KIT | KIT-Bibliothek | Impressum | Datenschutz

Multitemporal hyperspectral tree species classification in the Białowieza Forest World Heritage site

Modzelewska, Aneta; Kamińska, Agnieszka; Fassnacht, Fabian Ewald ORCID iD icon; Stereńczak, Krzysztof

Tree species composition maps derived from hyperspectral data have been found to be accurate but it is still
unclear whether an optimal time window exists to acquire the images. Trees in temperate forests are subject
to phenological changes that are species-specific and can have an impact on species recognition. Our study
examined the performance of a multitemporal hyperspectral dataset to classify tree species in the Polish part of
the Białowie˙za Forest. We classified seven tree species including spruce (Picea abies (L.) H.Karst), pine (Pinus
sylvestris L.), alder (Alnus glutinosa Gaertn.), oak (Quercus robur L.), birch (Betula pendula Roth), hornbeam
(Carpinus betulus L.) and linden (Tilia cordata Mill.), using Support Vector Machines. We compared the results
for three data acquisitions—early and late summer (2–4 July and 24–27 August), and autumn (1–2 October) as
well as a classification based on an image stack containing all three acquisitions. Furthermore, the sizes (height
and crown diameter) of misclassified and correctly classified trees of the same species were compared. The
early summer acquisition reached the highest accuracies with an Overall Accuracy (OA) of 83–94 per cent and
... mehr

DOI: 10.1093/forestry/cpaa048
Zitationen: 5
Zugehörige Institution(en) am KIT Institut für Geographie und Geoökologie (IFGG)
KIT-Zentrum Klima und Umwelt (ZKU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0015-752X, 1464-3626
KITopen-ID: 1000129314
Erschienen in Forestry
Verlag Oxford University Press (OUP)
Vorab online veröffentlicht am 03.02.2021
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page