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Abstract— Safety is one of the most significant challenges
for autonomous driving. However, autonomous vehicles need
also to be as efficient as possible while ensuring safety. In this
paper we present an approach that helps the vehicle to drive
efficiently in scenarios with occlusions, while being safe and
comfortable. We quantify the visibility risk (VR) representing
the collision risk with possible hidden obstacles in occlusions
and anticipate the predictive VR by forecasting the scene in the
short-term. The predictive VR can be integrated into the cost
functional of arbitrary cost-based planning approach. By doing
this, the vehicle is motivated to maintain a better view on the
Region of Interest (ROI) on the map, which further opens up the
scope of available behaviours and thus pursuing more efficient
behaviour becomes possible. The proposed method is evaluated
with a proof-of-concept planner decomposed into lateral (e.g.
paths) and longitudinal directions (e.g. accelerations) in one
overtaking scenario on a curved two-way street with dynamic
occlusions and one intersection scenario with static occlusion,
which shows promising results in vehicle driving efficiency.

I. INTRODUCTION

Autonomous driving has been the focus of research for a
long time. In the last years, large improvements have been
made in perception and scene understanding. However, due
to the limitation of sensor capability and the complex inter-
action between vehicle and environment, vehicle’s sensing
field might be limited either by the maximum sensing range
or by surrounding obstacles. As the existence and states
of the objects in the occluded area are unclear, it is more
difficult for autonomous systems to balance safety, comfort
and efficiency of the vehicle considering all possible events.

Safety has always the highest priority for fully automated
vehicles. For this reason, the first challenge is to have rea-
sonable prediction of surrounding traffic participants. Some
previous work, such as [1] and [2] try to solve it in a
probabilistic manner, but safety is difficult to guarantee.
One promising approach is to compute reachable sets of the
obstacles [3]. Safety is guaranteed as long as the trajectory
of the ego vehicle does not intersect with those reachable
sets. To tackle the possible hidden obstacles in occlusions,
[4] over-approximates all possible states in the occluded
areas. A combination of [3] and [4] could provide safety but
a conservative behaviour would limit comfort and vehicle
driving efficiency to some extent.

*This work is accomplished within the project “UNICARagil” (FKZ
16EMO0287) and the financial support from the Federal Ministry of
Education and Research of Germany (BMBF) is acknowledged.

1Lingguang Wang, Carlos Fernandez Lopez and Christoph Stiller are
with the Institute of Measurement and Control Systems, Karlsruhe Insti-
tute of Technology (KIT), Karlsruhe, Germany lingguang.wang,
carlos.fernandez, stiller@kit.edu

Fig. 1: Ego vehicle (blue box) intends to overtake the slow-moving
car ahead (black box) on a two-way road with oncoming vehicle
(gray box), which is occluded by the black vehicle. Thus, the
overtaking is dangerous because of the reachable set (red polygon)
of possible hidden obstacles.

In the scenario depicted in Fig. 1, it is dangerous for the
ego vehicle to overtake the slow-moving vehicle ahead due
to possible obstacles that could emerge from occlusions. In
this case, human drivers will first move closer to the dashed
centerline to obtain more information about the oncoming
lane. Humans will only overtake after confirm that there
is enough space on the opposite lane. Before that, they
have already considered the possible oncoming vehicles in
the occlusion implicitly. Thus, they act cautiously to try to
improve their visibility beforehand.

From this example we speculate that in some scenarios
with occlusions, an active increase of visibility can produce
more efficient behaviours, which were verified as unsafe
before. For obtaining this human-like behaviour, we propose
the predictive VR and integrate it into a proof-of-concept
behaviour planner. By doing so, the vehicle is able to select
an action that brings more potential future visibility on the
ROI, does not collide with visible and invisible obstacles and
is optimal in the sense of comfort and efficiency.

The rest of the paper is organized as follows: Section
II discusses the related work. In Section III we introduce
some preliminaries. The predictive VR is then described in
Section IV. In Section V, we evaluate the approach in some
scenarios in simulation and the results are presented. Finally,
we conclude this paper and discuss the future work in Section
VI.

II. RELATED WORK

The goal of this paper is to provide more efficient de-
cisions in the scenarios with occlusions while maintaining



safety and comfort. However, previous work was mainly
focus either only on safety, or only on efficiency without
safety proof.

As already introduced, [4] assumes worst-case scenarios
for all possible obstacles inside the invisible area to provide
provable safety but less comfort plan, while others ([5] and
[6]) consider uncertainties to solve the comfort issue but give
less safety guarantees. [7] does probabilistic risk assessment
of unobservable regions and utilizes an optimization-based
motion planner to reduce the collision rate while still main-
taining certain comfort level, but safety is not guaranteed.
[8] puts probabilistic consideration into prediction of objects
being at the edge of the field of view, thus to get safe but
not overcautious reaction compared to [4]. However, it does
not enable the vehicle to actively reduce the risk caused
by visibility loss and thus miss the opportunity to improve
efficiency.

Recently [9] takes future field of view (FoV) into account
by formulating the planning problem as Partially Observable
Markov Decision Process (POMDP). This is a promising
approach regarding future FoV maximization. However it
is not able to provide any guarantee on safety and solving
POMDP is also computationally intractable. [10] models
the visibility maximization as a non-linear constrained opti-
mization problem, and shows the effectiveness on overtaking
static obstacles, yet it lacks evaluation on overtaking moving
obstacles in unstructured environment. Another problem is
that maximizing view angle alone won’t work for generic
road topologies where only certain parts of the road are
interesting for the current behaviour planning.

Therefore, our contributions compared with previous work
are the following:
• We quantify predictive VR associated with the predicted

FoV and the ROI (explained in Section IV-A), which
is planning algorithm agnostic and enables us to adopt
more efficient and comfortable behaviours.

• Our approach can ensure provable Responsibility-
Sensitive Safety (RSS) [11] while performing more
efficient behaviours, such as safe overtaking instead
of following slow-moving obstacles and traversing an
unsignalized intersection with occlusions faster.

• Our approach works with arbitrary road topologies.

III. PRELIMINARIES

In this section, we first explain the proof-of-concept tra-
jectory planner in III-A that we used for evaluation. Then
in III-B we generate predictions for visible obstacles and
possible hidden obstacles in occlusions. These predictions
will be used for collision check in the subsequent section.

A. Trajectory Planner

We employ path-velocity decomposition for the planner.
In lateral direction, we generate several path candidates
T = {τ1, τ2, . . . , τN} with different lateral offsets in Frenét
frame [12] using cubic polynomial [13], which allows easier
handling of the road curvature, as Fig. 2 shows.

Fig. 2: Generated local path candidates (red) with respect to the
centerline (blue).

On each path, the longitudinal action will be divided into
two parts, e.g. following one acceleration for the first 1.6 sec-
onds (common reaction time of an experienced autonomous
driving system [14]) and applying full brake (−4m/s2) for
the remaining planning horizon. The acceleration is selected
from the candidate accelerations A = {a1, a2, . . . , aM}. We
discretize the planning horizon into K time steps with time
interval ∆t.

At each planning step, one path τj and its corresponding
optimal acceleration ai will be chosen as the action (ai, τj),
which guides the ego vehicle until the next planning step. The
action space Sa is the set of all possible candidate actions:

Sa = {Ai,j}, with Ai,j = (ai, τj), for ai ∈ A, τj ∈ T
(1)

B. Reachable Set Prediction

As already explained in previous sections, a reachability-
set based prediction will be utilized for the obstacles to
ensure provable active safety. As long as other traffic partic-
ipants follow traffic rules and the ego vehicle trajectory does
not fall into the reachable sets of others, the active safety
is guaranteed despite negligible control errors. We model
road geometry and topology based on lanelet2 map [15].
Obstacle reachable sets with known initial states at time step
n can be represented by occupancy polygons. To perform a
lane-following reachable set based prediction of a vehicle,
assumptions such as the maximum velocity vmax (e.g. 110%
of the speed limit), acceleration amax, deceleration amin and
prohibiting driving backwards will be made at first. Then
longitudinal starting and end boundaries smin and smax of
the occupancy polygon on the Frenét frame with respect to
the corresponding centerline can be computed as in (2) and
(3). Fig. 3(a) shows a qualitative example.

smax(n) =

{
v0t+ 1

2amax(t)2 (v0 + tamax ≤ vmax)

vmaxt− (vmax−v0)2

2amax
(v0 + tamax > vmax)

(2)

smin(n) =

{
1
2 (2v0 + amint)t (v0 + tamin ≥ 0)

− v2
0

2amin
(v0 + tamin < 0)

,

t = n∆t, n ∈ {0, . . . ,K}
(3)



s m
in

s m
a
x

(a)

s m
a
x

(b)

Fig. 3: Occupancy polygons of the visible obstacles and the critical
sensing edge under the current FoV (translucent blue polygon).
(a) Reachable occupancy polygon (red polygon) of the visible
obstacle (black box) on the oncoming lane. (b) Over-approximated
occupancy polygon (left red polygon) of the critical sensing edge
(green segment).

As shown in Fig. 3, FoV is modelled as a polygon. The
polygon may intersect with the lanelets, and result in several
critical sensing edges (CSE), from which obstacles with
arbitrary initial states (e.g. velocity, position and orientation)
could appear. The reachable sets for these possible hidden
obstacles can be represented as occupancy polygons as well.
However, their initial states should be over-approximated [4].
In this case, smin should be 0 at all time steps, because there
could be obstacles appearing just at the CSE at any time.
We select CSE centre as the starting point of the occupancy
polygon. Maximum velocity vmax is used to compute the
end boundary of the occupancy polygon at each time step.
Thus, the smax is simply vmaxn∆t, as Fig. 3(b) illustrates.

The lateral bounds of the occupancy polygon will be left
and right lane boundaries, which differs from the original
concept in [3], with the consideration that lane change
behaviours of the obstacles in the evaluated scenarios are
either illegal or unnecessary.

IV. RISK-MINIMIZING BEHAVIOUR PLANNING

The behaviour planning output is the optimal action Ai,j

from the action space Sa in the sense of minimum cost.
To encourage the vehicle to select the path which could
bring more future visibility on the ROI, we introduce the
predictive VR, which will be explained in Section IV-A,
inspired by [16]. Furthermore, by adding the predictive VR
into the cost functional that already balances comfort and
utility and weighting them properly, the desired behaviour of
active exploration on invisible areas can be obtained (Section
IV-B).

A. Predictive Visibility Risk

It is assumed that all the static and dynamic obstacles are
detected and tracked by the perception module and thus their
states are known as prior. Based on this, several definitions
are firstly made before introducing the concept.

Definition 1 (Region of Interest, ROI). The area, on which
the traffic participants have priority or right of way under

ROI
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Fig. 4: ROI (red polygons) and FoV (blue polygons). (a) Ego vehicle
(blue vehicle) intends to go straight at an unsignalized intersection.
(b) Ego vehicle tends to turn left. (c) Overtaking on a two-way
street.

the current location, intention and sensing capability of the
ego vehicle.

Ensuring absolute safety on the road is impossible [11].
However, as long as we don’t take priority from the traffic
participants on the ROI and don’t crush into them, RSS
is guaranteed. The ROI is dynamic as the ego vehicle
is changing its location. It can be theoretically unlimited,
e.g. due to an extremely long priority lane, which is not
possible for calculation. Thus, we restrict it by the maximum
sensing range of the ego vehicle. It also depends on the
current driving intention. For example, when approaching an
unsignalized junction, the ego vehicle can have two possible
intentions: 1) going straight, the ROI is only the road coming
from the right side where the vehicles have the right of
way (Fig. 4(a)). 2) turning left, the ROI should additionally
include the area on the oncoming lane (Fig. 4(b)). In an
overtaking scenario, e.g. in Fig. 3, the ROI is the area in
front of the ego vehicle on both lanes (Fig. 4(c)). Thus, ROI
could also be plural. Given the global route and the local
intended behaviour of the ego vehicle, the ROIs can be easily
extracted with the HD Map frameworks, e.g. lanelet2 [15].

Definition 2 (Occlusion Critical Obstacles, OCO). All the
static and dynamic obstacles that block the visibility of the
ego vehicle on the ROIs at least partially.

Definition 3 (Single-shot state). The state (global position,
velocity, dimension) of the ego vehicle Sego and the states
of all the OCO Soco.

1) Single-Shot Visibility Risk: We first define the VR for
one single-shot state. Imaging that the ego vehicle faces some
loss of FoV on the ROIs before entering one intersection or
performing overtaking, it would feel a certain level of risk
depending on how much the collision probability with the
possible hidden obstacles on the invisible ROIs is and how
critical the collision might be.

In order to first approximate the collision probability, we
sample Np particles on the ROIs, each of them simulates
one obstacle pursuing the lane with certain velocity. Their
velocities and x-coordinates in Frenét frame are sampled
from uniform distributions v ∼ U([vmin, vmax]) and x ∼
U([xmin + 0.5l, xmax − 0.5l]), where vmin and vmax de-
note the minimum and maximum velocity of the particles.
xmin and xmax are the starting and ending position of the
centerline segment cut by the ROI. l is the length of the
obstacle. To model the lateral displacement, an offset y is
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Fig. 5: Generated valid (blue) and invalid particles (gray).

sampled from y ∼ U([−d(x) + 0.5w, d(x)− 0.5w]), where
d(x) is the lane width at the x-coordinate x in Frenét frame,
and w is the obstacle width. There are two things to note:
1) Only the particles in the invisible ROIs will be treated as
valid particles, and the other particles are invalid particles
that will be abandoned directly. 2) The invisible ROIs should
not contain particle if the length of its centerline segment is
shorter as l. Fig. 5 depicts one example where the ego vehicle
intends to go straight at one unsignalized intersection.

For each ROI, one collision zone is specified. For example,
the number of collision zones associated with the ROIs
for the scenario in Fig. 4(b) will be two. Assuming that
the ego vehicle moves with the current velocity following
the intended path, and the sampled valid particles follow
the lane with the initialized velocity while maintaining the
original lateral offsets, the particles will be critical if they
will collide with ego vehicle on the corresponding collision
zone. We call those critical particles (CP). Obviously, the
collision probability Pi will be 1 if i-th particle belongs to
CP, otherwise 0.

To estimate the severity of the collision with i-th particle
Si, we utilize square of relative velocity vir

2 and normalize
it to 1 with the square of maximum possible relative velocity
v2
r,max. Thus, Si = (

vi
r

vr,max
)2.

Hence, as a function of Sego given the states of the OCO
Soco, the single-shot VR Rs can be defined as the average
collision risk over all the Np sampled particles (including
valid and invalid particles), as in (4)

Rs,Soco(Sego) =
1

Np

Np∑
i=1

PiSi (4)

We simulate the scenario in Fig. 5 with vehicle passing
through the intersection at different velocity, and observe
how the single-shot VR changes with the travelled distance
and velocity, jet with no real obstacles in the occlusion. As
depicted in Fig. 6, the single-shot VR has the following
properties: 1) driving slowly, it is low overall due to lower
severity, apart from when the vehicle is close to the OCO,
where collisions with more particles occur. 2) driving fast,
it will be high overall, except when the vehicle is close to
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Fig. 6: Single-shot VR changes with travelled distance while
passing the intersection with different velocity in scenario of Fig.
5.

the OCO, due to the fact that the vehicle is able to pass
the collision zone faster than most of the particles as it can
already see far enough. There are two other properties that
can be easily asserted: the single-shot VR will be low 3) if
the distance between the invisible ROI to the collision zone
is large such that all the valid articles are far away from the
collision zone, or 4) if the area of the invisible ROI is small
compared to the area of the ROI because a lot of particles
are treated as invalid particles and will not be counted as CP.

All these properties match how human driver perceives
VR. In order to minimize it, the vehicle should either adjust
the speed depending on how close it is to OCO, or enlarge
the visible area on ROIs. However, we could not simply infer
from single-shot VR, where to move to achieve the latter.

2) Predictive Visibility Risk: To incentivize vehicles to
control speed and select paths in the direction of reducing
future VR, we also estimate the predictive VR associated
with the chosen action.

There are basically three factors that influence how the
visibility on the ROIs changes in the short future: 1) which
path it follows. 2) how the OCO move. 3) how fast the ego
vehicle drives. The first and third conditions depend on which
action (a, τ) the ego vehicle selects. The second condition
can only be coarsely estimated due to the obscurity of OCO’s
future movement. However, we could simply adopt constant
velocity for the OCO, since what we want is only a rough
”guess” on which path could provide a better future visibility
and it has nothing to do with safety. For instance, one static
OCO (with velocity 0) should be expected to continue being
static, because we don’t expect that it suddenly actively
moves away to give us a better view. The horizon chosen
for estimating the visibility gain or loss in the short future
should not be as long as the whole planning horizon, because
a long-term estimation is neither accurate nor necessary.

We formulate the predictive VR as the weighted sum of the
single-shot VR for X planning steps, which is a function of
the chosen action (a, τ), given the constant velocity motion
estimation of the OCO Soco(t).

R(a, τ) =

X∑
x=0

γxRs,Soco(x∆t)(Sego(x∆t, a, τ)) (5)

Note that there are factors that may lead to inaccurate pre-
dictive VR, e.g. hidden obstacles that may cause unexpected



(a) Top view for time 0s, 2s and 6s (b) Top view for time 0s, 2s and 4s (c) Top view for time 0s, 2s and 8s

Fig. 7: Overtaking scenarios on a two-way street with oncoming traffic. The reachable sets of obstacles in ego lane are not rendered.
Different prediction horizon for overtaking yields longer length of the occupancy polygon in the middle figures as the left and right one.
(a) Ego vehicle overtakes the slow-moving obstacle safely. (b) Ego vehicle tries to overtake but abort the manoeuvrer due to too close
oncoming obstacle. (c) Ego vehicle abort the overtaking due to invisible second obstacle on the ego lane.

future occlusion and imperfection of the motion estimation of
OCO. To facilitate this, γ ∈ [0, 1] is introduced as a discount
factor which adjusts our trust on the estimated future FoV.
The bigger the γ, the more we believe in our estimation
about the short future.

B. Cost Formulation
In order to get a comfortable, safe and efficient behaviour,

we need to iterate through all possible combinations of action
(a, τ) with a ∈ A and τ ∈ T and select the action which
balances all the objectives appear in the cost functional.

For a comfortable behaviour, we minimize the square of
the acceleration. To prevent big acceleration jump between
two time steps that a real car can’t follow, we penalize
acceleration changes a − al as well, where al denotes the
selected acceleration at last planning step.

Regarding safety, the actions and their corresponding
trajectories, which intersect with the predicted occupancy
polygons, will be discarded. This will reduce the available
action space Sa to safe action space Sa,safe, which ensures
provable safety under the aforementioned assumptions. If all
the candidate actions are not safe, the trajectory which was
computed at the last planning step and was verified as safe,
will be served as fallback and followed till the end.

The desired velocity vdesired is introduced for maximizing
utility. The ego vehicle try to reach vdesired by adapting its
acceleration according to the deviation of the current velocity
vcurrent from vdesired, i.e. the expected acceleration will be
proportional to the deviation of vcurrent from vdesired.

For more realistic behaviour, we penalize the deviation of
the path τ from the centerline τc and from the last selected
path τl as in (6)

DC(τ) = (d(τ))2, DL(τ) = (d(τ)− d(τl))
2 (6)

where DC(τ) and DL(τ) are the cost terms. d(τ) denotes
the lateral offset of the path τ from centerline τc. Finally, the
cost functional can be formulated as in (7)

J(Ai,j) =w1R(Ai,j) + w2a
2
i + w3(ai − al)2+

w4(1− k ai
amax

− vcurrent
vdesired

)2+

w5DC(τi) + w6DL(τi), Ai,j ∈ Sa,safe

(7)

where w1, w2, w3, w4, w5, w6 and k are parameters that
are manually fine-tuned. Note that we only use amax as
the reference acceleration for accelerating and decelerating
because we choose amin = −amax in Section V. The
optimal action A∗ can be determined by

A∗ = arg min
Ai,j∈Sa,safe

J(Ai,j) = arg min
Ai,j∈Sa,safe

J((ai, τj)) (8)

V. RESULTS
We evaluated our method on two typical streets in simu-

lation where occlusion plays a significant role. One is over-
taking on a curved two-way street with dynamic occlusion
related obstacles, see Fig. 7.

The other one is an intersection under occlusion, which is
mapped from a real intersection in the city of Karlsruhe, see
Fig. 8. Our method shows promising results in maintaining
desired velocity by actively exploring the invisible ROI while
keeping safe and comfort.

A perfect perception of obstacles is assumed from a
360-degree range sensor mounted on the top centre of the
vehicle. For overtaking on the test street with a speed limit
of 50km/h, 200m sensing range is assumed, while for
the intersection with a speed limit of 30km/h, 50m is
enough, thus vmax = vdesired = 1.1vlimit are 15m/s and
10m/s for these two scenarios respectively. A is chosen to
be {−4m/s2,−3.9m/s2, . . . , 4m/s2}. Other parameters are
listed in Table I.

TABLE I: Chosen parameters for the evaluation.

vmin

(m/s)
l

(m)
w

(m)
vr,max

(m/s)
Np X

∆t
(s)

K γ

0.0 5.0 2.5 30.0 50000 10 0.1 50 0.8

A. Overtaking on a Two-way Street with Dynamic OCO
We select 3 lateral offsets for generating the path candi-

dates T = {τovertake, τapproach, τc}. τovertake is the over-
taking path which leads the ego vehicle to the opposite lane.
τapproach is the path that leads the ego vehicle to the left
border of the ego lane and thus to approach the centre of the
street to have a better view on the opposite lane.



In the test scenarios, the obstacles in the ego lane are
moving with 6m/s. Given the fact that in reality, those
slow-moving obstacles (e.g. agricultural machine) don’t have
much potential for accelerating and decelerating, their amax

and amin are set to 1m/s2 and −1m/s2 for prediction.
In order to guarantee a safe overtake and a safe follow

driving, different prediction horizons are employed for dif-
ferent path candidates as pointed out in [17]. For τovertake,
the time that needed to finish the overtaking is used and
thus to avoid collision with oncoming obstacle. This can
be estimated by assuming that the ego vehicle accelerates
with a medium acceleration 2m/s2, and the furthest obstacle
that we can see and want to overtake accelerates with its
amax = 1m/s2. For τapproach and τc, we utilize the time-
to-stop as the prediction horizon, which ensures that the ego
vehicle can come to a full stop within the prediction horizon.

We set three distinct overtaking scenarios. The first one is
overtaking one slow-moving obstacle in the ego lane, with an
oncoming obstacle (velocity 6m/s) far away, corresponding
to Fig. 7(a). The ego vehicle tries first to follow τapproach to
increase the visibility. After having far enough FoV on the
opposite lane, it switches to τovertake and finally accomplish
the overtaking successfully. The second scenario shown in
Fig. 7(b) is similar to the first one except that the oncoming
obstacle is closer. After a short attempt to overtake, it is
forced to abort its overtaking manoeuvrer and switches back
to τapproach. The third scenario depicted in Fig. 7(c) is also
similar to Fig. 7(a), but has two obstacles in the ego lane.
After discovering the second obstacle which wasn’t visible
before, the ego vehicle gives up overtaking because the time-
to-overtake increases a lot.

Without integrating predictive VR, the ego vehicle will
not be motivated to choose τapproach because it has higher
cost due to deviation from the centerline. Meanwhile, it can
never start overtaking because the opposite lane is always
occupied by the reachable sets of the critical sensing edge.

B. Crossing Intersection with Static OCO
In this scenario, we select five offsets for T inside the

ego lane and use time-to-stop as the prediction horizon. One
static obstacle (e.g. a parked car) occludes the right arm of
the intersection. We compared our approach with the baseline
approach [4], which didn’t take predictive VR into account.

As can be seen in Fig. 8(b), using our approach, the
vehicle tends to move to the left side and brake earlier when
approaching the intersection, which imitates how human
drivers maximize the FoV and reduce the VR. Thanks to this
behaviour, the ego vehicle shows following advantages over
the baseline (Fig. 8(a)), while still ensuring provable safety:
it 1) approaches the intersection with a smaller deceleration
and is thus more comfortable, 2) maintains a higher average
speed and thus more efficient, 3) is less risky with respect
to potential collision with possible hidden obstacles, as Fig.
8(c) depicts.

VI. CONCLUSIONS AND FUTURE WORK
The paper introduces the predictive VR in order to provide

not overly conservative driving behaviour but guarantee

(a) Top view for time 0.5s, 4.4s and 5.6s

(b) Top view for time 0.3s, 4s and 5.4s

(c)

Fig. 8: Crossing an intersection with static OCO. (a) Baseline
approach. (b) Taking the predictive VR into account and imposing
it into the cost functional. (c) Comparison of their predictive VR
R(a, τ).

safety. This is done by incorporating active exploration in
a sense that the ego vehicle would make moves to gain
visibility. The proposed method has proven its effectiveness
in performing overtaking on a curved two-way street and
passing unsignalized intersection with occlusions more effi-
ciently as the baseline model, while being safe and comfort.

However, our approach is not only limited to autonomous
vehicles. Building a risk monitoring system on top of that for
driving assistance is also sufficient. It can further be applied
for navigating robots more efficiently in highly unstructured
environments under occlusions, e.g. by switching the un-
derlying trajectory planner to different algorithms, such as
RRT in [18] or graph search-based path planning [19], and
sampling particles to represent all possible hidden obstacles
(pedestrians, bicycles, etc.).

Another potential improvement on efficiency will be
tracking the occlusion with particles, which could reduce
the initial state intervals of hidden obstacles significantly.
However, dealing with memory of previous scenes needs
delicate design of the tracker, and the safety is again hard
to guarantee since the sampled particles can hardly cover all
the possibilities in occlusion.



REFERENCES

[1] J. Wiest, M. Hffken, U. Kreel, and K. Dietmayer, “Probabilistic
trajectory prediction with gaussian mixture models,” in 2012 IEEE
Intelligent Vehicles Symposium, June 2012, pp. 141–146.

[2] B. Kim, C. M. Kang, S. Lee, H. Chae, J. Kim, C. C. Chung, and J. W.
Choi, “Probabilistic vehicle trajectory prediction over occupancy grid
map via recurrent neural network,” CoRR, vol. abs/1704.07049, 2017.
[Online]. Available: http://arxiv.org/abs/1704.07049

[3] M. Althoff and S. Magdici, “Set-based prediction of traffic participants
on arbitrary road networks,” IEEE Transactions on Intelligent Vehicles,
vol. 1, no. 2, pp. 187–202, June 2016.

[4] P. F. Orzechowski, A. Meyer, and M. Lauer, “Tackling
occlusions & limited sensor range with set-based safety
verification,” CoRR, vol. abs/1807.01262, 2018. [Online]. Available:
http://arxiv.org/abs/1807.01262

[5] S. Hoermann, F. Kunz, D. Nuss, S. Renter, and K. Dietmayer, “En-
tering crossroads with blind corners. a safe strategy for autonomous
vehicles,” in 2017 IEEE Intelligent Vehicles Symposium (IV), June
2017, pp. 727–732.

[6] W. Zhan, C. Liu, C. Chan, and M. Tomizuka, “A non-conservatively
defensive strategy for urban autonomous driving,” in 2016 IEEE
19th International Conference on Intelligent Transportation Systems
(ITSC), Nov 2016, pp. 459–464.

[7] M. Yu, R. Vasudevan, and M. Johnson-Roberson, “Occlusion-
aware risk assessment for autonomous driving in urban
environments,” CoRR, vol. abs/1809.04629, 2018. [Online]. Available:
http://arxiv.org/abs/1809.04629

[8] M. Naumann, H. Königshof, M. Lauer, and C. Stiller, “Safe but not
overcautious motion planning under occlusions and limited sensor
range,” 2019.

[9] C. Hubmann, N. Quetschlich, J. Schulz, J. Bernhard, D. Althoff,
and C. Stiller, “A pomdp maneuver planner for occlusions in urban
scenarios,” 06 2019.

[10] H. Andersen, W. Schwarting, F. Naser, Y. H. Eng, M. H. Ang, D. Rus,
and J. Alonso-Mora, “Trajectory optimization for autonomous over-
taking with visibility maximization,” in 2017 IEEE 20th International

Conference on Intelligent Transportation Systems (ITSC), Oct 2017,
pp. 1–8.

[11] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” CoRR, vol. abs/1708.06374,
2017. [Online]. Available: http://arxiv.org/abs/1708.06374

[12] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” 06 2010,
pp. 987 – 993.

[13] K. Chu, M. Lee, and M. Sunwoo, “Local path planning for off-
road autonomous driving with avoidance of static obstacles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp.
1599–1616, Dec 2012.

[14] V. Dixit, S. Chand, and D. Nair, “Autonomous vehicles: Disen-
gagements, accidents and reaction times,” PLOS ONE, vol. 11, p.
e0168054, 12 2016.

[15] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann,
F. Kuhnt, and M. Mayr, “Lanelet2: A high-definition map framework
for the future of automated driving,” 11 2018, pp. 1672–1679.

[16] X. Xiao, J. Dufek, and R. R. Murphy, “Explicit-risk-aware path
planning with reward maximization,” CoRR, vol. abs/1903.03187,
2019. [Online]. Available: http://arxiv.org/abs/1903.03187

[17] P. Orzechowski, K. Li, and M. Lauer, “Towards responsibility-sensitive
safety of automated vehicles with reachable set analysis,” 11 2019, pp.
1–6.

[18] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” CoRR, vol. abs/1105.1186, 2011. [Online].
Available: http://arxiv.org/abs/1105.1186

[19] S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based
path planning with homotopy class constraints,” in Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, ser.
AAAI’10. AAAI Press, 2010, pp. 1230–1237. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2898607.2898803


