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Massive multiple-input multiple-output (MIMO) systems operating at millimeter-wave (mmWave) frequencies promise to satisfy
the demand for higher data rates in mobile communication networks. A practical challenge that arises is the calibration in
amplitude and phase of these massive MIMO systems, as the antenna elements are too densely packed to provide a separate
calibration branch for measuring them independently. Over-the-air (OTA) calibration methods are viable solutions to this
problem. In contrast to previous works, the here presented OTA calibration method is investigated and optimized for subarray-
based hybrid beamforming (SBHB) systems. SBHB systems represent an efficient architectural solution to realize massive
MIMO systems. Moreover, based on OTA scattering parameter measurements, the ambiguities of the phase shifters are
exploited and two criteria to optimize the beam pattern are formulated. Finally, the optimization criteria are examined in

measurements utilizing a novel SBHB receiver system operating at 27.8 GHz.

1. Introduction

Massive multiple-input multiple-output (MIMO) systems
operating in the centimeter-wave (cmWave) and
millimeter-wave (mmWave) regions are considered for the
further expansion of mobile communication networks [1-
4]. Those massive MIMO systems can achieve huge spectral
efficiencies by exploiting the multipath wireless channel [5].
However, fully digital MIMO architectures consist of a sepa-
rate transceiver for each antenna element, which makes them
expensive and energy-hungry [6, 7]. An efficient architectural
solution is the concept of hybrid beamforming systems,
separating the beamforming process into a digital part of
reduced size in combination with an analog beamforming
network [8-10]. These hybrid beamforming systems reduce
the number of digital channels, i.e., the number of digital-
to-analog and analog-to-digital converters (DACs/ADCs),
while conserving precise beamforming employing an analog
beamforming network. A low-complex architectural realiza-
tion of the analog beamforming network is the subarray-

based (also denominated as subconnected or partially con-
nected) hybrid beamforming (SBHB) architecture [11-13].
The SBHB architecture connects each digital channel to a
subarray of antenna elements via a dedicated phase shifter.
To steer the antenna beam into the desired direction and
to generate the desired beam pattern, a calibration in ampli-
tude and phase of the different radio frequency (RF) branches
is required [14]. This functionality is crucial for currently
investigated channel estimation and beamforming algo-
rithms [15-22]. To tackle the calibration problem over-the-
air (OTA) calibration methods seem to be promising, as no
additional RF calibration branches have to be integrated into
the analog beamforming network. Note that a RF calibration
branch per antenna element is technically and economically
challenging, as massive MIMO arrays consist of hundreds
of densely packed antenna elements [23, 24]. The presented
OTA method in [25] for retrodirective antenna arrays
calibrates the phases of the elements regarding a reference
transmitter. This allows precise beam steering towards the
reference but does not calibrate the amplitude and phase
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imbalances between the RF branches. Another OTA
approach is shown in [26], where the OTA calibration is
performed using the equivalent current technique with a
spherical near-field multiprobe system. Nevertheless, the
utilized measurement system is limited to 18 GHz, and the
size of the measured object is constrained. In [27], the ampli-
tude and phase of a phased array system are calibrated by
performing OTA scattering parameter measurements.

This work presents an OTA calibration method for SBHB
systems based on scattering parameter measurements. To
verify the calibration, a novel SBHB receiver system operat-
ing at 27.8 GHz is developed. In the first step, successive
OTA measurements of the complex transmission coefficient
between a reference transmitter and each receive antenna
are performed. The comparison between measurements
allows calibration of the relative amplitude and phase
difference between the RF chains at the receiver. In contrast
to [27], the beam patterns are further optimized by exploiting
the ambiguities of the phase shifters. To optimally exploit the
phase shifter ambiguities, two optimization criteria are for-
mulated and verified by conducting beam pattern measure-
ments. The presented results indicate a clear performance
improvement by selecting the phase shifter states optimizing
the transmission gain.

This paper is structured as follows. First, the developed
SBHB receiver is presented in Section 1. Subsequently, the
OTA calibration method is discussed in Section 2, including
the required measurement setup and calibration result.
Finally, in Section 3, two optimization criteria are proposed
and evaluated in measurements exploiting the phase shifter
ambiguities to further improve the antenna beam pattern.

2. Subarray-Based Hybrid
Beamforming Receiver

The overall receiver system consists of an independent
antenna board, a SBHB receiver backend module, and two
software-defined radios (SDRs). This modular setup enables
characterizing the SBHB receiver independently and allows
future changes like the testing of different antenna concepts.
A block diagram of the receiver system is shown in Figure 1.
The SBHB receiver connects N, = 4 receive antennas to one
digital channel creating N, = 4 independent subarrays. The
antenna board, designed in a previous study [28], consists of
a uniform linear microstrip patch antenna array with N,
= 16 elements arranged in the horizontal plane. The element
spacing is Ay/2 = 5.35mm, where A, represents the wave-
lengths at 27.8 GHz. To improve the antenna element gain,
two serially fed microstrip patch elements are vertically
stacked, narrowing down the half-power beamwidth
(HPBW) in elevation direction to 40.8°. The HPBW in azi-
muth is 86°, and the measured realized element gain, includ-
ing the connector and feed line losses, is 4dBi. The SBHB
receiver combines four antenna elements to one digital chan-
nel as shown in Figure 1.

A system on a chip (SoC) by Anokiwave of type AWMEF-
0108 [29] with four input channels and one output channel
represents the core of the SBHB receiver. Each of the four
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FiGurek 1: Block diagram of the SBHB receiver system including a
photo of the SBHB receiver frontend.

input channels of the AWMEF-0108 consists of a phase shifter
and digital attenuator with a 5-bit resolution each. The
branches are then connected via a power combiner on the
AWMEF-0108 SoC. The digital attenuators and phase shifters
of the AWMF-0108 are controlled via a serial peripheral
interface (SPI) using an Arduino Due microcontroller. A
software interface is implemented onto the microcontroller
translating the desired phase and attenuation settings defined
by a host computer into the required code sequence to con-
trol the AWMEF-0108 SoC. This software interface also
enables to define an offset vector between the phase and
amplitude states of the RF branches, which are utilized to
take into account the calibration carried out later. Further-
more, a switch-oft function for each RF branch is imple-
mented by controlling the power supply of the first low
noise amplifier (LNA) after the antenna element and setting
the digital attenuator within the AWMEF-0108 SoC to its max-
imum value. After combining the four input channels, the
received signal is further amplified and downconverted from
the RF at 27.8 GHz to an intermediate frequency (IF) at
2.46 GHz. The required local oscillator (LO) signal for down-
conversion is provided externally at half the LO frequency,
ie., 12.67 GHz.

The antenna board, as well as the SBHB receiver, is
designed using a four-layer printed circuit board (PCB) with
a RO4003C substrate of 200 ym thickness and a dielectric
constant of €, = 3.38 from Rogers Corporation. For electro-
magnetic shielding, protection, and better heat dissipation,
the SBHB receiver is integrated into a metallic housing. Each
amplifier stage is enclosed in a metallic chamber, which is
lined with absorber material of type ECCOSORB GDS from
Laird Performance Materials. Finally, the four IF outputs of
the SBHB receiver are connected to two SDRs. The SDRs per-
form IF signal processing, downconversion, and analog-to-
digital conversion. As SDRs, we employ the commercially
available platforms provided by Ettus Research LLC, ie.,
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universal software radio peripherals (USRPs) of type X310. A
photo of the SBHB receiver is shown in Figure 2.

3. OTA Calibration Method

In general, the parallel RF branches in the analog beamform-
ing network of the SBHB systems are prone to amplitude and
phase differences, caused by nonideal circuit board
manufacturing, deviations between the used integrated cir-
cuits, connectors, and soldering tolerances. In particular,
the phase imbalances between the RF branches are more pro-
nounced at higher frequencies due to the low wavelength,
which leads to strong phase differences caused by small line
length differences. As a result, a precise calibration between
the parallel RF branches is required. This calibration
becomes challenging as in massive MIMO systems several
hundreds of antennas are closely packed. Classical outcou-
pling of a part of the receive or transmit power close to the
antenna is technically challenging and inefficient, as it
requires a huge number of feedback branches [23]. As a con-
sequence, this work focuses on OTA calibration methods. To
correct phase and amplitude imbalances between the RF
branches, digital phase shifters and digital attenuators are
utilized provided by the AWMF-0108 SoC. This means that
the achievable accuracy of the calibration is limited by the
phase shifter and digital attenuator resolution. For the OTA
calibration, the measurement setup presented in Figure 3 is
utilized. The setup is aimed at measuring the complex trans-
mission coefficients, namely, S,,, between a reference trans-
mitter and each receiver of the SBHB system. Therefore, the
transmitter and SBHB receiver are separated by 6 m and ide-
ally aligned in an anechoic chamber. A photo of the SBHB
receiver in the anechoic chamber is shown in Figure 2. At
the transmitter side, a mixer of the same type as used for
the SBHB receiver is employed in combination with a quad
ridged horn antenna from RFspin Ltd. of type QRH40 offer-
ing 14dBi antenna gain and a half-power beamwidth
(HPBW) of 27.8" at the selected center frequency f . =27.8
GHz. To enable a measurement of the complex transmission
factor, the local oscillator signal for IF to RF up- and down-
conversion is provided by the same signal generator. More-
over, the utilized vector network analyzer (VNA) from
Keysight Technologies of type N9952A is operated at the IF
frequency band from 1.26 GHz to 3.66 GHz resulting to a
RF frequency band between 26.6 GHz and 29 GHz. The
VNA is synchronized with the signal generator via a
10 MHz reference signal. The transmit power is selected to
Pr,=-17dBm resulting in a received power of Py, =-76
dBm with a FSPL =77 dB at 27.8 GHz.

With the presented measurement setup, the complex
transmission matrix § € CNoNe can be measured for all
N, receive antennas and for all N, = 24 phase shifter states,
where g represents the resolution of the utilized digital phase
shifter. The digital attenuators are set to their minimum for
all branches to increase the receive signal-to-noise ratio
(SNR). The measurements between the reference transmitter
and each receiver branch of a subarray are performed subse-
quently in an automated process. The 32 possible phase

FIGURE 2: Photo of the SBHB receiver system.
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FIGURE 3: Measurement setup for OTA calibration.

shifter states multiplied by the 16 RF branches result in a total
of 512 measurements. Each measurement depends on the
number of points in the frequency domain, the selected reso-
lution bandwidth, and the selected averaging factor. For the
selected 301 measurement points in the frequency domain,
the resolution bandwidth of 10kHz, and an averaging over
20 measurements, yields an overall measurement time per
subarray of approximately 1.5h. As the phase and amplitude
differences between the subarrays can be corrected in the dig-
ital domain, only the imbalances between the N, antenna
elements of a subarray must be compensated. Therefore, we
reformulate the complex transmission matrix to S=[S,, -+,

Sy, |» where the transmission matrix of the dth subarray
18

has the shape S, € CNo*Ns forall d € {1, -+, Ny }- The mea-

sured phase of the transmission matrix £8$ is presented in
Figure 4(a). It can be observed that large phase imbalances
exist between the different RF branches. The measurement
results also show a deviation from the desired phase differ-
ence between the phase shifter states of the individual
branches. Based on the measured transmission matrix, the
calibration vector for each subarray ¢; = [c;, -+ ¢y, | with

cqi €{1, - N} for all i €{l,-++, Ny} subarray antenna
elements can be determined.
This is done by finding the optimal calibration vector

N,

. Noup Nowp
opt _ . >y
¢ =arg min Z £8,(iy» i)

=1

1
N 2 Salipp)|

i=1 sub p=1
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FIGURE 4: Measured phase of the uncalibrated and calibrated transmission matrix S at 27.8 GHz.

TaBLE 1: Phase error and mean CG of the proposed optimization
criteria.

ph,opt am,opt
RMS & ¢
Phase error 7.0° 2.1° 6.3°
SBHB mean CG 45.2dB 45.2dB 47.6dB

minimizing the phase differences between the RF branches of
the dth subarray with

(2)

_ { ig+Cqs ig+ ¢4 <N
q

i,+c;; —N

" fg+cg; >Ny

Ll q

The measurement result of the phase of the transmission
matrix after applying the determined optimal calibration vec-
tor is shown in Figure 4(b). The average phase error could be
reduced from 28.8° before calibration to 6.6” at 27.8 GHz. The
average phase error stays below 12° within 690 MHz from
27.59 GHz to 28.28 GHz. The reduction of the phase error
over a larger bandwidth can be further improved by utilizing
a true-time delay phase shifter [30].

4. Optimized Beam Pattern by Phase
State Selection

For the SBHB system, precise alignment of the beam in the
desired spatial direction is crucial. The alignment of the indi-
vidual subarrays is achieved, as in classical phased arrays, by
setting a phase difference Ap between the RF branches. The
adjustable phase difference depends on the resolution of the
digital phase shifter. This results in the possible phase differ-
ences Ag = o5 with the minimal phase difference ¢ = 277/24
and the differences of the phase shifter states 8. The adjusted
phase difference between the antenna elements results in a
uniform linear array in steering towards [31]:

¢ = arcsin {kAT(P}’ (3)

with the wave number k=27/A and the antenna element
spacing d,,. The equation shows that only the relative phase
between neighboring antenna elements is of importance to
steer the beam into the desired direction. The possible phase
shifter states f € {-f .., --»=1,0,1,---, B} depend on the
maximum desired steering angle ¢ resulting to

ﬁmax = |—kda sin {(/)max}—| . (4)

As the beam steering into the desired angular direction
can be achieved by N, different phase shifter settings, this
ambiguity can be exploited to further optimize the beam
pattern. As the degree of freedom serves the phase index of
the first antenna element (g€ {1,2,--,N,}, which can be
freely selected. The phases of all other antenna elements are
then adjusted relative to the phase setting of the first antenna
element.

One possibility is to select {4 leading to the minimum
deviation between the desired phase difference B¢; and the
actual phase difference between two adjacent branches. The
optimization problem results in

Nsub N i
(gl,opt —arg II{]iIl{ z LS, (i?,:l’ i+ 1>—LSd (ilgﬂ, is) - ,B‘Pa’ }
I
(5)

where the indices are defined as

opt . opt X
g+l Cﬁ Tl t i, (ﬁ Tt i< Nq,
s opt . opt ) (6)
(ﬁ+cd,i5+1 +ls/3_Nq; Cﬁ+cd,i5+1 +lsﬂ>Nq,

(ﬁ+c;§:+(is—1)ﬁ, (ﬁ+cZﬁ:+l+(is—l)ﬁSNq,
Cptcgy + (= )B=Ny Gg+cfi, +(i,-1)B>N,.

(7)

ils —
&
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FIGURE 5: Beam pattern of the complete antenna array for the different optimization criteria.

Another possibility is to select {3 maximizing the mean

conversion gain (CG) over all branches. The optimization
problem therefore results in

Nsub

y Sd<i2”ﬂ, is) ’ } (8)

i=1

am,opt .
=arg min
(g g {

The changes of the phase error and the mean CG
averaged over all possible angular directions are given in
Table 1. As reference serves the root-mean-square (RMS)
value over all phase indices {4 for both criteria. The results

show that for Cgh’(’pt, the phase error could be reduced to
2.1°, while the mean CG is identical to the RMS value. For
{3™OPt the mean CG could be increased by 2.4 dB compared

to the RMS value, while at the same time, the phase error is
slightly improved compared to the reference.

As the phase error is sufficiently low to achieve a direc-
tional beam in the desired direction, the CG plays a more
important role in increasing the SNR of the system. This
becomes clear by looking at the beam pattern of the complete
antenna array shown in Figure 5. The blue shaded area
within the figure represents the range of all possible (4. As

a reference serves the ideal beam pattern obtained from sim-
ulation. The necessity of a calibration becomes obvious by
measuring the beam pattern of the uncalibrated system
shown in Figure 5(a). Due to the imbalances in amplitude
and phase between the RF branches, the beam pattern is
strongly distorted. The results for both optimization criteria
indicate the beam points towards the desired spatial direc-
tion. Moreover, the optimization of the mean CG achieves
an increased antenna array gain compared to the optimiza-
tion of the phase error by 1.2dB for ¢ =0° and 2.2dB for ¢
=-34° compared to the optimization of the phase error.
The measured RMS sidelobe level over all steering angles

result for both optimization criteria in 10.5 dB, which is only
slightly below the simulated RMS sidelobe level of 11.4 dB.

To study the changes in receiver efficiency, the radiated
power can be determined by integrating over the antenna
pattern. As a reference, the radiated power averaged over all
N,, phase shifter permutations

Ny

Pref: NLZJ’CP(¢)’2d¢ (9)

P p=1

can be calculated, where Cp(qb) represents the antenna pat-

tern in azimuth of the pth selected permutation. The radiated
power of the pth selected permutation results in

P,= J(cp(¢)|2d¢. (10)

By relating the optimization results to the reference P
using (Pp - Pref)/Pref’
14.8% is shown for phase optimization and 44.4% for ampli-
tude optimization. This increment indicates a growth in the
receiver efficiency due to the optimized selection of the phase
states.

ref
an increase in radiated power of

5. Conclusions

As described in this paper, the calibration of massive MIMO
systems, consisting of hundreds of antenna elements, is a cur-
rent challenge in industry and research. The classical calibra-
tion approach, using a separate calibration branch before or
after each antenna element, is no longer realizable due to
the dense packing and the large number of antenna elements.
Therefore, an OTA calibration method based on scattering
parameter measurements is proposed and evaluated using a
novel SBHB receiver system operating at 27.8 GHz. The



correction of the phase and amplitude differences between
the RF branches is performed by the employed phase shifters
and variable attenuators within the SBHB RF-backend. To
further improve the calibration result, two optimization cri-
teria are formulated exploiting the phase shifter ambiguities.
The results show that by optimizing the amplitude, the CG
can be increased by 2.4 dB compared to the RMS value while
ensuring a sufficiently low phase error of 6.3°. Thus, the mea-
sured beam pattern achieves approximately the performance
of the results obtained by numerical simulations.
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