 450–457.

[15] J. Chen, W. Zhan, and M. Tomizuka, “Constrained iterative lqr
for on-road autonomous driving motion planning,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2017, pp. 1–7.

[16] J. Salvado, L. M. Custódio, and D. Hess, “Contingency planning for
automated vehicles,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 2853–2858.

[17] L. Svensson, L. Masson, N. Mohan, E. Ward, A. P. Brenden, L. Feng,
and M. Törngren, “Safe stop trajectory planning for highly automated
vehicles: an optimal control problem formulation,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 517–522.

[18] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann,
F. Kuhnt, and M. Mayr, “Lanelet2: A high-definition map framework
for the future of automated driving,” 11 2018, pp. 1672–1679.

[19] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” in 2010
IEEE International Conference on Robotics and Automation. IEEE,
2010, pp. 987–993.

[20] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” ArXiv e-prints,
Nov. 2017.

