KIT | KIT-Bibliothek | Impressum | Datenschutz

Magnetoelectric Tuning of Pinning‐Type Permanent Magnets through Atomic‐Scale Engineering of Grain Boundaries

Ye, Xinglong; Yan, Fengkai; Schäfer, Lukas; Wang, Di; Geßwein, Holger; Wang, Wu; Chellali, Mohammed Reda; Stephenson, Leigh T.; Skokov, Konstantin; Gutfleisch, Oliver; Raabe, Dierk; Hahn, Horst; Gault, Baptiste; Kruk, Robert

Abstract:
Pinning‐type magnets with high coercivity at high temperatures are at the core of thriving clean‐energy technologies. Among these, Sm2Co17‐based magnets are excellent candidates owing to their high‐temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20–30% of the theoretical limits. Here, the roles of the grain‐interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only ≈1 V, the coercivity is reversibly tuned by an unprecedented value of ≈1.3 T. In situ magneto‐structural characterization and atomic‐scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. ... mehr

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000129376
Veröffentlicht am 05.02.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Institut für Angewandte Materialien - Energiespeichersysteme (IAM-ESS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2021
Sprache Englisch
Identifikator ISSN: 0935-9648, 1521-4095
KITopen-ID: 1000129376
Erschienen in Advanced materials
Verlag Wiley
Band 33
Heft 5
Seiten Art.-Nr.: 2006853
Vorab online veröffentlicht am 23.12.2020
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page