
Crediting pull requests to open source research software as an
academic contribution☆

Hartwig Anzt a,b,*, Eileen Kuehn a, Goran Flegar c

a Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, Germany
b Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA
c Departamento de Ingeniería y Ciencia de Computadores (ICC), Universidad Jaume I, Castellón, Spain

Keywords:
Scientific excellence paradigms
Conference contributions
Scientific reputation
Community software development

A B S T R A C T

Like any other scientific discipline, the High Performance Computing community suffers under the publish or
perish paradigm. As a result, a significant portion of novel algorithm designs and hardware-optimized imple-
mentations never make it into production code but are instead abandoned once they served the purpose of
yielding (another) publication. At the same time, community software packages driving scientific research lack
the addition of new technology and hardware-specific implementations. This results in a very unsatisfying sit-
uation where researchers and software developers are working independently, and the traditional peer reviewing
is reaching its capacity limits. A paradigm shift that accepts high-quality software pull requests to open source
research software as conference contributions may create incentives to realize new and/or improved algorithms
in community software ecosystems. In this paper, we propose to complement code reviews on pull requests to
scientific open source software with scientific reviews, and allow the presentation and publication of high quality
software contributions that present an academic improvement to the state-of-the-art at scientific conferences.

1. Motivation

Academic research in general – and the field developing algorithms
for high performance computing in particular – suffers under the publish
or perish paradigm. One consequence is the exponentially-increasing
number of journal publications, workshop contributions, and confer-
ence proceedings [1]. Even though the development of High Perfor-
mance Computing (HPC) algorithms is a relatively small research field,
it is virtually impossible to keep track of the entire work contributed by
peers.

The publish or perish paradigm primarily originates from the fact that
academic reputation is still primarily based on scientific metrics such as
the Hirsch-Index [2], the plain number of publications, or the more
recently introduced altmetrics [3]. Acknowledging the merits of these
metrics, the community benefits of classical publication formats are
limited – particularly in comparison to other, more effective technology

dissemination strategies like community code contributions. However,
in particular against the background of the sluggish acceptance of
research software engineering as an academic field, many researchers
working on high performance algorithm development rely on scientific
papers to ensure their own job security.

The papers presented at HPC conferences often present derivations of
novel algorithms, the development of new implementations for large-
scale parallelism or new hardware technology, or large-scale simula-
tion runs. In many cases, the algorithms are realized in a prototypical
implementation that fulfills the requirements for proposing and pre-
senting the technology in a scientific paper or conference contribution.
Yet, such implementations often fail to contribute to the community’s
software ecosystem: The publications typically lack the level of detail
that is required to reproduce the technology, and, with prototype re-
alizations often remaining private, the readers are unable to track the
code.

☆ This work is an extension of the position paper “Are we Doing the Right Thing? – A Critical Analysis of the Academic HPC Community” presented in the context of
the PDSEC workshop at IPDPS 2019. This work was supported by the “Impuls und Vernetzungsfond” of the Helmholtz Association under grant VH-NG-1241.

* Corresponding author at: Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, Germany.
E-mail addresses: hartwig.anzt@kit.edu (H. Anzt), eileen.kuehn@kit.edu (E. Kuehn), flegar@uji.es (G. Flegar).

mailto:hartwig.anzt@kit.edu
mailto:eileen.kuehn@kit.edu
mailto:flegar@uji.es

In response to the situation, different publication formats now
encourage (or even require) the release of source code and supporting
data alongside the scientific content. These reproducibility efforts [4,5]
providing reviewers access to the raw material aim at increasing the
replicability, traceability, and general software quality. The side benefit
is that the community can leverage the novel technology by accessing
the sources and re-engineering the algorithms into already existing
software libraries or simulation codes. These efforts have in common
that the software developers initially have to submit original work in a
classical paper format, and the reproducibility efforts in a second step
check the validity and replicability of the software and results.

Rather disconnected from the publication-oriented high perfor-
mance algorithm research, there exists a number of established open
source software packages that are developed as a collaborative com-
munity effort [6] to provide domain scientists with the technology and
the tools to realize scientific simulations and -analyses. These software
packages typically feature a high standard in terms of software quality
and software sustainability [7], and serve as the powertrain behind
many of the recent research achievements. Well-known examples
include the MFEM [8], deal.II [9], Trilinos [10], PETSc [11], hypre [12],
and SuperLU [13] software packages.

At the same time, these community research software packages are
dependent on high-quality contributions from software developers. And
with scientists responding to the academic pressure on publishing sci-
entific papers, the software packages are often lacking novel algorithm
technology and hardware-specific optimizations. At best, software
packages have access to prototype versions of novel algorithm tech-
nology, and are inclined to integrate those into the software stack to
satisfy customer requests even though the code lacks the level of docu-
mentation, testability, and code readability that is preferred for software
sustainability.

In a summarizing analysis of the field, the HPC community

• responds to academic pressure by publishing an increasing number
of scientific papers (often containing novel algorithms and paralle-
lization strategies);

• bears a significant amount of prototype implementations for novel
algorithm technology, which remain in private possession of their
authors;

• serves domain scientists by providing and contributing to open
source software packages;

• falls short in releasing novel algorithm technologies as high-quality
production-ready implementations featuring detailed documenta-
tion, tests, usage examples, and problem-specific efficiency analyses.

Obviously, it is not realistic to quickly change the academic system to
endorse scientific software developers or base the promotion to tenure
on software quality. However, we want to promote the importance of
high-quality software contributions for accelerating computational sci-
ence in HPC by proposing to base conference contributions no longer
just on scientific papers in the traditional sense, but by introducing a
new type of conference contribution based on pull requests of well-
documented software contributions to established open source com-
munity software. To accept such a software contribution, it must meet
certain minimal requirements. It must at least add new functionality or
comprehensively improve existing functionality of the open source
research software. Regarding the extent of a software contribution we
follow the definition of semantic versioning [14] and define that such a

software contribution supports at least a minor increment of the com-
munity software.

In this paper, we outline a workflow that combines the code review
of pull requests to scientific open source software with a scientific re-
view of the academic contribution to allow for the presentation and
publication of these contributions at scientific conferences. For that
purpose, we initially review in Section 2 existing efforts, either aiming at
the publication of open source code like the Journal on Open Source
Software (JOSS), or pushing for the publication of raw data and used
code in reproducibility initiatives. In Section 3 we characterize the field
of computer-based science from a “helicopter position” and identify the
need for a new peer-review workflow that scales with the number of
scientific papers and software contributions. The idea of crediting pull
requests to open source research software as an academic contribution is
outlined in Section 4, a realistic workflow for this approach is detailed in
Section 5. In Section 6 we provide an example for a possible design of a
pull request to be considered as a conference contribution. Like virtually
all peer reviewing concepts, also the idea presented in this paper has its
limitations, as we elaborate in Section 7 before summarizing the current
status and positioning it in the wider field in Section 8.

2. Existing efforts

There already exist several strong efforts to improve the academic
peer reviewing system for scientific software. Among the most well-
known examples are the Replicated Computational Results (RCR [15])
initiative of the ACM Transactions on Mathematical Software (ACM
TOMS [16]), and the Journal of Open Source Software (JOSS [17]). The
two have orthogonal intentions, putting their main focus either on the
scientific or software contribution.

ACM TOMS is a journal in the traditional sense. The RCR initiative
aims at enhancing the traditional peer review by a reviewing of
computational results. Therewith, the purpose of RCR activities is to
provide independent confirmation that results contained in a manu-
script are correct and reproducible. Successful completion of the RCR
process gives the manuscript a Replicated Computational Results
designation, which is noted on the first page of the published article
[15].

While this strategy certainly enhances the quality of the contribu-
tions and ensures full reproducibility of the results, the authors are still
required to submit a scientific article in the traditional form. This is not
equivalent to submitting software as the main contribution itself, as we
propose. Instead, authors need to put comprehensive efforts into the
scientific elaboration as well as the experimental setup and reproduc-
ibility that might lead to low sustainability of the software contribution
itself. Furthermore, ACM TOMS is a traditional journal publishing
original work and not connected to any conference where the authors
can present their work. Therewith, the RCR initiative is somewhat
orthogonal to the process we suggest, but remains as a pioneer aiming at
reproducibility and crediting software development as one of the
lighthouse examples in the academic community.

The Journal of Open Source Software takes a radically different
approach. As the name suggests, JOSS publishes articles about research
software. This includes software that: (1) solves complex modeling
problems in a scientific context (physics, mathematics, biology, medi-
cine, social science, neuroscience, engineering); (2) supports the func-
tioning of research instruments or the execution of research
experiments; (3) extracts knowledge from large data sets; and (4) offers

a mathematical library, or similar [17]. A submission should consist of
software that is open source as per the OSI definition and have an
obvious research application. In contrast to the ACM TOMS RCR process,
the submission should not focus on new research results accomplished
with the software, but on the research software itself [17]. Upon
acceptance into JOSS, a Crossref DOI is minted and the paper gets listed
on the JOSS website.

A submission to JOSS consists of a markdown file (eventually
accompanied with bibtex files and figures) whose metadata is submitted
in a feedback form to the JOSS paper repository. During the peer review,
the scientific quality, relevance, correctness, and sustainability of the
software is checked. The review is open and public and happens within
an issue in the JOSS repository, detached from the software contribution
and release itself. This implies scientists working with a certain software
package will likely miss the JOSS review discussion of this software
package. This, in particular, is true for application scientists not directly
working on the software but using it as a component in a larger
application.

Furthermore, reviewing an entire, complex software package is a
significant effort, and can never cover all details of a specific (e.g. new)
algorithm. At the same time, JOSS is the first platform that allows for
submitting complete software packages, therewith giving software
development and research software engineers visibility and credit they
would not receive otherwise. Furthermore, the reviewers conducting the
software review also receive credit by being visible to the scientific
community. The exponentially-increasing number of submissions to
JOSS proves the success of this concept.

While we acknowledge that these efforts are extremely effective in
pursuing the same goal, our approach complements them by targeting
the problem from a different angle. In particular, we see further po-
tential for minimizing the efforts of researchers, reviewers, and the open
source community. In the case of JOSS, the reviewers are confronted
with a massive code review effort, which is not only defined by the code
size of software packages, but also by a possibly very extensive scientific
functional range, which may require expertise in more than one field. In
the case of the ACM TOMS RCR, the review effort of the software arti-
facts remains manageable, but focuses on the reproducibility of the re-
sults and not on the reusability and compatibility of the software itself.
As the integration into existing open source community projects or
software compatibility proofs are not required, the novel algorithm
features can still remain in prototype code outside the community
software stack.

3. The collaborative development effort of open source
community software

Community software packages are typically developed in the envi-
ronment of a distributed versioning system such as Git [18] or Mercurial
[19]. These versioning systems are not only able to take snapshots of
source code that can be revisited or retrieved at a later point, but also
provide the means to track changes and orchestrate modifications
introduced by several developers, therewith enabling the efficient
development of software in a collaborative effort. The underlying
concept to efficiently put collaborative efforts in practice is the concept
of branches. Branches can encapsulate an independent thread of
development as a well-defined sequence of changes, and can be based on
or incorporate the state of other branches. During development,
branches can even be synchronized with each other to share common

changes.
In many Open Source projects, the main branch of a repository con-

tains the stable version of the software that has been tested to work
correctly on all supported backends and in all supported environments.
The main branch is commonly protected from new software contribu-
tions and patches. Instead, changes and additions to the existing soft-
ware are developed in separate branches until they are considered (1)
functionally complete and self-contained, (2) sufficiently documented,
and (3) verified regarding their expected functioning as well as sup-
ported backends and environments. These branches can then be sub-
mitted as a software contribution to the main branch. Technically, the
concept of submitting a software contribution is, depending on the re-
pository hosting platform, realized as a pull request on GitHub [20] or
Bitbucket [21], or as a merge request on GitLab [22].

3.1. Pull requests to submit software contributions

Independent of the repository hosting platform, the software con-
tributions are composed of new code contributions, including tests and
code documentation, as well as a general commentary on motivation
and description of the contribution with the main purpose to enable
target-oriented reviews. The code and its auxiliary information are
reviewed by other developers for correctness, consistency, and quality.
If approved by the reviewers, the contribution is merged into the main
branch of the repository. The merge integrates the source code of the
new feature.

In addition to archiving the contribution itself, an advanced re-
pository hosting platform such as GitHub or GitLab also archives the
description and discussions that evolved as part of the pull request
during the review process. All secondary information can be retrieved at
a later point to track changes and recall argumentation or design
choices. Archiving all secondary information also ensures contributors
receive recognition for adding features, and allows to track who pro-
posed changes or participated in discussions.

In the best case, a software contribution is accompanied with a
detailed source code documentation (e.g. in terms of Doxygen [23]
comments), unit tests, a realistic usage example, and an efficiency
analysis for relevant problem and hardware settings. This way, a
contribution not only extends the functionality of the software, but at
the same time establishes a comprehensive documentation of the soft-
ware and its features.

3.2. The wide spectrum of pull request reviews

Each pull request is immediately visible to the maintainers of the
community software package, and automatic notification of maintainers
is common. Yet, not only maintainers and code owners can comment
and send feedback about the meaningfulness, completeness, validity,
and quality of the code contributions and the pull request itself. Instead,
the pull request is open for discussion for the whole community and,
therefore, potentially can generate a reputation for all contributors
including authors of the software contribution, official reviewers as well
as commenting peers.

The workflow in established community research software packages
usually foresees an extensive support of human review by automatic
reviews. Automatic reviews can cover the general and idiomatic char-
acteristics of the source code, e.g. with services, or bots checking com-
mon formatting style guides, linting rules, maintainability or security

issues. This automation allows to enforce a general consensus on quality
across an entire community. Furthermore, more complex processes such
as continuous integration services can be triggered that check the
functioning of the software contribution for various backends and sup-
ported environments, ensure integration with associated software
packages, perform benchmarks and unit tests, or pre-built documenta-
tion and perform a deployment in a testing environment to support
human reviewers. Such customized verification allows to guarantee
specific quality requirements of individual projects.

Automatic reviews serve to ensure the well-defined desired charac-
teristics of the software. Together with the expert judgement of a human
reviewer, they form the software contribution review to ensure technical
viability and quality.

4. Software pull requests as a conference contribution

We propose to emphasize the significance of software contributions
by making them a contribution concept for conferences on HPC algo-
rithms. Obviously, a software contribution submitted as a conference
contribution is required to satisfy not just technical but also scientific
requirements, such as a detailed algorithm description and feature
specification, but also functionality testing and efficiency analysis. The
idea is that researchers directly submit a software pull request of a
legitimate software contribution – which has successfully passed auto-
matic reviews and code reviews by code owners, maintainers, and the
associated community of an established open source research software
package – as a conference contribution. The information about the
submission of the pull request as a conference contribution will auto-
matically inform the editor of the designated conference and allows
them to assign a number of anonymous reviewers of the conference’s

program committee.
Since the contribution already passed a review process as part of its

acceptance to the community software project, the reviewers of the
program committee do not need to focus on verifying every detail of the
implementation, but rather on general aspects such as the novelty of the
work, the clarity, scientific correctness, and completeness of description
and the user-facing documentation. Thus, the reviewers evaluate the
contribution in terms of scientific value, feature significance, and
whether this software contribution qualifies to be presented at the
conference. In the end, the documentation of a software contribution in
a pull request may not be too different from a scientific paper, however
coming with significant benefits:

• Full reproducibility and traceability for technical as well as scientific
value is ensured, as not only reviewers but the entire community can
track the software contribution;

• The versioning systems keeping track of the authors of each line
helping to identify the main contributors of a software contribution,
but also to link to the right person in case of questions;

• Novel algorithms and hardware optimized implementations are
ready for integration into open source software repositories already
at the point of submitting the new contributions;

• The whole community can contribute to the development of a novel
algorithm by commenting or even extending on software contribu-
tions – without the individuals losing the recognition for their ideas
as the interactions are publicly available and tracked by the collab-
oration platform;

• Designing software pull requests as a conference contributions
naturally implies a high quality of code documentation, and effi-
ciently enables users to evaluate (based on the contribution and the

Table 1
Criteria for software pull requests to be treated as conference publications and their relevance for the review process. This review process consists of a pull request
review by the community of the software package, a scientific review by the program committee of a given conference, as well as some automated technical checks in
the source code repository ensuring the code quality standards are adhered. The relevance of the given criteria ranges from low (+) to high (+++). Criteria that do not
apply are marked by . For example, checking the quality of a user documentation is virtually impossible to automate, and thus marked by . The column scope
shows where the information is archived and accessible to the user community. The list is based on selected criteria for software in large community software packages
and extended by criteria relevant to the scientific community. The list of criteria is not exhaustive, and relevant criteria should be selected or supplemented according
to the specific use case.

Criterion Scope Relevance for review

Community Science Auto

Detailed description
Motivation, Summary Pull Request +++ +++ −

Scope, Use Cases Pull Request + +++ −

Related Work Pull Request + ++ −

Originality Pull Request ++ +++ −

Documentation
User Documentation Branch ++ + −

Developer Documentation Branch ++ − −

Performance Analysis Branch ++ ++ −

Example Usage, Tutorial Branch ++ ++ −

Tests
Tests and Coverage Branch +++ - +++

Quality of Tests Branch ++ − −

Compatibility Tests Repository ++ − +++

Authors, Co-Authors, Contributors Branch, Pull Request ++ +++ −

Deployment Repository ++ ++ +++

Integration with Community Package Branch +++ ++ −

Fig. 1. Contribution description on the collaboration platform.

included efficiency analysis) the appropriateness of a software
feature for a specific problem;

• Presenting contributions at a conference not only makes the whole
community aware of a new feature, but domain scientists can
directly approach the developers, establish contact, and discuss
technical aspects;

• The submission rate will be far lower, and the acceptance rate far
higher, as each submission must pass at least some pre-review by
community software developers and the authors of the papers will be
forced to produce a higher quality contribution.

Combined with the expected lower submission rate, we do not expect
that the total reviewing effort for the reviewers of the program com-
mittee exceeds the reviewing effort for a conference with traditional
contributions. We even expect a positive impact on reviewing effort for
technical reviews as reviewers of the community software project have
additional information facing the conference reviewers but supporting
the overall logic and motivation of the software contribution.

Even though the benefits for the community are obvious, a contri-
bution of this type alone may be unable to provide the same academic
reward a scientific paper comes with. Hence, in order to boost the appeal
and benefits for the contributing researcher(s), we propose to comple-
ment the concept with post-conference proceedings that accept software
contributions as scientific publications.

Technically, these publications may differ from traditional papers by
featuring a shorter general introduction, as it is not necessary to
fundamentally motivate the importance of scientific high performance
computing. On the other hand, we expect the technical aspects to be
discussed more elaborately, as, besides the algorithm presentation, the
feature description also has to include the user documentation, usage
examples or tutorials, and a scalability or efficiency analysis. In fact, the
technical content of the publication should comprise all information

necessary to understand the functionality, its application field, and
usage. We also expect that the acknowledgment list reflects the com-
munity- and reviewer comments, as well as the hardware facilities
accessed to ensure cross-platform portability of the contribution. We
think that this adapted design of a conference proceeding contribution
does not harm the readability, but instead makes the publication more
attractive to researchers active in the fields of algorithm engineering and
scientific computing.

5. Implementing a workflow for accepting pull requests as a
conference publication

In Fig. 2 we outline the peer review workflow we envision for
accepting pull requests to community software as a conference publi-
cation. To make the submission of a pull request as a conference
contribution as convenient as possible, we propose to facilitate software
contribution templates. These templates provide the creator of a soft-
ware contribution with the information on what needs to be provided for
a successful submission, and guidelines on how to best do so. Table 1
summarizes relevant criteria for the community along with scientific
and technical requirements. For example, the description of the pull
request is of major importance for the scientific review but also helps to
guide the community review. However, the main publication asset re-
mains the code contribution and, therefore, the author also needs to
include the functionality and contribution information in preserved lo-
cations such as documentation and tests. The template tries to also
reflect a weighting of the different aspects. Conferences supporting the
proposed contribution type for software contributions can define their
own set of minimum requirements by providing a customized software
contribution template. Technically speaking, software contribution
templates can be realized by pull request templates in case of GitHub or by
merge request description templates in the case of GitLab.

Fig. 2. Peer review workflow accepting pull requests as a conference contributions.

Fig. 3. Technical discussions of the implementation make up the software contribution.

The pull request template allows the creator to indicate that he wants
the pull request to an open source community software to be considered
as a submission to a certain conference. While the pull request template
can automatically extract information such as author, target software
package, license model, and programming language, the creator should
additionally specify keywords indicating research area, algorithm
functionality, and scope of the contribution. All additional information
and performance analysis are then part of the detailed functionality
description of the pull request.

In addition to the standardized metadata collection, the pull request
template improves the overall automation and orchestration of the re-
view process via preset assignment of labels and actions. For example,
this allows to automatically inform the chair of a conference once the
technical code review of the software contribution is completed. At this
point, the automated workflow requests a scientific review, and the
review template allows to track the progress of the review. Intertwining
technical and scientific review, it is possible for the scientific reviewers
to request changes that are automatically passed on to the authors and
technical reviewers.

While a classical software pull request would be merged into the
master branch of the software package once the technical review is
completed, delaying the merge until also the scientific review has
completed and automatically forwarding reviewer comments and
change requests to the authors and technical reviewers improves the
contribution before disseminating the new functionality to the com-
munity. Only after the scientific review has passed and also the technical
review team addresses all suggested changes and additions, the software
pull request is merged and closed. This strategy is likely to reduce the
number of patches necessary to improve new features released in com-
munity software packages. Once the scientific reviewers and the tech-
nical reviewers are satisfied, the pull request is merged, and the template

automatically initiates the conference invitation as well as the publica-
tion in the conference proceedings.

If the scientific reviewers do not recommend the acceptance of the
pull request as a conference contribution, the pull request template falls
back to the standard software development workflow that allows to
merge to the main branch of the community software once the technical
reviewing team accepted the contribution. In that sense, the scientific
reviewers do not have the power to intervene the acceptance of the pull
request, but the decision of the acceptance of the pull request is left to
the code reviewers. We are sure that this concept allows to propagate
scientific input and ideas from the reviewers to the developers to
improve their algorithms and methods.

6. Example of a well-designed software contribution

We use an example to illustrate how to design a software pull request
that qualifies as a conference contribution. Instead of discussing an
artificial contribution, we recall an already existing pull request to the
Ginkgo1 Open Source library publicly hosted on the GitHub repository
hosting site. We emphasize that we do not select the pull request #1592

because of its technical and scientific content (qualifying as a conference
contribution), but instead because of its compactness (qualifying as a
short example) and its completeness in terms of documentation and
efficiency assessment.

The repository hosting platform makes it straightforward to identify
relevant parts of the pull request, see screenshot of the pull request on
the collaboration platform shown in Fig. 1. The name of the contribution

Fig. 4. Performance aspects provided alongside the software contribution on the collaboration platform.

1 https://ginkgo-project.github.io/.
2 https://github.com/ginkgo-project/ginkgo/pull/159.

https://ginkgo-project.github.io/
https://github.com/ginkgo-project/ginkgo/pull/159

(BLOCK-INTERLEAVED BLOCK STORAGE IN BLOCK-JACOBI #159), the contributor (on
the left: GFLEGAR), the reviewers that approved the pull request (on the
right: HARTWIGANZT and TCOJEAN) are clearly visible. Furthermore, the
platform allows us to add labels that are similar to keywords in a clas-
sical scientific application (here: CUDA, CORE, ENHANCEMENT, REFERENCE). Not
employed in this examples is the possibility to link to a project and a
milestone, which would allow for further context of the contribution.
Finally, all individuals that participated in the related discussions are
listed.

The pull request starts off with a description of the new capability,
and illustrates the strategy used to realize the feature. The description of
the new functionality is straight forward, refers to previous contribu-
tions, and uses a figure to sketch out the strategies. We note that the
header of the contribution also provides information on the current
status of the pull request. In this case it shows, that the contribution was
successfully merged into the develop branch of the project on November
26th, 2018.

What now follows is what we define as the first part of the review: a
community discussion on the functionality, its algorithmic realization,
the software quality, and implementation aspects. For this contribution,
there was no discussion about the functionality itself or its properties.
For #159, only implementation aspects were discussed, with an example
reported in Fig. 3.

The collaboration platform tracks the complete discussion along with
the participants and timestamps of the contributions. The possibility to
add code fragments or tie comments to lines of code makes it easy for the
reader to link these aspects to the implementation.

Finally, the contribution was accompanied with some efficiency/
performance assessment we list in Fig. 4. This also enables readers and
reviewers that do not have access to the target hardware to follow the
argumentation or assess the quality of the contribution.

When submitting the software contribution as a conference contri-
bution, the program committee can (but is not required to) access and
dissect the code on the collaboration platform hosting the repository.
This enables to review the contribution and to assess the quality of the
software contribution. For a post-conference proceedings, one option is
to append the most relevant code segments in the appendix – which is
what we do in this example. An alternative is to complement the pro-
ceeding with a digital artifact, or directly refer to the contribution
archived in the collaboration platform.

The graphical comparison of the original code and the code
enhancement of the software contribution makes it easy to evaluate the
algorithmic realization. For brevity, we do not list the complete code of
the contribution (interested readers may find that under #1593), but
instead show an example of code created by the contribution and code
that is modified by the contribution. Fig. 6 in the Appendix reports new
code contributed by the contribution that is enhanced with Doxygen
[23] documentation and comments indicating future steps. The file
shown in Fig. 5 is heavily modified by the contribution. The collabora-
tion platform employs colors to visualize Git’s diff command, which
makes it easy to track the changes introduced.

7. Scope and limitations

We recognize that the contribution format proposed in this work is
not suitable for all types of conference contributions. One example
would be a purely theoretical exposition of a new algorithm or method
that does not yet have a high performance implementation, and whose
practical implementation or performance is not part of the contribu-
tions. Another example are papers that do not aim at contributing an
algorithm or software component, with this paper being such an
example. Thus, we do not propose to completely abandon the traditional
concept of scientific papers, but to allow for a wider variety of

contribution formats that are in line with the contribution type. Ulti-
mately, it remains the program committee’s responsibility to judge
whether the format of a specific contribution is adequate for its type.

Even in cases where a software contribution would be an appropriate
contribution, there could be special circumstances which do not allow
for the publication of a software contribution. Such examples include
cases where the implementation itself is classified or proprietary due to a
third-party contract. One possible approach would be to allow the
contribution in a classical paper format, augmented with a statement
from the third party that verifies that the software in question is indeed
protected by the contract, and that the claims made about it in the
contribution are valid.4

8. Summary

Like in any other academic field, scientists in High Performance
Computing suffer under the publish or perish paradigm. As a result, novel
algorithm designs and high performance kernel implementations often
reside as prototype implementation and are never adopted as
production-ready community code. To counteract this inefficiency, we
propose to establish a new form of conference contribution that is based
on software pull requests to open source community software.

The idea is to complement a technical review as it is established in
modern open source software development to ensure technical quality
such as maintainability, testability and sustainability, with a scientific
review assessing originality and impact. An accepted conference
contribution then consists of the algorithm description, the technical
analysis, and the performance assessment of the software contribution.
Publishing the contribution as post-conference proceeding aims at
providing the authors with the same academic rewards as publishing the
new technology as a traditional journal paper. At the same time, the
community benefits with outstanding traceability, fast propagation of
new technology into the community software, and excellent documen-
tation of source code.

In a larger picture, accepting software pull requests as conference
contribution increases the sustainability of open source community
software, ensures public research money for software development,
advances the scientific community as a whole, and enhances the
strengths of open source software against commercial software pack-
ages. Furthermore, it is another step in the direction of entrenching
scientific software development as an academic field, and moving the
academic evaluation system from traditional metrics (such as the
Hirsch-Index) towards community-advancing software contributions.

Conflict of interest

The authors declare no conflict of interest.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgments

The authors want to express their appreciation for comments of the
anonymous reviewers of the PDSEC’19 workshop. Acknowledging that
this paper is provocative and we sure failed to consider all aspects of this
controversial topic, we are highly thankful for the valuable feedback and
input. We also thank Fabian Brunk for comments and discussion on an
earlier version of the paper.

3 https://github.com/ginkgo-project/ginkgo/pull/159.

4 Since the authors of this work are only supported through public funding,
this approach is only a suggestion. The actual solution should be discussed with
scientists that have third party arrangements.

https://github.com/ginkgo-project/ginkgo/pull/159

Appendix A

Fig. 5. The patch applies significant changes to already existing code.

Fig. 6. The patch adds a significant amount of new code to an existing file.

References

[1] UNESCO Science Report: Towards 2030, UNESCO Reference Works Series,
UNESCO, 2015. https://books.google.de/books?id SDHwCgAAQBAJ.

[2] J.E. Hirsch, An index to quantify an individual’s scientific research output, Proc.
Natl. Acad. Sci. USA 102 (46) (2005) 16569–16572, https://doi.org/10.1073/
pnas.0507655102. , http://www.pnas.org/content/102/46/16569.Abstract,
http://www.pnas.org/content/102/46/16569.full.pdf+html.

[3] J. Priem, D. Taraborelli, P. Groth, C. Neylon, Altmetrics: A Manifesto, altmetrics.
org, 2011.

[4] Michael Allen Heroux, The TOMS Initiative and Policies for Replicated
Computational Results (RCR), 2017. https://toms.acm.org/replicated-computatio
nal-results.cfm.

[5] Supercomputing Conference Reproducibility Initiative, 2018. https://sc18.superco
mputing.org/submit/sc-reproducibility-initiative/.

[6] xSDK: Extreme-scale Scientific Software Development Kit https://xsdk.info/
(accessed in August 2018).

[7] Better Scientific Software (BSSw) https://bssw.io/ (accessed in August 2018).
[8] MFEM: Modular finite element methods library, mfem.org. https://doi.org/

10.11578/dc.20171025.1248.
[9] W. Bangerth, R. Hartmann, G. Kanschat, deal.II – a general purpose object oriented

finite element library, ACM Trans. Math. Softw. 33 (4) (2007), 24/1-24/27.
[10] T. Trilinos Project Team, The Trilinos Project Website.
[11] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, D.
A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith,
S. Zampini, H. Zhang, H. Zhang, PETSc Web Page, 2019. https://www.mcs.anl.
gov/petsc.

[12] R.D. Falgout, U.M. Yang, hypre: a library of high performance preconditioners, in:
P.M.A. Sloot, A.G. Hoekstra, C.J.K. Tan, J.J. Dongarra (Eds.), Computational
Science – ICCS 2002, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002,
pp. 632–641.

[13] X.S. Li, An overview of superlu: algorithms, implementation, and user interface,
ACM Trans. Math. Softw. 31 (3) (2005) 302–325, https://doi.org/10.1145/
1089014.1089017.

[14] T. Preston-Werner, Semantic Versioning 2.0, 0, línea], 2013. Available from:
http://semver.org.

[15] M.A. Heroux, Editorial: Acm toms replicated computational results initiative, ACM
Trans. Math. Softw. 41 (3) (2015 Jun), https://doi.org/10.1145/2743015.

[16] ACM, Transactions on Mathematical Software (ACM TOMS), vol. 33(4, 2007,
p. 24/1. https://dl.acm.org/journal/toms.

[17] Journal of open source software, https://joss.theoj.org/.
[18] Git https://git-scm.com/.
[19] O’Sullivan, Bryan, Mercurial: The Definitive Guide, O’Reilly Media, Inc., 2009.
[20] GitHub https://github.com/.
[21] Bitbucket https://bitbucket.org/.
[22] GitLab https://gitlab.com/.
[23] D. van Heesch, Doxygen: Source Code Documentation Generator Tool, 2008.

http://www.stack.nl/dimitri/doxygen/.

Hartwig Anzt is a Helmholtz-Young-Investigator Group leader
at the Steinbuch Centre for Computing at the Karlsruhe Insti-
tute of Technology. He obtained his PhD in Mathematics at the
Karlsruhe Institute of Technology, and afterwards joined Jack
Dongarra’s Innovative Computing Lab at the University of
Tennessee in 2013. Since 2015 he also holds a Senior Research
Scientist position at the University of Tennessee. Hartwig Anzt
has a strong background in numerical mathematics, specializes
in iterative methods and preconditioning techniques for the
next generation hardware architectures. Hartwig Anzt has a
long track record of high-quality software development. He is
author of the MAGMA-sparse open source software package
managing lead and developer of the Ginkgo numerical linear
algebra library.

Eileen Kuehn received her PhD in computer science in 2017.
She currently works at the Karlsruhe Institute of Technology in
the domain of quantum computing. Her career includes work
as research associate and project coordinator in several EU
projects. For many years already, she is working in close
collaboration with diverse domains including High Perfor-
mance Computing, High Energy Physics, Climatology, or
Museology. Her research activities focus on scalable data an-
alytics for highly parallel, distributed systems and sustainable
software.

Goran Flegar received his PhD from the University of Jaume I
with focus on High Performance Computing. His research in-
terests include sparse linear algebra, accelerator computing
and software design. He also holds a bachelor’s degree in
mathematics and a master’s degree in computer science and
mathematics from the University of Zagreb. He is one of the
founders of the Ginkgo software package, a modern C++ li-
brary primarily focused on the iterative solution of sparse
linear systems via preconditioned Krylov subspace methods on
high performance GPU and multicore architectures.

https://books.google.de/books?id=SDHwCgAAQBAJ
https://doi.org/10.1073/pnas.0507655102
https://doi.org/10.1073/pnas.0507655102
http://www.pnas.org/content/102/46/16569.full.pdf+html
http://refhub.elsevier.com/S1877-7503(20)30574-3/sbref0015
http://refhub.elsevier.com/S1877-7503(20)30574-3/sbref0015
https://toms.acm.org/replicated-computational-results.cfm
https://toms.acm.org/replicated-computational-results.cfm
https://sc18.supercomputing.org/submit/sc-reproducibility-initiative/
https://sc18.supercomputing.org/submit/sc-reproducibility-initiative/
https://xsdk.info/
https://bssw.io/
http://refhub.elsevier.com/S1877-7503(20)30574-3/sbref0045
http://refhub.elsevier.com/S1877-7503(20)30574-3/sbref0045
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://refhub.elsevier.com/S1877-7503(20)30574-3/sbref0060
http://refhub.elsevier.com/S1877-7503(20)30574-3/sbref0060
http://refhub.elsevier.com/S1877-7503(20)30574-3/sbref0060
http://refhub.elsevier.com/S1877-7503(20)30574-3/sbref0060
https://doi.org/10.1145/1089014.1089017
https://doi.org/10.1145/1089014.1089017
http://semver.org
https://doi.org/10.1145/2743015
https://dl.acm.org/journal/toms
https://joss.theoj.org/
https://git-scm.com/
http://refhub.elsevier.com/S1877-7503(20)30574-3/sbref0095
https://github.com/
https://bitbucket.org/
https://gitlab.com/
http://www.stack.nl/dimitri/doxygen/

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Anzt, H.; Kuehn, E.; Flegar, G.

Crediting pull requests to open source research software as an academic contribution.

2021. Journal of computational science, 49

doi: 10.554/IR/1000129346

Zitierung der Originalveröffentlichung:

Anzt, H.; Kuehn, E.; Flegar, G.

Crediting pull requests to open source research software as an academic contribution.

2021. Journal of computational science, 49, Art.-Nr.: 101278.

doi:10.1016/j.jocs.2020.101278

Lizenzinformationen: CC BY-NC-ND 4.0

https://publikationen.bibliothek.kit.edu/1000129346
https://publikationen.bibliothek.kit.edu/1000129346
https://publikationen.bibliothek.kit.edu/1000129346
https://doi.org/10.1016/j.jocs.2020.101278

	Crediting pull requests to open source research software as an academic contribution
	1 Motivation
	2 Existing efforts
	3 The collaborative development effort of open source community software
	3.1 Pull requests to submit software contributions
	3.2 The wide spectrum of pull request reviews

	4 Software pull requests as a conference contribution
	5 Implementing a workflow for accepting pull requests as a conference publication
	6 Example of a well-designed software contribution
	7 Scope and limitations
	8 Summary
	Conflict of interest
	Declaration of Competing Interest
	Acknowledgments
	Appendix A
	References

